Allgemeine Relativitätstheorie mit dem Computer
General Theory of Relativity on the Computer
Vorlesung gehalten an der J.W.Goethe-Universität in Frankfurt am Main (Sommersemester 2016)
von Dr.phil.nat. Dr.rer.pol. Matthias Hanauske
Frankfurt am Main 11.04.2016
Erster Vorlesungsteil: Allgemeine Relativitätstheorie mit Maple
Probe Prüfung
Probeprüfung
Aufgabe 1c. Maple Worksheet Vorlesung4.mw verwendet.
Die innere Schwarzschildlösung eines sphärisch symetrischen, statischen Objektes (z.B. Erde, Neutronenstern)
Im folgenden wird die Einsteingleichung einer sphärisch symetrischen und statischen Matrieverteilung betrachtet. Die Matrie wird hierbei als ideale Flüssigkeit angesetzt.
Von der Einstein Gleichung zur Tollman-Oppenheimer-Vollkov Gleichung (TOV)
> | restart:
with( tensor ): |
Sphärisch symetrischer und statischer Ansatz der Metrik:
> | coord := [t, r, theta, phi]:
g_compts := array(symmetric,sparse, 1..4, 1..4): g_compts[1,1] := exp(2*phi(r)): #g_compts[2,2] := exp(2*lambda(r)): g_compts[2,2] := -1/(1-2*m(r)/r): g_compts[3,3] := -r^2: g_compts[4,4] := -r^2*sin(theta)^2: g := create( [-1,-1], eval(g_compts)); |
(2.1.1) |
> | ginv := invert( g, 'detg' );
D1g := d1metric ( g, coord ): D2g := d2metric ( D1g, coord ): Cf1 := Christoffel1 ( D1g ): Cf2 := Christoffel2(ginv, Cf1): |
(2.1.2) |
> | RMN := Riemann( ginv, D2g, Cf1 ):
RMNinv:= raise(ginv,RMN,1,2,3,4): RMNc:=get_compts(RMN): RICCI := Ricci( ginv, RMN ): RS := Ricciscalar( ginv, RICCI ): |
Kovariante Form des Einsteintensors:
> | G := Einstein( g, RICCI, RS ); |
(2.1.3) |
Hier wurde das Maple-File verändert:
> | RMN1:=raise(ginv,RMN,1):
get_compts(RMN1)[1,3,1,3]; get_compts(Cf2)[1,1,2]; get_compts(ginv)[3,3]; get_compts(RICCI)[1,1]; get_compts(G)[2,2]; |
(2.1.4) |
> |