public class SingleLeakyIntegratorWithIntrinsicPlasticityAndNoiseInputODE
extends java.lang.Object
implements org.apache.commons.math3.ode.FirstOrderDifferentialEquations
| Constructor and Description | 
|---|
| SingleLeakyIntegratorWithIntrinsicPlasticityAndNoiseInputODE(double gamma,
                                                            double w,
                                                            double epsilon_a,
                                                            double epsilon_b,
                                                            double lambda_1,
                                                            double lambda_2,
                                                            double tNoiseConstantInterval,
                                                            double xi_min,
                                                            double xi_max)Creates a new leaky integrator with random noise input according to the
 specified parameters. | 
| Modifier and Type | Method and Description | 
|---|---|
| void | computeDerivatives(double time,
                  double[] state,
                  double[] stateDot)Calculates the first derivatives of the ODE. | 
| static double | g(double x,
 double a,
 double b)Transfer function $g(x, a, b) = \frac{1}{1 + e^{-a(x-b)}}$. | 
| int | getDimension()Returns the dimension of the ODE. | 
| double | randomWhiteNoiseWithConstantTableaus(double t,
                                    double tNoiseConstantInterval,
                                    double xi_min,
                                    double xi_max)Random white noise with constant tableaus. | 
public SingleLeakyIntegratorWithIntrinsicPlasticityAndNoiseInputODE(double gamma,
                                                            double w,
                                                            double epsilon_a,
                                                            double epsilon_b,
                                                            double lambda_1,
                                                            double lambda_2,
                                                            double tNoiseConstantInterval,
                                                            double xi_min,
                                                            double xi_max)
gamma - leakw - weighted adjacency matrixepsilon_a - transfer function gain learning rateepsilon_b - transfer function threshold learning ratelambda_1 - target firing rate distribution parameter 1lambda_2 - target firing rate distribution parameter 2public int getDimension()
getDimension in interface org.apache.commons.math3.ode.FirstOrderDifferentialEquationspublic void computeDerivatives(double time,
                      double[] state,
                      double[] stateDot)
computeDerivatives in interface org.apache.commons.math3.ode.FirstOrderDifferentialEquationstime - time $t$state - vector $(x(t), a(t), b(t))$stateDot - vector $(\dot{x}(t), \dot{a}(t), \dot{b}(t))$public static double g(double x,
       double a,
       double b)
x - membrane potential $x$a - transfer function gain $a$b - transfer function threshold $b$public double randomWhiteNoiseWithConstantTableaus(double t,
                                          double tNoiseConstantInterval,
                                          double xi_min,
                                          double xi_max)
t - time