public class SingleLeakyIntegratorWithIntrinsicPlasticityAndNoiseInputODE
extends java.lang.Object
implements org.apache.commons.math3.ode.FirstOrderDifferentialEquations
| Constructor and Description |
|---|
SingleLeakyIntegratorWithIntrinsicPlasticityAndNoiseInputODE(double gamma,
double w,
double epsilon_a,
double epsilon_b,
double lambda_1,
double lambda_2,
double tNoiseConstantInterval,
double xi_min,
double xi_max)
Creates a new leaky integrator with random noise input according to the
specified parameters.
|
| Modifier and Type | Method and Description |
|---|---|
void |
computeDerivatives(double time,
double[] state,
double[] stateDot)
Calculates the first derivatives of the ODE.
|
static double |
g(double x,
double a,
double b)
Transfer function $g(x, a, b) = \frac{1}{1 + e^{-a(x-b)}}$.
|
int |
getDimension()
Returns the dimension of the ODE.
|
double |
randomWhiteNoiseWithConstantTableaus(double t,
double tNoiseConstantInterval,
double xi_min,
double xi_max)
Random white noise with constant tableaus.
|
public SingleLeakyIntegratorWithIntrinsicPlasticityAndNoiseInputODE(double gamma,
double w,
double epsilon_a,
double epsilon_b,
double lambda_1,
double lambda_2,
double tNoiseConstantInterval,
double xi_min,
double xi_max)
gamma - leakw - weighted adjacency matrixepsilon_a - transfer function gain learning rateepsilon_b - transfer function threshold learning ratelambda_1 - target firing rate distribution parameter 1lambda_2 - target firing rate distribution parameter 2public int getDimension()
getDimension in interface org.apache.commons.math3.ode.FirstOrderDifferentialEquationspublic void computeDerivatives(double time,
double[] state,
double[] stateDot)
computeDerivatives in interface org.apache.commons.math3.ode.FirstOrderDifferentialEquationstime - time $t$state - vector $(x(t), a(t), b(t))$stateDot - vector $(\dot{x}(t), \dot{a}(t), \dot{b}(t))$public static double g(double x,
double a,
double b)
x - membrane potential $x$a - transfer function gain $a$b - transfer function threshold $b$public double randomWhiteNoiseWithConstantTableaus(double t,
double tNoiseConstantInterval,
double xi_min,
double xi_max)
t - time