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Zusammenfassung

Innerhalb des weiten Feldes der Festkörperphysik beschäftigt sich diese Arbeit mit
dem Gebiet der sogenannten korrelierten Elektronensysteme. Um diesen Begriff genau-
er zu verstehen, starten wir von der empirischen Beobachtung, dass die Elemente einer
großen Gruppe von Materialien bei hinreichend tiefen Temperaturen in Form von Kri-
stallen auftreten. Diese periodische Anordnung von ladungsneutralen Elementarzellen
findet auf einer Größenskala statt, welche die elektrostatische Wechselwirkung als ein-
zig dominante Wechselwirkung auszeichnet. Außerdem folgert man aus dem Vergleich
der auftretenden Längen- und Energieskalen, dass eine genaue Beschreibung des Sy-
stems im Rahmen der Quantenmechanik erfolgen muss. Bei einem Kristall handelt es
sich offensichtlich um ein Vielteilchensystem, in dem Elektronen und Atomrümpfe über
die langreichweitige Coulomb-Wechselwirkung miteinander wechselwirken. Ein solches
System, das typischerweise eine Teilchenzahl von der Größenordnung 1023 pro Quadrat-
zentimeter aufweist, kann mit keiner bekannten numerischen oder analytischen Methode
exakt beschrieben werden. Doch selbst wenn es möglich wäre das Energiespektrum des
Hamiltonoperators des Kristalls zu bestimmen, würde die riesige Datenmenge zunächst
wenig Aufschluss über die darin enthaltene Physik preisgeben.
Es ist daher ein zentrales Problem der theoretischen Festkörperphysik effektive Modelle
herzuleiten, die einfach genug sind, um eine analytische oder numerische Lösung zuzu-
lassen, aber gleichzeitig so komplex sind, dass die wesentliche Physik darin enthalten
bleibt.

Eine fundamentale Näherung, auf die wir in dieser Arbeit zurückgreifen, ist die so-
genannte Born-Oppenheimer-Approximation. Diese macht sich den großen Massenun-
terschied zwischen Elektronen und Atomrümpfen zunutze, um die elektronischen Frei-
heitsgrade von denen der schweren Atomrümpfe zu entkoppeln. Da wir uns in dieser
Arbeit ausschließlich mit elektronischen Eigenschaften von Kristallen bei tiefen Tempe-
raturen beschäftigen, wollen wir weiterhin annehmen, dass die Atomrümpfe auf ihren
Gleichgewichtspositionen festgefroren sind.

Doch auch die drastische Vereinfachung, die uns die Born-Oppenheimer-Approximation
ermöglicht, ist leider immer noch nicht ausreichend, um das verbleibende elektronische
Vielteilchenproblem zu lösen. Um das Modell noch weiter zu vereinfachen, betrachten
wir den thermodynamischen Grenzfall, indem das System als unendlich ausgeht ange-
nommen wird, während die Teilchendichte konstant bleibt. Außerdem beschränken wir
uns zunächst auf Grundzustandseigenschaften.
In dieser Situation stellt die Dichtefunktionaltheorie (DFT) einen prominenten und
erfolgreichen Zugang zum elektronischen Vielteilchenproblem dar. Aufbauend auf den
fundamentalen Theoremen von Hohenberg und Kohn erlaubt DFT Erwartungswerte
von Observablen nicht nur über 3N -Raumintegrale auszurücken, sondern auch als Funk-
tionale der Grundzustandsdichte. Obwohl diese Umformulierung des Problems bereits
eine elegante Vereinfachung darstellt, erlaubt erst die Kohn-Sham Formulierung von
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DFT die physikalischen Eigenschaften von Kristallen explizit zu berechnen. Der Kohn-
Sham Ansatz postuliert, dass sich das elektronische Vielteilchensystem auch als effekti-
ves nicht-wechselwirkendes Elektronengas beschreiben lässt, das sich in einem effektiven
externen Potential, erzeugt durch die Atomrümpfe und elektronische Austausch- und
Korrelationseffekte, befindet.

Diese Reduktion des ursprünglichen Viel-Elektronensystems auf ein effektives nicht-
wechselwirkendes System in einem externen Potential führt zu dem sogenannten Kohn-
Sham Hamiltonoperator. Bei diesem Operator handelt es sich um einen Einteilchen-
Hamiltonoperator, in einem externen periodischen Potential, sodass das Energiespek-
trum – vermöge des Bloch-Theorems – eine Bandstruktur aufweist, in der der Gitte-
rimpuls k eine gute Quantenzahl ist. Die für DFT fundamentale Grundzustandsdichte
erhält man als Summe von Betragsquadraten der Kohn-Sham Energieeigenzustände,
nachdem man das Austausch- und Korrelationspotential beispielsweise mittels der lo-
kalen Dichteapproximation festgelegt (LDA) hat.

Es ist unbestreitbar, dass die Kohn-Sham DFT in den Bereichen der Chemie und
der Festkörperphysik besonders aufgrund der stetigen Verbesserung der Austausch-
und Korrelationspotentiale große Erfolge gefeiert hat und auch aktuell ein aktives und
grundlegendes Forschungsgebiet darstellt. In der Praxis interpretiert man das Spektrum
des Kohn-Sham Hamiltonoperators als Näherung zum Energiespektrum des wechsel-
wirkenden Elektronensystems.
Als Maß aller Dinge gilt hier das Experiment, wobei besonders die winkelaufgelöste Pho-
toemissionsspektroskopie (ARPES) und die de-Haas-van-Alphen Spektroskopie (dHvA)
Rückschlüsse auf bestimmte Teile des elektronischen Energiespektrums erlauben.
Jedoch trifft man auch auf Materialien, wo die Bandstruktur von DFT stark von der
Gemessenen abweicht. So werden beispielsweise viele Übergangsmetalloxide im Rah-
men von LDA als Metalle charakterisiert, während das Experiment klar einen Isolator
vorfindet. Weitere typische Effekte betreffen die unterschätzte effektive Masse der Elek-
tronen und fehlende inkohärente Zustände bei tieferen Bindungsenergien.
Diese Effekte sind charakteristisch für korrelierte Elektronensysteme, wobei sich der Be-
griff korreliert darauf bezieht, dass das Verhalten der Elektronen kollektiv beschrieben
werden muss und die unabhängige Teilchenannahme, die in den Kohn-Sham Ansatz
eingeht, nicht mehr gerechtfertigt ist.

In Kapitel 1 gehen wir genauer auf die Phänomenologie korrelierter Elektronensyste-
me ein und präsentieren zwei Materialklassen von unkonventionellen Supraleitern, deren
Vielteilcheneigenschaften wir später genauer untersuchen wollen. Hierbei handelt es sich
um die organischen κ-(ET)2X Ladungstransfersalze und den Eisenpniktid-Supraleiter
LiFeAs.
Bei den organischen Supraleitern stellt man eine verblüffende Ähnlichkeit zwischen
dem Phasendiagramm dieser Systeme und dem der Kupratsupraleiter fest, weshalb der
Schluss nahe liegt, dass trotz der strukturellen und chemischen Verschiedenheit bei-
der Systeme ein ähnlicher Mechanismus die Supraleitung steuert. Aus diesem Grund
geht man davon aus, dass Spin-Fluktuationen sowohl bei den Kupraten als auch bei
den organischen κ-(ET)2X-Supraleitern zur Bildung von Cooper-Paaren führen. Da die
Einheitszelle in organischen Supraleitern typischerweise hunderte Atome beinhaltet, ist
es für die gängigen Vielteilchenmethoden unmöglich die Korrelationseffekte aller Elek-
tronen zu beschreiben. Aus diesem Grund bedient man sich effektiver Modelle, welche
die langkettigen organischen Bestandteile auf verschiedene Weise beschreiben. Wir be-
handeln das Molekül-Modell und das sich daraus ergebende Dimer-Modell.
In ähnlicher Weise stellt man in den Phasendiagrammen der Eisenpnitkid-Supraleiter

ii



fest, dass die supraleitende Phase oft an eine Phase mit magnetischer Ordnung an-
grenzt, weshalb auch für LiFeAs vermutet wird, dass die Tieftemperatur-Eigenschaften
durch Spinfluktuationen bestimmt werden.

Da das Kohn-Sham Energiespektrum in DFT trotz des fehlenden kollektiven Aspekts
der Elektronendynamik in vielerlei Hinsicht einen guten nicht-wechselwirkenden Start-
punkt für Vielteilchen-Rechnungen darstellt, befassen wir uns nach einer ausführlichen
Behandlung der Dichtefunktionaltheorie in Kapitel 2 mit der projektiven Wannier-
funktionsmethode. Ein besonderes Merkmal von DFT ist ihr sogenannter ab-initio-
Charakter, was bedeutet, dass DFT nur die chemische Zusammensetzung und Kristall-
struktur zu Beginn benötigt und auf keine zusätzlichen physikalischen Parameter außer
Naturkonstanten angewiesen ist.
Man stellt nun im Vergleich mit dem Experiment fest, dass die Vielteilchennatur nicht
bei allen Elektronen eines Systems gleichermaßen auftreten, sondern auf bestimmte
Orbitale beschränkt ist. So sind es bei Verbindungen, die Übergangsmetalle beinhal-
ten, oft die partiell gefüllten stark lokalisierten d-Orbitale, welche Korrelationseffekte
aufweisen, während die Elektronen in anderen Orbitalen hinreichend genau mittels des
Kohn-Sham Energiespektrums in DFT beschrieben werden.
Die projektive Wannierfunktionen-Methode erlaubt nun einen Basiswechsel derart durch-
zuführen, dass die Elektronen der lokalisierten und korrelierten Orbitale separat in ei-
nem effektiven Niedrig-Energie-Modell beschrieben werden können.

Nachdem wir diejenigen Orbitale aus DFT extrahiert haben, die durch Vielteilchen-
effekte korrigiert werden müssen, folgt nun der nächste Schritt der Modellierung in
Kapitel 3. Hierbei erfolgen zwei drastische Approximationen, die zu dem berühmten
Hubbard-Modell führen.
Zum einen Vernachlässigen wir das Kontinuum, indem wir nur die Matrixelemente
des Niedrig-Energie Modells in der Wannierbasis betrachten und die explizite Form
der Wannierfunktionen nicht berücksichtigen und somit zu einem reinen Gittermo-
dell gelangen. Zum anderen behalten wir nur den Anteil der Coulomb-Wechselwirkung
zwischen Elektronen auf dem gleichen Gitterplatz, sodass Elektronen auf unterschiedli-
chen Gitterplätzen keine Abstoßung spüren. Dieses Vorgehen wirkt zunächst übermäßig
vereinfachend, aber während die Information zu der Form der Orbitale in den effek-
tiven Parametern des Hubbard-Modells eingebaut sind, lässt sich die Einschränkung
der Coulomb-Abstoßung auf gleiche Gitterplätze durch starke Abschirmungseffekte be-
gründen.
Letztlich ist es jedoch die große Vielfalt, die im einfach anmutenden Hubbard-Modell
enthalten ist, und der Erfolg, der in realistischen Materialrechnungen erlangt werden
konnte, welche das Hubbard-Modell so populär machen.
Um die ab-initio-Eigenschaft unserer Modellierung zu wahren, stellen wir in demselben
Kapitel die eingeschränkte Random-Phase-Approximation vor, welche erlaubt, genährte
effektive Coulomb-Wechselwirkungsparameter für das Hubbard-Modell zu einem jewei-
ligen Material zu bestimmen.

Bis zu diesem Punkt haben wir also ein effektives Gittermodel mit lokaler effektiver
Coulomb-Wechselwirkung konstruiert, welches die Korrelationsphänomene der Elektro-
nen in den lokalisierten Orbitalen nahe der Fermi-Kante beschreiben soll. Leider gibt es
für das Hubbard-Modell nur in bestimmten Grenzfällen exakte Lösungen und so ist man
darauf angewiesen, genährte Vielteilchen-Lösungen zu konstruieren. Eine gängige und
elegante Methodologie, die sich in diesem Rahmen anbietet und in Kapitel 4 vorgestellt
wird, ist die Verwendungen von Greenschen Funktionen. Diese Objekte erlauben es den
Effekt von Elektron-Elektron-Wechselwirkung in Form der sogenannten Selbstenergie
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zu bestimmen, welche die Einteilchen-Eigenschaften der nicht-wechselwirkenden Teil-
chen renormiert.
In den Fällen, in denen die Fermi-Flüssigkeitstheorie anwendbar ist, kann man aus der
Selbstenergie beispielsweise die Lebenszeit oder effektive Masse der Quasiteilchen ex-
trahieren.

Kapitel 5 bildet dann das Zentrum dieser Arbeit. In diesem Kapitel leiten wir ausführlich
die sogenannte Two-Particle Self-Consistent Methode (TPSC) her, welche ursprünglich
von Y.M. Vilk und A.-M.S. Tremblay für das Einband-Hubbard Modell entwickelt wur-
de.
Diese lässt sich in der Sprache von funktionalen Ableitungen nach Kadanoff-Baym her-
leiten und wir geben eine explizite Erweiterung für Viel-Orbital-Systeme an, in denen
neben der Coulomb-Abstoßung auch die Hunds-Wechselwirkung Eingang findet.
Im Gegensatz zu der Einband-Formulierung treten hierbei einige Hindernisse auf, die
entsprechend mit weiteren Approximationen umgangen werden können. Der funda-
mentale Gedanke der Methode ist jedoch der folgende und in allen TPSC-Varianten
gleich: Der effektive Wechselwirkungsvertex wird als Impuls- und Energie-unabhängig
angenommen, sodass sich die Gleichungen zur Bestimmung der Selbstenergie enorm
vereinfachen. Weiterhin wird der Wert des effektiven Wechselwirkungsvertex durch Er-
zwingung des Pauli-Prinzips in Form sogenannter lokaler Summenregeln festgelegt. Die
Selbstenergieeffekte, welche durch diese Art der Approximation behandelt werden, sind
Spin- und Ladungsfluktuationen aus dem paramagnetischen Grundzustand, welche an
die elektronischen Zustände koppeln.
Wir wenden in demselben Kapitel TPSC dann auch auf die organischen κ-(ET)2X
Supraleiter an und studieren die supraleitenden Eigenschaften im Rahmen der lineari-
sierten Eliashberg-Gleichung. Hierbei vergleichen wir das eingangs vorgestellte Molekül-
und Dimer-Modell bezüglich supraleitender kritischer Temperaturen und der Symme-
trie der supraleitenden Lückenfunktion. Dabei stellen wir fest, dass das komplexere Mo-
lekül-Modell eine exotische s+dx2−y2 Lückenfunktion stabilisiert, während das Dimer-
Modell nur dxy-Lösungen zulässt. Darüber hinaus finden wir im Dimer-Modell einen
direkten Zusammenhang zwischen der supraleitenden kritischen Temperatur und dem
Maß an geometrischer Frustration, welcher sich nicht mit den experimentell bestimmten
kritischen Temperaturen deckt. Aus diesem Grund schließen wir, dass das Dimer-Modell
zur Beschreibung der Supraleitung unzureichend ist und man auf komplexere Systeme
wie das Molekül-Modell mit eventuell Nächster-Nachbar-Wechselwirkung angewiesen
ist.

Die Erweiterung von TPSC auf Viel-Orbital-Systeme fand zum ersten Mal im Jah-
re 2013 statt und die Formulierung, die wir in dieser Arbeit vorstellen, basiert auf einer
neu hergeleiteten Version aus dem letzten Jahr.
Aus diesem Grund ist Kapitel 6 dem Test dieser Methode und dem Vergleich mit der
etablierten Dynamischen Molekularfeldnährung (DMFT) gewidmet. In dieser weit ver-
breiteten Approximation wird die Selbstenergie als lokale Größe approximiert und die
daraus gewonnene Lösung entspricht der exakten Lösung im unendlich-dimensionalen
Grenzfall.
Bei diesem Vergleich der beiden Methoden, den wir für ein einfaches Zwei-Orbital Mo-
dell durchführen, stellen wir zunächst fest, dass die Viel-Orbital-Version von TPSC
einige Probleme mit der Bestimmung des effektiven Wechselwirkungsvertex aufweist,
da die gefundenen Lösungen zu unphysikalischen Signaturen in der Greenschen Funk-
tion führen. Um solche Effekte zu verhindern, ist es notwendig die Erzwingung des
Pauli-Prinzips auf physikalische Lösungen einzuschränken, was mit der Annahme eines
konstanten effektiven Wechselwirkungsvertex nicht vereinbar ist, sodass wir statt einer
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exakten Lösung nach einer optimalen Lösung suchen, die die lokalen Summenregeln
unter Einhaltung der Physikalität möglichst genau erfüllt.
Im direkten Vergleich von TPSC und DMFT stellen wir weiterhin fest, dass beide Me-
thoden die Renormierung der Quasiteilchen qualitativ sehr ähnlich beschreiben und
auch quantitativ in einigen Bereichen große Übereinstimmung aufweisen. Nichtsdesto-
trotz sehen wir aber auch, dass bestimmte Effekte der Hunds-Wechselwirkung innerhalb
von TPSC nicht wiedergegeben werden. Wir führen dies auf einen bestimmten An-
satz für den effektiven Wechselwirkungsvertex zurück, der zumindest für die Einband-
Formulierung von TPSC sehr erfolgreich eingesetzt werden konnte.

Nachdem in Kapitel 6 die Viel-Orbital TPSC-Variante getestet wurde, wenden wir
sie in Kapitel 7 auf den zu Beginn eingeführten eisenbasierten Supraleiter LiFeAs an.
Wir sind hierbei an den elektronischen Eigenschaften in der normalleitenden parama-
gnetischen Phase interessiert. Dabei spielen zwei Aspekte eine besondere Rolle:
Zum einen wollen wir die Diskrepanz bezüglich der Größe der Elektronen- und Lochta-
schen auf der Fermioberfläche im Vergleich von Experiment und der Kohn-Sham DFT-
Bandstruktur auflösen. In der Literatur wird dieser Umstand bei den eisenbasierten
Supraleitern als Rot-Blau-Verschiebung bezeichnet. Zum anderen wollen wir versuchen
die energieabhängigen Quasiteilchen-Lebenszeiten aus Experimenten zu reproduzieren.
Tatsächlich realisiert TPSC die Rot-Blau-Verschiebung in ausreichendem Maße, so-
dass die Übereinstimmung mit dem Experiment sichtlich zunimmt. Zusätzlich stellen
wir fest, dass Elektron-Elektron-Wechselwirkung dazu führt, dass die elektronischen
Zustände nahe des Ursprungs des reziproken Gitters inkohärent werden und eine blu-
menartige Form annehmen, was ebenfalls vom Experiment beobachtet wird.
Um zu unterstreichen, dass diese beiden Eigenschaften aus der Impulsabhängigkeit der
Selbstenergie stammen, zeigen wir zudem Rechnungen, in denen die TPSC-Selbstenergie
durch ihren Impulsmittelwert ersetzt wurde. In dieser lokalen Näherung verschwinden
sowohl die blumenförmigen Zustände als auch die Rot-Blau-Verschiebung. Erstaunli-
cherweise stimmt dann aber die daraus resultierende Fermioberfläche in hohem Ma-
ße mit der aus DMFT-Rechnungen überein. Dies zeigt, dass die Impulsabhängigkeit
in diesem System nicht zu vernachlässigen ist und eventuell auf Spinfluktuationen
zurückgeführt werden kann.
Bezüglich der energieabhängigen Quasiteilchen-Lebenszeiten finden wir, dass diese eben-
falls starke impulsabhängigkeit aufweisen und qualitativ mit den experimentellen Be-
funden einer Forschungsgruppe übereinstimmen. Seitens der Experimentatoren gibt es
keine endgültig übereinstimmenden Resultate diesbezüglich.

Im letzten Kapitel fassen wir die gesamte Arbeit zusammen und geben einen Aus-
blick für mögliche zukünftige Aktivitäten auf diesem Gebiet.
Im Vordergrund stehen hierbei potentielle Verbesserung der Viel-Orbital TPSC-Methode.
Dazu bietet sich zunächst die Kombination mit anderen Methoden wie DMFT an, da
diese viele präzise Bestandteile zur Gesamtlösung beitragen kann. Dies hätte den wei-
teren Vorteil, dass TPSC ohne einen Ansatz für den effektiven Wechselwirkungsvertex
auskommt und somit die damit einhergehenden Probleme eventuell behoben wären.
Weitere Verbesserungen der Methode könnten darin bestehen die kürzlich publizierte
“TPSC+”-Erweiterung auch auf die Viel-Orbital-Variante anzuwenden. Andererseits
könnte man aber auch versuchen TPSC dahingehend zu erweitern, dass auch dynami-
sche Abschirmeffekte eingebaut werden können.
Eine weitere mögliche Baustelle ist die Einbindung des sogenannten transversalen Teilchen-
Loch-Kanals. Dieser kann in der hier vorgestellten Viel-Orbital-TPSC-Variante nicht
eingebaut werden, da nicht genügend lokale Summenregeln existieren. Die Kombinati-
on von TPSC mit DMFT oder anderen Vielteilchenmethoden könnte dieses Problem
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ebenfalls lösen.
Im Wesentlichen stellen wir also fest, dass TPSC durchaus das Potential hat nicht-
lokale Selbstenergieeffekte aus Spinfluktuationen präzise zu beschreiben und dass die
genannten Kinderkrankheiten im Laufe weiterer Forschung behoben werden können.
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CHAPTER 1

Introduction

Condensed matter physics reveals a plethora of phases of matter and phenomena
as a consequence of the large particle number in the systems studied. In order to
understand the mechanisms that drive the rich physics of solids it is important to
identify the energy scales and degrees of freedom that play a role.

In this thesis we want to concentrate on the special case where the electron-electron
interaction plays an important role for describing the electronic properties of the ma-
terial. It is common to call such systems correlated electronic systems because the
expectation value of an operator A(1)B(2), where A acts on particle 1 and B acts on
particle 2, does not decompose into a product of expectation values of A(1) and B(2).
From a physical point of view this concept can be seen as a fingerprint of collective
emergent behavior of electrons.

1.1. Non-interacting vs. interacting electrons in a solid

We know from elementary quantum mechanics that the energy spectrum of a free
electron in space is given by all non-negative numbers and that the eigenfunctions are
given by plane waves {eik·x}k∈Rn where k is the wave vector quantum number.
As a consequence we see that the eigen states describe a particle delocalized in space.
Keeping this in mind we start now to move closer to our actual goal of describing
electrons in a solid.

Experience tells us that many materials tend to form crystalline structures at suffi-
ciently low temperatures1. Furthermore, a comparison of length and energy scales tells
us that the Coulomb interaction will be the only dominant interaction to consider in
this quantum mechanical system.
Within a crystal we find positively charged atomic cores and electrons which together
constitute the atomic ingredients of the crystal. In order to decouple the electronic
from the core degrees of freedom one traditionally makes use of the Born-Oppenheimer
approximation. Still, we are left with a large number of the order 1023 electrons that
are coupled to each other by the long-range Coulomb repulsion.

A central topic in theoretical solid state theory is therefore the derivation of effec-
tive models that are simple enough to be treated analytically or numerically while at
the same time containing the essential physics of the material.
In chap. 2 we present the famous Density Function Theory (DFT) which is in principle
exact for ground state properties, where the electron equations of motion are decoupled
from each other and replaced by free electrons in an effective self-consistent potential
that is created from the atomic cores and all other electrons. The Bloch theorem gives
us consequently a band structure of the energy spectrum, where the crystal momentum
k is a good quantum number and the eigen states are so-called Bloch waves. A common
point with the example of the free particle is that the electrons are again delocalized
in space but there are many differences regarding the detailed form of the eigen states
and the energy spectrum.

1A rigorous understanding of this observation is still not known and a famous problem in mathe-
matical physics [1].
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1.1. NON-INTERACTING VS. INTERACTING

In many case studies of real materials DFT has proven to be very successful in the
description of material properties which supports the idea that in such materials the
many-body character of the electrons is subdued because of efficient screening effects.
Most importantly, those properties are calculated from ab-initio which signifies that
the theory is based on fundamental principles, it has no adjustable parameters and
takes only the crystal structure and chemical composition as input.

On the other hand, we find materials where the Kohn-Sham electronic structure in
DFT is not able to properly describe the observed electronic structure. Among the
class of such materials we find certain transition metal oxides which are predicted to
be metals while experimental studies find them to be insulators. This is a very dis-
tinct discrepancy between DFT and experiment but one also finds examples where the
predicted effective electron mass is underestimated or certain electronic states at lower
binding energies are not resolved by the theory.
The previously mentioned features can be directly connected to electronic correlation
effects where f.i. the enhanced effective electron mass is due to electron-electron scat-
tering processes.

In order to take those many-body effects into account we restrict the Hilbert space
to the orbital manifold where the electronic correlation effects are strongest. In the
case of the previously mentioned transition metal oxides we are referring to the local-
ized transition metal d-orbitals.
The famous Hubbard model that is described in chap. 3 will serve us as the effec-
tive model for describing electronic correlation effects. This lattice model where the
Coulomb repulsion is approximated to be an effective local repulsive term can be moti-
vated from the strong localization of the orbitals and the effective electronic screening.
By means of the projective Wannier function method and the constrained Random
Phase Approximation (cRPA) we are able to retain the ab-initio character of our ma-
terial study. Both methods are introduced in chap. 2, 3 and take the DFT result as
input to construct the Hubbard model for the correlated electronic states.

Albeit its simple shape in the single-band case a general solution of the Hubbard model
is still unknown except for some limiting cases. For this reason we have to rely on
approximative many-body schemes that are at the core of this thesis.
Those methods are often formulated in terms of Green’s functions that are introduced
in chap. 4. This formulation allows to express the effect of electron-electron interaction
in terms of the so-called self-energy which is responsible for the effective mass increase
and the finite quasi-particle lifetime of Bloch wave excitations. In the limit of very
strong electron-electron coupling the Hubbard model predicts a transition from the
delocalized Bloch wave picture to the multiplet atomic orbitals picture.

Chapter 5 is devoted to the explicit derivation and discussion of the Two-Particle
Self-Consistent approach (TPSC) which is the many-body approximation that we are
using throughout this work.
This method was originally developed by Y.M. Vilk and A.-M.S. Tremblay for the
single-band Hubbard model. The derivation is expressed in the language of functional
derivatives and follows the Kadanoff-Baym approach for deriving so-called conserving
approximations.
We discuss all those concepts in detail and present a multi-site and multi-orbital version
of TPSC, where in the latter additional interaction terms such as the Hund’s coupling
enter the Hamiltonian.
In contrast to the single-band TPSC we will encounter some pitfalls in the multi-orbital
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CHAPTER 1. INTRODUCTION

version that we can circumvent by applying additional approximations.
The fundamental idea of all TPSC schemes is to approximate the interaction vertex to
be an effective momentum- and frequency independent vertex function. By enforcing
the Pauli principle one is able to determine the effective vertex function from so-called
local spin and charge sum rules. This leads to a self-energy that is both frequency-
and momentum-dependent due to the coupling of spin and charge fluctuations to the
electronic propagator.

In order to benchmark this novel approach we devote chap. 6 to an extensive com-
parison of TPSC and the established dynamical mean field theory (DMFT). DMFT
approximates the self-energy to be local but dynamical, which becomes exact for infi-
nite lattice connectivity.

In chap. 7 we present a real material study of LiFeAs and compare the results also
to DMFT while the last chapter 8 is devoted to a summary and an outlook regarding
possible future extensions of the multi-orbital TPSC method.

1.2. Two classes of unconventional superconductors

In this thesis we are studying representatives of two classes of unconventional super-
conductors, namely the organic charge transfer salts κ-(ET)2X (chap. 5) and ironpnic-
tide superconductors, more specifically LiFeAs (chap. 7).
Although those materials have not much in common when it comes to chemical com-
position or crystal structure one finds an interesting similarity in the phase diagrams
(see fig. 1.1). Most notably, there is a proximity between a spin ordered phase and

Figure 1.1. Schematic phase diagram of Cuprate, organic and
ironpnictide superconductors [2–4]. The common point of all three ma-
terial classes is the vicinity of the superconducting phase (SC) to some
kind of spin ordered phase (SO). Notice that the gray shaded region
is different for all three material families, f.i. in the cuprate super-
conductors there is no overlap of superconductivity and spin order [3].
Moreover, there are additional features that appear in different classes
like Pseudogap phases or structural transitions.

the superconducting phase in organic κ-(ET)2X, ironpnictide and cuprate supercon-
ductors [2–5]. Since TPSC takes low energy spin and charge fluctuations into account
we assume that it is a suitable method to treat the low temperature physics of all those
three materials to some extent as will be discussed in chap. 5 and 7.
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1.2. TWO CLASSES OF UNCONVENTIONAL SUPERCONDUCTORS

In LiFeAs we want to study the discrepancy between the energy spectrum obtained
from Kohn-Sham DFT and the one measured in experiment and we want to find out
in how far TPSC can reconcile those by means of non-local self-energy effects. The key
features that discriminate the energy spectrum of DFT from experiment are the sizes
of the electron and hole pockets on the Fermi surface and the incoherent flower-like
spectral weight around Γ. The first feature cannot be explained in terms of a local
self-energy because in order to reconcile DFT with experiment one needs a shrinking of
both the electron and the hole pockets which means that the self-energy shifts have to
be different at the different positions in the Brillouin zone, i.e. momentum-dependent.
Indeed, published DMFT results [6–8] were not able to reproduce the two above men-
tioned experimental features and more advanced non-local many-body techniques such
as GW+DMFT were suggested as possible resort [9, 10]. The advantage of TPSC in
comparison to GW+DMFT consists of its cheap numerical implementation and the
inclusion of spin fluctuations while it has the disadvantage of neglecting high-energy
charge fluctuations and the exact summation of local diagrams that is included in
DMFT.
Furthermore, we want to compute quasi-particle lifetimes and compare to the ones ob-
tained from experiment. This is especially useful since there is a debate on whether
those lifetimes are non-local or orbital-dependent objects [11,12].

Our objective in the study of the κ-(ET)2X superconductors is twofold: There are
two prominent models for these materials, namely the molecule model and the simpler
dimer model. We want to study in how far those models are appropriate to obtain
superconducting critical temperatures and what kind of superconducting gap symme-
tries are stabilized. While the first point is of general interest regarding material design
and understanding the superconducting pairing mechanism, the second point is impor-
tant to resolve the ongoing controversy on which superconducting symmetry is actually
realized in those materials.
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CHAPTER 2

Density Functional Theory

This chapter is based on the presentation of Density Functional Theory in Ref. [13–16].
Structural and electronic properties of crystalline materials are a key interest not only
in many fields of solid state physics but also in quantum chemistry and material sci-
ences in general. From a comparison of the energy scales and range of the fundamental
interactions we can clearly state that the electrodynamic interaction between the con-
stituent electrons and nuclei govern the physics of such quantum systems1. Thus, we
can immediately write down the Hamiltonian of the system which is given by the sum
of the respective kinetic energy and Coulomb interaction terms,

H =

Ne∑
i=1

p2
i

2m
+

1

2

Ne∑
i,j=1
i 6=j

Ve,e(xi − xj)

︸ ︷︷ ︸
:=He,e

+

NI∑
i=1

P 2
i

2Mi

+
1

2

Nk∑
i,j=1
i 6=j

VIon(Xi −Xj)

︸ ︷︷ ︸
:=HI,I

+

Ne∑
i=1

NI∑
j=1

Ve,Ion(xi −Xj)︸ ︷︷ ︸
:=He,I

,(2.1)

where Ne is the number of electrons with mass m and NI the number of ions with
masses Mi in the system. The momentum operator pi acts on the i-th electron while
Ve,e describes the Coulomb repulsion between electrons i, j at position xi and xj re-
spectively. Similarly, the momentum operator Pi acts on the i-th nucleus while VIon
describes the nucleus-nucleus interaction between ions i, j at position Xi and Xj re-
spectively. Finally, the potential Ve,Ion contains the electron-nucleus interaction at
electron position xi and nucleus position Xj with i = 1, . . . , Ne and j = 1, . . . , NI .
The corresponding Schrödinger equation to the Hamilton operator H is a coupled par-
tial differential equation in ∼ 1023 coordinates due to the large particle number in
macroscopic crystals. For this reason there is no way so far to solve this problem ana-
lytically or numerically exact in the general case. Obviously, the numerical treatment
would be of limited use due to the memory constraints that arise from calculations in
such large Hilbert spaces.

Therefore, the only way to obtain properties from the fundamental laws of quantum
mechanics without adjustable parameters is by means of approximations.
One of the most famous and successful method that is able to obtain such ab-initio
computed material properties is the combination of the Born-Oppenheimer approx-
imation [17] and Density Functional Theory (DFT) which is based on the seminal
theorems by Hohenberg and Kohn [18].
While this methodology is related to the Thomas-Fermi theory [19,20] the DFT frame-
work possesses much stronger predictive power [19,21].
During the last decades a lot of effort has been spent to further improve on the method

1We also neglect relativistic effects since we are dealing with crystals composed of light atoms but
we will discuss possible effects of spin-orbit coupling later for the specific materials.
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2.1. FUNDAMENTALS OF DENSITY FUNCTIONAL THEORY

by developing new energy functionals [22–25], inclusion of Hubbard correlations [26]
or by extending to time-dependent DFT [27]. Note that this short list by far to short
to comprise the plethora of developments on this vast field of theoretical physics and
chemistry. For more detailed information on the history and recent progressions of
DFT we refer to Ref. [13,14,16] and the references therein.

In this chapter we will only outline the principle of the DFT scheme that we will
use for our real materials calculations in sec. 5.5 and chap. 7.

2.1. Fundamentals of Density Functional Theory

The first approximation that we apply to simplify the many-body problem with
Hamiltonian H given in eq. (2.1) is the so-called Born-Oppenheimer approximation. It
states that due to large difference between electron mass m and ion masses Mi one can
decouple the electron dynamics from the nuclei dynamics, i.e. from the electron point
of view the nuclei move so slow that they assume fixed positions in real space. Thus,
the full Hamiltonian splits into two parts where the electronic part is given by

(2.2) He =

Ne∑
i=1

p2
i

2m
+

Ne∑
i,j=1
i 6=j

Ve,e(xi − xj) +

Ne∑
i=1

NI∑
j=1

Ve,Ion(xi −Rj) +

Nk∑
i,j=1
i 6=j

VIon(Ri −Rj),

where Rj is the equilibrium position of the nucleus j. Note that the nucleus position
operator Xj is reduced to a mere parameter Rj and thus the overall effect from the
ions is condensed into an effective local external potential

(2.3) Vext =

Ne∑
i=1

NI∑
j=1

Ve,Ion(xi −Rj) +

Nk∑
i,j=1
i 6=j

VIon(Ri −Rj).

In our case the positions of the nuclei are given from experimental measurements but
in principle one could also obtain those positions by minimizing the total energy of the
system with the atomic positions as variational parameters.

We present now the two fundamental theorems by Hohenberg and Kohn which are
needed for the next step in DFT.

Theorem 2.1.1. Given two external potentials Vext,1, Vext,2 (see eq. (2.3)) that

enter the electronic Hamiltonian He in eq. (2.2) and produce different ground states
Ψ1, Ψ2 respectively. Then the densities n1(x), n2(x) that correspond to those ground
states are also different, where the single-particle densities n1(x), n2(x) are defined by

(2.4) n1,2(x) := Ne

∑
σi

∫
Ψ∗1,2(x, x2, . . . , xNe)Ψ1,2(x, x2, . . . , xNe)dx2 · · · dxNe .

In the case of non-generate ground state one can establish a bijection between external
potentials and the corresponding ground state of the electronic Hamiltonian.

Proof. For a rigorous and formal proof of this result we refer to Ref. [28]. �

Note that this theorem proves only the existence of a bijective map – every one-to-
one map can be made bijective by restricting the codomain to the image of the map
– between a not specified set of external potentials and a corresponding set of ground
state densities but this is already enough to conclude that the ground state expectation
value 〈Ψ| · |Ψ〉 of any observable O is a unique functional of the ground state density
n(x), i.e.

(2.5) 〈Ψ|O|Ψ〉 ≡ O[n(x)].
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CHAPTER 2. DFT

The second important theorem that is known as the Hohenberg-Kohn variational prin-
ciple tells us how to determine the ground state energy.

Theorem 2.1.2. For a given external potential Vext one determines the ground state
energy of the Hamiltonian He by

(2.6) E[Vext] = min
n(x)

{
FHK [n(x)] +

∫
n(x)Vext(x)dx

}
,

where FHK [n(x)] is the universal(!) so-called Hohenberg-Kohn functional.

Proof. See [15] Thm. 37.4. �

There are a few mathematical issues about this theorem which have their roots in
the problems that we already discussed in the context of the existence theorem 2.1.1:
Neither the set of ground state densities nor the corresponding set of external potentials
are known explicitly and therefore we have no explicit form of the Hohenberg-Kohn
functional.

The importance and beauty of the theorems is less the usefulness in practical cal-
culations but more the conceptual value they have. Namely, the theorems imply that
ground state expectation values of the many-electron system can be calculated from
the single-particle density n(x) instead of the direct computation by means of integrals
over ∼ 1023-dimensional coordinate space.
Moreover, it is the universality of the Hohenberg-Kohn functional FKH [n(x)] which is
the same for all many-electron system. The two theorems also provide a foundation for
approximations that do not aim at approximating the wave functions, e.g. variational
Monte Carlo methods (see [29] for a general review), or the Hamilton operator itself,
e.g. perturbation theory (see f.i. [30]), but on approximating the density functionals
such as in Thomas-Fermi theory [19].
Finally, we point out that equation (2.6) also tells us that the ground state density is
the minimum of the total energy functional

(2.7) E[Vext, n] := FHK [n(x)] +

∫
n(x)Vext(x)dx,

which leads to an Euler-Lagrange equation2 where the chemical potential appears as a
Lagrange multiplier to ensure the right particle number.

Notice that all the above stated relations of observables and the ground state density
are only valid for the ground state. This means that we can only rewrite ground
state expectation values as density functionals but the theorem makes no statement
on excited states. In order to access the excitation spectrum within DFT one can
use an analogue of the Hohenberg-Kohn theorem which is the so-called Runge-Gross
theorem [31] in combination with the scheme presented in [27].

From the conceptual foundations of DFT we move now to a formulation that allows
for real material calculations.

2.2. Kohn-Sham Density Functional Theory

The following DFT scheme is due to the work of Kohn and Sham [32]. The univer-
sality of the Hohenberg-Kohn functional FHK [n(x)] also applies in the limit of vanishing
interaction3 and yields the functional FHK [n(x)]→ T0[n], where T0[n] denotes the non-
interacting limit of the Hohenberg-Kohn functional.
The idea of Kohn and Sham was to reformulate the problem of interacting electrons by

2At this stage one needs to assume further regularity properties of the functionals.
3This is the limit of a non-interacting electron gas.

7



2.2. KOHN-SHAM DENSITY FUNCTIONAL THEORY

separating the Hohenberg-Kohn functional into kinetic energy, Hartree and correlation
and exchange functionals,

FHK [n(x)] = T [n(x)] + Ve,e[n(x)](2.8)

= T0[n(x)] + VH [n(x)] + T [n(x)]− T0[n(x)]︸ ︷︷ ︸
=:VC [n(x)]

+Ve,e[n(x)]− VH [n(x)]︸ ︷︷ ︸
=:VX [n(x)]

(2.9)

=: T0[n(x)] + VH [n(x)] + VXC [n(x)],(2.10)

where T [n(x)], Ve,e[n(x)] are the exact kinetic and electron-electron interaction energy
functionals respectively and VH is the Hartree functional given by

(2.11) VH [n(x)] :=
e2

8πε0

∫ ∫
n(x′)n(x)

|x− x′|
dx′dx.

The functional VC [n(x)] is called correlation functional and VX [n(x)] is the exchange
functional. More details on those two potentials will be provided in the next sections.

The total energy functional E[Vext, n] (see eq. (2.7)) takes the form

(2.12) E[Vext, n] := T0[n(x)] + VH [n(x)] + VXC [n(x)] +

∫
n(x)Vext(x)dx.

So far, the previously described steps merely allowed us to separate the complicated
total energy functional into tractable parts and an unknown exchange-correlation func-
tional which accounts for the complicated many-body effects which go beyond the
Hartree description.

The Kohn-Sham ansatz which results in an enormous simplification is the idea
to assume that the total energy functional E[Vext, n] in eq. (2.12) describes a non-
interacting electron gas in an external potential that is due to exchange-correlation
functional for the same density and the surrounding nuclei4.
This interpretation allows us write down the corresponding Hamiltonian of the electron
gas,

HKS := T0 + V̂H + V̂XC + Vext(2.13)

=

Ne∑
i=1

p2
i

2m
+

e2

4πε0

∫
n(x)

|x− x′|
dx+ V̂XC + Vext,(2.14)

that is coined the Kohn-Sham Hamiltonian. The exchange-correlation potential is
obtained by functional differentiation5,

(2.15) V̂XC =
δVXC [n(x)]

δn(x)
.

Thus, the Kohn-Sham ansatz reduces the second Hohenberg-Kohn theorem to the de-
termination of the lowest Ne eigenfunctions {φi}i∈N of the Kohn-Sham Hamiltonian
HKS . From the eigenfunctions φ1, . . . , φNe we can determine the ground state density

4This assumption leads to the question whether and how one can find such a suitable non-
interacting system with the same ground state density as the ground state density of any interacting
system. There are only a few rigorous statements on this question but due to the large success of
Kohn-Sham DFT we assume that such a connection between the two systems is given. For a more
detailed discussion we refer to [13] and the references therein.

5Differentiability of the exchange-correlation functional is assumed to be given at least for our
practical purposes. A more detailed discussion of this and related mathematical issues can be found
in [13,15] and the references within.
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CHAPTER 2. DFT

n(x) via

(2.16) n(x) =

Ne∑
i=1

φ∗i (x)φi(x)

because we have a system of non-interacting electrons in an effective potential.
This reduction of the coupled many-body differential equations to an effective single-

particle Schrödinger-like equation

(2.17) HKSφi = εiφi

that is called Kohn-Sham equation is a enormous simplification but one has to be cau-
tious about the following point.
The Kohn-Sham eigenenergies and eigenfunctions allow a priori no physical interpreta-
tion as electron wave functions and single-particle energies. The only formally correct
information that one can deduce from them is the ground state density and ground
state energy.
Nevertheless, one can use the Slater determinant Φ constructed from the first Ne eigen
functions φ1, . . . , φNe of the Kohn-Sham Hamiltonian as an approximation to the true

ground state wave functions Ψ. The justification of this approach is due to the fact
that in the limit of no electron-electron interaction both many-body wave functions Φ
and Ψ will coincide.
Moreover, one can also use the Kohn-Sham eigenenergies as approximations to the true
ionization potentials which is motivated in Ref. [33–35].

We further notice that the Kohn-Sham equation is a self-consistency equation since
the external potential V̂H + V̂XC + Vext that appears in the Kohn-Sham Hamiltonian
(see eq. (2.14)) is a functional of the electron density n(x) which itself directly depends
on the Kohn-Sham eigenfunctions φ1, . . . , φNe .

2.3. Exchange-correlation potential

We focus now our attention on the Kohn-Sham Hamiltonian and observe that all
terms are known except for the exchange-correlation potential. This is the next step
where approximations are needed in order to solve the many-body problem within the
Kohn-Sham DFT framework.
The possibly simplest non-trivial ansatz that one can think of is

(2.18) VXC =

∫
n(x)εXC(n(x))dx,

which means that the exchange correlation potential is assumed to depend only on
the local electron density [18]. Therefore, such approximations are called local density
approximations (LDA).

More often, the LDAs are used synonymous with the specific LDA, where the
exchange-correlation energy density εXC(n(x)) = εHomXC (n(x)) is the one of the homo-
geneous electron gas with electron density n(x).
The exchange energy density εX for the homogenous electron gas in a cubic box of
volume V can be calculated analytically [36] and is given by

εX(n) = − e2

8πε0V

∞∑
i,j=1

θ(εF − εi)θ(εF − εj)
∫ ∫

φ∗i (x)φj(x)φ∗j (x
′)φi(x

′)

|x− x′|
dx′dx(2.19)

= −3(3π2)1/3e2

16π2ε0
n4/3,(2.20)

9
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where εF is the Fermi energy.
Combining the LDA ansatz equation (2.18) with the exchange energy density result for
the homogeneous electron gas we arrive at the exchange energy

(2.21) VX = −3(3π2)1/3e2

16π2ε0

∫
n(x)4/3dx.

The physical interpretation to this reduction of the total energy is the following: If we
neglect the quantum statistics of the electrons the interaction energy of the electron
gas would be given by the Hartree term in eq. (2.11). But due to the Pauli principle we
get an additional term in the two-body operator expectation value 〈Φ|Ve,e|Φ〉 that has
a minus sign due to the anti-symmetry of the electron wave function |Φ〉. Thus, the
electrons feel a kind of “Pauli repulsion” which screens the Coulomb repulsive potential.

In contrast, there is no analytic expression for the correlation potential VC but only
approximate formulas in special density limits (see discussion in [13]).
On the other hand, one can revert to numerically exact Quantum Monte Carlo data [37]
and interpolation schemes that respects the above described limiting cases formulae (see
discussion in [13]).

One can expect the LDA approximation to give accurate ground state properties
if the system considered is close to a homogeneous electron gas such as simple metals.
The electrons in many classes of materials cannot be regarded as close relatives of
the homogeneous electron gas, where the electronic density varies only slowly as a
function of position, and for this reason further improvements on top of the LDA were
developed, e.g. the Generalized Gradient Approximation (GGA) [38–40]. Nevertheless,
LDA and GGA can yield sufficiently accurate results in the case of crystals due to error
cancellation effects between the long-range underestimated exchange and overestimated
correlation potentials [13].

2.4. Many-body extensions to DFT

The Kohn-Sham DFT is obviously a mean-field-like theory where the full many-
body system with electron-electron interaction Ve,e is mapped onto an effective single-
particle problem with self-consistently determined exchange-correlation potential VXC
(see fig. 2.1). This description allows for the application of the Bloch theorem which
roughly speaking states that electrons are delocalized over the whole crystal and that
the energy spectrum of the Kohn-Sham HamiltonianHKS consists of energybands εj(k),
where j is a band label and k is the crystal momentum. Thus, the original many-body
interacting electron system is mapped onto an effective single-electron system with good
quantum numbers n, k.
For practical reasons one expands the eigenfunctions {φi}i∈N of the Kohn-Sham Hamil-
tonian HKS in terms of spherical harmonics and radial functions at positions close to
a nucleus while the eigenfunctions are expanded in terms of plane waves at positions
away from the nuclei. Such a position dependent expansion is more efficient since one
can expect from a semi-classical picture that an electron close to a nucleus will feel a
central-potential-like attraction while electrons further away will be quasi-free due to
screening effects from the other electrons.

In this thesis we are mainly interested in low temperature properties and excitations
of many-electron systems and therefore we focus on the energy spectrum in a small
energy window around the Fermi energy εF . Many classes of materials exhibit valence
states that have mostly s- and p-orbital character. Those orbitals are more extended
in space than d- and f -orbitals which results in efficient screening of the electron-
electron interaction (compare to [41,42]). Such systems are perfect candidates for an
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CHAPTER 2. DFT

Figure 2.1. Figurative representation of the mean-field idea. Starting
point is an interacting system of particles (red circles on the left-hand
side) which are described by a many-body state |Ψ〉. The mean-field
approach describes the effect of the many-body interaction in terms
of an effective single-particle potential (blurred red circle on the right-
hand side) acting on each particle. The resulting many-body state |Φ〉 is
constructed as a Slater determinant formed by the single-particle states.
In Kohn-Sham DFT the effective non-interacting particles are not the
same electrons as from the interacting problem.

independent-particle treatment and this partly explains the large successes of Kohn-
Sham DFT or mean-field theories. In those cases one can even take the Kohn-Sham
energy spectrum and eigen states as good approximations.

On the other hand, we often encounter systems with partially filled d- and f -
orbitals where the Kohn-Sham DFT energy spectrum is not even qualitatively close
to the experimental observations, e.g. Mott insulators in the family of transition
metal oxides [43, 44] or heavy-fermion materials in the family of Lanthanides and
Actinides [45,46].
Those examples are by definition [43, 47] true many-body effects that go beyond an
independent particle description. Nevertheless, attempts to remedy this deficiency of
the single-particle picture consist of introducing a local repulsion on those localized d-
or f -orbitals. A common method is the so-called LDA+U approach [26], where U is
the on-site Coulomb repulsion. Despite the fact that the U -term in the total energy
functional can open a band gap in the Kohn-Sham energy spectrum that is of the order
of U and gives rise to spin and orbital order as in the Mott insulating state, there are
important differences on the mechanism of the gap opening [44,47]; more specifically,
the LDA+U approach remains in the single-particle picture while the Mott insulating
state cannot be described therein.

For this reason we will need a many-body method on top of DFT that can account
for the electron-electron interaction effects that go beyond the single-particle picture6.
We will call those electronic correlation effects which should not be confused with the
notion of correlation within the DFT framework. We use the expression of correlations
in the broad sense that the behavior of the electrons is not independent of each other

6Obviously, this is not the only possible approach to tackle the many-body problem but in case
where we see from experiment that the DFT predicted results are close to the measured results it can
be a promising approach to correct the DFT results by including electron-electron interaction effects
on top of DFT. This can be especially helpful when we observe that the difference between observed
and calculated properties are “typical” many-body effects (see sec. 4.9) and not due to other sources
such as couplings to the lattice, relativistic effects etc. Nevertheless, there are many different other
approaches possible that do not rely on combining two methods but they also have their weak points.
An interesting and extended discussion of those points can be found in Ref. [48]
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but they influence each other. For example, two-body expectation values of operators
A1B2, where A1 acts on particle 1 and B2 acts on particle 2 will not factorize, i.e.

(2.22) 〈A1B2〉 − 〈A1〉〈B2〉 6= 0.

Since many-body approximations rely on mathematical tools that are very involved
one is usually forced to solve the interacting electron problem in terms of a model
system instead of solving the Schrödinger equation of the full electronic Hamiltonian in
eq. (2.2) directly. This step is called downfolding since the all-electron system is mapped
down onto a specific low-energy Hamiltonian of correlated electrons [49–52]. Formally,
downfolding is based on the idea of the renormalization group approach [53–55] where
high-energy degrees of freedom are successively integrated out.

2.5. Maximally localized Wannier functions

As discussed in the previous section we need to construct a simple model for the
correlated valence states of the Kohn-Sham DFT. A simple and successful model that is
assumed to capture important effects of correlated electrons in partially filled d- and f -
orbitals is the so-called Hubbard model that is described in more detail in chap. 3. This
model is a lattice model where electrons are not moving in continuous space anymore
but are constrained to localized orbitals that are centered at discrete lattice sites, where
they can “hop” to different sites and feel a local repulsion when they happen to be on
the same position.

In order to map the Kohn-Sham states φα,k to electronic states on the lattice we
need a new localized basis representation. A possible candidate is the representation
in terms of so-called maximally localized Wannier functions

(2.23) wα,r(x) =
V

(2π)3

∫
BZ

e−ik·r
∑
α

Uαβ(k)φα,k(x)dk,

where r is a unit cell position and Uαβ(k) is a unitary transformation in the restricted
orbital space that is chosen such that spread of the Wannier functions

(2.24)
∑
β

〈
wβ,r|x2|wβ,r

〉
−
〈
wβ,r|x|wβ,r

〉2

is minimal. Notice that the sum in eq. (2.23) only runs over the bands that belong
to the correlated orbitals. The details on how to determine the momentum-dependent
transformations Uαβ(k) are explained in Refs. [56–59].

We consider the Hamiltonian H(k) expressed in the basis of Kohn-Sham orbitals,

(2.25) Hαβ(k) = εα(k)δα,β,

where α, β are the indices of the bands close to the Fermi energy that have the most
overlap with the localized orbitals that we consider as correlated. By means of the
transformation Uαβ(k) we express H(k) in the basis of the maximally localized Wannier
functions,

(2.26) H̃(k) = U †(k)H(k)U(k),

and a simple Fourier transformation gives us the real space representation

(2.27) H(ri − rj) =
1

N

∑
k

e−ik·(ri−rj)H̃(k),

where N is the number of unit cells. The real space Hamiltonian operator H(r) leads
to the full lattice Hamiltonian of the correlated electrons H that is written in second
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quantization as

(2.28) H =
∑

α,β,i,j,σ

t
ri−rj
α,β c†α,σ(ri)cβ,σ(rj),

where the matrix elements of H(r) are denoted by the hopping term t in order to
emphasize that the contribution has the shape of a single-particle term such as the
kinetic energy. The operator cα,σ(ri) destroys an electron with spin σ at unit cell

position ri and Wannier orbital α while the adjoint operator c†α,σ(ri) creates an electron
with spin σ at unit cell position ri and Wannier orbital α.
The lattice model contains no explicit information on the shape of the Wannier orbitals
but only implicitly via the hopping term t which is an enormous simplification for many-
body techniques.

Notice that the Wannier projected operator H in eq. (2.28) still incorporates some
part of the full electron-electron interaction, namely in terms of a homogeneous elec-
tron gas (LDA) or beyond (GGA etc.). In that regard we have to keep in mind
that the additional interaction correction that we are introducing to the correlated
orbitals should not contain the contributions that are already present in DFT. Oth-
erwise we are committing the so-called double-counting error. There is no general
solution to the double counting problem due to the non-linear nature of the commonly
used exchange-correlation potentials, the non-diagrammatic formulation of DFT and
the self-consistency which makes it hard to assess the portion and orbital origin of
exchange and correlation effects that entered the correlated orbitals [60] even though
many different schemes – based on different assumptions or physical intuition – were
proposed (see discussion and references in [52]).
For the moment we will assume that the Hamiltonian H in eq. (2.28) describes the non-
interacting electrons in an effective potential as generated by the downfolding procedure
and later come back to the double-counting problem.

Thus, the Hamiltonian H in eq. (2.28) constitutes the starting point of our treat-
ment of correlations that is further discussed in the next chapter.
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The Hubbard model

The following presentation is based on [60–63].
One of the most famous and successful models that is assumed to capture correlation

effects in many classes of materials is the Hubbard model [64–66]. In the following sec-
tions we will introduce the model in its original formulation and discuss the correlation
phenomena that it hosts. Moreover, we will relate it to realistic material calculations
via the low-energy model that we constructed in the previous chapter and present a
scheme, called the constrained Random Phase Approximation (cRPA) [52,57,67–71],
which can be used to calculate interaction parameters from ab-initio.

Since a detailed discussion of the Hubbard model and reported results on it are
beyond the scope of this thesis we refer to Ref. [61,62] for further reading.

3.1. Introduction

The Hubbard model – in the simplest form – is a single-orbital lattice model de-
scribed by the Hamiltonian

(3.1) H =
∑
i,j,σ

tri−rjc†σ(ri)cσ(rj) +
1

2

∑
i,σ

Unσ(ri)n−σ(ri),

where tri−rj are hopping elements between unit cell positions ri and rj . The on-site
Hubbard interaction U is an effective local electron-electron repulsion. The operator
cσ(ri) destroys an electron with spin σ at unit cell position ri while the adjoint operator

c†σ(ri) creates an electron with spin σ at unit cell position ri. The density operator

nσ(ri) := c†σ(ri)cσ(ri) measures the occupation of particles at ri with spin σ.
Thus, the Hubbard model contains only two ingredients, where the first is the kinetic
part which favors delocalized electronic states while the second repulsive part penalizes
double occupation and thus favors localized electrons.

This model can be interpreted as a further reduction of the downfolded Hamiltonian
in eq. (2.28) to a single-orbital model and the additional approximation of the electron-
electron interaction amplitude

(3.2) U({ri, αi}) =
〈
ωα1,r1ωα2,r2 |Ve,e|ωα3,r3ωα4,r4

〉
to a single-orbital local interaction, i.e. αi = αj and ri = rj , where the Wannier
functions ωαi,ri were defined in sec. 2.5.

The model was originally conceived in order to study the low electric conductivity
in transition metal oxides and indeed even early approximate solutions1 of the Hubbard
model were able to observe the Mott-metal insulator transition [61, 65]. Notice that
under the assumption of non-vanishing hopping t we can have a true insulating state
only in the special case of half-filling, i.e. the number of electrons coincides with the
number of lattice sites. The reason is that otherwise there are always empty or double
occupied sites that can serve to minimize the total energy by hopping.

Before we give an overview on the properties of the Hubbard model we mention
important perturbative limits of the Hubbard model, namely the t − J model (see

1The approximation we are referring to is the so-called Hubbard-I approximation [61,65].
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e.g. [72,73]),

(3.3) H = P

−t ∑
〈i,j〉,σ

c†σ(ri)cσ(rj) + J
∑
〈i,j〉

(
S(ri) · S(rj)−

n(ri)n(rj)

4

)P

that is derived from perturbation in t/U and where J = 4t2/U is the exchange param-
eter, P is the projector on states where at most one electron is located at each site
and S(ri) is the spin operator acting on site ri. The idea behind this approximation is
to shrink the configuration space at each site by excluding doubly occupied sites due
to their large energy cost. Inside the Mott insulating regime, where the electrons are
localized to their respective sites one can further reduce the t− J model to the famous
antiferromagnetic Heisenberg model,

(3.4) H = J
∑
〈i,j〉

S(ri) · S(rj),

where the electrons can only interact via spin exchange.
Only recently a connection between the Hubbard model and the lattice Kondo model
was established in the strong coupling limit [74].

It is important to note that the restriction to on-site interaction may be to restric-
tive for some materials and thus the inclusion of further neighbor interaction becomes
relevant. For example, nearest neighbor repulsion can create charge density instabili-
ties [75,76] but we will not consider such extended Hubbard models assuming that those
are negligible due to efficient screening.

In the next section we will consider the limiting cases where the model is solvable
and use those to get an intuition about what can be expected to happen in between.

3.2. Exactly solvable limits

So far, there is no analytical solution of the Hubbard model except for a few cases.
Apart for the trivial cases, where U = 0 and the system is perfectly described in terms
of band theory (see eq. (2.25)) we also have the trivial case of t = 0. In this case one
can easily diagonalize the Hamiltonian in real space since the problem reduces to a sum
of single site with their specific multiplet energy spectrum (see fig. 3.1). For this reason
one calls the t = 0 case the atomic limit.

When starting from the non-interacting U = 0 limit and adiabatically turning on the
on-site interaction we observe the so-called Brinkman-Rice effect [77] which describes
the shrinking bandwidth due to interactions. This phenomenon can be understood
as the suppression of hopping processes due to energy cost U for double occupation.
Alternatively, one can also stay in the quasi-particle picture and explain the effect as
an enhancement of the effectice mass m∗ due to the electron-electron interaction. The
spectral weight that is subtracted due to the band narrowing is shifted to the higher
energy multiplet excitations that have some resemblance with the atomic limit2. Those
emerging excitations are called Hubbard excitations/bands while the narrowing low-
energy part of the spectrum consists of quasi-particle excitations. Those low energy
excitations will have a finite lifetime since the momentum k is not a good quantum
number anymore.
All the above mentioned concepts will be discussed in more rigor at the end of chap. 4
where the Green’s function formalism allows for a precise definition.

The ground state of the Hubbard model in one dimension can be constructed from
a generalized Bethe ansatz [78] and also the excitation spectrum [79–82]. For more

2Those higher energy excitations are different to the atomic multiplet spectrum due to the under-
lying lattice structure which results in a finite lifetime of those excitations in contrast to the atomic
limit, where the corresponding excitations are true eigenstates.
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Figure 3.1. Sketch of the two extremes in the single-orbital Hubbard
model. On the left-hand side we see the band limit, where the Hubbard
interaction U = 0 and k is a good quantum number. In this case the
electrons are delocalized over the whole crystal. On the right-hand side
we depict the atomic limit, where t = 0 and every single site of the
lattice behaves like an atom with multiplet states with four different
configurations, namely the site is unoccupied, the site is occupied with
one electron (either spin up or down) or the site is doubly occupied.

details and further results we refer to [83, 84] since we will be mainly interested in
quasi two-dimensional materials and those behave indeed very different since in one
dimension the ground state is insulating for any U > 0 and therefore no Mott-metal
insulator transition occurs [78].

But not only the one-dimensional limit is solvable but also the infinite dimension/lattice-
connectivity limit [85–87]. The solution is then given by the dynamical mean field
theory (DMFT) result [85, 87, 88], where the Mott-metal insulator transition is also
part of the phase diagram. For this reason and due to the large successes of DMFT
in applications to real materials, we will later use this method as a benchmark for the
many-body approach studied in this thesis.

3.3. Rigorous results for the Hubbard model

Since the first appearance of the Hubbard model in 1963 a lot of research was done
in order to obtain rigorous results. We will not be able to give an adequate overview
on this field and can only refer to [61,83,89].

Under certain assumptions regarding the hopping elements one can proof the non-
existence of ferromagnetic order for the ground state in the half-filled Hubbard model [89,
90]. This theorem by Lieb is important for assessing the quality of approximate meth-
ods when approaching zero temperature.

From the seminal Mermin-Wagner-Hohenberg theorem – that can be applied due to
the continuous SU(2) spin rotation symmetry in the Hubbard model – we can deduce
that in two dimensions and at finite temperature T > 0 there is no superconductivity or
spin long-range order [91–95] while Kosterlitz-Thoughless phase transitions3 [96–98]
are not excluded [99].

3Such phase transitions are of topological nature and not accompanied by a spontaneous symmetry
breaking. They are characterized by a change in the response to an external perturbation of the
system, more specifically a divergence in the correlation length at the critical temperature which would
correspond to an infinite order Ehrenfest phase transition.
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3.4. Multi-orbital Coulomb interaction

In order to extend the Hubbard model to more orbitals we need to reconsider the
general interaction term

(3.5) U({ri, αi}, σ, σ′) =
〈
ωα1,σ,r1

ωα2,σ
′,r2
|Ve,e|ωα3,σ,r3

ωα4,σ
′,r4

〉
,

where – in contrast to eq. (3.2) – we have written the spin dependence explicitly and
took advantage of spin conservation.
From those matrix elements we can construct the on-site interaction part of the Hamil-
tonian in terms of
(3.6)

He =
1

2

∑
αi,σ,σ

′

〈
ωα1,σ,r

ωα2,σ
′,r|Ve,e|ωα3,σ,r

ωα4,σ
′,r

〉
c†α1,σ

(r)c†α2,σ
′(r)cα4,σ

(r)cα3,σ
(r).

An important difference that arises between orbitals of a single atoms and orbitals in
a crystal is the crystal field splitting which occurs due to the static electric field of the
surrounding ions.
In the application that we will be dealing with in chap. 7 the correlated electrons
occcupy Fe 3d orbitals in a tetrahedral environment. Thus, the five 3d orbitals will
split into three t2g and two eg states, where the t2g are energetically lower. The shape
of the three t2g orbitals calls for a multi-orbital Hubbard model where this symmetry
is respected. By further ignoring matrix elements that involve more than two different
interacting orbitals and assume same orbital overlap for all interacting orbitals we
can simplify the general on-site interaction Hamiltonian in eq. (3.6) to the following
rotational invariant Kanamori-Hubbard Hamiltonian [66],

H =
∑

α,β,i,j,σ

t
ri−rj
αβ c†α,σ(ri)cβ,σ(rj) +

1

2

∑
α,β,i,σ

Uαβnα,σ(ri)nβ,−σ(ri)

+
1

2

∑
α,β,i,σ
α 6=β

(Uαβ − Jαβ)nα,σ(ri)nβ,σ(ri)

− 1

2

∑
α,β,i,σ
α 6=β

Jαβ

(
c†α,σ(ri)cα,−σ(ri)c

†
β,−σ(ri)cβ,σ(ri)

+c†α,σ(ri)cβ,−σ(ri)c
†
α,−σ(ri)cβ,σ(ri)

)
,(3.7)

where the coupling constants are given by

(3.8) Uαβ =

{
U α = β

U − 2J α 6= β
and Jαβ = J

(
1− δα,β

)
.

Apart from the orbital rotational invariance, Hund’s first rule is also taken account of4

and the remaining orbital independent constants can be calculated via

U =
〈
ωσ,rω−σ,r|Ve,e|ωσ,rω−σ,r

〉
,(3.9)

J =
〈
ωα,σ,rωβ,σ,r|Ve,e|ωβ,σ,rωα,σ,r

〉
, α 6= β,(3.10)

where we dropped the orbital indices in the expression for U due to orbital symmetry.
Apart from the density-density interaction we encounter the so-called spin-flip term
which flips the spin of two electrons in different orbitals and the pair-hopping term

4In the case of density-density interactions in eq. (3.7) we observe for unequal orbitals that the
equal spin state comes along with Uαβ−Jαβ while the opposite spin state is scaled with Uαβ . Therefore,

the high spin state is favored which reflects Hund’s first rule.
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which describes the process of annihilating two electrons in one orbital and creating
them in a different one.

In the case where the full d-shell is part of the correlated subspace, one can rely on
so-called Slater-Koster integrals (see Ref. [26,62] for more details) in order to restore
rotational invariance.
For the real material calculation that we are going to perform in chap. 7 we will make
use of the constrained Random Phase Approximation [67–69] that allows to calculate
the interaction values Uαβ, Jαβ from ab-initio.

3.5. Constrained Random Phase Approximation

Before we present the constrained Random Phase Approximation (cRPA) we men-
tion a different approach to calculate the interaction values Uαβ, Jαβ from ab-initio,

namely the constrained LDA (cLDA) [69, 100–105]. In this approach the effective
interaction is determined by total energy variations as functionals of the correlated
electron densities in order to find the cost of double occupation at a specific site5.
We employ the cRPA scheme since it includes dynamical screening effects [69], i.e.
frequency-dependent interaction values. We will explain this phenomenon in the fol-
lowing.

If we calculated the interaction values U, J directly from (3.9), (3.10) we would get
typically values of the order of 15eV [100]. Such large Coulomb strengths are closer
to the interaction values of isolated atoms/ions rather than expected from electrons
in a solid. The important feature that a “direct” calculation is missing are screening
effects: If electrons feel the Coulomb repulsion of a specific electron they get repelled
by it and effectively a screening hole is created around that electron which reduces
the repulsion to an effective/screened Coulomb interaction. An important feature of
that phenomenon is the dynamical aspect, namely the screening is less efficient at large
energy scales, where the creation of an screening hole is energetically less favorable and
the “bare” interaction is recovered [68,69,106].

The formal description of the dynamical screening can be expressed in the language
of functional derivatives (see sec. 5.1.2) where the dynamical density fluctuation to an
artificial external perturbation can be expressed in terms of functional derivatives [107,
108].
Within the Random Phase Approximation one restricts the response of the system
to fluctuations in the Hartree potential. By this means one can express the density
fluctuations δn due to the external field φ as

(3.12)
δn

δφ
=
(
1− PVe,e

)−1
P,

where P is the polarization bubble (compare to eq. (5.92)),

P (x, x′, ω)

=− lim
ε↘0

∑
k,n occ

∑
k′,m unocc

φn,k(x)φ∗n,k(x
′)φ∗m,k′(x)φm,k′(x

′)·

·
(

1

ω − εm(k′) + εn(k) + iε
− 1

ω + εm(k′)− εn(k)− iε

)
.(3.13)

5The very first cLDA formula that was applied to determine the Hubbard interaction U was given
by

(3.11) E[n] = c0 + c1n+
U

2
n(n− 1),

where c0, c1 are parameters to describe the minimum of the total energy functional [100].
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From the polarization P one can calculate the screened electron-electron interaction
We,e via

(3.14) We,e =
(
1− Ve,eP

)−1
Ve,e.

The contributions to the polarization P (see eq. (3.13)) can be decomposed6 into con-
tributions that stem from the correlated states Pc and the remaining contributions Pr,
i.e. P = Pc + Pr. This allows to rewrite the screened interaction We,e as

(3.15) We,e = (1−WrPd)
−1Wr,

where we defined a screened interaction that includes all screening contributions except
for the ones of the correlated subspace (see fig. 3.2), i.e.

(3.16) Wr =
(
1− Ve,ePr

)−1
Ve,e.

The screened interaction Wr inherits its frequency-dependence from the polarization Pr

Figure 3.2. Schematic representation of the decomposition in corre-
lated and rest subspace. While the correlated subspace consists of all
states within the red box, all other states above and below this region
belong to the high energy rest space. For the calculation of the polariza-
tion contribution Pr that is needed for the screened interaction Wr (see
eq. (3.16)) one considers excitations that are not completely contained
within the red box, i.e. within the low-energy subspace.

and – in analogy to eqs. (3.9), (3.10) – we can calculate the screened effective interaction
values

Uαβ := Uαβ(ω = 0) =
〈
ωα,σ,rωβ,−σ,r|Wr|ωα,σ,rωβ,−σ,r

〉
,(3.17)

Jαβ := Jαβ(ω = 0) =
〈
ωα,σ,rωβ,σ,r|Wr|ωβ,σ,rωα,σ,r

〉
, α 6= β.(3.18)

Notice that the frequency-dependent interaction cannot be included into the standard
Hamiltonian formalism and requires the functional-integral formalism [68]. As a first
step we will therefore only take the static limit ω = 0 values of the effective screened
interaction values but one has to keep in mind that dynamical screening can lead to
additional features that effect the spectral properties over the whole energy range of
the low-energy subspace [52,68,106].
A simple way to approximate the dynamical interaction in terms of an effective static

6The decomposition is done by simply restricting the sums in eq. (3.13) to bands n, m that belong
to the correlated subspace in order to obtain Pc.
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3.5. CONSTRAINED RANDOM PHASE APPROXIMATION

Hubbard repulsion is by means of the Lang-Firsov transformation [106, 109], where
apart from the renormalization of U, J a rescaling of the hopping parameters takes
place.

In the end, we also mention that the cRPA computed values have their limitations
since they depend directly on the accuracy of the DFT result and the RPA approxi-
mation that is built in. This might cause problems in the case of strongly correlated
systems, where the correlation effects on the electronic structure outside of the corre-
lated energy window are large and would also need to be included in the determination
scheme of U, J . For a more detailed discussion of this issue and other ab-initio methods
for calculation of screened interaction parameters we refer to Ref. [52].
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CHAPTER 4

Green’s functions

In this section we lay the foundation for the Two-Particle Self-Consistent approach
(TPSC) following the many-body physics script of A.-M. Tremblay [110] and the text-
book of A. L. Fetter and J. D. Walecka [30] while the mathematical motivation for
Green’s function follows Ref. [15].
Apart from the basic notion of many-body theory where the Green’s function formal-
ism and linear response theory are important tools to describe single- and two-particle
properties [30, 111–113] we will need to introduce the language of functional deriva-
tives [114] to find approximate expressions for those two objects.
TPSC is derived within the framework of the so-called conserving approximations that
are based on the Kadanoff-Baym scheme [113,115,116] and the Luttinger-Ward func-
tional [117,118].
We will present the derivation of the many-body equations for a multi-site system in
order to use the expressions for both the single-band and multi-site TPSC later. In
the case of multi-orbital systems we will get many different additional terms and –for
clarity– present that case separately. All expressions are given in Planck units where
~ = kB = 1.

4.1. Mathematical motivation

The concept of Green’s functions has its roots in the question of whether a linear
partial differential equation with constant coefficients and inhomogeneity g,

(4.1) Af :=

 ∑
α=(α1,...,αd)∈Nd
|α1|+···+|αd|≤m

aα
∂α

∂xα1
1 · · · ∂x

αd
d

 f = g, aα ∈ C, m ∈ N,

has solutions f and if so, what kind of regularity properties do those solutions possess
(see f.i. Refs. [15,119]). This question crucially depends on the inhomogeneity term g
and on what kind of properties of the solutions f are desired.
Obviously, in physics many equations of motion or equations of state fall into this
category of partial differential equations, e.g. the Laplace equation, the Heat equation
and the wave equation but also the Schrödinger equation for many different systems.
Central to the question mentioned above is the notion of distributions or generalized
functions since – by duality (see Ref. [15]) – one can translate the original linear
partial differential operator A (eq. (4.1)) into a linear and continuous operator acting
on distributions. This allows to search for solutions in a larger space, namely for
distributional solutions.
An important property of the distributional formulation of the problem in eq. (4.1) is
that it always has a fundamental solution G that satisfies

(4.2) AG = δ,

where δ is the Dirac distribution (see [15] Thm. 8.2). Once a fundamental solution G
is found one can compute a special solution f of the distributional problem in eq. (4.1)

21



4.2. SINGLE-PARTICLE GREEN’S FUNCTIONS AND PROPAGATORS

via the convolution f = G ∗ g1.
Moreover, we note that the same concept can be also used for discrete lattice problems
where the domain is a lattice and the differential operators are discrete differential
operators. The physical pictures that one can draw from this abstract mathematical
concept of fundamental solutions are various and we will develop those from the point
of view of theory and experiment in the following sections.

4.2. Single-particle Green’s functions and propagators

We consider a single particle with mass m in a time-independent potential V that
moves in space. Therefore, the Hamiltonian H is given by

(4.3) H = − 1

2m
∆ + V

and the time-dependent Schrödinger equation is given by

(4.4)

(
i
∂

∂t
−H

)
ψ = 0,

where ψ is a wave function solution. Assuming that the particle is prepared in some
state |ψ(t0)〉 at t = t0 we can calculate the state of the particle at time t > t0 via the
unitary time evolution operator

(4.5) U(t, t0) = e−iH(t−t0)

as

(4.6) |ψ(t)〉 = U(t, t0) |ψ(t0)〉 .
In position space we can use the closure relation

(4.7) I =

∫
dx |x〉 〈x|

to obtain

(4.8) ψ(x, t) = i

∫
dx0 (−i 〈x|U(t, t0) |x0〉)︸ ︷︷ ︸

=:G(x,t;x0,t0)

ψ(x0, t0)

from eq. (4.6).
We call the object G defined in eq. (4.8) propagator since it propagates the wave
function of the particle from the wave function ψ(x0, t0) to the state ψ(x, t) by means
of a convolution.
To emphasize the time ordering t > t0 (causality) we define

(4.9) GR(x, t;x0, t0) := θ(t− t0)G(x, t;x0, t0),

where θ is the Heaviside function

(4.10) θ(t) =

{
1 t ≥ 0

0 t < 0
.

The superscript in GR stands for retarded which expresses the causality that is built
into the propagator, where the effect follows the cause and not the other way round.
The convolution in eq. (4.8) already suggests that GR is indeed a Green’s function2 of
the linear operator A = i∂t −H and one can easily verify that GR fulfills

(4.11) (i∂t −H)GR(x, t;x0, t0) = δ(t− t0)δ(x− x0).

1Strictly speaking one would have to check that the pair (G, g) fulfills the so-called support con-
dition in order for the convolution to be well-defined.

2In this case the Green’s function is a fundamental solution that also fulfills the initial condition
lim
t↘t′

G(x, t;x0, t0) = −iδ(x− x0) (see eq. (4.8)).
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CHAPTER 4. GREEN’S FUNCTIONS

So far, it seems that the retarded Green’s function GR is merely a solution of the time-
dependent Schrödinger equation with a singular source term at space-time (x0, t0) that
can also serve as propagator between wave functions.
In the following we will cast a glance at the large amount of information that is con-
tained in those elegant objects. It is already worthwhile to emphasize that the time
evolution via the retarded Green’s function GR is in general simpler than time evolution
with the unitary operator U since the convolution in eq. (4.8) is easier to perform than
the operator action in eq. (4.6). Moreover, the time evolution via the Green’s function
GR does not depend on the initial state |ψ(x0, t0)〉.

4.3. Single-particle Green’s function and density of states

To be able to relate the retarded Green’s function GR (eqs. (4.8) and (4.9)) to the
density of states one takes advantage of the time-translational invariance of GR (see
eq. (4.8)) and performs a Fourier transform F to obtain

(4.12) GR(x, x0, ω) := [FGR(x, · ;x0, 0)](ω) = lim
ε↘0
〈x| (ω −H + iε)−1 |x0〉 ,

which is the resolvent operator in position representation and where lim is the weak
limit, namely

(4.13) lim
ε↘0

fε(x) = f(x) :⇐⇒ lim
ε↘0

∫
R
φ(x)fε(x)dx =

∫
R
φ(x)f(x)dx

for all test functions φ ∈ C∞c (R) from the space of smooth test functions with compact
support. We are left to prove the second equality in eq. (4.12).

Proof of (4.12). We exploit the two identities of Fourier transforms of tempered
distributions,

[Fθ](ω) =
i

ω
+ πδ(ω)(4.14)

[Fe−iω0·f ](ω) = [Ff ](ω − ω0),(4.15)

and calculate via the spectral decomposition of the Hamiltonian, H =
∑
n
En |n〉 〈n|,

where En are the energy eigenvalues and |n〉 are the corresponding energy eigenstates,

[FGR(x, · ;x0, 0)](ω) = F [−iθ(·) 〈x|U(·, 0) |x0〉](ω)(4.16)

= F [−iθ(·)
∑
n

〈x|n〉 e−iEn· 〈n|x0〉](ω)(4.17)

=
∑
n

〈x|n〉
(

1

ω − En
− iπδ(ω − En)

)
〈n|x0〉 .(4.18)

At this stage we make use of the weak approximation of the δ-Distribution in terms of
the heat kernel

(4.19) η(ε, x) :=
1

π

ε

ε2 + x2
,

which leads to the weak limit

(4.20) lim
ε↘0

η(ε, x) = δ(x).

This yields the final expression

GR(x, x0, ω) =
∑
n

〈x|n〉
(

1

ω − En
− iπδ(ω − En)

)
〈n|x0〉(4.21)

= lim
ε↘0

∑
n

〈x|n〉
(

ω − En
(ω − En)2 + ε2

− i ε

(ω − En)2 + ε2

)
〈n|x0〉(4.22)
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= lim
ε↘0

∑
n

〈x|n〉 1

ω − En + iε
〈n|x0〉(4.23)

= lim
ε↘0
〈x| (ωI−H + iεI)−1 |x0〉 ,(4.24)

where I is the identity operator. �

We already see that the retarded Green’s function in frequency space GR(x, x0, ω)
has poles at the eigenenergies of the Hamiltonian H.
If we consider the spectral decomposition of the single-particle Hamiltonian

(4.25) H =
∑
n

En |n〉 〈n|

we can deduce from eq. (4.21) the expression

ImGR(x, x, ω) = −π
∑
n

δ(ω − En)|〈n|x〉|2.(4.26)

This result can be used to express the single-particle density of states ρ(ω) in terms of
the retarded Green’s function GR, namely

(4.27) ρ(ω) =
∑
n

δ(ω − En) = − 1

π

∫
ImGR(x, x, ω)dx.

In the following sections we will encounter a similar relation between Green’s functions
and spectral properties in the many-body context.

4.4. Many-body Green’s function

So far, we introduced the Green’s function as a mathematical object and showed its
usefulness in the context of single-particle physics. In order to describe realistic models
of materials we have to extend the previous definition to include finite temperature and
many-body effects.
We start with the many-body extension at zero temperature and denote the expressions
in second quantization. Motivated from the single-particle retarded Green’s function
GR (eqs. (4.8) and (4.9)) we define the object

(4.28) G̃R(x, t;x0, t0) := −iθ(t− t0) 〈0|Ψ(x)e−iH(t−t0)Ψ†(x0) |0〉 ,
where |0〉 is the many-body ground state wave function and Ψ(x) is the field operator
that destroys a particle at position x while Ψ†(x0) creates a particle at position x0.
In the case where we choose an energy scale where the ground state energy is zero3 we
work in the Heisenberg picture and further simplify the expression:

G̃R(x, t;x0, t0) = −iθ(t− t0) 〈0| IΨ(x)e−iH(t−t0)Ψ†(x0)I |0〉(4.29)

= −iθ(t− t0) 〈0| e−iHteiHtΨ(x)e−iH(t−t0)Ψ†(x0)e−iHt0eiHt0 |0〉(4.30)

= −iθ(t− t0) 〈0| e−iHtΨ(x, t)Ψ†(x0, t0)eiHt0 |0〉(4.31)

= −iθ(t− t0) 〈0| e−i0tΨ(x, t)Ψ†(x0, t0)ei0t0 |0〉(4.32)

= −iθ(t− t0) 〈0|Ψ(x, t)Ψ†(x0, t0) |0〉 .(4.33)

Although it is very tempting to use G̃R in eq. (4.33) as a definition for the zero temper-
ature many-body retarded Green’s function we have to reconsider eq. (4.8) in the limit
t ↘ t0, i.e. lim

t↘t′
G(x, t;x0, t0) = −iδ(x − x0). This boundary condition was important

for the interpretation of the Green’s function as a propagator and we want to retain this

3This can be always done by defining an energy unit that is shifted with respect to the ground
state energy.
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property in the many-body case. In order to do so we can do a minimal modification
to eq. (4.33) and define the zero-temperature many-body retarded Green’s function

(4.34) GR(x, t;x0, t0) := −iθ(t− t0) 〈0|
{

Ψ(x, t),Ψ†(x0, t0)
}
|0〉 ,

where the anticommutator {·, ·} enforces the equal time boundary condition.
The object GR(x, t;x0, t0) can be interpreted as a measure for the time and position
correlation of excitations4 of the ground state. Additionally, we retain the meaning of
GR as a propagator but in the many-body context it is not only the particles that can
propagate but also the holes due to the anti-commutator in the definition.

Finally, we can extend the definition of the many-body retarded Green’s function
to finite temperatures by taking account of the finite-temperature statistics of the
particles. This is done by replacing the ground state average by a thermodynamic
average in eq. (4.34).
Thus, we obtain the finite temperature many-body retarded Green’s function

(4.35) GR(x, t;x0, t0) := −iθ(t− t0)
〈{

Ψ(x, t),Ψ†(x0, t0)
}〉

,

where we have chosen to work in the grand canonical ensemble, i.e.

(4.36) 〈O〉 :=
tr
(

e−β̃HO
)

Z
, Z := tr

(
e−β̃H

)
,

where β̃ is the inverse temperature and H is the grand canonical Hamiltonian, i.e. it
contains an additional term −µN̂ , where µ is the chemical potential and N̂ is the par-
ticle number operator.
The definition of the retarded Green’s function in eq. (4.35) is given in position represen-
tation which is due to the mathematical motivation that we started with. Nevertheless,
one is free to define GR in different representations which leads to

(4.37) GR(α, t;β, t0) := −iθ(t− t0)
〈{
cα(t), c†β(t0)

}〉
,

where α, β are quantum numbers from a complete set of quantum numbers and cα(t)

destroys a particle in the state α at time t while c†β(t0) creates a particle in the state β
at time t0.

4.5. Imaginary time Green’s function

So far, we have only considered “physical times” t as arguments for the retarded
many-body Green’s function GR, i.e. t ∈ R, but in principle there is no problem to
extend the definition to imaginary time. Like in classical electrodynamics we will see
that this generalization from real to imaginary arguments can simplify many mathe-
matical expressions as one can use the tools of complex analysis.
A simple example where the notion of complex time can be helpful is the evaluation
of thermal averages like in equation (4.35) for the finite temperature retarded many-
body Green’s function GR. In this equation we encounter the operator exponential
exp(−β̃H) = exp(−i(−iβ̃)H) where we interpret −iβ̃ as some imaginary time point.
From classical many-body theory we know that if we evaluate the time evolution in
eq. (4.35) perturbatively in the Dirac picture we encounter time ordered contour inte-

grals on the real line. In interpreting −iβ̃ as some imaginary time we can reformulate

(4.38) e−β̃H = U(−iβ̃, 0) = e−β̃H0UI(−iβ̃, 0),

4It is both particle and hole excitations that are being probed in the retarded Green’s function
since we introduced the anti-commutator.
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4.5. IMAGINARY TIME GREEN’S FUNCTION

Figure 4.1. Definition of the imaginary time order. (a) Given the

two exemplary imaginary times t1 = β̃ and t2 = −β̃ we calculate τ1 =

iβ̃ and τ2 = −iβ̃. We define the time order on the imaginary axis
by first rotating the points by 90◦ counter clockwise in the complex
plane and apply the canonical order on R, denoted by (R,≤), to those
rotated points. For example, τ1/2 is mapped to t2/1 respectively and

since t2 < t1 we conclude τ1 < τ2. (b) If we work in the convention
where imaginary times τ are denoted as their negative real counterparts
−t = iτ the previously defined order in (a) comes out naturally since in

this convention τ1 = −β̃ < β̃ = τ2.

where H0 is the unperturbed grand canonical Hamiltonian and UI is the time evolution
operator in the Dirac picture. Thus, one can incorporate the contour from the imaginary
time contour integral of UI(−iβ̃, 0) into the real time contour of the other operator in
eq. (4.35) which leads to the so-called Kadanoff-Baym contour.
After this short motivation we formulate the transition to imaginary time formally: A
complex time t ∈ C is decomposed as t = Re(t) + iIm(t) and we define τ := it. In the

case of eq. (4.38) we see that for t = −β̃ + i · 0 the object τ appears naturally in the
time evolution operator

(4.39) e−β̃H = U(τ, 0) = e−iHτ .

Another important object that we will need in the following is the time ordering with
respect to purely imaginary times τ ∈ {it | t ∈ R}. For this reason we define the
fermionic imaginary time ordering operator

(4.40) TτA(τ1)B(τ2) :=

{
A(τ1)B(τ2) τ1 > τ2

−B(τ2)A(τ1) τ1 < τ2
,

where we defined a total order ({it | t ∈ R},≤) by applying the canonical total order
(R,≤) to the imaginary part of the numbers in {it | t ∈ R} (see fig. 4.1). Finally, we
define the imaginary time Green’s function G as

(4.41) G(x, τ ;x0, τ0) := −
〈
TτΨ(x, τ)Ψ†(x0, τ0)

〉
,

where the time evolution of the field operators Ψ, Ψ† is given by the imaginary time
Heisenberg equation of motion

(4.42)
d

dt
A = i[H,A] ⇔ d

dτ
A = [H,A]

which leads to

Ψ(x, τ) := eτHΨ(x)e−τH(4.43)
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Ψ†(x, τ) := eτHΨ†(x)e−τH ,(4.44)

where a field operator without time argument is defined to be the corresponding field
operator in the Schrödinger picture. Note that the time evolution in eqs. (4.43) and
(4.44) seems inconsistent with eq. (4.39) which suggests −iτ as imaginary time argu-
ment for the left-hand sides of equations (4.43) and (4.44). This abuse of notation in
eq. (4.39) is a widely used convention to avoid the lengthy −iτ imaginary time argu-
ment by replacing it with τ , i.e. for a imaginary time function f we denote f(−iτ) by
f(τ). In this convention and for t ∈ R we see that Ψ† is not the adjoint of Ψ since
τ ∈ R but if we reinsert τ = it we see that Ψ†(x, τ) = Ψ†(x, t).
Since we are dealing later with lattice models we choose a representation of the imagi-
nary time Green’s function, where the unit cell position is denoted separately from the
other quantum numbers (like orbital and spin quantum numbers). This leads to the
representation

(4.45) Gαβ,σ(r, τ ; r0, τ0) := −
〈
Tτ cα,σ(r, τ)c†β,σ(r0, τ0)

〉
where cα,σ(r, τ) destroys a particle with quantum number α and spin σ at unit cell

position r while c†β,σ(r0, τ0) creates a particle with quantum number β and spin σ at

unit cell position r0. We denote the quantum numbers α and β separated from σ by
a comma to emphasize that the object Gσ(r, τ ; r0, τ0) is a complex valued matrix in
CM×M , where M is the dimension of the vector space spanned from the quantum num-
bers α. We restrict the imaginary time domain of the Green’s function G to (−β̃, β̃)
because we see in eqs. (4.38) and (4.39) that only those imaginary times are needed to
evaluate thermodynamic expectation values.
We summarize a few properties of the imaginary time Green’s functionGαβ,σ(r, τ ; r0, τ0).

Proposition 4.5.1. (i) The imaginary time Green’s function of a time-independent
Hamiltonian is time translational invariant, i.e.

(4.46) Gαβ,σ(r, τ ; r0, τ0) = Gαβ,σ(r, τ − τ0; r0, 0) =: Gαβ,σ(r, r0, τ − τ0).

(ii) If the system is space translational invariant, then so is the imaginary time
Green’s function,

(4.47) Gαβ,σ(r, r0, τ) = Gαβ,σ(r − r0, 0, τ) =: Gαβ,σ(r − r0, τ)

and we can identify the Fourier transformed Green’s function with

(4.48) Gαβ,σ(k, τ) = −
〈
Tτ cα,σ(k, τ)c†β,σ(k)

〉
.

(iii) The adjoint of the Green’s function is directly related to the Green’s function
via

(4.49) G∗αβ,σ(r, τ) = Gβα,σ(r, τ) and G∗αβ,σ(k, τ) = Gβα,σ(k, τ).

(iv) The imaginary time Green’s function G is anti-periodic in time in the case of

τ ∈ (0, β̃):

Gαβ,σ(r, τ) = −Gαβ,σ(r, τ + β̃),(4.50)

Gαβ,σ(k, τ) = −Gαβ,σ(k, τ + β̃), τ ∈ (−β̃, 0).(4.51)

Those relations tell us that it is sufficient to know the imaginary time Green’s
function G on the interval [0, β̃) instead of (−β̃, β̃). The value at τ = 0
(where the imaginary time Green’s function coincides with the retarded Green’s
function up to a factor i) is considered separately.
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4.5. IMAGINARY TIME GREEN’S FUNCTION

(v) The imaginary time Green’s function is discontinuous at τ = 0 and shows a
jump that is minus the Kronecker symbol,

(4.52) lim
τ↘0

(
Gαβ,σ(k, τ)−Gαβ,σ(k,−τ)

)
= lim

τ↘0

(
Gαβ,σ(r, τ)−Gαβ,σ(r,−τ)

)
= −δα,β.

Proof. (i) We make use of the time-independence of the grand-canonical
Hamiltonian H and evaluate the time ordering operator in the definition of
the Green’s function which leads to

Gαβ,σ(r, τ ; r0, τ0) =− 1

Z
tr
[
e−β̃HTτeτHcα,σ(r)e−τHeτ0Hc†β,σ(r0)e−τ0H

]
(4.53)

=− 1

Z
tr
[
e−β̃HeτHcα,σ(r)e−(τ−τ0)Hc†β,σ(r0)e−τ0H

]
θ(τ − τ0)

+
1

Z
tr
[
e−β̃Heτ0Hc†β,σ(r0)e−(τ0−τ)Hcα,σ(r)e−τH

]
θ(τ0 − τ).(4.54)

Now, one has to use the cyclic property of the trace and commute the operator
exponentials (H is time independent) to get

Gαβ,σ(r, τ ; r0, τ0) =− 1

Z
tr
[
e−β̃He(τ−τ0)Hcα,σ(r)e−(τ−τ0)Hc†β,σ(r0)

]
θ(τ − τ0)

+
1

Z
tr
[
e−β̃He(τ0−τ)Hc†β,σ(r0)e−(τ0−τ)Hcα,σ(r)

]
θ(τ0 − τ).(4.55)

=− 1

Z
tr
[
e−β̃HTτ−τ0e(τ−τ0)Hcα,σ(r)e−(τ−τ0)Hc†β,σ(r0)

]
(4.56)

= Gαβ,σ(r, τ − τ0; r0, 0).(4.57)

(ii) We present the proof for discrete lattice systems but the same steps can be
easily generalized for continuous systems. The periodicity of the system im-
plies space translation invariance of the grand-canonical Hamiltonian H which
is mathematically expressed as

(4.58) [T̃s, H] = 0,

where T̃s is the space translation operator that shifts a state by some lattice
vector s ∈ S and S is a set of lattice vectors. The commutation relation in
eq. (4.58) also applies to any power series of H. Therefore, we have

(4.59) [T̃s, e
−β̃H ] = 0

and

Gαβ,σ(r, r0, τ) = − 1

Z
tr
[
e−β̃HTτ T̃sT̃−scα,σ(r, τ)T̃sT̃−sc

†
β,σ(r0)

]
(4.60)

= − 1

Z
tr
[
e−β̃HTτ cα,σ(r + s, τ)c†β,σ(r0 + s)

]
(4.61)

= Gαβ,σ(r + s, r0 + s, τ).(4.62)

For the special choice of s = −r0 we see that the Green’s function only depends
on the relative position coordinate r − r0 and we define

(4.63) Gαβ,σ(r, r0, τ) = Gαβ,σ(r − r0, r0 − r0︸ ︷︷ ︸
=0

, τ) =: Gαβ,σ(r − r0, τ).

This result will be needed later but now one has to change from the real
space to the reciprocal space representation of the creation and annihilation
operators that appear in the Green’s function Gαβ,σ(r, r0, τ) which leads to

Gαβ,σ(r, r0, τ) = −

〈
Tτ
∑
k

1√
N

e−ik·rcα,σ(k, τ)
∑
k′

1√
N

eik
′·r0c†β,σ(k′)

〉
(4.64)
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= − 1

N

〈∑
k,k′

Tτ cα,σ(k, τ)e
−i
[
(k−k′)· r+r0

2
+(r−r0)· k+k

′
2

]
c†β,σ(k′)

〉
,(4.65)

where N is the number of unit cells in the system. Using the independence
of the Green’s function on the center of position coordinate (eq. (4.63)) we
derive

1 ·Gαβ,σ(r, r0, τ)(4.66)

=− 1

N

〈∑
k,k′

Tτ cα,σ(k, τ)
1

N

∑
(r+r0)/2

e−i(k−k
′)· r+r0

2 e−i
k+k′

2
·(r−r0)c†β,σ(k′)

〉
(4.67)

=− 1

N

〈∑
k,k′

Tτ cα,σ(k, τ)δk,k′e
−i k+k

′
2

(r−r0)c†β,σ(k′)

〉
(4.68)

=− 1

N

〈∑
k

Tτ cα,σ(k, τ)e−ik·(r−r0)c†β,σ(k)

〉
(4.69)

=
1

N

∑
k

e−ik·(r−r0)
[
−
〈
Tτ cα,σ(k, τ)c†β,σ(k)

〉]
(4.70)

=
1

N

∑
k

e−ik·(r−r0)Gαβ,σ(k, τ).(4.71)

(iii) We show the proof for the momentum space Green’s function but the proof
for the real space Green’s function works analogously.

G∗αβ,σ(k, τ) = −
〈
cα,σ(k, τ)c†β,σ(k)

〉∗
(4.72)

= − 1

Z
tr
[
Tτ cβ,σ(k)e−τHc†α,σ(k)eτHe−β̃H

]
(4.73)

= − 1

Z
tr
[
TτeτHe−β̃Hcβ,σ(k)e−τHc†α,σ(k)

]
(4.74)

= − 1

Z
tr
[
Tτe−β̃Hcβ,σ(k, τ)c†α,σ(k)

]
(4.75)

= Gβα,σ(k, τ).(4.76)

(iv) Again, we present the proof only for the momentum space Green’s function
for the same reason as in the previous point.
We start with exploiting the condition τ ∈ (−β̃, 0) and find

Gαβ,σ(k, τ) = −
〈
Tτ cα,σ(k, τ)c†β,σ(k)

〉
(4.77)

=
〈
c†β,σ(k)cα,σ(k, τ)

〉
(4.78)

=
1

Z
tr
[
e−β̃Hc†β,σ(k)eτHcα,σ(k)e−τH

]
(4.79)

=
1

Z
tr
[
eτHcα,σ(k)e−τHe−β̃Hc†β,σ(k)

]
(4.80)

=
1

Z
tr
[
e−β̃He(β̃+τ)Hcα,σ(k)e−(τ+β̃)Hc†β,σ(k)

]
(4.81)

= −Gαβ,σ(k, τ + β̃).(4.82)

Note that it was necessary to demand τ > −β̃ because otherwise we would
not have been able to reintroduce the time ordering operator Tτ in eq. (4.82).
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(v) The proof is independent of the basis choice and we use the momentum basis

lim
τ↘0

(
Gαβ,σ(k, τ)−Gαβ,σ(k,−τ)

)
(4.83)

= lim
τ↘0

(
−
〈
cα,σ(k, τ)c†β,σ(k)

〉
−
〈
c†β,σ(k)cα,σ(k,−τ)

〉)
(4.84)

=−
〈{
cα,σ(k), c†β,σ(k)

}〉
(4.85)

=− δα,β.(4.86)

�

In order to underline the difference between real and imaginary time Green’s func-
tion we present the example of non-interacting particles.

Example 4.5.2 (Non-interacting electrons). Consider electrons in a periodic lattice
that are described by the Hamiltonian

(4.87) H =
∑
k

(ε(k)− µ)︸ ︷︷ ︸
=:ξ(k)

c†(k)c(k),

where µ is the chemical potential and ε is the dispersion relation. We find c(k, τ) by
solving the imaginary time Heisenberg equation of motion

d

dτ
c(k, τ) = [H, c(k)] =

∑
k′

ξ(k′)
[
c†(k′)c(k′), c(k)

]
= −

∑
k′

ξ(k′)δk,k′c(k)(4.88)

= −ξ(k)c(k).(4.89)

This differential equation can be easily solved considering the initial condition c(k, 0) =
c(k). The solution is given by

(4.90) c(k, τ) = e−ξ(k)τ c(k).

Inserting this equation into the definition of the imaginary time Green’s function
(eq. (4.48)) gives

G(k, τ) = −
〈
Tτ c(k, τ)c†(k)

〉
(4.91)

=− e−ξ(k)τ {[1− fFD(ξ(k))] θ(τ)− fFD(ξ(k))θ(−τ)} ,(4.92)

where we used the Fermi-Dirac distribution function

(4.93) fFD(ξ(k)) =
〈
c†(k)c(k)

〉
=

1

eβ̃ξ(k) + 1
.

For the real time retarded Green’s function (eq. (4.37)) we can calculate c(k, t) in a
similar fashion as the imaginary time counter part previously (eq. (4.89)). We find

(4.94) c(k, t) = e−iξ(k)tc(k)

and inserting this result into the definition of the retarded Green’s function GR gives

GR(k, t) = −iθ(t)
〈{
c(k, t), c†(k)

}〉
(4.95)

= −ie−iξ(k)tθ(t)
〈{
c(k), c†(k)

}〉
(4.96)

= −ie−iξ(k)tθ(t).(4.97)

We plot the imaginary time Green’s functions G and the real-time Green’s function
GR for this non-interacting system in fig. 4.2. For simplicity we assume flat bands,
i.e. ξ(k) = ξ and consider the case of an unoccupied band (ξ = 1 > 0), a band at
the Fermi energy (ξ = 0) and an occupied band (ξ = −1 < 0). The definition of the
real-time Green’s function in equation (4.37) allows us to interpret GR(t) as a measure
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Figure 4.2. Real time retarded Green’s function GR and imaginary
time Green’s function G for non-interacting particle described by the
grand canonical Hamiltonian H in eq. (4.87). (a)-(c) show GR(t) in the
case where ξ(k) is a constant ξ = −1, 0, 1eV respectively. We see that
the retarded Green’s function is basically given by an oscillating phase
factor for t > 0 if ξ 6= 0. This is the manifestation of the Green’s function
as a correlation function that measures how large the overlap between an

excitation b†k |0〉 at t = 0 and the time-propagated excitation e−iHtb†k |0〉
for t > 0 is (see main text). (d)-(f) show the imaginary time Green’s

function for inverse temperature β̃ = 3(eV)−1. In contrast to the real-
time Green’s function we see that G shows exponential growth/decay

and is indeed anti-symmetric in (−β̃, β̃). Finally, all Green’s function
exhibit a discontinuity at t = 0 which has width 1. This is due to the
fermionic anti-commutation relation.

for the overlap between an excitation b†k |0〉 to the ground state5 at t = 0 and the time-

propagated excitation e−iHtb†k |0〉 for t > 0. In the case of non-interacting electrons
the time-propagation reduces to a simple phase factor (see eq. (4.94)) which leads in
(a),(c) to an oscillation in the cases ξ 6= 0 and else (b) to a constant prefactor for ξ = 0.
In (d)-(f) we present the imaginary time Green’s function G at inverse temperature

β̃ = 3(eV)−1. Apart from the exponential growth/decay from eq. (4.92) we observe the
anti-periodicity (see eq.(4.51)) that will serve later to expand G in a Fourier series.
Note that all Green’s function in (a)-(f) show a characteristic jump of height 1 that is
due to the fermionic commutation relation.

4.6. Lehman representation and spectral weight

The retarded Green’s function carries not only information on how to propagate
some state in time but also information about the energy spectrum. In this section we

5We use the letter b instead of c because the anti-commutator in the definition of GR takes care
of both particle (ξ > 0) and hole excitations (ξ ≤ 0).
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study this relation. We start by performing a Fourier transform to bring the retarded
Green’s function from time space to frequency space but first one needs to manipulate
the anti-commutator expectation value by the resolution of the identity

(4.98) I =
∑
n

|n〉 〈n| ,

where {|n〉} is the set of (many-body) eigenstates of H with corresponding eigenenergies

(4.99) H|n〉 = (En − µNn) |n〉,

where we explicitly wrote the energy contribution from −µN̂ , namely −µNn, in the
grand canonical Hamiltonian H. Thus, we can evaluate

〈{cα,σ(k, t), c†β,σ(k)}〉

=
1

Z

∑
m,n

[
〈n|e−β̃HeiHtcα,σ(k)e−iHt|m〉〈m|c†β,σ(k)|n〉+

+ 〈n|e−β̃Hc†β,σ(k)|m〉〈m|eiHtcα,σ(k)e−iHt|n〉
]

(4.100)

=
1

Z

∑
m,n

[
e−β̃(En−µNn)

(
e−it(Em−(Nn+1)µ−(En−Nnµ))〈n|cα,σ(k)|m〉〈m|c†β,σ(k)|n〉+

+ e−it(En−Nnµ−(Em−(Nn−1)µ))〈n|c†β,σ(k)|m〉〈m|cα,σ(k)|n〉
)]
.(4.101)

This expression can be used to evaluate the Fourier transform of the retarded Green’s
function following the same steps as in eq. (4.14) to eq. (4.24). The result is the so-called
Lehmann representation of the retarded Green’s function

GRαβ,σ(k, ω)

=F
[
GRαβ,σ(k, ·)

]
(ω)(4.102)

= lim
ε↘0

1

Z

∑
m,n

[(
1

ω + iε− (Em − En − µ)
〈n|cα,σ(k)|m〉〈m|c†β,σ(k)|n〉+

+
1

ω + iε− (En − Em − µ)
〈n|c†β,σ(k)|m〉〈m|cα,σ(k)|n〉

)
e−β̃(En−µNn)

]
.(4.103)

Next, we can interchange the summation indices in the second line to obtain

GRαβ,σ(k, ω)

= lim
ε↘0

1

Z

∑
m,n

(
e−β̃(En−µNn) + e−β̃(Em−µNm)

)(〈n|cα,σ(k)|m〉〈m|c†β,σ(k)|n〉
ω + iε− (Em − En − µ)

)
.(4.104)

If we make use of the weak approximation for the Dirac distribution in eq. (4.20) we
can identify the imaginary part of the retarded Green’s function as

Im(GRαβ,σ(k, ω))

= lim
ε↘0

1

Z

∑
m,n

(
e−β̃(En−µNn) + e−β̃(Em−µNm)

)(−ε〈n|cα,σ(k)|m〉〈m|c†β,σ(k)|n〉
(ω − (Em − En − µ))2 + ε2

)
(4.105)

=− π

Z

∑
m,n

[(
e−β̃(En−µNn) + e−β̃(Em−µNm)

)
×

×〈n|cα,σ(k)|m〉〈m|c†β,σ(k)|n〉δ(ω − (Em − En − µ))
]
.(4.106)

The matrix elements in eq. (4.106) tell us that

(4.107) Nm = Nn + 1
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while the Dirac distribution enforces

(4.108) ω = Em − En − µ.

Together, those two conservation laws can be used to simplify

Im(GRαβ,σ(k, ω))

=− π

Z

∑
m,n

[
(1 + e−β̃ω)e−β̃(En−µNn)×

×〈n|cα,σ(k)|m〉〈m|c†β,σ(k)|n〉δ(ω − (Em − En − µ))
]
.(4.109)

At this point we are ready to define the spectral function

Aα,σ(k, ω)

:=
2π

Z

∑
m,n

(1 + e−β̃ω)e−β̃(En−µNn)
∣∣〈n|cα,σ(k)|m〉

∣∣2 δ(ω − (Em − En − µ))(4.110)

=− 2Im(GRαα,σ(k, ω)).(4.111)

In sec. 4.9 we will discuss the physical meaning and importance of this object but first we
derive a relation between the spectral function in time space Aα,σ(k, t) and the retarded

Green’s function GRαα,σ(k, t). This relation is established via Fourier transformation,

Aα,σ(k, t)

=

∫ ∞
−∞

e−iωtAα,σ(k, ω)
dω

2π
(4.112)

=
1

Z

∑
m,n

e−i(Em−En−µ)t
[
e−β(En−µNn) + e−β(Em−µNm)

] ∣∣〈n|cα,σ(k)|m〉
∣∣2(4.113)

=
1

Z

∑
m,n

[
e−β̃(En−µNn) + e−β̃(Em−µNm)

]
〈n|eiHtcα,σ(k)e−iHt|m〉〈m|c†α,σ(k)|n〉(4.114)

=
1

Z

∑
n

〈n|e−β̃(En−µNn)
{
cα,σ(k, t), c†α,σ(k)

}
|n〉(4.115)

=
〈{
cα,σ(k, t), c†α,σ(k)

}〉
.(4.116)

Therefore, we can write

(4.117) GRαα,σ(k, t) = −iAα,σ(k, t)θ(t).

Again, by the same steps as between eq. (4.14) and (4.24) we can relate the retarded
Green’s function GR to the spectral function A(k, ω) via

GRαα,σ(k, ω) = F
[
GRαα,σ(k, ·)

]
(ω)(4.118)

= −iF
[
Aα,σ(k, ·)θ(·)

]
(ω)(4.119)

= −i
∫ ∞
−∞

Aα,σ(k, ω′)F
[
e−iω

′·θ(·)
]

(ω)
dω′

2π
(4.120)

= lim
ε↘0

∫ ∞
−∞

Aα,σ(k, ω′)

ω + iε− ω′
dω′

2π
(4.121)

= − lim
ε↘0

∫ ∞
−∞

Im(GRαα,σ(k, ω′))

ω + iε− ω′
dω′

π
,(4.122)
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which is the so-called spectral representation of the retarded Green’s function. Finally,
we show that the spectral function A(k, ω) is normalized:∫ ∞

−∞

dω

2π
Aα,σ(k, ω)

=
1

Z

∑
m,n

(
e−β̃(En−µNn) + e−β̃(Em−µNm)

)
〈n|cα,σ(k)|m〉〈m|c†α,σ(k)|n〉(4.123)

=
1

Z

∑
n

e−β̃(En−µNn)〈n|cα,σ(k)c†α,σ(k)|n〉

+
1

Z

∑
m

e−β̃(Em−µNm)〈m|c†α,σ(k)cα,σ(k)|m〉(4.124)

=
〈{
cα,σ(k), c†α,σ(k)

}〉
(4.125)

=1.(4.126)

We will come back to the implications of this property.

4.6.1. Matsubara Green’s function. Expanding periodic or anti-periodic func-
tions in a Fourier series can be a useful tool to rewrite information about a function in
terms of Fourier coefficients.
The definition of the Fourier series for the imaginary time Green’s function Gαβ,σ de-

fined on the domain (−β̃, β̃) is

Gαβ,σ(k, iω̃n) =
1

2

∫ β̃

−β̃
eiω̃nτGαβ,σ(k, τ)dτ(4.127)

Gαβ,σ(k, τ) =
1

β̃

∞∑
n=−∞

e−iω̃nτGαβ,σ(k, iω̃n),(4.128)

where ω̃n := 2πn
2β̃

.

The next step is simply imposing the anti-periodicity in imaginary time (eq. (4.51)) to
obtain

Gαβ,σ(k, iω̃n) =
1

2

[∫ 0

−β̃
eiω̃nτGαβ,σ(k, τ)dτ +

∫ β̃

0
eiω̃nτGαβ,σ(k, τ)dτ

]
(4.129)

=
1

2

[
−
∫ 0

−β̃
eiω̃nτGαβ,σ(k, τ + β̃)dτ +

∫ β̃

0
eiω̃nτGαβ,σ(k, τ)dτ

]
(4.130)

=
1

2

[
−
∫ β̃

0
eiω̃nτeiω̃nβ̃Gαβ,σ(k, τ)dτ +

∫ β̃

0
eiω̃nτGαβ,σ(k, τ)dτ

]
(4.131)

=
1

2
(1− (−1)n)

[∫ β̃

0
eiω̃nτGαβ,σ(k, τ)dτ

]
.(4.132)

The prefactor of the integral is 1 if n is odd and 0 if n is even.
Skipping all even contributions is equivalent to restricting the frequency summations
over ω̃n to a summation over the so-called Matsubara frequencies

(4.133) ωn :=
(2n+ 1)π

β̃
.

Thus, the final formulas for the Fourier series read

Gαβ,σ(k, iωn) :=

∫ β̃

0
eiωnτGαβ,σ(k, τ)dτ,(4.134)
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Gαβ,σ(k, τ) =
1

β̃

∞∑
n=−∞

e−iωnτGαβ,σ(k, iωn),(4.135)

where the Fourier coefficient Gαβ,σ(k, iωn) is called Matsubara Green’s function.
Note that we write iωn for the Matsubara frequencies which seems inconsistent to the
imaginary time convention where the −iτ is denoted by τ in function arguments. This
convention for the frequency domain is widely used and we also make us of it to make
this thesis better comparable to the literature.

From the properties of the imaginary time Green’s function G(τ) we can easily
deduce important properties of the Matsubara Green’s function G(iωn).

Proposition 4.6.1. (i) The Matsubara Green’s function G(iωn) is related to
its adjoint via

Gαβ,σ(k, iωn) = G∗βα,σ(k,−iωn).(4.136)

(ii) The high-frequency behavior of the Matsubara Green’s function G(iωn) is given
by

(4.137) Gαβ,σ(k, iωn) =
δα,β
iωn

+O

((
1

iωn

)2
)
.

Proof. (i) Since eq. (4.49) already shows the property in imaginary time τ
we only have to calculate

G∗αβ,σ(k, iωn) =

∫ β̃

0
e−iωnτG∗αβ,σ(k, τ)dτ(4.138)

=

∫ β̃

0
e−iωnτGβα,σ(k, τ)dτ(4.139)

= Gβα,σ(k,−iωn).(4.140)

(ii) To be able to expand Gαβ,σ(k, iωn) in powers of ωn one has to start with the
Fourier transformation to imaginary time and integrate by parts, i.e.

Gαβ,σ(k, iωn)

=

∫ β+0−

0+
Gαβ,σ(k, τ)eiωnτdτ(4.141)

=
−Gαβ,σ(k, β + 0−)−Gαβ,σ(k, 0+)

iωn
−
∫ β+0−

0+
G′αβ,σ(k, τ)

eiωnτ

iωn
dτ.(4.142)

Iterating the integration by parts and taking advantage of the anti-periodicity
of the Matsubara Green’s function G (see eq. 4.51) gives

Gαβ,σ(k, iωn) =
∑
j≥0

(−1)j+1
G

(j)
αβ,σ(k, 0+)−G(j)

αβ,σ(k, 0−)

(iωn)j+1
.(4.143)

In the case of α = β the first term in this series is merely 1
ωn

since {c†α,σ, cβ,σ} =
δα,β and hence

Gαβ,σ(k, iωn) =
δα,β
iωn

+O

((
1

iωn

)2
)
.(4.144)

�
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Example 4.6.2 (Non-interacting particles). We consider again the example 4.5.2
where we study non-interacting electrons on a lattice that are described by the Hamil-
tonian

(4.145) H =
∑
k

(ε(k)− µ)︸ ︷︷ ︸
=:ξ(k)

c†(k)c(k),

where µ is the chemical potential and ε is the dispersion relation. From the Heisenberg
equation of motion we were able to find the time evolution of the annihilation operator

(4.146) c(k, τ) = e−ξ(k)τ c(k)

and the imaginary time Green’s function

(4.147) G(k, τ) = −e−ξ(k)τ {[1− fFD(ξ(k))] θ(τ)− fFD(ξ(k))θ(−τ)} ,
where we denote the Fermi-Dirac distribution function by

(4.148) fFD(ξ(k)) =
1

eβ̃ξ(k) + 1
.

In order to obtain the Matsubara Green’s function we apply eq. (4.134) which yields

G(k, iωn) =

∫ β̃

0
eiωnτG(k, τ)dτ(4.149)

= −
∫ β̃

0
eiωnτ

〈
Tτ (c(k, τ)c†(k))

〉
dτ(4.150)

= −
∫ β̃

0
eiωnτ

〈
c(k, τ)c†(k)

〉
dτ(4.151)

= −
∫ β̃

0
eiωnτ

〈
e−ξ(k)τ c(k)c†(k)

〉
dτ(4.152)

= − 1

iωn − ξ(k)

[
−e−β̃ξ(k) − 1

] 〈
c(k)c†(k)

〉
(4.153)

= − 1

iωn − ξ(k)

[
−e−β̃ξ(k) − 1

]
[1− fFD(ξ(k))](4.154)

=
1

iωn − ξ(k)

eβ̃ξ(k)
(

e−β̃ξ(k) + 1
)

1 + eβ̃ξ(k)
(4.155)

=
1

iωn − ξ(k)
.(4.156)

Similarly, we obtain the retarded Green’s function GR(ω) by Fourier transformation of
the real-time Green’s function

GR(k, t) = −ie−iξ(k)tθ(t)(4.157)

from eq. (4.97). Using the same manipulations as in eqs. (4.14) to (4.24) we obtain

(4.158) GR(k, ω) =
1

ω − ξ(k)
− iπδ(ω − ξ(k)) = lim

ε↘0

1

ω + iε− ξ(k)

via Fourier transformation.
We show a comparison of the real-frequency and imaginary frequency Green’s function
in fig. 4.3. For the purpose of illustration we choose dispersionless energies ξ(k) =
ξ = −1, 0, 1 eV. Moreover, we need to smooth the divergence of the Dirac distribution
in eq. (4.158) and fix ε = 0.1 eV. This results in a broadening of the features in (a)-
(c) but we can still recognize the peak of the imaginary part of the retarded Green’s
function at the energy eigenvalues. Moreover, we observe that the real part of GR is
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Figure 4.3. Real-frequency and imaginary frequency Green’s func-
tion for the non-interacting system described by eq. (4.145) with con-
stant energies ξ(k) = ξ. (a)-(c) show the retarded Green’s function
GR(ω) for ξ = −1, 0, 1eV respectively, where we introduce a smoothing
term ε = 0.1eV (see eq. (4.158)) to soften the divergence of the Dirac
distribution δ. Apart from the divergence of the imaginary part at the
energy eigenvalues we see the symmetry/anti-symmetry of the imagi-
nary/real part of GR(ω). In (d)-(f) we present the retarded Green’s

function G(iωn) at inverse temperature β̃ = 3(eV)−1for ξ = −1, 0, 1eV
respectively. In contrast to the real-frequency Green’s function we see
that the real part is symmetric while the imaginary part is anti-
symmetric.

anti-symmetric while the imaginary part is symmetric around the energy eigenvalue.
This is a special property of this simple model and not a general feature of the retarded
Green’s function.
For the Matsubara Green’s function we have no divergences but we need to choose
a temperature to evaluate the Matsubara frequencies. In (d)-(f) we show G(iωn) at

inverse temperature β̃ = 3(eV)−1 for the same energies as in (a)-(c). In contrast to the
retarded Green’s function, the symmetry properties of the Matsubara Green’s function
are always with respect to the origin and opposite to the ones ofGR: The imaginary part
is anti-symmetric while the real part of G(iωn) is symmetric. Finally, we observe that
the imaginary part of the retarded Green’s is directly connected to spectral properties
of the system while those properties are hidden within the Matsubara Green’s function.
For this reason we will describe next the relation between those two Green’s functions
and why it makes sense to take the detour on the imaginary axis and calculate the
spectral properties (on the real axis) afterwards.
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4.7. Relation between retarded Green’s function and Matsubara Green’s
function

The central topic of this section is how to get from the Matsubara Green’s function
on the imaginary axis to the retarded Green’s function on the real axis.
For an arbitrary function f this question has infinitely many answers since one can
define any function piecewise and pick arbitrary functions for each axis. For example,

(4.159) f(z) =

{
fr(z) z ∈ R
fi(Im(z)) z ∈ iR \ {0}

,

where f is a function with domain R ∪ iR and fr, fi are arbitrary function on R.
At this point it seems like there is no way to find the “right way” back to the real
frequency axis but we have to remember how this whole idea of imaginary times and
frequencies started. The first step was to extend the definition of the retarded Green’s
function to complex time arguments and this is where complex analysis is able to help
resolve the problem of continuation from iR to R.
A fundamental theorem in complex analysis states that if we have an analytic/holomorphic
function f defined on an open domain ∅ 6= U ⊂ C and if we have another analytic func-
tion g defined on a larger open connected domain V ⊃ U such that

(4.160) g(z) = f(z) ∀z ∈ U
then we know that g is uniquely determined by f .
Central to the whole argumentation is the property of analyticity and although Green’s
functions do not fall into the easy case of the above mentioned uniqueness theorem6 we
will still need the condition of analyticity. Starting point of this derivation is eq. (4.134)
which relates the Matsubara Green’s function with the imaginary time Green’s function
via

Gαβ,σ(k, iωn) =

∫ β̃

0
eiωnτGαβ,σ(k, τ)dτ(4.161)

= −
∫ β̃

0
eiωnτ

〈
cα,σ(k, τ)c†β,σ(k)

〉
dτ(4.162)

= − 1

Z

∫ β̃

0
eiωnτ tr

(
e(τ−β̃)Hcα,σ(k)e−τHc†β,σ(k)

)
dτ,(4.163)

where we have used the explicit form of the Green’s function (eq. (4.48)), the imaginary
time evolution in eq. (4.44) and the thermal expectation value in eq. (4.36).
At this point we make use of the analyticity of the Green’s function which is true as
long as we stay away from the real axis. We rewrite the imaginary time integral as a
contour integral in the complex time plane via τ = it. This results in

(4.164) Gαβ,σ(k, iωn) = − i

Z

∫
γ0

e−ωnttr
(

e(it−β̃)Hcα,σ(k)e−itHc†β,σ(k)
)
dt,

where the contour γ0 is shown in fig. 4.4. In the case where the Matsubara frequencies
are larger than zero, ωn > 0, we can deform γ0 all over the lower complex half-plane with
non-negative real part H := {t ∈ C | Im(t) ≤ 0, Re(t) ≥ 0} –due to the exponentially
decaying factors in eq. (4.164)– as long as we keep the end points of γ0 fixed7. We

deform the contour γ0 into γ (see fig. 4.4) that is 0→ r− i0→ r− iβ̃ → −iβ̃ and where
we take the limit r →∞. Thus,

Gαβ,σ(k, iωn)

6This is because of the discontinuity of the Green’s function on the real line (see prop. 4.5.1(v)).
7This is a special case of Cauchy’s integral theorem.
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Figure 4.4. Integration contours γ0 and γ in the complex time plane
that are considered in the evaluation of the Matsubara Green’s function.

=− i

Z

∫
γ0

e−ωnttr
(

e(it−β̃)Hcα,σ(k)e−itHc†β,σ(k)
)
dt(4.165)

=− i
∫
γ

e−ωnt
〈

eitHcα,σ(k)e−itHc†β,σ(k)
〉
dt(4.166)

=− i lim
r→∞

∫ r

0
e−ωnx

〈
eixHcα,σ(k)e−ixHc†β,σ(k)

〉
dx(4.167)

− i lim
r→∞

∫ β̃

0
e−ωn(r−iy)

〈
ei(r−iy)Hcα,σ(k)e−i(r−iy)Hc†β,σ(k)

〉
d(−iy)(4.168)

− i lim
r→∞

∫ 0

r
e−ωn(x−iβ̃)

〈
ei(x−iβ̃)Hcα,σ(k)e−i(x−iβ̃)Hc†β,σ(k)

〉
dx.(4.169)

While the term in line (4.168) vanishes because of the exponentially decaying term
e−ωnr we can use the definition of the Matsubara frequencies (see eq. (4.133)) and swap
the integral boundaries to further simplify

Gαβ,σ(k, iωn) =− i
∫ ∞

0
e−ωnx

〈
eixHcα,σ(k)e−ixHc†β,σ(k)

〉
dx

+ i

∫ ∞
0

e−ωnx ei(2n+1)π︸ ︷︷ ︸
=−1

〈
ei(x−iβ̃)Hcα,σ(k)e−i(x−iβ̃)Hc†β,σ(k)

〉
dx.(4.170)

At this point we use the expression for the thermal average in the grand canonical
ensemble (eq.(4.36)) and the cyclic property of the trace to get

Gαβ,σ(k, iωn) =− i
∫ ∞

0
e−ωnx

〈
eixHcα,σ(k)e−ixHc†β,σ(k)

〉
dx

− i 1

Z

∫ ∞
0

e−ωnxtr
(

e−β̃Hei(x−iβ̃)Hcα,σ(k)e−i(x−iβ̃)Hc†β,σ(k)
)
dx(4.171)

=− i
∫ ∞

0
e−ωnx

〈
eixHcα,σ(k)e−ixHc†β,σ(k)

〉
dx

− i 1

Z

∫ ∞
0

e−ωnxtr
(

e−β̃He−ixHc†β,σ(k)eixHcα,σ(k)
)
dx(4.172)

=− i
∫ ∞

0
e−ωnx

〈
eixHcα,σ(k)e−ixHc†β,σ(k)

〉
dx

− i
∫ ∞

0
e−ωnx

〈
c†β,σ(k)eixHcα,σ(k)e−ixH

〉
dx(4.173)

=− i
∫ ∞

0
e−ωnt

(〈
cα,σ(k, t)c†β,σ(k)

〉
+
〈
c†β,σ(k)cα,σ(k, t)

〉)
dt(4.174)
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=

∫ ∞
−∞

ei(iωn)tGRαβ,σ(k, t)dt(4.175)

= GRαβ,σ(k, ω)
∣∣
ω→iωn

.(4.176)

This results tells us that we can obtain the Matsubara Green’s function G(iωn) from
the retarded Green’s function GR(ω) via analytic continuation.
In applications we are usually interested in the opposite direction: Is it possible to
construct the retarded Green’s function from the Matsubara Green’s function?
A simple example seems to provide a negative answer since given a Matsubara Green’s

function G(iωn) we can multiply it by one in the form 1 = 1 + 0 = 1 + eiωnβ̃ + 1.

Therefore, G(iωn) and G(iωn)(1 + eiωnβ̃ + 1) are identical but they are not equal if

interpret the functions as functions of complex numbers G(z) and G(z)(1 + eβ̃z + 1) in
the case z 6= iωn.
Fortunately, one can use a result from mathematical physics [120] which states that
if (a) G(z) is analytic in the upper half-plane8 and if (b) G(z) equals the Matsubara
Green’s function at z = iωn and if (c) G(z) decays like

(4.177) lim
|z(t)|→∞

G(z(t)) = 0,

where z(t) is the parameterization of a general straight line in the complex plane, then
the analytic continuation in H is unique and we have

(4.178) GRαβ,σ(k, ω) = lim
iωn→ω+i0+

Gαβ,σ(k, iωn).

We are left to prove that the last condition (c) applies to the Green’s function G(z):
First, we make use of the analyticity of G in the upper complex plane H which allows
us to make use of Cauchy’s integral formula,

(4.179) Gαβ,σ(k, z0) =
1

2πi

∮
γ

Gαβ,σ(k, z)

z − z0
dz,

where γ is a counterclockwise oriented closed path and z0 ∈ H is in the interior of γ.
We choose the contour as depicted in fig. 4.5, where γ follows a semicircle of radius r
in the upper complex half-plane H that encloses the imaginary time point z0. In order

Figure 4.5. Integration contours γ in the complex frequency plane
that is used in the calculation of Cauchy’s integral formula (eq. (4.179)).

to stay in the analytic domain of G we shift the semicircle slightly above the real axis
which leads to the expression

Gαβ,σ(k, z0)

8We have already seen from eq. (4.164) and eq. (4.52) that the Green’s function G(z) is anywhere
analytic except for the real axis where it is discontinuous.
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=
1

2πi
lim
ε↘0

(∫ r

−r

Gαβ,σ(k, x+ iε)

x+ iε− z0
dx+

∫ π

0

Gαβ,σ(k, reiφ + iε)

reiφ + iε− z0
ireiφdφ

)
.(4.180)

From eq. (4.143) we see that G(z) decays like O
(

1
z

)
which allows us to neglect the

second term in equation (4.180) in the limit r →∞.
Thus, we can evaluate the weak limit and identify the retarded Green’s function in the
integral kernel,

(4.181) Gαβ,σ(k, z0) =
1

2πi

∫ ∞
−∞

GRαβ,σ(k, ω)

ω − z0
dω.

This expression already reminds us of the spectral representation of the retarded
Green’s function in eq. (4.122). The remaining step to obtain the analogous repre-
sentation for the Green’s function G is to use the Kramers-Kronig relations

Re
[
G(ω + i0+)

]
=

1

π
p.v.

∫ ∞
−∞

Im [G(ω′ + i0+)]

ω′ − ω
dω′(4.182)

Im
[
G(ω + i0+)

]
=

1

π
p.v.

∫ ∞
−∞

Re [G(ω′ + i0+)]

ω − ω′
dω′,(4.183)

where p.v. is Cauchy’s principle value. The shift into the upper complex plane H with
+i0+ is necessary to guarantee the analyticity of G. This leads to

Gαβ,σ(k, z0) =
1

2πi

∫ ∞
−∞

GRαβ,σ(k, ω)

ω − z0
dω(4.184)

=
1

2πi

∫ ∞
−∞

Re
[
GRαβ,σ(k, ω)

]
ω − z0

dω +
1

2π

∫ ∞
−∞

Im
[
GRαβ,σ(k, ω)

]
ω − z0

dω(4.185)

=
1

2π2i

∫ ∞
−∞

p.v.

∫ ∞
−∞

Im
[
GRαβ,σ(k, ω′)

]
(ω′ − ω)(ω − z0)

dω′dω+

+
1

2π

∫ ∞
−∞

Im
[
GRαβ,σ(k, ω)

]
ω − z0

dω.(4.186)

Now, we use contour integrals to obtain

p.v.

∫ ∞
−∞

1

(ω′ − ω)(ω − z0)
dω

= lim
ε↘0

(∫ ω−ε

−∞

1

(ω′ − ω)(ω − z0)
dω +

∫ ∞
ω+ε

1

(ω′ − ω)(ω − z0)
dω

)
(4.187)

= lim
ε↘0

(∫ ω−ε

−∞

f(ω)

ω − ω′
dω +

∫ ∞
ω+ε

f(ω)

ω − ω′
dω

)
(4.188)

= lim
ε↘0

∫
γr,ε

f(z)

z − ω′
dz − lim

ε↘0

∫ 0

π

f(ω′ + εeiφ)

εeiφ
iεeiφdφ,(4.189)

where we defined the function f(z) = 1
z0−z and the contour γr,ε is shown in fig. 4.6.

The equality in line (4.189) holds because the half-circle segment of radius r does not
contribute in the limit r →∞. By means of the residue theorem we obtain

p.v.

∫ ∞
−∞

1

(ω′ − ω)(ω − z0)
dω =2πiRes

(
f(z)

z − ω′
, z0

)
+ iπf(ω′)(4.190)

=iπ
1

z0 − ω′
+ 2πi

1

ω′ − z0
(4.191)
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Figure 4.6. Contour that is needed to evaluate eq. (4.189).

=
iπ

ω′ − z0
.(4.192)

With this result we can go back to eq. (4.186) and further calculate

Gαα,σ(k, z0) =
1

2π

∫ ∞
−∞

Im
[
GRαα,σ(k, ω′)

]
ω′ − z0

dω′ +
1

2π

∫ ∞
−∞

Im
[
GRαα,σ(k, ω)

]
ω − z0

dω(4.193)

= − 1

2π

∫ ∞
−∞

Aα,σ(k, ω′)

ω′ − z0
dω′,(4.194)

where we expressed the imaginary part of the retarded Green’s function GR by the
spectral function A(k, ω) (see eq. (4.111)).
Finally, we can deduce the limit behavior of G(z) from the generalized spectral repre-
sentation in eq. (4.194) since the spectral function A(k, ω) is normalized (see eq. (4.126))
and therefore

(4.195) G(z) ∼ 1

z

|z|→∞−→ 0.

In summary, we find a unique analytic continuation that relates the Matsubara Green’s
function G(iωn) on the imaginary frequency axis to the retarded Green’s function
GR(ω) on the real frequency axis. This allows us to work in the Green’s function
representation on the imaginary axis and afterwards analytically continue onto the real
axis via eq. (4.178) to obtain information about spectral properties.
In practice, we get the Matsubara Green’s function only for a finite number of frequen-
cies and we do not know the explicit dependence G = G(iωn). For this reason one has
to make use of approximations that we explain in sec. 4.10.

4.8. Non-interacting lattice Green’s function

Before we tackle the problem of calculating the Green’s function for interacting
electrons we consider the important case of non-interacting electrons on a lattice in a
paramagnetic state with time reversal and spin rotational symmetry. Such a system is
described by the Hamiltonian

Hkin =
∑

α,β,σ,ri,rj

(
t
ri−rj
αβ − µδri,rjδα,β

)
c†α,σ(ri)cβ,σ(rj)(4.196)

=
1

N

∑
k,k′,α,β,σ,ri,rj

(
t
ri−rj
αβ − µδri,rjδα,β

)
eik·ric†α,σ(k)e−ik

′·rjcβ,σ(k′),(4.197)

where t
ri−rj
αβ are all hoppings concerning the orbitals α and β that are connected by

lattice vectors ri − rj .
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Now, we rewrite the expression in terms of center of position and relative position
coordinates (ri, rj)→ (ri − rj , (ri + rj)/2) =: (rrel, rcen) and get

Hkin

=
1

N

∑
k,k′,α,β,σ,ri,rj

(
t
ri−rj
αβ − µδri,rjδα,β

)
eik·ric†α,σ(k)e−ik

′·rjcβ,σ(k′)(4.198)

=
1

N

∑
k′,α,β,σ,rrel

(
trrelαβ − µδrrel,0δα,β

)
eirrel·

k+k′
2

∑
rcen

eircen·(k
′−k)c†α,σ(k)cβ,σ(k′)(4.199)

=
∑

k′,α,β,σ,rrel

(
trrelαβ − µδrrel,0δα,β

)
δk,k′e

irrel·(k+k′)/2c†α,σ(k)cβ,σ(k′)(4.200)

=
∑

α,β,σ,rrel

(
trrelαβ − µδrrel,0δα,β

)
eirrel·kc†α,σ(k)cβ,σ(k).(4.201)

We identify

Hkin
αβ,σ(k) := c†α,σ(k)

(∑
r

trαβeik·r − µδα,β

)
︸ ︷︷ ︸

=:hkinαβ (k)

cβ,σ(k).(4.202)

Since the Hamiltonian is hermitian one finds a set of eigenvectors {ab(k)}1≤b≤Norb and

corresponding eigenvalues {ξb(k)}1≤b≤Norb , where b is the so-called band index and Norb

is the number of orbitals (or sites), that serve as a new basis, i.e.

hkinσ (k) := [a1(k), ..., aNorb(k)] ·

ξ1(k)
. . .

ξNorb(k)

 · [a1(k), ..., aNorb
(k)
]†
.(4.203)

Therefore, the eigenvectors {ab(k)}1≤b≤Norb
are the ingredients for the transformation

matrix from orbital- (or site-) to band-space and back.
We see an important property under inversion that is due to time-reversal symmetry,
namely

ab(−k) = a∗b(k),(4.204)

which can be seen from eq. (4.202) for the Hamiltonian since hkinαβ (−k) = hkinαβ (k)∗.

Taking this together with the eigenspace decomposition (eq. (4.203)) we see that the
eigenvectors {ab(k)}1≤b≤Norb

get complex conjugated while the energy eigenvalues stay
the same since they are real.
A similar calculation to the one performed in example 4.6.2 provides

(4.205) cb,σ(k, τ) = e−ξb(k)τ cb,σ(k),

which can be used to determine cα,σ(k, τ) via

∂τ cα,σ(k, τ) =
[
Hkin(τ), cα,σ(k, τ)

]
(4.206)

=
∑
k′,b′,σ′

ξb′(k
′)
[
c†b′,σ′(k

′, τ)cb′,σ′(k
′, τ), cα,σ(k, τ)

]
(4.207)

=
∑
k′,b′,σ′

ξb′(k
′)
[
c†b′,σ′(k

′, τ){cb′,σ′(k′, τ), cα,σ(k, τ)}

−{c†b′,σ′(k
′, τ), cα,σ(k, τ)}cb′,σ′(k′, τ)

]
(4.208)
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= −
∑
k′,b′,σ′

ξb′(k
′){c†b′,σ′(k

′, τ),
∑
b

aαb (k)cb,σ(k, τ)}cb′,σ′(k′, τ)(4.209)

= −
∑
b

ξb(k)aαb (k)cb,σ(k, τ)(4.210)

⇒ cα,σ(k, τ) =
∑
b

e−ξb(k)τaαb (k)cb,σ(k)(4.211)

=
∑
b

aαb (k)cb,σ(k, τ),(4.212)

where we used the time-independence of the Hamiltonian H = H(τ). Now, we use this
result (eq. (4.211)) and obtain the Matsubara Green’s function

Gαβ,σ(k, iωn) =

∫ β̃

0
eiωnτGαβ,σ(k, τ)dτ(4.213)

= −
∫ β̃

0
eiωnτ

〈
Tτ cα,σ(k, τ)c†β,σ(k)

〉
dτ(4.214)

= −
∫ β̃

0
eiωnτ

〈
cα,σ(k, τ)c†β,σ(k)

〉
dτ(4.215)

= −
∫ β̃

0
eiωnτ

〈∑
b

e−ξb(k)τaαb (k)cb,σ(k)
∑
b′

aβb′(k)∗c†b′,σ(k)

〉
dτ(4.216)

= −
∑
b,b′

aαb (k)aβb′(k)∗

iωn − ξb(k)

[
−e−β̃ξb(k) − 1

] 〈
cb,σ(k)c†b′,σ(k)

〉
(4.217)

= −
∑
b,b′

aαb (k)aβb′(k)∗

iωn − ξb(k)

[
−e−β̃ξb(k) − 1

]
[1− fFD(k)] δb,b′(4.218)

=
∑
b

aαb (k)aβb (k)∗

iωn − ξb(k)

eβ̃ξb(k)
(

e−β̃ξb(k) + 1
)

1 + eβ̃ξb(k)
(4.219)

=
∑
b

aαb (k)aβb (k)∗

iωn − ξb(k)
.(4.220)

Clearly, we also see the property from the transformation of the set of eigenvectors
{ab(k)}1≤b≤Norb

(eq. (4.203)) under the constraint of time-reversal symmetry and para-
magnetism, i.e.

Gαβ,σ(−k, iωn) = Gβα,σ(k, iωn).(4.221)

For completeness we present a different approach to determine the Matsubara Green’s
function by means of the equation of motion.
We start by explicit calculation the imaginary time derivative

− d

dτ
Gαβ,σ(k, τ)

=
d

dτ

[〈
cα,σ(k, τ)c†β,σ(k)

〉
θ(τ)−

〈
c†β,σ(k)cα,σ(k, τ)

〉
θ(−τ)

]
(4.222)

=δ(τ)
〈
cα,σ(k, τ)c†β,σ(k) + c†β,σ(k)cα,σ(k, τ)

〉
+

[〈
d

dτ
cα,σ(k, τ)c†β,σ(k)

〉
θ(τ)−

〈
c†β,σ(k)

d

dτ
cα,σ(k, τ)

〉
θ(−τ)

]
(4.223)
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=δ(τ)δα,β +
[〈[

H, cα,σ(k, τ)
]
c†β,σ(k)

〉
θ(τ)−

〈
c†β,σ(k)

[
H, cα,σ(k, τ)

]〉
θ(−τ)

]
(4.224)

=δ(τ)δα,β +
〈
Tτ

([
H, cα,σ(k, τ)

]
c†β,σ(k)

)〉
.(4.225)

This time we express the time evolution of the annihilation operator in terms of the
Hamiltonian matrix elements hkinαβ (eq. (4.201)) in orbital (site) space. Namely,[

H, cα,σ(k, τ)
]

=
∑

k′,ν,β,r,σ′

(
trνβeik

′·r − µδν,β
) [
c†ν,σ′(k

′, τ)cβ,σ′(k
′, τ), cα,σ(k, τ)

]
(4.226)

=
∑

k′,ν,β,r,σ′

(
trνβeik

′·r − µδν,β
) (
−cβ(k′, τ)δk,k′δα,νδσ,σ′

)
(4.227)

= −

∑
β,r

trαβeik
′·r − µδα,β

 cβ,σ(k, τ)(4.228)

= −
∑
β

hkinαβ (k)cβ,σ(k, τ).(4.229)

Now, we use the equation of motion for the Green’s function (eq. (4.225)) and calculate

− d

dτ
Gαβ(k, τ) = δ(τ)δα,β −

∑
ν

hkinαν (k)
〈
Tτ cν,σ(k, τ)c†β,σ(k)

〉
(4.230)

− d

dτ
Gαβ,σ(k, τ) = δ(τ)δα,β +

∑
ν

hkinαν (k)Gνβ,σ(k, τ).(4.231)

Multiplying both sides with eiωnτ and integrating afterwards over τ in the interval (0, β)
– which amounts to calculating the respective Fourier coefficients – yields

−
[
eiωnτGαβ,σ(k, τ)

]β−0+

−0+
+ iωn

∫ β

0
eiωnτGαβ,σ(k, τ)

=δα,β +
∑
ν

hkinαν (k)Gνβ,σ(k, iωn),(4.232)

where we used partial integration on the left-hand side. While the anti-periodicity of
the imaginary time Green’s function and the definition of the Matsubara frequencies
are sufficient to treat the first term on the left-hand side, we identify the Matsubara
Green’s function in the remaining integral. Therefore, we obtain the final result

iωnGαβ,σ(k, iωn)−
∑
ν

hkinαν (k)Gνβ,σ(k, iωn) = δα,β(4.233) (
iωnI− hkin(k)

)
G(k, iωn) = I(4.234)

Gαβ,σ(k, iωn) =

[(
iωnI− hkin(k)

)−1
]
αβ,σ

.(4.235)

4.9. Green’s functions and observables

In this section we show how to deduce physical observables from the Green’s func-
tions. While in some cases it is more convenient to express the observable in terms of
the Matsubara Green’s function, we will see cases where the retarded Green’s function
is more handy to use.
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4.9.1. Single-particle properties. The easiest object that one can extract from
the Green’s function is the number of electrons per unit cell und orbital 〈n〉 (filling) in
the system and the respective spin-resolved orbital occupations 〈nα,σ〉,

〈nα,σ〉 =
1

N

∑
k

〈nα,σ(k)〉(4.236)

=
1

N

∑
k

〈
c†α,σ(k)cα,σ(k)

〉
(4.237)

= − lim
τ→0−

1

N

∑
k

〈
Tτ cα,σ(k, τ)c†α,σ(k)

〉
(4.238)

= lim
τ→0−

1

N

∑
k

Gαα,σ(k, τ)(4.239)

=
1

β̃N
lim
τ→0−

∑
k

∞∑
n=−∞

e−iωnτGαα,σ(k, iωn).(4.240)

Note that the order of summation and limit are crucial here due to the O(1/ωn) slow
decay of the Matsubara Green’s function (see appendix B.1.1). From the orbital occu-
pations one obtains the filling 〈n〉 via

(4.241) 〈n〉 =
1

Norb

∑
α,σ

〈nα,σ〉,

where Norb is the number of orbitals.

In sec. 4.6 we defined the spectral weight Aα,σ(k, ω), which was directly related to

the imaginary part of the Green’s function GR.
A very successful and widely used technique that probes the electronic structure of a
solid and more explicitly the spectral weight is the angle-resolved photo-emission spec-
troscopy (ARPES); for introductory literature see Refs. [121–125]. We remind here
the basic principles following the previously cited references. Fundamental to ARPES
measurements is the photoelectric effect that describes the emission of electrons due
to absorption of photons by a crystal (see fig. 4.7). Measuring the momentum and

Figure 4.7. Basic setup of ARPES. Monochromatic light is emitted
from a source S and hits the surface of a sample (purple). A photo-
electron (orange) is emitted due to the photoelectric effect. By measur-
ing the energy and momentum of the electron in the detector D one can
reconstruct the spectral function A(k, ω) of the sample.

energy of the free emitted photo-electrons and combining this with the photon wave-
length of the light irradiating the sample one probes the spectral function A(k, ω) (see
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eq. (4.111)) which is the probability that excitations with momentum k and energy ω
are connected to eigenstates of the many-body system:
By taking advantage of momentum conservation9 and energy conservation in this pro-
cess one can use Fermi’s golden rule among other approximations10 to derive the photo-
current

(4.242) I(k, ω) = Ck

∫ ∫ k+δk

k−δk
A(k′, ω′)fFD(ω′)R(ω − ω′)dk′dω′ +B,

where Ck is an intensity factor that is related to the dipole matrix element, R is a
Gaussian energy resolution function of the photon monochromator and the electron
detector. The small width δk accounts for the resolution in k-space and B is the
so-called background which is due to extrinsic effects and deviations to the applied
approximations. Thus, the measurement of the photo-current in eq.(4.242) allows11 to
extract the spectral function A(k, ω).

From the theoretical side one accesses the spectral function via the imaginary part
of the retarded Green’s function GR (see eq. (4.111)). In numerical implementations of
many-body methods it can be helpful to work on the Matsubara axis since a countable
set of Matsubara Green’s functions that decay as 1/iωn are easier to store and to sum
than the continuous real axis Green’s function. But working with Matsubara Green’s
function eventually necessitates analytic continuation to obtain the real axis Green’s
function GR (see sec. 4.7 and analytic continuation 4.10).

In the case of independent electrons we already identified the spectral function A(ω)
with the density of states (see sec. 4.3). Introducing the Hubbard interaction between
electrons the system cannot be diagonalized in terms Bloch waves anymore – k is not a
good quantum number – and the lifetime of Bloch states becomes finite due to scatter-
ing processes between the electrons. This leads to the notion of quasi-particles where
the original eigenstates represent renormalized (“interaction-weighted”) single-particle
excitations with finite lifetime. Such quasi-particles have properties such as lifetimes,
amplitudes and effective masses in addition to their unchanged spin, charge and mo-
mentum that appear naturally in the description of Fermi-liquid theory.
Note that the quasi-particle scattering rate close to the Fermi surface increases O(T 2)
(see f.i. [126]), i.e. Fermi liquid theory is only applicable at sufficiently low temper-
atures because else it will impossible to identify quasi-particle states in the spectral
function due to those thermal broadening effects.
All the above mentioned properties of quasi-particles are encoded in the spectral func-
tion A(k, ω).

The effect of the quasi-particle renormalization enters the Green’s function in terms
of the so-called self-energy Σ. Within sec. 5.1 we will formally introduce the self-energy
and discuss its properties but for the moment will treat it as a complex (!) energy
function that appears in the expression of the real axis Green’s function as

(4.243) GR(k, ω) =
[
ω − hkin(k)− Σ(k, ω)

]−1
,

which is why the self-energy can be interpreted as a correction to the kinetic part of
the Hamiltonian hkin.
For simplicity we will first restrict ourselves to the single-orbital case, where the matrix

9Only the momentum projection parallel to the sample surface is conserved because there is no
translation invariance otherwise.

10F.i. the “sudden” approximation neglects interactions between the photo-hole and the emitted
photo-electron, the independent particle-picture and the three-step model, where one assumes that the
excitation of the photo-electron, its travel through the sample and the transmission into the vacuum
are independent steps.

11For the details of this procedure we refer to literature cited at the beginning of this section.
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inversion in eq. (4.243) reduces to a multiplicative inversion.
Thus, we can express the spectral function as

A(k, ω) = −2ImGR(k, ω)(4.244)

=
−2ImΣ(k, ω)

(ω − ξ(k)− ReΣ(k, ω))2 + (ImΣ(k, ω))2 .(4.245)

Comparing this expression to the non-interacting result (momentum space version of
eq. (4.24)),

(4.246) A(k, ω) = δ (ξ(k)− ω) ,

we observe that the self-energy introduces a broadening to the δ-peak via the imaginary
part of the self-energy ImΣ(k, ω) and additional shifts to the Bloch eigenvalues ξ(k)
via the real part of the self-energy ReΣ(k, ω).
The maxima/peaks12 of the spectral function at fixed k are determined by solutions of
the equation

(4.247) f(k, ω) := ω − ξ(k)− ReΣ(k, ω) = 0,

where the so-called quasi-particle energies Ξ(k) are the corresponding extremal points
and thus fulfill the equation

(4.248) Ξ(k) = ξ(k) + ReΣ(k,Ξ(k)).

The quasi-particle weight Z(k) is then defined as the inverse of the linear coefficient in
the expansion of eq. 4.247 around Ξ(k),

ω − ξ(k)− ReΣ(k, ω)

=f(Ξ(k)) +
∂f(k, ω)

∂ω

∣∣∣∣
ω=Ξ(k)

(ω − Ξ(k)) +O
(
(ω − Ξ(k))2

)
(4.249)

=0 +

(
1− ∂ReΣ(k, ω)

∂ω

∣∣∣∣
ω=Ξ(k)

)
︸ ︷︷ ︸

=:Z(k)−1

(ω − Ξ(k)) +O
(
(ω − Ξ(k))2

)
.(4.250)

Inserting this expansion into the expression for the spectral weightA(k, ω) from eq. (4.245)
we obtain

A(k, ω) =
−2ImΣ(k, ω)

Z(k)−2 (ω − Ξ(k))2 + (ImΣ(k, ω))2 +Ainc(k, ω)(4.251)

= 2
−Z(k)2ImΣ(k, ω)

(ω − Ξ(k))2 + (Z(k)ImΣ(k, ω))2 +Ainc(k, ω),(4.252)

where we absorb all contributions that go beyond the expansion around the quasi-
particle peak into the term Ainc(k, ω). Before we discuss the meaning of each individual
term we introduce the quasi-particle scattering rate13

(4.253) Γ(k, ω) := −Z(k)ImΣ(k, ω),

which allows to rewrite the spectral function as

(4.254) A(k, ω) = 2πZ(k)

[
1

π

Γ(k, ω)

(ω − Ξ(k))2 + (Γ(k, ω))2

]
+Ainc(k, ω).

12We assumed here that such a solution exists and that the imaginary part is a smooth function
of ω and not too large.

13Within the real time Green’s function GR(k, t) the scattering rate appears as the factor in the
exponential damping of the quasi-particle excitations, exp(−Γ(k, εk)t); see [30].
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Figure 4.8. Spectral function A(k0, ω) at a fixed value of k = k0. In
the non-interacting case (a) we observe a true eigenstate at ω = −3eV
that is indicated by the δ-peak at this energy. By turning on the inter-
action U the quasi-particle peak gets a finite height and broadens and
a small amount of spectral weight is shifted to larger binding energies
(ω . −5eV). At very large interaction strength (c) one observes the dis-
appearance of the quasi-particle peak and all spectral weight is shifted
into the satellite at ω . −8eV.

We notice that the term in square brackets can be identified with the heat kernel
(eq. (4.19)) if one assumes Γ(k, ω) = Γ(k) and uses the fact14 that the imaginary part
of the self-energy is negative definite, ImΣ(k, ω) < 0. This peak is centered around the
quasi-particle energy Ξ(k) with a width of Γ(k, ω) and a height of 2Z(k)Γ(k, ω)−1.
This motivates the naming incoherent spectral weight Ainc since the contributions can
not be attributed to quasi-particle peak coherent excitations.
Due to the positivity and normalization of the heat kernel and the spectral weight
(eq. (4.126)) to One and 2π respectively we conclude

(4.255) 0 ≤ Z(k) ≤ 1.

In fig. 4.8 we show schematically how the quasi-particle peak evolves with increasing
Hubbard interaction U . In (a) we present the case where U = 0 and the quasi-particle
excitation corresponds to a true eigenstate of the system. Thus, we observe a δ-peak
at a given k-point. With increasing U we observe in (b) that the quasi-particle peak
shrinks in height and gets broader while some spectral weight is shifted into a satellite
feature at larger binding energies. Finally, at very large U (c) the quasi-particle peak
disappears completely and the spectral weight is shifted into the incoherent spectral
weight. Alternatively, one can interpret the diminishing quasi-particle weight Z(k) as
a divergence of the so-called effective mass

(4.256) m∗ := m0Z(k)−1,

where m0 is the particle-mass in the non-interacting system.
We generalize the above results to multi-site/multi-orbital systems by restricting

ourselves to low temperatures where we are basically interested in quasi-particle features
on the Fermi surface. Under this assumption we define the quasi-particle energies Ξα(k)
as solutions of ∣∣∣ω − hkin(k)− ReΣ(k, ω)

∣∣∣ = 0,(4.257)

14This can be derived from the Lehmann representation of GR and the Dyson equation by means
of a linear algebra (see f.i. [110] Chap. 24.2). In the single-orbital case this is a consequence of the
positivity of the spectral function A(k, ω) (see eq. (4.245)).
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where hkin is the kinetic part of the Hamiltonian (see eq. (4.202)). Moreover, we define
the quasi-particle weight

(4.258) Zα(k) :=

(
1− ∂ReΣαα(k, ω)

∂ω

∣∣∣∣
ω=0

)−1

,

the quasi-particle scattering rate

(4.259) Γα(k, ω) := −Zα(k)ImΣαα(k, ω)

and the quasi-particle effective mass (renormalization)

(4.260)
m∗α
m0
α

:= 1− ∂ReΣαα(k, ω)

∂ω

∣∣∣∣
ω=0

.

Since we are interested in evaluating derivatives of holomorphic functions (in the upper
complex plane) we can make use of the Cauchy-Riemann differential equations

(4.261)
∂Ref

∂x
=
∂Imf

∂y
and

∂Ref

∂y
= −∂Imf

∂x
,

where f is a holomorphic function in z = x+ iy ∈ H.
Thus, we can approximate

Zα(k) =

(
1− ∂ImΣαα(k, iωn)

∂ωn

∣∣∣∣
iωn=0+

)−1

,(4.262)

Γα(k, 0) = −Zα(k)ImΣαα(k, iωn → 0),(4.263)

where the limit iωn → 0 corresponds to the limit of zero temperature. Note that
the above appearing limits allow us to avoid analytic continuation of the Matsubara
functions by means of extrapolation procedures. Those extrapolations in terms of
polynomial fits to the Matsubara functions are discussed in the appendix B.1.3.

4.10. Analytic continuation

Working in Matsubara space due to the numerical efficiency we are faced with the
problem of analytic continuation to obtain the retarded Green’s function from which
we can extract physical observables (see sec. 4.7 and 4.9). Only a few properties can be
directly accessed from the Matsubara Green’s function if certain conditions are fulfilled
(see appendix. B.1.3).

In sec. 4.7 we found out that we can uniquely and analytically continue the Mat-
subara Green’s function from upper complex half-plane H onto the real axis via

(4.264) GRαβ,σ(k, ω) = lim
iωn→ω+i0+

Gαβ,σ(k, iωn).

A simple example for the non-interacting Green’s function was provided in 4.6.2, where
the analytic continuation is indeed the simple expression in eq. (4.264).
We remind ourselves of two important issues regarding the Green’s function as function
in the complex plane: First, the Green’s function is analytic in the complex upper half-
plane H but discontinuous at the real axis. Second, by Cauchy’s integral formula we
were able to find a relation between the spectral function Aα,σ(k, ω) and the Green’s
function on H,

(4.265) Gαα,σ(k, z0) = − 1

2π

∫ ∞
−∞

Aα,σ(k, ω′)

ω′ − z0
dω′.

The problem that we are facing in numerical analytic continuation consists of two
issues.
The first and more severe problem is that our numerical procedure does not yield a
closed analytic expression of the Green’s function Gαβ,σ(k, iωn) but a finite amount
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of data points, namely the Matsubara Green’s function for the first Nmats Matsub-
ara frequencies. Thus, we cannot use the simple analytic continuation expression of
eq. (4.264) but have to find approximate analytic continuation schemes.
The other issue that we are facing is the underlying numerical error in our data. In
many applications one cannot guarantee full convergence of the calculations due to
memory or computation time limitations. For this reason one needs an approximate
analytic continuation methods that is stable against small errors in the input data.

Over the last decades a large set of tools was developed to deal with this prob-
lem, among which we find the Padé approximation [127,128], the maximum entropy
method [129–133], deconvolution procedures [134], singular value decomposition based
algorithms [135], machine learning methods [136], sparse modeling approaches [137],
and stochastic sampling techniques [138–143].
All the above methods have their advantages and drawbacks but in this section we
will concentrate only on the Padé approximation because we expect the noise in our
data to be negligible since the only constraint we have is sufficient resolution of the
numerical objects which we can assure by increasing the number of k-points N and
Matsubara frequencies Nmats. Therefore we can assume that the Padé approximation
yields sufficiently accurate results.

4.10.1. Padé approximation. The fundamental idea of the Padé approximation
is to approximate the complex analytic Green’s function in terms of a finite continued
fraction

(4.266) G̃(z) :=
a1

1 +
a2(z−iω1)

1+...+aNmats

(
z−iωNmats−1

) ,

where the coefficients a1, . . . , aNmats
∈ C are determined such that G̃(iωn) = G(iωn)

for all n ∈ {1, . . . , Nmats}.
The coefficients can be computed recursively [144] which makes this analytic continu-
ation technique very efficient.
On the other hand we have no way to control positivity of the imaginary part of the
Green’s function on the real axis and there is also no possibility to enforce normaliza-
tion of the imaginary part of the Green’s function.
In fig. 4.9 we show an example to demonstrate typical features that occur from Padé an-
alytic continuation. While the qualitative agreement with the exact result (red curve) is
convincing for both choices of numbers of Matsubara frequencies we observe that in the
case where the number of Matsubara frequencies is large that not only the particle-hole
symmetry is broken but also unphysical peaks appear at ω ≈ ±3eV (see (a)). Those
features which remind us of typical overfitting errors disappear at a smaller number of
Matsubara frequencies but the small wiggles around in the range 1 < |ω| < 3 remain
(see (b)).
In summary, we see that one has to be careful in interpreting peak structures in Padé
data but the overall shape of the data can be reliable if the input data is not subject
to large error sources.
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Figure 4.9. Analytical continuation of a Green’s function via Padé
approximation. We only present the spectral function obtained from
the analytically continued Green’s function. The red line represents the
exact spectral function in this example. (a) When using a large number
of Matsubara frequencies such as Nmats = 1000 we observe peaks at
±3eV which are unphysical. (b) Such effects are not observed if one
takes a smaller number of Matsubara frequencies, Nmats = 300, but the
additional wiggles which are not present in the exact solution remain.
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CHAPTER 5

Two-Particle Self-Consistent approach

In this chapter we develop a multi-orbital many-body approach for the Hubbard
lattice model that we introduced earlier in chap. 3. The formalism is applied in the
thermodynamic limit and to finite temperatures T .

The energy spectrum of the Hubbard model [64–66, 145] cannot be determined
exactly in the general case. Therefore, a lot of effort has been invested to obtain good
approximate solutions and many different approaches have been developed in the last
six decades [88,111,112,146–148].
The first approximate solutions of the Hubbard model were obtained from the Hartree-
Fock approximation, the Hubbard-I approximation and the Gutzwiller variational wave-
function ansatz [64, 65, 149–151]. The Hartree-Fock approximation applied to the
Hubbard model cannot account for non-local1 and dynamical many-body effects such
as finite quasi-particle lifetimes and mass renormalizations and provides accurate re-
sults only in the weak coupling limit (see Refs. [62] and [30]). The main issue is that
the Hartree-Fock approximation for the Hubbard model is a static and local mean-field
approximation. Therefore, its effect on the electronic band structure are restricted to
orbital-dependent rigid shifts and it cannot account for electronic screening effects and
non-local dynamical fluctuations that arise from electron-electron scattering processes
(see also sec. 3.5).
It is obvious that for a good description of correlated materials within the Hubbard
model the coupling between electrons and collective excitations – that is neglected both
in the Hubbard-I and the Gutzwiller approach (see Ref. [61]) – must be taken account
of.

In the following we will present an approach to the Hubbard model that takes both
non-local and dynamical fluctuations into account while enforcing physical constraints
such as the Mermin-Wagner theorem (see sec. 3.3) and certain local spin and charge sum
rules. After introducing the Kadanoff-Baym formalism which is the framework of the
Two-Particle Self-Consistent method (TPSC) we give an overview on related methods
(sec. 5.2) and point out similarities and differences to TPSC. Finally, we present TPSC
for the single-band (sec. 5.3), multi-site (sec. 5.4) and multi-orbital Hubbard model
(sec. 5.6). In the case of the multi-site TPSC we present an application to organic
superconductors in sec. 5.5 while the multi-orbital TPSC is studied in more detail
chap. 6 and 7.

5.1. The Kadanoff-Baym formalism

This section is based on the script of A.-M. Tremblay [110] while we generalize the
notation to multi-site problems similar to Ref. [152].

Starting point of our considerations is a lattice Hubbard model with multiple sites
in the unit cell,

(5.1) H =
∑

α,β,i,j,σ

(
t
ri−rj
α,β − µδα,βδi,j

)
c†α,σ(ri)cβ,σ(rj) +

1

2

∑
α,i,σ

Uαnα,σ(ri)nα,−σ(ri),

1This statement is only true for local interactions on a lattice but otherwise the Hartree-Fock
approximation is indeed a non-local approach.
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where t
ri−rj
α,β are the hopping amplitudes from site α in the unit at position ri and site

β at unit cell rj . Since we are interested in paramagnetic states only, we drop the spin

index in the hopping elements t
ri−rj
α,β due to time reversal and spin rotational invariance.

The on-site Hubbard interaction is site-dependent and denoted by Uα. The operator
cα,σ(ri) destroys an electron with spin σ at unit cell position ri and site α while the

adjoint operator c†α,σ(ri) creates an electron with spin σ at unit cell position ri and

site α. The density operator nα,σ(ri) := c†α,σ(ri)cα,σ(ri) measures the occupation of
electrons at ri and site α with spin σ. We drop the implicit time-dependence of the
Hamiltonian H in the notation.

As we discussed in sec. 3.2 the spectrum of this operator is known only in a few
special cases and there is no general method that can be successfully applied over all
temperature, filling, and interaction scales simultaneously. For this reason it is impor-
tant to develop approximate methods which give accurate results in specific regions of
the phase space.
In this thesis we are interested in approximate expressions for the Green’s functions
since we can deduce spectral properties (see sec. 4.9) from them and approximation
schemes are easy to develop as we will see in this section.

5.1.1. Motivation from statistical mechanics. The Kadanoff-Baym approach [107,
113, 115, 116] that we are going to use in order to derive the Two-Particle Self-
Consistent approach can be motivated from quantum statistical mechanics; more specif-
ically, we consider the prototypical example from quantum statistical mechanics, where
the magnetization in a system is determined in the presence of an external magnetic
field.
We start from the grand canonical partition function

(5.2) Z(h) = tr
(

eβ̃H−hM
)
,

where H is the grand canonical Hamiltonian of the system and h is an external magnetic
field that couples to the magnetization M .
The standard trick to obtain the thermal expectation value 〈M〉(h) as a function of the
magnetic field h is via partial differentiation,

(5.3)
1

β̃

∂

∂h
lnZ(h) =

1

Z(h)
tr
(

e−β̃(H−hM)M
)

= 〈M〉(h).

One can even calculate higher order correlation function by taking higher order deriva-
tives of the free energy, e.g.

(5.4)
1

β̃2

∂2

∂h2
lnZ(h) = 〈M2〉(h)− 〈M〉2(h).

The above reminders on statistical mechanics suggest a similar approach to obtain the
Green’s function and higher order correlation functions because the Green’s function is
a thermal average of a special combination of a creation and an annihilation operator.
The only difference that we will need to consider is that the magnetic field has to be
replaced by some artificial field that couples to creation and annihilation operators.

5.1.2. The functional derivative approach. We introduce an artificial field
φαβ,σ(1, 2) that depends on the sites α, β, the coordinates 1 := (r1, τ1) and 2 := (r2, τ2),
and the spin σ.
This field is supposed to couple to the field operators and describes a perturbation to
the Hamiltonian H in eq. (5.1).
We first consider the so-called longitudinal particle-hole channel where φ couples equal
spin creation and annihilation operators. Later, we will discuss the meaning of the
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different channels in more detail and also include contributions from the transversal
particle-hole channel where φ couples opposite spin creation and annihilation operators
(see sec. 5.1.9). In principle, there are also the so-called particle-particle channel and the
fully two-particle irreducible channel but the fluctuations that are generated in those
channel are usually negligible compared to the ones from the particle-hole channels
except in the case where the Hubbard interaction U is attractive [153–155]. Thus, we
will restrict ourselves to the particle-hole channels and start in the following with the
longitudinal particle-hole channel.
The generalized partition function takes the form

Z[φ] = tr

[
e−β̃HTτe

−
∑
α,β,σ

∫
d(1)

∫
d(2)c†α,σ(1)φαβ,σ(1,2)cβ,σ(2)

]
(5.5)

= tr
[
e−β̃HTτe−c

†
α,σ(1)φαβ,σ(1,2)cβ,σ(2)

]
(5.6)

= tr
[
e−β̃HTτS[φ]

]
,(5.7)

where we have introduced a short-hand notation for integrations and summation, i.e.
bared symbols are summed or integrated over. Moreover, we defined the action

(5.8) S[φ] := e−c
†
α,σ(1)φαβ,σ(1,2)cβ,σ(2),

that stems from the artificial field φ.
Obviously, one can recover the physics of the original system by setting the field φ to
zero but the advantages of such an artificial field become visible in the following steps.
Within a time-ordered product of operators we can neglect possible δ-functions from
fermionic commutation relations. This helps us to evaluate the functional derivative of
the form

Tτ

δ
(
c†α,σ(1)φ

αβ,σ
(1, 2)c

β,σ
(2)
)2

δφβα,σ′(3, 4)
=Tτ c

†
β,σ′(3)cα,σ′(4)

(
c†α,σ(1)φ

αβ,σ
(1)c

β,σ
(1)
)

+ Tτ

(
c†α,σ(1)φ

αβ,σ
(1)c

β,σ
(1)
)
c†β,σ′(3)cα,σ′(4)(5.9)

=2Tτ

(
c†α,σ(1)φ

αβ,σ
(1)c

β,σ
(1)
)
c†β,σ′(3)cα,σ′(4)(5.10)

because we are always moving a pair of a creation and an annihilation operators which
cancels the two appearing minus signs from the commutation relations. By induction
we can generalize the above argument to arbitrary powers and get

Tτ
δS[φ]

δφβα,σ′(3, 4)

=Tτ

∞∑
n=0

1

n!

δ

δφβα,σ′(3, 4)

(
−c†α,σ(1)φ

αβ,σ
(1)c

β,σ
(1)
)n

(5.11)

=− Tτ
∞∑
n=1

1

(n− 1)!

(
−c†α,σ(1)φ

αβ,σ
(1)c

β,σ
(1)
)n−1

c†β,σ′(3)cα,σ′(4)(5.12)

=− Tτ
∞∑
n=0

1

n!

(
−c†α,σ(1)φ

αβ,σ
(1)c

β,σ
(1)
)n
c†β,σ′(3)cα,σ′(4)(5.13)

=− S[φ]c†β,σ′(3)cα,σ′(4).(5.14)
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From this small exercise we can first define a generalized Green’s function G(1, 2; [φ]) =:
G(1, 2)φ that appears naturally by functional derivation of ln(Z) with respect to φ,

− δ ln(Z[φ])

δφβα,σ(2, 1)
= − 1

Z[φ]

δZ[φ]

δφβα,σ(2, 1)
(5.15)

=

〈
TτS[φ]

δ(c†α,σ(1)φ
αβ,σ

(1,2)c
β,σ

(2))

δφβα,σ(2,1)

〉
〈TτS[φ]〉

(5.16)

=

〈
TτS[φ]c†α,σ(1)δα,βδβ,αδσ,σδ(1− 2)δ(2− 1)c

β,σ
(2)
〉

〈TτS[φ]〉
(5.17)

=

〈
TτS[φ]c†β,σ(2)cα,σ(1)

〉
〈TτS[φ]〉

(5.18)

= −

〈
TτS[φ]cα,σ(1)c†β,σ(2)

〉
〈TτS[φ]〉

(5.19)

=: Gαβ,σ(1, 2)φ,(5.20)

where the Dirac delta function δ
(
1− 2

)
is defined as δ (r1 − r2) δ (τ1 − τ2) which is

consistent with the above described notation.
Later, we will also need higher order correlation functions like

δGαβ,σ(1, 2)φ

δφγε,σ′(3, 4)
=− δ

δφγε,σ′(3, 4)

〈
TτS[φ]cα,σ(1)c†β,σ(2)

〉
〈TτS[φ]〉

(5.21)

=

〈
TτS[φ]

δ(c†α,σ(1)φ
αβ,σ

(1,2)c
β,σ

(2))

δφ
γε,σ′ (3,4) cα,σ(1)c†β,σ(2)

〉
〈TτS[φ]〉

−

〈
TτS[φ]cα,σ(1)c†β,σ(2)

〉〈
TτS[φ]

δ(c†α,σ(1)φ
αβ,σ

(1,2)c
β,σ

(2))

δφ
γε,σ′ (3,4)

〉
〈TτS[φ]〉2

(5.22)

=

〈
TτS[φ]cα,σ(1)c†β,σ(2)c†γ,σ′(3)cε,σ′(4)

〉
〈TτS[φ]〉

−

〈
TτS[φ]cα,σ(1)c†β,σ(2)

〉〈
TτS[φ]c†γ,σ′(3)cε,σ′(4)

〉
〈TτS[φ]〉2

(5.23)

=
〈
cα,σ(1)c†β,σ(2)c†γ,σ′(3)cε,σ′(4)

〉
φ

+Gαβ,σ(1, 2)φGεγ,σ′(4, 3)φ,(5.24)

where the subscript 〈· · · 〉φ reminds us that the thermal average is taken with respect
to the perturbed system.

5.1.3. The Dyson equation. To derive the Dyson equation which relates the
Green’s function of the non-interacting system G0 with the Green’s function of the full
interacting system G one has to start with the equation of motion for the annihilation
operator cν,σ(ri, τ), i.e.

∂cν,σ(ri, τ)

∂τ
= [H, cν,σ(ri, τ)].(5.25)
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Inserting the Hubbard Hamiltonian (eq. (5.1)) we get

∂cν,σ(rk, τ)

∂τ
(5.26)

=
∑

α,β,i,j,σ′

[(
t
ri−rj
α,β − µδi,jδα,β

)
c†α,σ′(ri, τ)cβ,σ′(rj , τ)+

+
1

2
Uαδα,βδi,jnα,σ′(ri, τ)nα,−σ′(rj , τ), cν,σ(rk, τ)

]
(5.27)

=−
∑
β,j

(
t
rk−rj
ν,β − µδk,jδν,β

)
cβ,σ(rj , τ)− Uνnν,−σ(rk, τ)cν,σ(rk, τ),(5.28)

where we have used the fermionic commutation relations, H = H(τ) and the identity

[
nα,σ(ri), cν,σ′(rj)

]
=
[
c†α,σ(ri)cα,σ(ri), cν,σ′(rj)

]
(5.29)

= c†α,σ(ri)
{
cα,σ(ri), cν,σ′(rj)

}
−
{
c†α,σ(ri), cν,σ′(rj)

}
cα,σ(ri)(5.30)

= c†α,σ(ri) · 0− δα,νδσ,σ′δri,rjcα,σ(ri)(5.31)

= −δα,νδσ,σ′δri,rjcα,σ(ri).(5.32)

The calculation of the time evolution of the Green’s function is a bit more complicated
but relies on equation (5.28) and ∂

∂τZ[φ] = ∂
∂τ S[φ] = 0 – as expected – since we have

no imaginary time dependence. Therefore, we can calculate

∂Gνξ,σ(1, 2)φ

∂τ1

(5.33)

=− 1

Z[φ]

∂

∂τ1

[〈
TτS[φ]cν,σ(1)c†ξ,σ(2)

〉
Θ(τ1 − τ2)

−
〈
TτS[φ]c†ξ,σ(2)cν,σ(1)

〉
Θ(τ2 − τ1)

]
(5.34)

=− 1

Z[φ]

〈 ∂

∂τ1

Tτe
−
∑
r3

β∫
τ1

dτ3c
†
α,σ(3)φ

αβ,σ
(3,4)c

β,σ
(4)

cν,σ(1) ×

×e

−
∑
r′3

τ1∫
0

dτ ′3c
†
α′,σ′

(3′)φ
α′β′,σ′

(3′,4′)c
β′,σ′

(4′)
c†ξ,σ(2)

〉
Θ(τ1 − τ2)

−

〈
∂

∂τ1

Tτ c
†
ξ,σ(2)e

−
∑
r3

β∫
τ1

dτ3c
†
α,σ(3)φ

αβ,σ
(3,4)c

β,σ
(4)

×

× cν,σ(1)e

−
∑
r′3

τ1∫
0

dτ ′3c
†
α′,σ′

(3′)φ
α′β′,σ′

(3′,4′)c
β′,σ′

(4′)
〉

Θ(τ2 − τ1)


− 1

Z[φ]

〈
Tτ

(
cν,σ(1)c†ξ,σ(2) + c†ξ,σ(2)cν,σ(1)

)
S[φ]

〉
︸ ︷︷ ︸

=δν,ξδ(1−2)

δ(τ1 − τ2),(5.35)
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where we have used the product rule and the fact that TτeAeB = TτeA+B that is valid
only in special cases like

A = −
∑
r3

β∫
τ1

dτ3c
†
α,σ(3)φ

αβ,σ
(3, 4)c

β,σ
(4),(5.36)

B = −
∑
r′3

τ1∫
0

dτ ′3c
†
α′,σ′

(3′)φ
α′β′,σ′

(
3′, 4′

)
c
β′,σ′

(
4′
)
,(5.37)

because A commutes with B.
The time ordering in the last equation (eq. (5.35)) is still not complete since we have
not ordered with respect to τ4, τ2 and for that reason we also keep the time ordering
operator in the expectation values.
The reason why we performed this partial time ordering is that we can now commute Tτ
with ∂

∂τ1
since the expected ordering from τ4 will have the same effect when commuted

with cν,σ(1) as if commuting without the time ordering operator because all operators
that depend on τ4 are also annihilation operators. Moreover, the time ordering with
respect to τ2 will obviously not effect the partial derivative ∂

∂τ1
. Thus, we further

evaluate

∂Gνξ,σ(1, 2)φ

∂τ1

=− 1

Z[φ]

〈Tτ ∂

∂τ1

e
−
∑
r3

β∫
τ1

dτ3c
†
α,σ(3)φ

αβ,σ
(3,4)c

β,σ
(4)

cν,σ(1) ×

× e

−
∑
r′3

τ1∫
0

dτ ′3c
†
α′,σ′

(3′)φ
α′β′,σ′

(3′,4′)c
β′,σ′

(4′)
 c†ξ,σ(2)

〉
Θ(τ1 − τ2)

−

〈
Tτ c
†
ξ,σ(2)

∂

∂τ1

e
−
∑
r3

β∫
τ1

dτ3c
†
α,σ(3)φ

αβ,σ
(3,4)c

β,σ
(4)

×

×cν,σ(1)e

−
∑
r′3

τ1∫
0

dτ ′3c
†
α′,σ′

(3′)φ
α′β′,σ′

(3′,4′)c
β′,σ′

(4′)
〉Θ(τ2 − τ1)


− δν,ξδ(1− 2).(5.38)

Within each of the two expectation values in the above equation that contain a partial
time derivative ∂

∂τ1
we will get three contributions, namely two from the exponential

functions and one from ∂c
∂τ1

(see eq. (5.28)). We evaluate the partial derivatives of the
exponential functions in the following way:

Tτ
∂

∂τ1

e
−
∑
r3

β∫
τ1

dτ3c
†
α,σ(3)φ

αβ,σ
(3,4)c

β,σ
(4)

=Tτ

∞∑
n=0

1

n!

∂

∂τ1

(
−
∑
r3

∫ β

τ1

dτ3c
†
α,σ(3)φ

αβ,σ
(3, 4)c

β,σ
(4)

)n
(5.39)

=Tτe
−
∑
r3

β∫
τ1

dτ3c
†
α,σ(3)φ

αβ,σ
(3,4)c

β,σ
(4)

×

× c†
α′′,σ′′

(
r′′3 , τ1

)
φ
α′′β′′,σ′′

(
r′′3 , τ1, 4′′

)
c
β′′,σ′′

(
4′′
)

(5.40)
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and analogously

Tτ
∂

∂τ1

e

−
∑
r′3

τ1∫
0

dτ ′3c
†
α′,σ′

(3′)φ
α′β′,σ′

(3′,4′)c
β′,σ′

(4′)

=− Tτe

−
∑
r′3

τ1∫
0

dτ ′3c
†
α′,σ′

(3′)φ
α′β′,σ′

(3′,4′)c
β′,σ′

(4′)
×

× c†
α′′,σ′′

(
r′′3 , τ1

)
φ
α′′β′′,σ′′

(
r′′3 , τ1, 4′′

)
c
β′′,σ′′

(
4′′
)
.(5.41)

Putting all terms together we get

∂Gνξ,σ(1, 2)φ

∂τ1

=− 1

Z[φ]

〈Tτe
−
∑
r3

β∫
τ1

dτ3c
†
α,σ(3)φ

αβ,σ
(3,4)c

β,σ
(4)

×

×
[
c†
α′′,σ′′

(
r′′3 , τ1

)
φ
α′′β′′,σ′′

(
r′′3 , τ1, 4′′

)
c
β′′,σ′′

(
4′′
)
, cν,σ(1)

]
×

× e

−
∑
r′3

τ1∫
0

dτ ′3c
†
α′,σ′

(3′)φ
α′β′,σ′

(3′,4′)c
β′,σ′

(4′)
c†ξ,σ(2)

〉
Θ(τ1 − τ2)−

−

〈
Tτ c
†
ξ,σ(2)e

−
∑
r3

β∫
τ1

dτ3c
†
α,σ(3)φ

αβ,σ
(3,4)c

β,σ
(4)

×

×
[
c†
α′′,σ′′

(
r′′3 , τ1

)
φ
α′′β′′,σ′′

(
r′′3 , τ1, 4′′

)
c
β′′,σ′′

(
4′′
)
, cν,σ(1)

]
×

× e

−
∑
r′3

τ1∫
0

dτ ′3c
†
α′,σ′

(3′)φ
α′β′,σ′

(3′,4′)c
β′,σ′

(4′)
〉

Θ(τ2 − τ1)


− 1

Z[φ]

[〈
Tτ
∂cν,σ(1)

∂τ1
c†ξ,σ(2)S[φ]

〉
Θ(τ1 − τ2)

−
〈
Tτ c
†
ξ,σ(2)

∂cν,σ(1)

∂τ1
S[φ]

〉
Θ(τ2 − τ1)

]
− δν,ξδ(1− 2)(5.42)

=
1

Z[φ]

〈Tτe
−
∑
r3

β∫
τ1

dτ3c
†
α,σ(3)φ

αβ,σ
(3,4)c

β,σ
(4)

φ
νβ′′,σ

(
1, 4′′

)
c
β′′,σ

(
4′′
)
×

× e

−
∑
r′3

τ1∫
0

dτ ′3c
†
α′,σ′

(3′)φ
α′β′,σ′

(3′,4′)c
β′,σ′

(4′)
c†ξ,σ(2)

〉
Θ(τ1 − τ2)

−

〈
Tτ c
†
ξ,σ(2)e

−
∑
r3

β∫
τ1

dτ3c
†
α,σ(3)φ

αβ,σ
(3,4)c

β,σ
(4)

φ
νβ′′,σ

(
1, 4′′

)
c
β′′,σ

(
4′′
)
×

×e

−
∑
r′3

τ1∫
0

dτ ′3c
†
α′,σ′

(3′)φ
α′β′,σ′

(3′,4′)c
β′,σ′

(4′)
〉

Θ(τ2 − τ1)


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−
〈
∂cν,σ(1)

∂τ1
c†ξ,σ(2)

〉
φ

− δν,ξδ(1− 2),(5.43)

where we have used the commutation relation in equation (5.32). Recombining the
exponential functions and inserting the equation of motion of the annihilation operator
cν,σ(1) (eq. (5.28)) gives the final result

∂Gνξ,σ(1, 2)φ

∂τ1
=− φ

νβ,σ
(1, 3)G

βξ,σ
(3, 2)φ

+
∑
β

(
tr1−r3νβ − µδr1,r3δν,β

)
δ(τ1 − τ3)Gβξ,σ(3, 2)φ

+ Uν

〈
Tτ c
†
ν,−σ(1+)cν,−σ(1)cν,σ(1)c†ξ,σ(2)

〉
− δ(1− 2)δν,ξ.(5.44)

Rewriting the equation of motion for the Green’s function (eq. (5.44)) such that the
kinetic term and partial time derivative are on one side we get[

−δ′(τ1 − τ3)δr1,r3δν,β −
(
t
r1−r3
νβ

− µδr1,r3δν,β
)
δ(τ1 − τ3)

]
G
βξ,σ

(3, 2)φ

=Uν

〈
Tτ c
†
ν,−σ(1+)cν,−σ(1)cν,σ(1)c†ξ,σ(2)

〉
− δ(1− 2)δν,ξ − φνβ,σ(1, 3)G

βξ,σ
(3, 2)φ.(5.45)

In the limit of no interaction and no external field φ we can identify the inverse non-
interacting Green’s function[

(G0)−1
]
νβ

(1, 2) = δ′(τ1 − τ2)δr1,r2δν,β +
(
t
r1−r2
νβ − µδr1,r2δν,β

)
δ(τ1 − τ2),(5.46)

where the spin index naturally disappears due to our assumption of spin rotational
invariance and the system being in a paramagnetic state. This step allows us now to
write the equation of motion for the Green’s function as{[

(G0)−1
]
νβ

(1, 3)− φ
νβ,σ

(1, 3)− Σ
νβ,σ

(1, 3)φ

}
G
βξ,σ

(3, 2)φ = δ(1− 2)δν,ξ,(5.47)

where we have implicitly defined the so-called self-energy

Σ
νβ,σ

(1, 3)φGβξ,σ(3, 2)φ = −Uν
〈
Tτ c
†
ν,−σ(1+)cν,−σ(1)cν,σ(1)c†ξ,σ(2)

〉
φ
,(5.48)

which absorbs all interaction effects that make the difference between the non-interacting
Green’s function G0 and the interacting Green’s function G.
In the end, this allows as to rewrite the equation of motion in the form of the Dyson
equation [

G−1
]
νξ,σ

(1, 2)φ =
[
(G0)−1

]
νξ

(1, 2)− φνξ,σ(1, 2)− Σνξ,σ(1, 2)φ,(5.49)

which can be obtained by multiplying eq. (5.48) with
[
G−1

]
ξξ,σ

(2, 2)φ that involves an

integration of all internal degrees of freedom by the overline convention.
From now on, we are interested in finding an accurate approximation for the self-energy
since by the Dyson equation we can obtain the full Green’s function from this object.

5.1.4. A self-consistent equation for the generalized susceptibility. So far,
we only have an implicit equation for the self-energy (eq. (5.48)) but the right-hand
side of the equation is already known from the higher order derivative (eq. (5.24)) and
therefore we can rewrite

Σ
αβ,σ

(1, 4)φGβγ,σ(4, 2)φ
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=− Uα
〈
Tτ c
†
α,−σ(1+)cα,−σ(1)cα,σ(1)c†γ,σ(2)

〉
φ

(5.50)

=Uα

(
−

δGαγ,σ(1, 2)

δφαα,−σ(1+, 1)
+Gαα,−σ(1, 1+)φGαγ,σ(1, 2)φ

)
.(5.51)

The functional derivative that appears on the right-hand side of eq. (5.51) is a so-called
generalized susceptibility

(5.52) χ := −δG
δφ

and we will see later how it connects to ordinary spin and charge susceptibilities.
Before we do that we derive the Bethe-Salpeter equation which is a self-consistent
equation for generalized susceptibilities. The Bethe-Salpeter equation allows later us
to determine the generalized susceptibility and thus to evaluate the self-energy by means
of the implicit equation (5.51).
We start with the identity

(5.53) δ(1− 2)δα,γ = G
αβ,σ

(1, 3)φG
−1
βγ,σ

(3, 2)φ

and perform a functional differentiation with respect to φ on both sides which yields

(5.54) 0 =
δG

αβ,σ
(1, 3)φ

δφνε,σ′(4, 5)
G−1
βγ,σ

(3, 2)φ +G
αβ,σ

(1, 3)φ
δG−1

βγ,σ
(3, 2)φ

δφνε,σ′(4, 5)
.

Multiplying by Gγζ,σ(2, 6) and integrating over the internal degrees of freedom gives

δG
αβ,σ

(1, 3)φ

δφνε,σ′(4, 5)
δ
β,ζ
δ(3− 6) = −G

αβ,σ
(1, 3)φ

δG−1
βγ,σ

(3, 2)φ

δφνε,σ′(4, 5)
Gγζ,σ(2, 6)(5.55)

Now, we use the Dyson equation (eq. 5.49) to simplify the functional derivative on the
right-hand to obtain

δGαζ,σ(1, 6)φ

δφνε,σ′(4, 5)
=−G

αβ,σ
(1, 3)φ

δ
[
(G0)−1

]
βγ,σ

(3, 2)

δφνε,σ′(4, 5)
Gγζ,σ(2, 6)

+G
αβ,σ

(1, 3)φ
δφ

βγ,σ
(3, 2)φ

δφνε,σ′(4, 5)
Gγζ,σ(2, 6)

+G
αβ,σ

(1, 3)φ
δΣ

βγ,σ
(3, 2)φ

δφνε,σ′(4, 5)
Gγζ,σ(2, 6)(5.56)

=− 0

+G
αβ,σ

(1, 3)φδ(2− 5)δ(3− 4)δ
β,ν
δε,γδσ,σ′Gγζ,σ(2, 6)

+G
αβ,σ

(1, 3)φ
δΣ

βγ,σ
(3, 2)φ

δφνε,σ′(4, 5)
Gγζ,σ(2, 6),(5.57)

where we used the fact that the non-interacting Green’s function G0 does not depend
on the artificial field φ (see eq. (5.46)). Next, we make use of the chain rule and apply
it to Gφ which is a functional of φ. This leads to the Bethe-Salpeter equation

δGαζ,σ(1, 6)φ

δφνε,σ′(4, 5)
=Gαν,σ(1, 4)φGεζ,σ(5, 6)δσ,σ′

+G
αβ,σ

(1, 3)φ
δΣ

βγ,σ
(3, 2)φ

δG
ρλ,σ′′

(7, 8)φ

δG
ρλ,σ′′

(7, 8)φ

δφνε,σ′(4, 5)
Gγζ,σ(2, 6)φ.(5.58)
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In fig. 5.1 we show a diagrammatic representation of the Bethe-Salpeter equation (5.58).
Note that the formulation of the Bethe-Salpeter equation (5.58) relies on the transition

Figure 5.1. Diagrammatic representation of the Bethe-Salpeter equa-
tion (5.58). The double lines represent the full propagator G while single
lines only encode the functional dependence of the respective object. We
see that the Bethe-Salpeter equation is a self-consistent equation for δG

δφ

which again is directly related to the spin and charge susceptibilities as
we show later.

from a functional dependence of the artificial source φ to a functional dependence of
the interacting Green’s function G. Formally, this procedure is done by a Legendre
transformation that we will discuss in the next section. In addition, the next section
will also be important since it presents a generating functional for the Green’s function
that is crucial for the so-called conserving approximations.

5.1.5. Luttinger-Ward functional. We remind ourselves (see eqs. (5.7), (5.20))
that the free energy in the presence of the source field φ is given by

(5.59) F [φ] = − 1

β̃
lnZ[φ] = − 1

β̃
ln tr

[
e−β̃HTτe

−c†α,σ(1)φ
αβ,σ

(1,2)c
β,σ

(2)
]

and that we obtain the Green’s function G via functional differentiation

(5.60) Gαβ,σ(1, 2)φ = − δ ln(Z[φ])

δφβα,σ(2, 1)
= β̃

δF [φ]

δφβα,σ(2, 1)
.

The two above equations (5.59), (5.60) are sufficient to define the Legendre transform
for the free energy F via

(5.61) Ω[G] = F [φ]− 1

β̃
tr (φG) ,

where Ω is coined the Kadanoff-Baym functional2. A common property of Legendre
transformations is

β̃
δΩ[G]

δGβα,σ(2, 1)

=β̃
δF [φ]

δGβα,σ(2, 1)
− δtr (φG)

δGβα,σ(2, 1)
(5.62)

=β̃
δF [φ]

δφγε,σ(3, 4)

δφγε,σ(3, 4)

δGβα,σ(2, 1)
−
δφγε,σ(3, 4)Gεγ,σ(4, 3)

δGβα,σ(2, 1)
(5.63)

=Gεγ,σ(4, 3)
δφγε,σ(3, 4)

δGβα,σ(2, 1)
−

δφγε,σ(3, 4)

δGβα,σ(2, 1)
Gεγ,σ(4, 3)−

δGεγ,σ(4, 3)

δGβα,σ(2, 1)
φγε,σ(3, 4)(5.64)

=− φαβ,σ(1, 2).(5.65)

2Note that the definition of the Legendre transformation necessitates certain regularity properties
that we assume to be fulfilled without proof. Moreover, depending on the different common conventions
one might find the definition with an overall minus sign.
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We notice that the above property in eq. (5.65) and the Dyson equation (5.49) help to
deduce

β̃
δΩ[G]

δGβα,σ(2, 1)
= −φαβ,σ(1, 2)(5.66)

=
(
G−1

)
αβ,σ

(1, 2)−
(
G−1

0

)
αβ,σ

(1, 2) + Σαβ,σ(1, 2),(5.67)

which reduces to the Dyson equation of our original system in the case where

(5.68) β̃
δΩ[G]

δGβα,σ(2, 1)
= −φαβ,σ(1, 2) = 0.

With this set of equations at hand we can guess3 the Kadanoff-Baym functional explic-
itly,

(5.69) Ω[G] = Φ[G]− T tr
[
G
(
G−1

0 −G
−1
)]
− T tr [ln |−G|] ,

where Φ[G] is the so-called Luttinger-Ward functional which is defined as the sum
of all closed two-particle irreducible skeleton diagrams that can be constructed from
G and the Hubbard interaction U . The term two-particle irreducible means that by
cutting two Green’s function lines the resulting diagram does not decompose into two
disconnected diagrams while the term skeleton diagram signifies the absence of explicit
self-energy lines in the diagrams.
Since the self-energy Σ is the sum of all one-particle irreducible skeleton diagrams (this
is discussed in sec. 5.1.8) we find

(5.70)
δΦ[G]

δGβα,σ(2, 1)
= Σαβ,σ(1, 2).

The importance of the Luttinger-Ward functional for constructing so-called conserving
approximations is discussed in sec. 5.2.
For the moment we use the construction of the Luttinger-Ward functional only to see
that we can define a Legendre transformation that allows us to express the functional
dependence in terms of the Green’s function G instead of the artificial source field φ.

5.1.6. Susceptibilities. To be able to further evaluate the generalized suscepti-
bility δG

δφ we have to treat the terms in the Bethe-Salpeter equation (5.58) separately.

The first term corresponds to the irreducible susceptibility

(5.71) χ0
λζνη(1, 2) = −Gζη,σ(1, 2)Gνλ,σ(2, 1),

which is a 4-tensor, where we have dropped the spin index due to spin-rotational in-
variance and the restriction to paramagnetic states.
First, we transform both time and space arguments to Fourier space and get

(5.72) χ0
λζνη(q, iqm) := − 1

β̃N
lim
τ↗0

∑
k,iωn

e−iωnτGνλ,σ(k, iωn)Gζη,σ(k + q, iωn+m),

where we defined the bosonic Matsubara frequencies

(5.73) iqn ≡
2πin

β̃
, n ∈ Z.

Proof of (5.72). By exploiting the translational invariances in space and imagi-
nary time we find

(5.74) χ0
λζνη(r1 − r2, τ1 − τ2) = −Gνλ,σ(−(r1 − r2),−(τ1 − τ2))Gζη,σ(r1 − r2, τ1 − τ2).

3Luttinger and Ward derive this expression in [118] by the technique of coupling constant inte-
gration. A more extensive derivation can be found in Ref. [156].
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We can now perform a Fourier transform in both space and imaginary time argument
to obtain

χ0
λζνη(q, iqm) =−

∫ β̃−

0+
d(τ1 − τ2)

∑
r1−r2

eiqm(τ1−τ2)eiq·(r1−r2)×

×Gνλ,σ(−(r1 − r2),−(τ1 − τ2))Gζη,σ(r1 − r2, τ1 − τ2)(5.75)

=−
∫ β̃−

0+
dτ
∑
r

eiqmτeiq·rGνλ,σ(−r,−τ)Gζη,σ(r, τ)(5.76)

=− 1

β̃2N2

∑
k,k′,iωn,iωn′ ,r

∫ β̃−

0+
dτ
[
e−i(−ωn+ω

n′−qm)τe−i(−k+k′−q)·r×

× Gνλ,σ(k, iωn)Gζη,σ(k′, iωn′)
]

(5.77)

=− 1

β̃N
lim
τ↗0

∑
k,k′,iωn,iωn′

e−iωnτδk′,k+qδω
n′ ,ωn+qm

Gνλ,σ(k, iωn)Gζη,σ(k′, iωn′)(5.78)

=− 1

β̃N
lim
τ↗0

∑
k,iωn

e−iωnτGνλ,σ(k, iωn)Gζη,σ(k + q, iωn+m).(5.79)

�

In the special case where G is the non-interacting Green’s function (eq. (4.220))
one can perform the Matsubara sum explicitly. We derive an explicit expression in the
following because the non-interacting case is needed later.
The Matsubara sum that arises is of the form

lim
ε↘0

1

β̃

∑
iωn

eiωnε

iωn − ξ
.(5.80)

This sum is included in the contour integral

lim
ε↘0

∮
∂BR(0)

eεz

z − ξ
1

eβ̃z + 1

dz

2πi
,(5.81)

where ∂BR(0) ⊂ C is the circle centered around the origin of the complex plane with
radius R. Obviously, the integral kernel goes to zero in all limits Re(z), Im(z) → ±∞
except along the imaginary axis due to the strong decay of the denominator and reduces
thus to the divergences at the Matsubara frequencies that are treated in terms of the
residual theorem. Thus, we find

I := lim
R→∞

lim
ε↘0

∮
∂BR(0)

eεz

z − ξ
1

eβ̃z + 1

dz

2πi
(5.82)

= lim
R→∞

lim
ε↘0

∮
∂BR(0)

gε(z)
dz

2πi
(5.83)

= 0,(5.84)

where we defined

(5.85) gε(z) :=
eεz

z − ξ
1

eβ̃z + 1
.

On the other hand, the integral can be evaluated via the residue theorem with residues
at z = iωn, ξ:

0 = I = lim
ε↘0

∑
iωn

Res(gε(z), iωn) + Res(gε(z), ξ)(5.86)
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= lim
ε↘0

∑
iωn

eiωnε

−β̃(iωn − ξ)
+

eξε

eβ̃ξ + 1
,(5.87)

which can be rearranged into

(5.88) lim
ε↘0

1

β̃

∑
iωn

eiωnε

iωn − ξ
=

1

eβ̃ξ + 1
= fFD(ξ).

With those preparations done we can proceed with the Matsubara sum that appears
in the definition of the non-interacting irreducible susceptibility χ0 (eq. (5.72)) which
relies on the form of the non-interacting Green’s function G0 in eq. (4.220). Combining
both equations yields

χ0
ηνζλ(q, iqm) =− 1

β̃N

∑
k,b,c

aνb (k + q)aλb
∗
(k + q)aζc(k)aηc

∗(k)×

×
∑
iωn

1

(iωn+m − ξb(k + q))(iωn − ξc(k))
.(5.89)

A closer look at the Matsubara sum reveals∑
iωn

1

(iωn+m − ξb(k + q))(iωn − ξc(k))

=
∑
iωn

(
1

iωn+m − ξb(k + q)
− 1

iωn − ξc(k)

)
1

−iqm − ξc(k) + ξb(k + q)
.(5.90)

The denominator in eq. (5.90) is O

((
1
iωn

)2
)

and therefore the sum converges. Nev-

ertheless, the additional factor lim
ε↘0

eiωnε will not change the result but allows us to use

eq. (5.88) which leads to

(5.91) lim
ε↘0

∑
iωn

(
eiωnε

iωn+m − ξb(k + q)
− eiωnε

iωn − ξc(k)

)
= β̃[fFD(ξb(k+ q))− fFD(ξc(k))].

Reinserting this result into eq. (5.89) gives the final result

χ0
ηνζλ(q, iqm)

=− 1

N

∑
k,b,c

aνb (k + q)aλb
∗
(k + q)aζc(k)aηc

∗(k)
fFD(ξb(k + q))− fFD(ξc(k))

−iqm + ξb(k + q)− ξc(k)
.(5.92)

At this stage, we also derive important properties of the irreducible susceptibility χ0

which follow directly from the properties of the Green’s functions G (see prop. 4.6.1):

χ0
ηνζλ(q,−iqm) = (χ0)∗ζλην(q, iqm).(5.93)

Proof of (5.93). We simply calculate the left-hand side and use prop. 4.6.1 to
obtain

χ0
ηνζλ(q,−iqm)

=− 1

β̃N
lim
τ↗0

∑
k,iωn

e−iωnτGνλ,σ(k + q, iωn−m)Gζη,σ(k, iωn)(5.94)

=− 1

β̃N
lim
τ↗0

∑
k,iωn

e−iωnτG∗λν,σ(k + q, iω−(n−m)−1)G∗ηζ,σ(k, iω−n−1).(5.95)
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We can now change the summation order −n− 1→ n which leads to

χ0
ηνζλ(q,−iqm) = − 1

β̃N
lim
τ↗0

∑
k,iωn

eiωnτG∗λν,σ(k + q, iωn+m)G∗ηζ,σ(k, iωn)(5.96)

= (χ0)∗ζλην(q, iqm).(5.97)

�

Similarly, one finds

χ0
λζνη(−q, iqm) = χ0

νηλζ(q, iqm).(5.98)

Proof of (5.98). To prove the claim it is sufficient to change the order of k-
summation, namely

χ0
λζνη(−q, iqm) = − 1

β̃N
lim
τ↗0

∑
−k,iωn

e−iωnτGνλ,σ(−k, iωn)Gζη,σ(−k − q, iωn+m)(5.99)

= − 1

β̃N
lim
τ↗0

∑
k,iωn

e−iωnτGλν,σ(k, iωn)Gηζ,σ(k + q, iωn+m)(5.100)

= χ0
νηλζ(q, iqm).(5.101)

�

The last useful relation regarding the irreducible susceptibility χ0 is

χ0
λζνη(−q,−iqm) = χ0

ηνζλ(q, iqm).(5.102)

Proof of (5.102). We obtain the desired result by simply shifting the summation
indices, k → k + q and n→ n+m,

χ0
λζνη(−q,−iqm) = − 1

β̃N
lim
τ↗0

∑
k,iωn

e−iωnτGνλ,σ(k, iωn)Gζη,σ(k − q, iωn−m)(5.103)

= − 1

β̃N
lim
τ↗0

∑
k,iωn

e−iωnτGνλ,σ(k + q, iωn+m)Gζη,σ(k, iωn)(5.104)

= χ0
ηνζλ(q, iqm).(5.105)

�

Finally, we notice that the vector space isomorphism

Cn ⊗ Cn ' Cn
2

(5.106)

can be generalized to

Cn ⊗ Cn ⊗ Cn ⊗ Cn ' Cn
2 ⊗ Cn

2
.(5.107)

Therefore, we can interpret the 4-tensor χ0 as a matrix

(5.108) χ0
ηνζλ = χ0

(ην),(ζλ).

Next, we define the charge susceptibility as the charge density correlation function
that appears in linear response theory by means of the fluctuation-dissipation theorem4,

(5.109) χchλζνη(1, 2) := 〈Tτnζλ(1)nνη(2)〉 − 〈nζλ(1)〉〈nνη(2)〉,

4Note that linear response theory is traditionally formulated with density fluctuations for real
times while we use an extended definition to complex times. Nevertheless, very similar steps as the
ones that we presented for the Green’s function are sufficient to relate this generalized object to the
original charge susceptibility on the real axis (see [110]).
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where we have defined a generalized density

nαβ,σ(1) := c†β,σ(1)cα,σ(1),(5.110)

nα,σ(1) := c†α,σ(1)cα,σ(1),(5.111)

nαβ(1) :=
∑
σ

nαβ,σ(1),(5.112)

〈nαβ,σ(1)〉 = Gαβ,σ(1, 1+).(5.113)

One obtains the so-called local charge sum rule by application of the local Pauli principle
to the equal time and equal position charge susceptibility χch,

χchνννν(0, 0+) =
〈
(nν,↑ + nν,↓)

2
〉
− 〈nν〉

2(5.114)

1

N

∑
q

eiq·0χchνννν(q, 0+) =
〈
n2
ν,↑ + 2nν,↑nν,↓ + n2

ν,↓
〉
− 〈nν〉

2(5.115)

1

β̃N

∑
q,iqm

eiqm0+χchνννν(q, iqn) =
〈
n2
ν,↑
〉

+
〈
n2
ν,↓
〉

+ 2
〈
nν,↑nν,↓

〉
− 〈nν〉

2(5.116)

1

β̃N

∑
q,iqm

χchνννν(q, iqm) = 〈nν〉+ 2〈nν,↑nν,↓〉 − 〈nν〉
2 ,(5.117)

where we dropped the space-time dependence on the right-hand side due to translation
invariance.

Taking a closer look at the second functional derivative of G in eq. (5.24) we can
relate the charge susceptibility χch to the generalized susceptibility − δG

δφ via

−
∑
σ,σ′

δGζλ,σ(1, 1+)φ

δφνη,σ′(2
+, 2)

∣∣∣∣∣∣
φ=0

=−
∑
σ,σ′

[〈
Tτ cζ,σ(1)c†λ,σ(1+)c†ν,σ′(2

+)cη,σ′(2)
〉

+Gζλ,σ(1, 1+)Gην,σ′(2, 2
+)
]

(5.118)

=
∑
σ,σ′

〈
Tτnζλ,σ(1)nην,σ′(2)

〉
−
〈
nζλ,σ(1)

〉 〈
nην,σ′(2)

〉
(5.119)

=χchλζην(1, 2)(5.120)

and we define a generalized three-point charge susceptibility

χchλζην(1, 3; 2) := −
∑
σσ′

δGζλ,σ(1, 3)φ
δφνη,σ′(2+, 2)

∣∣∣∣∣
φ=0

(5.121)

that reproduces the previously defined charge susceptibility (eq. (5.109)) in the limit
3→ 1+. The meaning of the local charge sum rule and the three-point charge suscep-
tibility will be discussed later when we derive an explicit expression for the self-energy.
Similar to the self-consistent equation for the generalized susceptibility − δG

δφ (eq. (5.58)

and fig. 5.1) we can find a self-consistent equation for the generalized three-point charge
susceptibility χch(1, 3; 2). Key ingredient is equation (5.58) which enters the definition
of χch(1, 3; 2) (eq. (5.121)). We start by combining both equations which gives

χchλζην(1, 3; 2) = −
∑
σσ′

δGζλ,σ(1, 3)φ

δφνη,σ′(2
+, 2)

∣∣∣∣∣
φ=0

(5.122)

=−
∑
σσ′

[
Gζν,σ(1, 2+)Gηλ,σ(2, 3)δσ,σ′
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+ G
ζβ,σ

(1, 3)
δΣ

βγ,σ
(3, 2)φ

δG
ρλ,σ′′

(7, 8)φ

δG
ρλ,σ′′

(7, 8)φ

δφνη,σ′(2
+, 2)

∣∣∣∣∣
φ=0

Gγλ,σ(2, 3)φ

(5.123)

=−Gζν,σ(1, 2+)Gηλ,σ(2, 3)

−G
ζβ,σ

(1, 3)
δΣ

βγ,σ
(3, 2)φ

δG
ρλ,σ′′

(7, 8)φ

δG
ρλ,σ′′

(7, 8)φ

δφ
νη,σ′

(2+, 2)

∣∣∣∣∣
φ=0

Gγλ,σ(2, 3).(5.124)

Due to spin rotational invariance and paramagnetism we can assume Gσ = G−σ = G
which allows us to care only for the relative spin alignment in functional derivatives ,
i.e.

(5.125)
δΣ↑
δG↑

=
δΣ↓
δG↓

6=
δΣ↑
δG↓

=
δΣ↓
δG↑

and similarly for δGσ
δφ
σ′

. Thus, we can conclude

χchλζην(1, 3; 2)

=− 2Gζν(1, 2+)Gηλ(2, 3)

−G
ζβ

(1, 3)
∑
σ

δΣ
βγ,σ

(3, 2)φ

δG
ρ,λ,σ′′

(7, 8)φ

∣∣∣∣∣
φ=0

∑
σ′

δG
ρλ,σ′′

(7, 8)φ

δφνη,σ′(2+, 2)

∣∣∣∣∣∣
φ=0

Gγλ(2, 3)(5.126)

=− 2Gζν(1, 2+)Gηλ(2, 3)

−G
ζβ

(1, 3)
∑
σ

δΣ
βγ,σ

(3, 2)φ

δG
ρ,λ,↑(7, 8)φ

∣∣∣∣∣
φ=0

∑
σ′,σ′′

δG
ρλ,σ′′

(7, 8)φ

δφνη,σ′(2+, 2)

∣∣∣∣∣∣
φ=0

Gγλ(2, 3)(5.127)

=− 2Gζν(1, 2+)Gηλ(2, 3)

+G
ζβ

(1, 3)
∑
σ

δΣβγ,σ(3, 2)φ

δG
ρ,λ,↑(7, 8)φ

∣∣∣∣∣
φ=0

χch
λρην

(7, 8; 2)Gγλ(2, 3)(5.128)

=− 2Gζν(1, 2+)Gηλ(2, 3) +G
ζβ

(1, 3)Γch
γβλρ

(3, 2; 7, 8)χch
λρην

(7, 8; 2)Gγλ(2, 3),(5.129)

where we have defined the irreducible charge vertex

Γchγβλρ(3, 2; 7, 8) :=
∑
σ

δΣβγ,σ(3, 2)φ

δGρλ,↑(7, 8)φ

∣∣∣∣∣
φ=0

.(5.130)

Equation (5.129) is the famous Bethe-Salpeter equation for the charge susceptibility
and will be of great value in the next sections.

We turn now our attention to the spin susceptibility χsp that is defined analogously
to the charge susceptibility (eq. (5.109)),

χspλζην(1, 2) :=4〈TτSzλζ(1)Szνη(2)〉 − 4〈Szλζ(1)〉〈Szνη(2)〉,(5.131)

where we defined the generalized spin matrices

(5.132) Sαβ(1) =
(
c†α,↑(1) c†α,↓(1)

)
· σ̃ ·

(
cβ,↑(1) cβ,↓(1)

)T
and σ̃ is the three-dimensional vector consisting of the Pauli spin matrices

σ̃ := (σx, σy, σz)
T(5.133)

σx =
1

2

(
0 1
1 0

)
, σy =

1

2

(
0 −i
i 0

)
, σz =

1

2

(
1 0
0 −1

)
.(5.134)
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Thus, we can express the spin susceptibility in terms of generalized densities,

χspλζην(1, 2)

=4

〈
Tτ

[(
c†λ,↑(1) c†λ,↓(1)

)
· σz ·

(
cζ,↑(1) cζ,↓(1)

)T]
×

×
[(
c†ν,↑(1) c†ν,↓(1)

)
· σz ·

(
cη,↑(1) cη,↓(1)

)T]〉
− 4

〈(
c†λ,↑(1) c†λ,↓(1)

)
· σz ·

(
cζ,↑(1) cζ,↓(1)

)T〉
×

×
〈(

c†ν,↑(1) c†ν,↓(1)
)
· σz ·

(
cη,↑(1) cη,↓(1)

)T〉
(5.135)

=
〈
Tτ

[
c†λ,↑(1)cζ,↑(1)− c†λ,↓(1)cζ,↓(1)

] [
c†ν,↑(1)cη,↑(1)− c†ν,↓(1)cη,↓(1)

]〉
−
〈
c†λ,↑(1)cζ,↑(1)− c†λ,↓(1)cζ,↓(1)

〉〈
c†ν,↑(1)cη,↑(1)− c†ν,↓(1)cη,↓(1)

〉
(5.136)

=
〈
Tτ
[
nζλ,↑(1)− nζλ,↓(1)

] [
nην,↑(2)− nην,↓(2)

]〉
−
〈
nζλ,↑(1)− nζλ,↓(1)

〉 〈
nην,↑(2)− nην,↓(2)

〉
(5.137)

=2
〈
Tτ c
†
λ,↑(1)cζ,↑(1)c†ν,↑(2)cη,↑(2)

〉
− 2

〈
Tτ c
†
λ,↑(1)cζ,↑(1)c†ν,↓(2)cη,↓(2)

〉
−
〈
nζλ,↑(1)− nζλ,↓(1)

〉 〈
nην,↑(2)− nην,↓(2)

〉
.(5.138)

Similar to the derivation of the local charge sum rule (eq. (5.117)) we can derive the
so-called local spin sum rule

χspνννν(0, 0+) = 〈(nν,↑ − nν,↓)2〉 − 〈nν,↑ − nν,↓〉2(5.139)

1

N

∑
q

eiq·0χspνννν(q, 0+) = 〈(nν,↑ − nν,↓)2〉 − 02(5.140)

1

β̃N

∑
q,iqm

eiqn0+χspνννν(q, iqm) = 〈n2
ν,↑〉+ 〈n2

ν,↓〉 − 2〈nν,↑nν,↓〉(5.141)

1

β̃N

∑
q,iqm

χspνννν(q, iqm) = 〈nν〉 − 2〈nν,↑nν,↓〉,(5.142)

where we took advantage of paramagnetism in eq. (5.140) and the local Pauli principle
in eq. (5.142). Again, we dropped the lattice position and imaginary time dependence
on the right-hand side due to translation invariance. We define the generalized three-
point spin susceptibility χsp(1, 3; 2) in analogy to the three-point charge susceptibility
χch(1, 3; 2) (see eqs. (5.120), (5.121)) via

(5.143) χspλζην(1, 3; 2) := −
∑
σσ′

σσ′
δGζλ,σ(1, 3)φ

δφνη,σ′(2
+, 2)

∣∣∣∣∣
φ=0

,

where we introduce the convention ↑≡ 1 and ↓≡ −1 which allows us to account for
sign changes in the definition of χsp(1, 3; 2). Analogous to the charge susceptibility we
can reproduce the spin susceptibility χsp in the limit 3 → 1+ as can be seen from the
following simple calculation via eq. (5.58),

−
∑
σ,σ′

σσ′
δGζλ,σ(1, 1+)φ

δφνη,σ′(2
+, 2)

∣∣∣∣∣∣
φ=0

=−
∑
σ,σ′

σσ′
[〈
Tτ cζ,σ(1)c†λ,σ(1+)c†ν,σ′(2

+)cη,σ′(2)
〉

+Gζλ,σ(1, 1+)Gην,σ′(2, 2
+)
]

(5.144)
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=
∑
σ,σ′

σσ′
〈
Tτnζλ,σ(1)nην,σ′(2)

〉
−
〈
nζλ,σ(1)

〉 〈
nην,σ′(2)

〉
(5.145)

=
〈
Tτ
[
nζλ,↑(1)− nζλ,↓(1)

] [
nην,↑(2)− nην,↓(2)

]〉
−
〈
nζλ,↑(1)− nζλ,↓(1)

〉 〈
nην,↑(2)− nην,↓(2)

〉
(5.146)

=χspλζην(1, 2).(5.147)

From eq. (5.58) we can also define a self-consistent equation for the three-point spin
susceptibility which is called the Bethe-Salpeter equation for the spin susceptibility,

χspλζην(1, 3; 2)

=−
∑
σσ′

σσ′
(
Gζν,σ(1, 2+)Gηλ,σ(2, 3)δσ,σ′

+ G
ζβ,σ

(1, 3)
δΣ

βγ,σ
(3, 2)φ

δG
ρλ,σ′′

(7, 8)φ

δGρλ,σ′′(7, 8)φ

δφνη,σ′(2
+, 2)

∣∣∣∣∣
φ=0

Gγλ,σ(2, 3)

(5.148)

=− 2Gζν(1, 2+)φGηλ(2, 3)

−G
ζβ

(1, 3)
∑

σ,σ′,σ′′

σσ′(σ′′)2
δΣ

βγ,σ
(3, 2)φ

δG
ρλ,σ′′

(7, 8)φ

δG
ρλ,σ′′

(7, 8)φ

δφνη,σ′(2+, 2)

∣∣∣∣∣
φ=0

Gγλ(2, 3),(5.149)

where we again dropped the spin index in the Green’s function G due to time-reversal
symmetry and spin rotation invariance. By the same argument we can again use
eq. (5.125) which states the functional derivatives only depend on the relative spin
alignment of the functional and the function it is differentiated by. This leads to

χspλζην(1, 3; 2)

=− 2Gζν(1, 2+)Gηλ(2, 3)

+G
ζβ

(1, 3)
∑
σ

σ
δΣ

βγ,σ
(3, 2)φ

δG
ρλ,↓(7, 8)φ

∣∣∣∣∣
φ=0

∑
σ′,σ′′

σ′σ′′
δG

ρλ,σ′′
(7, 8)φ

δφνη,σ′(2
+, 2)

∣∣∣∣∣∣
φ=0

Gγλ(2, 3)(5.150)

=− 2Gζν(1, 2+)Gηλ(2, 3)

−G
ζβ

(1, 3)
∑
σ

σ
δΣ

βγ,σ
(3, 2)φ

δG
ρλ,↓(7, 8)φ

∣∣∣∣∣
φ=0

χsp
λρην

(7, 8; 2)Gγλ(2, 3)(5.151)

=− 2Gζν(1, 2+)Gηλ(2, 3)−G
ζβ

(1, 3)Γsp
γβλρ

(3, 2; 7, 8)χsp
λρην

(7, 8; 2)Gγλ(2, 3),(5.152)

where we have defined the irreducible spin vertex

Γspγβλρ(3, 2; 7, 8) =
∑
σ

σ
δΣβγ,σ(3, 2)φ

δGρλ,↓(7, 8)φ

∣∣∣∣∣
φ=0

.(5.153)

5.1.7. Self-energy equation of motion. We are now prepared to relate the spin
and charge susceptibilities χsp/ch to the self-energy Σ.
Starting point is the implicit self-energy equation (5.51),

Σ
αβ,σ

(1, 4)φGβγ,σ(4, 2)φ

=Uα

(
−

δGαγ,σ(1, 2)

δφαα,−σ(1+, 1)
+Gαα,−σ(1, 1+)φGαγ,σ(1, 2)φ

)
.(5.154)
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We can first decompose the generalized susceptibility − δG
δφ into spin and charge channel

via eqs. (5.121), (5.143),

− δGσ
δφ−σ

∣∣∣∣
φ=0

= −1

4
4
δGσ
δφ−σ

∣∣∣∣
φ=0

=
1

4

∑
σ,σ′

σσ′
δGσ
δφσ′

−
∑
σ,σ′

δGσ
δφσ′

∣∣∣∣∣∣
φ=0

(5.155)

=− 1

4

(
χsp − χch

)
,(5.156)

where we made use of spin-rotational invariance and time-reversal symmetry.
Thus, we can identify in the limit φ = 0

Σ
αβ,σ

(1, 4)G
βγ,σ

(4, 2)

=Uα

[
1

4

(
χchγααα(1, 2; 1)− χspγααα(1, 2; 1)

)
+ nα,−σ(1)Gαγ,σ(1, 2)

]
.(5.157)

Iterating once the Bethe-Salpeter equation for the spin and charge susceptibility χsp/ch

(eqs. (5.129), (5.152)) we get

Σ
αβ,σ

(1, 4)G
βγ,σ

(4, 2) =Uα

[
1

4

(
G
αβ

(1, 3)Γch
εβλρ

(3, 4; 7, 8)χch
λραα

(7, 8; 1)Gεγ(4, 2)+

+G
αβ

(1, 3)Γsp
εβλρ

(3, 4; 7, 8)χsp
λραα

(7, 8; 1)Gεγ(4, 2)
)

+ nα,−σ(1)Gαγ,σ(1, 2)
]
.(5.158)

Multiplying with Gγν,σ(2, 5) and integrating over the internal degrees of freedom we
obtain the equation of motion for the self-energy

Σαν,σ(1, 5) = Uαnα,−σ(1)δα,νδ(1− 5)+

+
Uα
4

[
Γch
νβλρ

(3, 5; 7, 8)χch
λραα

(7, 8; 1) + Γsp
νβλρ

(3, 5; 7, 8)χsp
λραα

(7, 8; 1)
]
G
αβ

(1, 3).(5.159)

A diagrammatic representation of the equation of motion for the self-energy is shown
in fig. 5.2. We can interpret the self-energy equation (5.159) as the Hartree contri-

Figure 5.2. Diagrammatic representation of the self-energy equation
of motion (5.159). The double lines represent interacting Green’s func-
tions while the wiggled single lines are Hubbard interactions U . For
simplicity we dropped the spin and charge decomposition here.

bution5 and an additional contribution that contains collective excitations from the
paramagnetic state via susceptibilities χsp/ch and effective interaction vertices Γsp/ch.

In summary, we have an equation that relates the self-energy to the spin and charge
susceptibility and those susceptibilities themselves are determined by self-consistent
equations, namely the Bethe-Salpeter equations. The remaining parts that enter both

5In the single-orbital case the Fock contribution cancels with the same spin-part of the Hartree
term.
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Figure 5.3. Diagrammatic representation of the equation of motion
for (a) the generalized susceptibility χ and (b) the self-energy Σ. Double
lines represent the interacting Green’s function G while F is the full
vertex function. Although the diagram shows some similarity to fig. 5.1
and 5.2 they do not represent a particular choice of channel.

above mentioned equations are the irreducible vertices that are only given as functional
derivatives δΣ

δG so far. This will be discussed in more details in sec. 5.2.

5.1.8. Diagrammatics and channel decomposition. Before we continue the
derivation of the Bethe-Salpeter equations for the different susceptibilities and the
equation of motion for the self-energy in the transversal particle-hole channel we go
into more detail regarding the channel decomposition. We follow here the presentation
in [110,155,157–160].

Similar to the derivations in the previous sections one can derive an equation of
motion for the self-energy Σ and the generalized susceptibility χ without any particu-
lar choice of channel. The resulting equations are shown diagrammatically in fig. 5.3
In contrast to the equations that we derived previously for χ and Σ (eqs. (5.58) and
(5.159)) we observe that the collective mode contribution χ and the respective irre-
ducible vertex Γ are replaced by the so-called full vertex F and interacting Green’s
function lines G. To see the connection between both formulations we repeat impor-
tant aspects of diagrammatic quantum field theory.
The concept of one-particle irreducibility6 is crucial in the diagrammatic description of
the self-energy as a sum of all connected topologically distinct one-particle irreducible
non-interacting Green’s function diagrams where the external legs are amputated.
Such a diagrammatic series in terms of the non-interacting Green’s function can be
reformulated in terms of the full Green’s function when restricting the diagrams to so-
called skeleton diagrams, i.e. diagrams without the appearance of explicit self-energy
lines. This restriction of diagrams is important to avoid double-counting since the full
Green’s function already contains all many-body corrections from the self-energy.

Similarly, one obtains for the generalized susceptibility the expression in fig. 5.3(a)
where the full two-particle vertex F contains information about to quasi-particle scat-
tering processes7. Due to particle number conservation one can prove that all contri-
butions to F are one-particle irreducible.
For this reason one needs a different classification of the diagrams that enter F and
here we introduce the notion of two-particle irreducibility. The basic idea is to distin-
guish between diagrams by cutting two internal Green’s function lines. If the diagram

6This means that a Feynman diagram for the Green’s function cannot be divided into two subdi-
agrams by cutting one internal non-interacting Green’s function line.

7Obviously, this interpretation is only valid in the Fermi liquid regime.
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Figure 5.4. Diagrammatic representation of the Bethe-Salpeter equa-
tion that decomposes the full two-particle vertex F into the three dif-
ferent two-particle reducible channels c ∈ {pp, ph, ph}, where Γc is the
two-particle irreducible vertex in the channel c and double solid lines
are full Green’s functions.

decomposes into two subdiagrams we call the diagram two-particle reducible and else
two-particle irreducible. A finer classification can be made in the case of two-particle
reducible diagrams, namely in terms of channels: Assume that a two-particle reducible
diagram has four outer legs labeled with 1, 2, 3 and 4, where 1 and 3 label outgoing
particles while 2 and 4 denote incoming particles.
The case where 1 and 3 are separated from 2 and 4 are called particle-particle (pp)
reducible . If 1 and 2 are separated from 3 and 4 we call the diagram longitudinal
particle-hole (ph) reducible. The last remaining case is if one can separate 1 and 4 from
2 and 3, where such a diagram is called transversal particle-hole (ph) reducible.
Note that a connected two-particle diagram in F is either irreducible or reducible in
exactly one of the three above mentioned channels. Thus, one can decompose the full
two-particle vertex

(5.160) F = Λc + Γc,

where c ∈ {pp, ph, ph} and Γc contains all diagrams of F that are irreducible in the
chancel c while Λr contains the ones that are reducible in the channel c. Moreover,
one can decompose F in each of the three channels via the Bethe-Salpeter equation in
fig. 5.4. Combining the Bethe-Salpeter equation for F (fig. 5.4) with the equations for
the generalized susceptibility χ and the self-energy Σ we find a decomposition of the
self-energy

(5.161) Σ = Σirr + Σpp + Σph + Σ
ph
,

where Σirr contains the contributions from fully two-particle irreducible diagrams while

the other three terms correspond to the three above mentioned channels pp, ph and ph.
In the same spirit one defines generalized susceptibilities for each channel as in fig. 5.1,
where the two-particle irreducible vertex has to be replaced with the one from the
respective channel. Furthermore, the particle-hole channels allow to make use of the
spin-rotational invariance and time-reversal symmetry and to further decompose the
generalized susceptibilities χ and the vertices Γ into spin and charge components which
finally leads to the representation in fig. (5.2) for each channel.

After this small journey into the diagrammatic formulation of quantum field theory
we need to make a connection to our formulation in term of artificial source fields φ
and functional derivatives.
When reconsidering the equation that implicitly defines the self-energy (eq. (5.48)),

(5.162) Σ
νβ,σ

(1, 3)φGβξ,σ(3, 2)φ = −Uν
〈
Tτ c
†
ν,−σ(1+)cν,−σ(1)cν,σ(1)c†ξ,σ(2)

〉
φ
,

we recall that we introduced the artificial field φ to express the right-hand side in terms
of a functional derivative δG

δφ (eq. (5.51)),

Σ
νβ,σ

(1, 3)φGβξ,σ(3, 2)φ
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=Uν

(
−

δGνξ,σ(1, 2)

δφνν,−σ(1+, 1)
+Gνν,−σ(1, 1+)φGνξ,σ(1, 2)φ

)
,(5.163)

which means that we defined φ such that the functional derivative generates the ther-
modynamic average of

c†ν,−σ(1+)cν,−σ(1) (ph)

in the right-hand side of eq. (5.162) but one could also think of defining φ such that it
generates the average of

c†ν,−σ(1+)cν,σ(1) (ph)

or other combinations.
In choosing a specific form for φ we determine in the Bethe-Salpeter equation (eq. (5.58))
a specific channel and thus a specific self-energy contribution (see eq. (5.161) and
(5.163)).

As mentioned previously, we will constrain ourselves to the particle-hole channels
since those will have the largest contributions to the self-energy in the repulsive Hub-
bard model [153–155].

Apart from the weight that both particle-hole channels contribute to the self-energy
there is another important reason why we treat both and not only the longitudinal
particle-hole channel.
By the Pauli principle – that is implemented in the imaginary time ordering operator
– we know that by interchanging the two annihilation operators or the two creation
operators in eq. (5.162) we collect a minus sign in front of the thermal average. As
discussed earlier such an exchange of operators corresponds to a change in the particle-
hole channel, i.e. one moves from the transversal to the longitudinal particle-hole
channel and vice versa. This transition between the two channels has its manifestation
in the relations

Γph(1, 2; 3, 4) = −Γ
ph

(1, 4; 3, 2),(5.164)

F (1, 2; 3, 4) = −F (1, 4; 3, 2),(5.165)

which is the crossing symmetry8 of the full vertex F and the irreducible particle-hole
vertices Γph,ph.

We can enforce crossing symmetry on the self-energy from the longitudinal particle hole
channel (see eq. (5.159)) by averaging with the self-energy from the transversal particle-
hole channel (see sec. 5.4.2) because then we have only those two channel contributions
in equal parts.

5.1.9. Transversal particle-hole channel. The derivation follows [154, 161,
162] but we extend the notation to multi-site problems.

To access fluctuations in the transversal particle-hole channel we define the artificial
field

(5.166) Φαβ(1, 2) =

(
0 φ−αβ(1, 2)

φ+
αβ(1, 2) 0

)
that couples to different spins in the grand canonical partition function

Z[Φ] =

〈
Tτe
−c†α,↑(1)φ−

αβ
(1,2)c

β,↓
(2)−c†α,↓(1)φ+

αβ
(1,2)cβ,↑(2)

〉
(5.167)

=

〈
Tτe
−c†α(1)Φ

αβ
(1,2)c

β
(2)
〉
.(5.168)

8The terms crossing stems from the fact that the interchange of creation and annihilation operators
within eq. (5.162) is visualized diagrammatically by swapping the opposite corners of the four-point
diagram.
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where we defined (spin-vector-valued) fields

(5.169) cα(1) :=

(
cα,↑(1)

cα,↓(1)

)
, c†α(1) :=

(
c†α,↑(1) c†α,↓(1)

)
.

Analogously to the steps in the longitudinal channel (sec. 5.1.2), we define the gener-
alized spin-space Green’s function

Gσσ′
αβ (1, 2)Φ := −

〈
Tτ cα,σ(1)c†β,σ′(2)

〉
Φ
,(5.170)

Gαβ(1, 2)Φ := −

〈Tτ cα,↑(1)c†β,↑(2)
〉

Φ

〈
Tτ cα,↑(1)c†β,↓(2)

〉
Φ〈

Tτ cα,↓(1)c†β,↑(2)
〉

Φ

〈
Tτ cα,↓(1)c†β,↓(2)

〉
Φ

 .(5.171)

Notice that we can only generate off-diagonal Green’s function elements via functional
differentiation

(5.172) − δ lnZ[Φ]

δΦβα(2, 1)
=

(
0 G↑↓αβ(1, 2)Φ

G↓↑αβ(1, 2)Φ 0

)
,

where we defined the functional derivative9

(5.173)
δ

δΦνε(4, 5)
:=

(
0 δ

δφ+νε(4,5)
δ

δφ−νε(4,5)
0

)
.

Following the same steps as in Section 5.1.3 we find the matrix Dyson equation

G−1(1, 2)Φ =
(
G0
)−1

(1, 2)−Σ(1, 2)Φ −Φ,(5.174)

where the inverse is taken in the orbital-spin space with the implicitly defined self-
energy equation

Σ
αλ

(1, 3)ΦG
λγ

(3, 2)Φ

=− Uα

〈Tτnα,↓(1)cα,↑(1)c†γ,↑(2)
〉

Φ

〈
Tτnα↓(1)cα,↑(1)c†γ,↓(2)

〉
Φ〈

Tτnα,↑(1)cα,↓(1)c†γ,↑(2)
〉

Φ

〈
Tτnα,↑(1)cα,↓(1)c†γ,↓(2)

〉
Φ

 .(5.175)

As before we derive the Bethe-Salpeter equation for the generalized susceptibility
from the matrix equation

G
αβ

(1, 3)Φ

(
G−1

)
βγ

(3, 2)Φ =Iδ(1− 2)δα,γ ,(5.176)

where I is the identity matrix in spin space. By taking the functional derivative with
respect to Φ of eq. (5.176) we obtain the expression

0 =
δ

δΦνε(4, 5)

[
G
αβ

(1, 3)Φ

(
G−1

)
βγ

(3, 2)Φ

]
(5.177)

=

[(
0 1
0 0

)
δ

δφ+
νε(4, 5)

+

(
0 0
1 0

)
δ

δφ−νε(4, 5)

] [
G
αβ

(1, 3)Φ

(
G−1

)
βγ

(3, 2)Φ

]
(5.178)

=
δG

αβ
(1, 3)Φ

δΦνε(4, 5)

(
G−1

)
βγ

(3, 2)Φ +

(
0 1
0 0

)
G
αβ

(1, 3)Φ

δ
(
G−1

)
βγ

(3, 2)Φ

δφ+
νε(4, 5)

+

(
0 0
1 0

)
G
αβ

(1, 3)Φ

δ
(
G−1

)
βγ

(3, 2)Φ

δφ−νε(4, 5)
.(5.179)

9One can easily check Iδ(1− 3)δ(2− 4) = δΦ(1,2)
δΦ(3,4)

.
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Multiplying both sides by Gγζ(2, 6) while integration over all internal degrees of freedom
we obtain

0 =
δGαζ(1, 6)Φ

δΦνε(4, 5)
+

(
0 1
0 0

)
G
αβ

(1, 3)Φ

δ
(
G−1

)
βγ

(3, 2)Φ

δφ+
νε(4, 5)

Gγζ(2, 6)

+

(
0 0
1 0

)
G
αβ

(1, 3)Φ

δ
(
G−1

)
βγ

(3, 2)Φ

δφ−νε(4, 5)
Gγζ(2, 6).(5.180)

We can now use the Dyson equation (5.174) to further simplify

δGαζ(1, 6)Φ

δΦνε(4, 5)

∣∣∣∣
Φ=0

=

(
0 1
0 0

)
Gαν(1, 4)

(
0 0
1 0

)
Gεζ(5, 6)

+

(
0 0
1 0

)
Gαν(1, 4)

(
0 1
0 0

)
Gεζ(5, 6)

+

(
0 1
0 0

)
Gαβ(1, 3)

δΣβγ(3, 2)Φ

δφ+
νε(4, 5)

∣∣∣∣∣
Φ=0

Gγζ(2, 6)

+

(
0 0
1 0

)
Gαβ(1, 3)

δΣβγ(3, 2)Φ

δφ−νε(4, 5)

∣∣∣∣∣
Φ=0

Gγζ(2, 6)(5.181)

=

(
G↓↓αν(1, 4)G↑↑εζ (5, 6) G↓↓αν(1, 4)G↑↓εζ (5, 6)

G↑↑αν(1, 4)G↓↑εζ (5, 6) G↑↑αν(1, 4)G↓↓εζ (5, 6)

)

+

(
0 1
0 0

)
Gαβ(1, 3)

δΣβγ(3, 2)Φ

δGσσ′

ρλ
(7, 8)Φ

δGσσ′

ρλ
(7, 8)Φ

δφ+
νε(4, 5)

∣∣∣∣∣∣
Φ=0

Gγζ(2, 6)

+

(
0 0
1 0

)
Gαβ(1, 3)

δΣβγ(3, 2)Φ

δGσσ′

ρλ
(7, 8)Φ

δGσσ′

ρλ
(7, 8)Φ

δφ−νε(4, 5)

∣∣∣∣∣∣
Φ=0

Gγζ(2, 6).(5.182)

Things become much easier when we consider that the Hamiltonian without external
field Φ preserves the spin. Therefore, in the limit Φ = 0 that we are considering in
eq. (5.182) we can neglect all terms that involve surplus or deficiency of spin in the
thermal expectation values, namely

(5.183) G−σσ =
δGσσ

δφ±

∣∣∣∣
φ±=0

=
δG↑↓

δφ+

∣∣∣∣
φ±=0

=
δG↓↑

δφ−

∣∣∣∣
φ±=0

= 0.

This simplifies eq. (5.182) and we end up with
δG↓↑αζ(1,6)Φ

δφ+νε(4,5)

∣∣∣∣
φ+=0

0

0
δG↑↓αζ(1,6)Φ

δφ−νε(4,5)

∣∣∣∣
φ−=0


=

(
Gαν(1, 4)Gεζ(5, 6) 0

0 Gαν(1, 4)Gεζ(5, 6)

)

+

(
0 G

αβ
(1, 3)Gγζ(2, 6)

0 0

) δΣ
βγ

(3, 2)Φ

δG↓↑
ρλ

(7, 8)Φ

δG↓↑
ρλ

(7, 8)Φ

δφ+
νε(4, 5)

∣∣∣∣∣∣
Φ=0

+

(
0 0

G
αβ

(1, 3)Gγζ(2, 6) 0

) δΣ
βγ

(3, 2)Φ

δG↑↓
ρλ

(7, 8)Φ

δG↑↓
ρλ

(7, 8)Φ

δφ−νε(4, 5)

∣∣∣∣∣∣
Φ=0

(5.184)
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=

(
Gαν(1, 4)Gεζ(5, 6) 0

0 Gαν(1, 4)Gεζ(5, 6)

)

+

(
0 G

αβ
(1, 3)Gγζ(2, 6)

0 0

)(
0 0
1 0

) δΣ↓↑
βγ

(3, 2)Φ

δG↓↑
ρλ

(7, 8)Φ

δG↓↑
ρλ

(7, 8)Φ

δφ+
νε(4, 5)

∣∣∣∣∣∣
Φ=0

+

(
0 0

G
αβ

(1, 3)Gγζ(2, 6) 0

)(
0 1
0 0

) δΣ↑↓
βγ

(3, 2)Φ

δG↑↓
ρλ

(7, 8)Φ

δG↑↓
ρλ

(7, 8)Φ

δφ−νε(4, 5)

∣∣∣∣∣∣
Φ=0

,(5.185)

where we identified G := Gσ = G↑↑ = G↓↓ due to paramagnetism and spin rotational
invariance. Therefore, the only non-vanishing matrix elements are

δG↓↑αζ(1, 6)Φ

δφ+
νε(4, 5)

∣∣∣∣∣
Φ=0

= Gαν(1, 4)Gεζ(5, 6) +G
αβ

(1, 3)
δΣ↓↑

βγ
(3, 2)Φ

δG↓↑
ρλ

(7, 8)Φ

δG↓↑
ρλ

(7, 8)Φ

δφ+
νε(4, 5)

∣∣∣∣∣∣
Φ=0

Gγζ(2, 6)

= −
〈
Tτ c
†
ζ,↑(6)cα,↓(1)c†ν,↓(4)cε,↑(5)

〉
(5.186)

δG↑↓αζ(1, 6)Φ

δφ−νε(4, 5)

∣∣∣∣∣
Φ=0

= Gαν(1, 4)Gεζ(5, 6) +G
αβ

(1, 3)
δΣ↑↓

βγ
(3, 2)Φ

δG↑↓
ρλ

(7, 8)Φ

δG↑↓
ρλ

(7, 8)Φ

δφ−νε(4, 5)

∣∣∣∣∣∣
Φ=0

Gγζ(2, 6)

= −
〈
Tτ c
†
ζ,↓(6)cα,↑(1)c†ν,↑(4)cε,↓(5)

〉
,(5.187)

where the second equality comes from performing the functional derivative on the
Green’s function directly (eq. (5.168) and (5.171)). Finally, we arrive at the Bethe-
Salpeter equations for the generalized susceptibilities in the transversal particle-hole
channel. Notice that both expressions are closely related due to spin rotational invari-
ance.

Before we continue with the derivation of the equation of motion for the self-energy
in the transversal particle-hole channel we present again a few arguments why it is
possible to go from functional derivatives with respect to Φ to derivatives with respect
to G. Starting point is again the free energy F in the presence of the source field Φ
(see eqs. (5.168), (5.172)) that is given by

(5.188) F [Φ] = − 1

β̃
lnZ[Φ] = − 1

β̃
ln tr

(
e−β̃HTτe

−c†α(1)Φ
αβ

(1,2)c
β

(2)
)
.

We obtain the off-diagonal Green’s function Gσ−σ via functional differentiation

(5.189) β̃
δF [Φ]

δΦβα(2, 1)
=

(
0 G↑↓αβ(1, 2)Φ

G↓↑αβ(1, 2)Φ 0

)
=: G̃αβ(1, 2).

The two above equations (5.188), (5.189) are sufficient to define the Legendre transform
for the free energy F via

(5.190) Ω[G̃] = F [Φ]− 1

β̃
tr
(
G̃Φ

)
,

where Ω is coined the Kadanoff-Baym functional for the off-diagonal Green’s function.
We find the property

β̃
δ

δG̃βα,σ(2, 1)
Ω[G̃] := β̃

 0 δ

δG↓↑βα,σ(2,1)
δ

δG↑↓βα,σ(2,1)

Ω[G̃](5.191)
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=β̃
δF [Φ]

δG̃βα,σ(2, 1)
−

δtr
(
G̃Φ

)
δG̃βα,σ(2, 1)

(5.192)

=β̃
δΦγε,σ(3, 4)

δG̃βα,σ(2, 1)

δF [Φ]

δΦγε,σ(3, 4)

−
δ
(
G↑↓εγ,σ(4, 3)φ+

γε,σ(3, 4) + G↓↑εγ,σ(4, 3)φ−γε,σ(3, 4)
)

δG̃βα,σ(2, 1)
(5.193)

=
δΦγε,σ(3, 4)

δG̃βα,σ(2, 1)
G̃εγ,σ(4, 3)−

δΦγε,σ(3, 4)

δG̃βα,σ(2, 1)
G̃εγ,σ(4, 3)−

δG̃εγ,σ(4, 3)

δG̃βα,σ(2, 1)
Φγε,σ(3, 4)(5.194)

=−Φαβ,σ(1, 2).(5.195)

Again, the above property (5.195) and the Dyson equation (5.174) help to deduce

1

T

δΩ[G̃]

δG̃βα,σ(2, 1)
= −Φαβ,σ(1, 2)(5.196)

=
(
G−1

)
αβ,σ

(1, 2)−
[(

G0
)−1
]
αβ,σ

(1, 2) + Σαβ,σ(1, 2),(5.197)

which reduces to the Dyson equation of our original system in the case where

(5.198)
1

T

δΩ[G̃]

δG̃βα,σ(2, 1)
= −Φαβ,σ(1, 2) = 0.

In contrast to the longitudinal particle-hole channel we will stop at this point since
the construction of a Luttinger-Ward functional for the off-diagonal Green’s function is
not very useful to us. The only important point that we wanted to stress in this small
excursion was the transition from the functional dependence of Φ to G̃ that we used
earlier to derive the Bethe-Salpeter equations (5.187), (5.186).

At this point we will relate the generalized susceptibilities to the spin susceptibility.
This can be done via spin ladder operators

S±αβ(1) :=Sxαβ(1)± iSyαβ(1)

=
1

2

(
c†α,↑(1)cβ,↓(1) + c†α,↓(1)cβ,↑(1)± (c†α,↑(1)cβ,↓(1)− c†α,↑(1)cβ,↓(1))

)
=

{
c†α,↑(1)cβ,↓(1) ,+

c†α,↓(1)cβ,↑(1) ,−
,(5.199)

where we used the definition of the spin vector in eq. (5.132). As we did for the spin
fluctuations in z-direction we can define the linear response to spin perturbations with
respect to the S± operators. We define

χsp,±λζνη(1, 2) :=4
〈
TτS

+
λζ(1)S−ην(2)

〉
= 4

〈
Tτ c
†
λ,↑(1)cζ,↓(1)c†η,↓(2)cν,↑(2)

〉
(5.200)

=4
〈
TτS

x
λζ(1)Sxην(2)

〉
+ 4

〈
TτS

y
λζ(1)Syην(2)

〉
− 4i

〈
TτS

x
λζ(1)Syην(2)− Syλζ(1)Sxην(2)

〉
(5.201)

=4
〈
TτS

x
λζ(1)Sxην(2)

〉
+ 4

〈
TτS

y
λζ(1)Syην(2)

〉
−
〈
Tτ c
†
λ,↑(1)cζ,↓(1)c†η,↓(2)cν,↑(2)− c†λ,↓(1)cζ,↑(1)c†η,↑(2)cν,↓(2)

〉
(5.202)

=8
〈
TτS

z
λζ(1)Szην(2)

〉
= 2χspλζνη(1, 2) + 8

〈
Szλζ(1)

〉 〈
Szην(2)

〉
,(5.203)
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where we used spin rotational invariance and the definition of the spin susceptibility
χsp (eq. (5.131)) in the last equation.

We draw now the connection between the susceptibility χsp,± and the self-energy.
Similar to the longitudinal particle-hole channel we start from the implicit equation for
the self-energy (eq. (5.51)),

Σ
αβ

(1, 3)ΦG
βγ

(3, 2)Φ

=− Uα

〈Tτnα,↓(1)cα,↑(1)c†γ,↑(2)
〉

Φ

〈
Tτnα,↓(1)cα,↑(1)c†γ,↓(2)

〉
Φ〈

Tτnα,↑(1)cα,↓(1)c†γ,↑(2)
〉

Φ

〈
Tτnα,↑(1)cα,↓(1)c†γ,↓(2)

〉
Φ

 .(5.204)

Since the Hamiltonian is spin conserving, we obtain in the limit Φ = 0 the equation

Σ
αβ

(1, 3)G
βγ

(3, 2)

=− Uα

〈Tτnα,↓(1)cα,↑(1)c†γ,↑(2)
〉

0

0
〈
Tτnα,↑(1)cα,↓(1)c†γ,↓(2)

〉 .(5.205)

Multiplying with the inverse Green’s function Gγν(2, 4) and integrating over all internal
degrees of freedom yields

Σαν(1, 4) = Uα


δG↓↑αγ(1,3)Φ

δφ+αα(1+,1)

∣∣∣∣
Φ=0

0

0
δG↑↓αγ(1,3)Φ

δφ−αα(1+,1)

∣∣∣∣
Φ=0

(G−1
)
γν

(3, 4).(5.206)

Next, one can use the Bethe-Salpeter equations for the generalized susceptibilities
(eq. (5.187)) to further evaluate

Σ↑↑αν(1, 2) =UαGαα(1, 1+)Gαγ(1, 3)G−1
γν (3, 4)

+ UαGαβ(1, 9)
δΣ↓↑

βε
(9, 5)Φ

δG↓↑
ρλ

(7, 8)Φ

δG↓↑
ρλ

(7, 8)Φ

δφ+
αα(1+, 1)

∣∣∣∣∣∣
Φ=0

Gεγ(5, 3)G−1
εν (3, 4)(5.207)

=UαGαα(1, 1+)δα,νδ(1− 4) + UαGαβ(1, 9)
δΣ↓↑

βν
(9, 4)Φ

δG↓↑
ρλ

(7, 8)Φ

δG↓↑
ρλ

(7, 8)Φ

δφ+
αα(1+, 1)

∣∣∣∣∣∣
Φ=0

,(5.208)

Σ↓↓αν(1, 2) =UαGαα(1, 1+)Gαγ(1, 3)G−1
γν (3, 4)

+ UαGαβ(1, 9)
δΣ↑↓

βε
(9, 5)Φ

δG↑↓
ρλ

(7, 8)Φ

δG↑↓
ρλ

(7, 8)Φ

δφ−αα(1+, 1)

∣∣∣∣∣∣
Φ=0

Gεγ(5, 3)G−1
εν (3, 4)(5.209)

=UαGαα(1, 1+)δα,νδ(1− 4) + UαGαβ(1, 9)
δΣ↑↓

βν
(9, 4)Φ

δG↑↓
ρλ

(7, 8)Φ

δG↑↓
ρλ

(7, 8)Φ

δφ−αα(1+, 1)

∣∣∣∣∣∣
Φ=0

.(5.210)

We see now that the equation can be related to the spin susceptibilities via eq. (5.203)
and we get

Σαν,σ(1, 4)

=Uαnα,−σ(1)δα,νδ(1− 4) +
Uα
2
G
αβ

(1, 9)Γsp,tr
νβλρ

(9, 4; 7, 8)χsp
λραα

(7, 8; 1),(5.211)

where we defined the irreducible spin vertex in the transversal channel

(5.212) Γsp,trνβλρ(9, 4; 7, 8) := −
δΣ↑↓βν(9, 4)Φ

δG↑↓ρλ(7, 8)Φ

= −
δΣ↓↑βν(9, 4)Φ

δG↓↑ρλ(7, 8)Φ

.
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As expected we recover the Hartree-Fock term as in the longitudinal particle-hole chan-
nel but a different fluctuations part with transverse spin fluctuations only. Neverthe-
less, the diagrammatic representation follows the one from the longitudinal particle-hole
channel (see fig. 5.2).

5.2. Conserving approximations

This short overview is based on Refs. [163,164].
At the core of the Kadanoff-Baym conserving approximations we find the so-called
Luttinger-Ward functional Φ[G] [117,118] that we introduced earlier in sec. 5.1.5. We
repeat the basic facts that we introduced before: First, the Luttinger-Ward functional
is defined as the sum of all closed two-particle irreducible skeleton diagrams that can
be constructed from the full Green’s function G and the Hubbard interaction U (see
fig. 5.5). We also found that Φ[G] is the generating functional for the self-energy

Figure 5.5. The exact Luttinger-Ward functional Φ[G] is the sum
of all closed two-particle irreducible skeleton diagrams constructed from
the full Green’s function G (lines with arrows) and the bare interaction
vertex U (single-wiggled lines). Adapted from [164].

(5.213) Σαβ,σ(1, 2) =
δΦ[G]

δGβα,σ(2, 1)

and on the two-particle level it also generates the particle-hole irreducible vertex

(5.214) Γσσ
′

αβγε(1, 2; 3, 4) :=
δΦ[G]

δGαβ,σ(2, 1)δGεγ,σ′(3, 4)

from which the spin and charge irreducible vertices Γsp/ch can be derived by spin and
charge channel decomposition (see eqs. (5.130), (5.153))10,

Γch = Γσ−σ + Γσσ,(5.215)

Γsp = Γσ−σ − Γσ↑.(5.216)

Working with the Luttinger-Ward functional can bear some dangers due to the infi-
nite sum of diagrams: It was shown that even at small interaction strengths U/W , W
being the bandwidth of the Hubbard model, one encounters divergences in the charge
vertex Γch which lead to a branching of the self-energy Σ into a physical and a un-
physical branch [165,166] or just lead to worse results than second order perturbation
theory [167].

The important advantage –avoiding the unphysical branches of solutions– of de-
riving approximations to the Hubbard model within the Luttinger-Ward framework
consists of conservation laws that are fulfilled automatically. Notably, such approxima-
tions are thermodynamically consistent, which means that thermodynamic expectation

10We defined those expressions as they appeared naturally in the Bethe-Salpeter equa-
tions (5.129), (5.152) but one can motivate the spin and charge channel decomposition more formally
by taking advantage of the spin rotation invariance and the crossing symmetry of the two-particle irre-
ducible vertices [158,159]. The final result are four independent irreducible vertices Γsp/ch and Γs/t,

where the singlet and triplet vertex Γs/t stem from the particle-particle irreducible channel.
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values can be expressed as derivatives of the free energy. Additionally, they preserve im-
portant physical constraints like the Ward identities for fluctuations and single-particle
conservation laws [115,117].

The simplest conserving approximation that can be thought of is the self-consistent
Hartree-Fock approximation. In this approach, one assumes the Luttinger-Ward func-
tional Φ[G] to consist only of the first order terms which are the ones shown in fig. 5.5.
Performing the functional derivatives in eqs. (5.213) and eq. (5.214) one obtains for
local Hubbard interaction Uα

Σαβ,σ(1, 2) = Uαnα,−σδα,βδ(1− 2),(5.217)

Γspαβγε(1, 2; 3, 4) = Γchαβγε(1, 2; 3, 4) = Uαδ(3− 4)δ(2− 3)δ(1− 3+)δα,βδβ,γδγ,ε.(5.218)

Inserting those expressions into the Bethe-Salpeter equations (5.129), (5.152) we obtain
the random phase approximation result

χsp =
[
I− χ0Γsp

]−1
2χ0,(5.219)

χch =
[
I + χ0Γch

]−1
2χ0,(5.220)

where χ0 is the irreducible susceptibility (see eq. (5.71)).
Among the class of more advanced techniques we find the ones that sum infinitely

many diagrams of a certain topology. For example, in the fluctuation-exchange approx-
imation (FLEX) one sums only bubble and ladder diagrams that can be rearranged in
terms of geometric series [168–173]. This yields a self-energy that is frequency- and
momentum dependent in contrast to the Hartree-Fock result for the Hubbard model.
Another prominent conserving approximation is the GW approximation where only
so-called ring diagrams appear in the Luttinger-Ward functional [108,174–176]. This
method can be also understood in terms of a perturbation theory in the screened in-
teraction W .
The dynamical mean field theory (DMFT) can be formulated with a Luttinger-Ward
functional that only contains diagrams from local propagators [85, 87, 88, 177, 178].
This approach is exact in the limit of infinite dimensions/ lattice connectivity, where
the self-energy is local but dynamic, i.e. Σ = Σ(ω). For real material applica-
tions it is also possible to formulate a conserving approximation where the start-
ing point is a density functional theory calculation and where correlation effects are
treated within DMFT; this approach is coined DFT+DMFT [179–181]. Similarly,
one can also combine GW and DMFT to treat non-local correlation effects within
GW and local ones within DMFT [182, 183]. Moreover, the diagrammatic and clus-
ter extensions to DMFT also fall into the category of conserving approximations,
e.g. the cluster DMFT method (CDMFT) [61, 88, 184–187], the dynamical clus-
ter approximation (DCA) [185, 186, 188–193], the dynamical vertex approximation
(DΓA) [147, 194, 195], TRILEX [196, 197], QUADRILEX [198], dual boson [199]
and dual fermion techniques [200].

In summary, conserving approximations play a prominent role in modern develop-
ments of many-body methods due to their inherent enforcement of physical constraints.
Although TPSC is not a conserving approximation we will see in section 5.3 in how far
both many-body approaches are closely related.

5.2.1. Two-particle properties. Since the functional derivative formalism also
determines two-particle objects it is also possible to access higher order correlation
functions. In this work we will mainly focus on single-particle properties which is why
we only mention a few observables that can be extracted.
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Most prominently, one obtains spin and charge susceptibilities which reveal impor-
tant insights into charge and spin order instabilities. Moreover, they allow to under-
stand how nesting properties change due to interaction and temperature. For a more
detailed listing and explicit examples that were calculated within the Two-Particle
Self-Consistent approach we refer to Refs. [155,163].

5.3. Single-band TPSC

In this section we sketch the Two-Particle Self-Consistent approach in its original
formulation for the single-band repulsive Hubbard model [155,163,186,201–204].

In chapter 3 we have constructed a lattice model for our material where the original
long-range Coulomb interaction is reduced to closest neighbor interactions Vij or even
to local interactions U, J only.
The simplest non-trivial representative of this class of lattice models is the single-band
Hubbard model [64–66,145] and is described by the Hubbard Hamiltonian

(5.221) H =
∑
i,j,σ

tri−rjc†σ(ri)cσ(rj) +
U

2

∑
i,σ

nσ(ri)n−σ(ri),

where tri−rj are the hopping amplitudes between lattice sites ri and rj . Since we are
interested in paramagnetic states, spin rotational invariant and time-reversal symmet-
ric systems only, we drop the spin index in the hopping elements tri−rj . The on-site
Hubbard interaction is denoted by U . The operator cσ(ri) destroys an electron with

spin σ at lattice site ri while the adjoint operator c†σ(ri) creates an electron with spin σ

at lattice site ri. The density operator nσ(ri) := c†σ(ri)cσ(ri) measures the occupation
of particles at ri with spin σ. Although the operators are time-dependent we did not
denote the time dependence explicitly in the Hamiltonian H because H itself is not
explicitly time-dependent.
The Two-Particle Self-Consistent approach (TPSC) is a many-body method that was
originally formulated to find approximate expression for the spin and charge fluctuations
and the renormalization of single-particle properties within the repulsive single-band
Hubbard model [155, 163]. Although TPSC itself is not a conserving approxima-
tion11 in the sense of Kadanoff and Baym [113,115,116] it can be derived within this
framework. The starting point of this class of methods is an approximation of the
Luttinger-Ward functional Φ[G] [117,118]. In the case of TPSC one approximates the
Luttinger-Ward functional as

(5.222) Φ[G] ≈ 1

2
Gσ(1, 1+)Γσσ

′
G
σ′

(1, 1+),

where Γσσ
′

is a local and static effective two-particle irreducible vertex that is assumed
to contain the contribution of all diagrams in Φ[G]. This assumption can be expected
to give accurate results in the regions of weak and intermediate interaction strength
where the four-point vertex Γσσ

′
(1, 2; 3, 4) is not singular. However, recent studies

have shown that the two-particle irreducible vertex Γσσ
′
(1, 2; 3, 4) has non-trivial or

even diverging momentum and frequency dependence in the regime of intermediate
and strong coupling [158,160,165,205,206]. The diagrammatic representation of the
Luttinger-Ward functional Φ[G] in the TPSC approximation is shown in fig. 5.6.

As discussed for the Hartree-Fock approximation (see sec. 5.2) this kind of Luttinger-

Ward functional leads to a static and local self-energy Σσ = Γσσ
′
n
σ′

in the single-band

case that can be absorbed into the chemical potential to ensure conservation of the
particle number. At this step TPSC is still a conserving approximation but it recovers
effectively the non-interacting Green’s function in the paramagnetic case. As a result

11This is argued in the following derivation.
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Φ[G] =

≈

+ + ...

Figure 5.6. The exact Luttinger-Ward functional Φ[G] is the sum
of all closed two-particle irreducible skeleton diagrams constructed from
the dressed Green’s function G (lines with arrows) and the bare interac-
tion vertex U (single-wiggled lines). Within TPSC one assumes that the
sum of all diagrams can be condensed into a single diagram of first or-
der where the bare interaction vertex becomes an effective two-particle
irreducible vertex Γσσ

′
(double-wiggled line). Figure reprinted from

Ref. [164].

there is no single-particle renormalization at this first step of TPSC. We will consider
now two-particle functions and come back to the effect on single-particle functions
afterwards.

The next step in TPSC is to determine the value of the effective four-point vertex
Γσσ

′
or more specifically its value in the spin and charge channel, namely Γsp and Γch.

But how does one determine the effective value of a complicated two-particle func-
tion at minimal computational cost, i.e. without solving complicated parquet equa-
tions [147]? In TPSC one considers equations of Γsp/ch that encode the local Pauli
principle (〈n2

σ(ri)〉 = 〈nσ(ri)〉) by means of the local spin and charge sum rule (see
eq. (5.117) and (5.142)),

χsp(r = 0, t = 0) = n− 2〈n↑n↓〉,(5.223)

χch(r = 0, t = 0) = n+ 2〈n↑n↓〉 − n2,(5.224)

where we dropped the dependence on the site position on the right-hand side due to
the lattice periodicity. Those equation are the so-called local spin and charge sum
rules that are direct results of the fluctuation-dissipation theorem and the local Pauli
principle [163]. The Bethe-Salpeter equations for the spin and charge susceptibilities

χsp/ch ((5.129), (5.152)) reduce within TPSC to the following simple expressions:

χsp =
2χ0

1− χ0Γsp
,(5.225)

χch =
2χ0

1 + χ0Γch
,(5.226)

where χ0 is the particle-hole bubble diagram −G0 ∗G0 computed from the bare Green’s
function G0 (see eq. (5.71)).
Note that we have only two sum rules (eqs. (5.223), (5.224)) but three unknowns:
Γsp, Γch and 〈n↑n↓〉. One way of dealing with this set of under-determined equa-

tions is to take the double occupation 〈n↑n↓〉 as an input from a different many-body

method [207]. Another way to complete the set of equations for calculating Γsp, Γch
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and 〈n↑n↓〉 is to make an ansatz for Γsp that is motivated from the local field approxi-

mation [202,208,209], namely

(5.227) Γsp = U
〈n↑n↓〉
〈n↑〉〈n↓〉

.

This ansatz gives accurate results when spin fluctuations are small and –albeit its simple
form– is able to capture the physics of Kanamori-Brueckner screening [163,202,207]
which describes the reduction of the bare interaction in the spin channel [66,210].
Obviously, this ansatz breaks particle-hole symmetry which is a problem if the system
considered exhibits particle-hole symmetry and the expression in eq. (5.227) breaks it
artificially. To avoid such kind of effect one usually performs a particle-hole transfor-
mation when crossing the boundary of equal particle and hole concentration,

(5.228) Γsp = U


〈n↑n↓〉
〈n↑〉〈n↓〉

n ≤ 1

1−n+〈n↑n↓〉
1−n+〈n↑〉〈n↓〉

n > 1
.

The first approach that takes the double occupation 〈n↑n↓〉 as an input from a different

many-body method and does not need eq. (5.228) should be considered when the inter-
action strength is large enough to cause diverging antiferromagnetic fluctuations in the
system since in this regime the TPSC-internal ansatz fails (see fig. 5.7) [146,211–213]:
While TPSC predicts a decreasing double occupation over the whole temperature range
in the two-dimensional Hubbard model on a square lattice at half filling and for weak
to intermediate coupling strengths, it is well known that there exists a crossover tem-
perature TX

12 where antiferromagnetic fluctuations grow exponentially and Pseudogap
physics can set in [146, 211–213]. If U/t is not too large –otherwise the Mott scale
would dominate and the effect of increasing double occupation would disappear– one
can understand the counter-intuitive increase of the double occupancy at T . TX
from quantum fluctuations in the Fermi liquid phase where particle localization is
reduced [177, 214–216]. On the other hand, at large temperatures where thermal
fluctuations dominate in the system the double occupation tends to increase to the
non-interacting value 〈n↑n↓〉 → 〈n↑〉〈n↓〉 = 1/4 at half-filling.

Now that the spin and charge collective modes are calculated one can use the
equation of motion for the self-energy in the longitudinal particle-hole channel (see
eq. (5.159)) to feed those fluctuation effects back to the single-particle properties [113,
163]. Note that this gives an improved self-energy formula that goes beyond the pre-
viously mentioned Hartree-Fock like expression,

(5.229) Σ(l)
σ = Un−σ +

U

4

[
Γspχsp + Γchχch

]
∗G0

σ.

The drawback of this procedure is that TPSC is not a conserving approximation in
the Kadanoff-Baym sense anymore because the self-energy is not calculated from the

functional derivative of the approximate Luttinger-Ward functional δΦ[G]
δG . Nevertheless,

many properties of conserving approximations and physical constraints are still obeyed
to a high degree if not fulfilled exactly in the regime of weak to intermediate coupling
strength [163], e.g. particle number13 and spin conservation, Luttinger’s theorem, the
Mermin-Wagner theorem, Ward identities, the f-sum rule and the consistency relation

12In this case of a two-dimensional Hubbard model the Mermin-Wagner theorem states that ther-
mal fluctuations destroy a finite-temperature phase transition to the antiferromagnetic ground state
which breaks SU(2) symmetry.

13In order to keep the number of particles one has to adjust the chemical potential according to
the improved self-energy.
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Figure 5.7. The double occupation 〈n↑n↓〉 calculated from the TPSC

ansatz eq. (5.228) for the nearest neighbor hopping Hubbard model on a
square lattice at U/t = 8 and half filling. While the double occupation is
in good agreement with various many-body methods [146,211–213] at
temperatures above the crossover temperature TX/t ≈ 0.3 [211] (gray
shaded area) it starts a steep decrease at T . TX where the above cited
many-body methods see a small increase (see main text).

between one- and two-particle properties

(5.230) Σσ(1, 1)Gσ(1, 1+) = U〈n↑n↓〉.
This stands in contrast to many approaches like the Random Phase Approximation,
the Fluctuation Exchange Approximation [168,169] and the Pseudopotential Parquet
Approach [170,171] where some of the above mentioned constraints are significantly
violated [163].

Finally, one can improve on the self-energy formula (5.229) by considering also
the transversal particle-hole channel (see sec. 5.1.8 and eq. (5.211)) and thus enforcing
crossing symmetry of the two-particle irreducible vertex [112, 153, 158]. The final
formula for the TPSC self-energy is then an average of the self-energy expressions in
the longitudinal and transversal particle-hole channel,

(5.231) Σσ = Un−σ +
U

8

[
3Γspχsp + Γchχch

]
∗G0

σ.

Application of the Schwinger-Dyson equation

(5.232) G−1 = (G0)−1 + µ− Σ

yields to the full TPSC Green’s function G and the renormalized quasi-particle proper-
ties, where the chemical potential µ has to be adjusted such that the particle number
is conserved.

5.3.1. Flowchart of the single-band TPSC. For a better overview on the
single-band TPSC approach we show a flowchart of the method in fig. 5.8.
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Figure 5.8. Single-band TPSC flow chart as described in sec. 5.3. Af-
ter calculating the non-interacting Green’s function and the irreducible
susceptibility one has to converge the spin and charge with respect to
the local spin and charge sum rule and the Bethe-Salpeter equations.
From those one is able to evaluate the self-energy and thus interacting
Green’s function via the Dyson equation. Figure adapted from [164].
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5.3.2. Short summary on the applications of single-band TPSC. Before
we continue with the extensions of TPSC it is worthwhile to mention to which classes
of materials and models this method was successfully applied.
A large amount of studies with single-band TPSC were performed for the Hubbard
model on the square lattice14 to analyze spin and charge fluctuations [201, 202, 217,
218], single-particle properties [163,204,219–221], universal critical behavior [222–224],
the optical and dc conductivity [225] and unconventional superconductivity [207,
226–228]. Moreover, TPSC was also applied to analyze magnetic properties of the
three-dimensional Hubbard model [229]. In order to classify TPSC among differ-
ent many-body approaches detailed comparisons were performed in Ref. [148, 163,
230–232]. A slight modification of the above described single-band TPSC was de-
veloped to study the attractive Hubbard model, where the derivation is performed in
the particle-particle channel [112, 161, 233–235]. But TPSC is not only restricted
to on-site interaction U only and can also be extended to deal with nearest-neighbor
repulsion V [236–238].

5.4. Multi-site TPSC

The presentation of this section is based on [154,161,164].
Going from single-band TPSC to a multi-site formulation is basically a change in

the notation without additional new terms [152,239,240]. Nevertheless, we present the
important equations and steps with all details since we presented only the basic ideas
in the single-band case in sec. 5.3. We consider the multi-site15 Hubbard Hamiltonian
H (eq. (5.1)) given by

(5.233) H =
∑

α,β,i,j,σ

t
ri−rj
α,β c†α,σ(ri)cβ,σ(rj) +

1

2

∑
α,i,σ

Uαnα,σ(ri)nα,−σ(ri).

Similar, to the single-band case the multi-site TPSC Luttinger-Ward functional is given
by

(5.234) Φ[G] ≈ 1

2
Gαα,σ(1, 1+)Γσσ

′
α G

αα,σ′
(1, 1+),

where the effective two-particle irreducible vertex Γσσ
′

α carries now a single site index
α since the Hamiltonian H has no inter-site interaction. Again, from functional differ-
entiation this ansatz for the Luttinger-Ward functional Φ[G] gives a static, local and
diagonal self-energy

Σαβ,σ(1, 2) =
δΦ[G]

δGβα,σ(2, 1)
(5.235)

=
δα,β

2

[
Γσσα Gα,σ(1, 1+)δ(1− 2) +Gα,σ(1, 1+)Γσσα β(1− 2)

+Γσ−σα Gα,−σ(1, 1+)δ(1− 2) +Gα,−σ(1, 1+)δ(1− 2)Γσ−σα

]
(5.236)

=
(
Γσσα nα,σ(1) + Γσ−σα nα,−σ(1)

)
δα,βδ(1− 2)(5.237)

=Γchα nα,−σδα,βδ(1− 2),(5.238)

where we again took advantage of paramagnetism and the channel decomposition in
eq. (5.216).

In case of unequally filled lattice sites, i.e. there are two distinct lattice indices
α, β where nα 6= nβ, one has to be careful about this first-step TPSC self-energy.

14The mentioned studies were often model calculations for Cuprate superconductors.
15By multi-site we mean multiple sites in the unit cell, where the interaction is still restricted to

on-site repulsion.
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Fortunately, the study of organic superconductors that is presented in sec. 5.5 does
not fall into this category and we have equally occupied lattice sites. Therefore, the
first-step TPSC self-energy can be absorbed into the chemical potential as was done in
the single-band case. In the general case one would have to argue in how far those site-
dependent energy shifts are already included in the kinetic term of the Hamiltonian H
(see DFT+TPSC in chap. 7) or proceed in the following with a non-interacting Green’s
function G0 modified by those shifts. Alternatively, one can ignore the first-step TPSC
self-energy as an additional approximation. In the following derivation we will assume
that those self-energy shifts are accounted for either by the chemical potential or by
the kinetic term in the Hamiltonian H.
The second functional derivative δΦ[G]

δGδG leads again to site-dependent spin and charge

vertices Γ
sp/ch
α (eqs. (5.130), (5.153)) that are constants,

Γchγβλρ(1, 2; 3, 4)

=
∑
σ

δΣβγ,σ(1, 2)φ

δGρλ,↑(3, 4)φ

∣∣∣∣∣
φ=0

(5.239)

=
∑
σ

δΦ[G]

δGγβ,σ(2, 1)δGρλ,↑(3, 4)
(5.240)

=
1

2

∑
σ

δ

δGγβ,σ(2, 1)[
δGαα,σ(1, 1+)

δGρλ,↑(3, 4)
Γσσα Gαα,σ(1, 1+) +Gαα,σ(1, 1+)Γσσα

δGαα,σ(1, 1+)

δGρλ,↑(3, 4)

+
δGαα,σ(1, 1+)

δGρλ,↑(3, 4)
Γσ−σα Gαα,−σ(1, 1+) +Gαα,σ(1, 1+)Γσ−σα

δG
αα,−σ(1, 1+)

δGρλ,↑(3, 4)

]
(5.241)

=
∑
σ

δρ,λ
δ

δGγβ,σ(2, 1)

[
Gλλ,↑(3, 3

+)Γ↑↑λ δ(3− 4) + Γ↓↑λ Gλλ,↓(3, 3
+)δ(3− 4)

]
(5.242)

=δρ,λδλ,βδγ,λδσ,↓δ(3− 4)δ(2− 3)δ(1− 3+)
[
Γ↑↑λ + Γ↓↑λ

]
(5.243)

=δρ,λδλ,βδγ,λδσ,↓δ(3− 4)δ(2− 3)δ(1− 3+)Γchλ(5.244)

and

Γspγβλρ(1, 2; 3, 4)

=
∑
σ

σ
δΣβγ,σ(3, 2)φ

δGρλ,↓(7, 8)φ

∣∣∣∣∣
φ=0

(5.245)

=
∑
σ

σ
δΦ[G]

δGγβ,σ(2, 1)δGρλ,↓(3, 4)
(5.246)

=
1

2

∑
σ

σ
δ

δGγβ,σ(2, 1)[
δGαα,σ(1, 1+)

δGρλ,↓(3, 4)
Γσσα Gαα,σ(1, 1+) +Gαα,σ(1, 1+)Γσσα

δGαα,σ(1, 1+)

δGρλ,↓(3, 4)

+
δGαα,σ(1, 1+)

δGρλ,↓(3, 4)
Γσ−σα Gαα,−σ(1, 1+) +Gαα,σ(1, 1+)Γσ−σα

δG
αα,−σ(1, 1+)

δGρλ,↓(3, 4)

]
(5.247)
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=
∑
σ

σδρ,λ
δ

δGγβ,σ(2, 1)

[
Gλλ,↓(3, 3

+)Γ↓↓λ δ(3− 4) + Γ↑↓λ Gλλ,↑(3, 3
+)δ(3− 4)

]
(5.248)

=δρ,λδλ,βδγ,λδσ,↓δ(3− 4)δ(2− 3)δ(1− 3+)
[
Γ↑↓λ − Γ↓↓λ

]
(5.249)

=δρ,λδλ,βδγ,λδσ,↓δ(3− 4)δ(2− 3)δ(1− 3+)Γspλ .(5.250)

We remind of the local spin and charge sum rules (eqs. (5.117), (5.142)),

T

N

∑
q

χspαααα(q) = 〈nα〉 − 2〈nα,↑nα,↓〉,(5.251)

T

N

∑
q

χchαααα(q) = 〈nα〉+ 2〈nα,↑nα,↓〉 − 〈nα〉2.(5.252)

5.4.1. Ansatz for the irreducible spin vertex. As in the single-band case one
can use the derivation in Ref. [163] to get an ansatz equation for the spin vertex Γspα .
We start with the implicit definition of the self-energy in eq. (5.48),

(5.253) Σ
αβ,σ

(1, 3)G
βγ,σ

(3, 2) = −Uα
〈
Tτ c
†
α,−σ(1+)cα,−σ(1)cα,σ(1)c†γ,σ(2)

〉
,

A simple ansatz can be obtained by performing a Hartree-Fock decoupling for the
right-hand side of the equation and to write a prefactor A in front of the decoupled
expectation values in order to restore the result for equal time/position evaluation, i.e.
2→ 1. This yields

Σ
αβ,σ

(1, 3)G
βγ,σ

(3, 2) =− Uα
〈
nα,−σ(1+)cα,σ(1)c†γ,σ(2)

〉
(5.254)

≈Aα〈nα,−σ〉Gαγ,σ(1, 2),(5.255)

where we took advantage of imaginary time and space translational invariance of the
system. To recover now the result for equal imaginary time and position we determine

Aα = Uα
〈nα,σnα,−σ〉
〈nα,σ〉〈nα,−σ〉

.(5.256)

In principle, one would have to determine the occupations 〈nα,σ〉 from the interacting
system but we use the occupations of the non-interacting system and assume that those
are close to the occupations of the interacting system after determining the chemical
potential such that the particle number is conserved. In the case of the organic super-
conductors (see sec. 5.5) we know that this is indeed true and not an approximation.
In the general case one can expect that this is a rather good approximation because
single-particle renormalizations have usually smaller effect on the two-particle objects
that the other way round: This scheme is consistent with the idea of single-band TPSC
that spin and charge fluctuations are effectively calculated from the bare Green’s func-
tion [163].
It was shown in the original single-band TPSC that such an ansatz can be also motivated
from the local-field approach for the electron gas and reproduces Kanamori-Brueckner
screening [201].
SubstitutingA back into the ansatz equation (eq. (5.253)) and multiplying with

(
G−1

)
γν

(2, 2)

where we again integrate over all internal degrees of freedom we find

Σαν,σ(1, 2) ≈ Aα〈nα,−σ(1)〉δα,νδ(1− 2).(5.257)

To obtain the renormalized vertex Γsp we perform the functional derivatives from
eq. (5.153) with the approximated self-energy expression from eq. (5.257). This leads
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to the ansatz

Γspγβλρ(1, 2; 3, 4) =
∑
σ

σ
δΣβγ,σ(1, 2)

δGρλ,↓(3, 4)
(5.258)

=δβ,γδ(1− 2)
∑
σ

σ

(
δAβ

δGρλ,↓(3, 4)
nβ,−σ(2) +Aβ

δnβ,−σ(2)

δGρλ,↓(3, 4)

)
(5.259)

=Aβδβ,ρδβ,λδβ,γδ(2− 3)δ(2+ − 4)δ(1− 2),(5.260)

where the contribution of δA
δG in eq. (5.259) cancels due to spin rotational invariance.

Thus, equation (5.260) together with the local spin sum rules (eq. (5.142)) give us a
set of equations to uniquely determine the irreducible spin vertex

(5.261) Γspα = Aα = Uα
〈nα,↑nα,↓〉
〈nα,↑〉〈nα,↓〉

.

5.4.2. TPSC self-energy and susceptibilities. Inserting the spin and charge
vertices Γch/sp obtained from the sum rules (eqs. (5.251),(5.252)) and the ansatz eq. (5.260)
into the equation of motion for the self-energy (eq. (5.159)) gives

Σαβ,σ(1, 2)

=Uα〈nα,−σ〉δα,βδ(1− 2) +
Uα
4
G0
αβ(1, 2)

[
Γspβ χ

sp
ββαα(2, 1) + Γchβ χ

ch
ββαα(2, 1)

]
,(5.262)

where the spin susceptibility χsp can be calculated via the Bethe-Salpeter eq. (5.152),

χspλγξν(1, 2) =2χ0
λγξν(1, 2)−G0

γα(1, 3)G0
αλ(3, 1)Γspα χ

sp
ααξν(3, 2)(5.263)

=2χ0
λγξν(1, 2) + χ0

λγαα(1, 3)Γspα χ
sp
ααξν(3, 2).(5.264)

From this expression one can read that if we are interested in matrix elements ββαα
(left-hand side) we only need to know matrix elements of the same form (right-hand
side), namely αααα. This observation allows us to save memory and numerical cal-

culations by restricting all susceptibility calculations to matrix elements χ
0/ch/sp
ααββ . The

same idea enables us to rewrite eq. (5.264) in terms of a matrix multiplication,

2χ0
ααββ(1, 2) =

(
Iα,αδ(1− 3)− χ0

αααα(1, 3)Γspα
)
χspααββ(3, 2),(5.265)

where I denotes the identity in the matrix site-space RNorb×Norb .
Analogously, one can derive from the Bethe-Salpeter equation (eq. (5.129)) for the
charge susceptibility χch the expression

(5.266) 2χ0
ααββ(1, 2) =

(
Iα,αδ(1− 3) + χ0

αααα(1, 3)Γchα

)
χchααββ(3, 2).

Note that the spin and charge fluctuation assume the same shape as in RPA (see
eqs. (5.219), (5.220)). Nevertheless, the important difference between RPA and TPSC
is the vertex that is used in the expressions. While RPA takes no vertex corrections
into account and the irreducible vertices Γch/sp equal the bare interaction U , TPSC
considers such effects that enter via the local spin and charge sum rules.

The above expressions for the self-energy Σ and the spin and charge susceptibil-
ity χsp/ch(eqs. (5.262), (5.265) and (5.266)) are functions in real space and imaginary
time. Due to efficient implementation schemes (see app. ¸B) for reciprocal space and
Matsubara functions we Fourier transform the above expressions and get

χsp(q, iqm) =
[
I− χ0(q, iqm)Γsp

]−1
2χ0(q, iqm),(5.267)

χch(q, iqm) =
[
I + χ0(q, iqm)Γch

]−1
2χ0(q, iqm)(5.268)
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and

Σαβ,σ(k, iωn) = Uα〈nα,−σ〉δα,β +
Uα
4

∑
r

∫ β̃

0
eirkeiωnτ×

×
[
Γspβ χ

sp
ββαα(−r,−τ) + Γchβ χ

ch
ββαα(−r,−τ)

]
G0
αβ(r, τ)dτ(5.269)

= Uα〈nα,−σ〉δα,β +
Uα

4N2β̃2

∑
q,iqm

∑
k′,iω

n′

∑
r

∫ β̃

0
eir(k−k

′+q)ei(ωn−ωn′+qm)τ×

×
[
Γspβ χ

sp
ββαα(q, iqm) + Γchβ χ

ch
ββαα(q, iqm)

]
G0
αβ(k′, iωn′)dτ(5.270)

= Uα〈nα,−σ〉δα,β +
UαT

4N
×

×
∑
q,iqm

[
Γspβ χ

sp
ββαα(q, iqm) + Γchβ χ

ch
ββαα(q, iqm)

]
G0
αβ(k + q, iωn+m).(5.271)

Alternatively, one can use the inversion property of the susceptibilities (see eq. (5.102)
to obtain

Σαβ,σ(k, iωn) = Uα〈nα,−σ〉δα,β +
UαT

4N
×

×
∑
q,iqm

[
χspααββ(q, iqm)Γspβ + χchααββ(q, iqm)Γchβ

]
G0
αβ(k − q, iωn−m).(5.272)

Next, we include the effects from the transversal particle-hole channel (see sec. 5.1.9).
Similarly to the longitudinal channel one start with eq. (5.204),

Σ
αβ

(1, 3)ΦG
βγ

(3, 2)Φ

=− Uα

〈Tτnα,↓(1)cα,↑(1)c†γ,↑(2)
〉

Φ

〈
Tτnα,↓(1)cα,↑(1)c†γ,↓(2)

〉
Φ〈

Tτnα,↑(1)cα,↓(1)c†γ,↑(2)
〉

Φ

〈
Tτnα,↑(1)cα,↓(1)c†γ,↓(2)

〉
Φ

(5.273)

and factorizes this expression in a similar way as in eq. (5.255) which results in the
ansatz

Σ
αβ

(1, 3)ΦG
βγ

(3, 2)Φ = Aα

(
G↓↓αα(1, 1+)Φ −G↑↓αα(1, 1+)Φ

−G↓↑αα(1, 1+)Φ G↑↑αα(1, 1+)Φ

)
Gαγ(1, 2),(5.274)

where Aα is chosen such that the equal time and position limit is fulfilled, i.e. find
again

(5.275) Aα = Uα
〈nα,σnα,−σ〉
〈nα,σ〉〈nα,−σ〉

because the spin off-diagonal Green’s function elements will vanish due to spin conser-
vation.
To obtain an expression for the irreducible transversal spin vertex Γsp,tr (eq. (5.212))
we multiply eq. (5.274) with the inverse Green’s function

(
G−1

)
γ,ε

(2, 4) from the right

and integrate out all internal degrees of freedom which yields

(5.276) Σαε(1, 4)Φ = Aα

(
G↓↓αα(1, 1+)Φ −G↑↓αα(1, 1+)Φ

−G↓↑αα(1, 1+)Φ G↑↑αα(1, 1+)Φ

)
δ(1− 4)δα,ε.

Thus, we obtain the space irreducible spin vertex

Γsp,trεαλρ(1, 4; 7, 8) =− δΣ↑↓αε(1, 4)Φ

δG↑↓ρλ(7, 8)Φ
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=Uα
〈nα,σnα,−σ〉
〈nα,σ〉〈nα,−σ〉

δα,ρδλ,εδα,εδ(1− 4)δ(1− 7)δ(4− 8)(5.277)

as in the longitudinal channel and therefore we will have the same spin susceptibility
χsp (see eq. (5.203) and (5.187)). Finally, we can simplify the transversal self-energy
expression (eq. (5.211)) and obtain

(5.278) Σαν,σ(1, 4) = Uαnα,−σ(1)δα,νδ(1− 4) +
Uα
2

Γspν χ
sp
ναα(4, 1)Gαν(1, 4).

As discussed in sec. 5.1.8 we average over the transversal and longitudinal self-energy
expressions (eq. (5.271) and (5.278)) to obtain the final result

Σαβ,σ(k, iωn) = Uα〈nα,−σ〉δα,β +
UαT

8N
×

×
∑
q,iqm

[
3Γspβ χ

sp
ββαα(q, iqm) + Γchβ χ

ch
ββαα(q, iqm)

]
G0
αβ(k + q, iωn+m).(5.279)

In the end one obtains the single-particle properties via the full Green’s function G
from the multi-site version of the Dyson equation

(5.280) G =
[
(G0)−1 + µ− Σ

]−1
,

where the chemical potential µ is used to fix the number of particles after introducing
the improved self-energy expression from eq. (5.279).

5.4.3. Internal accuracy check. We remind ourselves of the identity

(5.281) Σ
αβ,σ

(1, 3)G
βγ,σ

(3, 2) = −Uα
〈
Tτnα,−σ(1+)cα,σ(1)c†γ,σ(2)

〉
that we derived both in the longitudinal particle-hole channel (see eq. (5.48)) and the
transversal particle-hole channel (see eq. (5.205)). Evaluating this equation at equal
space-time variable and site index, 2→ 1+ and γ → α, gives

(5.282) Σ
αβ,σ

(1, 3)G
βα,σ

(3, 1+) = Uα
〈
nα,−σnα,σ

〉
,

which can be Fourier transformed into

(5.283) lim
τ↗0

T

N

∑
k,iωn

e−iωnτΣ
αβ,σ

(k, iωn)G
βα,σ

(k, iωn) = Uα
〈
nα,−σnα,σ

〉
.

Note that the limit cannot be exchange with the infinite sum due to the constant

Hartree-Fock term in the self-energy Σ (see eq. (5.279)) and the O
(

1
iωn

)
-high fre-

quency behavior of the Green’s function G.
Inserting the explicit expression for the self-energy Σ (eq. (5.279)) into the above equa-
tion with G replaced with the non-interacting Green’s function G0 gives

lim
τ↗0

T

N

∑
k,iωn

e−iωnτΣ
αβ,σ

(k, iωn)G0
βα,σ

(k, iωn)

=Uα〈nα,−σ〉〈nα,σ〉+

+
UαT

8N

∑
q,iqm

[
3Γsp

β
χsp
ββαα

(q, iqm) + Γch
β
χch
ββαα

(q, iqm)
]
×

× lim
τ↗0

∑
k,iωn

e−iωnτG0
αβ

(k + q, iωn+m)G0
βα,σ

(k, iωn),(5.284)

where we used that the off-diagonal of the non-interacting Green’s function G0 decays
faster then n 7→ 1/(iωn) (see eq. (4.235)) whence only the diagonal elements Σαα and
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G0
αα contribute to the first term on the right-hand side of eq. (5.284). Moreover, we

can identify the irreducible susceptibility χ0 (eq. (5.72))

lim
τ↗0

T

N

∑
k,iωn

e−iωnτΣ
αβ,σ

(k, iωn)G0
βα,σ

(k, iωn)

=Uα〈nα,−σ〉2+

− UαT

8N

∑
q,iqm

[
3Γsp

β
χsp
ββαα

(q, iqm) + Γch
β
χch
ββαα

(q, iqm)
]
χ0
ααββ

(q, iqm).(5.285)

We can now use the Bethe-Salpeter equations (5.129) and (5.264) to identify

lim
τ↗0

T

N

∑
k,iωn

e−iωnτΣ
αβ,σ

(k, iωn)G0
βα,σ

(k, iωn)

=Uα〈nα,−σ〉2 −
UαT

8N

∑
q,iqm

[
3χspαααα(q, iqm)− 4χ0

αααα(q, iqm)− χchαααα(q, iqm)
]
.

(5.286)

From the local spin and charge sum rules (eqs. (5.251), (5.252)) for the spin and charge

susceptibilities χsp/ch and the same ones in the limit U = 0 – this gives us a sum rule
for χ0 – we obtain

lim
τ↗0

T

N

∑
k,iωn

e−iωnτΣ
αβ,σ

(k, iωn)G0
βα,σ

(k, iωn)

=Uα〈nα,−σ〉2 −
Uα
8

[
3
(
〈nα〉 − 2〈nα,↓nα,↑〉

)
− 2

(
〈nα〉 − 2〈nα,↓〉〈nα,↑〉

)
−

−
(
〈nα〉+ 2〈nα,↓nα,↑〉 − 〈nα〉2

)]
(5.287)

=Uα
〈
nα,−σnα,σ

〉
.(5.288)

We conclude that the sum rule

(5.289) lim
τ↗0

T

N

∑
k,iωn

e−iωnτΣ
αβ,σ

(k, iωn)G0
βα,σ

(k, iωn) = Uα
〈
nα,−σnα,σ

〉
is indeed fulfilled for the TPSC self-energy. For this reason we can use this sum rule as
a benchmark for numerical convergence and more importantly the deviation between
eq. 5.289 and the same equation with G0 replace by the full Green’s function G gives
us a measure for the applicability of the TPSC approximation.

5.4.4. Flowchart of the multi-site TPSC. For a better overview on the multi-
site TPSC approach we give a flowchart of the method in fig. 5.9.
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Figure 5.9. Multi-site TPSC flow chart as described in sec. 5.4. After
calculating the non-interacting Green’s function in site-space and the
irreducible susceptibility components ααββ one has to converge the spin
and charge with respect to the local spin and charge sum rule and the
Bethe-Salpeter equations. From those one is able to evaluate the self-
energy and thus interacting Green’s function via the Dyson equation.
Note that id is the identity map in site-space which is equivalent to I.
Figure adapted from Ref. [164].
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5.4.5. Short summary on the applications of multi-site TPSC. The multi-
site version of TPSC was applied to the Hubbard model on a honeycomb lattice where
antiferromagnetic instabilities were studied [152]. Further investigations dealt not only
with superconductivity in organic superconductors [239,241,242] and Cuprate super-
conductors[240,243,244] but also with correlation effects in layered transition metal
dichalcogenides [245]. The approach was also used to define a measure for the strength
of k-dependence of the self-energy [246].

5.5. Multi-site TPSC application: Organic superconductors

K. Zantout, M. Altmeyer, S. Backes, R. Valenti
Superconductivity in correlated BEDT-TTF molecular conductors: Critical

temperatures and gap symmetries,
Phys. Rev. B 97, 014530 (2018)

[241]

In this section we study the superconducting properties of a class of quasi two-dimensional
organic charge transfer salts, the so-called κ-(BEDT-TTF)2X compounds, where BEDT-
TTF stands for the organic molecule bis(ethylenedithio)tetrathiafulvalene and κ refers
to a specific alignment of those molecules (see fig. 5.10) and X is a molecule complex
that we will specify later. Those materials are also abbreviated κ-ET2X.
The research interest for this family of superconductors is due to the rich phase diagram
of these crystals that contain anti-ferromagnetic Mott insulating, superconducting and
possibly spin liquid phases [247–249]. More specifically, it is possible to move these
systems to different phases by means of chemical substitution of the anion X−, physical
pressure or the so-called endgroup disorder freezing [2,249–252].

Figure 5.10. Model systems for κ-(BEDT-TTF)2X superconductors.
(a) The ellipses represent the (BEDT-TTF) molecule, where A, A’, B
and B’ represent the four molecules within one unit cell. The parameters
t1, . . . , t4 denote the major hopping matrix elements while the thickness
of the corresponding line encodes the size of the hopping. The dimer
model in (b) is obtained by integrating out the t1 hopping and averaging
between t2 and t4 which results in the hopping t whereas t′ is equal to
|t3|/2. Figure reprinted from Ref. [241].

Those materials consist of anionic layers X− that separate the extended organic
(BEDT-TTF)+

2 molecules from each other (see fig. 5.11). Due to the insulating an-
ion layers the electronic structure is highly anisotropic and quasi two-dimensional. At
low temperatures of ∼ 10K many representatives of this material class become super-
conducting [253–256]. Although many different experiments have been conducted to
determine the symmetry of the superconducting gap function there is no final answer
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Figure 5.11. Schematic unit cell (back rectangle) of a κ-(BEDT-
TTF)2X crystal. We recognize the two important constituents of those
crystals, namely the extended organic molecules (BEDT-TTF)+

2 (tilted
aromatic compound) and the flat anion layers X− separating them. The
organic compound consists of carbon (brown), sulfur (yellow) and hy-
drogen (pink).

and published proposals range from s-wave [257–259] to d-wave [260–268] symmetry
but even within the party that agrees on d-wave symmetry there are different claims
regarding the local of the superconducting nodal lines [261,266,269,270].

Due to the similarity of the organics phase diagram with the one of Cuprate su-
perconductors one can assume that the same underlying pairing mechanism based
on anti-ferromagnetic spin fluctuations drives superconductivity in κ-(BEDT-TTF)2X
materials with the additional degree of freedom that comes from geometrical frustra-
tion [271,272]. For this reason we will start with the DFT based kinetic Hamiltonian
where we include an additional local Hubbard interaction for the correlated electronic
states at the Fermi energy.
Ab-initio bandstructure calculations suggest two different effective low-energy Hubbard
models for these materials [273]. The first model, that is coined molecule model in this
section, is based on the four BEDT-TTF molecules that appear in one layer of the
unit cell (see fig. 5.10(a)). This four-band model can be further simplified by taking
advantage of the large hopping t1 (see figure) that is due to strong dimerization of two
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parallel aligned BEDT-TTF molecules. Thus, one can integrate out the t1 degree of
freedom, average between t2 and t4 and divide t3 by two in order to obtain the dimer
model (see fig. 5.10(b)).
Studies that compared both models to each other found out that the averaging of the
internal degrees of freedom within the dimer model can lead to qualitatively differ-
ent results due to the neglect of the high in-plane anisotropy observed in κ-(BEDT-
TTF)2X organic superconductors [269, 273]. More specifically, the mentioned calcu-
lations on the more accurate molecule model that takes account of these anisotropies
predict an eight-node s+dx2−y2 superconducting gap symmetry while the calculations
for the dimer model lead to a dxy superconducting gap symmetry. The exotic eight-
node superconducting gap function seems more promising in view of scanning tunneling
spectroscopy measurements performed for κ-(BEDT-TTF)2Cu[N(CN)2]Br that are less
compatible with the simple dxy solution [269]. One should however note that those
measurements are not phase sensitive and thus the issue is not settled from the exper-
imental side although those results are already indications for the inadequacy of the
dimer model to describe the superconductivity in κ-(BEDT-TTF)2Cu[N(CN)2]Br.

In contrast to the mentioned studies in Refs. [269,273] which are based on weak-
coupling random phase approximation calculations without finite-temperature effects
we study here the dimer and molecule model within TPSC where we expect additional
effects due to vertex renormalizations and finite-temperature effects. The supercon-
ducting critical temperature and gap symmetry is obtained by means of the linearized
Eliashberg equation [274–276]

λ∆µν(k, iωn)

=
T

N

∑
k′,iωn′

Vµν(k − k′, iqn−n′)
∑
α,β

Gµα(k′, iωn′)∆αβ(k′, iωn′)G
∗
νβ(k′, iωn′),(5.290)

where the superconducting gap ∆µν(k, iωn) is restricted to singlet states and even-
frequency and -orbital solutions, i.e.

(5.291) ∆νµ(k, iωn) = ∆µν(k, iωn) = ∆µν(−k, iωn) = ∆µν(k,−iωn),

by symmetrizing

(5.292) (G∆G)µν(k, iωn)→ 1

2
[(G∆G)µν(k, iωn) + (G∆G)νµ(−k,−iωn)] .

The largest positive eigenvalue of the linearized Eliashberg equation (5.290) is numeri-
cally obtained by the power method [277] and determines the superconducting critical
temperature when it becomes unity. We use the pairing vertex

V (q, iqm) = −3

4
U spχsp(q, iqm)U +

1

4
U chχch(q, iqm)U − 1

2
U

that is based on the random phase approximation in the particle-particle channel [168,
278].

As described previously the dimer model consists of a lattice model where the
lattice sites are constructed from averaging between two parallel oriented BEDT-TTF
molecules. This construction results in a half-filled anisotropic triangular lattice, where
two dimers are located within the crystallographic unit cell [273] because we know that
one electron is transfered from the (ET)2 layer to the X layer. In the molecule model
one takes each molecule as a lattice site which leads to a three-quarter filled four-band
model [273]. The hopping parameters that are calculated from the projective Wannier
function method are here restricted to four largest hopping amplitudes t1, . . . , t4 (see
fig. 5.10(a)). We take the hopping parameters from [273] which lead in the molecule
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model to the kinetic Hamiltonian

〈0|Hkin|1〉(k) = t1 + t3 e
ikxa,(5.293a)

〈0|Hkin|2〉(k) = t4

(
1 + e−ikyb

)
,(5.293b)

〈0|Hkin|3〉(k) = t2

(
1 + e−ikxa

)
,(5.293c)

〈1|Hkin|2〉(k) = t2 e
−ikyb

(
1 + e−ikxa

)
,(5.293d)

〈1|Hkin|3〉(k) = t4 e
−ikxa

(
1 + e−ikyb

)
,(5.293e)

〈2|Hkin|3〉(k) = t1 + t3 e
−ikxa,(5.293f)

〈α|Hkin|α〉(k) = −µ,(5.293g)

where a and b are the lattice constants of the two-dimensional ET plane, |α〉 is the
Wannier state localized at the molecule position α. The remaining matrix elements are
obtained from H = H†. Note that the chemical potential was determined numerically
to ensure the correct particle number in both models.

The hopping elements of the dimer model are obtained via

t = (|t2|+ |t4|)/2,(5.294)

t′ = |t3|/2(5.295)

and lead to the kinetic Hamiltonian

〈0|Hkin|0〉(k) =〈1|Hkin|1〉(k) = 2t′cos(kxa)− µ(5.296a)

〈0|Hkin|1〉(k) =t
(
eikxa/2+ikyb/2 + e−ikxa/2+ikyb/2+

+eikxa/2−ikyb/2 + e−ikxa/2−ikyb/2
)

(5.296b)

=〈1|Hkin|0〉∗(k),(5.296c)

where |α〉 denotes the Wannier state localized at the dimer position α. Note that
the on-site Hubbard interaction in the dimer model Udim can be approximated by
Udim ≈ 2t1 [248, 279], while we denote the Coulomb interaction in the molecule by
Umol.

5.5.1. Computational details. The non-interacting susceptibility χ0 was calcu-
lated by means of the adaptive cubature method (see appendix B) based on a three-
point formula for triangles with an integration tolerance of 10−6. All susceptibilities
were stored on 200×200 k-grids at iqn = 0 for the molecule model and else we employed
an adaptive grid (see appendix B). In the case of the dimer model we used a 300× 300
k-grid. All other quantities are well-converged on 70 × 70 k-grids. The summation
over Matsubara frequencies was performed for NMats = 40 · (0.025/T ) frequencies and
we included high-frequency corrections up to the order of 1/ω2 by extrapolation (see
appendix B).

5.5.2. Dimer model results. In fig. 5.12 we show the superconducting gap func-
tion that we observed for all dimer model calculations of the organic superconductors
in [273]. We observe a dxy gap symmetry for both bands, where additional nodes
occur at the boundary of the first Brillouin zone due to 2π periodicity of the gap
functions. Those additional nodes that are also relevant on the Fermi surface (black
lines in fig. 5.12) have been already observed in previous calculations and attributed
to strong inter-band coupling [280]. The dxy symmetry itself can be understood from
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the Hubbard model on a square lattice16, where we know that antiferromagnetic spin
fluctuations yield a pairing vertex that is peaked at (π, π) due to the perfect nesting
condition in the Hubbard square lattice at half-filling. Such a pairing favors dx2−y2
gap solutions [207] which has to be translated into the two-site Brillouin zone of the
organic dimer model by rotation of 45◦ and additional folding of the corners of the
Brillouin zone to the center. This transforms the original dx2−y2 gap solution of the
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ky
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Figure 5.12. Superconducting gap ∆(~k, iω0) of the dimer model in the
first physical Brillouin zone (see main text). The dominant dxy character
shows nodes along the boundaries, since it has to be 2π periodic, and a
sign change between (a) the first band and (b) the second band that has
been previously assigned to strong inter-band coupling [280]. Figure
reprinted from Ref. [241].

single-site unit cell into a dxy solution of the dimer unit cell and we can understand
the anisotropic hopping t′ as a small perturbation that introduces geometric frustration
(see fig. 5.10) and thus reduces spin fluctuations without changing the gap symmetry.

In order to understand the effect of t′/t in more detail we plot the largest eigenvalue
of the linearized Eliashberg equation for T=0.003 eV as a function of the Hubbard in-
teraction Udim/t and the frustration t′/t in fig. 5.13.
First, we remind that a large eigenvalue implies close proximity to the superconducting
phase and λ = 1 signifies the superconducting transition temperature Tc.
We observe that too large geometric frustration t′/t suppresses superconductivity since
the key ingredient to the pairing vertex are antiferromagnetic fluctuations. Those
fluctuations can be induced by the local on-site repulsion Udim/t which leads to an
enhancement of the largest Eliashberg eigenvalue as long as this value is not too large.
In the case where Udim/t & 1.5 and low geometric frustration we find that supercon-
ductivity is also suppressed. The reason here is that the strong interaction leads to
pseudogap physics where sections of the Fermi surface states are gapped out and thus
one reduces the essential states that are needed for forming Cooper pairs.
To avoid those antiferromagnetic ordering tendencies from strong interactions one can
introduce geometric frustration t′/t which yields a good balance between strong pair-
ing interaction and sufficient electronic states at the Fermi energy. For this reason we
observe a maximum of the largest Eliashberg eigenvalue around the values t′/t ≈ 0.25
and Udim/t > 3.4.

After having understood qualitatively the pairing mechanism in the dimer Hubbard
model we move to the eight representative materials that were studied in Ref. [273].

16This corresponds to the limit of t′ = 0.
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We take the hopping amplitudes given in the reference and fix the Hubbard interaction
to Udim ≈ 2t1 as mentioned earlier. With those parameters fixed we reduce the temper-
ature until the largest eigenvalue of the linearized Eliashberg equation reaches unity.
The results of this analysis are shown in table 5.1. Most remarkably, we find that the
superconducting critical temperatures are not only far away from the experimentally
measured but also they do not follow the same trend. If we want to understand
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Figure 5.13. Largest positive eigenvalue of the linearized Eliashberg
equation at fixed temperature T=0.003 eV within the dimer model.
While moderate on-site interactions Udim/t are crucial to obtain su-
perconductivity, we see that too strong correlations (Udim/t & 1.5) re-
sult in the opening of a pseudogap and thus a suppression of quasi-
particle states at the Fermi surface that are needed to form Cooper
pairs. Too large antiferromagnetic fluctuations that lead to Mott insu-
lating tendencies can be reduced by anisotropic next nearest neighbor
hoppings and the implied geometric frustration. A combination of both
(t′/t ≈ 0.25 and Udim/t > 3.4) is most favorable for superconductivity.
Figure reprinted from Ref. [241].

those results by means of the analysis shown in fig. 5.13 we plot the calculated critical
temperatures of the eight organic superconductors in dependence of their respective
frustration t′/t in fig. 5.14.

In agreement to the analysis that we performed for fig. 5.13 we find that the critical
temperatures Tc decreases quasi-linearly with frustration t′/t. This means that the
critical temperatures of the organic superconductors are not determined by the interplay
of the dimer Hubbard interaction Udim and the geometric frustration t′/t but we need
to consider more degrees of freedom within the materials. This leads us to the molecule
model where each ET molecule is treated as a single site.

5.5.3. Molecule model results. We consider now the 4-band Hamiltonian from
eq. (5.293), where each site corresponds to the center of one ET molecule (see fig. 5.10(b)).
Due to the charge transfer of one electron from (ET)2 to the anion layer X we have a
filling of 3/4.
For this more elaborate model of κ-(ET)2X superconductors the spin-fluctuation ran-
dom phase approximation study showed that an exotic s+dx2−y2 superconducting gap
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Figure 5.14. Critical temperature Tc calculated within the combined
multi-site TPSC + linearized Eliashberg equation as a function of frus-
tration t′/t for the eight κ-(ET)2X materials listed in table 5.1. We
observe a quasi-linear drop of Tc as a function of increasing t′/t which
can be understood from the analysis we performed for fig. 5.13, where
too strong frustration reduces the pairing interaction due to suppres-
sion of antiferromagnetic fluctuations. As a guide to the eye we show
the linear fit to the data points. Figure reprinted from Ref. [241].

symmetry (see fig. 5.15) is realized in the eight materials studied and that a small change
in the hopping parameters can push the system into a dxy gap symmetric state [273].
In contrast to this study we find that only two out of the eight compounds exhibit
s+dx2−y2 gap symmetry while the others converge to a dxy gap solution. The two mate-
rials that show the exotic gap symmetry are κ-(ET)2Cu(NCS)2 and κ-(ET)2Cu[N(CN)2](CN)
which are the ones that have the largest in-plane anisotropy t2/t4.

material t′/t t4/t2 Udim [eV] TTPSC
c [K] Tc [K]

κ-(ET)2Ag(CF3)4(TCE) 0.449 0.362 0.336 32.5 2.6
κ-(ET)2I3 0.346 0.266 0.36 44.1 3.6
κ-(ET)2Ag(CN)2I·H2O 0.473 0.305 0.37 31.3 5.0
κ-α′1-(ET)2Ag(CF3)4(TCE) 0.495 0.362 0.332 27.1 9.5
κ-(ET)2Cu(NCS)2 0.69 0.171 0.38 15 10.4
κ-α′2-(ET)2Ag(CF3)4(TCE) 0.495 0.369 0.33 26.2 11.1
κ-(ET)2Cu[N(CN)2](CN) 0.669 0.172 0.35 13.9 11.2
κ-(ET)2Cu[N(CN)2]Br 0.455 0.379 0.354 32.5 11.6

Table 5.1. Comparison of the superconducting critical temperatures
Tc from TPSC and experiment for several organic charge transfer salts
(see [273]). We find that the calculations within the dimer model do
not reproduce the general trend of the experimental results but can
be understood by means of geometric frustration (see fig. 5.14). The
experimental critical temperatures are taken from [253–256]. Table
reprinted from Ref. [241].
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Nevertheless, it is important to note that this gap symmetry is only stable at low
temperatures and large values of on-site interaction Umol or else the systems converge
towards the dxy gap symmetry solution. In order to estimate the value of Umol such
that all eight organic superconductors show s+dx2−y2 gap symmetry we average the
t1, t2 and t3 and study the dependence of the largest Eliashberg eigenvalue as a function
of Umol and the in-plane anisotropy t4/t2. The results of this analysis are shown in
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Figure 5.15. s±+dx2−y2 superconducting gap ∆(~k, iω0) as obtained in
the four band molecule model at low temperatures. This kind of symme-
try was already observed in [273] where the calculations are performed
in the framework of the spin fluctuation random phase approximation.
The Fermi surface is again shown as black line. Figure reprinted
from [241].

fig. 5.16. Thus, only if we choose Umol & 0.7eV we can stabilize the s+dx2−y2 solution
for all eight compounds and we find that in-plane anisotropy t4/t2 is a good way to
further stabilize this solution.

Note that it is not possible to extract critical temperatures for the eight compounds
since for reasonable values of Umol we cannot access sufficiently low temperatures due
to strong divergences in the spin susceptibility which make an accurate calculation
impossible [241].

5.5.4. Summary and Outlook. As an application of the multi-site TPSC we
studied superconducting critical temperatures of eight κ-(BEDT-TTF)2X organic su-
perconductors by means of the linearized Eliashberg equation. Those complex materials
can be modeled by the simple dimer model and a more complex molecule model.

We find that the dimer model cannot reproduce the right trends in the experimen-
tally measured critical temperatures but only reflects the interplay between geometric
frustration and enhanced spin fluctuations due to strong on-site repulsion.
Thus, we investigated the molecule model, where additional degrees of freedom such
as the in-plane anisotropy are active. This model indeed exhibits the exotic s+dx2−y2
superconducting gap structure as already predicted in Ref. [273] but this solution is
only stable for the two compounds with the largest in-plane anisotropy. Nevertheless,
our calculations show that this solution can be stabilized for all eight materials if the
on-site interaction Umol is sufficiently large.
Moreover, our calculations support the idea that small variations of the crystal pa-
rameters by means of pressure, strain or endgroup disorder may allow for dynamical
switching between the s+dx2−y2 and the dxy gap symmetry.

102



CHAPTER 5. TPSC DERIVATION

 0

 0.5

 1

U=0.7 eV

 0

 0.5

 1

U=0.65 eV

 0

 0.5

 1

U=0.60 eV

 0

 0.5

 1

 0  0.1  0.2  0.3  0.4  0.5

t4/t2

λ

U=0.55 eV

Figure 5.16. Largest eigenvalue of the linearized Eliashberg equation
λ for Umol = 0.55, 0.6, 0.65 and 0.7 eV , where t1, t2 and t3 averaged over
the respective hoppings of the eight materials studied in Ref. [273]).
We see an overall increase in λ by going to larger values of Umol and
an inset of extended s + dx2−y2 gap symmetry (orange background) at
large in-plane anisotropy t4/t2 while dxy symmetry (blue background)
is dominant otherwise. Figure reprinted form Ref. [241].

Finally, we remark that this study does not include effects from inter-site Coulomb
repulsion. Extended model calculations that introduce this nearest neighbor Hub-
bard repulsion are able to see charge density wave phases close to the superconducting
instabilities which means that this terms might be important to understand the exper-
imental critical temperatures and give a more precise superconducting gap symmetry
prediction [281–283].

5.6. Multi-orbital TPSC

K. Zantout, S. Backes, R. Valenti
Two-Particle Self-Consistent method for the multi-orbital Hubbard model

arXiv: 2008.08098 (2020)
[164]

The first extension of TPSC to multi-orbital problems was performed by Miyahara
et al. in Ref. [284]. The approach developed in [164, 285] differs to the previously
mentioned one in some details that will be commented on later. In the following
derivation we follow the scheme presented in Refs. [164, 285] and supply additional
steps and comments.

We assume a multi-orbital system that is described by the Hamiltonian

H =
∑

α,β,i,j,σ

(
t
ri−rj
αβ − µδi,jδα,β

)
c†α,σ(ri)cβ,σ(rj)

+
1

2

∑
α,β,i,σ

Uαβnα,σ(ri)nβ,−σ(ri)
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+
1

2

∑
α,β,i,σ
α 6=β

(Uαβ − Jαβ)nα,σ(ri)nβ,σ(ri)

− 1

2

∑
α,β,i,σ
α 6=β

Jαβ

(
c†α,σ(ri)cα,−σ(ri)c

†
β,−σ(ri)cβ,σ(ri)

+c†α,σ(ri)cβ,−σ(ri)c
†
α,−σ(ri)cβ,σ(ri)

)
,(5.297)

where t
ri−rj
αβ are all hopping matrix elements connecting orbitals α and β that are

related by lattice vectors ri − rj . We drop the spin index in the kinetic part of the
Hamiltonian because we assume a paramagnetic state without breaking of time-reversal
symmetry and spin rotational invariance. The matrix element Uαβ denotes the onsite
orbital-dependent Hubbard interaction while Jαβ are the onsite inter-orbital Hund’s
couplings. An extensive discussion on the determination of the values of t, U and J
can be found in chap. 2 and 3. The operator cα,σ(ri, τ) destroys an electron with spin

σ in the α-orbital at unit cell position ri and imaginary time τ and c†β,σ(rj , τ
′) creates

an electron with spin σ in the β-orbital at unit cell position rj and imaginary time
τ ′. The density operator is defined as in eq. (5.111). Note that we dropped the time
dependence of the Hamilton operator since it is not explicitly time dependent.
An alternative formulation of the Hamiltonian in terms of spin matrices can be found
in appendix C.2.

Since many steps in the multi-orbital TPSC derivation are the same as in the
multi-site derivation that we presented in detail in sec. 5.1 and 5.4 we only give the
final results if both can formally be deduced in the same way.
The strategy of both TPSC versions is exactly the same, i.e. first derive the Dyson
equation by means of the equation of motion for the interaction Green’s function. Then,
express the implicitly defined self-energy in terms of generalized susceptibilities and
derive the self-consistent Bethe-Salpeter equation for those susceptibilities. Finally,
assume that the four-point interaction vertex is local and static in order to obtain
approximate expressions for the susceptibilities and the self-energy equation of motion.
By enforcing local spin and charge sum rules on can determine the four-point interaction
vertex.

First, we work with the same longitudinal channel generalized partition function as
in eq. (5.7),

Z[φ] = tr
[
e−βHTτe−

∑
α,β,σ

∫
d(1)

∫
d(2)c†α,σ(1)φαβ,σ(1,2)cβ,σ(1,2)

]
=:

〈
Tτe
−c†α,σ(1)φ

αβ,σ
(1,2)c

β,σ
(2)
〉

=: 〈TτS[φ]〉 ,(5.298)

from which we can deduce the Green’s function

Gαβ,σ(1, 2)φ := − δ ln(Z[φ])

δφβα,σ(2, 1)
= −

〈
TτS[φ]cα,σ(1)c†β,σ(2)

〉
〈TτS[φ]〉

(5.299)

via functional differentiation (see eq. (5.20)) and the generalized susceptibility

−
δGαβ,σ(1, 2)φ

δφγε,σ′(3, 4)

=−
〈
cα,σ(1)c†β,σ(2)c†γ,σ′(3)cε,σ′(4)

〉
φ
−Gαβ,σ(1, 2)φGεγ,σ′(4, 3)φ(5.300)
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from functional differentiation of the Green’s function G (see eq. (5.24)).

5.6.1. Dyson equation. In order to derive the Dyson equation (see eq. (5.49))
we need to evaluate

∂cν,σ′(rk, τ)

∂τ
=
[
H, cν,σ′(rk, τ)

]
=
[
H(τ), cν,σ′(rk, τ)

]
(5.301)

=
∑

α,β,i,j,σ

(
t
ri−rj
αβ − µδi,jδα,β

) [
c†α,σ(ri, τ)cβ,σ(rj , τ), cν,σ′(rk, τ)

]
+

1

2

∑
α,β,i,σ

Uαβ
[
nα,σ(ri, τ)nβ,−σ(ri, τ), cν,σ′(rk, τ)

]
+

1

2

∑
α,β,i,σ
α 6=β

(Uαβ − Jαβ)
[
nα,σ(ri, τ)nβ,σ(ri, τ), cν,σ′(rk, τ)

]

− 1

2

∑
α,β,i,σ
α 6=β

Jαβ

[(
c†α,σ(ri, τ)cα,−σ(ri, τ)c†β,−σ(ri, τ)cβ,σ(ri, τ)+

+ c†α,σ(ri, τ)cβ,−σ(ri, τ)c†α,−σ(ri, τ)cβ,σ(ri, τ)
)
, cν,σ′(rk, τ)

]
(5.302)

=
∑

α,β,i,j,σ

(
t
ri−rj
αβ − µδi,jδα,β

)(
c†α,σ(ri, τ)

{
cβ,σ(rj , τ), cν,σ′(rk, τ)

}
−

−
{
c†α,σ(ri, τ), cν,σ′(rk, τ)

}
cβ,σ(rj , τ)

)
+

1

2

∑
α,β,i,σ

Uαβ
(
nα,σ(ri, τ)

[
nβ,−σ(ri, τ), cν,σ′(rk, τ)

]
+
[
nα,σ(ri, τ), cν,σ′(rk, τ)

]
nβ,−σ(ri, τ)

)
+

1

2

∑
α,β,i,σ
α 6=β

(Uαβ − Jαβ)
(
nα,σ(ri, τ)

[
nβ,σ(ri, τ), cν,σ′(rk, τ)

]
+

+
[
nα,σ(ri, τ), cν,σ′(rk, τ)

]
nβ,σ(ri, τ)

)
− 1

2

∑
α,β,i,σ
α 6=β

Jαβ

([
c†α,σ(ri, τ)cα,−σ(ri, τ)c†β,−σ(ri, τ)cβ,σ(ri, τ), cν,σ′(rk, τ)

]
+

+
[
c†α,σ(ri, τ)cβ,−σ(ri, τ)c†α,−σ(ri, τ)cβ,σ(ri, τ), cν,σ′(rk, τ)

])
(5.303)

=−
∑

α,β,i,j,σ

(
t
ri−rj
αβ − µδi,jδα,β

)
δα,νδσ,σ′δri,rkcβ,σ(rj , τ)−

− 1

2

∑
α,β,i,σ

Uαβ
(
nα,σ(ri, τ)δν,βδσ′,−σδri,rkcβ,−σ(ri, τ)+

+ δα,νδσ′,σδri,rkcα,σ(ri, τ)nβ,−σ(ri, τ)
)

−1

2

∑
α,β,i,σ
α 6=β

(Uαβ − Jαβ)
(
nα,σ(ri, τ)δν,βδσ′,σδri,rkcβ,σ(ri, τ)+

+ δα,νδσ′,σδri,rkcα,σ(ri, τ)nβ,σ(ri, τ)
)

−1

2

∑
α,β,i,σ
α 6=β

Jαβ

(
c†α,σ(ri, τ)cα,−σ(ri, τ)

[
c†β,−σ(ri, τ)cβ,σ(ri, τ), cν,σ′(rk, τ)

]
+
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+
[
c†α,σ(ri, τ)cα,−σ(ri, τ), cν,σ′(rk, τ)

]
c†β,−σ(ri, τ)cβ,σ(ri, τ)+

+ c†α,σ(ri, τ)cβ,−σ(ri, τ)
[
c†α,−σ(ri, τ)cβ,σ(ri, τ), cν,σ′(rk, τ)

]
+

+
[
c†α,σ(ri, τ)cβ,−σ(ri, τ), cν,σ′(rk, τ)

]
c†α,−σ(ri, τ)cβ,σ(ri, τ)

)
(5.304)

=−
∑
β,j

(
t
rk−rj
νβ − µδk,jδν,β

)
cβ,σ′(rj , τ)

− 1

2

∑
α

Uαβ
(
nα,−σ′(rk, τ)cν,σ′(rk, τ) + cν,σ′(rk, τ)nα,−σ′(rk, τ)

)
− 1

2

∑
α

α 6=ν

(Uαν − Jαν)
(
nα,σ′(rk, τ)cν,σ′(rk, τ) + cν,σ′(rk, τ)nα,σ′(rk, τ)

)
+

1

2

∑
α,β,i,σ
α 6=β

Jαβ

(
c†α,σ(ri, τ)cα,−σ(ri, τ)δβ,νδσ′,−σδri,rkcβ,σ(ri, τ)+

+ δα,νδσ′,σδri,rkcα,−σ(ri, τ)c†β,−σ(ri, τ)cβ,σ(ri, τ)+

+ c†α,σ(ri, τ)cβ,−σ(ri, τ)δα,νδσ′,−σδri,rkcβ,σ(ri, τ)+

+ δα,νδσ′,σδri,rkcβ,−σ(ri, τ)c†α,−σ(ri, τ)cβ,σ(ri, τ)
)

=−
∑
β,j

(
t
rk−rj
νβ − µδk,jδν,β

)
cβ,σ′(rj , τ)

−
∑
α

Uαβnα,−σ′(rk, τ)cν,σ′(rk, τ)

−
∑
α

α 6=ν

(Uαν − Jαν)nα,σ′(rk, τ)cν,σ′(rk, τ)

+
1

2

∑
α

α 6=ν

Jαν

(
c†α,−σ′(rk, τ)cα,σ′(rk, τ)cν,−σ′(rk, τ)+

+ cν,−σ′(rk, τ)c†α,−σ′(rk, τ)cα,σ′(rk, τ)+

+ c†ν,−σ′(rk, τ)cα,σ′(rk, τ)cα,−σ′(rk, τ)+

+ cα,−σ′(rk, τ)c†ν,−σ′(rk, τ)cα,σ′(rk, τ)
)

(5.305)

=−
∑
β,j

(
t
rk−rj
νβ − µδk,jδν,β

)
cβ,σ′(rj , τ)

−
∑
α

Uαβnα,−σ′(rk, τ)cν,σ′(rk, τ)

−
∑
α

α 6=ν

(Uαν − Jαν)nα,σ′(rk, τ)cν,σ′(rk, τ)

+
∑
α

α 6=ν

Jαν

(
c†α,−σ′(rk, τ)cα,σ′(rk, τ)cν,−σ′(rk, τ)

+c†ν,−σ′(rk, τ)cα,σ′(rk, τ)cα,−σ′(rk, τ)
)
,(5.306)

where we have used the identities

[A,BC] =ABC −BCA = ABC +BAC −BAC −BCA(5.307)
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={A,B}C −B{A,C}(5.308)

[AB,C] =ABC − CAB = ABC −ACB +ACB − CAB(5.309)

=A[B,C] + [A,C]B(5.310)

[AB,C] =ABC − CAB = ABC +ACB −ACB − CAB(5.311)

=A{B,C} − {A,C}B(5.312)

and the fermionic commutation relations[
nα,σ(ri), cβ,σ′(rj)

]
=
[
c†α,σ(ri)cα,σ(ri), cβ,σ′(rj)

]
(5.313)

=c†α,σ(ri)
{
cα,σ(ri), cβ,σ′(rj)

}
−
{
c†α,σ(ri), cβ,σ′(rj)

}
cα,σ(ri)(5.314)

=c†α,σ(ri) · 0− δα,βδσ,σ′δri,rjcα,σ(ri)(5.315)

=− δα,βδσ,σ′δri,rjcα,σ(ri),(5.316) [
c†α,σ(ri)cβ,σ′(ri), cγ,σ′′(rj)

]
=c†α,σ(ri)

{
cβ,σ′(ri), cγ,σ′′(rj)

}
−
{
c†α,σ(ri), cγ,σ′′(rj)

}
cβ,σ′(ri)(5.317)

=c†α,σ(ri) · 0− δα,γδσ,σ′′δri,rjcβ,σ′(ri)(5.318)

=− δα,γδσ,σ′′δri,rjcβ,σ′(ri).(5.319)

In the same fashion as for the multi-site case (see sec. 5.1.3) we obtain the imaginary-
time derivative of the Green’s function G but with the only difference that addi-
tional terms appear due to time-evolution of the annihilation operator cν,σ′(rk, τ) (see

eq. (5.306)). Thus, we obtain the similar result

∂Gνξ,σ(1, 2)φ

∂τ1

= +
∑
β

(
tr1−r3νβ − µδr1,r3δν,β

)
δ(τ1 − τ3)Gβξ,σ(3, 2)φ

+
∑
α

Uαν

〈
nα,−σ(1+)cν,σ(1)c†ξ,σ(2)

〉
φ

+
∑
α

α 6=ν

(Uαν − Jαν)
〈
nα,σ(1+)cν,σ(1)c†ξ,σ(2)

〉
φ

−
∑
α

α 6=ν

Jαν

(〈
c†α,−σ(1+)cα,σ(1)cν,−σ(1)c†ξ,σ(2)

〉
φ

+
〈
c†ν,−σ(1++)cα,σ(1+)cα,−σ(1)c†ξ,σ(2)

〉
φ

)
− δ(1− 2)δν,ξ

− φ
νβ,σ

(1, 3)G
βξ,σ

(3, 2)φ.(5.320)

Again, we identify the non-interacting Green’s function G0 in terms of its inverse

(5.321)
[
(G0)−1

]
νβ

(1, 2) = δ′(τ1 − τ2)δr1,r2δν,β +
(
t
r1−r2
νβ − µδr1,r2δν,β

)
δ(τ1 − τ2)

in the limit of no interactions and no external field.
Thus, we are able to rewrite the equation of motion (5.320) as

(5.322)
{[

(G0)−1
]
νβ

(1, 3)− φ
νβ

(1, 3)− Σ
νβ,σ

(1, 3)φ

}
G
βξ,σ

(3, 2)φ = δ(1− 2)δνξ,
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where we implicitly defined the multi-orbital self-energy

Σ
νβ,σ

(1, 3)φGβξ,σ(3, 2)φ =−
∑
α

Uαν

〈
nα,−σ(1+)cν,σ(1)c†ξ,σ(2)

〉
φ

−
∑
α

α 6=ν

(Uαν − Jαν)
〈
nα,σ(1+)cν,σ(1)c†ξ,σ(2)

〉
φ

+
∑
α

α 6=ν

Jαν

(〈
c†α,−σ(1+)cα,σ(1)cν,−σ(1)c†ξ,σ(2)

〉
φ

+
〈
c†ν,−σ(1++)cα,σ(1+)cα,−σ(1)c†ξ,σ(2)

〉
φ

)
.(5.323)

Rearranging equation (5.322) we obtain the Dyson equation

(5.324)
[
G−1

]
νξ,σ

(1, 2)φ =
[
(G0)−1

]
νξ

(1, 2)− φνξ,σ(1, 2)− Σνξ,σ(1, 2)φ.

5.6.2. A self-consistency equation for the generalized susceptibility. To
obtain the Bethe-Salpeter equation as in sec. 5.1.4 we identify the four-point correla-
tion functions on the right-hand side of eq. (5.323) with the higher-order functional
derivatives of the generalized partition function Z[φ] (see eq. (5.300)). This yields

Σ
αβ,σ

(1, 2)φGβγ,σ(2, 2)φ

=−
∑
β

Uβα

(
δGαγ,σ(1, 2)

δφββ,−σ(1++, 1+)
−Gββ,−σ(1, 1+)Gαγ,σ(1, 2)

)

−
∑
β

β 6=α

(Uβα − Jβα)

(
δGαγ,σ(1, 2)

δφββ,σ(1++, 1+)
−Gββ,σ(1, 1+)Gαγ,σ(1, 2)

)

−
∑
β

β 6=α

Jβα

[(
δGβγ,σ(1, 2)

δφβα,−σ(1+, 1++)
−Gβγ,σ(1, 2)Gαβ,−σ(1+, 1)

)

+

(
δGβγ,σ(1+, 2)

δφαβ,−σ(1++, 1)
−Gβγ,σ(1, 2)Gβα,−σ(1, 1+)

)]
.(5.325)

In contrast to the multi-site expression (see eq. (5.51)) we deal here with more index
combinations in δG

δφ . Nevertheless, all those information are contained in the Bethe-

Salpeter equation (see eq. (5.58) and fig. 5.1) that we derived in the multi-site case and
which is derived analogously in the multi-orbital case.

δGαζ,σ(1, 6)φ

δφνε,σ′(4, 5)
=Gαν,σ(1, 4)φGεζ,σ(5, 6)δσ,σ′

+G
αβ,σ

(1, 3)φ
δΣ

βγ,σ
(3, 2)φ

δG
ρλ,σ′′

(7, 8)φ

δG
ρλ,σ′′

(7, 8)φ

δφνε,σ′(4, 5)
Gγζ,σ(2, 6)φ.(5.326)

5.6.3. Susceptibilities and sum rules. While in the multi-site version of TPSC
we only needed local spin and charge sum rules where all indices are the same (see
eq. (5.251) and (5.252)) we will need more sum rules in the multi-orbital case because
the interaction matrix elements are now also orbital dependent and contain additional
terms like Hund’s coupling.
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In summary, we need the local spin sum rules

T

N

∑
q,iqm

χspαααα(q, iqm) =2
〈
nα,↑

〉
− 2

〈
nα,↑nα,↓

〉
,(5.327)

T

N

∑
q,iqm

χspααββ(q, iqm) =2
〈
nα,↑nβ,↑

〉
− 2

〈
nα,↑nβ,↓

〉
,(5.328)

T

N

∑
q,iqm

<χspαβαβ(q, iqm) =
〈
nα,↑

〉
+
〈
nβ,↑

〉
− 2

〈
nα,↑nβ,↓

〉
.(5.329)

Proof of (5.327), (5.328) and (5.329). While the first sum rule for all equal or-
bital indices can be derived in the same fashion as the multi-site version (see eq. (5.251))
the ααββ-sum rule follows analogously. To obtain the last sum rule we use eqs. (5.93),
(5.98), (5.102), and (5.203). This leads to

T

N

∑
q,iqm

<χspαβαβ(q) =
1

2

T

N

∑
q,iqm

(
χspαβαβ + χspβαβα

)
(q)(5.330)

=
1

2

(
2
〈
Tτ c
†
α,↑(1)cβ,↓(1)c†β,↓(1

+)cα,↑(1
+)
〉

+2
〈
Tτ c
†
β,↓(1

+)cα,↑(1
+)c†α,↑(1)cβ,↓(1)

〉)
(5.331)

=
1

2

(
2
〈
nα,↑

〉
− 2

〈
nβ,↓nα,↑

〉
+ 2

〈
nα,↑

〉
− 2

〈
nα,↑nβ,↓

〉)
(5.332)

=
〈
nα,↑

〉
+
〈
nβ,↑

〉
− 2

〈
nα,↑nβ,↓

〉
.(5.333)

�

The local charge sum rules are

T

N

∑
q,iqm

χchαααα(q, iqm) = 〈nα〉+ 2
〈
nα,↑nα,↓

〉
− 〈nα〉

2 ,(5.334)

T

N

∑
q,iqm

χchααββ(q, iqm) = 2
〈
nα,↑nβ,↑

〉
+ 2

〈
nα,↑nβ,↓

〉
− 〈nα〉

〈
nβ
〉
,(5.335)

and
T

N

∑
q,iqm

<χchαβαβ(q, iqm)

=
1

2

〈
nα + nβ

〉
− 4

〈
nα,↑nβ,↑

〉
+ 2

〈
nα,↑nβ,↓

〉
−
〈
nβα

〉 〈
nαβ

〉
, α 6= β.(5.336)

Proof of (5.334)-(5.336). The first sum rule (eq. (5.334)) is derived in the same
way as the multi-site version (see eq. (5.117)) and similarly one can derive the second
sum rule. The third sum rule (eq. (5.336)) is shown in a similar way like for the spin
channel. One obtains

T

N

∑
q,iqm

<χchαβαβ(q, iqm)

=
1

2

[〈(
nβα,↑ + nβα,↓

) (
nαβ,↑ + nαβ,↓

)〉
+
〈(
nαβ,↑ + nαβ,↓

) (
nβα,↑ + nβα,↓

)〉]
−
〈
nβα

〉 〈
nαβ

〉
(5.337)

=
1

2

[〈(
c†α,↑cβ,↑ + c†α,↓cβ,↓

)(
c†β,↑cα,↑ + c†β,↓cα,↓

)〉
+
〈(
c†β,↑cα,↑ + c†β,↓cα,↓

)(
c†α,↑cβ,↑ + c†α,↓cβ,↓

)〉]
−
〈
nβα

〉 〈
nαβ

〉
(5.338)
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=
1

2

[〈
nα,↑

(
1− nβ,↑

)〉
+
〈
nα,↓

(
1− nβ,↓

)〉
+
〈
nβ,↑

(
1− nα,↑

)〉
+
〈
nβ,↓

(
1− nα,↓

)〉]
+ 2

〈
c†α,↑cβ,↑c

†
β,↓cα,↓

〉
−
〈
nβα

〉 〈
nαβ

〉
(5.339)

=
1

2

(
nα + nβ

)
− 2

〈
nα,↑nβ,↑

〉
− 2

〈
c†α,↓cα,↑c

†
β,↑cβ,↓

〉
−
〈
nβα

〉 〈
nαβ

〉
.(5.340)

Here, we use our knowledge of the local spin sum rule (eq. (5.203) and (5.328)) to
obtain

T

N

∑
q,iqm

<χchαβαβ(q, iqm)

=
1

2

(
nα + nβ

)
− 2

〈
nα,↑nβ,↑

〉
− χspββαα(0, 0+)−

〈
nβα

〉 〈
nαβ

〉
(5.341)

=
1

2

(
nα + nβ

)
− 4

〈
nα,↑nβ,↑

〉
+ 2

〈
nα,↑nβ,↓

〉
−
〈
nβα

〉 〈
nαβ

〉
.(5.342)

�

5.6.4. Self-energy in the longitudinal channel. We start off with the implicit
definition of the self-energy in eq. (5.325) and evaluate at φ = 0,

Σ
αβ,σ

(1, 2)G
βγ,σ

(2, 2)

=−
∑
β

Uβα

 δGαγ,σ(1, 2)

δφββ,−σ(1++, 1+)

∣∣∣∣∣
φ=0

−Gββ,−σ(1, 1+)Gαγ,σ(1, 2)


−
∑
β

β 6=α

(Uβα − Jβα)

 δGαγ,σ(1, 2)

δφββ,σ(1++, 1+)

∣∣∣∣∣
φ=0

−Gββ,σ(1, 1+)Gαγ,σ(1, 2)



−
∑
β

β 6=α

Jβα

 δGβγ,σ(1, 2)

δφβα,−σ(1+, 1++)

∣∣∣∣∣
φ=0

−Gβγ,σ(1, 2)Gαβ,−σ(1+, 1)



+

 δGβγ,σ(1+, 2)

δφαβ,−σ(1++, 1)

∣∣∣∣∣
φ=0

−Gβγ,σ(1, 2)Gβα,−σ(1, 1+)

 ,(5.343)

and multiply with G−1
γν,σ(2, 5) and integrate over the internal degrees of freedom gives

Σαν,σ(1, 5)

=−
∑
β

Uβα

[
−1

4

(
χchγαββ(1, 2; 1)− χspγαββ(1, 2; 1)

)
G−1
γν,σ(2, 5)− 〈nβ,−σ(1)〉δα,νδ(1− 5)

]

−
∑
β

β 6=α

(Uβα − Jβα)

[
−1

4

(
χchγαββ(1, 2; 1) + χspγαββ(1, 2; 1)

)
G−1
γν,σ(2, 5)− 〈nβ,σ(1)〉δα,νδ(1− 5)

]

−
∑
β

β 6=α

Jβα

[
−1

4

(
χchγβαβ(1, 2; 1)− χspγβαβ(1, 2; 1)

)
G−1
γν,σ(2, 5)− 〈nαβ,−σ(1)〉δβ,νδ(1− 5)

+ −1

4

(
χchγββα(1, 2; 1)− χspγββα(1, 2; 1)

)
G−1
γν,σ(2, 5)− 〈nβα,−σ(1)〉δβ,νδ(1− 5)

]
,

(5.344)
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where we expressed the functional derivatives δG
δφ in terms of spin and charge suscepti-

bilities (see eq. (5.121) and (5.143)).
Next, we use the Bethe-Salpeter equation for the spin and charge susceptibility (eq. (5.129)
and (5.152)) to expand

Σαν,σ(1, 5)

=
∑
β

Uβα

[
1

4

(
G
αβ

(1, 3)Γch
εβλρ

(3, 9; 7, 8)χch
λρββ

(7, 8; 1)Gεγ(9, 2)

+G
αβ

(1, 3)Γsp
εβλρ

(3, 9; 7, 8)χsp
λρββ

(7, 8; 1)Gεγ(9, 2)
)
G−1
γν,σ(2, 5)

+〈nβ,−σ(1)〉δα,νδ(1− 5)
]

+
∑
β

β 6=α

(Uβα − Jβα)

[
1

4

(
G
αβ

(1, 3)Γch
εβλρ

(3, 9; 7, 8)χch
λρββ

(7, 8; 1)Gεγ(9, 2)

−G
αβ

(1, 3)Γsp
εβλρ

(3, 9; 7, 8)χsp
λρββ

(7, 8; 1)Gεγ(9, 2)
)
G−1
γν,σ(2, 5)

+(〈nβ,σ(1)〉δαν − 〈nαν,σ(1)〉δβ,ν)δ(1− 5)
]

+
∑
β

β 6=α

Jβα

[
1

4

(
G
ββ

(1, 3)Γch
εβλρ

(3, 9; 7, 8)χch
λραβ

(7, 8; 1)Gεγ(9, 2)

+ G
ββ

(1, 3)Γsp
εβλρ

(3, 9; 7, 8)χsp
λραβ

(7, 8; 1)Gεγ(9, 2)
)
G−1
γν,σ(2, 5)

+〈nαβ,−σ(1)〉δβ,νδ(1− 5)

+
1

4

(
G
ββ

(1, 3)Γch
εβλρ

(3, 9; 7, 8)χch
λρβα

(7, 8; 1)Gεγ(9, 2)

+ G
ββ

(1, 3)Γsp
εβλρ

(3, 9; 7, 8)χsp
λρβα

(7, 8; 1)Gεγ(9, 2)
)
G−1
γν,σ(2, 5)

+〈nβα,−σ(1)〉δβ,νδ(1− 5)
]
.(5.345)

We can now get some δ distributions from the product of the Green’s functions with
its inverse and reduce the expression to

Σαν,σ(1, 5)

=
∑
β

Uβα

[
1

4

(
G
αβ

(1, 3)Γch
νβλρ

(3, 5; 7, 8)χch
λρββ

(7, 8; 1)

+G
αβ

(1, 3)Γsp
νβλρ

(3, 5; 7, 8)χsp
λρββ

(7, 8; 1)
)

+ 〈nβ,−σ(1)〉δα,νδ(1− 5)
]

+
∑
β

β 6=α

(Uβα − Jβα)

[
1

4

(
G
αβ

(1, 3)Γch
νβλρ

(3, 5; 7, 8)χch
λρββ

(7, 8; 1)

−G
αβ

(1, 3)Γsp
νβλρ

(3, 5; 7, 8)χsp
λρββ

(7, 8; 1)
)

+ (〈nβ,σ(1)〉δα,ν − 〈nαν,σ(1)〉δβ,ν)δ(1− 5)
]

+
∑
β

β 6=α

Jβα

[
1

4

(
G
ββ

(1, 3)Γch
νβλρ

(3, 5; 7, 8)χch
λραβ

(7, 8; 1)

+ G
ββ

(1, 3)Γsp
νβλρ

(3, 5; 7, 8)χsp
λραβ

(7, 8; 1)
)

+ 〈nαβ,−σ(1)〉δβ,νδ(1− 5)
]

+
1

4
G
ββ

(1, 3)
(

Γch
νβρλ

(3, 5; 7, 8)χch
ρλβα

(7, 8; 1)
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+ Γsp
νβρλ

(3, 5; 7, 8)χsp
ρλβα

(7, 8; 1)
)

+ 〈nβα,−σ(1)〉δβ,νδ(1− 5)
]
.

(5.346)

Reordering the equation and defining non-interacting vertices Γsp,0 and Γch,0 leads to

Σαν,σ(1, 5)

=

∑
β

Uβα〈nβ,−σ(1)〉δα,ν +
∑
β 6=α

(Uβα − Jβα)
(
〈nβ,σ(1)〉δα,ν − 〈nαν,σ(1)〉δβ,ν

)
+ Jνα

(
〈nαν,−σ(1)〉(1− δα,ν) + 〈nνα,−σ(1)〉(1− δα,ν)

) ]
δ(1− 5)

+
1

4
G
γβ

(1, 3)

[
Uαα

(
Γch(3, 5; 7, 8)χch(7, 8; 1) + Γsp(3, 5; 7, 8)χsp(7, 8; 1)

)
νβζζ

δα,γ

+ U
ζα

(
Γch(3, 5; 7, 8)χch(7, 8; 1) + Γsp(3, 5; 7, 8)χsp(7, 8; 1)

)
νβζζ

(1− δ
ζ,α

)δα,γ

+ (U
ζα
− J

ζα
)
(

Γch(3, 5; 7, 8)χch(7, 8; 1)− Γsp(3, 5; 7, 8)χsp(7, 8; 1)
)
νβζζ

(1− δ
ζ,α

)δα,γ

+ Jγα

(
Γch(3, 5; 7, 8)χch(7, 8; 1) + Γsp(3, 5; 7, 8)χsp(7, 8; 1)

)
νβαγ

(1− δα,γ)

+ Jγα

(
Γch(3, 5; 7, 8)χch(7, 8; 1) + Γsp(3, 5; 7, 8)χsp(7, 8; 1)

)
νβγα

(1− δα,γ)

]

=:

∑
β

Uβα〈nβ,−σ(1)〉δα,ν +
∑
β 6=α

(Uβα − Jβα)
(
〈nβ,σ(1)〉δα,ν − 〈nαν,σ(1)〉δβ,ν

)
+ Jνα(〈nαν,−σ(1)〉(1− δα,ν) + 〈nνα,−σ(1)〉(1− δα,ν))

]
δ(1− 5)

+
1

4
G
γβ

(1, 3)
(

Γch(3, 5; 7, 8)χch(7, 8; 1)Γch,0 + Γsp(3, 5; 7, 8)χch(7, 8; 1)Γsp,0
)
νβαγ

,

(5.347)

where we have defined

Γch,0αβγδ =



Uαα α = β = γ = δ

2Uαγ − Jαγ α = β 6= γ = δ

Jαβ α = γ 6= β = δ

Jαβ α = δ 6= β = γ

0 else

(5.348)

and

Γsp,0αβγδ =



Uαα α = β = γ = δ

Jαγ α = β 6= γ = δ

Jαβ α = γ 6= β = δ

Jαβ α = δ 6= β = γ

0 else

.(5.349)
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5.6.5. Interaction vertices in RPA. Comparing the interaction vertices Γsp/ch,0

with the respective random phase approximation (RPA) expressions [286] (compare
sec. 5.2) we see a difference in some matrix elements; namely,

Γch,RPAαβγδ =



Uαα α = β = γ = δ

2Uαγ − Jαγ α = β 6= γ = δ

−Uαβ + 2Jαβ α = γ 6= β = δ

Jαβ α = δ 6= β = γ

0 else

(5.350)

and

Γsp,RPAαβγδ =



Uαα α = β = γ = δ

Jαγ α = β 6= γ = δ

Uαβ α = γ 6= β = δ

Jαβ α = δ 6= β = γ

0 else

.(5.351)

The origin of this difference is the fact that the RPA vertices are derived from eq. (5.347)

by neglecting the spin and charge fluctuation contributions in terms of Γsp/chχsp/chΓsp/ch,0.
This results in the approximate expression

Σαν,σ(1, 5) ≈

∑
β

Uβα〈nβ,−σ(1)〉δα,ν +
∑
β 6=α

(Uβα − Jβα)
(
〈nβ,σ(1)〉δα,ν − 〈nαν,σ(1)〉δβ,ν

)
+ Jνα(〈nαν,−σ(1)〉(1− δα,ν) + 〈nνα,−σ(1)〉(1− δα,ν))

]
δ(1− 5),(5.352)

which corresponds to the Hartree-Fock result.
Thus, we can calculate from eq. (5.153) the RPA two-particle irreducible spin vertex

Γsp,RPAναλρ (1, 5; 7, 8) =
∑
σ

σ
δΣαν,σ(1, 5)φ

δGρλ,↓(7, 8)φ

∣∣∣∣∣
φ=0

(5.353)

=δ(1− 5)

δα,ν∑
β

Uβα
∑
σ

σ
δnβ,−σ(1)

δGρλ,↓(7, 8)
+

+
∑
β 6=α

(Uβα − Jβα)
∑
σ

σ
δ
[
nβ,σ(1)δα,ν − nαν,σ(1)δβ,ν

]
δGρλ,↓(7, 8)

+

+
(
1− δα,ν

)
Jνα

∑
σ

σ
δ
[
nαν,−σ(1) + nνα,−σ(1)

]
δGρλ,↓(7, 8)

)
(5.354)

=δ(1− 5)δ(1− 7)δ(1− 8)

δα,ν∑
β

Uβαδβ,ρδβ,λ+

+
∑
β

β 6=α

(Uβα − Jβα)
(
−δβ,ρδβ,λδα,ν + δα,ρδν,λδβ,ν

)
+
(
1− δα,ν

)
Jνα

(
δα,ρδν,λ + δν,ρδα,λ

))
,(5.355)

which corresponds to the previously mentioned vertex in eq. (5.351). One reproduces
the RPA charge vertex in the same manner as presented for the spin vertex.
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In summary, we see that although TPSC is similar in its functional form to the RPA
expressions there are differences that stem from the quantum fluctuation contributions.

5.6.6. TPSC approximation. In the same fashion as we proceeded in the multi-
site TPSC (see sec. 5.4) we approximate the Luttinger-Ward functional Φ[G] in the
multi-orbital case by

Φ[G] =0.5
[
Gαν,σ(1, 1+)Γσσ

′

ανξλ
G
λξ,σ′

(1, 1+)
]
,(5.356)

where Γσ−σανξλ and Γσσανξλ are local and static constants that will be determined via the

local spin and charge sum rules (see sec. 5.6.3). Analogously to the multi-site calculation

we find that δΦ[G]
δG = Σ leads to a static and local self-energy which we assume to be

already absorbed in to the kinetic part of the Hamiltonian (see discussion in sec. 5.4).
This ansatz for the Luttinger-Ward functional leads to static and local irreducible
interaction vertices (by means of eq. (5.130))

Γchγβλρ(1, 2; 3, 4)

=
∑
σ

δΣβγ,σ(1, 2)φ
δGρλ,↑(3, 4)φ

∣∣∣∣
φ=0

(5.357)

=
∑
σ

δΦ[G]

δGγβ,σ(2, 1)δGρλ,↑(3, 4)
(5.358)

=
1

2

∑
σ

δ

δGγβ,σ(2, 1)

[
δGαν,σ(1, 1+)

δGρλ,↑(3, 4)
Γσσ
ανξλ

Gλξ,σ(1, 1+)

+Gαν,σ(1, 1+)Γσσ
ανξλ

δGλξ,σ(1, 1+)

δGρλ,↑(3, 4)

+
δGαν,σ(1, 1+)

δGρλ,↑(3, 4)
Γσ−σ
ανξλ

Gλξ,−σ(1, 1+)

+Gαν,σ(1, 1+)Γσ−σ
ανξλ

δGλξ,−σ(1, 1+)

δGρλ,↑(3, 4)

]
(5.359)

=
1

2

∑
σ

δ

δGγβ,σ(2, 1)

[
Gλξ,↑(3, 3

+)Γ↑↑
ρλξλ

δ(3− 4)+

+Gαν,↑(3, 3
+)Γ↑↑ανλρδ(3− 4)

+ Γ↑↓
ρλξλ

Gλξ,↓(3, 3
+)δ(3− 4)

+ Γ↑↓ανλρGαν,↓(3, 3
+)δ(3− 4)

]
(5.360)

=
1

2

∑
σ

[
Γ↑↑ρλβγδ(3− 2)δ(3+ − 1)δ(3− 4)δσ,↑ +

+ δ(2− 3)δ(1− 3+)Γ↑↑γβλρδ(3− 4)δσ,↑

+ Γ↑↓ρλβγδσ,↓δ(3− 4)δ(2− 3)δ(1− 3+)+

+ δ(3− 2)δ(1− 3+)δ(3− 4)δσ,↓Γ
↑↓
γβλρ

]
(5.361)

=
1

2

∑
σ

δ(3− 4)δ(2− 3)δ(1− 3+)(Γσ−σγβλρ + Γσσγβλρ)(5.362)

=δ(3− 4)δ(2− 3)δ(1− 3+)Γchγβλρ,(5.363)
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where we have used the crossing symmetry Γαβγδ = Γδγβα (see sec. 5.1.8) and similarly
we obtain from eq. (5.153),

Γspγβλρ(1, 2; 3, 4) =
∑
σ

σ
δΣβγ,σ(1, 2)φ
δGρλ,↓(3, 4)φ

∣∣∣∣
φ=0

(5.364)

=
1

2

∑
σ

δ(1− 4)δ(2− 3)δ(3+ − 4)(Γσ−σγβλρ − Γσσγβλρ)(5.365)

= δ(1− 4)δ(2− 3)δ(3+ − 4)Γspγβλρ.(5.366)

As presented in the multi-site TPSC section 5.4 we can now improve on the self-
energy by inserting the non-interacting Green’s function G0 and the local and static
TPSC vertices Γsp/ch from eq. (5.363) and (5.366) into the equation of motion of the self-
energy (eq. (5.347)). This corresponds to the original TPSC idea where the fluctuations
feed back into the single-particle properties while one has to use the non-interacting
Green’s function G0 in order to be consistent with the assumption of static and non-
local irreducible vertices Γsp/ch [163].
We end up with

Σαν,σ(1, 5) =

∑
β

Uβα〈nβ,−σ(1)〉δα,ν +
∑
β 6=α

(Uβα − Jβα)
(
〈nβ,σ(1)〉δα,ν − 〈nαν,σ(1)〉δβ,ν

)
+ Jνα(〈nαν,−σ(1)〉(1− δα,ν) + 〈nνα,−σ(1)〉(1− δα,ν))

]
δ(1− 5)

+
1

4
G0
γβ

(1, 5)
(

Γchχch(5, 1)Γch,0 + Γspχch(5, 1)Γsp,0
)
νβαγ

,(5.367)

which leads to

Σαν,σ(k, iωn) =
∑
β

Uβα〈nβ,−σ〉δα,ν +
∑
β 6=α

(Uβα − Jβα)
(
〈nβ,σ〉δα,ν − 〈nαν,σ〉δβ,ν

)
+ Jνα(〈nαν,−σ〉(1− δα,ν) + 〈nνα,−σ〉(1− δα,ν))

+
T

4N

∑
q,iqm

[
Γchχch(q, iqm)Γch,0 + Γspχsp(q, iqm)Γsp,0

]
νβαγ

G0
γβ

(k + q, iωn+m).

(5.368)

It is not a surprise that the TPSC vertices lead again to RPA-like spin and charge
susceptibilities via the Bethe-Salpeter equations (5.129) and (5.152):

χspρλνη(1, 2) =− 2G0
λη(1, 2)G0

νρ(2, 1)

−G0
λγ(1, 2)Γsp

δγαβ
χsp
αβνη

(1, 2)G0
δρ

(2, 1)(5.369)

=2χ0
ρλνη(1, 2)− Γsp

δγαβ
χsp
αβνη

(1, 2)G0
λγ(1, 2)G0

δρ
(2, 1)(5.370)

=2χ0
ρλνη(1, 2)φ + Γsp

δγαβ
χsp
αβνη

(1, 2)χ0
ρλδγ

(1, 2)(5.371)

2χ0
ρλνη(1, 2)φ =

(
δρ,αδλ,β − χ

0
ρλδγ

(1, 2)φΓsp
δγαβ

)
χsp
αβνη

(1, 2)(5.372)

and by taking advantage of the usual tensor isomorphism (eq. (5.107)) we get

χspρλνη(q, iqm) =
[
I− χ0(q, iqm)Γsp

]−1

ρλαβ
2χ0

αβνη
(q, iqm).(5.373)

Analogously, we determine the charge susceptibility

χchρλνη(q, iqm) =
[
I + χ0(q, iqm)Γch

]−1

ρλαβ
2χ0

αβνη
(q, iqm).(5.374)
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5.6.7. Ansatz equation for the spin vertex. As was the case for the single-
band and the multi-site TPSC we lack local spin sum rules to determine the spin vertex
Γsp, namely:
We have Norb many αααα-local spin sum rules (eq. (5.327)), N2

orb −Norb many ααββ-
local spin sum rules (eq. (5.328)) and the same number for the αβαβ-case (eq. (5.329)).This
gives in total 2N2

orb−Norb equations, while those sum rules come along with equal spin
and unequal spin double occupations, i.e. 2N2

orb−Norb unknowns, where we subtracted
Norb components due to the Pauli principle

(5.375) 〈nα,↑nα,↑〉 = 〈nα,↑〉.

On top of that we have the irreducible spin vertex Γsp with its N2
orb independent

components17.
On taking stock we see that the set of equations is underdetermined with

(5.376) (2N2
orb −Norb) +N2

orb − (2N2
orb −Norb) = N2

orb

missing equations.
In order to supply those equations we proceed in the same way as in sec. 5.4.1 and

start with the implicit equation for the self-energy (eq. (5.323)),

Σ
νβ,σ

(1, 3)G
βξ,σ

(3, 2) =−
∑
α

Uαν

〈
nα,−σ(1+)cν,σ(1)c†ξ,σ(2)

〉
−
∑
α

α 6=ν

(Uαν − Jαν)
〈
nα,σ(1+)cν,σ(1)c†ξ,σ(2)

〉
+
∑
α

α 6=ν

Jαν

(〈
c†α,−σ(1+)cα,σ(1)cν,−σ(1)c†ξ,σ(2)

〉
+
〈
c†ν,−σ(1++)cα,σ(1+)cα,−σ(1)c†ξ,σ(2)

〉)
,(5.377)

and do a Hartree-Fock factorization for the right-hand side while writing prefactors
A, B in front of each term to recover the limit of equal imaginary time, orbital and
position:

Σ
νβ,σ

(1, 3)G
βξ,σ

(3, 2) ≈ Aσν 〈nν,−σ(1)〉Gνξ,σ(1, 2)

+
∑
α

α 6=ν,σ′
Bσσ′
αν

〈
nα,σ′(1)

〉
Gνξ,σ(1, 2)

+
∑
α

α 6=ν

Jαν

(〈
c†α,−σ(1+)cα,σ(1)cν,−σ(1)c†ξ,σ(2)

〉
+
〈
c†ν,−σ(1++)cα,σ(1+)cα,−σ(1)c†ξ,σ(2)

〉)
,(5.378)

where we defined

Aσν = Uνν
〈nν,σnν,−σ〉
〈nν,σ〉〈nν,−σ〉

,(5.379)

Bσσ
αν = (Uαν − Jαν)

〈nα,σnν,σ〉
〈nα,σ〉〈nν,σ〉

, α 6= ν,(5.380)

Bσ−σ
αν = Uαν

〈nα,−σnν,σ〉
〈nα,−σ〉〈nν,σ〉

, α 6= ν.(5.381)

17We assume that Γsp follows the same symmetry as Γsp,0. According to eq. (5.349) we need only
to consider the elements ααββ since the other elements are either zero or renormalized in the same
way as one of the ααββ-components.
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Now we neglect18 the off-diagonal orbital occupations 〈nαν,σ〉 which means that a
Hartree-Fock factorization of the equal imaginary time, position and orbital evalua-
tion of the two remaining two-point functions in eq. (5.378) will vanish.
Multiplying eq. (5.378) with G−1

ξγ,σ
(2, 4) and integrating over all internal degrees of

freedom leaves us with

Σνγ,σ(1, 4) = Aσν 〈nν,−σ(1)〉δ(1− 4)δν,γ +
∑
α

α 6=ν,σ′
Bσσ′
αν

〈
nα,σ′(1)

〉
δ(1− 4)δν,γ .(5.382)

From the definition of the spin vertex Γsp in eq. (5.153) we can calculate

Γspγνλρ(1, 4; 7, 8)

=
∑
σ

σ
δΣνγ,σ(1, 4)φ

δGρλ,↓(7, 8)φ

∣∣∣∣∣
φ=0

(5.383)

=δ(1− 4)δν,γ
∑
σ

σ

δAσν 〈nν,−σ(1)〉
δGρλ,↓(7, 8)

+
∑
α

α 6=ν,σ′

δBσσ′
αν

〈
nα,σ′(1)

〉
δGρλ,↓(7, 8)

 .(5.384)

By the same steps as in eq. (5.260) we obtain

Γspγνλρ(1, 4; 7, 8)

=δ(1− 4)δ(1− 7)δ(1+ − 8)δν,γδρ,λ

[
A↑νδν,ρ + (1− δν,ρ)

(
B↑↓ρν −B↑↑ρν

)]
,(5.385)

where in the case of α 6= β we set the values of Γspαβαβ , Γspαββα equal to Γspααββ as described

previously in this section, which results in

(5.386) Γspαβγδ =



A↑α α = β = γ = δ

B↑↓αγ −B↑↑αγ α = β 6= γ = δ

Γspααββ α = γ 6= β = δ

Γspααββ α = δ 6= β = γ

0 else

.

The ansatz –like in the multi-site case– is not particle-hole symmetric and thus
artificially breaks particle-hole symmetry if applied to a system that has this symmetry.
In order to make our ansatz equations particle-hole symmetric we average between the
ansatz in eq. (5.386) and the particle-hole transformed one. This yields

Aσν =Uνν
1

2

(
〈nν,σnν,−σ〉
〈nν,σ〉〈nν,−σ〉

+
〈(1− nν,σ)(1− nν,−σ)〉
〈(1− nν,σ)〉〈(1− nν,−σ)〉

)
(5.387)

Bσσ
αν

α 6=ν
= (Uαν − Jαν)

1

2

( 〈nα,σnν,σ〉
〈nα,σ〉〈nν,σ〉

+
〈(1− nα,σ)(1− nν,σ)〉
〈(1− nα,σ)〉〈(1− nν,σ)〉

)
(5.388)

Bσ−σ
αν

α 6=ν
= Uαν

1

2

(
〈nα,σnν,−σ〉
〈nα,σ〉〈nν,−σ〉

+
〈(1− nα,σ)(1− nν,−σ)〉
〈(1− nα,σ)〉〈(1− nν,−σ)〉

)
.(5.389)

Alternatively, one can also keep the ansatz in eq. (5.381) and perform a particle-hole
transformation when electron-doping a half-filled system as suggested in Ref. [163].
Nevertheless, we stick to the presented symmetric equations (5.387)-(5.389).

18We find for all cases studied in this thesis that this a justified approximation since the correspond-
ing on-site unequal orbital hopping matrix elements are much smaller than the diagonal components.
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Note that the described ansatz does not work in the case where J = 0 and Uαβ 6= 0
because in this case we have only density-density interactions stemming from Uαβ which
means that

(5.390)
〈
nα,↑nβ,↑

〉 J=0
=
〈
nα,↑nβ,↓

〉
and therefore Γsp reduces to the element Γspαααα (see eq. (5.386)). Thus, the local
spin sum rules for the αβαβ-component (eq. (5.329)) which determine the value of〈
nα,↑nβ,↓

〉
can be evaluated by means of the Bethe-Salpeter equation (5.152) and

result in
T

N

∑
q,iqm

χspαβαβ(q, iqm)

=2
T

N

∑
q,iqm

χ0
αβαβ(q, iqm) + χ0

αβνν(q, iqm)Γspννννχ
sp
νναβ(q, iqm)

 ,(5.391)

which reduces to the local spin sum rule of the non-interacting spin susceptibility due
to the negligible equal-site unequal-orbital hopping elements and therefore we end up
with

(5.392)
〈
nα,↑nβ,↓

〉
=
〈
nα,↑

〉 〈
nβ,↓

〉
=
〈
nα,↑nβ,↑

〉
which makes no sense if Uαβ is very large. In summary, we see that the ansatz for the
spin vertex Γsp cannot be used in the case where J = 0 since it produces non-interacting
off-diagonal double occupations independent of the value of Uαβ.

5.6.8. Numerical calculation of the irreducible vertices. In the last section
we have determined additional ansatz equations for Γsp in order to have enough equa-

tions to solve for Γsp and
〈
nα,σnβ,σ′

〉
by using the local spin sum rules (5.327),(5.328)

and (5.329). Numerically, we use the multi root solvers from the GNU Scientific Library
and in the case of the spin vertex and double occupations it is usually no problem to
find a unique physical solution if one converges slowly from the limit of high tempera-
tures and weak interaction strength.
On the other hand, we will see that the charge vertex component Γchααββ tends to neg-

ative values (see chap. 6 for more details) which on the other hand leads to positive
contribution in the high-frequency behavior of ImΣ(k, iωn) (see eq. (5.368)) and this
finally leads to negative spectral weight in A(k, ω) (see eq. (4.245)). Those unphysi-
cal terms have to be avoided and this done by restricting the root search for Γch to
non-negative values. More details on this issue are postponed to chap 6.

With the spin and charge vertices at hand we can now proceed to the self-energy
calculation and afterwards determine the full Green’s function via the Dyson equation.

5.6.9. Internal accuracy check. In the same way that we derived an internal
accuracy check for the multi-site TPSC in sec. 5.4.3 we derive here a similar expression
for the multi-orbital TPSC.

By taking the equal imaginary time, position and orbital limit of eq. 5.323 we obtain

Σ
νβ,σ

(1, 3)G
βν,σ

(3, 1+) =
∑
α

Uαν
〈
nα,−σ(1+)nν,σ(1)

〉
+
∑
α

α 6=ν

(Uαν − Jαν)
〈
nα,σ(1+)nν,σ(1)

〉
+
∑
α

α 6=ν

Jαν

(〈
c†α,−σ(1+)cα,σ(1)cν,−σ(1)c†ν,σ(1+)

〉
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+
〈
c†ν,−σ(1++)cα,σ(1+)cα,−σ(1)c†ν,σ(1+)

〉)
.(5.393)

Via Fourier transformation and the definition of the spin susceptibility χsp,± in eq. (5.203)
we identify

lim
τ↗0

T

N

∑
k,iωn

e−iωnτΣ
νβ,σ

(k, iωn)G
βν,σ

(k, iωn)

=
∑
α

Uαν
〈
nα,−σnν,σ

〉
+
∑
α

α 6=ν

(Uαν − Jαν)
〈
nα,σnν,σ

〉

− 1

2

∑
α

α 6=ν

Jαν

 T
N

∑
q,iqm

χspαανν(q, iqm) +
T

2N

∑
q,iqm

<
(
χsp − χch

)
νααν

(q, iqm)

 .(5.394)

This equation is fulfilled in the case where the full Green’s function G is replaced by
the non-interacting Green’s function G0 as one can see from the proof in C.1.

Thus, we can use the sum rule for tr
(
ΣG0

)
in eq. (5.394) to check the internal

numerical accuracy in the program and the deviation to tr (ΣG) gives us a measure
in how for the TPSC self-energy respects the consistency between the one- and two-
particle level.

5.6.10. Transversal particle-hole channel. There is no easy way to include the
transversal particle-hole channel as we did in the multi-site TPSC in sec. 5.1.9. The
reason is that in the longitudinal particle-hole channel we are able to make use of the
symmetry in Γsp,0 (see eq. (5.349)), namely

(5.395) Γsp,0ααββ = Γsp,0αβαβ = Γsp,0αββα, α 6= β,

and state that the spin vertex Γsp retains this symmetry.
On the other hand, we find a more complex relation of the matrix elements of Γsp,0 in
the transversal channel (see appendix A) and since we do not have enough local spin
sum rules to determine the vertices in eq. (5.395) independent from each other we need
to find a different solution. There are three options of how one can proceed. First, one
can construct a relation between the matrix elements similar to the one in eq. (5.395)
but this makes the numerical search for Γsp harder due to the mixing of the different
matrix components (see eq. (A.20)).
Second, one can also use double occupations from different methods as an external in-
put which allows us to have enough local spin sum rules to determine the components
Γspααββ , Γspαβαβ and Γspαββα independent of each other.

Third, in order to avoid additional complications from a first option and the possi-
ble error sources from the second one can also just ignore the contribution from the
transversal particle-hole channel. This approach has the drawback that possible dom-
inant contributions to the self-energy are neglected and that the crossing symmetry
is not respected. On the other hand, we keep the simple form of the equations and
keep many important mechanisms from the single-band TPSC such as the Kanamori-
Brueckner screening.

For those reasons we present in this work only results where the transversal particle-
hole channel is ignored but we underline once more that extensions are in principle
possible and could result in further improvements on the method.

5.6.11. Short summary on the applications of multi-orbital TPSC. The
first multi-orbital formulation of TPSC was provided by Miyahara et al. in 2013 [284]
and was used to study unconventional superconductivity mediated by spin fluctuations.
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Our multi-orbital TPSC scheme differs from this original one in the following as-
pects:
It restricts the charge vertex Γch to non-negative values to ensure positivity of the spec-
tral weight while in the original work in Ref. [284] one sets the negative contribution
to the charge vertex Γch to zero by hand.
Furthermore, we choose a symmetrized ansatz for Γsp (see eq. (5.386), (5.387), (5.388)
and (5.389)) in contrast to the immediate result in eq. (5.381) that is used in Ref. [284].
Moreover, we derive a different set of local spin and charge sum rules and determine
the bare vertices Γch/sp,0 from the Bethe-Salpeter equation (see eq. (5.348) and (5.349))
while in Ref. [284] the RPA result is used (see eq. (5.351)).

The TPSC scheme presented in this thesis was used to explain non-local correlation
effects in iron-based superconductors [285,287]. We discuss those results in more detail
in chap. 7.
Later, a review article appeared as a pre-print where the important features of the
method are presented [164]. In the same work TPSC and DMFT are applied to a toy
model and compared to each other. This study is further extended in chap. 7.

5.7. Double counting

If we use TPSC on top of DFT, i.e. we take the localized Wannier states from
DFT and put Hubbard interaction on those by means of TPSC, we need to correct
for possible double counting errors as mentioned in chap. 3. In the same referenced
chapter we pointed out that double counting schemes are always approximate or valid
only in special limits.

Since we are mostly interested in non-local and dynamical correlation effects that
go beyond DFT and we know that Hartree-Fock self-energy contributions are at least
partly included in the low-energy model that we construct from DFT, we will subtract
the Hartree-Fock contribution in all real materials calculations that are based on DFT.
This leads to the self-energy

Σαν,σ =
1

4

[
ΓchχchΓch,0 + ΓspχspΓsp,0

]
νβαγ

∗G0
γβ
.(5.396)

This double counting was first suggested in Ref. [284].

5.7.1. Flowchart of the multi-orbital TPSC. For a better overview on the
multi-orbital TPSC approach we give a flowchart of the method in fig. 5.17.
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Figure 5.17. Multi-orbital TPSC flow diagram as described in
sec. 5.6. After calculating the non-interacting Green’s function in
orbital-space and the irreducible susceptibility χ0 one has to converge
the spin and charge with respect to the local spin and charge sum rule
and the Bethe-Salpeter equations. From those one is able to evalu-
ate the self-energy and thus interacting Green’s function via the Dyson
equation. Note that id is the identity map in orbital-space which is
equivalent to I. Figure adapted from Ref. [164].
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CHAPTER 6

Bechmarking the multi-orbital TPSC

K. Zantout, S. Backes, R. Valenti
Two-Particle Self-Consistent method for the multi-orbital Hubbard model

arXiv: 2008.08098 (2020)
[164]

The multi-orbital TPSC that we introduced in sec. 5.6 is different to the multi-site
TPSC due to the effect of the inter-orbital interactions Uαβ, Jαβ. For this reason it is
important to study TPSC applied to a simple toy model and benchmark with different
methods.

6.1. Model Hamiltonian

In this chapter we will consider a simple two-orbital Hubbard model on a square
lattice with nearest neighbor hopping t only and Kanamori-Brueckner interaction [66],
i.e.

Uαβ =

{
U α = β

U − 2J else
,(6.1)

Jαβ = J,(6.2)

where U, J are the bare interaction values and 0, 1 label the two orbitals (see fig. 6.1).
We assume a temperature T/t = 0.5 and a half-filled lattice if not stated differently.

Figure 6.1. Simple toy model that is used to benchmark the multi-
orbital TPSC approach. The red spheres represent electrons that can
hop to neighboring sites with hopping amplitude t. In the case where two
electrons are on the same site they feel orbital dependent interactions
U, J .

6.2. Double occupations and spin vertex

The first step within the TPSC routine consists of calculating the spin vertex Γsp

and the double occupations 〈nα,σnβ,σ′〉. In order to improve the assessment of the
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TPSC results we also compare to DMFT results which represent the exact solution
in infinite dimensions. Note that the DMFT calculations were carried out by Steffen
Backes.

The double occupations for the simple toy model are show in fig. 6.2. DMFT and
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Figure 6.2. Double occupations 〈nα,σnβ,σ′〉 calculated from TPSC

and DMFT. (a) The equal orbital double occupations from DMFT and
TPSC agree well for all interaction strengths considered and show both a
decay with increasing on-site interaction U/t while this effect is enhanced
with increasing Hund’s coupling J . (b) A similar behavior can be also
seen for 〈n0,↑n1,↓〉 while TPSC results exhibit a stronger dependence on

U/J than DMFT. Moreover, TPSC predicts smaller double occupations
〈n0,↑n1,↓〉 with increasing U/J ratio while DMFT predicts the opposite.

Finally, in (c) we show the double occupation 〈n0,↑n1,↑〉. For those
double occupations DMFT and TPSC follow the same trends except for
small values of U/J where the DMFT double occupations make a small
dip below the non-interacting value of 0.25. Fig. adapted from
Ref. [164].

TPSC are in good agreement regarding the double occupations 〈n0,↑n0,↓〉 for all values

U/t = 0, . . . , 4 and both ratios U/J = 3 and U/J = 5 (see (a)). Both methods predict
a decay with increasing on-site interaction U/t and an enhancement of this effect with
increasing Hund’s coupling J . This behavior can be understood physically from the
generic effect of the interactions U and J to energetically favor localized states over
delocalized ones.
In (b) we observe a similar behavior of both methods for the double occupation 〈n0,↑n1,↓〉,
namely functions that increase with U/t due to the inter-orbital repulsion U01 = U−2J .
But in contrast to (a) we find that TPSC results exhibit a stronger dependence on the
U/J ratio; namely, TPSC predicts an inverse proportional dependence between the
double occupation 〈n0,↑n1,↓〉 and the U/J ratio while DMFT predicts both object to be
proportional to each other. We assume that TPSC possibly overestimates the effects
at low interaction strengths due to the Hartree-Fock decoupling that we performed to
obtain an ansatz equation for the spin vertex Γsp (see sec. 5.4.1).
Finally, in (c) we present the double occupation 〈n0,↑n1,↑〉 as a function of U/t. For

those double occupations and for a large Hund’s coupling U/J = 3, DMFT and TPSC
predict increasing functions in dependence of the interaction strength U/t which we
can understand from the Hund’s coupling property to energetically favor high-spin
states in different orbitals. On the contrary, DMFT exhibits a different behavior at
small Hund’s coupling U/J = 5 and weak interaction U/t . 3: The double occupation
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〈n0,↑n1,↑〉 drops below the non-interacting value of 0.25. We interpret this behavior to

be due to the dominating inter-orbital repulsion U01 at low Hund’s coupling J/U = 1/5
which dominates over the effect of the Hund’s coupling J to form a high-spin state.
Only at larger interaction strengths U/t and therefore also at larger Hund’s couplings
J we see that the formation of high-spin states dominates over the mere repulsive effect
of the inter-orbital repulsion U01. Thus, we see similar trends for the double occupa-
tion 〈n0,↑n1,↑〉 in (c) between DMFT and TPSC but with essential differences when
it comes to additional effects at low interaction strength which might be due to the
overestimation of correlation effects from the decoupling that we performed in sec. 5.4.1.

We draw now our attention to the spin vertex Γsp that is determined self-consistently
from the local spin sum rules. The results are shown in fig. 6.3. First, we remark that
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Figure 6.3. Matrix elements of the spin vertex Γsp as a function of
U/t. We only show non-zero matrix elements and do not show Γsp0101 =
Γsp1010 = Γsp1001 = Γsp0110 because they are equal to Γsp1100 = Γsp0011. Similar
to the single-band TPSC we observe Kanamori-Brueckner screening for
larger values of U/t, i.e. the spin vertex converges toward as saturation
value with increasing U/t. This behavior is observed for all values of U/J
considered. Moreover, we see how larger Hund’s couplings suppress the
matrix elements Γsp1111 = Γsp0000 while it enhances the values of Γsp1100 =
Γsp0011. Fig. reprinted from Ref. [164].

in the range of weak to intermediate coupling strength it is always possible to solve the
local spin sum rules (see eq. (5.327), (5.328) and (5.329)) for the double occupations
〈nα,↑nβ,↓〉 and the spin vertex Γsp. Nevertheless, it is important to slowly converge the
results from weak interaction strength and high temperatures.
Similar to the results from the single-orbital TPSC, we observe in fig. 6.3 Kanamori-
Brueckner screening which means that the spin vertex does not increase boundlessly
but reaches a saturation value as a function of U/t. The screening of the matrix ele-
ment Γsp0000 = Γsp1111 is more pronounced in the case where the Hund’s coupling is larger
while the opposite effect is be observed for Γsp0011 = Γsp1100. This phenomenon can be
traced back to the fact that larger Hund’s couplings J/U favor states where the double
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occupation of equal spins in different orbitals 〈n0,↑n1,↑〉 while it suppresses double oc-

cupation of opposite spins in the same orbital 〈n0,↑n0,↓〉 (see fig. 6.2). From this we can
understand differently effective screenings via the ansatz equation for the spin vertex
(see eqs. (5.386), (5.387), (5.388) and (5.389)),

(6.3) Γspαβγδ =



A↑α α = β = γ = δ

B↑↓αγ −B↑↑αγ α = β 6= γ = δ

Γspααββ α = γ 6= β = δ

Γspααββ α = δ 6= β = γ

0 else

,

where we defined

Aσν =Uνν
1

2

(
〈nν,σnν,−σ〉
〈nν,σ〉〈nν,−σ〉

+
〈(1− nν,σ)(1− nν,−σ)〉
〈(1− nν,σ)〉〈(1− nν,−σ)〉

)
,(6.4)

Bσσ
αν

α 6=ν
= (Uαν − Jαν)

1

2

( 〈nα,σnν,σ〉
〈nα,σ〉〈nν,σ〉

+
〈(1− nα,σ)(1− nν,σ)〉
〈(1− nα,σ)〉〈(1− nν,σ)〉

)
,(6.5)

Bσ−σ
αν

α 6=ν
= Uαν

1

2

(
〈nα,σnν,−σ〉
〈nα,σ〉〈nν,−σ〉

+
〈(1− nα,σ)(1− nν,−σ)〉
〈(1− nα,σ)〉〈(1− nν,−σ)〉

)
.(6.6)

Thus, the reduction/enhancement of the double occupations directly translates into an
suppression/raise of the respective spin vertex matrix element.

6.3. Charge vertex

Next, we consider the charge vertex Γch which is determined from the local charge
sum rules (eqs. (5.334), (5.335) and (5.336)) and the double occupations 〈nα,σnβ,σ′〉.
In contrast to the spin vertex Γsp, it is much harder to determine the charge vertex Γch

due to the following reasons.
First, we consider the numerically unconstrained search for the charge vertex Γch by
finding a root of the local charge sum rules within the domain of real numbers for Γch.
The obtained results of this unrestricted search are the open symbols in fig. 6.4. Note
that the open symbols are mostly overlapped by the same filled symbol that we will
explain later. We observe that in the case large Hund’s coupling J/U (see (a),(b)) the
matrix elements Γch0101 = Γch1010 diverge as a function of U/t which makes the numerical
treatment of the charge channel possibly unstable1. For such values of J/U one has to
pay special attention to numerical errors and convergence issues.
If we take a look at lower J/U values (see (b)-(d)) we find that charge vertex compo-
nent Γch0011 = Γch1100 assumes negative values which contributes negative spectral weight
to the spectral function A(k, ω). In order to avoid those unphysical contributions to
the spectral function we numerically restrict Γch to non-negative values and determine
Γch as the matrix that minimizes the difference between the right-hand side and the
left-hand side of the local charge sum rule equations (eqs. (5.334), (5.335) and (5.336)).
The optimized values of this restricted charge vertex calculations are shown as filled
symbols in fig. 6.4.
Throughout all calculations in fig. 6.4 we observe that this numerical restriction ef-
fects the charge vertex Γch only if the interaction strength U/t is large and the Hund’s
coupling ratio J/U is small. In the other cases the unconstrained calculation of Γch

gives the same results as the constrained calculation2. Furthermore, we find that the

1In this particular case the numbers blow up to values of the order of 1010.
2The only exception to this statement is the point at U/t = 3.8, 4.0 in fig. 6.4(a). But in this case

the negative value is due to the divergence of Γch0101.
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Figure 6.4. We present the components of the charge vertex Γch as a
function of U/t for different ratios of U/J . We do not show components
that can be deduced by the ones shown in the figure, e.g. Γch0000 = Γch1111

and Γch1100 = Γch0011. In (a) to (d) we show Γch for U/J = 3, 4, 5, 6 respec-
tively. The open symbols that are mostly overlapping with their filled
counterparts represent the solution for the charge vertex Γch without
numerical restriction of the values of Γch while the filled symbols show
the result when the matrix elements of Γch are restricted to non-negative
numbers. In (a) and (b) wee see that in the case of large Hund’s cou-
pling J/U the matrix elements Γch0101 diverge. In (b)-(d) we see that for
small Hund’s coupling the matrix element Γch0011 assumes negative val-
ues. The general tendency of the charge vertex is similar to the results
from the single-orbital TPSC with a diverging behavior as a function of
U/t which leads to an overall suppression of charge fluctuations. Figure
adapted from Ref. [164].
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restriction mainly effects the value of Γch0011 = Γch1100 while minimally changing the other
components of the charge vertex, namely Γch0101 and Γch0000. Note that the authors in
Ref. [284] also find that in the cases of small Hund’s coupling ratio J/U the matrix
element Γch0011 is small compared to the other matrix elements which was their motiva-
tion to set this matrix element to zero.
Finally, we notice that the general trend of the charge vertex components is to diverge
as a function of interaction strength U/t. The interpretation of this behavior can be
adapted from the single-orbital case where this divergence leads to the destruction of
charge fluctuations.

As we have seen previously the numerical restriction to non-negative matrix ele-
ments in the charge vertex Γch leads necessarily to deviations in the local charge sum
rules (see eqs. (5.334), (5.335), (5.336)). To quantify this source of error we take a look
at the relative error of the local charge sum rules and compare this error from TPSC to
the error from RPA since both methods treat fluctuation in a similar functional form
(see eqs. (5.219), (5.220) and (5.267), (5.268)).
The relative error of the local charge sum rule is defined as the sum of differences be-
tween right-hand side and left-hand side of the equations (5.334), (5.335) and (5.336)
divided by the respective right-hand sides. The result of this comparison between RPA
and TPSC is shown in fig. 6.5.

In (a) we first present the scale of the charge sum rule error within TPSC. We ob-
serve no error for small interaction strengths U/t since the restricted and unconstrained
calculation of the charge vertex Γch arrive at the same (non-negative) result that obeys
the local charge sum rules exactly.
On the one hand, we already see in fig. 6.4 that the charge vertex Γch0011 converges to
negative values if the onsite-repulsion U is large compared to the Hund’s coupling J .
Thus, we observe a jump in the charge sum rule error occurring at U/t . 2.5 which
goes to a value of up to 35% (red, orange and green curve). Moreover, we can recog-
nize a different kind of error in the black curve which is due to the divergence of Γch0101

(see fig. 6.4 (a)). As mentioned previously this blow up in numbers leads to numerical
instabilities that cause a deviation in the local charge sum rules. For the toy model
considered those error grow up to 50%.
A more detailed analysis of the local charge sum rule error reveals that the source is
mainly the 0011-sum rule since the numerical restriction has its largest effect on the
charge vertex component Γch0011 (see also fig. 6.4). From this we can also understand
why the jump in fig. 6.5 (a) happens at U/t . 2.5 which is the region where the un-
restricted calculation of Γch leads to a sign change in Γch0011 and restricted calculation
will necessarily lead to a deviation in the local charge sum rule.
In addition to the above described error source we find a strong increase in the relative
charge sum rule error for U/J = 3 at U/t =& 3.8 (see fig. 6.5 (a) black curve) which
appears even in the unrestricted determination of Γch (open symbols). The reason for
those deviations is the diverging charge vertex component Γch0101 (see fig. 6.4 (a)) which
causes numerical instabilities that hinder an exact fulfillment of all local charge sum
rules.
Note that those errors have to be interpreted in the right context: First, they only occur
at small interaction strength U/t if U/J is large or at larger interaction strengths U/t
if U/J is small. The typical case in realistic studies is the second case where additional
hopping elements dampen the divergence of Γch0101. Second, we remind ourselves that
in the self-energy expression (eq. (5.368)),

Σαν,σ(k, iωn) =
∑
β

Uβα〈nβ,−σ〉δα,ν +
∑
β 6=α

(Uβα − Jβα)
(
〈nβ,σ〉δα,ν − 〈nαν,σ〉δβ,ν

)
+ Jνα(〈nαν,−σ〉(1− δα,ν) + 〈nνα,−σ〉(1− δα,ν))
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Figure 6.5. (a) The relative error in the charge sum rules for a re-
stricted calculation of Γch (filled symbols) is shown as function of the
interaction strength U/t. For small values U/t . 2 we observe that
Γch can be determined such that the local charge sum rules are fulfilled
exactly. But when we have large onsite-repulsion U/t and small Hund’s
coupling ratio J/U we see that the error in the charge sum rules can
grow up to 50%. On the other hand, we can also see a jump to an error
of approximately 35% in the case where Γch0011 changes sign (see fig. 6.4)
which takes place at U/t . 2.5. (b) The value of the equal orbital sum
rule (eq. (6.8)) is presented in dependence of U/t for different values of
U/J and for RPA (open symbols) and TPSC (filled symbols). TPSC
fulfills the equal orbital sum rule exactly except in the range of large
interaction strength U/t where the numerical restriction of the charge
vertex Γch to non-negative values leads to small deviations of around 2%.
The unrenormalized spin and charge vertices from RPA lead to violation
the equal orbital sum rule already at small interaction values U/t. The
quadratic increase in the error stops at the magnetic instability which
occurs at U/t ≈ 2.2. Figure adapted from Ref. [164].

+
T

4N

∑
q,iqm

[
Γchχch(q, iqm)Γch,0 + Γspχsp(q, iqm)Γsp,0

]
νβαγ

G0
γβ

(k + q, iωn+m),(6.7)

it is the spin channel with the diverging spin susceptibility that gives the dominant
contribution to the self-energy while the charge fluctuation play a secondary role. Thus,
one can expect to obtain a self-energy that is still qualitatively and even quantitatively
accurate even in the presence of those errors in the charge channel3 as long as the
original assumption of TPSC, namely that the spin and charge vertices Γsp/ch are
constant, is still a good approximation.

In fig. 6.5 (b) we compare RPA and TPSC sum rule violations since both are func-
tionally very similar but TPSC incorporates important vertex renormalizations that are
not present in RPA (see eq. (5.351)). Notice that all local sum rules (eqs. (5.334), (5.335),
(5.336), (5.327), (5.328) and (5.329)) contain double occupations that are – in general
– different in TPSC and RPA. In order to compare both methods on equal footing we
consider the sum of the local spin and charge sum rules in the case where all orbital

3We checked for instance the self-energy changes in LiFeAs (see chap. 7) are marginal if one removes
the charge contribution in eq. (6.7).
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indices are equal, i.e.

(6.8)
T

N

∑
q,iqn

(
χsp + χch

)
αααα

(q, iqn) = 2〈nα〉 − 〈nα〉2 = 1,

where we have used that the toy model is at half filling and that both orbitals are
degenerate, namely 〈n0〉 = 〈n1〉 = 1. We will call this sum rule the equal orbital sum
rule.
While TPSC fulfills the equal orbital sum rule by construction up to the largest values
of U/t considered if U/J = 3 because in this domain we only have errors in the 0011-
charge sum rule (see fig. 6.5 (b) black line). For interaction strengths U/t > 2.6 and
U/J > 3 (see red, orange and green line) we observe a deviation of at most 2% which is
due to the numerical restriction of Γch to non-negative values. This leads to deviations
not only in the 0011-local charge sum rule but also in the 0000-local charge sum rule4

and therefore also in the equal orbital sum rule.
If we compare this small deviation of 2% to the deviations that grow up to 50% in
the charge channel (see fig. 6.5 (a)), we realize once more that the largest source of
errors is the numerical constraint on Γch0011 that we need to ensure a physical spectral
function A(k, ω). More importantly, we see that no renormalization of the spin and

charge vertices Γsp/ch as in RPA leads to stronger violations of the orbital sum rule (see
open symbols in fig. 6.5 (b)). The calculations in the figure were carried out until a
maximum value of U/t ≈ 2.2 where one reaches the magnetic instability in RPA which
does not occur in TPSC due to the renormalization of the spin vertex and in agreement
with the Mermin-Wagner theorem. Moreover, one can deduce the quadratic deviation
of RPA at low interaction strength U/t in the same fashion as for the single-orbital
case (see Ref. [163]).

6.4. Self-energy and quasi-particle properties

Finally, we take a look at the TPSC self-energy Σ and the quasi-particle properties
that one can extract from it (see sec. 4.9).
In order to avoid additional sources of error we study here our model system at T/t =
0.03 and slightly away from half filling, namely at n = 0.8. We checked that the two-
particle consistency relation (see eq. (5.394)) is violated by at most 2.5% in the following
calculations. The low temperature choice allows us to use the extrapolation formulas
from appendix B.1.3 which are only valid at low temperatures while the small hole
doping away from half filling helps us to avoid the strong anti-ferromagnetic fluctuations
which cause the spin susceptibility to diverge at already small interaction strengths U/t.
Thus, the combination of both parameter choices allows us obtain TPSC results at low
temperatures for a interaction values that range from weak to intermediate coupling.

Before we show the TPSC results we introduce the local TPSC limit, where we
replace the full momentum-dependent TPSC self-energy Σ(k, ω) with its momentum
average

(6.9) Σ(k, iωn)→ 1

N

∑
k

Σ(k, iωn).

This construction will be needed later when we compare TPSC results to local DMFT
results, where the DMFT calculation were all carried out by Steffen Backes.

In fig. 6.6 we present the TPSC self-energy Σ for U/t = 2.87 and U/J = 4 at the
lowest Matsubara frequency iω0. We observe in both the real and imaginary part of the
self-energy a non-negligible momentum dependence that results in a variable effective

4Due to the matrix inversion in the TPSC expression for χsp/ch (see eq. (5.268)) we have a contri-
bution of the Γch0000 and Γch0011 matrix element to both the 0011- and 0000-local charge sum rule.
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Figure 6.6. Momentum-dependent TPSC self-energy Σ for U/t =
2.87 and U/J = 4 at the lowest Matsubara frequency iω0, filling n = 0.8
and temperature T/t = 0.03. The black line in the lower quadrant is
the Fermi surface which we only plot in this quadrant in order to make
the full momentum dependence of the self-energy still visible. A strong
momentum dependence is observed in both the real part and imaginary
part.

mass renormalization and quasi-particle weight on the Fermi surface (black line right-
hand side figure). For example, the renormalization effects close to the border kx = 0
and ky = 0 are smaller than the ones for states on the Fermi surface that are located
at kx = ky. We will encounter the same momentum dependent effects later for LiFeAs
(see chap. 7).

The DMFT self-energy is compared to TPSC by means of the local self-energy (see
eq. (6.9)) and the resulting self-energies Σ00,σ(iωn) are shown in fig. 6.7. We observe
a qualitative agreement of both methods, especially considering the low-frequency be-
havior of the imaginary part of the self-energy. Notice that the last agreement is of
special value since the low-frequency behavior of the self-energy is directly related to
the quasi-particle weights and lifetimes (see eq. (4.262) and (4.263)). Thus, we can
expect a similar description of low-energy quasi-particle properties from both the lo-
cal TPSC and DMFT approximation (see also fig. 6.8). Nevertheless, we already see
an important difference between both methods, namely the high-frequency tail of the
imaginary part of the self-energy. While in DMFT the high-frequency tail is correctly
captured [288, 289] we already know from the single-band version that TPSC is not
able to produce the correct high-frequency behavior [163]. The reason of the inade-
quate description within TPSC stems from the fundamental approximation that the
spin and charge vertices Γsp/ch are frequency-independent. The local spin and charge
sum rules that we used to determine those two vertices account for the fulfillment of
the Pauli principle but in order to obtain the correct imaginary part of the self-energy
for high frequency one needs a further frequency-dependent renormalization of the spin
and charge vertices; namely, the vertices have to renormalize to the original bare ver-
tices Γsp/ch,0 [163]. This drawback from TPSC is also responsible why Hubbard bands
cannot be obtained from TPSC [163].
Regarding the real part of the self-energy it is important to note that the dominant
contribution in both DMFT and TPSC stems from the Hartree-Fock term which also
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Figure 6.7. DMFT and local TPSC self-energy Σαα,σ(iωn) for U/t =
2.5 and U/J = 4, filling n = 0.8 and temperature T/t = 0.03. Note
that we subtracted the static Hartree-Fock term from both self-energies.
We observe very good agreement in the low frequency behavior of the
imaginary part while the high-frequency tail of TPSC is inadequate due
to missing frequency-dependence of the spin and charge vertices Γsp/ch.
The real part, that is mostly dominated by the Hartree-Fock term, does
not have the problem of missing frequency renormalizations since the
Hartree-Fock term is included in TPSC. Figure adapted from Ref. [164].

determines the high-frequency behavior. Comparing to this energy scale we also find a
good agreement between the real parts of the self-energy in both methods.

Next, we compare the quasi-particle weight from DMFT and the local TPSC limit
in fig. 6.8. As already visible from fig. 6.7 the quasi-particle weight Z takes similar
values in DMFT and the local limit of TPSC. Both approximations predict a decay of
quasi-particle weight Z as a function of increasing interaction strength U/t and Hund’s
coupling J/U .

In order to estimate the spin and charge channel contributions to the self-energy Σ

we show in fig. 6.9 the spin and charge susceptibility components χ
sp/ch
0000 (q, 0) which are

the dominant terms5 in the self-energy equation (5.368). From the functional point of
view both the spin and the charge susceptibility have a similar dependence on the mo-
mentum q. On the other hand, the spin susceptibility (a) is three orders of magnitude
larger than the charge susceptibility which is a manifestation of the anti-ferromagnetic
instability of the system. At the same time the strong suppression of the charge sus-
ceptibility (b) is directly related to the diminishing itinerant character of the charges.
The large difference in the order of magnitude of both objects underlines again the
importance of spin fluctuation for the low energy physics and thus the dominant con-
tribution to the self-energy.

5In principle the 0011-component is also very large but since the q-dependence and the order of
magnitude is very similar to the 0000-component we do not show this additional data.
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χ
sp/ch
0000 (q, 0) for U/t = 2.87 and U/J = 4, filling n = 0.8 and temperature
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stabilities while the charge susceptibility reveals the tendency of charge
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CHAPTER 7

Nonlocal correlation effects in LiFeAs

K. Zantout, S. Backes, R. Valenti
Effect of non-local correlations on the electronic structure of LiFeAs

Phys. Rev. Lett. 123, 256401 (2019)
[285]

In chap. 6 we studied multi-orbital TPSC results for a toy model and compared it to
the local DMFT approximation. Among the different results we highlighted the signif-
icant non-locality of the self-energy (see fig. 6.6) which leads to momentum-dependent
shifts of spectral weight and decrease of quasi-particle-lifetime.
In this chapter we are going back to real materials and study this effect of non-locality
on the electronic structure of LiFeAs.

7.1. Introduction

Since the discovery of iron-based superconductors in 2008 [290,291] a lot of effort
has been spent to investigate their electronic structure in the normal phase in order to
understand the pairing mechanism in the superconducting phase [292–295].
The first attempts to describe the energy spectrum of iron-based superconductors in
terms of ab-initio DFT calculations were successful regarding the qualitative shape of
energy bands and Fermi surface [296–298] but for a more quantitative description of
those materials it is important to incorporate the strong electron-electron interaction
of the partially filled iron 3d-states at the Fermi level. Those can lead to correlation
effects such as large effective masses m∗/m, Fermi surface renormalization, finite quasi-
particle lifetimes and precursor Hubbard satellites that are observed experimentally in
some classes of iron-based superconductors [6,299–311].
For this reason a combination of DFT and DMFT was applied to those materials, where
DMFT was used to treat the local and orbital dependent correlation effects of the low-
energy subspace. In many cases this framework was successfully applied and able to find
many of the observations, such as orbital-dependent correlations, incoherent spectral
weight distributions and Fermi surface renormalization [6,8,303–309,311,312].
While DMFT was successful in capturing important local correlation effects, it is –
by construction – not able to resolve momentum-dependent correlation effects such as
relative band shifts in opposite directions of, respectively, hole bands of the same orbital
character centered at Γ and electron bands centered at the Brillouin zone edge M (the
so-called “blue/red shift”) that is observed in many iron-based superconductors [7,
11, 313–315]. Moreover, there is also the possibility of momentum-dependent quasi-
particle scattering rates [11,12] that were observed in ARPES measurements of LiFeAs.
Depending on the precise low energy spectrum of the iron-based superconductors one
can construct different superconducting pairing scenarios [314, 316–318] which is an
important motivation for better understanding the correlation effects in the family of
iron-based superconductors.

Indeed, one finds many new developments that incorporate momentum-dependence
in the self-energy for calculations of real materials [9,10,147,148,182,183,319–323],
where the additional momentum-dependence can lead to bandwidth widening and
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momentum-dependent shifts of energybands [9,320,321]. The cited approaches differ
from each other in the way of how and which non-local contributions they take into ac-
count. For example, the GW+DMFT approach obtains the non-local self-energy effects
mainly from charge fluctuations over the complete energy spectrum [307, 319] while
the DΓA method contains specific topologies of non-local diagrams in the self-energy
expression [148].

Within the multi-orbital TPSC we can assess the contribution to local and non-
local correlation effects that stem from the low-energy spin- and charge- fluctuations.
This calculation helps to better estimate the different sources of non-locality in LiFeAs.

7.2. Experiment and Density Functional Theory

LiFeAs is an intrinsic1 iron-based superconductor that does not develop a spin-
density phase but a superconducting phase at Tc = 18K and ambient pressure [324].
Recent measurements and calculations also suggest LiFeAs as a candidate for quantum
computing implementations due to its homogeneous stoichiometric composition and
the charge neutral cleavage surface [325].
The crystal structure as obtained from X-ray diffraction is shown in fig. 7.1. It consists

Figure 7.1. Crystal structure of LiFeAs according to Ref. [326].
We observe iron layers in a tetrahedral environment of arsenic. Those
planes that are extended in the a-b plane are intercalated with a layer of
Lithium. The unit cell is marked out by the transparent cuboid. Figure
created with VESTA [327].

of iron-planes that are embedded in a tetrahedral As-environment with intercalated Li
atoms that separate the FeAs-layers. LiFeAs belongs to the tetragonal P4/nmm space
group and the precise structure data from Ref. [326] is shown in table 7.1 and 7.2.

space group a [Å] c [Å]

P4/nmm (129) 3.7678 6.3151

Table 7.1. Lattice parameters of LiFeAs at 100K determined via Single
Crytsal X-Ray Diffractometry by Morozov et al. [326]. (see also fig. 7.1)

The ARPES measured electronic structure consists of two crossed quasi-circular
electron pockets around M and a single hole-pocket centered at Γ. In addition one

1This means that undoped LiFeAs becomes superconducting at sufficiently low temperatures with-
out the need of doping in contrast to many other FeAs-based superconductors [294,324].
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atom Wyckoff position x y z

Li 2c 0.250 0.250 0.655
Fe 2a -0.250 0.250 0.000
As 2c 0.250 0.250 0.23626

Table 7.2. Internal positions of the atoms in LiFeAs according to the
measured data of Morozov et al. [326] (see also fig. 7.1)

observes a flower-like shape of spectral weight directly around Γ which is assumed to
play an important role for the superconductivity in this material [314,326].

We start off with DFT, specifically the WIEN2k [328] implementation version 19.1,
supplied by experimental structure data from Ref. [326]. The lattice parameters and
atom positions for LiFeAs in the normal phase at 100K are given in table 7.1 and 7.2
respectively.
In order to assess the dependence of the electronic structure on the exchange correlation
potential we apply here the LDA with WIEN2k convergence parameter RKmax = 9
which is a measure for the size of the basis set [328] and 2000 k-points. Those results
can be directly compared to the GGA data that was used in [285] and where the
calculations were converged with RKmax = 7 and 1000 k-points. We checked that
both DFT settings yield the same low-energy spectrum apart from negligible differences
of the order of at most ∼ 10meV.

First, we take a look at the density of states from LDA (see fig. 7.2). It is obvious
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Figure 7.2. Density of states of LiFeAs from DFT. (a) DFT predicts
dominant Fe contribution at Fermi level with small mixing of As states.
Missing spectral weight is located in the interstitial region between the
atoms. (b) The nature of the iron states close to the Fermi energy is
mostly d-wave.

from (a) that the low energy spectrum is dominated by Fe states with small mixing of
As. This is important for motivating a pure iron model as we will do in the course of
this analysis. A closer inspection of the orbital character of those localized iron states
(b) reveals a dominant d-wave nature. For this reason, we will aim at constructing
a pure iron d-states low-energy model for LiFeAs. Note that those observation were
already made and used to construct many different models also for other iron-based
superconductors [295,329].

Now, we consider the electronic bandstructure from DFT (see fig. 7.3). The spec-
trum is presented along the high-symmetry path Γ−X−M −Γ−Z−R−A−Z which
corresponds to the relative coordinates (0, 0, 0)− (1/2, 0, 0)− (1/2, 1/2, 0)− (0, 0, 0)−
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Figure 7.3. LDA bandstructure close to the Fermi energy along high-
symmetry k-path. Three hole pockets are located around Γ with domi-
nant dxy- and dxz/yz-character and two electron pockets around M with
the same major band character. The similarity between the kz = 0-
dispersion (Γ−X −M −Γ) and the kz = π/c-bands (Z −R−A−Z) is
spoiled by one topological difference, namely the missing innermost hole
pocket at kz = π/c. Another difference in the bandstructure of those
two planes is the strong widening of the outer electron pocket (see also
fig. 7.4).

(0, 0, 1/2)− (1/2, 0, 1/2)− (1/2, 1/2, 1/2)− (0, 0, 1/2) which corresponds effectively to
the same high symmetry path in kz = 0 and kz = π/c. From the tetrahedral crystal
field splitting we expect three t2g states, dxy, dxz and dyz, that are energetically higher
than the corresponding eg states, dz2 and dx2−y2 . This picture is also observed to high

degree in the bandstructure of LiFeAs and can be used to construct further simplified
models [295]. While the topology of the bands is very similar in both planes, namely we
have hole pockets around Γ and two electron pockets around M with the same orbital
character, the number of hole pockets is different. In the kz = 0-plane we have three
hole pockets while in the kz = π/c we find only two and the innermost hole pocket
is not present. Moreover, we see that the outer electron pocket is larger in size at
kz = π/c in comparison to the electron pocket at kz = 0.
The two previously mentioned points suggest a three-dimensional modeling of LiFeAs
but we will consider a two-dimensional model for the following reasons. First, the in-
nermost hole pocket that disappears between kz = 0 and kz = π/c is tiny and thus
will carry only little weight in the electronic scattering processes that we will examine
within TPSC. Second, the exact shape of the outer electron pocket might be important
within TPSC since the change in size will lead to a shift of nesting vectors. Neverthe-
less, we expect only a small impact on the qualitative result of TPSC due to the similar
topology. This assumption is supported by the toy model calculations performed in
Ref. [287], where it was shown that a paramagnon-like self-energy like in TPSC and
parabolic electron and hole pockets around M and Γ respectively are sufficient to pre-
dict the qualitative form of the self-energy Σ(k, 0).
Notice that DFT predicts a band crossing between Γ and Z which is itself a discussed
issue and object of current research [10]. We will not discuss this topic and restrict our
calculations to the kz = 0-plane.
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Figure 7.4. LDA Fermi surface of LiFeAs. (a) The electronic struc-
ture is quasi-two dimensional except for two features: The disappearance
of the innermost hole pocket along Γ−Z and the increase in volume of
the outer electron pocket at M. (b) In addition to the increase of size
the outer electron pocket also deforms from a circular shape into a star
shape. Figures created with xcrysden [330].

Before we move on and construct an effective Fe d−d-model for LiFeAs we show the
DFT Fermi surface in fig. 7.4 as obtained from xcrysden [330]. As mentioned during
the discussion of the bandstructure, the system is quasi two-dimensional except for the
two features stemming from the outer electron and innermost hole pocket. In addition
we observe in (b) that the outer electron pocket not only increases in size but also
changes its shape from a circular form into a flower-like form2.

To obtain a low-energy iron d− d-model we use the Wannier projection implemen-
tation from Wien2Wannier [58,59,331]. We pick a k-resolution of 15× 15× 4, where
the low number of kz-points is necessary to obtain a good agreement with the DFT
bandstructure since in z-direction we find some hybridization of As p-orbitals with the
Fe d-orbitals. Therefore, a low kz-resolution can compensate for the exclusion of As
states from the low-energy model and we still obtain an accurate model system for
LiFeAs. The result of the Wannier projection is shown in fig. 7.5 and we find a precise
description of the energy spectrum from −2eV to 3eV in terms of a iron 3d states.
Notice that in the figure the blue data corresponding to the Wannier energy spectrum
is mostly superimposed by red and green data that are described now.

A closer look at the structure of LiFeAs in fig. 7.1 reveals the existence of a glide
plane in the FeAs layer, where the corresponding symmetry transformation consists of
a translation of iron by (−1/2, 1/2, 0) and a successive reflection with respect to the
a-b-plane. Since we are restricting our calculations to inversion-symmetric structures
without spin-orbit coupling we take advantage of this symmetry and unfold the two-
iron Brillouin zone into a one-iron Brillouin zone. We follow here the scheme presented
in Refs. [295,332].

2Interestingly, the outer electron pocket assumes the same flower-like shape as observed for the
spectral weight around Γ in ARPES [11,12,191,314,317,326].
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The unitary transformation that represents the glide symmetry is given by

(7.1) U(k) =
1√
2



1 0 0 0 0 −zk 0 0 0 0
0 1 0 0 0 0 −zk 0 0 0
0 0 1 0 0 0 0 zk 0 0
0 0 0 1 0 0 0 0 zk 0
0 0 0 0 1 0 0 0 0 zk
z∗k 0 0 0 0 1 0 0 0 0
0 z∗k 0 0 0 0 1 0 0 0
0 0 −z∗k 0 0 0 0 1 0 0
0 0 0 −z∗k 0 0 0 0 1 0
0 0 0 0 −z∗k 0 0 0 0 1


,

where zk = e−2πk·r is a complex phase, r = (0.25, 0.75, 0)T − (0.75, 0.25, 0)T is the
connection vector in relative coordinates between the two iron atoms within a unit cell
and the orbital order is (dxy, dxz, dyz, dx2−y2y, dz2).

In the ideal case of no hybridization between Fe and As states this transformation yields
a block diagonal Hamiltonian

(7.2) H̃(k) = UH(k)U † =

(
HFe1(k) 05×5

05×5 HFe2(k)

)
,

where the subscripts Fe1 and Fe2 denote the unfolding onto either of the two iron
atoms in the unit cell. Notice that the unfolding is exact only in the kz = 0-plane
and else an approximation. The results of the Wannier projection and subsequent
unfolding procedure are shown in fig. 7.5. We note that the unfolding reproduces the
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Figure 7.5. Wannier projection of the LDA bandstructure onto the
Fe 3d-states. The obtained tight-binding model (blue) overlaps with the
LDA calculation (gray). The unfolding procedure which takes advantage
of a glide symmetry in the system allows to reduce the two-iron unit cell
to two equivalent one-iron systems, namely Fe1 (red) and Fe2 (green).
The folding is only approximate if kz 6= 0 which can be seen in the
sections Γ− Z −R and A− Z.

LDA bandstructure kz = 0-plane but shows some deviations at different kz-values.
Those differences appear for example in the sections Γ− Z −R and A− Z, where the
unfolding is not exact.
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Figure 7.6. Change between two-iron unit cell (solid line) to one-iron
unit cell (dotted lines) on the left. In reciprocal space this translates
into the transformation on the right, namely also a rotation by 45◦ and
scaling by a factor of

√
2.

In the following we will work within the Fe1-unfolded unit cell (see fig. 7.6). Thus,
we need to rotate the k-points by 45◦ and scale the vectors be a factor of

√
2 in order

to relate back to the k-vectors of the two-iron Brillouin zone, i.e.

(7.3)

(
kx
ky

)
→
(

1 −1
1 1

)(
kx
ky

)
.

The transformation between the one-iron and two-iron unit cell is shown in fig. 7.6.
Thus, one has to revert the rotation by 45◦ and scaling by

√
2 to obtain the corre-

sponding objects in the two-iron Brillouin zone. Additionally, the remaining parts that
are not in the cut of the one-iron and two-iron Brillouin zone are folded back into the
two-iron Brillouin zone. The electron occupation in the two-dimensional Fe1-model is
six.

Next, we compute the interaction values U, J from cRPA by means of the FHI-gap
code [333]. Those calculations were carried out by Steffen Backes and the k-integration
was converged on a 8× 8× 5 mesh [285].

The interaction parameters for the iron d-d-model are given as

U =


3.40 1.94 2.03 2.39 2.39
1.94 2.54 2.13 1.89 1.89
2.03 2.13 2.66 1.98 1.98
2.39 1.89 1.98 2.75 2.02
2.39 1.89 1.98 2.02 2.75

 eV(7.4)

and

J =


0 0.49 0.51 0.34 0.34

0.49 0 0.23 0.39 0.39
0.51 0.23 0 0.41 0.41
0.34 0.39 0.41 0 0.41
0.34 0.39 0.41 0.41 0

 eV,(7.5)

where the orbital basis is ordered as (dz2 , dx2−y2 , dxy, dxz, dyz). Notice that those

values differ from the results in Ref. [71] which might be the result of a smaller k-mesh
applied (4× 4× 4) and the difference in the DFT basis choice. For more details on this
issue we refer to the Supplemental Material in Ref. [285].
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7.3. TPSC results

7.3.1. Computational details. Before we present the TPSC results for the elec-
tronic structure of LiFeAs, we mention the numerical parameters that were used to
converge the calculations. For more details we refer to appendix B.

The momentum-space integration of the non-interacting susceptibility χ0(q, iqm)
(see eq. (5.92)) was performed by means of the adaptive cubature method with a three-
point formula for triangles and an integration tolerance of 10−6. All other quantities
and integrations are based on a 100× 100 k-mesh.
We picked NMats = 416 fermionic Matsubara frequencies and 277 bosonic Matsubara
frequencies since all bosonic functions that we deal with decay faster than the fermionic
ones. In both the fermionic and bosonic case we employed high-frequency corrections
for 1

ω2 -tails that we obtained via fitting to the high-frequency tail. The temperature
was slowly converged down to T = 0.015eV ≈ 174K which corresponds to the lowest
temperature before the development of peaks in the spin susceptibility is too far ad-
vanced to guarantee well-converged k-integration.
Steffen Backes employed the maximum entropy code from Ref. [334] to perform an-
alytic continuation to obtain the spectral function A(k, ω). The Padé approximation
was used for analytic continuation of the imaginary part of the self-energy Σ′′(k, ω) and
the quasi-particle weight Z(k) was computed via linear extrapolation.

The charge sum rule violation was at most 6% but as discussed in chap. 6 this
will only lead to a marginal influence on the self-energy since the spin-fluctuation are
dominating for the set of parameters considered.

7.3.2. Spectral function and Fermi surface. We present the spectral function
A(k, ω) for LiFeAs along Γ-X-M-Γ in the two-iron Brillouin zone in fig. 7.7. As expected
from the effect of self-energies on a bandstructure we observe an overall decrease of the
bandwidth. To accentuate the effect of the TPSC self-energy on the electronic structure
which goes beyond this overall bandwidth renormalization, we overlay the data with
the DFT bandstructure, that is scaled by a factor of two. This factor corresponds to the
quasi-particle weight averaged over all momenta k and all orbitals. The introduction
of correlation effects has two significant features. First, we find a downshift of the
hole bands around the Fermi energy at Γ, whereas the electron pockets at M are
slightly shifted up in energy. This effect is named the “red-blue shift” and is a common
observation in iron-based superconductors where DFT predicts too large electron and
hole pockets that need to be shifted into opposite directions (“red” and “blue”) in order
to reconcile with experiment [7,11,313–315].
Notice that the shift of the outer electron pocket is also strongly k-dependent: While
the shift of the electron pocket section crossing X-M is around 0.05eV we find that
the section crossing M-Γ is barely shifted. This behavior is more drastic for the hole
pockets. For example, along Γ-X the middle hole pocket experiences a large energy
shift which results in a shrinking to approximately 20% of its size compared to the
renormalized DFT bandstructure. On the other hand, all other parts of the middle
hole pocket on the Fermi surface shrink to 80-90% of their original size (compare Γ-M)
which is about a factor of four smaller.

The inner hole pockets at Γ that are mainly composed dxz/dyz orbital character
(see fig. 7.8 (a)), become very incoherent at the Fermi level due to scattering processes
and thus leading to a significant reduction of quasi-particle lifetime. Combination of
this incoherence and the previously mentioned momentum dependent shrinking of the
hole pocket leads to incoherent spectral weight in a flower-like shape around Γ that is
also observed in ARPES measurements [11, 12, 191, 314, 317]. Further, we see that
the crest of the inner hole bands at Γ are shifted on top of the Fermi level and therefore

140



CHAPTER 7. LIFEAS

Figure 7.7. Spectral function A(k, ω) of LiFeAs calculated from TPSC
in the two-iron Brillouin zone at T = 0.015eV. In order to highlight the
self-energy effects we also show the DFT bandstructure (GGA) rescaled
by an average quasi-particle weight enhancement of approximately 2
(dotted lines). We observe an overall shrinking of the hole and electron
pockets at Γ and M respectively originating from non-locality of the self-
energy, the so-called “red-blue shift”. In addition we find that the two
innermost hole pockets at Γ become incoherent due to finite lifetime
effects stemming from the imaginary part of the self-energy. Figure
reprinted from Ref. [285].

we assume that the inclusion of spin-orbit coupling, which is beyond the present multi-
orbital TPSC approach, will lead to a splitting of the dxz/yz-degenerate states around
Γ, such that only one hole pocket consisting of incoherent spectral weight remains at
Γ. This additional effect would further reconcile the DFT data with published ARPES
measurements [11,335] as well as de Haas-van Alphen (dHvA) experiments [336].

In order to understand why the TPSC self-energy is able to account for the “red-
blue shift” we sketch the arguments developed in [287, 313]. Key ingredient is the
inter-orbital repulsion that contributes to the real part of the self-energy via V =[
ΓspχspΓsp,0

]
abab

in eq. (5.368). The vertex V is peaked at the anti-ferromagnetic in-
stability vector k = {(±π/a, 0), (0,±π/a)} which corresponds to inter-band scattering
processes related to this momentum-transfer at low energies. In the limit of zero tem-
perature and by approximating the electronic structure to be composed only of a single
hole band around Γ and a single electron band around M one can derive the opposite
sign in the self-energy for hole and electron band [287,313]. Thus, we find that spin
fluctuations can indeed be an explanation for the observed “red-blue” shift. This result
is further supported by similar findings from the fluctuation-exchange approximation
and the RPA-self-energy formalism [287].

Now, we take a look at the Fermi surface properties in LiFeAs. We start off with the
orbital-resolved Fermi surface obtained from DFT (GGA) (fig. 7.8 (a)) and distinguish
three quasi-circular hole pockets around Γ, where the inner pockets have dominantly
dxz and dyz orbital character (green and blue respectively), while the outer hole pocket
is mainly composed of dxy spectral weight (red). Moreover, we find two electron pockets
with elliptical shape centered around M with dominantly dxy orbital character on the
outer orbit and dxz and dyz orbital character for the interior parts.
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Figure 7.8. (a) Orbital-resolved Fermi surface obtained from DFT
(GGA), where the dominant orbital characters are dxy (red), dyz (blue)
and dxz (green). We find three circular hole pockets centered around Γ
and two electron pockets around M that resemble two ellipses. (b) Fermi
surface from DFT+TPSC. Strong scattering processes lead to incoher-
ence effects on the inner hole and electron pockets. Especially the two
inner hole pockets become very incoherent and change from the circu-
lar form into a flower-like shaped region of incoherent spectral weight.
(c) Fermi surface from DFT+“local TPSC”. In this local approxima-
tion of the TPSC self-energy we reproduce published DFT+DMFT re-
sult [6, 191] to a high degree. (d) DFT+DMFT Fermi surface for the
same Fe d-d model. We see a strong similarity to the DFT+“local
TPSC” result in (c). Figure adapted from Ref. [285].

As we have already argued from the spectral function A(k, ω) in fig. 7.7 we observe
a shrinkage of all electron and hole pockets on the Fermi surface in DFT+TPSC (see
fig. 7.8 (b)). Further, we find that the dxy-components of the Fermi surface suffer
less from scattering effects than the dxz- and dyz-components which results in sharper
features. We will come back to this observation later.
Moreover, we find the flower-shaped incoherent spectral weight around Γ in agreement
with experimental observations [11,314,336]. Those observations are in stark contrast
to DFT+DMFT [6, 7] and GW [9] results. We ascribe those differences to the low-
energy non-local spin fluctuations that are not included in DMFT and GW. In order
to confirm this claim we have to relate the local DMFT to the non-local TPSC.

An interesting connection between TPSC and DMFT can be drawn if we consider
the local limit of TPSC, where the momentum dependent TPSC self-energy Σ(k, ω)
is replaced by by its local component 1

N

∑
k Σ(k, ω). By this procedure we get a

local self-energy which corresponds to a DMFT-like form. We call this approxima-
tion DFT+“local TPSC” and present the resulting Fermi surface in fig. 7.8 (c). The
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DFT+“local TPSC” Fermi surface is indeed very close to the DFT+DMFT results
in Ref. [6, 7] but those publications are based on a different double counting scheme,
different interaction parameters and take the full LDA spectrum into account and are
not projected onto an iron d-d-model. Thus, Steffen Backes performed a DFT+DMFT
calculation that incorporates exactly the same parameters and model assumptions as
presented here, where the impurity model was solved by the continuous-time Quantum
Monte-Carlo Solver in the segment picture as implemented in the ALPSCore pack-
age[331,337].
The Fermi surface from this DFT+DMFT scheme is shown in fig. 7.8 (d) and the agree-
ment to DFT+“local TPSC” becomes even better. Even the coherence of the inner
hole states are restored in comparison to the DFT+TPSC results (see (b)) which shows
that the momentum-dependence of the self-energy is not restricted to the real-part of
the self-energy which causes the “red-blue shift” but extends also to the imaginary
part. Another important aspect is that those Fermi surfaces are very close to initial
DFT Fermi surface except for the non-trivial flower-like deformation of the middle
hole pocket. We note that DFT+DMFT calculations with a different double counting
scheme [8] are able to see a flower-like shape of spectral weight around Γ but the feature
is not incoherent and there is also no “red-blue shift”.

In conclusion our results emphasize the importance of non-local correlation effects
that stem from local Hubbard interaction in LiFeAs. Coming to our observation of
a momentum- and orbital-dependent imaginary part of the self-energy, we notice that
this behavior has been observed in recent ARPES experiments [11,12], where the inner
dxz and dyz derived hole Fermi surface has been found to be incoherent while the outer
dxy hole pocket shows Fermi liquid behavior.

7.3.3. Quasi-particle scattering rate. In this context we can analyze the energy
dependence of the quasi-particle scattering rates, which contains information about
Fermi liquid and non-Fermi liquid behavior.
We remind of the zero-temperature Fermi liquid result [30,338] which states that close
to the Fermi energy the quasi-particle scattering rate is given by

(7.6) − Z(k)ImΣ(k, ω) ≈ c0ω
2.

One can extend [110,126] this argument to finite temperatures and obtains

(7.7) − Z(k)ImΣ(k, ω) ≈ c0ω
2 + c1T

2.

In the original formulation of the Fermi Liquid result one has c1 = c0 + π2 but we will
use a more general coefficient c1 since the multi-band structure might induce additional
effects.
The TPSC quasi-particle scattering rates along the path Γ-M are shown in fig. 7.9 at
the four points (see labels 1-4 in fig. 7.4(b)), where the spectral weight is maximal. The
main orbital character on each point is: (1) dyz, (2) dxy, (3) dxy and (4) dxz (compare
to fig. 7.4 (a)). In contrast to the quadratic energy dependence of the quasi-particle
scattering rates with dominant dxy-character, we find that the dxz/yz-states exhibit

linear quasi-particle scattering rates (red symbols). Comparing the actual values of
the dxz/yz-dominated states to measured data [11] we find that the TPSC numbers are

even quantitatively in good agreement with experiment. Those curves are very flat and
can be fitted to a linear function as shown in the fig. 7.9, where the fit is given by

(1): τ(ω) = 25meV− 0.09ω,(7.8)

(4): τ(ω) = 24meV− 0.091ω.(7.9)
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Figure 7.9. Quasi-particle scattering rate −Z(k)Σ′′(k, ω) along Γ-M
as a function of the binding energy ω. The k-points correspond to the
maximal value of spectral weight and are label by 1-4 (see respective
position in fig. 7.8(b)). We find that the quasi-particles with dxz/yz char-

acter have scattering rates that are linear in energy while the electron
pocket states exhibit a Fermi liquid behavior with quadratic scattering
rates. Figure reprinted from Ref. [285].

On the other hand, we find that the dxy-dominated quasi-particle scattering rates de-
pend quadratically on the binding energy (blue symbols in fig. 7.9), which is a fin-
gerprint of Fermi-liquid behavior and in agreement with ARPES measurements in
Ref. [11]. The fitting curves applied in fig. 7.9 are

(2): τ(ω) = 4.5meV +
0.95

eV
ω2,(7.10)

(3): τ(ω) = 6.5meV +
0.96

eV
ω2.(7.11)

The quantitative match with the experimental data from Ref. [11] is not given for the
dxy-states– the measured values are a factor of 2-3 larger–, which can perhaps be attrib-
uted to impurity scattering from the cleavage [11] or to the difference in temperature:
The experiments were carried out at 25K while we performed the calculations at 174K.
We expect that the lower temperatures enhance spin fluctuations and thus increase the
overall value of scattering rates. Further, we expect that this effect is only restricted to
dxy-dominated orbitals as supported by measurements on Ba(Fe0.92Co0.08)2As2, where
the temperature dependence is only significant for the dxy-dominated orbitals.
This comparison of scattering rates to experimental data suffers from another impor-
tant issue regarding the different extraction schemes from ARPES, which lead to incom-
mensurate experimental data [11, 12]. While both cited publications follow the same
extraction scheme based on the energy- and momentum distribution curves, which di-
rectly connects to the imaginary part of the self-energy (see eq. (4.254)), they apply
different models to obtain the scattering rates as fitting parameters to those models.
We will not go into details about the different procedures but refer to Refs. [11, 12]
and point out that this difficult technicality can yield significant results as is the case
here.
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α dxy dxz dyz dx2−y2 dz2

nLDAα 1.11 1.06 1.06 1.17 1.54

nTPSCα 1.11 1.09 1.09 1.19 1.46

Table 7.3. Orbital-resolved occupations from DFT and DFT+TPSC.
Notice that the LDA filling do not perfectly add up to 6 due to the
finite temperature that is not included within LDA. We observe that
the fillings barely change except for the dz2-filling which reduces due to
the purely positive shift of the real part of the self-energy (see fig. 5(b)
in [287]).

The data in fig. 7.9 suggests that the Fermi-/non-Fermi liquid distinction in LiFeAs
can be based on the orbital character. To test this idea we also checked how the energy
dependence changes with different k-points for the electron and hole pockets. We found
that small translations along the tip of electron pocket (3) yields quasi-particle scat-
tering rates that depend linearly on the binding energy, which could have been already
expected from the incoherence of the quasi-particle weight away from the point (3) (see
fig. 7.8(b)).
In conclusion we find that the quasi-particle scattering rates show an intricate momentum-
and orbital-dependence containing both Fermi liquid and non-Fermi liquid features.

7.3.4. Orbital fillings. In this section we compare the DFT orbital fillings with
the interacting fillings since this was an important approximation in the determination
of Γsp (see sec. 5.6.7). There, we argued that we can approximate nα by its non-
interacting value nLDAα in the local spin and charge sum rules (see eqs. (5.327)-(5.329),
(5.334), (5.335) and (5.336)) and the ansatz equation for Γsp (see eq. (5.386)) in order to
avoid additional self-consistencies that would only introduce marginal effects but lead
to additional iterations of the self-energy evaluations of eq. (5.368). The comparison is
shown in table 7.3. We find that the fillings are indeed very close to the original non-
interacting orbital occupations. The largest difference is in the dz2-component that
is due to the strict positivity of the real part of self-energy over all k-points (comp.
fig. 5(b) in Ref. [287]).

7.4. Comparison of “local TPSC” and DMFT

Here, we resume our comparison of the “local TPSC” and DMFT that we started
in the previous sections in terms Fermi surfaces (see fig. 7.8). For a more detailed esti-
mation of both methods away from the Fermi energy we show in fig. 7.10 the spectral
function obtained from “local TPSC”, DMFT and a renormalized DFT bandstructure.
In contrast to the full TPSC results we observe that the “local TPSC” and DMFT
spectral functions are very close to the renormalized DFT result, where the renormal-
ization in DMFT (factor 2.1) is slightly larger that in “local TPSC” (factor 2). Only at
larger binding energies we see that the imaginary part introduces additional features,
where again the imaginary part of the self-energy is larger in DMFT than in “local
TPSC”. Most importantly, both methods do not exhibit the “red-blue shift” that is
needed to improve the agreement with experimental results.

Since the above presented comparisons rely on analytic continuation and are thus
susceptible to the errors that come along with it, we will compare now the raw self-
energies from both methods in fig. 7.11. Due to the constant spin and charge vertices
in TPSC we cannot obtain the right self-energy high-frequency behavior in contrast
to DMFT (see chap. 6 and [163]). This explains the larger deviations in fig. 7.11
at large Matsubara frequencies. The opposite is true for the low-frequency section of
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Figure 7.10. LiFeAs spectral functions for LiFeAs obtained from “local
TPSC” (left) and DMFT (right). For comparison we also show the
renormalized DFT bandstructure in both plots. The agreement of both
methods is not only limited to the Fermi surface but also to the low-
energy spectrum. Figure reprinted from Ref. [285].
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Figure 7.11. Imaginary part of the “local TPSC” (red) and DMFT
(blue) self-energy. We observe a good agreement at small Matsubara fre-
quencies (except for the dx2−y2 orbital). Since the low-frequency parts

of the dxy- and dxz/yz-components of the self-energy are the largest con-

tributors to the low-energy features of the spectrum, we can assume
similar results from both methods. Figure reprinted from Ref. [285].

the self-energy, where large deviations only occur for the dx2−y2-orbital. A remarkable

difference in all orbital channels is the stronger quasi-particle renormalization in DMFT
that can be seen from the steeper slope at low Matsubara frequencies. We have already
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noticed this small difference in terms of the larger average effective mass (see fig. 7.10).
Nevertheless, the overall similarity between both approaches suggests that some of the
low-energy physics in LiFeAs are captured in a close way.

7.5. Conclusions

We applied the multi-orbital TPSC method to the correlated metal LiFeAs and
found that non-local correlation effects are crucial for describing the low-energy spec-
tral features.
While the local part of TPSC introduces an overall renormalization of a factor of two
to the bandstructure, we find that the non-local part adds additional features such as
momentum-dependent incoherence and momentum-dependent spectral weight shifts.
Those effects result in the flower-like shape of incoherent spectral weight around Γ that
is observed in ARPES experiments and a “red-blue shift” of the bandstructure that
leads to an overall shrinking of all electron and hole pockets in agreement with ARPES
and dHvA measurements [7,11,313–315].
Moreover, we found that the local TPSC limit exhibits strong similarity to DMFT
results when it comes to spectral function and Fermi surface data in the low-energy
region. It is important to notice that those local approaches are not able to capture the
“red-blue shift” since one needs shifts in the positive energy direction at the M point
and negative self-energy shifts at Γ.
This result is not only restricted to LiFeAs but can be extended to more representa-
tives of iron-based superconductors which underlines the importance of non-local elec-
tronic correlation effects in this family of materials [287]. Similar studies on LiFeAs
already suggested the importance of non-local correlations although they expect the
non-locality to be originating from high-energy charge fluctuations [9, 10]. Neverthe-
less, our calculations and closely related approaches [287] suggest that the low-energy
spin-fluctuations are at least an additional important ingredient. Moreover, our results
predict the same Fermi-/non-Fermi liquid behavior of the Fermi surface states along
Γ-M as extracted from ARPES by Brouet et al. [11].

In summary, our calculations underline the importance of non-local self-energy ef-
fects in LiFeAs that go beyond the DFT+DMFT description and show that the TPSC
scheme is indeed able to improve the agreement between theory and experiment.
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Summary and Outlook

In this thesis, we presented the Two-Particle Self-Consistent approach as a method
for describing moderately correlated electronic systems. Many phenomena such as un-
conventional superconductivity, the Mott metal-to-insulator transition or Pseudogap
physics can be related to the emergent physics of interacting electrons.

In order to calculate properties of real materials we determine the electronic struc-
ture of those systems from ab-initio DFT as described in chap. 2. This method has
proven several successes over the last decades and serves as a sensible starting point
for many-body techniques that account for additional electronic effects beyond the in-
dependent electron picture.
Due to the intricate nature of many-body studies it is often impossible to work on
the original system, where electrons are considered in continuum and interacting by
means of the long-range Coulomb repulsion. In chap. 3 we presented the famous Hub-
bard model which is assumed to be a fundamental lattice model that incorporates the
essential physics of interacting electrons. Moreover, we presented the cRPA scheme
which allows to determine the effective Coulomb interaction parameters that enter the
Hubbard model.
In chap. 4 we introduced the concept of Green’s functions that stand in the center of
the TPSC approximation. We not only summarized the different types of Green’s func-
tions but also explained how one can deduce physical observables from those abstract
objects.
Next, we presented in chap. 5 the TPSC approach by first introducing the Kadanoff-
Baym scheme upon which TPSC is based. An application of the multi-site TPSC was
presented in terms of a study of superconducting properties of organic superconductors,
where we were able to understand the superconducting critical temperatures obtained
from the dimer model by means of a competition between geometric frustration and
interaction induced spin fluctuations. Since the resulting critical temperatures did not
follow the experimentally measured values or even trends we moved on to the more
elaborate molecule model which in contrast also showed the exotic s+dx2−y2 gap sym-
metry as solution. Moreover, our study underlined the proximity of s+dx2−y2 and dxy
symmetry in the eight organic superconductors studied. Unfortunately, it was not pos-
sible to reach low enough temperatures in order to determine superconducting critical
temperatures of those organic superconductors within the molecule model because of
diverging antiferromagnetic correlation length which introduces numerical errors to our
calculations.
Due to the novelty of the multi-orbital TPSC approach we dedicated chap. 6 to a thor-
ough benchmark of the method and a detailed comparison to DMFT which represents
the exact solution of the Hubbard in infinite dimensions. The major observations from
this comparison are that TPSC and DMFT seem to produce the same local physics in
the region of intermediate coupling but the TPSC ansatz for the irreducible spin vertex
seems insufficient to capture certain aspects of multi-orbital interaction. This becomes
obvious in the TPSC double occupations but possibly also in the tendency of negative
charge vertices. Fortunately, those undesired features from TPSC can be circumvented
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to some extent and there are promising improvements that have to be tested in future
work.
After this toy model study we turned to a real material calculation in chap. 7, namely
LiFeAs. This iron-based superconductor served as a perfect testing ground for the
non-local dynamical multi-orbital TPSC approach since ARPES measurements suggest
momentum-dependent correlation effects that cannot be reproduced within DFT+DMFT.
Indeed, our DFT+TPSC study was able to produce the so-called “red-blue shift” which
described the overestimation of the size of electron and hole pockets from DFT in many
classes of iron-based superconductors. Additionally, we were able to reproduce the
DMFT Fermi surface result by taking the local limit of TPSC and also certain aspects
of quasi-particle lifetime measurements. The flower-like shape of spectral weight around
the Γ point that is both observed in TPSC and ARPES measurements is crucial for
certain strong coupling superconducting pairing mechanisms and thus TPSC supports
the idea that momentum-dependent spin fluctuations might be important for fully un-
derstanding the low temperature physics of iron-based superconductors.

This last real material study demonstrates the non-trivial effects that can be generated
by treating non-local and dynamical self-energy effects on equal footing. Nevertheless,
we have to keep in mind that our toy model study revealed some non-negligible error
sources within the method.
While the spin vertex ansatz in the single-band TPSC starts to fail only when antiferro-
magnetic correlations are too large we see that the multi-orbital ansatz ignores aspects
of the Hund’s coupling for all interaction strengths. For this reason we plan to replace
the TPSC spin vertex ansatz by directly taking double occupations from different meth-
ods such as DMFT. A similar procedure was already suggested in Ref. [207]. It is also
interesting to check whether such an improved scheme could also fix the problem of
negative charge vertices that appear in some interaction parameter regions.

Since TPSC is only valid in the weak to intermediate coupling regime one needs
further extensions to incorporate the physics of strong coupling. The key for resolving
Hubbard band features calls for dynamical and thus frequency-dependent spin and
charge vertices [163].
Possible extensions are for example the TPSC+ approach that was recently developed
for the single-band case [148]. This ansatz is capable of introducing dynamical vertex
corrections that are not present in the original TPSC formulation. Another way to
access the realm of intermediate-to-strong coupling is by combining TPSC and DMFT
in a similar fashion as already suggested for GW+DMFT [182,183], namely by taking
the non-local self-energy from TPSC and the local part from DMFT. This new scheme
would treat low-energy spin fluctuations that are not incorporated in the GW+DMFT
approach.
Other combinations such as GW+TPSC are also interesting when high-energy charge
fluctuations and low-energy spin fluctuations have to be taken account of.

Another yet open field of study is the inclusion of the transversal particle-hole
channel that was left aside in this thesis due to the insufficient number of sum rules.
This problem would be also solved if one takes the double occupations from a different
many-body method.

So far, we only considered static screening of the Coulomb repulsion but as reported
in [52,68,106] the inclusion of dynamical screening effects can lead to further important
features of the spectral function.

Regarding the specific case of LiFeAs it would be also interesting to see how a
three-dimensional calculation would influence the results in how far the TPSC could
resolve the open problems that appear within DFT away from the kz = 0-plane [10].
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In conclusion, we have presented studies with the TPSC method which revealed
that this many-body approach contains promising features regarding the description
of interacting electrons in correlated materials. It is thus an auspicious path to follow
in the future of method development; especially due to its efficient implementation
possibilities.
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APPENDIX A

Transversal particle-hole channel for multi-orbital TPSC

While we presented a detailed derivation of multi-orbital TPSC in the longitudinal
particle-hole channel in sec. 5.6, we show in this appendix the TPSC equations in the
transversal particle-hole channel.
The procedure is similar to the one presented for the multi-site case in sec. 5.1.9 and
we introduce artificial fields

(A.1) Φαβ =

(
0 φ−(1, 2)

φ+(1, 2) 0

)
that appear in the grand canonical partition function

Z[Φ] =

〈
Tτe
−c†α,↑(1)φ−

αβ
(1,2)c

β,↓
(2)−c†α,↓(1)φ+

αβ
(1,2)c

β,↑
(2)
〉
.(A.2)

We define the spin-space Green’s function

Gσσ′
αβ (1, 2)Φ := −〈Tτ cα,σ(1)c†β,σ′(2)〉Φ.(A.3)

which is generated via functional differentiation,

(A.4) − δ lnZ[Φ]

δΦβα(2, 1)
=

(
0 G↑↓αβ(1, 2)Φ

G↓↑αβ(1, 2)Φ 0

)
,

with the previously defined matrix-valued derivative

(A.5)
δ

δΦνε(4, 5)
:=

(
0 δ

δφ+νε(4,5)
δ

δφ−νε(4,5)
0

)
.

One derives the matrix Dyson equation

G−1(1, 2)Φ =
(
G0
)−1

(1, 2)−Σ(1, 2)Φ −Φ,(A.6)

in the same manner as in sec. 5.1.9 and finds the self-energy equation

Σαλ(1, 3)ΦGλγ(3, 2)Φ

=−
∑
β

Uβα

(
〈Tτnβ,↓(1)cα,↑(1)c†γ,↑(2)〉Φ 〈Tτnβ,↓(1)cα,↑(1)c†γ,↓(2)〉Φ
〈Tτnβ,↑(1)cα,↓(1)c†γ,↑(2)〉Φ 〈Tτnβ,↑(1)cα,↓(1)c†γ,↓(2)〉Φ

)

−
∑
β

β 6=α

(Uβα − Jβα)

〈Tτnβ,↑(1)cα,↑(1)c†γ,↑(2)
〉

Φ

〈
Tτnβ,↑(1)cα,↑(1)c†γ,↓(2)

〉
Φ〈

Tτnβ,↓(1)cα,↓(1)c†γ,↑(2)
〉

Φ

〈
Tτnβ,↓(1)cα,↓(1)c†γ,↓(2)

〉
Φ



+
∑
β

β 6=α

Jβα

〈Tτ c†β,↓(1)cβ,↑(1)cα,↓(1)c†γ,↑(2)
〉

Φ

〈
Tτ c
†
β,↓(1)cβ,↑(1)cα,↓(1)c†γ,↓(2)

〉
Φ〈

c†β,↑(1)cβ,↓(1)cα,↑(1)c†γ,↑(2)
〉

Φ

〈
Tτ c
†
β,↑(1)cβ,↓(1)cα,↑(1)c†γ,↓(2)

〉
Φ


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+
∑
β

β 6=γ

Jβα

〈Tτ c†α,↓(1++)cβ,↑(1
+)cβ,↓(1)c†γ,↑(2)

〉
Φ

〈
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†
α,↓(1
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〉
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α,↑(1

++)cβ,↓(1
+)cβ,↑(1)c†γ,↑(2)

〉
Φ

〈
Tτ c
†
α,↑(1

++)cβ,↓(1
+)cβ,↑(1)c†γ,↓(2)

〉
Φ

 .

(A.7)

From the matrix equation

G
αβ

(1, 3)
(
G−1

)
βν

(3, 2) =Iδ(1− 2)δα,ν ,(A.8)

we derive via functional differentiation in the same way as in sec. 5.1.9 the two non-
vanishing generalized susceptibilities

δG↓↑αζ(1, 6)Φ

δφ+
νε(4, 5)

∣∣∣∣∣
Φ=0

=G↓↓αν(1, 4)G↑↑εζ (5, 6) + G↓↓
αβ

(1, 3)
δΣ↓↑

βγ
(3, 2)Φ

δG21
ρλ

(7, 8)Φ

δG21
ρλ

(7, 8)Φ

δφ+
νε(4, 5)

∣∣∣∣∣∣
Φ=0

G↑↑γζ(2, 6)(A.9)

=−
〈
Tτ c
†
ζ,↑(6)cα,↓(1)c†ν,↓(4)cε,↑(5)

〉
,(A.10)

δG↑↓αζ(1, 6)Φ

δφ−νε(4, 5)

∣∣∣∣∣
Φ=0

=G↑↑αν(1, 4)G↓↓εζ (5, 6) + G↑↑
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(1, 3)
δΣ↑↓

βγ
(3, 2)Φ
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ρλ

(7, 8)Φ

δG↑↓
ρλ
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∣∣∣∣∣∣
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G↓↓γζ(2, 6)(A.11)

=−
〈
Tτ c
†
ζ,↓(6)cα,↑(1)c†ν,↑(4)cε,↓(5)

〉
.(A.12)

A.1. Self-energy and susceptibilities: Transverse channel

Starting from the implicit equation for the self-energy Σ (eq. (A.7)) we can see that
the Hamiltonian is spin conserving and obtain in the limit Φ = 0 the expression

Σαβ(1, 3)Gβν(3, 2)

=−
∑
β

Uβα

〈Tτnβ,↓(1)cα,↑(1)c†ν,↑(2)
〉

0

0
〈
Tτnβ,↑(1)cα,↓(1)c†ν,↓(2)

〉
−
∑
β

β 6=α

(Uβα − Jβα)

〈Tτnβ,↑(1)cα,↑(1)c†ν,↑(2)
〉

0

0
〈
Tτnβ,↓(1)cα,↓(1)c†ν,↓(2)

〉

+
∑
β

β 6=α

Jβα

〈Tτ c†β,↓(1)cβ,↑(1)cα,↓(1)c†ν,↑(2)
〉

0

0
〈
Tτ c
†
β,↑(1)cβ,↓(1)cα,↑(1)c†ν,↓(2)

〉

+
∑
β

β 6=α

Jβα

〈Tτ c†α,↓(1)cβ,↑(1)cβ,↓(1)c†ν,↑(2)
〉

0

0
〈
Tτ c
†
α,↑(1)cβ,↓(1)cβ,↑(1)c†ν,↓(2)

〉 .

(A.13)

From this we immediately see that the self-energy Σ and Green’s function G is diagonal
in spin space. We use now our knowledge from the longitudinal channel to express the
four-point expectation value that is scaled by Uβα − Jβα in eq. (A.13) in terms of the
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spin and charge susceptibilities (see eq. (5.344)). Thus, by multiplying eq. (A.13) with(
G−1

)
νγ

(3, 2) and integrating over all internal degrees of freedom we find

Σαγ(1, 2)
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∑
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(A.14)

which can represented in terms of generalized susceptibilities as

Σαγ(1, 2) =
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β
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δG↓↑βν(1,3)

δφ+αβ(1+,1)

∣∣∣∣
Φ=0

0

0
δG↑↓βν(1,3)

δφ−αβ(1+,1)

∣∣∣∣
Φ=0


(G−1

)
νγ

(3, 2)

−
∑
β

β 6=α

(Uβα − Jβα)

[
− 1

4

(
χchναββ(1, 3; 1) + χspναββ(1, 3; 1)

) (
G−1

)
νγ

(3, 2)

−
〈
nα,σ(1)

〉
δα,γIδ(1− 2)

]
.(A.15)

Next, one can use the Bethe-Salpeter equations (eq. (A.9) and (A.11)) to further eval-
uate

Σσσ
αγ(1, 2) =

∑
η

UηαG−σ−σηη (1, 1+)Gσσ
αν(1, 3)

(
G−1

)σσ
νγ

(3, 2)

+
∑
η

UηαG−σ−σ
ηβ

(1, 9)
δΣ−σσ

βγ
(9, 4)Φ

δG−σσ
ρλ

(7, 8)Φ

δG−σσ
ρλ

(7, 8)Φ

δφ+
ηα(1+, 1)

∣∣∣∣∣
Φ=0

Gσσ
γν (4, 3)

(
G−1

)σσ
νγ

(3, 2)
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−
∑
η

η 6=α

(Uηα − Jηα)

[
− 1

4

(
χchγαηη(1, 3; 1) + χspγαηη(1, 3; 1)

) (
G−1

)σσ
γγ,σ

(3, 2)

−
〈
nη,σ(1)

〉
δα,γδ(1− 2)

]
+
∑
η

η 6=α

JηαG−σ−σαη (1, 1+)Gσσ
ην (1, 3)

(
G−1

)σσ
νγ

(3, 2)

+
∑
η

η 6=α

JηαG−σ−σ
αβ

(1, 9)
δΣ−σσ

βγ
(9, 4)Φ

δG−σσ
ρλ

(7, 8)Φ

δG−σσ
ρλ

(7, 8)Φ

δφ+
ηη(1+, 1)

∣∣∣∣∣
Φ=0

Gσσ
γν (4, 3)

(
G−1

)σσ
νγ

(3, 2)

+
∑
η

η 6=α

JηαG−σ−σηα (1, 1+)Gσσ
ην (1, 3)

(
G−1

)σσ
νγ

(3, 2)

+
∑
η

η 6=α

JηαG−σ−σ
ηβ

(1, 9)
δΣ−σσ

βγ
(9, 4)Φ

δG−σσ
ρλ

(7, 8)Φ

δG−σσ
ρλ

(7, 8)Φ

δφ+
αη(1+, 1)

∣∣∣∣∣
Φ=0

Gσσ
γν (4, 3)

(
G−1

)σσ
νγ

(3, 2).

(A.16)

We can now evaluate the matrix product with the inverse spin Green’s function and
get

Σσσ
αγ(1, 2) =

∑
η

UηαG−σ−σηη (1, 1+)δα,γδ(1− 2)

+
∑
η

UηαG−σ−σ
ηβ

(1, 9)
δΣ−σσ

βγ
(9, 2)Φ

δG−σσ
ρλ

(7, 8)Φ

δG−σσ
ρλ

(7, 8)Φ

δφ+
ηα(1+, 1)

∣∣∣∣∣
Φ=0

−
∑
η

η 6=α

(Uηα − Jηα)

[
− 1

4

(
χch
ζαηη

(1, 3; 1) + χsp
ζαηη

(1, 3; 1)
) (

G−1
)σσ
ζγ,σ

(3, 2)

−
〈
nη,σ(1)

〉
δα,γδ(1− 2)

]
+
∑
η

η 6=α

JηαG−σ−σαη (1, 1+)δη,γδ(1− 2)

+
∑
η

η 6=α

JηαG−σ−σ
αβ

(1, 9)
δΣ−σσ

βγ
(9, 2)Φ

δG−σσ
ρλ

(7, 8)Φ

δG−σσ
ρλ

(7, 8)Φ

δφ+
ηη(1+, 1)

∣∣∣∣∣
Φ=0

+
∑
η

η 6=α

JηαG−σ−σηα (1, 1+)δη,γδ(1− 2)

+
∑
η

η 6=α

JηαG−σ−σ
ηβ

(1, 9)
δΣ−σσ

βγ
(9, 2)Φ

δG−σσ
ρλ

(7, 8)Φ

δG−σσ
ρλ

(7, 8)Φ

δφ+
αη(1+, 1)

∣∣∣∣∣
Φ=0

.(A.17)
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We see now that the equation can be related to the spin susceptibilities via eq. (5.203)
and we get

Σαγ(1, 2) =
∑
η

UηαG−σ−σηη (1, 1+)δα,γδ(1− 2)

+
∑
η

Uηα
4

G−σ−σ
ηβ

(1, 9)Γsp
γβλρ

(9, 2; 7, 8)2χsp
λραη

(7, 8; 1)

+
∑
η

η 6=α

Uηα − Jηα
4

[
Gαβ(1, 3)

(
Γch
γβλρ

(3, 2; 7, 8)χch
λρηη

(7, 8; 1)

−Γsp
γβλρ

(3, 2; 7, 8)χsp
λρηη

(7, 8; 1)
)

+ 4
(〈
nη,σ(1)

〉
δα,γ −

〈
nαγ,σ(1)

〉
δη,γ
)
δ(1− 2)

]
+
∑
η

η 6=α

JηαG−σ−σαη (1, 1+)δη,γδ(1− 2)

+
∑
η

η 6=α

Jηα
4

G−σ−σ
αβ

(1, 9)Γsp
γβλρ

(9, 2; 7, 8)2χsp
λρηη

(7, 8; 1)

+
∑
η

η 6=α

JηαG−σ−σηα (1, 1+)δη,γδ(1− 2)

+
∑
η

η 6=α

Jηα
4

G−σ−σ
ηβ

(1, 9)Γsp
γβλρ

(9, 2; 7, 8)2χsp
λρηα

(7, 8; 1).(A.18)

As expected we recover the same Hatree-Fock term as in the longitudinal channel (see
eq. (5.347)) but a different second order part that can be regrouped to

Σσσ
αγ(1, 2) =

∑
η

Uηα
〈
nη,−σ(1)

〉
δα,γδ(1− 2)

+
∑
η 6=α

(Uηα − Jηα)
(〈
nη,σ(1)

〉
δα,γ −

〈
nαγ,σ(1)

〉
δη,γ
)
δ(1− 2)

+
∑
η 6=α

Jηα
(〈
nηα,−σ(1)

〉
+
〈
nαη,−σ(1)

〉)
δη,γδ(1− 2)

+
1

4
Γsp
γβλρ

(9, 2; 7, 8)χsp
λρηγ

(7, 8; 1)Γ
sp,0
ηγαεG

σσ
εβ

(1, 9)

+
1

4
Γch
γβλρ

(9, 2; 7, 8)χch
λρηγ

(7, 8; 1)Γ
ch,0
ηγαεG

σσ
εβ

(1, 9),(A.19)

where we have defined unperturbed vertices

Γ
sp,0
αβγδ =


2Uαβ α = γ, β = δ

3Jαγ − Uαγ α = β 6= γ = δ

2Jαβ α = δ 6= β = γ

0 else

,(A.20)

Γ
ch,0
αβγδ =

{
Uαγ − Jαγ α = β 6= γ = δ

0 else
.(A.21)
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Wee see that the components of Γ
sp,0

are not as easily related to each other as was
the case for the longitudinal counterpart Γsp,0 (see eq. (5.349)). For this reason it is
not possible to calculate the spin vertex as in the longitudinal channel (see also the
discussion in sec. 5.6.10) from the local spin sum rules and the ansatz equation (5.386).
Nevertheless, it is possible to construct the components of the spin vertex Γsp in the

transversal channel from the bare spin vertex Γ
sp,0

. For example, under the assumption
of Kanamori-Hubbard interaction interaction values Uαβ, Jαβ we observe

Γ
sp,0
αβαβ = −4

5
(5J − U) +

6

10
(2U)(A.22)

⇒ Γ
sp
αβαβ = −4

5
Γ
sp
ααββ +

6

10

1

2
(Γ
sp
αααα + Γ

sp
ββββ),(A.23)

Γ
sp,0
αββα =

2

5
(5J − U) +

1

5
(2U)(A.24)

⇒ Γ
sp
αββα =

2

5
Γ
sp
ααββ +

1

5

1

2
(Γ
sp
αααα + Γ

sp
ββββ).(A.25)

156



APPENDIX B

Computational details

B.1. Matsubara functions

B.1.1. Numerical implementation of the Matsubara sums. In practical cal-
culations one is limited to finite sums over Matsubara frequencies; let us assume that
the number is Nmats. Nevertheless, it is possible to perform the sums with a small error
by analytically calculating the tail contributions from the high frequency expansion:

Gαα,σ(k, τ)

=
1

β̃

∞∑
n=−∞

Gαα,σ(k, iωn)e−iωnτ(B.1)

=
1

β̃

 Nmats∑
n=−Nmats

Gαα,σ(k, iωn)e−iωnτ +
∑

n/∈[−Nmats,Nmats]

Gαα,σ(k, iωn)e−iωnτ

(B.2)

(4.143)
≈ 1

β̃

 Nmats∑
n=−Nmats

Gαα,σ(k, iωn)e−iωnτ

+
∑

n/∈[−Nmats,Nmats]

(
1

iωn
+

c2(k)

(iωn)2
+

c3(k)

(iωn)3
+

c4(k)

(iωn)4

)
e−iωnτ

 ,(B.3)

where c1(k), .., c4(k) are real numbers that can be obtained by fitting the Green’s func-
tion to the high frequency tail. The sum of those coefficients can be completed to
n ∈ (∞,∞),

Gαα,σ(k, τ) ≈ 1

β̃

 Nmats∑
n=−Nmats

(
Gαα,σ(k, iωn)−

(
1

iωn
+

c2(k)

(iωn)2
+

c3(k)

(iωn)3
+

c4(k)

(iωn)4

))
e−iωnτ

+
∞∑

n=−∞

(
1

iωn
+

c2(k)

(iωn)2
+

c3(k)

(iωn)3
+

c4(k)

(iωn)4

)
e−iωnτ

]
.(B.4)

Analytical solutions for the infinite sums are available in terms of Euler polynomials that
are implemented in symbolic manipulation programs such as Wolfram Mathematica or
Maple. Those give in the limit of lim

τ→0−

nα,σ(k)

≈1

2
− c2(k)β̃

4
+
c4(k)β̃2

48
+

1

β̃

Nmats∑
n=−Nmats

(
Gαα,σ(k, iωn) +

c2(k)

ω2
n

− c4(k)

ω4
n

)
.(B.5)

This result can now be inserted in the equation for the filling (eq. (4.241)).
The same strategy can be also used for calculating Matsubara sums of the local spin

and charge sum rules. We first notice that symmetries of the irreducible susceptibility
χ0 (eq. (5.93) and (5.98)) allow us to rephrase the following expression for real-values
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susceptibilities χ:∑
q,iqm

χ(q, iqm)

=
∑
q

χ(q, iq0)︸ ︷︷ ︸
=:χloc

+
∑
q,m>0

χ(q, iqm) +
∑
q,m<0

χ(q, iqm)(B.6)

=χloc +
∑
q,m>0

χ(q, iqm) +
∑
q,m<0

2
[
I± χ0(q, iqm)Γ

]−1
χ0(q, iqm)(B.7)

=χloc +
∑
q,m>0

χ(q, iqm) +
∑
q,m>0

2
[
I± χ0(q,−iqm)Γ

]−1
χ0(q,−iqm)(B.8)

=χloc +
∑
q,m>0

χ(q, iqm) +
∑
q,m>0

2
[
I±

(
χ0
)†

(q, iqm)Γ
]−1 (

χ0
)†

(q, iqm)(B.9)

=χloc +
∑
q,m>0

χ(q, iqm) +
∑
q,m>0

2
[
I±

(
χ0
)†

(−q, iqm)Γ
]−1 (

χ0
)†

(−q, iqm)(B.10)

=χloc +
∑
q,m>0

χ(q, iqm) +
∑
q,m>0

2
[
I±

(
χ0
)∗

(q, iqm)Γ
]−1 (

χ0
)∗

(q, iqm)(B.11)

=χloc + 2
∑
q,m>0

Reχ(q, iqm).(B.12)

Notice that we dropped the superscript for the susceptibilities since the procedure works
for both the spin and the charge susceptibility.
Moreover, from the explicit form of irreducible susceptibility χ0 with non-interacting
Green’s functions (see eq. (5.92)) we observe the high-frequency behavior

(B.13)
∑
q

Reχ(q, iqm) ∼ d2

(iqm)2 +
d4

(iqm)4 + . . . ,

where we obtain the parameters d2, d4 by fitting to the tail of the momentum summed
susceptibilities. By the same steps as performed for the Green’s function G we obtain
the formula∑

q,iqm

χ(q, iqm) ≈χloc + 2

(
−d2(k)β̃2

24
+
d4(k)β̃4

1440

)
+

+

Nmats∑
m=1

2

(∑
q

Reχ(q, iqm)− d2

(iqm)2 −
d4

(iqm)4

)
.(B.14)

In contrast to the Green’s function summation where the analytic correction of 1
2 is

crucial to take into account since it stems from the limit lim
τ→0−

that cannot be taken

account of numerically, the approximative formula for the susceptibility is only a way to
save memory since the storage of the susceptibility scales like N ·N4

orb for each bosonic
Matsubara frequency.

B.1.2. Matsubara sums of the form F (m) =
∑
n
f(n)g(n+m). Many expres-

sions that we use in this work to study the physics of correlated materials are convo-
lutions in Matsubara frequency space (e.g. (5.396) and (5.290)). For this reason we
consider here possible sources of error for sums of the form

(B.15) F (m) =
∑
n

f(n)g(n+m),
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where n, m ∈ Z are either fermionic or bosonic Matsubara indices. We start with a
similar procedure as in the previous section B.1.1 by restricting the Matsubara sum to
a finite number of frequencies,

(B.16) F (m) ≈
Nmats∑

n=−Nmats

f(n)g(n+m).

Note that for our applications there is no need for analytical correction of the high-
frequency tail since the convolutions considered are decaying fast enough to ensure
convergence by a sufficient number of Matsubara frequencies. This is different if one
considers to perform the Matsubara sum for χ0 (eq. (5.72)) numerically [339] because

the leading order O
(

1
ωnωn+m

)
that appears in the sum decays too slowly.

We demonstrate that the shift in the factor g(n + m) leads to a problem if one
carries the sum out in the interval [−Nmats, Nmats] for a particular choice of f, g shown
in fig. B.1.
Assume we want to calculate F (0) by restricting the Matsubara sum to [−Nmats, Nmats].
In that case the sum is symmetric with respect to n = 0 and one neglects only the fast
decaying high-frequency parts of both f and g (see fig. B.1)(a).

-1

-0.5

 0

 0.5

 1

-Nmats Nmats0-2Nmats
n

(a)

f,
g

f(n)
g(n)

g(n+Nmats)

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

Nmats0

n

(b)

F

adaptive
non-adaptive

Figure B.1. Illustration of the Matsubara summation error that ap-
pears with rigid summation intervals. (a) In the convolution F = f ∗ g
we see that while f remains at a fixed position the key features of g
are shifted out of the summation interval with increasing Matsubara
index of F . The gray shaded are does not appear in the sum. (b) The
effect of this incomplete summation becomes visible at large indices of
n (empty symbols). An adaptive summation, i.e. summing over the
interval [−Nmats − m,Nmats], where m is the index of F , can fix the
bending of the high-frequency tail of F (filled symbols).

On the other hand if one calculated F (Nmats) we neglect the addends that would arise
from the gray shaded area in fig. B.1(a) which results in the function F shown (b) with
empty symbols. This effect can be compensated by summing over [−Nmats−m,Nmats],
i.e. depending on the Matsubara index of F we shift the lower bound in order to capture
the tail in the shaded area of fig. B.1(a). The formula for F reads then

(B.17) F (m) ≈
Nmats∑

n=−Nmats−m
f(n)g(n+m).
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The result of this adaptive summation is shown in (b) where the bending of the tail is
compensated. This effect is especially important if one needs high-frequency extrapo-
lation of F which necessitates precise values of the high-frequency values of F .

B.1.3. Matsubara extrapolation. In this section we present the numerical im-
plementation for the quasi-particle weight (eq. (4.262))

Zα(k) ≈

(
1− ∂ImΣαα(k, iωn)

∂ωn

∣∣∣∣
ωn=0+

)−1

(B.18)

and the quasi-particle scattering rate (eq. (4.263))

(B.19) Γα(k, ω) ≈ −Zα(k)ImΣαα(k, iωn → 0).

From the Dyson equation (5.49) and the behavior of the Green’s function under fre-
quency inversion (eq. (4.136)) we can conclude that Σαα(k, iωn) is anti-symmetric in
Matsubara frequencies. Thus, we can use

(B.20) ImΣαα(k, iωn → 0+)
T→0−→ 0

and a linear extrapolation to approximate

∂ImΣαα(k, iωn)

∂ωn

∣∣∣∣
iωn=0+

≈ ImΣαα(k, iω1)− ImΣαα(k, iωn → 0+)

ω1 − 0
(B.21)

=
ImΣαα(k, iω1)

ω1

.(B.22)

A more elaborate approximation can be found by polynomial extrapolation that we
explain in the following.
Consider the vectors

x := (ω0, · · · , ω5) ,(B.23)

y := (ImΣαα(k, iω0), · · · , ImΣαα(k, iω5))T(B.24)

and the non-square matrix

(B.25) Ai,j := xji , 1 ≤ i ≤ 6 and 1 ≤ j ≤ 5.

Next, we solve the linear equations

(B.26) Ax̃ = y

that represent a polynomial fit of the real and imaginary part of the self-energy to the
Matsubara frequencies1. Therefore, we get the improved approximations

x̃0 ≈ ImΣαα(k, iωn → 0+),(B.27)

x̃1 ≈
∂ImΣαα(k, iωn)

∂ωn

∣∣∣∣
iωn=0+

.(B.28)

1There are many numerical implementations for solving this. We made use of the householder QR
decomposition as implemented in the eigen library.
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B.2. Non-convolutional k-integration

We describe here the numerical two-dimensional k-space integration that we also
implemented in [339]. For more details we refer to the mentioned reference whereupon
this section is based.

Some of the TPSC internal k-summations (see e.g. eq. (4.240)) are not of convo-
lutional type and are treated here separately. For the convolutional k-summation we
refer to sec. B.3 where one takes advantage of Fast Fourier transformations.

Thus we restrict ourselves to summations of the type

(B.29) f =
1

N

∑
k

f(k)

in two dimensions.
We distinguish between three cases that are treated separately in the following three
sections.

B.2.1. Adaptive cubature. First, we assume that f is given in a closed form
which means that we have an analytic expression for the function f that we can evaluate
f at arbitrary k-points. This allows us to make use of the adaptive cubature procedure
following the description in [340,341] and go into the limit of infinitely many unit cells,
ie.

(B.30) f =
1

N

∑
k

f(k)→ 1

ABZ

∫
ABZ

f(k)dk,

where ABZ is the area of the first Brillouin zone.
This method is especially valuable if f exhibits rather flat behavior in many areas

of k-space and strong k dependence in some regions; e.g. the non-interacting Green’s
function at low temperatures G0 changes drastically close to the Fermi energy (see
eq. (4.235)) and is else flat as a function of k.
Note that since we work in relative coordinates k, the first Brillouin zone is always a
square.

The adaptive cubature algorithm is given by the following steps:

a) Divide ABZ into n0 triangles and perform the following steps for each of the
triangles 4i, i = 1, . . . n0. In the calculations presented in this work we pick
n0 = 17.

b) Use the seven-point formula2 to evaluate the integral over each triangle 4i

with i = 1, . . . , n0, i.e.

(B.31)

∫
4i
f(kx, ky)dk ≈ |4i|

7∑
j=1

wjf(xj , yj),

where the nodes (xi, yi) and the respective weights wi are shown in table B.1
and fig. B.2.

c) Divide each triangle 4i into four triangles (see fig. B.2) and integrate again
over each new triangular region by means of eq. (B.31).

d) Check convergence via

(B.32) |Inew − Iold|/3. < ε|Inew + 1.|,
where Inew is the sum of the integrals over the four new triangles described in
the previous step c) and Iold is the integral of the respective triangle 4i. We
take the convergence threshold ε to be 10−6.

2Note that we used a less precise three-point formula in [245,246,285,287,339] due to the large
numerical effort in multi-site and multi-orbital systems. The three-point formula takes only the blue
nodes in fig. B.2 and with a weight of 1/3 for each node.
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If the convergence condition in eq. (B.32) is fulfilled return the value Inew and
add it to the final result and else start from step a) with all four new triangles.

Note that one could use higher order integration formulas to improve the above men-
tioned algorithm but we checked that in all applications of this thesis the seven-point
formula is sufficient. Finally, we want to point out that a precise calculation of χ0

is important since the divergences in χsp can be only described properly if χ0 was
determined with small numerical error (see eq. (5.267)).

i xi yi wi
1 0 0 3/60
2 0 1
3 1 0
4 0.5 0 8/60
5 0 0.5
6 0.5 0.5
7 1/3 1/3 27/60

Table B.1. Weights wi and nodes (xi, yi) that are needed to evaluate
the seven-point formula for integration over a triangular domain (see
eq. (B.31)). The coordinates are given in so-called natural coordinates
of the triangle (see fig. B.2)

Figure B.2. Natural coordinates for a triangle that are used to desig-
nate the position of the nodes in the seven-point formula (eq. (B.31))
while the colors encode the respective weights as shown in tab. B.1. The
dashed lines indicate the division of the triangle into four new triangles
as needed in step c) of the adaptive cubature algorithm.

B.2.2. Trapezoidal rule. Here we assume that f is given only for finitely many
k-points which in our case means that f is a function that was calculated numerically
and we have no easy analytical expression that allows us to produce function values for
arbitrary k-points.
This case covers summations where f is given for exactly N = Ñ2 k-points3. There-
fore, we make use of the two-dimensional trapezoidal rule which corresponds to linear
interpolation between the given N function value points of f . Obviously, one can think
of more precise implementations such as spline interpolation or higher order integration
formulas.

3Note that we assumed here that N is square which is true in all applications of this thesis since
the number of unit cells in x-direction are assumed to be the same as in y-direction.

162



CHAPTER B. COMPUTATIONAL DETAILS

We assume that f is known on the nodes (xi, yj) ∀i, j ∈ {1, .., Ñ} and that those
points are homogeneously distributed over the first Brillouin zone in relative coordi-
nates [0, 1]× [0, 1].
The two-dimensional trapezoidal rule can be understood as iterative application of the
one-dimensional version. This yields

1

ABZ

∫
ABZ

f(k)dk

≈ 1

Ñ(y
Ñ
− y1)

∫ y
Ñ

y1

1

2
f(x1, y) +

Ñ−1∑
i=2

f(xi, y) +
1

2
f(x

Ñ
, y)

 dy(B.33)

≈ 1

Ñ2

[
1

4

(
f(x1, y1) + f(x1, yÑ ) + f(x

Ñ
, y1) + f(x

Ñ
, y
Ñ

)
)

+
1

2

Ñ−1∑
i=2

(
f(x1, yi) + f(x

Ñ
, yi) + f(xi, y1) + f(xi, yÑ )

)

+

Ñ−1∑
i,j=2

f(xi, yj)

 .(B.34)

B.3. The cross correlation theorem

In many equations that we encounter within TPSC (see eq. (5.396) and (5.290)) we
have to evaluate expressions of the type

(B.35) F (k) =
1

N

∑
q

f(k)g(k − q),

which represents a multi-dimensional convolution. Numerically one can perform this
summation very efficiently by taking advantage of the circular convolution theorem,

F =
1

N2
F−1 [[Ff ]× [Fg]] ,(B.36)

where F denotes the discrete Fourier transform and × is the array product of the vectors
in k-space. To perform the discrete Fourier transformation –here exemplified for two
dimensional functions– we interpret the functions f as array

f = [f(0, 0), f(0, 1/N), . . . , f(0, 1− 1/N), f(1/N, 0), . . . , f(1/N, 1− 1/N), . . .

. . . , f(1− 1/N, 1− 1/N)](B.37)

and similar for g and F . This represents all three functions as periodic discrete two-
dimensional lattice functions.

By performing the discrete Fourier transforms in terms of fast Fourier transforms
one can achieve a run time O (N logN) that scales much better that the brute force
O
(
N2
)

version.
Similarly, the equations of type

(B.38) F (k) =
1

N

∑
q

f(k)g(k + q)

can be dealt with in terms of the cross correlation theorem:

(B.39) F =
1

N2
F−1 [[Ff∗]∗ × [Fg]] .
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B.4. Numerical instabilities at low temperatures

In this section we show why TPSC gets numerically unstable at low temperatures
and in how far one can circumvent those restrictions.

B.4.1. Adaptive k-meshes. First, one has to deal with the divergence of the spin
susceptibility χsp (see fig. 6.9). This is due to the fact that at low temperatures the anti-
ferromagnetic fluctuations will start to diverge at q-points where the nesting condition
is fulfilled. Thus, one has to take care that enough q-points are used numerically to
resolve the peak in the spin susceptibility.
In order to save memory we use an adaptive q-grid that is fine at low Matsubara
frequencies4. Since the same argument applies to all Matsubara functions that we
study, we apply the adaptive mesh to all Matsubara functions within TPSC.
The number of kx- and ky-points Nkx

(n), Nky
(n) for a given Matsubara index n > 0

is given by

(B.40) Nkx
(n) = Nky

(n) =


Nmax n < 6

Nmax/1.1
n−6 Nmax/1.1

n−6 > Nmin

Nmin else

and analogously for a negative Matsubara index n5. Note, that we keep a constant
fine k-mesh of Nmax ×Nmax points for the first six Matsubara frequencies due to the
extrapolation procedure described in sec. B.1.3. Otherwise, the number of k-points
are slowly exponentially decreasing with Matsubara index n down to a minimal value
Nmin.

B.4.2. Adaptive Matsubara frequencies. The distance between Matsubara
frequencies decreases with smaller temperature since

(B.41) ωn = 2π(n+ 1)T and qn = 2πnT.

This means that a constant number of Matsubara frequencies cannot resolve the same
imaginary frequency window with decreasing temperatures.
This effect can be compensated by increasing the number of Matsubara frequencies
Nmats inverse proportional to the temperature,

(B.42) Nmats(T ) =

{
N0T0/T N0T0/T > 50

50 else
,

where N0 is the number of Matsubara frequencies at T = T0 chosen such that the
energy window sampled by the Matsubara frequencies [ω0, . . . , ωN0

] equals roughly the

bandwidth of the non-interacting system.
In the case of bosonic Matsubara frequency functions we use only

(B.43) (2/3)Nmats(T )

Matsubara frequencies since within TPSC those functions are faster decaying than the
fermionic ones.

4Due to the 1/iqm decay of the susceptibilities (see eq. (5.92) and (5.267)) we know that the peak
will be softened at larger Matsubara frequencies iqm.

5In the case of bosonic frequencies one replaces n by −n and uses eq. (B.40) while in the fermionic
case one has to replace n by −n− 1 because −iωn = iω−n−1.
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B.4.3. Non-interacting susceptibility χ0. Note that the calculation of the non-
interacting susceptibility χ0 given by eq. (5.92),

χ0
ηνζλ(q, iqm)

=− 1

N

∑
k,b,c

aνb (k + q)aλb
∗
(k + q)aζc(k)aηc

∗(k)
fFD(ξb(k + q))− fFD(ξc(k))

−iqm + ξb(k + q)− ξc(k)
,(B.44)

bears two numerical problems.
First, in the case where m = 0 and energy degeneracy, i.e.

(B.45) ξb(k + q) = ξc(k)

one has to apply L’Hôpital’s rule and finds

(B.46) lim
ξb(k+q)→ξc(k)

fFD(ξb(k + q))− fFD(ξc(k))

ξb(k + q)− ξc(k)
= − 1

T

eξc(k)/T

(1 + eξc(k)/T )2
.

Second, in the realm of very low temperatures the fraction on the right-hand side
of eq. (B.46) will be a division of very large numbers which might result in an overflow
error. In this cases it useful to check whether the exponential ξc(k)/T is larger than
∼ 20 and set the right-hand side to zero which is the limit of this expressions for very
low temperatures.
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APPENDIX C

Formal results

In this chapter we present some formal results that were used in the main text.

C.1. Proof of internal accuracy check

We start the proof of the internal multi-orbital accuracy check by evaluating the
left-hand side of eq. (5.394).

Proof of (5.394).

lim
τ↗0

T

N

∑
k,iωn

e−iωnτΣ
νβ,σ

(k, iωn)G0
βν,σ

(k, iωn)

= lim
τ↗0

T

N

∑
k,iωn

e−iωnτ

{∑
η

Uην〈nη,−σ〉δν,β+

+
∑
η 6=ν

(Uην − Jην)
(
〈nη,σ〉δν,β − 〈nνβ,σ〉δη,β

)
+ J

βν
(〈n

νβ,−σ〉+ 〈n
βν,−σ〉)(1− δν,β)

+
T

4N

∑
q,iqm

[
Γchχch(q, iqm)Γch,0 + Γspχsp(q, iqm)Γsp,0

]
βηνγ
×

×G0
γη(k + q, iωn+m)

}
G0
βν,σ

(k, iωn)(C.1)

=
∑
η

Uην〈nη,−σ〉〈nν,σ〉+
∑
η 6=ν

(Uην − Jην)
(
〈nη,σ〉〈nν,σ〉 − 〈nνη,σ〉〈nην,σ〉

)
+ J

βν
(〈n

νβ,−σ〉〈nβν,σ〉+ 〈n
βν,−σ〉〈nβν,σ〉)(1− δν,β)

− T

4N

∑
q,iqm

[
χ0ΓchχchΓch,0 + χ0ΓspχspΓsp,0

]
νγνγ

(q, iqm)(C.2)

=
∑
η

Uην〈nη,−σ〉〈nν,σ〉+
∑
η 6=ν

(Uην − Jην)
(
〈nη,σ〉〈nν,σ〉 − 〈nνη,σ〉〈nην,σ〉

)
+ J

βν
(〈n

νβ,−σ〉〈nβν,σ〉+ 〈n
βν,−σ〉〈nβν,σ〉)(1− δν,β)

− T

4N

∑
q,iqm

[(
2χ0 − χch

)
Γch,0 +

(
χsp − 2χ0

)
Γsp,0

]
νγνγ

(q, iqm),(C.3)

where we have used the definition of the non-interacting susceptibility χ0 (eq. (5.72))
and the Bethe-Salpeter equation (5.372).

Following the definition of Γsp/ch,0 (eqs. (5.348) and (5.349)) we will have three terms
in each channel, namely

χ
νγαβ

Γ
αβνγ

= χνγνγΓνγνγ(1− δν,γ) + χνγγνΓγννγ(1− δν,γ) + χννγγΓγγνν ,(C.4)
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where we dropped the superscript for simplicity.
Using the local spin and charge sum rules (eqs. (5.327), (5.328), (5.329), (5.334), (5.335)
and (5.336)) we can evaluate the q, iqm-sum in eq. (C.3) and find

T

4N

∑
q,iqm

[(
2χ0 − χch

)
Γch,0 +

(
χsp − 2χ0

)
Γsp,0

]
νγνγ

(q, iqm)

=
T

4N

∑
q,iqm

[(
2χ0 − χch

)
νγνγ

Γch,0νγνγ +
(
χsp − 2χ0

)
νγνγ

Γsp,0νγνγ

]
(q, iqm)(1− δν,γ)+

+
T

4N

∑
q,iqm

[(
2χ0 − χch

)
νγγν

Γch,0γννγ +
(
χsp − 2χ0

)
νγγν

Γsp,0γννγ

]
(q, iqm)(1− δν,γ)

+
T

4N

∑
q,iqm

[(
2χ0 − χch

)
ννγγ

Γch,0γγνν +
(
χsp − 2χ0

)
ννγγ

Γsp,0γγνν

]
(q, iqm)(1− δν,γ)

+
T

4N

∑
q,iqm

[(
2χ0 − χch

)
νννν

Γch,0νννν +
(
χsp − 2χ0

)
νννν

Γsp,0νννν

]
(q, iqm)

(C.5)

=
T

4N

∑
q,iqm

Jνγ

[
−χchνγνγ + χspνγνγ

]
(q, iqm)(1− δν,γ)+

+
T

4N

∑
q,iqm

Jνγ

[
−χchνγγν + χspνγγν

]
(q, iqm)(1− δν,γ)

+
T

4N

∑
q,iqm

[
4
(
Uνγ − Jνγ

)
χ0
ννγγ − χchννγγΓch,0γγνν + χspννγγΓsp,0γγνν

]
(q, iqm)(1− δν,γ)

+
T

4N

∑
q,iqm

Uνν

[
−χchνννν + χspνννν

]
(q, iqm)

(C.6)

=
1

4
Jνγ

[
4
(〈
nγ,σnν,σ

〉
−
〈
nγ,σnν,−σ

〉)
+ 〈nγν〉〈nνγ〉 −

1

2

(
〈nν,↑〉 − 〈nγ,↓〉

)]
(1− δν,γ)+

+ Jνγ
T

4N

∑
q,iqm

[
−χchνγγν + χspνγγν

]
(1− δν,γ)

+
1

4

[
−
(
2Uνγ − Jνγ

) (
2
〈
nγ,σnν,σ

〉
+ 2

〈
nγ,σnν,−σ

〉
−
〈
nγ
〉
〈nν〉

)
+Jνγ

(
2
〈
nγ,σnν,σ

〉
− 2

〈
nγ,σnν,−σ

〉)]
(1− δν,γ)

+
1

4
Uνν

[
−4
〈
nν,σnν,−σ

〉
+ 〈nν〉

2
]
.

(C.7)

Notice that the additional contribution in the νγνγ contribution comes from the com-
mutator when swapping ν and γ to use the derived sum rules. Inserting this expression
back into eq. (C.3) we obtain

lim
τ↗0

T

N

∑
k,iωn

e−iωnτΣ
νβ,σ

(k, iωn)G0
βν,σ

(k, iωn)

=
∑
η

Uην〈nη,−σ〉〈nν,σ〉+
∑
η 6=ν

(Uην − Jην)

(
〈nη,σ〉〈nν,σ〉. . . . . . . . . . . . .

− 〈nνη,σ〉〈nην,σ〉

)
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+ J
βν

(〈n
νβ,−σ〉〈nβν,σ〉+ 〈n

βν,−σ〉〈nβν,σ〉)(1− δν,β)

− 1

4
Jνγ

[
4
(〈
nγ,σnν,σ

〉
−
〈
nγ,σnν,−σ

〉)
+ 〈nγν〉〈nνγ〉 −

1

2

(
〈nν,↑〉 − 〈nγ,↓〉

)]
(1− δν,γ)

− Jνγ
T

4N

∑
q,iqm

[
−χchνγγν + χspνγγν

]
(q, iqm)(1− δν,γ)

− 1

4

[
−Uνγ

(
2
〈
nγ,σnν,σ

〉
+ 2

〈
nγ,σnν,−σ

〉
−
〈
nγ
〉
〈nν〉

)
−
(
Uνγ − Jνγ

)(
2
〈
nγ,σnν,σ

〉
+ 2

〈
nγ,σnν,−σ

〉
−
〈
nγ
〉
〈nν〉. . . . . . . . . .

)
+Jνγ

(
2
〈
nγ,σnν,σ

〉
− 2

〈
nγ,σnν,−σ

〉)]
(1− δν,γ)

− 1

4
Uνν

[
−4
〈
nν,σnν,−σ

〉
+ 〈nν〉

2
]
,

(C.8)

where we marked the terms that cancel each other with different underline styles. Notice
that the dashed underlined terms are zero for the reason that we have no inter-orbital
on-site hopping terms. By grouping together the different double occupations we arrive
at

lim
τ↗0

T

N

∑
k,iωn

e−iωnτΣ
νβ,σ

(k, iωn)G
βν,σ

(k, iωn)

=
∑
α

Uαν
〈
nα,−σnν,σ

〉
+
∑
α

α 6=ν

(Uαν − Jαν)
〈
nα,σnν,σ

〉
+
Jαν
8

(
〈nν,↑〉 − 〈nα,↓〉

)

− 1

2

∑
α

α 6=ν

Jαν

 T

N

∑
q,iqm

χspαανν(q, iqm) +
T

2N

∑
q,iqm

(χsp − χch)νααν(q, iqm)

 .(C.9)

�

C.2. Multi-orbital Hamiltonian representation

In the literature one can find a different representation of the multi-orbital Hamil-
tonian H in eq. (5.297) that we use for the multi-orbital TPSC approach. In this
appendix we prove that the Hamiltonian H used in the main part is equivalent to the
Hamiltonian

H =
∑

α,β,i,j,σ

(
t
ri−rj
αβ − µδi,jδα,β

)
c†α,σ(ri)cβ,σ(rj)

+
∑
α,i

Uααnα,↑(ri)nα,↓(ri)

+
∑
α,β,i
α>β

(
Uαβ −

Jαβ
2

)
nα(ri)nβ(ri)

− 2
∑
α,β,i
α>β

Jαβ
~Sα(ri) · ~Sβ(ri)

+
∑
α,β,i
α 6=β

Jαβc
†
α,↑(ri)c

†
α,↓(ri)cβ,↓(ri)cβ,↑(ri),(C.10)
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where we define the spin matrices

(C.11) Sα(1) := Sαα(1)

according to the multi-site definition in eq. (5.132).
In order to express the Hamiltonian only in terms of creation and annihilation

operators we do the following exercise.

~Sα · ~Sβ
=(c†α,↑ c†α,↓) · ~σ · (cα,↑ cα,↓)

T (c†β,↑ c†β,↓) · ~σ · (cβ,↑ cβ,↓)
T(C.12)

=(c†α,↑ c†α,↓) · ~σ ·

(
cα,↑c

†
β,↑ cα,↑c

†
β,↓

cα,↓c
†
β,↑ cα,↓c

†
β,↓

)
· ~σ · (cβ,↑ cβ,↓)

T(C.13)

=
1

2
(c†α,↑ c†α,↓) · ~σ ·



(
cα,↑c

†
β,↓ cα,↑c

†
β,↑

cα,↓c
†
β,↓ cα,↓c

†
β,↑

)

i

(
cα,↑c

†
β,↓ −cα,↑c

†
β,↑

cα,↓c
†
β,↓ −cα,↓c

†
β,↑

)
(
cα,↑c

†
β,↑ −cα,↑c

†
β,↓

cα,↓c
†
β,↑ −cα,↓c

†
β,↓

)


· (cβ,↑ cβ,↓)

T(C.14)

=
1

4
(c†α,↑ c†α,↓) ·

[(
cα,↓c

†
β,↓ cα,↓c

†
β,↑

cα,↑c
†
β,↓ cα,↑c

†
β,↑

)
+

(
cα,↓c

†
β,↓ −cα,↓c

†
β,↑

−cα,↑c
†
β,↓ cα,↑c

†
β,↑

)
+

+

(
cα,↑c

†
β,↑ −cα,↑c

†
β,↓

−cα,↓c
†
β,↑ cα,↓c

†
β,↓

)]
· (cβ,↑ cβ,↓)

T(C.15)

=
1

4
(c†α,↑ c†α,↓) ·

(
2cα,↓c

†
β,↓ + cα,↑c

†
β,↑ −cα,↑c

†
β,↓

−cα,↓c
†
β,↑ 2cα,↑c

†
β,↑ + cα,↓c

†
β,↓

)
· (cβ,↑ cβ,↓)

T(C.16)

=
1

4
(c†α,↑ c†α,↓) ·

(
2cα,↓c

†
β,↓cβ,↑ + cα,↑c

†
β,↑cβ,↑ − cα,↑c

†
β,↓cβ,↓

−cα,↓c
†
β,↑cβ,↑ + 2cα,↑c

†
β,↑cβ,↓ + cα,↓c

†
β,↓cβ,↓

)
(C.17)

=
1

4

(
2c†α,↑cα,↓c

†
β,↓cβ,↑ + c†α,↑cα,↑c

†
β,↑cβ,↑ − c

†
α,↑cα,↑c

†
β,↓cβ,↓ − c

†
α,↓cα,↓c

†
β,↑cβ,↑+

+2c†α,↓cα,↑c
†
β,↑cβ,↓ + c†α,↓cα,↓c

†
β,↓cβ,↓

)
(C.18)

=
1

4

(∑
σ

2c†α,σcα,−σc
†
β,−σcβ,σ +

∑
σσ′

σσ′nα,σnβ,σ′

)
,(C.19)

which leads to the following representation of the Hamilton operator

H =
∑

α,β,i,j,σ

(
t
ri−rj
αβ − µδi,jδα,β

)
c†α,σ(ri)cβ,σ(rj)

+
∑
α,i

Uααnα,↑(ri)nα,↓(ri)

+
∑
α,β,i,σ
α 6=β

Uαβ
2
nα,σ(ri)nβ,−σ(ri)

+
∑
α,β,i,σ
α 6=β

(
Uαβ

2
−
Jαβ
2

)
nα,σ(ri)nβ,σ(ri)
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−
∑
α,β,i,σ
α 6=β

Jαβ
2
c†α,σ(ri)cα,−σ(ri)c

†
β,−σ(ri)cβ,σ(ri)

−
∑
α,β,i,σ
α 6=β

Jαβ
2
c†α,σ(ri)cβ,−σ(ri)c

†
α,−σ(ri)cβ,σ(ri)(C.20)

=
∑

α,β,i,j,σ

(
t
ri−rj
αβ − µδi,jδα,β

)
c†α,σ(ri)cβ,σ(rj)

+
1

2

∑
α,β,i,σ

Uαβnα,σ(ri)nβ,−σ(ri)

+
1

2

∑
α,β,i,σ
α 6=β

(Uαβ − Jαβ)nα,σ(ri)nβ,σ(ri)

− 1

2

∑
α,β,i,σ
α 6=β

Jαβ

(
c†α,σ(ri)cα,−σ(ri)c

†
β,−σ(ri)cβ,σ(ri)

+c†α,σ(ri)cβ,−σ(ri)c
†
α,−σ(ri)cβ,σ(ri)

)
.(C.21)
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[123] S. Hüfner, editor. Very High Resolution Photoelectron Spectroscopy. Lecture Notes in Physics,
vol. 715. Springer-Verlag Berlin Heidelberg, 2007.
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