Pruefung1b.mw

Allgemeine Relativitätstheorie mit dem Computer 

General Theory of Relativity on the Computer 

Vorlesung gehalten an der J.W.Goethe-Universität in Frankfurt am Main (Sommersemester 2016)  

von Dr.phil.nat. Dr.rer.pol. Matthias Hanauske 

Frankfurt am Main 11.04.2016 

 

Erster Vorlesungsteil: Allgemeine Relativitätstheorie mit Maple  

Probe Prüfung 

Probeprüfung 

Aufgabe 1b. Maple Worksheet Vorlesung1.mw verwendet mit Einsteintensor aus Vorlesung4.mw 

Die Schwarzschildmetrik 

Im folgenden werden einige grundlegende Größen am Beispiel der Schwarzschildmetrik eines schwarzen Lochs definiert. 

> restart:
with( tensor ):
 

Definition der kovarianten Raumzeit-Metrik eines schwarzen Lochs der Masse M in Schwarzschildkoordinaten: 

> coord := [t, r, theta, phi]:
g_compts := array(symmetric,sparse, 1..4, 1..4):
g_compts[1,1] := 1-2*M/r: g_compts[2,2] := -1/g_compts[1,1]:
g_compts[3,3] := -r^2:    g_compts[4,4] := -r^2*sin(theta)^2:
g := create( [-1,-1], eval(g_compts));
 

`:=`(g, table([index_char = [-1, -1], compts = Matrix(%id = 24909496)])) (2.1)
 

Einzelne Komponenten der Chistoffel Symbole (erster Index kontravariant, zweiter und dritter kontravariant) 

> ginv := invert( g, 'detg' ):
D1g := d1metric ( g, coord ):  
Cf1 := Christoffel1 ( D1g ):
Cf2:= Christoffel2( ginv, Cf1 );
 

 

`:=`(ginv, table([index_char = [1, 1], compts = Matrix(%id = 27354792)]))
`:=`(ginv, table([index_char = [1, 1], compts = Matrix(%id = 27354792)]))
table( [( index_char ) = [1, -1, -1], ( compts ) = array( 1 .. 4, 1 .. 4, 1 .. 4, [( 1, 1, 2 ) = `+`(`-`(`/`(`*`(M), `*`(r, `*`(`+`(`-`(r), `*`(2, `*`(M)))))))), ( 4, 4, 4 ) = 0, ( 1, 2, 3 ) = 0, ( 1,...
table( [( index_char ) = [1, -1, -1], ( compts ) = array( 1 .. 4, 1 .. 4, 1 .. 4, [( 1, 1, 2 ) = `+`(`-`(`/`(`*`(M), `*`(r, `*`(`+`(`-`(r), `*`(2, `*`(M)))))))), ( 4, 4, 4 ) = 0, ( 1, 2, 3 ) = 0, ( 1,...
table( [( index_char ) = [1, -1, -1], ( compts ) = array( 1 .. 4, 1 .. 4, 1 .. 4, [( 1, 1, 2 ) = `+`(`-`(`/`(`*`(M), `*`(r, `*`(`+`(`-`(r), `*`(2, `*`(M)))))))), ( 4, 4, 4 ) = 0, ( 1, 2, 3 ) = 0, ( 1,...
table( [( index_char ) = [1, -1, -1], ( compts ) = array( 1 .. 4, 1 .. 4, 1 .. 4, [( 1, 1, 2 ) = `+`(`-`(`/`(`*`(M), `*`(r, `*`(`+`(`-`(r), `*`(2, `*`(M)))))))), ( 4, 4, 4 ) = 0, ( 1, 2, 3 ) = 0, ( 1,...
table( [( index_char ) = [1, -1, -1], ( compts ) = array( 1 .. 4, 1 .. 4, 1 .. 4, [( 1, 1, 2 ) = `+`(`-`(`/`(`*`(M), `*`(r, `*`(`+`(`-`(r), `*`(2, `*`(M)))))))), ( 4, 4, 4 ) = 0, ( 1, 2, 3 ) = 0, ( 1,...
table( [( index_char ) = [1, -1, -1], ( compts ) = array( 1 .. 4, 1 .. 4, 1 .. 4, [( 1, 1, 2 ) = `+`(`-`(`/`(`*`(M), `*`(r, `*`(`+`(`-`(r), `*`(2, `*`(M)))))))), ( 4, 4, 4 ) = 0, ( 1, 2, 3 ) = 0, ( 1,...
table( [( index_char ) = [1, -1, -1], ( compts ) = array( 1 .. 4, 1 .. 4, 1 .. 4, [( 1, 1, 2 ) = `+`(`-`(`/`(`*`(M), `*`(r, `*`(`+`(`-`(r), `*`(2, `*`(M)))))))), ( 4, 4, 4 ) = 0, ( 1, 2, 3 ) = 0, ( 1,...
table( [( index_char ) = [1, -1, -1], ( compts ) = array( 1 .. 4, 1 .. 4, 1 .. 4, [( 1, 1, 2 ) = `+`(`-`(`/`(`*`(M), `*`(r, `*`(`+`(`-`(r), `*`(2, `*`(M)))))))), ( 4, 4, 4 ) = 0, ( 1, 2, 3 ) = 0, ( 1,...
table( [( index_char ) = [1, -1, -1], ( compts ) = array( 1 .. 4, 1 .. 4, 1 .. 4, [( 1, 1, 2 ) = `+`(`-`(`/`(`*`(M), `*`(r, `*`(`+`(`-`(r), `*`(2, `*`(M)))))))), ( 4, 4, 4 ) = 0, ( 1, 2, 3 ) = 0, ( 1,...
table( [( index_char ) = [1, -1, -1], ( compts ) = array( 1 .. 4, 1 .. 4, 1 .. 4, [( 1, 1, 2 ) = `+`(`-`(`/`(`*`(M), `*`(r, `*`(`+`(`-`(r), `*`(2, `*`(M)))))))), ( 4, 4, 4 ) = 0, ( 1, 2, 3 ) = 0, ( 1,...
table( [( index_char ) = [1, -1, -1], ( compts ) = array( 1 .. 4, 1 .. 4, 1 .. 4, [( 1, 1, 2 ) = `+`(`-`(`/`(`*`(M), `*`(r, `*`(`+`(`-`(r), `*`(2, `*`(M)))))))), ( 4, 4, 4 ) = 0, ( 1, 2, 3 ) = 0, ( 1,...
table( [( index_char ) = [1, -1, -1], ( compts ) = array( 1 .. 4, 1 .. 4, 1 .. 4, [( 1, 1, 2 ) = `+`(`-`(`/`(`*`(M), `*`(r, `*`(`+`(`-`(r), `*`(2, `*`(M)))))))), ( 4, 4, 4 ) = 0, ( 1, 2, 3 ) = 0, ( 1,...
(2.2)
 

Hier wurde das Maple-File verändert: 

> get_compts(Cf2)[1,1,2];
 

`+`(`-`(`/`(`*`(M), `*`(r, `*`(`+`(`-`(r), `*`(2, `*`(M)))))))) (2.3)
 

Nichtverschwindende Komponenten des Riemann Tensors. Der Ricci Tensor und Ricci Skalar ist identisch Null. 

> D2g := d2metric ( D1g, coord ):
RMN := Riemann( ginv, D2g, Cf1 ):
RMNc:=get_compts(RMN):
RiemannComponents=map(proc(x) if RMNc[op(x)]<>0 then x=RMNc[op(x)] else NULL end if end proc,[ indices(RMNc)] );
RICCI := Ricci( ginv, RMN );
RS := Ricciscalar( ginv, RICCI );
 

 

 

RiemannComponents = [[1, 3, 1, 3] = `/`(`*`(`+`(`-`(r), `*`(2, `*`(M))), `*`(M)), `*`(`^`(r, 2))), [2, 4, 2, 4] = `+`(`-`(`/`(`*`(M, `*`(`^`(sin(theta), 2))), `*`(`+`(`-`(r), `*`(2, `*`(M))))))), [3, ...
RiemannComponents = [[1, 3, 1, 3] = `/`(`*`(`+`(`-`(r), `*`(2, `*`(M))), `*`(M)), `*`(`^`(r, 2))), [2, 4, 2, 4] = `+`(`-`(`/`(`*`(M, `*`(`^`(sin(theta), 2))), `*`(`+`(`-`(r), `*`(2, `*`(M))))))), [3, ...
RiemannComponents = [[1, 3, 1, 3] = `/`(`*`(`+`(`-`(r), `*`(2, `*`(M))), `*`(M)), `*`(`^`(r, 2))), [2, 4, 2, 4] = `+`(`-`(`/`(`*`(M, `*`(`^`(sin(theta), 2))), `*`(`+`(`-`(r), `*`(2, `*`(M))))))), [3, ...
table( [( index_char ) = [-1, -1], ( compts ) = array( 1 .. 4, 1 .. 4, [( 3, 4 ) = 0, ( 1, 2 ) = 0, ( 1, 4 ) = 0, ( 1, 3 ) = 0, ( 2, 2 ) = 0, ( 3, 3 ) = 0, ( 1, 1 ) = 0, ( 2, 4 ) = 0, ( 2, 3 ) = 0, ( ...
table( [( index_char ) = [], ( compts ) = 0 ] ) (2.4)
 

Kontrahiert man das quadratische Produkt des Riemann Tensors, so erhält man folgenden Skalar:  

> RMNinv:= raise(ginv,RMN,1,2,3,4):
prod(RMN,RMNinv,[1,1],[2,2],[3,3],[4,4]);
 

table( [( index_char ) = [], ( compts ) = `+`(`/`(`*`(48, `*`(`^`(M, 2))), `*`(`^`(r, 6)))) ] ) (2.5)
 

Hier wurde das Maple-File verändert: 

> RMN1:=raise(ginv,RMN,1):
get_compts(RMN1)[1,3,1,3];
get_compts(Cf2)[1,1,2];
get_compts(ginv)[3,3];
get_compts(RICCI)[1,1];
G := Einstein( g, RICCI, RS );
get_compts(G)[2,2];
 

 

 

 

 

 

`+`(`-`(`/`(`*`(M), `*`(r))))
`+`(`-`(`/`(`*`(M), `*`(r, `*`(`+`(`-`(r), `*`(2, `*`(M))))))))
`+`(`-`(`/`(1, `*`(`^`(r, 2)))))
0
table( [( index_char ) = [-1, -1], ( compts ) = array( 1 .. 4, 1 .. 4, [( 3, 4 ) = 0, ( 1, 2 ) = 0, ( 1, 4 ) = 0, ( 1, 3 ) = 0, ( 2, 2 ) = 0, ( 3, 3 ) = 0, ( 1, 1 ) = 0, ( 2, 4 ) = 0, ( 2, 3 ) = 0, ( ...
0 (2.6)
 

>