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Introduction

One of the fundamental problems in theoretical physics is the analysis of systems
containing many degrees of freedom. In particular, the solid state of matter has been
the subject of intensive study for many decades. Although the basic physical laws
— provided by quantum mechanics — governing the behaviour of @(10?®) atoms are
well established and can be formulated completely in terms of one— and two-body
interactions, collective phenomena arise which may only be understood in a many-
particle picture. Important examples are superconductivity and magnetic ordering.

Fortunately, not all degrees of freedom have to be taken into account to describe
these effects. It turns out that many characteristics of crystalline solids (like the
magnetic response and thermodynamics) are to a large extent determined by the
electronic structure, which may be calculated in the adiabatic approximation of Born
and Oppenheimer (1927) where the positions of the nuclei are taken to be fixed.
Moreover, it is usually sufficient to focus on the dynamics of the valence electrons
located in the outermost atomic shells. The theorem of Bloch (1928) then leads
to the formation of energy bands which already contain the effect of the crystalline
potential.

Within this effective model, one nontrivial complication remains: The finite
Coulomb interaction between pairs of valence electrons usually renders an exact quan-
tum mechanical treatment impossible. For weak interactions, these correlations may
be successfully taken into account on a mean—field level, while in the case of strongly
correlated systems — containing for example atoms with partially filled 3d or 4 f shells
— this approach fails. It is precisely the latter situation that is of interest in this work.
In the tmpurity systems considered here, a small fraction of such strongly correlated
atoms are distributed randomly in an otherwise pure crystalline host. With good
accuracy they may be considered as independent and modelled by a single impurity
Hamiltonian. Due to the internal degrees of freedom of these magnetic impurities, a
new many—body phenomenon, the Kondo effect, arises: A large number of conduction
electrons participate in forming a screening cloud that compensates for the otherwise
free impurity moment. This screening causes characteristic experimental signals like
the resistance minimum in dilute Kondo alloys. In recent years magnetic impurities
have also been realized artificially in quantum dots, where parameters can be tuned
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and theoretical predictions may be verified in detail.

Within the last decade quantum impurity models have received additional atten-
tion due to the dynamical mean-field theory (DMFT) of correlated lattice systems
in high dimensions which is based on the work of Metzner and Vollhardt (1989a). In
this approach, the local dynamics of the lattice fermions is described by an effective
Anderson model with self-consistently determined parameters.

For these reasons it is of great interest to develop and improve nonperturbative
methods which yield thermodynamic and spectral properties of impurity models in
a controlled way. In this work, two such approaches will be discussed that are based
on the idea of the renormalization group. The first one, Wilson’s numerical renor-
malization group (NRG), has played a crucial role in the in the solution of the Kondo
problem and is to some degree well established. We will, however, demonstrate that
in the calculation of dynamical quantities an important aspect has so far been ne-
glected and that in the presence of an external field the NRG procedure has to be
generalized in order to lead to reliable results. The second technique, Wegner’s flow
equation approach, has been developed more recently. It can provide analytic insight
into complex many—body phenomena like the Kondo effect. On the other hand, its
range of applicability is so far limited by the necessary truncation of higher order
interactions.

Besides the methodical objective of this thesis (illustration and further develop-
ment of these two techniques) our goal will be to analyze several generalized impu-
rity models in detail. In particular, extensions of the Anderson Hamiltonian will be
studied where the conduction band is no more flat and noninteracting. Only few
calculations for this more realistic situation exist so far, although it is of great exper-

imental interest. Here we present the first nonperturbative treatment in d > 1 using
a combination of DMFT and NRG.

Structure of this thesis

In chapter one we introduce the Kondo and Anderson Hamiltonians which will be
the subject of study throughout this thesis. Furthermore the basic concepts of NRG
and the flow equation method are outlined, including a brief discussion of previous
applications.

In chapter two we analyze a modified version of the Anderson impurity model
where the hybridization is much larger than the bandwidth. These calculations were
initially motivated by one possible DMFT scenario of the Mott transition, which has
lead to the question whether the self-consistent perturbation series converges or not.
Later it was realized that such a narrow band may also be generated by interactions
among the conduction electrons.

In chapter three we present the study of a magnetic impurity in a correlated
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band. The single particle density of states and the dynamical susceptibility at zero
temperature are calculated by NRG. Among the most important results, we find
characteristic spectral features (side peaks) as a consequence of the small effective
bandwidth. A strong enhancement of the Kondo temperature due to correlations is
observed. In addition, we discuss the effects of doping and particle-hole asymmetry
of the impurity. Future ESR measurements are proposed where the enhanced Kondo
scale and its dependence on the band filling could be observed.

In chapter four, an external magnetic field is applied to the Anderson impurity.
No NRG simulations for this situation exist so far. On the one hand this is due to
the reduced symmetry of the Hamiltonian, which requires modifications of iterative
diagonalization. In the course of our study, however, more fundamental difficulties
appeared. It became clear that the procedure used so far to calculate dynamical
properties within NRG is not rigorous and fails explicitly in the presence of an exter-
nal field. To solve the problem, we introduce a new algorithm based on the concept
of the reduced density matriz, which correctly describes the subtle ground state de-
pendency of spectral features at higher frequency. This method represents the true
extension of Wilson’s original thermodynamic calculations.

The remaining two chapters of this thesis focus on Wegner’s flow equations and
their applications. In chapter five, we consider the Luttinger and Wolff models: While
the former serves as an exactly solvable test case where the validity of the method can
be established, the Wolff study was motivated by a bosonization solution for the weak
coupling limit. In both cases flow equations are formulated directly in the fermionic
language, which makes truncations of higher many—particle terms inevitable.

A different approach is chosen in chapter six, where we first bosonize the
anisotropic Kondo model and then diagonalize it using flow equations. In this frame-
work, interaction terms can be parameterized efficiently by using Vertexr operators,
with a scaling dimension that describes the crossover from weak to strong coupling.
The flow equations close exactly in the Toulouse limit which corresponds to a finite
coupling strengh and a nontrivial low temperature fixed point. For general initial
couplings, the truncation is controlled by the operator product exrpansion of vertex
operators. By determining the flow of an additional observable, the dynamical im-
purity susceptibility at zero temperature is also calculated.






Chapter 1

Models and methods

1.1 Quantum impurity models

In this work we will study the physical properties of metallic systems containing a
small fraction of magnetic impurities with internal degrees of freedom. It is well
known that effects caused by nonmagnetic impurities, like the residual resistance in
metals, can be described in a single particle framework and have been understood for
a long time. For magnetic alloys, the situation proved to be more complicated: In
measurements by de Haas, de Boer and van den Berg (1934) on Aw it was found that
the resistivity — instead of dropping monotonically — exhibits a minimum at a finite
temperature. It was only recognized later that this is an impurity effect associated
with 3d transition metal impurities such as Fe. Theoretical understanding of the
resistance minimum was lacking until Zener (1951) introduced the fundamental s-d
Hamiltonian (usually referred to as Kondo model, see below)

Hyy = Z €x Cly Oy + JZ (S+ Cqu Gy + 57 CLT Cry + 57 (clT(T Cp — Cqu Ck'¢))

ko kk’
(1.1)
describing the Heisenberg exchange interaction between a local moment of spin S
and the conduction electrons. Note that throughout this work units will be chosen as
h=kg=g=pup=1. Kondo (1964) discovered that in a perturbative calculation of
the impurity resistivity all terms except the leading one are logarithmically divergent
at low temperatures if the coupling is antiferromagnetic (J > 0)

Rigp=aJ?(1—J InT)+ O(JY (1.2)

(a, B are constants). Together with the phonon contribution Rpnonon ~ TS, this
leads to the minimum in the total resistivity. On the other hand, perturbation the-
ory clearly breaks down once higher order terms are comparable to the leading one,
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which is the case at the Kondo temperature Tx ~ exp{—1/(2pJ)} where p is the con-
duction electron density of states. Attempts by Abrikosov (1965) to sum the leading
logarithmic contributions (parquet diagrams) up to infinite order could not restore
convergence of the perturbation series. New nonperturbative methods had to be de-
veloped in order to access the low temperature regime T < Tk. In a first successful
attempt in this direction, Anderson and Yuval (1969) demonstrated that the thermo-
dynamics of a magnetic impurity can be reformulated in terms of a (classical) gas of
alternatingly charged particles with a logarithmic interaction. In a subsequent renor-
malization group analysis of the Coulomb gas, Anderson, Yuval and Hamann (1970)
showed that the effective coupling at low temperatures increases without bound in
the antiferromagnetic case. The same behaviour was also obtained in a simple “poor
man’s” scaling approach by Anderson (1970). Although perturbative scaling breaks
down at a certain value of the coupling constant, it was nevertheless concluded that at
zero temperature the effective exchange is infinite, thus leading to perfect screening of
the local moment and a nonmagnetic singlet groundstate. This was later confirmed by
the pioneering numerical renormalization group (NRG) calculation of Wilson (1975)
which may be considered as the first exact solution of the Kondo problem. Details of
this approach, which is based on a logarithmic discretization of the conduction band,
are given in the next section. An analytic solution of the magnetic impurity problem
was finally obtained with the Bethe ansatz by Andrei (1980) and Wiegmann (1980).
This method is, however, restricted to integrable cases (excluding, for example, any
energy dependence in the exchange coupling) and can furthermore only access static
thermodynamic properties. More recently, conformal field theory and the form factor
approach of Lesage, Saleur and Skorik (1996) have made the calculation of dynamic
quantities possible.

In the Kondo Hamiltonian, the impurity is reduced to a spin degree of freedom.
A more realistic model which takes charge fluctuations into account was introduced
by Anderson (1961)

Hana = Z €x Ch o g + Z Vi (f:; Cro T+ h.c.) +Ungrng +€erny (1.3)
ko ko
and also in a slightly different form by Wolff (1961). Here the hybridization V between
the f impurity and the band is balanced by a local Coulomb repulsion U which
suppresses double occupancy of the impurity. Besides the local moment regime,
where (1.3) reduces to an effective Kondo Hamiltonian as demonstrated by Schrieffer
and Wolff (1966), the Anderson model also displays mized valence: If the impurity
level €4 is sufficiently close to the Fermi energy, the impurity occupation number
fluctuates between two different valence states. A complete description of the different
physical regimes of (1.3) was obtained by Krishna-murthy, Wilkins and Wilson (1980)
within the NRG where the authors focused on the situation with a flat band and
noninteracting conduction electrons. Sakai, Shimizu and Kasuya (1989) and Costi,
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Hewson and Zlati¢ (1994) later extended these calculations and obtained also spectral
information.

In this thesis we will mainly focus on three different extensions of the impurity
Hamiltonians discussed so far:

e The nontrivial strong coupling behaviour of the anisotropic Kondo model is
studied by the flow equation method.

e Thermodynamic and spectral properties of the Anderson model with a narrow
hybridization function are determined by NRG and exact diagonalization.

e The Anderson impurity problem with correlated conduction electrons is solved
using a combination of NRG and the dynamical mean—field theory.

In the following, we give an introduction to the NRG and flow equation methods.

1.2 Numerical renormalization group

The essential difficulty in analyzing a (classical or quantum-mechanical) many—
particle system arises from the large number of interacting degrees of freedom. A
well-known example from statistical physics is the model introduced by Ising (1925)
where classical spins are coupled by a short-range ferromagnetic interaction. In this
model a transition to an ordered phase occurs if the spatial dimension is larger than
one. Close to the associated critical point the spin—spin correlation length diverges:
If one were to study this regime numerically, one would have to take into account an
increasing number of spins that are strongly coupled to each other.

In the Kondo problem, a similar situation is encountered: At low temperatures,
a large screening cloud compensating the impurity spin is formed in the conduction
band. The number of electrons involved in the screening diverges exponentially at
small exchange coupling J. A direct numerical treatment using, for example, exact
diagonalization methods is therefore impossible.

It was precisely this situation that lead to the development of the renormalization
group. In fact, one is often interested only in physical properties at low energy (or
equivalently long distances). As realized first by Kadanoff (1966) and later elaborated
by Wilson (1971), short—wavelength degrees of freedom may be integrated out, lead-
ing to a coarse—grained system with renormalized effective interactions. Iterating the
procedure, one finally arrives at a reduced system size where in principle other meth-
ods (like exact diagonalization) could be applied. Mostly, however, it is sufficient to
know the flow of the renormalized interaction parameters (the running couplings) in
the coarse—graining procedure in order to determine universal properties like critical
exponents. Perturbative scaling of this kind was applied to the Kondo problem by
Anderson (1970) (see fig. 1.1): In infinitesimal steps, conduction electrons close to
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Figure 1.1: Poor man’s scaling for the Kondo problem. States far away from the Fermi
edge are integrated out.

the band edges are integrated out and an effective Hamiltonian H.g is derived that
acts only on the low energy degrees of freedom. In the leading order of the exchange
coupling, Heg can again be parametrized by J(D) which now depends on the band-
width D. For the antiferromagnetic Kondo problem, the effective coupling diverges
at a finite D. This indicates the perturbative nature of the scaling equations which
can therefore not access the zero temperature limit.

In order to remove the shortcomings of scaling, Wilson proposed to determine the
effective Hamiltonian numerically, without any parametrization in terms of coupling
constants. In the following we will outline the application of his method to the
Anderson impurity model (1.3) following Krishna-murthy et al. (1980). In a first
step, the model is mapped on a one—dimensional problem by considering only s—wave
states in the conduction band. Introducing a continuous energy variable €, we write

Hand—efnf—i—Unanﬁ%—Z/ deec! c EG—FZ/ \/ T + hec) (1.4)

where a hybridization function

Ae) = WZé(e — &) V{2 (1.5)

k

has been defined. Previous field theoretic results by Wilson (1965) motivated the
introduction of a logarithmic discretization for the conduction electrons: After divid-
ing the band into a series of intervals (“energy scales”) with exponentially decreasing
width (fig. 1.2), a Fourier expansion is performed on each one of these intervals. One
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Figure 1.2: Logarithmic discretization of the conduction band.

defines a set of orthonormal functions according to

L gHiwnpe if A=) < fe < AT

w0 ={ 7 (16)

0 otherwise
where v, = A™"(1 — A™!) is the width of the n-th intervall and w, = 27 /v, is the

corresponding fundamental Fourier frequency. The momentum space operators c,,
can be expanded in this basis

Cer = D [Onpo Wh(€) + brpe ¥y (€)] (1.7)

np

where .

oo = [ O] o o= [ e ) e (18)

satisfy the usual fermionic anticommutation relations. Approximating the hybridiza-
tion function A(e) by a constant in each one of the intervals [A=("*D A="] (see
fig. 1.3), it is easily shown that the impurity only couples to the p = 0 states and the
hybridization term takes the form

Z/_ll de@ (flcey +hee) = \/iz S (7o, + hc). (1.9

For the definition of the maximally localized state dy, and the coefficient &, see
appendix A. In the special case of a constant hybridization function A(w) = A one
obtains & = 2A. Regarding the conduction band, the coupling between terms with
different p vanishes in the limit A — 1. Wilson (1975) has demonstrated that even
for a discretization parameter A = 2 (used in this thesis), the p # 0 contributions
can be neglected in a very good approximation. The Hamiltonian then reads

/&0
H = +U + 1/ = g ( Td, +h. )
€f Ny NgrNfy " 2 fid,, c

-1
(LrA > AT (al, any — By byy) (1.10)

2 no "no no “no
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Figure 1.3: Approximation of the hybridization function.

Figure 1.4: Representation of the Anderson model as a semi-infinite chain.

where the p index has been dropped. At this stage every energy scale is represented
by two degrees of freedom; through the introduction of logarithmic discretization
we have now achieved energy scale separation. Nevertheless, (1.10) still represents a
nontrivial many-body problem. Wilson suggested solving it by iterative perturbation
theory: Because the terms in the conduction band are now exponentially decreasing,
they can be taken into account one after the other (see fig. 1.5). In order to do this, it
is convenient to make a unitary transformation from the set of operators (a,y, bno) t0
a new orthonormal set (d,,,). The new basis is chosen in such a way that the operators
(dno) exhibit only nearest—neighbour coupling, i.e. d,, is coupled to d(n+1)o- This can
be achieved by Lanczos tridiagonalization of the conduction band, as described in
appendix A. The resulting Hamiltonian has the form of a semi-infinite linear chain

H = efnf—{—Unanfl%—\/%T)Z(f;dog—{—h.c.)

+ i n (dho diyinyy + Ioc:) (1.11)
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Figure 1.5: Concept of iterative perturbation theory.

as shown in fig. 1.4. For simplicity, we have focussed on a symmetric hybridization
function at this point. The hopping terms decay asymptotically as €, ~ A™™/2.
Following Wilson (1975), this Hamiltonian can be represented using a shell model
(fig. 1.6) where the shells correspond to the states d,,. They are equivalent to wave
packets centered at the impurity with an extent in position space that increases as
A2 In this basis, one neglects those states where the electron is far away from the
impurity in real space and far away from the Fermi surface in momentum space.

Now the Hamiltonian (1.11) can be diagonalized iteratively. We truncate the
chain after N sites and rescale

Hy = A(N—l)/2{gfnf—i—Unanﬁ%—\/%Z(fj_dotf—l—h.c.)

N-1
> e (dhy iy, + hec) } (1.12)
n=0

so that the low-lying excitations of Hy are always of the order O(1). The full system
is then recovered in the limit

H = lim A-O-V2 gy (1.13)

N—o0

From (1.12) the following renormalization group transformation is easily derived:

Hyp = AP Hy+Y) AN ey (d}vg iy T h.c.) (1.14)

Iterative diagonalization is based on this relation, which shows that knowledge of
the eigenstates of Hy and of the matrix elements (|d\|)y is sufficient to solve the
eigenvalue problem associated with Hy ;. Details are described in appendix B.
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impurity

0
1

Figure 1.6: “Onion” shell model of the semi-infinite chain Hamiltonian (1.11).

In order to reduce the size of the remaining matrix problem, it is important to
exploit symmetries which lead to a block—diagonal structure of the Hamiltonian. In
the present case these are the total charge (relative to half filling)

N
QN:Z(d;‘:lo'an'_]')+Z(ftj’f0'_1)' (115)
n=0 o
and the total spin
S . 1.
SN =5 D A O b+ Y 500 £ (1.16)
n=0 uv

pnv

In the absence of an external magnetic field, all three components i = x,y, z are
conserved. In this case one can define simultaneous eigenstates of Qx, Si and S% and
label them as | @, S, S#, r) where the quantum number r corresponds to the remaining
degeneracy. Energy eigenvalues will be independent of S* and one can take advantage
of this fact by using Clebsch—Gordan coefficients and working entirely in terms of the
reduced matriz elements (Q,S]|fL||Q’,S"). Details are given in appendix B. If a
magnetic field is applied, however, diagonalization has to be performed at reduced
symmetry. The necessary modifications are explained in chapter 4.

From a practical point of view, it is impossible to calculate all the eigenstates of
Hy because the corresponding matrix size increases exponentially ~ 22(V+2) As one
is mainly interested in low—temperature properties of H, in each diagonalization
step only a limited number M of low-lying eigenstates is retained. This leads to a
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constraint on the possible values of the discretization parameter A: The error due to
truncation rapidly increases as one approaches the continuum limit A = 1. Typical
parameters used in our calculations are A = 2 and M = 300 (not counting the S,
degeneracy).

When diagonalization has been achieved, physical observables can be calculated
from the eigenstates and matrix elements. For the narrow band Anderson model, we
calculate the temperature-dependent impurity contribution Ay(7) to the magnetic
susceptibility. Apart from this we will mainly be interested in zero temperature
dynamical properties of the impurity, namely the single particle spectral function
p(w) and the dynamical susceptibility x(w). Details of the computation of p(w) were
already given by Bulla (1994). In appendix C we also outline the calculation of x(w)
in terms of reduced matrix elements of the local spin.

A completely new aspect of NRG is discussed in chapter 4 where we show that the
technique of calculating spectral quantities used so far is only approximate and fails
in the case of an external magnetic field. We introduce a new approach to dynamics —
the DM-NRG — which solves the problem and represents the most general extension
of the original thermodynamic calculations.

1.3 Flow equations

The flow equation method was originally introduced by Wegner (1994) as a new way
of diagonalizing quantum many—particle Hamiltonians. Simultaneously Glazek and
Wilson (1994) developed the closely related similarity renormalization group in the
context of high energy physics. In the following, we will outline the basic ideas of
Wegner’s approach.

While perturbative scaling aims at eliminating high energy degrees of freedom and
thus reducing the size of the Hilbert space, flow equations are designed to leave the
Hilbert space invariant and instead systematically reduce offdiagonal matrix elements
of the Hamiltonian. This can be achieved by Jacobi’s method, well known from
numerical mathematics (see Press, Teukolsky, Vetterling and Flannery (1995)): By
applying discrete unitary transformations (“Jacobi rotation matrices”)

H—-UHU (1.17)

offdiagonal matrix elements connecting two different basis states are set to zero. Flow
equations constitute, to some extent, a continuous version of this procedure. Here
the rotation matrix is taken to be

U=1+ndl (1.18)
where the generator 7 is antihermitean

0= (1.19)
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Figure 1.7: Left: Banded matrix resulting from flow equation diagonalization. Right:
Block diagonal matrix obtained by usual scaling where high energy degrees of freedom are
eliminated (upper left corner).

due to the unitarity condition. In addition, the flow parameter [ has been introduced;
a physical interpretation of this quantity will be given below. As a result, the basic
flow equation reads

O H (1) = [n(l), H(D)]. (1.20)

Whether the transformation (1.20) really leads to a simplification of the Hamil-
tonian depends on the choice of . Wegner proposed the following ansatz:

n = [Hy, H] (1.21)

where Hy denotes the diagonal part of the total Hamiltonian. For a general matrix
problem this obviously requires the choice of an appropriate set of basis states, which
is then considered “diagonal”. In the context of interacting fermions these are usually
taken to be the Bloch states of an electron in a periodic potential.

With the choice (1.21), the Hamiltonian flow is given by

OHyn = > (e + €n — 2€m) Him Hun (1.22)

m

and it can be shown that the sum of the squared diagonal elements ¢ is monotonously

increasing:
) (Z e§> =2 (e — ew)? Hyw Hyp. (1.23)

k kK

Due to conservation of the trace 9;TrH? = 0 this implies that the offdiagonal elements
Hy are reduced and only resonant matrix elements survive.

Regarding the interaction part of H as a perturbation, the leading term of the
flow is already obtained by replacing H — Hj in (1.20). As a consequence, matrix
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elements decay according to the difference in energy between the corresponding basis
states:

Higor (1) ~ e~ (x=ew)*L, (1.24)

Flow equations therefore obey the principle of energy scale separation: States differing
largely in energy are decoupled first, nearly resonant matrix elements later. The
resulting matrix at intermediate stages of the flow has a banded structure (see fig. 1.7).
Thus small energy denominators leading to divergences can be avoided, in contrast
to perturbative scaling. The flow parameter [ is a measure of the typical energy
difference AFE being decoupled
1

NGE
Choices for the generator differing from (1.21) are possible (as an example see Kehrein
and Mielke (1997)) and often motivated by the wish to keep the flow simple, that
is to suppress the generation of certain additional interaction terms. In the Kondo
model calculation (see chapter 6) we will employ a modification of this kind, too.

Apart from diagonalization of the Hamiltonian, flow equations also represent a
useful tool for deriving effective low energy Hamiltonians which can then be analyzed
by other methods. A well-known example for this approach is the Schrieffer—Wolff
transformation mapping the low energy sector of the single impurity Anderson model
onto an effective Kondo Hamiltonian. In the original calculation of Schrieffer and
Wolff (1966) the transformation was achieved by a single unitary transformation.
However, the appearance of small-energy denominators due to second—order pertur-
bation theory leads to a singular behaviour of the k—dependent Kondo couplings close
to the impurity energy. This drawback was removed by Kehrein and Mielke (1996) in
a modified Schrieffer—Wolff transformation based on a sequence of infinitesimal uni-
tary transformations. Due to energy scale separation no small-energy denominators
appear in the modified approach.

The strong—coupling expansion of MacDonald, Girvin and Yoshioka (1988) for the
Hubbard model has also been implemented via flow equations by Stein (1997). This
calculation is an example where the “diagonal” part of the Hamiltonian is different
from the kinetic energy: Here it is instead taken to be the local Coulomb repulsion
(the atomic limit Hamiltonian). In this case, however, it is not possible to introduce
the concept of normal ordering because the corresponding unperturbed ground state
is highly degenerate. As a consequence, the flow equation results for the effective t —.J
model are strictly perturbative and therefore in principle equivalent to other ways of
derivation like the degenerate perturbation theory of Takahashi (1977). Nevertheless,
flow equations may provide a more efficient way of formulating perturbation theory.
For a recent application to dimerized spin chains, see Knetter and Uhrig (2000).

In this thesis the focus will be on actual diagonalization of the Hamiltonian.
In particular, it will be pointed out to what extent flow equations have a non-—

l

(1.25)
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perturbative character. In a preliminary attempt, we apply the method directly
to fermionic Hamiltonians in second quantization (chapter 5.1). For a simple toy
model, the Luttinger model, this turns out to be quite successful, at least on the
Hamiltonian level. An analysis of the Wolff impurity model revealed, however, that
the necessary truncations of higher interaction terms (which are inevitably generated
by (1.20)) lead to an instability of the flow once the coupling becomes comparable to
the bandwidth.

These problems motivated a different approach, where the Hamiltonian is first
transformed by bosonization and then diagonalized by flow equations. It was origi-
nally developed for the Tomonaga—Luttinger model with backscattering by Kehrein
(1999). In chapter 6 we apply this version of the flow equation method to the
anisotropic Kondo model where the full crossover from weak to strong coupling can
be described analytically.
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Chapter 2

Narrow-band Anderson model

2.1 Introduction

As explained in the introduction, the model introduced by Anderson (1961) to de-
scribe magnetic impurities in a metallic band has usually been analyzed in the flat
band limit, where the conduction electron bandwidth represents the largest energy
scale. In this particular case an analytical solution for the thermodynamics of the
model has been obtained with the Bethe ansatz (Wiegmann 1981).

In this chapter we solve the Anderson impurity model numerically in the extreme
limit where the bandwidth is much smaller than the hybridization (narrow band
system) as shown in fig. 2.1. This situation is of interest for two different reasons:

1) Narrow hybridization functions may be generated due to interactions among
the conduction electrons. This is particularly relevant for the model introduced by
Wolff (1961), extended to the case of a correlated conduction band, which will be
studied in section 3.9.

2) Within the dynamical mean-field theory, based on the limit of a high coor-
dination number (Metzner and Vollhardt 1989a), correlated lattice models like the
Hubbard model can be described by a single Anderson impurity interacting with a
bath of conduction electrons whose properties are determined in a self—consistent
way (Georges, Kotliar, Krauth and Rozenberg 1996). The bath is characterized by
a hybridization strength of the order of the bandwidth and a non—constant density
of states. For this case no exact results exist and one has to rely either on analytical
approximations (which are, however, not available in the whole parameter space) or
on numerical methods. In the context of the Mott—-Hubbard transition in high di-
mensions, models with a narrow hybridization band are self-consistently generated
in the transition scenario of Moeller, Si, Kotliar, Rozenberg and Fisher (1995), which
has recently been supported by NRG calculations (Bulla 1999). By analyzing the
narrow-band limit (without the additional complications caused by the d — oo self-
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Figure 2.1: Narrow hybridization function.

consistency condition) we will establish two characteristic new features of Anderson
impurity models that to some extent will also hold for intermediate situations:

i) The impurity density of states ps(w) and the change in the density of states of
the total system due to the impurity Ap(w) show a very different behaviour since
the conduction electrons react to the presence of the impurity. This is in contrast
to the flat band case where one always finds pf(w) = Ap(w). It leads to an inter-
esting crossover in the thermodynamic impurity properties of the system when the
interaction is turned on. ii) The skeleton expansion, which plays an important role
in deriving properties of the interacting system, breaks down on intermediate energy
scales. This has important implications for the Mott—Hubbard transition in d = oo,
as will be explained below.

2.2 Density of states

The Hamiltonian of the symmetric model is given by
1 1
H = Zekcltacka + Z(Vk (ClT(O'fO' + hC) +U <f*]irf*]* - 5) <fjf¢ - 5) (21)
k,o k,o

with the conduction electrons ¢, and the impurity orbital f. In the following, we will
restrict ourselves to scalar k's, implying — if necessary — a reduction to s—waves in
the conduction band. The impurity density of states is defined by
1
pr(w) = ——ImGpp(w™) (2.2)

where G'¢f is the retarded zero temperature Green’s function of the impurity orbital.
On the other hand, the total change of the density of states due to the introduction
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of the impurity into the conduction band is given by

Ap(w) :——Im{ZGkk )+ Gypw }+ —Im ZG,QO,J (2.3)

where G refers to the Green’s function of the conduction electrons without the
impurity. Using the equations of motion for Gy and Gy, one finds

Ap(w) = —%Im {fo( ) (1 — (’)% Z w+vi Ek) } . (24)

Therefore the total change in the DOS can be expressed as a function of the impurity
Green’s function. We introduce the notation

S Aw) - iAW) (2.5)

wt —e
: k

where A(w) is the hybridization function and the real part is given by the principal

value integral A(w) =P [ fff ﬁ(eﬁ Now we can express Ap(w) in terms of the impurity
density of states and write
oA 0A de ps(e)
A = 1—— ) — — — . 2.6
)=o) (1-50) - o [0 (2.6)
We define the narrow band limit by the property
OA(w)
1 2.7
ow |,_, > (27)

which leads to a negative coefficient multiplying the first term in (2.6) at the Fermi
energy.

We will study one exemplary realization of a narrow band system with a constant
hybridization function A(w) = A and conduction band energies extending from —D
to D (we set e = 0 in the sequel). In this case

OA(w) _2A
ow 7D

(2.8)

w=0

and hence the narrow band limit is equivalent to A > D. However, the main con-
clusions in the following analysis hold for other realizations of narrow band systems
(2.7) as well, in particular even for systems without band edges at all.

We notice that for our model the second term of (2.6) vanishes inside the conduc-
tion band. Luttinger’s theorem (Luttinger 1961, Langreth 1966) for the symmetric
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Anderson model, which we will later verify numerically also for the narrow band case,
ensures the “pinning” of the impurity spectral function at the Fermi energy at its

noninteracting value
1
0) =—. 2.9
ps(0) = — (2.9)

Therefore the first term in (2.6) gives a negative contribution

Ap(0) = % (1 _ %) (2.10)

at the Fermi energy. In the following we discuss the relation of Ap(w) to thermody-
namic properties of the model.

2.3 Impurity susceptibility

In noninteracting fermionic models, the total density of states at the Fermi energy
determines thermodynamic properties like the static susceptibility x. Introducing
an impurity into the system induces a change in x proportional to Ap(0). For the
narrow—band Anderson systems analyzed here one therefore expects a negative im-
purity contribution to the susceptibility. This is obviously true for U = 0 where one
obtains the usual Pauli susceptibility in dimensionless units (up = h=g = 1)

CAp(0) 1 2A
Ximp =~ = 5% (1 - WD) : (2.11)

In order to determine whether this holds also for the interacting case, we have calcu-
lated x using the numerical renormalization group method with discretization param-
eter A = 2 following Krishna-murthy et al. (1980). As outlined in section 1.2, the con-
duction band of (2.1) is logarithmically discretized and the eigenstates of the Hamil-
tonian are then calculated by iterative diagonalization. In each iteration step NV, ther-
modynamic information can be obtained on a scale Ty = D(1 + A~Y)A~WN=1/2/(25)
where 3 is a dimensionless parameter of order one. Note that the prefactors arise
due to the rescaling convention for the Hamiltonian Hy (see equation (1.12)). Now
the impurity part of the susceptibility is written as

b Ty (Ty) — TSR X{=BIN) TS exp{—BHRY
B £ NAimp\+ N Trexp{—BHN} Tr exp{—BHR/} |

where HY denotes the conduction band without impurity and SR,QZ is the correspond-
ing total spin in z direction. At high temperatures, complete diagonalization of the
logarithmically discretized 5-site model yields essentially exact results (continuous
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Figure 2.2: Impurity susceptibility vs. logarithmic temperature at hybridization A = 10
and half bandwidth D = 1 for different interactions U.

lines), as no low-energy information is needed in that case. The results for fixed
hybridization A = 10 and half bandwidth D = 1 are shown in figure 2.2. At large
T, the almost free orbital leads to Ximp = é. Upon lowering the temperature, we
find a characteristic dependence on the value of the interaction. For U < 2A we see
a crossover to a negative Ximp, Which is due to the loss of spectral weight at low fre-
quencies as a consequence of hybridization. After a characteristic minimum at finite
temperature the susceptibility saturates at a negative value as T — 0. For U 2 2A,
we recover the usual positive ximp which is strongly enhanced at large U/A by the
Kondo effect defining a new exponentially small energy scale Tx. In spite of these
different types of behaviour depending on the interaction, the impurity contribution
to the density of states at the Fermi energy is negative (2.10) for any U. We therefore
conclude that only in the weakly interacting case Ap(er) yields the thermodynamic
properties of the model. In the strong coupling regime, the susceptibility enhance-
ment is determined by the many-body resonance in ps(w) which — similar to the wide
band case — has to be interpreted as a quasiparticle peak with a large effective mass.
The low—temperature behaviour of the system for strong correlations is governed by
many—particle excitations which are not contained in Ap(w) and, in fact, completely
dominate over the reduction in the single—particle DOS Ap(er) < 0.
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Figure 2.3: Spectral density of the narrow band Anderson model with the parameters
U =20, A=10and D = 1073. Apart from the atomic levels, spectral weight is only
found at frequencies w ~ D.

2.4 Spectral density and skeleton expansion

Next, we discuss the spectral density of narrow-band Anderson systems. The im-
purity orbital Green’s function at zero temperature is determined using the Lanczos
method as implemented by Krauth (see Georges et al. (1996)). We fix the values of
the interaction U and the hybridization A and then successively reduce the band-
width, thus taking the limit D — 0. For each set of parameters we calculate the
spectral function py, using an Anderson star with 11+ 1 sites. For not too large U/A
the spectral density is found to be only weakly dependent on the number of sites. In
the limit of small bandwidth at any finite value of the ratio U/A, we find a three—
peak structure (see fig. 2.3) consisting of the atomic levels at w = £U/2 containing
almost the full spectral weight and a central quasiparticle peak of width ~ D. Apart
from numerical broadening effects there is no spectral weight between the peaks.
This gives rise to resonances in the imaginary part of the self-energy, which can be
seen in the following way (Zhang, Rozenberg and Kotliar 1993, Kehrein 1998): As
a consequence of Dyson’s equation, for values of w inside the gap (where spectral
function and hybridization vanish) the self-energy L(w") = K(w) — iJ(w) is given
by
1

E(W+) =w—Aw) - m )

(2.13)
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where we have defined I'(w) = P [ de’;f—i). The imaginary part of the self-energy
therefore has the form

J(w) = 16 (T(w)) . (2.14)

For the spectral density found here I'(w) has zeros at energies € ~ £+/D and this
leads to 0—functions in J(w) inside the gap as shown above.

As argued previously by Kehrein (1998), these resonances are incompatible with
the skeleton expansion, i.e. the self-consistent perturbation theory in U. Within this
expansion, the full propagator Gss(w) is inserted into every diagram contributing to
J(w). As Gys(w) possesses spectral weight only on the small energy scale D < v/D,
there is no possibility to generate the resonances at +v/D. We therefore conclude
that in our model already for small but finite bandwidth D the skeleton expansion
breaks down at energies of the order v/ D (strictly speaking ~ V/AD, but note that
here we have chosen A = 1 dimensionless).

As a measure of the convergence of the expansion at lower energies we take the
Fermi liquid properties of the Anderson model, especially the “pinning” of the density
of states at its noninteracting value (2.9). This is equivalent to the vanishing of
the imaginary part of the self energy at the Fermi level. This property has been
proved for a general class of systems (Luttinger 1961) by using the skeleton expansion
to all orders. A proof for the (flat band) Anderson model within unrenormalized
perturbation theory was given by Yamada (1975). In order to verify the pinning we
focus on the central peak of py and compare different, not too strong interactions
at constant broadening. The pinning of ps(0) in the limit D — 0 is evident from
fig. 2.4. At even larger interactions (not shown here), a narrow Kondo resonance
develops inside the band, which cannot be resolved well on a small cluster. From
the above, however, we do not expect deviations from Luttinger’s theorem for any
interaction. As can also be seen in fig. 2.4, the “quasiparticle” resonance in ps(w) has
an internal structure itself (including bound states outside the band for small U/A).
In the limit D — 0 this can be described by a scaling function

ps(w) = flw/D), (2.15)

where f is independent of D. The d—peaks in fig. 2.4, dominant at small U, can
be understood by approximating the Hamiltonian as a “zero bandwidth” Anderson
model (see Hewson (1993)) where the impurity couples to one single orbital and the
hybridization is given by a d-function carrying the integrated weight [ de A(e). The
effect of the continuous hybridization band is to generate spectral density close to
w = 0 and to create sidebands also visible in fig. 2.4. For larger values of U the weight
of the bound states decreases (from the zero bandwidth model we expect a decrease
~ 1/U?) and within the numerical resolution they merge with the continuum at small
w.
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Figure 2.4: Central peak in the impurity density of states for different interactions U = (.2
and 4.0 (inset), hybridization A = 1.0 and bandwidth D = 10~%. We have used a Lorentzian
broadening of b = 1.5 x 1075 at the quasiparticle resonance and b = 5 x 10~8 for the poles
at higher frequencies. The atomic levels at +U/2 carrying most of the spectral weight are
not shown. At the Fermi edge, mps(0) = 1.00 & 0.02 for both values of U.

For other hybridization functions in the narrow band limit (2.7) the main conclu-
sions of the above analysis remain unaffected. A detailed numerical study is, however,
difficult due to the limited number of orbitals that can be taken into account by using
exact diagonalization. For example, in a “narrow” band with band tails extending to
+o00 but % ‘wZO > 1, the bound states for U = 0 become sharp resonances. Likewise

the imaginary part of the self-energy then contains sharp resonances at j:O(\/E)
instead of d—functions. Still the resonances contain the same spectral weight as these
d0—functions and the breakdown of the skeleton expansion occurs in the same manner
(Kehrein 1998).

2.5 Conclusion

In this chapter we have studied the Anderson impurity model in the narrow band
limit (2.7), using numerical methods. We have found two new features as compared
to the usual wide band limit:

i) One observes a crossover in the impurity contribution to the susceptibility: For
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small interactions the total susceptibility is reduced by the impurity, for large inter-
actions it is enhanced. In fact, the same behaviour is also found for the specific heat,
although this has not been discussed explicitly here. This crossover is in contrast
to the observation that the impurity contribution to the total density of states at
the Fermi level is always negative. This quantity does therefore not determine the
thermodynamic properties of the system at large interactions.

ii) Holding U and A fixed, the skeleton expansion breaks down for a sufficiently
small (but still finite) bandwidth D. The breakdown occurs at energies of order v/ D
and larger, while for smaller energies no problems can be found. This shows that
the breakdown of the skeleton expansion is a generic feature of narrow band Ander-
son impurity systems! . On the other hand, the skeleton expansion is an essential
tool for deriving the locality of the self-energy in the dynamical mean field theory
in the Fermi liquid phase (Metzner and Vollhardt 19894, Miiller-Hartmann 1989).
Its convergence provides a sufficient condition for the analytic continuation to the
noninteracting Hubbard model. Notice also that recently Keiter and Leuders (2000)
have discussed the relation between DMFT and finite-dimensional correlated sys-
tems in the context of the random—loop problem. At present, the question of the
correct description of the Mott—Hubbard transition in large dimensions is under de-
bate (Kehrein 1998, Logan and Nozieres 1998, Georges and Kotliar 2000): NRG
simulations by Bulla (1999) at 7" = 0 indicate a preformed gap in the density of
states and a corresponding coexistence between metallic and insulating solutions also
at finite temperature. This has been confirmed by recent quantum Monte Carlo sim-
ulations, in contrast to the previously published data of Schlipf, Jarrell, van Dongen,
Bliimer, Kehrein, Pruschke and Vollhardt (1999). On the other hand, the random
dispersion approximation introduced by Gebhard (1997) — an independent approach
to the d = oo limit — yields a second order transition at zero temperature without any
coexistence regime as shown by Noack and Gebhard (1999). This discrepancy still
needs to be solved. In any case, however, the analysis presented above shows that for
the preformed gap scenario (which naturally leads to an effective action governed by
a narrow band system in the sense of (2.7)) one has to address the question whether
such systems can be related to the original Hubbard model in large dimensions.

'Lange (1998) has discussed convergence properties of the skeleton expansion for the zero band-
width model. This model is characterized by two parameters U and V', where the limit V' ~ VD =0
corresponds to a two—site approximation of the narrow band system (2.1). It is shown that in this
limit self-consistent perturbation theory fails. In contrast, we would like to point out the frequency
dependent convergence properties of the skeleton expansion (at any U), as explained above. The
resulting distinction between the energy scales D and v/D is only possible in a model with a finite
bandwidth.
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Chapter 3

Magnetic impurity in a correlated

band

3.1 Introduction

In the preceding chapter we have analyzed a generalized version of the Anderson
impurity model with a nontrivial hybridization function. While the detailed structure
of the spectral density is strongly modified in this case, the impurity spin is still
screened at low energies and the system remains a local Fermi liquid.

One very important characteristic of real materials is the interaction among the
conduction electrons. This aspect is usually neglected, mostly for technical reasons.
If taken into account, it should at least yield a renormalization of the conduction
band Fermi liquid parameters which would then in turn affect the Kondo screening.
The present study will focus on the question whether, in addition, qualitatively new
physics is possible. An experimental realization frequently cited in this context is the
cuprate compound Nds_,Ce,CuO, studied by Brugger, Schreiner, Roth, Adelmann
and Czjzek (1993), a concentrated impurity system where the Nd local moments are
coupled to the strongly correlated C'u sites. At finite doping z > 0 heavy fermion
behaviour is observed; the measured coherence temperature is, however, incompat-
ible with the standard Kondo picture. A more detailed discussion will be given in
section 3.2. Experiments on dilute systems with strongly correlated conduction elec-
trons (which are more accurately described by a single impurity model) can also be
performed and will be discussed later.

Theoretical analysis of this problem has been fairly successful in one dimension.
Here, the interacting host can be represented as a Luttinger liquid characterized by
dimensionless Coulomb interaction strength parameters g. and g, for the charge and
spin sector, respectively. While the effect of a potential scatterer in these systems is
by now well understood due to Kane and Fisher (1992), the low temperature phase
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diagram of a magnetic impurity in a Luttinger liquid is more difficult to access. For
a Kondo impurity, Lee and Toner (1992) performed a perturbative RG analysis and
found a power—law dependence of the Kondo scale Tk on the exchange coupling J.
Furusaki and Nagaosa (1994) later extrapolated a similar scaling approach to the
strong coupling regime where they found a stable strong—coupling fixed point for both
antiferromagnetic and ferromagnetic exchange coupling. The low temperature critical
properties of the impurity were shown to exhibit power—law type, non—Fermi-liquid
(NFL) behaviour. On the other hand, an RG analysis by Schiller and Ingersent (1995)
and numerical studies by Wang (1998) indicated a local Fermi liquid ground state.
As shown by Frojdh and Johannesson (1995), both of these possibilities are consistent
with boundary conformal field theory, which allows a classification of possible fixed
points but does not determine which one is actually realized. In a recent quantum
Monte Carlo study by Egger and Komnik (1998) the NFL scenario is supported
and the importance of additional potential scattering pointed out. Less is known
about an Anderson impurity in a Luttinger liquid. Exact diagonalization studies
of small systems by Hallberg and Balseiro (1995) yielded Friedel oscillations with
interaction—-dependent exponents. Renormalization group calculations by Phillips
and Sandler (1996) and Schiller and Ingersent (1997) showed that the local moment
may be enhanced due to the bulk correlations.

For the experimental realizations mentioned at the beginning, higher-dimensional
representations of the conduction band are more relevant. Unlike the Luttinger case,
an exact treatment of the correlated band electrons is then not possible anymore.
Within a mean-field treatment, Tornow, Zevin and Zwicknagl (1996) took correla-
tions into account by introducing antiferromagnetic long-range order in the host.
Perturbative calculations in a slave boson representation by Khaliullin and Fulde
(1995) yielded an increase! of the effective Kondo coupling. Very similar results were
obtained by Schork (1996) in a 1/N expansion and by Tornow, Zevin and Zwicknagl
(1997) within the non—crossing approximation. The relation to the Kondo model was
analyzed by Schork and Fulde (1994), who generalized the Schrieffer-Wolff transfor-
mation to the case of interacting conduction electrons. Furthermore, in the limit
of high dimensions and using a variational treatment, Davidovich and Zevin (1998)
found a qualitative change of the behaviour of the Kondo temperature Tk . According
to these authors, above some intermediate value of the conduction band interaction,
Tk is no longer exponentially small for a vanishing exchange coupling. We will discuss
this issue in detail.

The studies listed above already indicate the competition of several effects:

e Correlations may change the density of states (DOS) of the conduction band.

LA different conclusion was reached by Itai and Fazekas (1996): Performing a Gutzwiller varia-
tional calculation for the periodic Anderson model, they found a decrease of the Kondo temperature
due to band correlations. This result has to be considered as an artefact of the approximation used.
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e A repulsive on-site interaction will suppress the hybridization of the impurity
level.

e The conduction electrons will become increasingly polarized, thus enhancing
the effective spin coupling of the impurity moment.

In order to determine which of the above is the main factor of influence, we choose
the dynamical mean-field theory (DMFT) approach in combination with Wilson’s
nonperturbative numerical renormalization group.

3.2 Experimental motivation

Magnetic ions in metals may lead to a novel Fermi liquid state at low tempera-
tures. This is for example the case in standard heavy fermion systems like C'eAls
or C'eRusSis, where the rare earth spins are screened by the interaction with the
conduction electrons.

Similar to these compounds, the doped cuprate
Ndy_,Ce,CuOy (see fig. 3.1) exhibits a large lin-
ear specific heat C ~ ~T and a strongly en-
hanced Pauli susceptibility y, below a coherence
temperature 7% ~ 2K. The corresponding Wil-
son ratio has the value R = m2k%x/(3ery) ~ 2
consistent with a single impurity picture where
the Nd ions are considered as independent
Kondo spins. In the undoped compound
NdyCuOy4 the ground state is antiferromagnet-
ically ordered. The specific heat displays a
Schottky anomaly below 10K, caused by an anti-
ferromagnetic coupling between the C'u sites and
their two next—nearest Nd neighbours (see Fulde,
Zevin and Zwicknagl (1993)):

2
Hu=7J) Y s S (3.1)
1

1 0=

The exchange coupling J is thus of the same or-

der of magnitude as the coherence temperature

itself. On the other hand, the standard Kondo Figure 3.1 Structure  of
picture would yield T* ~ D exp{—1/(N(0)J)} Nd2CuOq, sce Fulde (1995).
where the bandwidth D is of the order eV and

N(0) ~ 1/D is the density of states. The resulting estimate for 7% is too small by
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many orders of magnitude. This discrepancy has been interpreted by Fulde et al.
(1993) as an effect of the strong band correlations, which are expected to renormalize
the Kondo scale. Additional complications may arise due to superconductivity which
sets in below T, =~ 20K for a doping strength x = 0.15 as shown by Maiser, Mexner,
Schifer, Schreiner, Adelmann, Czjzek, Peng and Greene (1997). It should also be
mentioned that an alternative explanation of the measured heavy fermion behaviour,
based on a competition between the Nd — Nd and Nd — C'u interactions, has been
proposed by Henggeler, Chattopadhyay, Thalmeier, Vorderwisch and Furrer (1996).

3.3 Model and dynamical mean—field theory

In the following we will study a “minimal” theoretical model which consists of a
spin 1/2 Anderson impurity (with both spin and charge degree of freedom) embedded
into a correlated host. For the latter we employ the standard representation as a one—
band Hubbard lattice (Gutzwiller 1963, Hubbard 1963, Kanamori 1963)

Hp == Z (tij + 18ij) cly Cig + U an iy (3.2)

ijo

which is characterized by the competition between the hopping ¢ and the on-site
Coulomb energy Ug. We first give a brief survey of the phase diagram at half filling
n = 1 as obtained within DMFT and shown in fig. 3.2.

The ground state of a generic lattice is known to be antiferromagnetically (AFM)
ordered for a sufficiently large value of the interaction (see for example Duffy and
Moreo (1997), Hofstetter and Vollhardt (1998) and Schlipf (1998)). Increasing the
temperature eventually destroys the long-range order. Depending on the interaction
strength, the resulting paramagnetic phase has metallic or insulating properties. The
transition between these two regimes — the Mott metal-insulator transition — is of
great theoretical interest and still under intensive study. Note that, in general, this
transition also occurs in the antiferromagnetic phase, as indicated in the phase di-
agram (fig. 3.2). Within DMFT, most studies have so far been performed for the
paramagnetic region. One usually suppresses the AFM ordering by introducing frus-
tration (including for example next-nearest neighbour hopping as done by Schlipf
(1998)) or by simply ignoring symmetry breaking and constraining the calculation to
the paramagnet.

The following results have emerged, outlined in parts already in the last chapter:
At zero temperature the second order scenario of Georges et al. (1996) has finally been
confirmed by Bulla (1999). Note that because of the “preformed” gap in the spectral
density the validity of the DMFT equations is nontrivial, as discussed previously. For
small but finite temperatures, exact diagonalization (Laloux, Georges and Krauth
(1994)) and NRG indicate that the transition becomes first order due to coexistence
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Figure 3.2: Phase diagram of the Hubbard model at half filling (see Georges et al. 1996).

of two different phases within dynamical mean—field theory. How far this coexistence
region extends to higher temperatures and where the crossover region of fig. 3.2 starts
is still subject of study (Schlipf et al. 1999, Bulla, Costi and Vollhardt 2000). Finally,
it should be mentioned that calculations by Noack and Gebhard (1999) within an
alternative approach to the d = oo limit — the random dispersion approximation of
Gebhard (1997) — yielded a zero temperature transition scenario that is not consistent
with DMFT. The accuracy of these calculations may however be limited due to
finite—size effects. In the following we will be mainly interested in the paramagnetic
metallic phase where Kondo physics is expected. The additional impurity is assumed
to hybridize with one single lattice site ¢ = 0, with an amplitude V. In addition, it
is correlated, i.e. double occupancy of the impurity gives rise to an on—site energy U.
The total Hamiltonian including the impurity has the form

H:HB—FVZ(_}CJCOU—F}L.C.) —I—Unan”nLefnf (33)

where at the moment we restrict ourselves to the particle-hole symmetric case for
both the impurity (¢, = —U/2) and the host lattice (¢ = Ug/2). The latter is
assumed to be bipartite. A graphical representation of this system is given on the
left hand side of fig. 3.3.

About a decade ago, Metzner and Vollhardt (1989a) discovered that a controlled
approach to the problem of correlated lattice fermions is possible in the limit of a
high coordination number z or, equivalently, large space dimension d (for a review
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Figure 3.3: Left: Anderson impurity (square) coupled to one site of a correlated lattice
(circles). The hybridization is taken to be purely local. Right: effective two—impurity model
with noninteracting band orbitals (empty circles) of energy ¢; and hybridization V;.

see Vollhardt (1993)). In order to keep the kinetic energy of the model finite, the
hopping matrix elements are scaled as

£

NE
where we have assumed next-neighbour hopping with a constant amplitude £. In our
treatment we will use the Bethe lattice and take the noninteracting halt-bandwidth
D = 2t* = 1 as the unit of energy. Let us emphasize, however, that the choice
of the lattice is merely motivated by calculational convenience and should have no
qualitative effect on the results.

The z — oo limit leads to a local self-energy of the Hubbard model, thus permit-
ting a mapping of the lattice model onto an effective single impurity problem. One
way of deriving this equivalence is the cavity method, which we outline briefly, follow-
ing Georges et al. (1996). Starting from the full partition function of the Hubbard
model written in the path integral representation

/HDcT De, e~ (3.5)

t=

(3.4)

with the action

S = /B dr (Z T a Cig — Ztlj Cio ]0’ IJ’ZCZU Cio + UB ZTLZT nli) (36)
0

o 13,0
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we choose one Hubbard site (to be labelled by the index ¢ = 0) and derive an effective
action for the local dynamics on this site by integrating out all the remaining fermionic
degrees of freedom:

1 g 1
— e eff [C51Co) = —/ DCJr Dec, 6_5 3.7
Zeff Z i;lé_OIU w w ( )

For infinite coordination number, the retarded part of the effective action is quadratic

Seff ret = — // dr dr’ C(T)U Gyt (m — 7 con (). (3.8)
The Weiss function Gy is then be determined by the DMF'T self—consistency condition

GO (w) = Z Glattice(k7 w) (39)

equating the effective impurity Green’s function to the local lattice G. Both G and G
are taken to be independent of the spin as we are interested in the paramagnetic phase.
Recently it was pointed out by Davidovich and Zevin (1998) that the above line of
reasoning is still valid if an additional fermionic impurity fT is coupled to the local
Hubbard site. In particular, the retarded part of the effective action SQH[C(T), cos JT, f]
will be unchanged and G, is the same as in the Hubbard case. As a result, the system

can be described as an effective two-impurity model (shown on the right-hand side
of fig. 3.3)

Hyg = Z €p a},a Upy + Z Vp (a;a Coy T+ h.c.) — It cga Cos + Up Mot Ny
po

po

—l—eff;fUnLUnan“—l—VZ (f;cog—kh.c.) (310)

with an effective noninteracting bath defined by a hybridization function

Adw) =7 3 VP 6w — &) (3.11)

that is completely determined by the DMFT calculation without the impurity. In our
analysis we will therefore follow a two—step procedure: First, we solve the Hubbard
model in the in the limit d — oo for the paramagnetic phase. With the resulting
Gop as an input, we then analyze the two—impurity model. A simplified treatment
without the DMFT step has recently been applied by Takayama and Sakai (1998).
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Figure 3.4: Semi-infinite chain representation of the effective two—impurity model.

3.4 NRG calculations

For the solution of the DMFT equations and the subsequent analysis of the two—
impurity model (3.10) we use Wilson’s numerical renormalization group described in
section 1.2. After introducing a logarithmic discretization of the conduction band, the
system is mapped on a semi-infinite chain (fig. 3.4) by using the Lanczos procedure
outlined in appendix A. The resulting Hamiltonian then reads

Hepain = €1 f3 fo + Unprng +V (f; Cos + h.c.) - ,UJCI)U oo + Up Mot oy,
+ Z €n (cznﬂ)a Cpo T h.c.) : (3.12)
n=0

Here the ¢, should not be identified with the original Hubbard fermions — this is
only valid for ¢y which corresponds to the local Hubbard site next to the impurity.
The detailed shape of the hybridization function is now contained in the hopping
amplitudes €, according to a continued fraction representation of the spectral density.
In our calculation, we choose the discretization parameter to be A = 2.

In this form, the system can be treated by iterative diagonalization, keeping in
each step only a limited number of excited states and matrix elements. We focus on
the dynamics at zero temperature, in particular on the one—particle spectral densities
ps(w) and p.(w), as well as the local susceptibility x(w). At iteration n, the spectra
are calculated close to the corresponding frequencies w, ~ £A~/2. As discussed in
the preceding chapter, the DMFT equations for the Hubbard model have to be solved
first. For the Bethe lattice, the self-consistency condition (3.9) simplifies to

Ac(w) =7 (") pe(w)

In the paramagnetic phase this leads to the Mott transition scenario described by
Bulla (1999). The corresponding spectral densities as a function of the band interac-
tion Up are displayed in fig. 3.5.

In our units, the metal-insulator transition takes place at a Hubbard interaction
strength Up = 2.92. Correlations strongly influence the structure of the DOS and,

o (3.13)
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Figure 3.5: Local density of states of the Hubbard model.

close to the transition point, an effective narrow band is formed by the quasiparticle
resonance. We define an effective bandwidth Deg as the energy where p.(w) has fallen
to 4/5 of its w = 0 value (see fig. 3.6, note that this definition is arbitrary).

In the next step, the f-impurity is added (see fig. 3.4) with an on-site interaction
Us and a hybridization matrix element V' to the local Hubbard site. The combined
system is then again treated using NRG, this time without the self—consistency loop.
The band correlations enter via the previously determined DOS (fig. 3.5) and the
c—site interaction Ug. In the present calculations we have confined ourselves to the
metallic regime Up < 2.92.

3.5 Single—particle spectral functions

Photoemission spectroscopy (PES or BIS) has provided the first direct verification
of the “virtual bound state” concept, see for example Myers, Walldén and Karlsson
(1968) and Drew and Doezema (1972). Measurements on dilute systems are usually
difficult because of the weak signal. It was found, however, that single impurity prop-
erties persist even to fairly high concentrations (in thermodynamics and transport
this was veryfied by Lin, Wallash, Crow, Mihalisin and Schlottmann (1987)). Single
particle spectra may therefore be used to detect band correlation effects experimen-
tally.
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Figure 3.6: Effective bandwidth of the Hubbard model.

We consider the T' = 0 spectral functions of the impurity and the local Hubbard site:

1 re
Prey(w) = —;Ime(tc)(w)- (3.14)

In the Lehmann representation (see Negele and Orland (1987)) one obtains

ZI [0 6(w — (En — Ep))
Z n | f] 0)?d(w = (Eo — Ey)) (3.15)

and a similar identity for p.. Here |0) is the ground state and | n) denotes the
excitations. Within the NRG procedure, the matrix elements of f and c are calculated
recursively and the resulting spectral peaks are broadened by a logarithmic Gaussian
(see appendix C).

First we show results for ps close to the Mott transition in fig. 3.7. Already for
U =0 and a “bare” hybridization

V2
A= Z—D (3.16)

significantly smaller than the noninteracting bandwidth, we obtain a three—peak
structure in the spectrum. We attribute this to an effective bandwidth D.g =~ 0.03
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Figure 3.7: Spectral density of the impurity at zero temperature, A = 0.1 and Up = 2.6.

Figure 3.8: Broadening of the quasiparticle resonance due to band interactions. Impurity
parameters are chosen as A = 0.05 and U = 1.0.
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Figure 3.9: Spectral density of the local Hubbard site for the same parameters as in fig. 3.7.
The Hubbard DOS calculated without the f—impurity is also shown for comparison.
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Figure 3.10: Flow of two selected levels in the Q = 1, S = 0 sector at odd iteration
number N for different band interactions U = 0,1,2,2.5 (from right to left). The impurity
parameters are chosen as A = 0.05 and U = 1. The lower level is normalized to unity in
order to account for the change in the total bandwidth.
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that is smaller than the hybridization, thus leading to resonances as demonstrated
by Hofstetter and Kehrein (1999). Upon increasing U, these peaks are reduced and
weight is shifted to the atomic levels which for large interaction can be found at
w & +U/2. In addition, the height of the quasiparticle peak is significantly reduced.
Luttinger’s theorem (Luttinger 1961, Langreth 1966) which states that p¢(0) is pinned
at its U = 0 value is therefore not valid in the case of an interacting conduction band.

Furthermore, we notice that the width of the quasiparticle resonance is almost
independent of U, in contrast to the situation at Ug = 0. This already indicates a
strong enhancement of the Kondo scale due to band correlations, which can be seen
more clearly in fig. 3.8.

The corresponding results for p. are shown in fig. 3.9. For an impurity interaction
strength U = 1.0, three different energy scales are visible: The Kondo temperature
Tk is equivalent to the width of the hybridization gap, U and Up define a resonance
and a “shoulder” of the spectrum, respectively. Regarding the detailed structure at
higher energies, however, one should keep in mind that in this region the resolution
is limited due to the broadening procedure. The hybridization gap is formed at any
finite A. This is already the case at U = Up = 0 (not shown here) and persists for
finite interactions, indicating that the system is a Fermi liquid (a nonvanishing self-
energy at w = 0 would smear out the gap). The Fermi liquid picture is independently
supported by the fact that the fixed point of the NRG and its leading irrelevant
eigenoperators are unchanged compared to the noninteracting case. This can be
explicitly checked by plotting a set of NRG levels versus the iteration number N
(see fig. 3.10): The behaviour at small N depends on the band interaction, but the
N — oo fixed point and the asymptotic approach are universal.

3.6 Dynamical susceptibility
A quantity which is more easily accessible experimentally than the single particle

spectrum is the (longitudinal) dynamical susceptibility, defined as the response of
the impurity spin to a local magnetic field in the z—direction

z/dte“t [S3(t), S7(0)]). (3.17)

It is related to the scattering function of neutron diffraction

S(q,w) ~ F*(q) Imy(w) (3.18)

where F(q) is the form factor of the impurity. Several classical Kondo systems
have been investigated in this way like Mn in Cu (Murani and Tholence 1977) and
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Figure 3.11: Dynamical impurity susceptibility for U = 1.0 and Up = 2.8.

Fein Au (Scheuer, Loewenhaupt and Schmatz 1977). The local dynamical suscepti-
bility is also directly obtained in electron spin resonance (ESR) measurements where
it determines the microwave absorption (see for example Krug von Nidda (1997)).
In this case a static magnetic field in the transverse direction is applied. In order
to compare experiment and theory in detail one would have to perform susceptibil-
ity calculations in the absence of rotational symmetry, which we defer to a future
publication. Let us note, however, that the magnitude of the applied field is usually
small compared to the Kondo temperature of the ESR probe and can be neglected in
a first approximation. We will therefore focus on the zero field susceptibility in the
following.

Introducing a complete set of eigenstates, the Lehmann representation reads

5n0_5m0
’ ’ 3.19
Z' o n)f W — By + By + 607 (3:19)

Within the NRG formalism it is convenient to calculate the imaginary part x"(w)
directly from the reduced matrix elements of the impurity spin operator. Details of
the iterative procedure are given in appendix C. The real part is then obtained by a
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Figure 3.12: Normalized spin relaxation function for different strengths of the conduction
band correlations. Here the impurity is taken to be noninteracting, with a hybridization

A =0.01.

2 (@)/(o 77 (0)%)

Figure 3.13: Normalized spin relaxation function for a noninteracting conduction band
(Up = 0, U = 0) with different hybridization strengths. For large A 2 D, inelastic

resonances arise.
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Figure 3.14: Normalized spin relaxation function for different impurity interactions. Here

we have set A = 0.01 and Ug = 2.9.

Figure 3.15: Real part of the dynamical susceptibility at A = 0.1 and U = 1.0.
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Kramers—Kronig transformation

oo

’p/ A’ X (3.20)

T W —Ww

In particular, the static susceptibility is given by xo = x'(0).

Some examples for x”(w) are given in fig. 3.11: A broad peak defines the energy
where the ground state singlet is formed; at lower frequencies the spectral weight
decreases linearly. In the following we focus on the spin relaxation function

7
S(w) = X&) (3.21)
W
In a first step, we consider its behaviour with increasing band correlations for fixed
A and U as shown in fig. 3.12. In this plot we have employed a normalization of x"”
suggested by the Shiba relation

: X”(w) / 2

UIEH) = 2 (w) (3.22)
derived for Up = 0 by Shiba (1975). For the noninteracting band this relation is in-
deed satisfied, with an error of about 10% due to the NRG procedure. With increasing
Up systematic deviations arise, indicating that the general proof of Yoshimori and Za-
wadowski (1982) based on Ward identities breaks down for an interacting conduction
band. The lineshape of x”(w) also depends on Ug. For a weakly correlated band, we
obtain a single elastic peak with a width approximately corresponding to the Kondo
temperature. Close to the metal-insulator transition at Ug = 2.92, two inelastic side
peaks arise. They indicate that the Kondo singlet is formed at an energy scale which
lies outside the effective band.

In order to demonstrate this more clearly, we compare our results with those for a
noninteracting but narrow band (fig. 3.13). Clearly, for a weak hybridization smaller
than the bandwidth, the Shiba relation is valid and we obtain the standard lineshape.
With increasing A, the singlet binding energy again exceeds the bandwidth, as ex-
pected. The results in fig. 3.12 are therefore at least partially due to an effective
narrow band (note however that at small Ug, changes in the DOS can be neglected
and the main effect is given by the interaction on the local Hubbard site).

In this context it is interesting to note that inelastic peaks have indeed been found
for the compound CeSns_,In, via neutron scattering by Murani (1987). Remark-
ably, the corresponding peak position scales as wpeak ~ X(0)™! ~ T which is also the
case for the side peaks in fig. 3.12. These inelastic lineshapes have been qualitatively
explained by Bickers, Cox and Wilkins (1987) within the large degeneracy expan-
sion. Still, the issue is not completely settled. The inelastic resonances are found to
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Figure 3.16: Static susceptibility as a function of the conduction band interaction strength

(U =1.0).

disappear at higher temperatures, therefore a x” calculation at finite 7" would be of
particular interest.

So far the impurity interaction has been considered as a fixed parameter. In
fig. 3.14 we now increase U at a fixed band correlation strength close to the Mott
transition. As can be clearly seen, this leads to a suppression of the elastic peak and
a shift of the inelastic ones (corresponding to a slight reduction of the singlet binding
energy). The U-independent width of the elastic peak is defined by the effective
bandwidth, which in this case represents the smallest energy scale.

For the real part x'(w), some typical results are shown in fig. 3.15: Already at
a weak band interaction Up (when the Hubbard DOS is well approximated by the
noninteracting one) the static susceptibility xo is strongly reduced. In a separate
diagram (fig. 3.16) we display the dependence of xy on the band interaction for
different impurity parameters. Close to the Mott transition, the narrowing of the
effective band may lead to a slight increase of xg.

3.7 Kondo scale

Of particular interest is the hybridization dependence of the low—-energy scale — the
Kondo temperature T — at intermediate to strong band interaction. While there
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is agreement on the fact that a small Up enhances the effective Kondo coupling but
still leads to an exponentially vanishing Tk at small hybridization A, it was found by
Davidovich and Zevin (1998) that above an intermediate Up the Kondo temperature
varies linearly in A. We will now consider this issue in detail.

We define Tk to be equal to the binding energy of the local singlet, which is given
by the position of the maximum in x”(w). Only in the universal regime (flat band,
Tx < D) this definition is equivalent to others based on x; ' or the flow of the energy
levels in the NRG iterations. The dependence of Tk on the hybridization is shown in
fig. 3.17. With increasing A we observe a crossover from an exponential to a linear
behavior Tx ~ A. The crossover point depends on Ug and is proportional to the
effective bandwidth D.g. For very small A, the Kondo temperature always varies as
InTx ~ —U/A (see fig. 3.18).

This is in agreement with the perturbative study of Khaliullin and Fulde (1995),
where a renormalization of the effective exchange coupling was found

J=J0+~Ug)) (3.23)

with v depending linearly on the band interaction Ug. Here the low—energy sector of
the Anderson model has been projected onto an effective Kondo Hamiltonian with
dimensionless coupling pJ = 8A¢/wU by using the transformation of Schrieffer and
Wolff (1966). The relative change in the Kondo temperature can then be written as

T _ o {ﬂ L} (3.24)

where Ay is the effective f-site hybridization. In our calculations we obtain a renor-
malization factor v ~ Upg with a coefficient that is independent of the impurity
parameters.

In contrast to Davidovich and Zevin (1998) we therefore find an exponentially
small Tk at any Up, as long as the host is metallic. The discrepancy may be due
to the approximate variational method used by these authors. It should also be
emphasized that their calculations were done at U = oo, although no qualitative
differences are expected in comparison with the symmetric model (Zevin 2000).

At a finite band interaction, Ug may lead to a non-monotonic behavior of Tk;
see fig. 3.19. The increase at small Up can be attributed to the local interaction on
the site ¢ = 0 while the decrease close to the MIT is due to band narrowing.

As Ug — Uy, the Kondo scale approaches a finite limiting value, indicating that
even in the paramagnetic insulator the local impurity is screened. We can understand
this by considering the effective hybridization “seen” by the f-impurity

V2
Ay = :
I w+iot — A (wt)

(3.25)
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Figure 3.17: Kondo temperature as a function of hybrization for the impurity interaction
strength U = 1.0. Note the crossover between a linear and an exponential dependence
Tk (A) at a hybridization A & Deg-.
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Figure 3.18: Kondo temperature in the limit of small hybridization (interaction strength
U = 0.1). The asymptotic linear behaviour is equivalent to an exponentially small Kondo
scale. For Ug = 2.8, the subleading contribution ~ A? is still visible.
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Figure 3.19: Kondo temperature as a function of the band interaction. The impurity
correlation strength is taken as U = 1.0.
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Figure 3.20: Effect of the chemical potential on the Hubbard DOS at Up = 2.6
(Bulla 2000). The corresponding filling degrees are n = 1.0, 0.93, 0.81, 0.57.
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In the insulating host we have A, = 0 and therefore

Ap(w) ~ V?(w). (3.26)

In this case, the impurity couples exclusively to the ¢ = 0 site, the singlet is purely
local and no Kondo many—particle physics is possible.

3.8 Asymmetric impurity and band

So far only the (most important) case of half-filling for both the impurity and the
band has been considered. There the Mott transition and the associated vanishing
energy scale at a finite interaction strength make a description in terms of the extreme
narrow—band limit possible. The metal-insulator transition does not occur if the band
is doped away from halffilling, and we expect the difference 1 — nganq to provide a
cutoff in the effective bandwidth relevant for impurity properties (see fig. 3.20). An
asymmetric impurity, on the other hand, will introduce mixed valence behaviour and
mainly increase the Kondo scale. In the present section, both parameters will be
varied and their impact on spectral properties will be discussed separately.

We begin by increasing the impurity energy from its value at particle-hole sym-
metry ey = —U/2, retaining the symmetry of the strongly correlated band. The
impurity spectral function is shown in fig. 3.21: As expected, the lower atomic level
is shifted to higher frequencies and gaining weight while the upper one is flattened
out. But in contrast to the well-known results for a noninteracting band, a resonance
survives at the Fermi edge even up to the empty orbital regime where €; > A. This
may be explained by the well-formed quasiparticle resonance in the Hubbard DOS
(see fig. 3.5) at strong correlation. In the spectrum of the local band site ¢y presented
in fig. 3.22, the dominant € level is also visible. Furthermore, the pseudogap at the
Fermi level is filled. This already occurs in the noninteracting case (not shown) and
is thus unrelated to Fermi liquid properties of the model.

Next, we consider a variation of the chemical potential in the band, leading to
a filling n # 1 and an asymmetric Hubbard DOS, shown in fig. 3.20. The impurity
DOS p; (fig. 3.23) displays a marked increase in the spectral weight at the Fermi
level and at the same time a narrowing of the quasiparticle peak corresponding to a
decrease in the Kondo temperature. This is surprising, because the growing effective
bandwidth of the Hubbard model would suggest the opposite trend. The reduced
low energy scale is also cleary seen in the p. spectrum where the hybridization gap
narrows considerably (in fact there is no true gap any more, i.e. p.(0) is nonvanishing
for an asymmetric band).

These results indicate that for a fixed value of Up, band correlations are strongest
at half-filling. Doping the system to n < 1 dilutes the conduction electrons which



3.8. Asymmetric impurity and band 49

10 -

Figure 3.21: Variation of the impurity energy e; = —0.5 (bottom)...0.3 (top) for A = 0.1,
U = 1.0 and band correlation Ug = 2.6. In all cases a resonance remains visible at the
Fermi energy.
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Figure 3.22: Local host site spectral density for the same parameters as in fig. 3.21 and
impurity energies ey = —0.5 (bottom), —0.3, —0.1,0.1 (top). Note that the hybridization
gap at the Fermi edge disappears with increasing asymmetry.
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Figure 3.23: Impurity spectral function for an asymmetric band. Parameters are chosen
as A=0.1,U=1.0, ¢ = —0.5 and Ug = 2.6.
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Figure 3.24: Single particle spectrum of the local Hubbard site in an asymmetric band
for the same parameters as in fig. 3.23.
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Figure 3.25: Wolff impurity in a correlated band.

then effectively behave more like free fermions. As a consequence, the strongest
renormalization of the f spectral density occurs at m = 1, which can be seen most
clearly by looking at the height of the quasiparticle peak.

3.9 Wolff model

So far our discussion of the interplay between band correlations and impurity physics
has been in terms of the Anderson model. In this section we present some results for
an alternative realization of a single magnetic impurity, the Wolff model (Wolff 1961).
Here the impurity replaces one site of the correlated lattice, as shown in fig. 3.25.
The hybridization is given by the hopping £ and cannot be tuned independently any
more. QMC studies of this model in one dimension have been performed by Yunoki,
Mizuno and Maekawa (1996). We are again interested in the opposite limit of large
coordination number. Tracing out the band degrees of freedom, one obtains the same
quadratic effective action (3.8) as for the Anderson impurity, with a Weiss function
Go again determined by the Hubbard host. The effective Hamiltonian, however, is
now just a single impurity Anderson model

Heg = epal,a,,+ > Vi, (af, f, +hec) +epflf, +Unygyngy. (3.27)
po

po

where ¢y has been replaced by f. In fact, after solving the effective DMFT impurity
problem for the Hubbard host with interaction Ug, one simply has to “detune” the
Coulomb interaction to the new value U and adjust the impurity level €; accordingly.
A second NRG calculation then directly yields the impurity spectrum.

Here we focus on the symmetric model (e; = —U/2) for which results are shown in
fig. 3.26. A strongly correlated band with Up = 2.6 close to the Mott transition has
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Figure 3.26: Single particle spectrum of the symmetric Wolff impurity in a strongly cor-
related band with interaction Ug = 2.6.

been assumed, where the density of states is similar to the largest interaction value
shown in fig. 3.5. Remarkably, for a weak impurity interaction the quasiparticle
resonance is split and one obtains side peaks at finite frequency. Only for interaction
strenghts U > Up a single Kondo peak is found, with an exponentially small Kondo
scale in the limit U — oo.

These findings can be explained by noting that here we have a realization of the
narrow band Anderson model analyzed in the previous chapter. Indeed, the side peaks
found here are similar to those in fig. 2.4, merging with the remaining quasiparticle
peak for increasing U. In the present case, the transition to a single resonance takes
place at U = Up where — by definition — one is just looking at the Hubbard model.

In contrast to the Anderson model studied previously, no enhancement of the
Kondo temperature is found upon increase of the band correlations. This qualitatively
different behaviour is due to the specific form of the f-level hybridization function:
For the Anderson impurity, it is given by (3.25), while in the Wolff case it is simply
equal to A.(w). Close to the Mott transition, both functions become increasingly
narrow. But while in the first case the total hybridization weight is constant, it
approaches zero in the second. In particular, the Wolff impurity is not screened in
the paramagnetic insulator.
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3.10 Conclusion and experimental outlook

In this chapter we have analyzed models describing a magnetic impurity in a corre-
lated band. The limit of infinite dimensions has made a treatment by NRG within the
dynamical mean—field theory possible. For the Anderson Hamiltonian, we have solved
the corresponding effective two—impurity model and have obtained the one—particle
spectra as well as the dynamical susceptibility. We have found that the system is
always a local Fermi liquid as long as the host is metallic. Band correlations lead
to a strongly enhanced Kondo scale, indicating that the dominant effect of Ug is to
increase the spin polarization of the conduction electrons. Nevertheless, Tk remains
exponentially small as a function of the hybridization. This is consistent with a
Fermi liquid picture of the Hubbard host where the Kondo screening of the impurity
is due to fermionic quasiparticles instead of bare electrons. In spectral quantities, a
change of the lineshape and the formation of side peaks is observed close to the Mott
transition. This is explained by a narrowing of the effective conduction band.

Different behaviour has been found for the Wolff model with correlated conduction
electrons. Within DMFT, this system can be reduced to an effective narrow band
Anderson model with the characteristic side peaks in the spectral density. Here we
observe that the Kondo scale is always reduced by the band interaction, in contrast
to studies on the one-dimensional case by Yunoki et al. (1996). For the Wolff model,
the d — oo limit — which assumes a high coordination number also for the impurity
— may therefore be less realistic than for the Anderson model.

At the beginning of this section the cuprate compound Ndy_,Ce,CuO4 — a con-
centrated impurity system — has been discussed as a possible experimental realization.
Within the model analyzed here, the strong enhancement of the Kondo scale can be
explained. A more realistic description of this material would, however, be given
by the periodic Anderson model with correlated conduction electrons (Schork and
Blawid 1997), which will be the subject of future studies.

Of course it would be desirable to compare our results with experiments on sys-
tems that can actually be considered as dilute. One promising line of research in this
direction is provided by electron spin resonance (ESR). In this method, rare earth
ions like Gd** or Eu?" are introduced into the host metal as local probes which relax
via an exchange interaction with the conduction electrons. The relevant Hamiltonian
is given by (Krug von Nidda 1997)

Hprobe =h Sgrobe + J Sprobe Scond- (328)

In normal metals, the relaxation rate has a linear temperature dependence
77! ~ N?(ep) T; in this way the conduction electron density of states can be mea-
sured. It is known, however, that due to the exchange J, the ESR ion itself can be
subject to the Kondo effect. This leads to logarithmic corrections both in the shift
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of the g-factor and in the relaxation (Baberschke and Tsang 1980)
Ag ~ In(Tx/T)] ™" (3.29)

YT ~ [In(Tx/T)] 2 (3.30)

and the Kondo temperature Tk can thus be determined from two independent quanti-
ties. For a conventional metal (Y'bimpurities in Au) this has been done by Baberschke
and Tsang (1980). It would be interesting to perform similar measurements — again
with the ESR ion Yb?* - on a strongly interacting host like CePds. The conduction
electron correlations could then be tuned by doping with Ag, which is also suggested
by our theoretical results on the interplay between band filling and Kondo physics
(see section 3.8).

Another class of systems where bulk correlations lead to nontrivial impurity ef-
fects is given by cuprates (Y BayCuzOg) doped with nonmagnetic defects (Zn?"). As
demonstrated by the NMR, measurements of Bobroff, MacFarlane, Alloul, Mendels,
Blanchard, Collin and Marucco (1999) and Julien, Fehér, Horvatié¢, Berthier,
Bakharev, Ségransan, Collin and Marucco (2000), the spinless Zn induces magnetic
moments on its four neighbouring C'u sites. At low temperatures, these moments
display a Curie-Weiss type susceptibility strongly reminiscent of the Kondo effect.
Theoretical modelling of this system would probably require an extension of DMFT
to include short range magnetic correlations.

Finally, an important new realization of single impurity effects is provided by
scanning tunneling microscopy (STM). In this technique, the local surface density of
states (LDOS) is probed by measuring the differential conductance dI/dV through
the microscope tip (Hasegawa and Avouris 1993). Recent STM studies performed
by Li, Schneider, Berndt and Delley (1998) on magnetic C'e atoms immersed in
an Ag(111) electronic surface state have clearly shown a suppression of the LDOS
characteristic for the Kondo effect. Substituting a correlated host, for example a
cuprate compound, in the place of Ag might then be another way to realize the
effects discussed in this chapter.
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Chapter 4

Generalized NRG for dynamical
properties

4.1 Introduction

In this chapter we present a new approach for calculating dynamics within the numer-
ical renormalization group. Originally Wilson (1975) devised the method in order to
obtain thermodynamic information at low energy scales. This was achieved by itera-
tive diagonalization of the logarithmically discretized impurity model. Each iteration
step was shown to correspond to a certain temperature where thermodynamic aver-
ages could be obtained with high precision. Later, the method was extended to zero
temperature dynamical properties by several groups (Frota and Oliveira 1986, Sakai
et al. 1989, Costi et al. 1994) and applied to a variety of problems including recent
DMFT calculations by Bulla, Hewson and Pruschke (1998). In particular, we ap-
plied this technique to the magnetic impurity in a correlated band as discussed in
the previous chapter (Hofstetter, Bulla and Vollhardt 2000).

In all these calculations the additional assumption had to be made that transitions
from the ground state to higher excitations are already correctly described in the first
iterations. It was realized only recently (Hofstetter 2000) that this way of proceeding
is not rigorous and explicitly fails for the Anderson impurity model in an external
magnetic field. To remedy the defect, we introduce a new approach based on the
concept of the reduced density matriz. This procedure — henceforth referred to as
DM-NRG — makes use of the full information contained in iterative diagonalization
and represents the true extension of Wilson’s original work to dynamical quantities.

Before discussing the new method in detail, we present some technical modi-
fications in iterative diagonalization which are necessary to treat models without
rotational invariance. In particular, we demonstrate that even without using reduced
matrix elements, one can still obtain spectral information with excellent accuracy.
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Note that in this chapter the density matrix p is introduced. In order to avoid
confusion, we therefore write the spectral density as A(w).

4.2 NRG at broken rotational symmetry

So far the numerical renormalization group has mostly been used to diagonalize
impurity Hamiltonians with global spin rotation invariance where the total spin S?
of impurity and conduction band is a good quantum number. In this situation one can
introduce reduced matrix elements and formulate the recursive procedure completely
without referring to S,, thus eliminating the corresponding degeneracy. The main
advantage of this approach is the reduced size of the matrices to be diagonalized,
which was an important aspect at the time when Wilson developed the method.
With the amount of computer power available today, it is possible to dispense with
this restriction and consider more general problems with a reduced symmetry.

One important application of such a generalized procedure is the treatment of
phases with long-range magnetic order in the Hubbard model within DMFT (see
Georges et al. (1996)). In this case one obtains a spin—-dependent hybridization
function A, (w) which needs to be determined self-consistently. To be specific, in the
antiferromagnetic phase on the Bethe lattice the self-consistency condition has the
form

Alw)e =7 (t")* Ao (w). (4.1)

NRG calculations for this problem will be an important step towards a precise char-
acterization of the AFM phase at weak and strong coupling. Properties of impurities
in an antiferromagnetic host (see for example Nagaosa, Hatsugai and Imada (1989)
and Sachdev, Buragohain and Vojta (1999)) can then be studied by extending the
approach of the last chapter. This may be relevant for recent NMR experiments on
High-T¢ cuprates performed by Bobroff et al. (1999).

Spin symmetry breaking also occurs if an external magnetic field h is applied to
the local moment. Quantities which are of interest in such a situation include the av-
erage impurity magnetization (a;’i) and in particular the spin resolved spectral density
A, (w) which has been observed directly in measurements of the differential conduc-
tance through a quantum dot by Goldhaber-Gordon, Shtrikman, Mahalu, Abusch-
Magder, Meirav and Kastner (1998). So far only the large degeneracy expansion
(Kang and Min 1996), the modified perturbation theory (Takagi and Saso 1999a, Tak-
agi and Saso 1999b) and the quantum Monte Carlo technique (Sakai, Suzuki, [zumida
and Oguri 1999) have been applied to the Anderson impurity in a magnetic field. In
the NRG calculations presented in the following we are able to overcome the limi-
tations of these methods (small interaction, finite temperature) and explore the full
parameter regime of the model.
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4.3 Modified iterative diagonalization

The generalized Anderson Hamiltonian in a local magnetic field h is written as
h
Hopg = Zekckacka ZV’W (f Cy T I c) +Unprng +€rng — 3 ;Z (4.2)

where o} denotes the impurity spin and a flat conduction band extending in the range
[—1,1] is assumed. Let us emphasize again that we choose the units A = kg = g =
uwp = 1. For notational simplicity, we focus on the case of a symmetric and spin
independent hybridization function A(e) = 7>, Vi2d(e — €), the only spin depen-
dence being introduced by the magnetic field. As in the rotationally invariant case
(see introduction and appendix A) the conduction band is logarithmically discretized
and mapped onto a linear chain:

Z ereh e — Z €n (djw dpi1y + h.c.) . (4.3)

ko n=0
g

These steps do not have to be modified. The main difference occurs in the iterative
diagonalization: Without full rotational invariance of the system, the only remaining
quantum numbers are the total charge ) and the total spin projection S*. After
adding a single site to the chain in iteration N, new basis states are defined as

|1,T,Q,SZ>N+1E|TQ+1,SZ)N (4.4)
[2,7,Q,5% i1 = iy | 7,@: 57 = 3 )y

|3,7,Q,5% ) niy = d}LN+1 ¢| Q5% + %>N

| 4,7,Q,5% )y = (N+1 d(N+1),J,| rnQ—1,5)y

Again the new hopping term AH = 5" (d}LVUd(NH)U + h.c.) needs to be expressed
in terms of matrix elements defined in the previous step:
(2,0,Q,8% [AH| 1,1,Q,5% )y = (LQ+ 1,57 [d\,| I,Q, 5 = 1)
(4,0,Q,8° |AH| 3,1,Q,5% )y = —(1,Q, 5" + 3 |di,| I,Q — 1,57 )y
(3,0,Q, 5 [AH| 1,1,Q,5% )y = (1,Q + 1,57 |dy )| I, Q, 5%+ §)
(4,0,Q,57 |AH|2,1,Q, 5 )y = (1,Q, 57 — 3 |y, | I,Q — 1,57

(4.5)

Keeping in mind that Hy,, = AY?Hy + AN? ey AH, the Hamiltonian can now
be diagonalized separately in each one of the (@, S*) sectors. One obtains the new
eigenstates

| Q, S?, ‘UN+1 ZUQSZ w,z,r)|erS>N+1 (4.6)

zr
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The matrix elements of dl +1 in the new basis are then easily expressed as
(FQ+1,8 4+ 3 iy 7 Q82 ) vy = (4.7)

- Z UQ+1,SZ+§(7J3 2,1)Uq,s.(r; 1,1)
1€(Q+1,5:)n

+ Z UQ—l—l,Sz-i—% (T/; 47 l) UQ,Sz (T7 3, l)
le(Q;Sz“‘%)N

(TlaQ + lasz |d(N+1 | r, Q S >N+1 = (48)

= D Ugiis 1 (M53,) Ugs.(r; 1,1)
lE(Q+1Sz)N

= > Ugpis-1 (54,1 Ugs.(r52,1)
1€(Q,S-—%)n

where each /[-summation is performed in one sector of the previous iteration. With
this recursion, the iterative diagonalization procedure for the Hamiltonian is com-
plete. Comparing the lowest eigenstates calculated with and without the S? sym-
metry, one finds complete agreement to machine precision. As a rule of thumb, the
number of levels has to be multiplied by a factor 2.25 to achieve the same accuracy
without rotational invariance.

Next, we are interested in calculating the impurity single-particle spectrum at a
temperature T' = 1/4. Within the NRG, the following approximation has been used
so far: Diagonalization of chains with increasing length /N yields spectral information
on a decreasing frequency scale w ~ A™/? according to

e_ﬂETIr\{ _|_ e_ﬂErly

ZN

A (w) ~ ZI [l n)yl?0 (v = By + BY) (4.9)
in the Lehmann representation where the | n), are the many-particle eigenstates
of Hy and Zy is the partition function. It is therefore necessary to calculate the
matrix elements of the impurity fermions in every iteration step by performing the
basis transformation

(r,Q+1,S. + 1 |frQ 8 )y = (4.10)
Y Ugirssr(r5il) Ugs. (r3, 1) (i, 1, Q + 1,8 + 3 | £14,1,Q, 8 ) vy
u
and keeping in mind the following recursion relations, which are just a consequence
of the definitions (4.4):

(Ll/aQ—i_laSZ_i_% |f;| 17l7Q75Z>N+1:<l/ Q+2 S +3 |fT|l Q+1 S >
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Figure 4.1: Comparison of NRG spectra at T = 0 calculated with explicit rotational
invariance (“old”) and without (“new”). In the first case, the S, degeneracy is not taken
into account in the level number. The impurity parameters are A = 0.1, U = 0.5 and
e = —U/2, no magnetic field is applied.

(271/7Q+175z+% |f;| 27l7Q75z>N+1 = _<l,7Q+175z |f(1| laQasz_ %>N
(3,0, Q+ 1,8, + 2 f113,1,Q, 8 )ypr = —(IQ+1,S. + 1|} ,Q,S. + 3)
(4,1,Q+1,5, 43 | £1] 4,0,Q0,5: Yy =(I,Q,5.+ 3 1fL,Q—1,8, )y (4.11)

An example of the resulting spectral function is shown in fig. 4.1 and compared to the
calculation based on reduced matrix elements (the effective level numbers have been
chosen approximately equal, according to the rule of thumb mentioned previously).
Note that at this point we are comparing two different ways of performing iterative
diagonalization. The method of extracting spectral information — following equation
(4.9) — is the same in both cases. We will now show that it fails in the presence of a
magnetic field.

4.4 Generalized NRG

Let us once again outline how the model (4.2) is solved by iterative diagonalization: In
each step only the lowest, most relevant levels are kept. The number of iterations then
corresponds to the temperature one is interested in according to Ty = ¢ A~V-1/2
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Figure 4.2: Comparison of single particle spectral functions for the symmetric model
(A = 0.01, U = 0.1, ¢ = —0.05) obtained by the method previously used (“NRG”)
and the generalized procedure presented here (“DM-NRG”). The Kondo temperature is
Tx = 6.8 x 107* (determined from the width of the quasiparticle resonance). A small
magnetic field h = 1073 has been applied to the impurity.

where c is a constant of order one. For calculating thermodynamic expectation values,
all necessary information is thus obtained because only excitations on the scale Ty are
relevant. For dynamical properties, however, an additional energy scale is introduced
by the frequency w which may be much larger than the temperature. This is easily
seen by looking at the spin—resolved spectral density (4.9) with § = 1/T. Calculat-
ing spectral information at frequencies w > Ty obviously requires matrix elements
between low—-lying states and excitations which in iteration NV are not available any-
more (they have already been lost due to truncation). To circumvent this difficulty,
the following procedure has been used so far (see previous section): In calculating
A(w), expression (4.9) was simply evaluated at an iteration step N’ > N where
TN =~ w, assuming that for this spectral regime the low energy levels were described
“well enough”. There is no rigorous argument to justify this assumption, as for ex-
ample the crossover to the strong—coupling fixed point and the corresponding change
in the ground state may occur at a much lower temperature scale Tx < Ty'. Never-
theless, in the calculations performed so far (single particle spectra for the spin 1/2
Anderson impurity without symmetry breaking), this approximation seems to give
reasonable results.
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The situation changes in the presence of a magnetic field: In fig. 4.2 we present
results for the Hamiltonian (4.2) at T = 0 which have been calculated as described
above. Without an external field, one obtains the well-known three—peak structure
characteristic of a small Kondo temperature Tx. Switching on a small magnetic
field h = O(Tk) only affects the quasiparticle peak, while the high—energy spectrum
is almost unchanged. This result is easily understood: At the iterations where the
atomic levels are determined, the NRG procedure does not yet “know” about the
tiny perturbation that eventually breaks the spin symmetry of the ground state. One
can however easily verify that this result is incorrect: If we calculate the normalized
ground state magnetization m (a static quantity) directly as a thermodynamic expec-
tation value ((ns —nysy)) and compare it with the value derived from the spectrum

m:/_iodeT(w)—/_iodei(w) (4.12)

the results do not agree (see fig. 4.3). Physically, the strong polarization of the
impurity due to a small magnetic perturbation should suppress the upper atomic level
because no particle excitations are possible any more. This suppression is drastically
underestimated by the method used so far (indeed, in the limit of vanishing Kondo
temperature Tk it will not be seen at all). In order to capture this effect, it is clearly
necessary to obtain the correct ground state before calculating the spectra. This is
achieved by the following two—stage procedure:

1) NRG iterations are performed down to the temperature Ty of interest; in par-
ticular one chooses Ty < Tk to calculate ground state properties. For each iteration
step, we keep the information on the transformation between one set of eigenstates
and the next, i.e. we save the corresponding unitary matrix. After obtaining the
relevant excitations at the temperature Ty, one can define the density matrix

p=S" BN )y (m | (4.13)

m

which completely describes the physical state of the system. In particular, the equi-
librium Green’s function can be written as

Go(t) = if(t)Tr (5 { £, (1), f1(0)}) (4.14)

2) Now we repeat the iterative diagonalization for the same parameters. Each
iteration step N’ yields the single particle excitations (and matrix elements of fT)
relevant at the frequency w ~ Tnv. But instead of using (4.9), we now employ (4.14)
and evaluate the spectral function with respect to the correct reduced density matrix
(see Feynman (1972)):

Gy (t) =i 6(t) Tr (o {1,(8), F1(0)}) - (4.15)
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Figure 4.3: Normalized impurity magnetization obtained by different methods: from the
spectrum (NRG vs. DM-NRG) and as a thermodynamic expectation value (direct). The
impurity parameters are chosen as A = 0.01 and U = 0.1, the Kondo temperature is
Tk = 6.8 x 1074,

< P > < environment —>

Figure 4.4: Reduced density matrix obtained by tracing out “environment” degrees of
freedom of the chain.
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As depicted in fig. 4.4, the complete chain is split into a smaller cluster of length N’
and an enwvironment containing the remaining degrees of freedom. In the product
basis of these two subsystems, the full density matrix has the form

:5 = Z pm1n1,m2n2| my >env| n1 )Sys(n2 |<m2 | (416)

mypm3
nin2

which is in general not diagonal any more. Performing a partial trace on the envi-
ronment then yields the density submatrix

Zp;eldn2| nl Sys n2 | (417)
nin2
with
Py =D P mna- (4.18)
m

This projection is easily done by using the previously stored unitary transformation
matrices. Note that g — defined only on the shorter chain — contains all the relevant
information about the quantum mechanical state of the full system®. This concept has
been applied very successfully in the density matrix renormalization group (DMRG)
developed by White (1992), where the projection on a smaller subsystem is essential
for obtaining eigenstates of the model. In NRG, on the other hand, diagonalization
can be performed directly due to the logarithmic discretization, but to describe the
effect of the chain degrees of freedom on the impurity (or a small cluster) one has
to determine 4. In the following, we therefore refer to the calculational scheme
presented here as DM-NRG.

In fig. 4.2 we compare the spectrum obtained in this way to the “old” result
(the same number of levels has been used in both calculations). The strong shift of
spectral weight due to the polarized impurity is now clearly seen, as well as a slight
change in the height and shape of the quasiparticle peak. The magnetization has been
calculated from (4.12) for different values of h and is in good agreement with the static
calculation (see fig. 4.3). The remaining deviation of less than three percent is due to
an error in the total spectral weight. The resulting field dependence of the spectrum
is displayed in fig. 4.5. With increasing h, the Kondo resonance is suppressed and
eventually merges with the lower atomic level. Regarding the total density of states
Agor(w) = >, As(w), the Kondo peak is split by the field and the DOS at the Fermi
level is strongly reduced. This effect has been observed directly in measurements
of the differential conductance through a quantum dot by Goldhaber-Gordon et al.
(1998).

! Approximation (4.9), on the other hand, is equivalent to replacing pi¢d by the diagonal density
matrix py+ of the short chain.
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Figure 4.5: Shift of the spectral function with increasing magnetic field at zero tempera-

ture. The impurity parameters are chosen as A = 0.01 and U = 0.1, the Kondo temperature
is Te = 6.8 x 1074,
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Figure 4.6: Temperature dependence of the spectrum for A = 0.1, U = 1.0, a Kondo
temperature T = 6.0 x 1073 in the presence of an external magnetic field h = 6.7 Tk.
Note that NRG does not yield any information at frequencies w < T'.
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Figure 4.7: Spin-dependent spectral density at zero temperature for an asymmetric im-
purity with A = 0.01, U = 0.1, ¢, = —0.02 and a Kondo temperature Ty = 2.9 X 1073,

-0.04 -0.02 0 0.02 0.04

Figure 4.8: Total spectral density Ayy = Ay + A} at zero temperature for the same
parameters as in fig. 4.7. Note that upon increase of h, part of the spectral weight is shifted
to the upper atomic level (not shown). The total weight is constant with high accuracy.
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So far calculations have been at 7' = 0. Upon increase of the temperature at a
finite magnetic field, we expect a reduction of the average impurity magnetization
due to thermal fluctuations. As a consequence, particle excitations with polarization
in the field direction should gain spectral weight. In fig. 4.6, this effect is clearly
seen: At temperatures ' 2 h, the spectral asymmetry is strongly reduced. Note that
in finite temperature NRG calculations no spectral information can be obtained at
frequencies w < T'.

Results for an asymmetric impurity close to the mixed valence regime are shown
in fig. 4.7. The almost complete shift of spectral weight to the particle (hole) sector
is again observed for the two spin polarizations, which in this case are not symmetric
anymore. In the total density of states (fig. 4.8), changes are less prominent. We
merely observe a suppression of the quasiparticle peak and a redistribution of the
corresponding weight to higher frequencies.

In order to compare our findings with previous calculations, it should be pointed
out that so far only the modified perturbation theory (Takagi and Saso 19994, Takagi
and Saso 1999b) and the Quantum Monte Carlo (QMC) method (Sakai et al. 1999)
have been applied to calculate the impurity spectrum in a magnetic field. The former
is limited to small U and seems to overestimate the suppression of one of the atomic
levels. QMC calculations have so far been done only in the mixed valence regime (and
at temperatures T > Tk ), due to the increase in computing cost for the symmetric
case. In a recent NRG calculation on the Kondo model by Costi (2000), the problems
discussed here did not occur due to the absence of atomic levels. Apart from these
restrictions, we find qualitative agreement with our DM-NRG results.

4.5 Conclusion

In this chapter we have presented a new method of calculating dynamical properties
at arbitrary temperature within the numerical renormalization group. It has been
demonstrated that — despite logarithmic discretization — energy scale separation is
in general not valid in the case of spectral quantities. This effect is neglected in the
NRG scheme used so far in the literature. Within our generalized procedure (DM-
NRG), based on the reduced density matrix, we can now account for changes in the
ground state occuring at energies far below the external frequency scale.

The DM-NRG introduced here has been applied to the Anderson impurity in an
external magnetic field, which is of great interest in view of recent transport mea-
surements of quantum dots. Nonperturbative T" = 0 studies had not been performed
so far for this problem, mainly because of technical difficulties in extending NRG to
systems with broken spin symmetry. Our results for the single particle spectrum are
in excellent agreement with the sum rule provided by the (static) magnetization. In
the total density of states we find the splitting and suppression of the quasiparticle
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peak which is also observed experimentally.

Future applications will be twofold:

1) DMFT calculations for phases with long range order (antiferromagnetism, or-
bital ordering) require a reliable treatment of any symmetry-breaking perturbation.
As outlined in the present chapter, the DM-NRG is the appropriate method in this
situation.

2) With the rapid advances in nanoscale preparation techniques, more complex im-
purity systems including orbital degeneracy and even molecules coupled to a fermionic
bath (see for example Kergueris, Bourgoin, Palacin, Esteve, Urbina, Magoga and
Joachim (1999)) will be realized. Our generalized NRG procedure provides a suitable
tool for predicting and explaining spectral measurements which depend sensitively
on the nature of the ground state.
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Chapter 5

Direct application of flow equations

5.1 Luttinger model

Preliminary attempt

In this section we apply the flow—equation formalism to the Luttinger model with
a linear dispersion and forward scattering. As is well known, this model can be
converted into a quadratic form by bosonization and is then easily solvable. Our goal
will be to diagonalize the Hamiltonian in the fermionic language and to determine
which approximation of the flow corresponds to the bosonization limit.

The conduction band consists of “right” and “left” movers with a linear dispersion

Zk ( el ot = chy oy :) (5.1)

where “:” denotes normal ordering with respect to the noninteracting ground state
(the filled Fermi sea). The Fermi velocity has been set to vgp = 1. Forward scattering
is introduced according to

1nt = Z Ukk’ Clk+q - Cgk’—q CZk’ . (52)

kk'q

where Uppg=o = 0 is assumed and the possible momentum transfers will be limited
by some UV-—cutoff. We take constant couplings Uy, = U, and explicitly factorize

the correlation term
Hypy=UW. (5.3)

Following an idea originally developed by MacDonald et al. (1988) and later applied
by Stein (1997), we write the reduced interaction W as an infinite sum

W=>Y W, (5.4)
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where each W™ consists of all the terms that lead to the same change in Hy, that is
[Hy, W,,| = nW,. (5.5)

Anticipating the generation of additional terms in the course of the flow, we write
the total Hamiltonian as

[)=Ho+ Y Y F®(,m)Ww®(m) (5.6)

k=1 {m}

where we have used the shortcut notation
WE (m) = WP (my, ... mp) = Wi, Winy -+ Win, - (5.7)

Initially, FV (I = 0,m) = U and F*>Y(] = 0, m) = 0. Following the choice proposed
by Wegner (1994), the generator is given by

n(l) = [Hy, H Z > M®(m) F® (1, m) W* (m) (5.8)

k=1 {m}

with the abbreviation
M® (m Z m;. (5.9)
The change of the Hamiltonian is obtained in the usual fashion
OH(l) = [n(l), H(1)] (5.10)
= _ZZWk) )2 F® (1, m) WH (m)

k=1 {m}

+ 30N M(my) FE(1,my) FO(1my) [WH (my), W (my,)]
k=1 {my}
{m3}
where the first part leads to exponentially decaying couplings and in the second one
higher and higher interactions are generated, which motivated the definition (5.6).
By collecting equivalent terms, we obtain the following recursion relations for the
couplings (see also Stein (1997))

OF®(I,m) = —|M(m)]?F® (I, m) (5.11)

+2_: Z (M(my) — M(ms,)) F™ (I, m;) F* (1, m,).

n=1 {mj;,my}
m=(m1,mj3)
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k+q 1

Figure 5.1: Second order Goldstone contribution to the ground state energy.

These can now be solved order by order. The £ = 1 couplings just decay exponen-
tially

FO(,m) =e™U (5.12)
and the second order terms can be integrated:
F(2) _ 772 m-n ( —(m2+n?) —(m+n)2l> ‘ 1
(I,(m,n))=U sl C e (5.13)
Only the “resonant” terms survive and the effective Hamiltonian reads
1
H(l = o00) = Hy+ UWM(0) + U* Y =W (n,—n) + OU?). (5.14)
n
n#0

We thus obtain a strictly perturbative result. Taking the expectation value of (5.14)
with respect to the noninteracting groundstate leads to the ground state energy
of the full system. As a consequence of the uniqueness theorem for power se-
ries (Fischer and Lieb 1992) this is equivalent to the Goldstone series (Goldstone
(1957), see also Metzner and Vollhardt (1989b6)). We can see that explicitly: The
first term U (WM (0))g yields a Hartree contribution, which in our case vanishes due
t0 Ugrig=0 = 0. The second-order term can be written as
2 2
Z%(W@)(n, —n)o = Y, %(Cikﬂ-qclkcgk’—qcyﬂ' e _q C1kr Chyn g Cotm)
n#0 kk!q
Iy
2
-y v (5.15)

€ €9—g — €E1p — €
" lk+q + €21—¢ 1k 2
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where dispersions €;(2)r = £k have been introduced and the primed sum is con-
strained to k + ¢,/ < 0 and k,l — ¢ > 0. This expression corresponds to the second—
order Goldstone diagram in fig. 5.1.

The implementation of flow equations outlined here, although very convenient,
can therefore not reproduce the nonperturbative bosonization result. We have to
find another representation of the interaction terms.

Normal-ordered version

One central element of flow equations as proposed by Wegner (1994) is the nor-
mal ordering of interaction terms. In the previous section, this has not been taken
into account. The higher—order terms were so far written as simple products of the
interaction.

In the following, we will now use the normal-ordered version of the flow equations,
keeping only two—particle terms. Again the Hamiltonian is given by (5.1) and (5.2).
Following Wegner’s ansatz, the generator has the form

n = 2Zq Ukk'q 01k+q Crp it O ¢ Copr * - (5.16)
kk'q

For small U, the leading contribution to the flow is induced by the noninteracting
part H,

n)HO — _4Zq Ukk’ clk+q :C;k/_q C2k/ : (517)
kk'q

yielding simply an exponential decay of the couplings. Due to the interaction part
(5.2), new terms will appear. In order to simplify the notation for multiple momen-
tum sums, we use the convention that all indices are constrained to be inside the
noninteracting band. We obtain the following expression:

E T T
[ lnt] 2 q Uk17k27q { (Ukl_pvkvp Clk1+q C].k‘l—p - Uk1+q7kap Clk1+p+q c].kl

k1k2q

. ot .
X i Cop_p Cop, * Copyg Copy

t t
+ (Uk7k2+p7p C2k2—q Czk2+p - Uk,k2_Q7p Czk‘g—q—p czkjg

LT Lo T .
X 1 Clp, g Ciky b F Cliap Cig - } (5.18)

It is now necessary to transform the different terms into normal order. This is
achieved by repeatedly applying the following identity:
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LT Lo T .

L Clpyiq Clky b Clhgtp Clky °= (5.19)
— e cl Cip 1 —0 n el Cyp o
— * Y1ki1+q “1ky “1ko+p “1ko ki+q,k2 "'1k1+q - lko+p “1ky *

.| .
+ 5k2+p,k1 (1 - nlkl) * Clki+q C1ky - +5k1+q,k2 5k2+p,k1 (1 - nlkl) N1k +q-

The full Hamiltonian

H(l) = Hy + Z(Vlk(l) el e Var(l) ek ey ) (5.20)

k
E N i . N i .
+ <W1k1k2(I(l) " Clky+q C1ky Clky—q Clksy - +W2k1k2qa) * Coky+q C2ky Coky—q Coky -
k1k2q

* Z Ukiag(1) © g Cory 12 Copamg Cony * TE()
ki1k2q

then includes a new two—particle interaction W between fermions of the same species,
a one-particle component V' and a shift E of the ground state energy. If normal-
ordered interactions between three and more particles are neglected, a closed system
of flow equations emerges:

oOFE = E ' 2q Upykyq {Uk1+q,k2—q,—q (N1ki4q = Niky) (1 — N2ky—g) N2k,
ki1k2q

Uk +q,ko—a,—q (M2ky—g — Naky) (1 — 11y n1k1+q} (5.21)

Vi = Y {2 q (1 — nak,—g) noky (Uk-g,k1,q Ukbi—4,—a — Ukna Urra i —q,—a)

kiq
+2 q (n2k1—q - n2k1) (_nlk-HI Uk,kl,q Uk+q,k1—q,—q
+(1 = n1x—q) Ur—qk1q Uk,kl—q,—q)} (5.22)

OVar = ) {2 q (L —ng,) 1y +1 (Uky a0 Ui +ak—a — Uk kg Ukitak—q,—a)

kiq
+2q Rk +g — Niky) (—N2k4q Uk it Ukiva—g
(1 = m2k ) Un g Uy a1 (5.23)
OWiks kg = 24Uk kg Uns k—g,—g (Nak—q — N2k (5.24)
k

OWaky kg = Z 2q Uk kyq Uksgkr,—q (Mikaq — M1k) (5.25)
P
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Uk, koyg = Z 2(q—p) {Ukl,kz,p Uki+p.k2—p.a—p (1 = N1k +p — N2y —p)
p

+Uky ks —q+p.p Uky +p,ka,0—p (n1k1+p - ”Zkz—q+p)
+Uky +q—pkap Uk ko —pig—p (n%z—p - ”1k1+q—p)

_Uk1+q—p,k2,p Ukhkz—p,q—p (n2k2—p - n1k1+q—p)
_Uk1+q—p,k2—q+p,p Ukhkz,q—p (1 — N2ky—q+p — ”1k1+q—p)}

_4 q2 Uk17k27q

+2¢q E {Uk1+p,kz,q Wik ey +ptap (n1k1+p - n1k1+p+q)
p

+Uky—p kg Wiky—pta e p (n1k1—p - ”1k1—p+q)}

+20 Y Ukkog Wikgks—q + Wik ktaq) (Makrg — nar)
k

+2¢q E {Ukl,k2+p,q Worksy ko tp—ap (”2k2+p - n2k2+p—Q)
p

+Uky ko —p.g Woks—p—q kap (nZkz—p - ”2kz—p—q)}

+24 Y Uk kg (Wak—gkog + Woksh—g,—q) (M2k—g — ni2%)
k

+2q U, oy Vik, — Viki+q)
+2 q Ukl,kz,q (‘/Zkz - ‘/2k2—(1)' (526)

This system of coupled differential equations is solved numerically by a fourth—order
Runge-Kutta algorithm (Press et al. 1995). Again we take momentum-independent
initial values for the couplings which we scale as Uggry = U/N where N is the system
size.

At | = oo, only the V and W couplings remain, which commute with the non-
interacting part Hy. The Hamiltonian is then block-diagonal in the degenerate sub-
spaces of the conduction band (note that this is a special situation due to the linear
dispersion: For an interaction between particles of the same species, momentum
conservation is equivalent to energy conservation).

First, we examine the interaction dependence of the ground—state energy F, where
the contribution of the noninteracting Fermi sea has already been subtracted. Results
for a small finite system are shown in fig. 5.2. For comparison, we have also plot-
ted the exact ground-state energy obtained by a Lanczos calculation and the O(U?)
term in the Goldstone expansion. Evidently, at weak interaction the three methods
show good agreement. If U is increased, the exact result displays a crossover to a
linear behaviour in U (the interaction is then the dominant energy scale) not cap-
tured by the perturbative result. Flow equations, on the other hand, describe the
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Figure 5.2: Ground state energy of the half-filled Luttinger model at N = 10 and a
momentum transfer cutoff No = 1.

deviations from the U? behaviour well until, at U ~ 6.2, an instability occurs and the
equations diverge. This breakdown, while unphysical for the finite system, is a pre-
cursor of phase separation which occurs in the thermodynamic limit of the Luttinger
model as demonstrated by Mattis and Lieb (1965). Varying the momentum cutoff
(fig. 5.3) leads to another instructive comparison of the different methods. Here the
bosonization result for the ground state energy is also plotted

U2
Bros= -3 0 [ 1-4J1- (= 5.27
b N <27T> (5:27)

leading to a quadratic dependence of E on the momentum transfer cutoff p. = %’r Ne¢.
The instability at U = 27 agrees well with the observed critical U in the finite system
(see above). Fig. 5.3 clearly shows that bosonization and flow equations are virtually
exact for small No = 1,2 whereas the Goldstone result deviates slightly. If we increase
the range of possible momentum transfers, the preconditions for the bosonization
formalism (no excitations close to the band edge) are not valid any more, which leads
to an unphysically low ground state energy. Both flow equations and perturbation
theory capture the transition to a saturation at large N, although in this regime the
Goldstone result is superior.

In order to calculate expectation values of an observable O, it is necessary to
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Figure 5.3: Ground state energy of the half filled Luttinger model at N = 10 and inter-
action U = 4.0.

perform an additional unitary transformation
8,0 = [n, 0. (5.28)

We are interested in the occupation—number distribution in momentum space and
choose

~

O(l = 0) = g, = ¢y cpp- (5.29)

Again, the flow (5.28) will generate higher order terms in O(I) which need to be
truncated. We make the following ansatz

A _ § : Lt .
O(l) - + Mk1k2q Clkﬁ-q Ciky = Coky—q Coky +
k1kaq
E T .
+ N1k1k2q Clk1+q Clkl Cle q Cle *
k1kaq
E T .
+ N2k1k2q 02k1+q C2k1 C2k2 q C2k2 *
k1kaq
+ P1k1 Clk Clk1 + Ple C2k1 C2k1 . (530)
k1

where initially all couplings vanish except Py, (I = 0) = 1. The constant term
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determines the ground-state expectation value we are interested in:

(Wo|fing, |To) = K (5.31)

A~

After evaluating [n, O] we again convert the result into normal order and neglect
terms not contained in (5.30). This leads to an additional set of flow equations:

oK = E 24 Ukykoq My 4q.k—g,—q {(n1k1+q — Npy) (1 = Nagy—g) Mok,
ki1k2q

+(n2ky—q = N2k,) (1 — nag,) n1k1+q} (5.32)

Py = > 2q {(1 — N2k —q) M2ky (Uk—qbr.a Mipr—g,~¢ = Ukikr.a Mitq ki —g.—q)

kiq
+(naky—q — N2k ) (—11k1q Uk erg Mict g0 —a,—g
+(1 = n1p—g) Up—g/k1 g Mk,kl—q,—q)} (5.33)

kiq
(N 1k +q — Mky) (—M2k4q Ury kv ag Mii4q.k,—q

"‘(1 - ”2k—q) Ui ko Mk1+q,k—q,—q)} (5-34)

OMiyprg = Y 2(qa—p) {Mkl,kz,p Uk +pkz—p.a—p (1 = Niky+p — N2k —p)
p

+ Mk, ko—g+pp Uk +p,k2,0-p (n1k1+p - n2kz—q+p)
+Mk1+q—p,kz,p Uk1,k2—p,q—p (n2k2—p - n1k1+q—p)
_Mk1+q—p,kz—q+p,p Uk1,kz,q—p (1 — N2ky—q+p — n1k1+q—p)

+2q { E , (Uk1+p,k2,q Niky ky+ptap (n1k1+p - n1k1+p+q)
p

+Uky—pkag N1ky—ptaksp (nllﬁ—p - n1k1—p+q))

+ Z Uk ez, (N1k+q,k1,—q + N1k1,k+q,q) (n1k+q - nlk)}
k

+2 q { E (Ukl,kzﬂ),q N2kz,k2+p—q,p (”2k2+p - n2k2+17—(1)
p
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Figure 5.4: Occupation number ny of the half filled Luttinger model at N = 10, a mo-
mentum transfer cutoff No = 2 and interactions U = 3.0/5.0.

+Uky ks—p,g Noko—p—q,kap (”2kz—p - ”2kz—p—q)>

+ > Usy kg (Nok—g kg + Norssg,—q) (R2k—g — nzk)}
k

+2 q Uk, kog (Piky — Piky+q)

+2¢q Uk1,k2,q (P2k2 - P2k2-¢1) (535)

DNy krg = Y 20 Usy g Mis g, —q (N2k—g — 1k (5.36)
k

O1Noky kyqg = Z 2q Uk kyg Mgk, —q (M1k4q — Nak)- (5.37)
k

Some results of the numerical solution are shown in fig. (5.4). For weak interactions,
the agreement with the exact Lanczos data is excellent. At U = 5.0, however, the
error in ny close to the Fermi edge is already significant, although the ground state
energy is still reasonably accurate. This can be understood as follows: The main
approximation becomes exact only for the Hamiltonian, where the neglected many—
particle terms indeed vanish in the limit of small momentum transfer cutoff. For the
observable 7, this is not the case: Even in the bosonization regime, the ansatz (5.30)
is not exact. Instead one would have to use the bosonization identity (see chapter 6),
which is, however, hard to generalize to the case of a finite bandwidth.
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The ny, results are therefore strictly perturbative and cannot reflect the anomalous
power law behaviour close to the Fermi edge, which is typical for a Luttinger liquid
(see for example Schonhammer (1997)).

5.2 Wolff model

Wolff (1961) introduced the following Hamiltonian to describe a magnetic impurity
in a metallic host:
1 1 h

H=> erc,cp, +Ulno — 3) oy = 5) = 5 (nor = noy)- (5.38)
ko

Here ¢y, = ﬁ > & Cko denotes the local impurity orbital which — in contrast to the
Anderson model (Anderson 1961) — is part of the conduction electron lattice with
lattice constant a = 1 and system size N. An additional magnetic field A is coupled
to the impurity. Mattis (1975) has presented an “exact” solution of this model for
the case of a linear dispersion

e, =k (—m <k <m) (5.39)

using bosonization. Although a more detailed introduction to this technique is given
in the next chapter, we already outline the main idea at this point. With the help of
the Kronig identity (Kronig 1935) the kinetic energy is represented in the form

2
Ho =7 D po(0)po(—0) (5.40)
q>0
with the density operators

q) = Z CZ—f-qacka' (541)
k

If band—edge effects are neglected, the p’s obey bosonic commutation relations

1Pe (=), po(@)] = bgr L~

q,9' 27T

(5.42)

and after rescaling by, = qu’\r, po(—q) the Hamiltonian can be written as a quadratic

form

U 1
= S aioby + gy 3 (0 by + V) by + 8

q>0 q,9'>0

_QWZ(J%@“M ~byy — bhy) - (5.43)




80 5. Direct application of flow equations

This expression is trivially diagonalized by separating spin and charge degrees of
freedom. For interactions larger than U. = m, no ground state exists any more in the
spin sector. As a consequence, the local magnetic susceptibility diverges

_ _% - (1 - g)_l (5.44)

and the ground-state energy has singular derivatives with respect to U. These results
were interpreted by Mattis as the formation of an unscreened local moment at a
finite interaction strength. However, it was soon realized by Fogedby (1977) that
the appearance of a critical coupling strength comparable to the bandwidth is an
artefact of the bosonic representation. At values U ~ U,, the neglected band—edge
terms become relevant, and (5.43) is no longer valid. In fact, the impurity physics
of the Wolff model is equivalent to that of an Anderson model with a non—constant
hybridization strength of the order of the bandwidth, which is known to have a singlet
ground state at arbitrary coupling.

In the weak coupling regime, on the other hand, bosonization is expected to
perform well. Motivated by the Luttinger model results, we therefore again apply
flow equations in order to take band edge effects into account. In our calculation
we focus on the ground state energy which is compared to exact Lanczos results.
Anticipating new terms generated by the flow, we write down the following ansatz
for the Hamiltonian:

H(l) = HO + E(l) + Z ka"(l) : C—i];;a- Cpry - (545)
kk'o
+ Z Uk (1) C;LT Crrp C;Tgu Cpny + Z Wik (1) CZJ Chiy CL,U Ching
kklk”kl” kklk”kl”o-

Again normal-ordered terms involving three and more particles have been neglected.
In contrast to the Luttinger case, there is no momentum conservation. As a con-
sequence, the interaction W between particles with equal spin does not commute
with the conduction band H, and therefore yields an additional contribution to the
generator. Wegner’s choice leads to

n = Z (kl - k’z) Vk1k2 : Clt-la ckga :

kikoo

+ Z (k’l — k’z + k3 - k’4) Uk1k2k3k4 . CITﬂT Csz CZSi Ck4.], .
k1k2kska

+ Z (k1 — ko + k3 — ka) Wiy koksks - c;rﬂa Chyor c;rgga Cryo - (5.46)
ki1kzkskao

The resulting flow equations for the couplings have been evaluated by using Mathe-
matica and are given in appendix D. They are again solved numerically by fourth—
order Runge—Kutta. Some results for the ground—state energy as a function of U are
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Figure 5.5: Ground state energy of the Wolff model with N=10 conduction band orbitals:
Flow equations become numerically instable at U =~ 4.

given in fig. (5.5) and compared to the exact Lanczos and perturbative Goldstone
values. For small interaction, we obtain E ~ U? and the three methods agree. At
U =~ b, the behaviour changes to £ ~ U because the interaction term then defines
the dominant energy scale. This change of behaviour is not captured in perturbation
theory. Flow equations, on the other hand, describe at least part of the crossover
until, at U = 4, the system of differential equations becomes numerically unstable.
This indicates that beyond a critical value of the interaction, the truncation scheme
applied here (keeping only two—particle interactions after normal ordering) is not
reliable any more.

5.3 Conclusion

In this chapter flow equations have been applied to fermionic many—particle systems
in second quantization. The Tomonaga—Luttinger model with forward scattering has
been studied as a “toy model” where flow equations can be compared to bosonization
and exact diagonalization. A preliminary implementation without normal ordering
has yielded perturbative results, essentially reproducing the Goldstone series for the
ground state energy. To achieve partial summation of this series in a nonperturbative
way it has been necessary to represent higher many—particle interactions in a normal-
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ordered fashion. Keeping only two—particle terms then leads to the bosonization
result for the ground-state energy in the limit of a small momentum transfer. Upon
increase of the cutoff, flow equations correctly reproduce the saturation of the ground
state energy. On the other hand, we have found that the results for the occupation
number distribution are always strictly perturbative.

For the Wolff model, we have demonstrated that flow equations become exact
only in the limit of vanishing coupling. In contrast to the Luttinger model, there is
no additional small parameter (like the momentum—transfer cutoff) that could make
bosonization work: The local Hubbard interaction is long range in momentum space
and therefore creates excitations arbitrarily close to the band edges, which become
important at intermediate couplings of the order of the bandwidth.

Instead of keeping higher terms in the flow equations (which is impractical), we
will consider a different way of parametrizing many—particle terms in the analysis of
the Kondo problem presented in the next chapter.
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Chapter 6

Flow equation analysis of the
Kondo model

6.1 Introduction

The Kondo model (1.1) is the most basic Hamiltonian describing the interaction
of a localized moment with a sea of conduction electrons (fig. 6.1). It is relevant
for systems where local charge fluctuations can occur only virtually: If the Anderson
model (1.3) is projected into a sector with fixed number of particles ng on the impurity
site, an effective exchange Hamiltonian emerges as noticed first by Schrieffer and Wolff
(1966). Neglecting spin—orbit coupling, the resulting exchange is SU(2)-invariant.
Nevertheless it is useful to generalize the model to anisotropic couplings

J
H = Z el e+ Z J| cgu Ohy Cou S+ Z % (cgu Oy Cop S~ + h.c.) (6.1)
uv

ko nv

where ¢} = (1/V/L) Y, ¢l represents the local conduction electron orbital. In the
present chapter, we denote the system size as L. Physically, this extended Hamilto-
nian may be motivated by the equivalence to the dissipative two-state system (see
Leggett, Chakravarty, Dorsey, Fisher, Garg and Zwerger (1987)) where the dissipa-
tion and the tunneling amplitude are indeed two independent parameters and one
is usually interested in the strongly anisotropic limit. From the theoretical point of
view, the independent choice of the longitudinal (.J) and spin-flip (J.) couplings has
the advantage that the phase diagram includes the exactly solvable Toulouse limit
(Toulouse 1969): At a certain (large) value Jj, of the longitudinal interaction, the
Kondo model can be mapped onto a noninteracting resonant level model (an Ander-
son impurity model without spin) as long as J, << Jj; provides a small energy scale.
For the following flow equation analysis of the Kondo model, the Toulouse limit is
an essential ingredient: It corresponds to the fixed point of the Hamiltonian flow. In
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Figure 6.1: Local moment interacting with a conduction electron bath.

contrast to earlier scaling calculations of Anderson and Yuval (1969), Anderson et al.
(1970) and Anderson (1970) one can therefore avoid a strong coupling divergence,
which is the main advantage of the present approach.

6.2 Bosonization

In principle, flow equations could be directly applied to the Kondo Hamiltonian in the
fermionic representation (6.1). But, as we have seen in the Wolff model calculation
(section 5.2), this requires truncation of the flow, keeping only a finite number of
the additionally generated higher-order terms. The truncation becomes only exact
in the trivial limit of vanishing coupling and therefore — in the Kondo case — leads
to a result that is purely perturbative in J. Unlike the Wolff model, however, the
Kondo Hamiltonian has an exactly solvable point at finite coupling strength, the
Toulouse limit mentioned already in the introduction. Our goal will be to use a
representation where the flow equations close at this particular point. The simplicity
of the Toulouse limit is not visible in the fermionic language: Originally, the reduction
to the noninteracting resonant level model has been derived via the partition function
by Toulouse (1969) and Anderson et al. (1970); it was later generalized by Wiegmann
and Finkelstein (1978). The most convenient technique, however, to establish this
equivalence is the bosonization method. In the following we introduce some of its
basic concepts, following the seminal paper of Haldane (1981) and two recent reviews
of von Delft and Schéller (1998) and Schénhammer (1997).

The main idea is to work with the Fourier components of the fermionic density
instead of the creation and annihilation operators:

Po(@) =D vy Con (6.2)

k
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Here the momenta are supposed to be discrete (kK = 2mwn/L) and bounded
(kmin < k < kmax). The general commutation relations of these objects are of the
form

[05(p), po(a)] = 0 (6.3)
if p and ¢ have equal sign and

kmax kmin+p—1 pL
[pa(p),pa(—q)]=< > ) ):cikcmq_p:—g&pq (6.4)

k:kmax_q+1 k:kmin+p_q

for p > ¢ > 0. In (6.4), normal-ordered terms with momenta close to the band edge
arise. They can be neglected if acting on a state which contains only particle/hole
excitations close to the Fermi edge (this usually requires that either the interaction
is weak or an explicit momentum transfer cutoff is built in, see also section 5.1).
Keeping only the c-number in (6.4), the density modes can be considered as bosons.
For a linear dispersion of the conduction band

Hy=Y k:clc,: (6.5)
k

the Kronig identity (Kronig 1935) states that the kinetic energy can be expressed in
terms of the density modes:

Hy = 2% > p0(9) po(—0) (6.6)

q>0

Note that the Fermi velocity has been chosen as vy = 1. It is easy to prove that this
relation remains exact even in the presence of band edges (see Schénhammer (1997)).
To bosonize a general interaction term it is necessary to express the fermionic (real
space) field operators in terms of the density modes. In order to do this, we define a

bosonic field
e_iqm_a|q|/2

@ (0)= -1y e p(g) (6.7)
where n, = Lg/27 is the orbital number. An ultraviolet cutoff a has been built in to
regularize the momentum sum. For our purposes, it can be identified with the lattice
constant of the conduction band, thus defining the bandwidth. We will set a = 1
throughout his chapter. Then

(D, (1), 0w Py (2')] = =270 6 (2 — ') (6.8)

or, put in other words, —d,®(z) is the momentum field canonically conjugate to
®(z). Note that finite size terms ~ 1/L have been neglected here. It is easy to check
that the fermionic density in real space may be written as

B 0, P, ()

W (@) W () =~

+0O(1/L) (6.9)
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where !
t(z), = =7 > ekl (6.10)
k

It was observed by von Delft and Scholler (1998) that acting with ¥'(z) on the Fermi
sea with an arbitrary number N of particles leads to a boson coherent state. This
is the reason why the fermion creator can be written as the exponential of the Bose

field:

Ul (z) = Ff '@ (6.11)

This equation (the bosonization identity) has already been simplified in that only the
application to the noninteracting ground state is considered; acting on excited states
would lead to an additional phase factor. The Klein factor F'T changes the fermionic
particle number by one, which cannot be achieved by the bosons.

Now we have introduced the necessary tools to bosonize the Kondo model

H=Hy,+Hy+ H, (6.12)

as first proposed by Schotte (1970) and later also applied by Schlottmann (1982),
Guinea, Hakim and Muramatsu (1985) and Leggett et al. (1987). For the conduction
band Hy, bosonization has already been achieved in (6.6). The longitudinal coupling
is rewritten using (6.9)

H = gsz (\1:1(0) .(0) — w(0) \pi(o))

J|
— ——L 9,8(0) 5" (6.13)
227

At this point the spin density operators

o(g) = % (o1(9) — p1(0)) (6.14)

and the corresponding bosonic field

1
O(r)=— (Pr(z) — Py (x 6.15
() ﬁ(T() () (6.15)
have been introduced. The impurity couples only to the spin degrees of freedom,
therefore the charge sector of the conduction band will be omitted in the following.
Using the bosonization identity (6.11), we can also rewrite the spin flip coupling:

J1 _
He = & (\1;1(0)\1:¢(0)S +\1:1(0)\1;T(0)S+)
J1 iv/2®(0) it - —iv2®(0) of
- = <e O i F S e (>F¢FTS+) (6.16)
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For the application of the flow equation method it is advantageous to eliminate the
longitudinal term H) by a discrete unitary transformation

U = 5720 (6.17)

with 4 as a free parameter. In the context of the two—channel model this is known
as the Emery-Kivelson transformation (Emery and Kivelson 1992, Zarand and von
Delft 2000). Notice that the conduction band is transformed according to

L/2
UH, Ut = #5720 1 d_x :(3x¢($))2: oS> ®(0)
2 2T
—L/2
1., [dx
= Ho+§zuS /2— [@(0),(3m<1>(x))2]
s
= Hy+ S 9,9(0) (6.18)

where a constant has been dropped. Furthermore,

UH U= H, (6.19)
up to a constant, and
JL [ iva- - —i(V2—
UHL U = 22 (02000 57 4 702000 st (6.20)
With the choice
J
(6.21)

MZm

we therefore arrive at the transformed Hamiltonian

UHU" = Hy+ go (V(A,0) 07 +V(=X,0)0") (6.22)

where a new notation has been introduced. First, the Klein factors have been ab-
sorbed into redefined spin operators

-+ = pt —(+) z _ gz
o =FyFipS , o°=8 (6.23)

obeying the usual commutator algebra. These new spins are coupled to generalized
fermions, usually referred to as vertex operators:

V(X z) = er?@), (6.24)

If the scaling dimension takes the special value A = 1, this expression reduces to the
right—hand side of the bosonization identity (6.11) and — apart from the missing Klein
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factor — can be interpreted as a fermionic creation operator. Similarly, V (-1, z) rep-
resents an annihilator. For general values of A, the vertex operators are complicated
many-body objects that have no simple equivalent in fermionic language. These
properties can be summarized in a concise form by the operator product expansion
(OPE)

VD). V() = ([ Lo, ) (6.25)

i@ —y)+a iy —2) +a]¥
X(1+iX(z—y)0,P(x)+...)

which may be derived by normal ordering (von Delft and Scholler 1998). In spite of
a = 1, we have shown the cutoff explicitly at this point. Higher terms in this series
are suppressed by increasing powers of the distance x — y. In particular, for A =1
the right—hand side is proportional to a delta function and one obtains the usual
fermionic anticommutation relations.

The parameters of the bosonized Kondo Hamiltonian are related to the initial
couplings via

J1 J|
== N=V2- 6.26
9o i 0 V2on ( )
One special case is the decoupling point (following the terminology of Kotliar and Si
(1996)) where the scaling dimension vanishes

HT2 = HO + Jdo (0'_ + O'+) (627)

and the system is trivial, exhibiting free spin precession. This limit is equivalent
to the spin—boson model without dissipation. More relevant for our analysis is the
Toulouse point, where

Ao = 1 (6.28)

and the Hamiltonian can be mapped on a noninteracting resonant level model (an
Anderson impurity model without spin). This situation corresponds to a large Jj
comparable to the bandwidth while the spin flip coupling J, can still assume arbitrary
values. It should be small, however, to ensure that no excitations close to the band
edges are generated which would invalidate bosonization (see (6.4)). Without going
into details at this moment, we just mention that the impurity physics at the Toulouse
point can be calculated exactly. At low temperatures the impurity spin forms a
singlet with the conduction band and the Kondo temperature is simply given by the
Anderson width Tk ~ g2 of the resonant level.

6.3 Flow equations

For general parameters, (6.22) is a nontrivial many—body problem due to the vertex
operators with noninteger scaling dimension A. Motivated by the recent calculation
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H

imp H band

Figure 6.2: Quantum mechanical system (impurity) coupled to an environment (the con-
duction electrons) by an interaction (the Kondo coupling). By means of a unitary trans-
formation, Hiy Is eliminated.

of Kehrein (1999) for the quantum sine-Gordon model, we now apply Wegner’s flow
equation method to diagonalize the Hamiltonian. A series of infinitesimal unitary

transformations
OuH = n, H] (6.29)

is performed so that the impurity and the conduction band are gradually decoupled
(see fig. 6.2). In the course of the flow, the structure of the interaction will change
and new terms will appear. We therefore introduce a position dependence of the
coupling

Hiy = / dzg(z) (VOhz)o~ + V(=A z) o) (6.30)

where initially
9(@)| _ = g0 o) (6:31)

1=0
In the momentum space representation we obtain

1 —ipT
glz) = \/—Zzp:gpe

1 )
V) = 1 / dz =7 V(. z) (6.32)
so that
Hiy = ng (A p)o~+V(=Ap)ot). (6.33)

Following Wegner, we define the generator as

N = [Hy, Hi) = Zpgp (A p)o~ + V(=X p)o?) (6.34)
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Figure 6.3: Diffusion of the Kondo coupling in real space. The resulting position depen-
dence of the coupling is shown for different values of the low parameter.

which leads to decreasing Kondo couplings. In the derivation we have used the basic
commutator

[Ho, V(A p)] = —pV (A, p). (6.35)

Note that, by definition, V' (A, p) corresponds to a creator of momentum —p if A > 0
and to an annihilator of momentum p otherwise. The choice (6.34) gives the main
contribution to the flow, although we will later introduce a second generator part n®
in order to keep the structure of the Hamiltonian as simple as possible. The leading
behaviour is obtained by just transforming the conduction band:

(W Hyl == p*gp (V(A,p)o™ +V(=A,p)at). (6.36)

It corresponds to an exponential decay of the couplings

8lgp = _p2 dp (637)

or, equivalently, diffusion of g(z) in real space (see fig. 6.3). Of course, no intrinsic
low energy scale appears in this decay. To capture the Kondo effect we therefore need
to go beyond (6.36). For the evaluation of further terms in the flow, we employ the
following generalized fermionic anticommutation relations

27

VD), V(=X —q)} = 5pqm|p|v_1

Viap),V(NgE = 0

(6.38)
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which are valid in the leading order of the OPE. Now we can take the interaction
part into account, neglecting products of operators with equal scaling dimensions:

('Y, Hiwe] = (6.39)
= D (=g gs VD) o™ +V(=Ap) ot V(A q) o~ + V(=X q)o]

= =S5 (5 VOVl -0 VOV (A},

The first term is a potential scattering contribution, which will (in parts) remain
finite in the limit [ — oo and lead to impurity effects. The second term has a new
structure, describing the coupling of the impurity to two band fermions. Within
our approximation scheme — the operator product expansion — it can, however, be
simplified. This is most easily seen by switching to the real space representation

HD, = > (0= gp9s {VIAD), V(=X )} 07

- / / d dy (9, — 8,) 9(x) g()] {V(\2), V(=A9)} 0°  (6.40)

and remembering that we can evaluate the anticommutator of two vertex operators
by the OPE (6.25). Due to the antisymmetric integration measure in (6.40), the
leading term drops out and we are left with the subdominant contribution

HD — /dx f(z)o® 0,®(x) (6.41)

where the coupling function f is determined by

af(z) = —A / dy [(9: — 8,) 9(2) g(v)] (= — )

1 1
" ([i(x e i)+ 1]A2> : (6.42)

We notice that — apart from the position dependence — the new term Héélv is equiv-
alent to the longitudinal exchange in the original Hamiltonian. In order to eliminate
it, we apply a two-step procedure:

o First, HY, is generated infinitesimally by integrating the flow from [ to [ + dl.

e Next, we perform an infinitesimal Emery—Kivelson transformation

U = exp {2 / dz r(z) B(z) UZ} (6.43)

like in the initial setup of the Hamiltonian.
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The transformation U leaves Hﬁélv invariant in the leading order. The conduction

band is modified according to
UHyU' = Hy + 0* / drr(z) 0, (z) (6.44)

so that with the choice
or(z) = =0, f(x) (6.45)

the new term (6.41) is compensated. Again, the unitary transformation leads to
a change in the scaling dimension. Assuming that g(z) and therefore also f(x) is
localized, we can extract the leading effect in a short-distance expansion

UVny)UY = V(\y) 0_+i/dxr(x) [@(x) a®, V(A y) 0_] +0(r?)

~ V(Ny) o + <z/dx7‘(x)> O(y) V(Ny)(—=o7)

= V\y)o  +id\®(y) V(N y)o~
= o V(A+dAy) (6.46)

where

d\ = di / dz y f (x) (6.47)

has been defined. No renormalization of the coupling occurs so far. We have to take
into account, though, that the assumption of localization is only valid on the length
scale

degg = V1 (6.48)

because the more rapidly varying modes g, have already been integrated out. We
therefore separate the bosonic field into a “fast” and a “slow” part

V(\z) = A Psiow (7) oiAPrast () (6.49)
where
' o—ikz—|k|/2
cbslow(x) = -1 Z n— U(k)
| k
Jkl<

e—ikx—\ﬂk/z

~ iy ————o(k) (6.50)
k#0 "k

is obtained by summing up only the slow modes and ®g, contains the rest. In
particular, upon normal ordering of the vertex operators, the two fields give different
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contributions:
A2/2
. i)\<I>lew . J— ( L ) / iA(I)slow
Te o= e
27‘(’\/2
N (6.51)

Now the important point is that in (6.46) only the scaling dimension corresponding
t0 D10 1s modified:

Uo~ V(A y) U = g7 Ot Patow oidPrast (6.52)

To avoid an explicit k—dependence of the scaling dimension, we approximate this
expression by a vertex operator with one single scaling dimension, but with a renor-
malization factor 8 chosen in such a way that the vacuum expectation values are
equal:

<6i()\+d)\)¢'slow eiAq)fast> — <ﬁ ei(/\+d)\)<1>>. (6.53)

From the normal ordering contributions (6.51) one easily obtains
B =i (6.54)
and the coupling constant is therefore replaced by a running coupling
g— g VI (6.55)
To proceed further we have to evaluate the flow of A. First we define
oa(z) = [iz + 1] + [—iz + 117V, (6.56)

From (6.47) and the definition (6.42) we obtain

AN = 2N / / dz dy (9, — 9,) 9(x) 9(1)] (= — y) aa(z — )

87T)\2 1 - )\2
= ngg -p |p|)‘ (6.57)

Let us now consider the second new interaction generated by the flow (6.39), the
potential scattering term:

A, = 5 30— 00 VAD VXD VAN VL) (659

pPq
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For a generic value of the scaling dimension, the Vertex operators are nontrivial
interaction terms, although (6.35) suggests a single particle interpretation. Mo-
tivated by the generalized anticommutation relations (6.38) we define normalized
Vertex operators in the following way

Cl=a,' V(A =p) , Cy=0a,'V(=Ap) (6.59)
where 5
™ 2_
a; = XD Ip* (6.60)
In the leading order of the OPE, the new operators behave like fermions
{C;’Oq} =Opg {C;;r’c;r} - {Cp’cq} =0 (6.61)
In this representation, the potential scattering term has the form
HR, =Y s, (CIC, - C,Cf) (6.62)
Pq

and its flow—induced change is given by

|
OHRZ, = 5D (0 +a) 990004 (CFC, = C, C) (6.63)

pq

It is convenient — although by no means essential — to suppress the generation of
non—diagonal terms with p # ¢. In particular, this reduces the number of cou-
pled differential equations to be solved and thus simplifies the numerical evaluation.
Therefore we introduce a second generator part

with real and antisymmetric coefficients

(2) —

2 = —n) (6.65)

which will be chosen in such a way that only diagonal terms in (6.63) survive. To
calculate the full flow, n® has to be commuted with every term in the Hamiltonian.
Several new contributions arise:

[ Hy) ==Y 0@ (p—q) (CLC,+ClC,) (6.66)

pq

[1?, Hig] = 2 Z - 77}3? 90 (VAp) o~ +V(=Ap)oT). (6.67)
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In deriving the last identity, the following symmetry property has been used:

g = 1t (6.68)

Note that the Kondo interaction is still written in terms of the unnormalized vertex
operators — this ensures that we can keep track of the flow of the scaling dimension,
which is essential for the calculation presented here.

Finally, we have to consider the effect of the potential scattering term (6.62) on
the flow. We first calculate the commutator with the main generator part

[, HP] = —Zpgp qur V(\p) o~ +V(-Apot,Ccic, —C,Cf
— —ZQp <a_p> 9pSpg (VN @) o™+ V(=X q)o"). (6.69)
Pq 4

which contributes to the Kondo coupling flow. Notice that the a—dependent pref-
actor does not arise once the offdiagonal potential scattering has been eliminated.
Furthermore,

@ HD] => 20 (CIC, +CIC,) (540 — $pp) (6.70)

pq
where another symmetry property

(2) —

Moy = ngg) (6.71)

has been used. Using (6.70), (6.63) and (6.66), we can now give a definition for 5®
that ensures the elimination of offdiagonal potential scattering terms:
2 1 (p+49)gp9q

= - Q. Q. 6.72
b 2p—q+2 (Spp — Sqq) P ( )

What has been achieved up to now? Within our approximation (truncation of the
OPE after the first nonvanishing order) we have obtained the following closed system
of flow equations:

gy = —p gp—{—gln\[/\ag)\—i-QZ n;?gq—2pgp8pp

8w )\2 1 — )\2
N = ngg M (6.73)

O1Spp = pgp ap
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Figure 6.4: Beta function of the flow.

for an extended Hamiltonian including potential scattering

H()=Ho+> g9, V(\p)o~ +V(=Ap)ot)+2 > s, C;)f C, (6.74)

It is now straightforward to discretize the momentum £ and solve the flow equations
numerically. A complete analytical solution of (6.73) is difficult due to the momentum
dependence of the couplings. However, not too close to the strong coupling fixed
point one may assume that potential scattering is irrelevant and that the main p
dependence in the couplings is given by the exponential decay (6.37). In the next
section we show that an analytical evaluation is then possible which already illustrates
the main features of the flow and furthermore yields the Kondo temperature.

6.4 Approximate evaluation

To get a qualitative understanding of the physics contained in (6.73) we neglect
potential scattering and approximate the coupling flow as

Aigp = —1* gp + gp I VI . (6.75)

The remaining momentum dependence — the exponential decay — is trivially taken
into account by defining a running coupling via

gpl1) = e §(1). (6.76)
One can then perform the momentum sum for 9;A\% and arrives at a set of two coupled
differential equations

og(l) = = g In(l) O \* (6.77)

e |
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Figure 6.5: Flow of the scaling dimension towards the Toulouse point. We consider the
symmetric antiferromagnetic Hamiltonian with J, = Jy = J.

AN = L H(A2) I7¥/2 g2(1) (6.78)
where a beta function
2NN (- AT (F)

H U

(6.79)

has been defined which is plotted in fig. 6.4. Remarkably, it has a zero at A2 =1
corresponding to a stable fixed point, which is precisely the Toulouse limit discussed
previously. In the course of the flow, the transformed Hamiltonian will therefore
always approach this exactly solvable point. In fig. 6.5, the flow of the scaling di-
mension is plotted for several initial parameters. Defining a logarithmic measure for
the flow parameter

z=1nl (6.80)

the running coupling can be formally integrated:

g@ﬂ::%emp{iA%xﬁv—i‘émdﬂA%xﬁ}. (6.81)

For weak antiferromagnetic couplings, the scaling dimension is always decreasing (see
fig. 6.5) and therefore ¢ will be renormalized to a smaller value. The renormalization
stops when A2 has reached its fixed point value. Examples for the behaviour of the
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Figure 6.6: Renormalization of the running coupling constant in the symmetric case
Ji=Jy=J. The initial value zo of the logarithmic flow parameter is determined by
the bandwidth and set equal to unity in the present calculation.

running coupling are shown in fig. 6.6. A very instructive reformulation of (6.77) and
(6.78) is possible by introducing new coupling functions

v(z) = V'L o exp {%x — i /Om dx’ /\2(:L")} (6.82)

1 A2(x)

= .

5 < 5 ) (6.83)
with initial values v(0) = J, /47 and u(0) = Jj;/47 + (’)(J”2). The flow equations then
take the form

u(zr) =

(6.84)

In the limit of small coupling J and as long as A2 — 2, they are equivalent to
the scaling equations derived by Anderson (1970). We thus recover the well-known
Kosterlitz—Thouless phase diagram (fig. 6.7). But obviously, deviations arise as soon
as A2 starts to flow. The most important advantage of the flow equation solution is
that the strong coupling divergence typical of scaling approaches does not occur here.
The effective Hamiltonian derived in the limit [ — oo (in the simplified treatment
this is a Toulouse model) has finite renormalized parameters (see fig. 6.6).
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Figure 6.7: Phase diagram of the Kondo model.

6.5 Kondo scale

From the approximate solution in the preceding chapter we can already extract the
characteristic low energy scale of the problem, the Kondo temperature. To do this, we
note that the [ — oo fixed point of the flow is the Toulouse Hamiltonian equivalent to
a noninteracting resonant level model. For the latter, the low energy scale is simply
given by the Anderson width of the resonant level and therefore

Ty ~ g(oo)?. (6.85)

One only needs to insert the value for the renormalized coupling which can be deter-
mined by solving (6.84) with Mathematica. Two cases are of particular interest:

e variation of J, at constant J|, corresponding to a fixed dissipation strength
o= (1 — Jy/4m)? in the ohmic spin boson model. In the limit J, — 0 we
obtain the power law

Ty ~ JTa (6.86)

consistent with scaling results for the renormalized tunneling amplitude
(Leggett et al. 1987).

e the symmetric Kondo model J; = J; = J. For small coupling, the low energy
scale is given by

2
T ~ J™ exp {—7”} (6.87)

with an exponent 7 =~ 0.30. Wohile the leading exponential dependence is
consistent with NRG and scaling results (Wilson 1975), the prefactor deviates
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from the expected 7 = 1/2. Possible reasons for this discrepancy are either
the neglected higher-order OPE terms, or the different cutoff schemes in the
fermionic and bosonized models. A similar deviation occurs in the flow equation
solution for the quantum sine-Gordon model; note however that in this case
the correction is much smaller (Kehrein 1999).

6.6 Calculation of observables

So far our objective has been diagonalization of the Hamiltonian, leading to thermo-
dynamic properties like the Kondo scale. Very often, however, one is also interested
in calculating expectation values and correlation functions of an observable O (an ad-
ditional hermitean operator which need not commute with H). In fact, the screening
of the local moment due to the Kondo effect is best seen in the dynamical spin—spin
correlation function of the impurity. As it is very difficult to obtain zero temperature
dynamical properties of correlated systems by other methods, we will now discuss in
detail how this can be achieved with flow equations.

The idea is to evaluate general matrix elements (m |O] n ) in the representation where
H(I) is diagonal, i.e. at [ = o0o. In order to do this, one needs to perform on O the
same sequence of unitary transformations as on the Hamiltonian. An additional set
of flow equations is therefore defined by

8,0 = [, 0). (6.88)

Like equation (6.29) for the Hamiltonian, this cannot be solved exactly and trunca-
tions are necessary. Once more our criterion to assess the importance of interaction
terms will be the OPE; the resulting approximations again become exact at the
Toulouse point. This is in contrast to the Luttinger model calculation presented in
section 5.1 where only the Hamiltonian flow closes in the bosonization limit. In the
following, we focus on the z—component of the local spin

O

o (6.89)

Instead of directly calculating the transformation of ¢, it is convenient to use the

representation
1
o° = 3 Cantal (6.90)
and consider o7 (l). For the additional terms generated by the flow we make the

following ansatz

ot(l) =h(l)ot +0* Z ap C’;’. (6.91)
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Each of the two generator parts then gives a contribution to the flow:
W0t D] = =D pgph(l) [V(Ap)o~ +V(=Ap)ot o]
—~ Zpgp ag [VONp)o~ +V(=Ap)o*,Clo"]

= _QZpng‘p CTUZ_’_ Zpgpapap " (6.92)

@0t = > ul; <2> a, [CIC,—C,Cl 0" C,T]

pgr

= 207 ) 02 a,C] (6.93)
Pq

In deriving these identities, we have again used the fermionic anticommutation re-
lations (6.61) of the C's which are valid in the leading order of the OPE. The flow
equations for the observable can now be written in closed form:

1
= §Zpapapgp
P

2 (6.94)
Oia, = —2pg,ap, h(l) + 2 Z 771(aq)

In general, they have to be evaluated numerically because no simple approximation
of the momentum dependence is possible. However, mult1p1y1n% the second equation
by a,, summing over p and using the antisymmetry nz(gq) = an, , the following sum

rule is easily established (Wegner 1999)
2 1 2
1=h +Zzap (6.95)
p

which is equivalent to the normalization of the spectral function (see below). From
the numerical solution shown in fig. 6.8 one can also see that the observable decays
completely in the thermodynamic limit, i.e. lim;_, h(l) = 0. This is a necessary
condition for Kondo screening, because in the final Hamiltonian H(oo) the impurity
is decoupled from the bath. If O(l = 00) still contained part of the local moment,
the impurity susceptibility would diverge. Similar observations have been made for
dissipative quantum systems by Kehrein and Mielke (1997).
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Figure 6.8: Decay of the observable in the course of the flow. The longitudinal coupling
is chosen as J = 1.0.

6.7 Dynamical susceptibility

After solving the flow of o (l) we now calculate the zero temperature dynamical
susceptibility as the response of the system to a local magnetic field:

x(t) = i6(t) ([o*(1),a*(0)]). (6.96)

Here () denotes a ground state expectation value. Inserting a complete set of eigen-
states, the imaginary part is given by

X' (w) = WZ (0 |o%] m)|* (6(w — Em + Ey) — 0(w + Enpn — Ep)). (6.97)

This expression is easily analyzed because the final Hamiltonian is diagonal
H(l =00)=Hy+ O(1/N) (6.98)

where the corrections to the dispersion can be omitted if one is only interested in the
leading O(1) term of the susceptibility. Using relation (6.90), we write the observable
as

4 z h _ 1
o (l)=h’o —Ezp:ap (Clo +C’p0+)+§2apaq (cic,—c,cl).  (6.99)

pq
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Figure 6.9: Imaginary part of the dynamical impurity susceptibility.
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In the thermodynamic limit, only the last term, which is of the potential scattering
type, will survive for [ — oo. In the following, we use the generalized fermionic anti-
commutation relations (6.61) in order to evaluate matrix elements of (6.99) between
noninteracting eigenstates. As the ground state of Hy is doubly degenerate due to
the free impurity, we choose

|GS) =110) (6.100)
where the 0 indicates the Fermi sea of the conduction electrons. Then
h2
(10101 0) = (6.101)
and
h h
<0T|§O' apCpMp):Eap (6.102)

give the contributions of the first two terms in (6.99). The remaining quadratic part
can still be simplified:

—Zapaq (cic,—c,cl) = Zapachoq+ Za (2¢ic, —1). (6.103)

pq p;éq

Note that the ground state expectation value of the diagonal part vanishes at half
filling

o|z (2cic,—1)[0)=0 (6.104)
and moreover
(ojctc,Ipg)=1 (p<0,q>0). (6.105)

In the last equation, p denotes a hole and similarly ¢ a particle excitation. The
spectral function can now be calculated

! T
X'(w) = WY ar (6w — ) — 0w+ 6)) (6.106)
p>0
+116 azaz (6(w— € —€) — 0w + €, + 7))
p,q>0

where the €, are simply the one-particle energies of the conduction band.
Results are shown in fig. 6.9. The curves display a broad maximum at an energy
of the order of the Kondo scale and a power law decay

X' (w) ~ w32 (6.107)

at high frequencies, consistent with results obtained for the ohmic spin-boson model
(see for example (Costi and Kieffer 1996) and (Costi 1998)). Here, the dissipation
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parameter is given by a = (1 — J;/4m)? as before. Note that the antiferromagnetic

weak coupling limit of the Kondo model corresponds to the case of strong dissipation
a — 17. At low frequencies one finds x”(w) ~ w, where the corresponding slope
scales as Ty> with a prefactor of order onel. From the fact that we are dealing with
an impurity of spin 1/2 one easily derives the normalization condition

/Ooo dw X" (w) =

which is equivalent to the sum rule (6.95).

In the weak coupling limit J; — 0 one obtains a universal scaling form of x"(w),
which only depends on the longitudinal coupling J; as shown in fig. 6.11. Note
that with increasing dissipation « (decreasing .Jj;) more and more spectral weight is
contained in the high—frequency tail.

Performing a Kramers—Kronig transformation, the real part of the susceptibility

can be calculated as
dw'
—P / W X (6.109)

T w—w

(6.108)

I

(see fig. 6.10). The resonance width is again determined by the Kondo tempera-
ture. From the peak value at zero frequency we determine the static susceptibility in
response to a local field:

Xo = X (w=0). (6.110)

Due to the Kramers—Kronig transformation it contains spectral information on all
energy scales. Results for different values of .J are shown in fig. 6.12. In the limit
of small coupling J; one again obtains a power-law behaviour well known from the
ohmic spin boson model (Costi and Zarand 1999)

1

Xor~ J, . (6.111)

IThis prefactor is not obtained correctly in the present approach. However, this discrepancy
occurs on an energy scale < wg and cannot be resolved in fig. 6.11. The deviation is due to the
approximations made here and will be improved in future publications.
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Figure 6.11: Universal scaling forms of the dynamical impurity susceptibility for different
dissipation strengths o = (1 — Jy/4m)? in the limit of small coupling J| : wg Is defined by
the maximum of the curves. One finds wy ~ Tk .
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Figure 6.12: Local static susceptibility of the Kondo model as obtained from (6.110).
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6.8 Conclusion

In this chapter we have outlined the application of Wegner’s flow equations to the
anisotropic Kondo problem. Using bosonization, the Hamiltonian has been written
in terms of vertex operators with a scaling dimension that changes in the course of
the flow. Higher interaction terms are thus taken into account in a concise notation.
This represents the main progress compared to earlier applications of the method
which were formulated directly in the fermionic language. In contrast to traditional
scaling approaches, flow equations close exactly at the Toulouse point which has
finite couplings and a nontrivial strong coupling behaviour. No divergence of the
renormalized couplings is encountered.

We are thus able to give an analytic description of the crossover from weak to
strong coupling by considering the flow of the scaling dimension. To leading order, the
correct low energy scale is obtained, while the subdominant term is only approximate.
Higher terms in the OPE would have to be considered for a more precise estimate.

Furthermore, the equilibrium dynamics of the impurity has been determined at
zero temperature by evaluating the flow equations for an observable. As an exam-
ple, we have calculated the local dynamical susceptibility, which is shown to be in
agreement with results known from the spin—boson model.

Problems are so far encountered in the calculation of the impurity density of states.
Here the new potential scattering terms give the leading contribution (in contrast to
the dynamical susceptibility), which turns out to be singular at low energy. It may
be necessary to take into account subleading terms of the OPE in order to remove
this deficiency.

Possible future developments include the extension of the flow equation procedure
to finite temperatures. In this case the operator product expansion has to be modified
to account for the smeared Fermi distribution of the conduction electrons. More
general Hamiltonians like the two channel Kondo model or an impurity in a Luttinger
liquid will also be accessible by the method.
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Summary

In this thesis we have discussed the physics of small but strongly correlated quantum
systems which are coupled to a metallic environment. At the same time our goal
has been the development and improvement of nonperturbative techniques that can
extract information from the many—particle Hamiltonians used to model quantum
impurity systems. The idea of the renormalization group has proved to be very
fruitful in that respect: Both NRG and flow equations are based on the elimination
of degrees of freedom and the construction of effective Hamiltonians. In NRG this is
achieved by actually reducing the size of the Hilbert space, while the flow equation
approach aims at rotating away coupling terms by successive unitary transformations.

Different regimes of applicability have been established for both techniques.
Wilson’s NRG provides a reliable tool for studying systems containing largely dif-
fering energy scales. With the DM-NRG presented here, dynamical properties can
be extracted accurately also in the presence of arbitrary symmetry breaking. Flow
equations, on the other hand, yield comprehensive analytic information about the
crossover between the high and low temperature regimes of many—particle systems.
They are, however, so far limited to models where bosonization permits efficient
bookkeeping of the interaction terms.

Characteristics of the two methods have been illustrated in the analysis of several
extended versions of the Anderson and Kondo Hamiltonians:

Narrow—band Anderson model

Motivated by controversial DMFT results on the Mott metal-insulator transition,
we have studied the limit of an extremely narrow hybridization function where the
bandwidth is the smallest energy scale in the problem. Using equations of motion,
we have established that close to the Fermi edge the total single—particle density
of states is always reduced by the impurity, because the large hybridization shifts
spectral weight into resonances outside the band. At weak coupling, this transfer of
weight has also been observed in the negative impurity susceptibility, while for a large
Coulomb interaction it has been found that higher many-particle excitations again
lead to a positive susceptibility. In addition, the impurity level spectral function has
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been calculated, exhibiting characteristic side peaks outside the conduction band.
We have demonstrated that due to these resonances the skeleton expansion breaks
down at an intermediate energy scale. Consequences for the Mott scenario have been
pointed out, as well as open questions with respect to the derivation of the DMFT
equations based on self-consistent perturbation theory.

Magnetic impurity in a correlated band

In order to model realistic impurity systems with interacting conduction electrons, we
have considered the Anderson-Hubbard Hamiltonian in the limit of infinite coordi-
nation number. It has been demonstrated that in this case the model can be reduced
to an effective two—site problem with an effective noninteracting bath. Based on a
previous DMFT study of the pure Hubbard model, we have calculated single particle
spectra and the dynamical impurity susceptibility in a nonperturbative fashion using
NRG. A strong enhancement of the Kondo scale due to band correlations has been
found, but at the same time an analysis of the flow diagram revealed that the system
remains a local Fermi liquid as long as the host is metallic. In particular, we have
demonstrated that in the limit of small hybridization the Kondo temperature always
vanishes exponentially, in contrast to results obtained previously. Furthermore, it
has been shown that noninteger filling of the conduction band reduces the effective
band correlations and their impact on impurity physics. We expect that the doping
dependence of the Kondo scale will be seen in future ESR measurements on rare
earth impurities in a strongly correlated host.

Generalized NRG for dynamical properties

Analyzing the Anderson impurity in an external magnetic field, we have found a
serious defect in the NRG technique used so far to calculate spectral properties. In
particular, it has become clear that for dynamical properties the principle of energy
scale separation is not generally valid: Small external fields or a temperature compa-
rable to the Kondo scale can strongly influence spectral features at high frequency.
This has been demonstrated explicitly for the spin resolved spectral density, where
the procedure previously used strongly underestimates the asymmetry of the atomic
levels. To solve the problem, we have developed a new formalism — the DM-NRG —
which is based on the reduced density matrix of the correct ground state. Accurate
spectra in agreement with the static magnetization have thus been obtained. The
new method, representing the true generalization of Wilson’s original thermodynamic
calculation, provides a unifying framework to calculate dynamical quantities at any
temperature. It will be essential for future DMFT calculations in phases with long—
range order, and also for studies of more general impurity systems including orbital
degeneracy.
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Direct application of flow equations

In a first attempt to diagonalize many-particle Hamiltonians using Wegner’s flow
equations, we have applied the technique directly to fermionic systems in second
quantization. The Luttinger model with forward scattering has served as a toy model
where calculations can be tested against bosonization and exact diagonalization. It
has been found that normal ordering of the interaction terms is essential to obtain
nonperturbative results. Truncating the flow and retaining only two—particle contri-
butions yields an interpolation scheme between the bosonization limit and the regime
dominated by band edges. For the Wolff model, we have demonstrated that flow equa-
tions close only in the weak coupling limit, due to the absence of an additional control
parameter like the momentum transfer cutoff.

Flow equation analysis of the Kondo model

Motivated by the studies of the Luttinger and Wolff Hamiltonians, the anisotropic
Kondo model has been analyzed in a different representation where the conduction
band is described by a set of bosonic spin density excitations. It has been shown that
in this way new terms generated by the unitary transformations can be parameterized
efficiently by using Vertex operators, while the truncation of higher interactions is
controlled by the operator product expansion. We have been able to characterize the
crossover between the weak and strong coupling limits by the flow of a single real
number, the scaling dimension. A nontrivial stable fixed of the formalism has been
established (the Toulouse limit) where the flow equations close exactly and no higher
terms are generated. Performing similar unitary transformations on a local observable
— the impurity spin — we have also calculated the dynamical susceptibility at zero
temperature. Problems have so far been encountered in determining the impurity
specific heat, where higher order terms of the operator product expansion may become
important. In conclusion, the formalism presented here has the advantage of yielding
analytic information about highly complex many—particle phenomena. At present,
bosonization of the conduction electrons and the existence of a Toulouse—type fixed
point are necessary preconditions for the application of the method. Important future
extensions include the generalization of flow equations to finite temperatures and the
application to more complex systems like the two—channel Kondo model.






113

Appendix A

Details of the mapping on a linear
chain

In chapter 1 we have outlined how the Anderson Hamiltonian can be transformed
into a semi-infinite chain with a logarithmic structure of the conduction band. Here
we give details for some of the missing steps. First we define the maximally localized
conduction band orbital dy,, following Bulla (1994). Using the expansion (1.7), we
write

[ de /AT, - (A1)

ATm eiwnpe —A~(n+1)
= o de \/ Ale +bng/ de \/Ale
%; [ g /A(n+1> (©) VUn il - (©) \/Un

Assuming that the hybridization function A is sufficiently smooth, it is easy to see
that in the continuum limit A — 1 the p # 0 contributions vanish. This is a conse-
quence of the Riemann—Lebesgue lemma known from classical analysis which states
that for any sufficiently regular function f the integral [ de f(e) exp(iwe) vanishes in
the high frequency limit w — oo. Keeping only the p = 0 terms is therefore equiva-
lent to approximating A by a step function (see fig. 1.3), which becomes exact as the
width of the steps approaches zero for A — 1. The maximally localized state then
takes the form

1
doy = \/—15_0 /_1 de \/ A(€) Ceo = % zn: (7:: Unoo + Vry bnOU) (A.2)

with the coefficients

1 AT
+ — de /(e A3
"= / L deV/AD (A.3)
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_A—(n+1)

-_ ! € €
= [ eVED (A4

and the normalization

fo=> (7). (A5)

n

Next, we derive the transformation of the conduction band

Hy = Z A™" (af a, — bl b,) (A.6)
n=0
into a linear chain form
Hy=Y" [en (df d, ., + h.c.)+ 6, df dn] . (A7)
n=0

The spin index o has been dropped as the two spin orientations decouple. To simplify
notation, we have also omitted the constant prefactor (1 + A™!)/2. The new single—
particle operators are given by the following ansatz:

djl = Z (unm a;'n + Upm bin) . (A.8)

m

The coefficients are determined recursively using the tridiagonalization procedure de-
veloped by Lanczos (1950), equivalent to Gram-Schmidt orthogonalization. Starting
from an initial one—particle state | ¥y ), a new single-particle basis is constructed
according to

on €n—1
A

7 N 7 N

€n| \I’n+1> = H0| an) - | lIln><qln |H0| \Iln>_| \Iln—1><\11n—1 |H0| lIln> (A,9)

and the d,, are defined via

|0, ) =d}|0) (A.10)

We choose | ¥q ) to be the mazimally localized state:
| o) =dj|0) (A.11)

where | 0) denotes the Fock vacuum. The initial conditions for the recursive proce-
dure are therefore given by

(A.12)
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Inserting the definition (A.10) into (A.9) yields

€n—1 = Z AT (u(n—l)m Upm — UYn-1)m Unm)
m

as a consequence of hermiticity. Furthermore

Op = Z AT (uim - vfm) .

(A.13)

(A.14)

Notice that for a symmetric hybridization A(e) = A(—¢) the coefficients v and v are

equal and the on-site energies ¢,, vanish. Finally,

2

6% = Z l (A_m Unm — €n—1 U(n—1)m — 5n unm)

m

_ 2
+ (_A " Unm — €n—1V(n-1)m — 5n Unm)
and the new creation operator d,1) is defined by the coefficients

(A_m Upm — €n—1 U(n—1)m — 5n unm)

1
Un+1)ym = —

Vn+1)ym = — (_A_m Unm — €(n—1) Yn—-1)m — 5n vnm) .

€n

(A.15)

(A.16)

(A.17)

This concludes the set of recursion relations. Due to the exponentially decaying
band energies, the above equations have to be evaluated using arbitrary precision

arithmetics for chain lengths N 2> 40.
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Appendix B

Iterative diagonalization with
rotational symmetry

In this appendix we give details of the iterative diagonalization of the truncated
Hamiltonians (1.12), see also Krishna-murthy et al. (1980). Let | [, N') denote the
eigenstates of Hy, with [ = 0 corresponding to the ground state. Suppose one knows
all the energy levels E(I, N) and matrix elements (I, N |df | ', N'). A new basis that
spans the Hilbert space of Hyyq is then provided by the following states:

|LN:O)=|I,N) (B.1)
[N 1) = dliy gyl L)
| LN L) =dl ) | LN)

| [LN:t) = dIN+1)TdJ(rN+1)¢| LN).

The matrix elements of Hyy; can be written down in this basis

(I',N3i' |Hya| LN ) = AV E(LN) 65 0w + Y AN ey x (B.2)

X (( l,aN |d;r\fa| l7N><7:, |d(N—|—1)(7| Z> + (i/ |dJ(rN+1)g| i><llaN |dNa| laN>>

and are completely determined by the knowledge of Hy (with i,7" € {0,1,],1l}).
Diagonalization yields the new eigenvalues E(l, N 41) and matrix elements of dIN Yo
and in this way the procedure can be iterated.

So far no use has been made of the spin (1.16) and charge (1.15) conservation. For
actual calculations the resulting block diagonal structure of the Hamiltonian can be
taken into account in order to reduce the size of the matrices to be diagonalized. Here
we consider the case where all three components of the total spin S are good quantum
numbers (which is not true anymore if a magnetic field is applied, see chapter 4). We
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can then construct a simultaneous eigenbasis of the operators H, (), S? and S*. Due
to
[H,S*] =0 (B.3)

states differing only in S*% are degenerate and can be represented by a single ”mul-
tiplet” state. Wilson (1975) realised that the diagonalization can be formulated in
terms of the multiplet states only, thus eliminating the degeneracy. This is achieved
by applying the Wigner—Eckart theorem (see for example Sakurai (1994))

(Q,8,5,r TN Q,5,5%r) = (B.4)

reduced matrix element Clebsch——Gordan
. 7\

QS ||TW| Q, 8, R) (S, k, 5%, 4|, k, S, 57Y.

In this expression, Tq(k) is the g—component of a spherical tensor of rank k defined by

the following commutation relations:

(5%, TM) = q T (B.5)

(SE,TM] = \/(kFq) (k+q+ 1) TE, (B.6)

q

In particular, for the creation operator d we have k = 1/2 and ¢ = £1/2. Instead
of working directly with (B.1) it is more convenient to form linear combinations that
are again eigenstates of the total spin:
| Q,S,5* 1)y = |Q+1,55%,710)y (B.7)
S + S*

| Qasv SZ7T;2>N+1

Q.S =157 =4 mit)y
S SZ

|Q S—%,SZ—’—%,T,\],)N

S—Sz—l—l

Voag g 1@t hnty
S+5*+1

o | @5+ 5,5 + il

| Q,S,SZ,T’;4>N+1 = | Q_ l,S,SZ,T;Ti,)N

| @, 5, 5%,7:3 ) N

It turns out that knowledge of the reduced matrix elements (||d]|) is suf-
ficient to write down the Hamiltonian matrix for the new hopping term
AH = za(d}LVUd(N-i—l)a + h.c.) because

(Q.5,7'31 [AH] Q,5,7:2) yyy = (@ + 1S, IldN11Q.S — 5,7 (B)



119

(@S, 1 IAH| Q,8,733)yyy = (@ +1,8,7||dy ||Q5+ S TIN

R 25

<Q737Ta2|AH| Q7S7T;4>N+1: 2S+1<QS__T||d ||Q 17S7T>N
Jp— 25 +2

<Q757Ta3|AH| Qasar;4>N+1:_ 2S+1<QS _Ir||d ||Q 1757T>N

Inserting this result into the recursion relation (B.2), one can diagonalize Hy,1 and
thus obtains the new eigenenergies En.1(Q, S,w) and eigenstates

|QSwN+1 ZUQSWTZ)|QS7’Z>N+1 (B.9)

’LT‘

where U is an orthogonal matrix. In the final step, the new reduced matrix elements
(Q, S,w||f]Tv+1||Q’, S',w') are directly obtained using (B.9) and the definition (B.7).
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Appendix C

Calculation of p(w) and x(w)

In this section we outline the calculation of dynamical quantities within the NRG
formalism presented in appendix B, which has been applied to the Anderson impurity
in a correlated band (see chapter 3). In particular, rotational invariance is taken into
account by writing both the single—particle spectrum and the dynamical susceptibility
in terms of reduced matrix elements. For simplicity, we focus on the case of even
chain length N where the ground state is a singlet (S, = 0) and nondegenerate.

Single—particle spectrum

From the eigenstates in iteration step N and the matrix elements of the impurity
fermion f§ the spectral density on the frequency scale w ~ A="/2 is obtained: *

py(w) = ZI /31 9)w1? 0 (w = (Ban — Egn))
py(w) = ZI g |fia)yl? 8 (w = (Egn — Eay)). (C.1)

The ground state | g ) and the excitations | a ) can be characterized by their quantum
numbers

l9)ny = |ansg:075§:077"g>]v
la)y = |Q,S,5%r)y (C.2)

where the additional indices 7, r, count states within a sector of fixed charge and
spin. As shown in the previous section, 70/2 = ( fTJr , ff) is a spherical tensor of

IHere we consider only the isotropic case where o =1, | are equivalent. If this symmetry is broken
(for example by an external magnetic field) one has to apply the DM-NRG approach introduced in
chapter 4, which however cannot be formulated in terms of reduced matrix elements.
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rank 1/2. By using the Wigner—Eckart theorem (B.4) we can therefore eliminate the
S# degeneracy and obtain

p@) = 3 Qg+ 1,8y + 1/2,7(11]1Qq Sy ) |
X8 (w—(Ex(Qy+1,5,+1/2,7) — E,n))

1 2

pv@) = 530 K Qo Syl f11Qy = 1.8, + 1/2,7)

%8 (w— (Byny — Ex (Qq — 1,8, +1/2,71))). (C.3)

The reduced matrix elements of the impurity fermion are calculated recursively in
two steps:

e After diagonalization, the new eigenstates are unitarily related to the previous
basis by the transformation (B.9). One can therefore write

(Q.SwllflQ,s" w)y = (C.4)

4
= Z Z UQS(warp) UQ’S’(wlarlp,)<Q7‘Sa r,p ||fT|| Q/,S,,’I",,p,>N

rr! pp'=1
with the p = 1,...4 states defined in equation (B.7).

e The following recursion relations hold for the non—vanishing matrix elements:

(@, S,r 1|f1|Q — 1,5 £1/2,7" 1)y =
=(Q+1,S7||f1Q,S £1/2,7")n_4

(@Q,8,m 2 fMQ—1,5+1/2,r",2)y =
2:/5(5 + 1)

- ——_— _ T _ /
25 + 1 <Q7S 1/27T||f ||Q 1757T>N—1

<Q757T72||fT||Q -1,5 - 1/2,7”,,2>N =
= _<Q7S - 1/27T||fT||Q - 17S - 17T/>N—1

(@Q,S,m,3f1Q —1,5+1/2,7",3)x =
= _<Q7‘9+ 1/27T||fT||Q - 17S+ 17T,>N—1

(@Q,8,m3IfMQ - 1,5 —1/2,/",3)n =
2,/S(S+ 1)

= - @ @ T _ !/
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(@,8,m2|f1Q - 1,8 - 1/2 3y =

= oo (@5~ /2,0 1IQ — 1,5,

(@S, 7,3l F11Q - 1,8 +1/2,1",2)x =

1

= T _ !
2S+1<Q75+1/27T||f||Q 1787T>N—1

(@Q, 8, 4fYQ 1,5 £ 1/2,1" 4)n =
= <Q - I,S,’I"HfTHQ - 275:|: 1/27T/>N—1

Inserting the resulting matrix elements into equation (C.3) then yields a set of peaks
at positions determined by the excitation energies. These have to be broadened in
order to get a continuous spectrum. It has been found by Sakai et al. (1989) and
Costi et al. (1994) that a logarithmic Gaussian yields the best results:

e~ bn/4

. _(nw—Inw,)?
b /7 P B2 '

This type of broadening is also used for other dynamical quantities like the suscep-
tibility. Most spectra in this thesis have been obtained by using a broadening factor

b=0.5.

Nw—wp) — (C.5)

Dynamical susceptibility

Within the NRG formalism we calculate the imaginary part of the dynamical sus-
ceptibility on the frequency scale w ~ A=/2 according to

—WZI 0" 9)n 1" (0w = Ean + Egn) — 6(w + Eav — Egy))  (C.6)

using the same notation as before. As for the single particle spectrum, we can elim-
inate the dependence on S% by applying the Wigner—Fckart theorem. It is easily
verified that the following components of the impurity spin form a spherical tensor

of rank 1:
1
—2 o+
Tq(l) = o? : (C.7)
1 -

V2
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The expression (C.6) then simplifies to

Xy(w) = 71'2 (Qg, Sg + L1 ||| Qqs Sy = 0>T9>N|2 (C.8)
X (5((*‘} - EN(Q!]? Sg + 17T) + EgN) - 5((*‘} + EN(Q97 S!] + 17T) - E!]N))

where the summation is now restricted to the excitations in the @ = Qg, S = S, + 1
sector. The reduced matrix elements are again obtained in two steps:

e After diagonalization, a unitary transformation analogous to (C.4) has to be
performed:

(Q,S,w llol| @', S'sw' ) = (C.9)

4
= Z Z UQS(warp) UQ’S’(wlarlp/)<Q7‘Sa r,p ||0|| Q,as,ar,ap/>]v

rr! pp'=1
e The following recursion relations hold:

(Q,S,T,l ||0|| Q?‘S,?571> =
=(Q+1,5r ||| Q+175/73>N_1

(Q,8,1,2||o]] Q7S_1’572>N:
:<Q7S_%7T ||U|| QvS_%78>N_1

(Q,5,r,2][0]] @,5,5,2)y =

S+ )28 1)
B S(25 + 1)

<Q,S—%,T ||0||Q7S_%7S>N—l

<Q757T72 ||0|| Q>S+17572>N:
S(25+3
:\/ ( ) <Q7S_%7T||O-||st+%as>]v_1

(S+1)(25+1)

<Q737T>3 ||U|| QvS—1>S>3>N:

S+ 1)@25 1)
B S(25 +1)

(Qas‘i‘%ﬂ”HUH Q7S_%’S>N—1
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(@, 5,130 Q,5,5,3)y =

S(25 +3
) \/<S+(1>(2+sll> (Q.5+ 5.7 lloll Q.5 +35.5)5

<Q787T73 ||U|| QaS+1>S>3>N:
= (QaS—i_%aT”O—” Q7S+%7S>N_1

<Q757T72 ||0|| Q7S_17573>N:
1
:m(@s—%ﬂ' loll Q.5 —5,8)p_,

<Q7‘Sar72 ||0|| Q7S7S73>N:
_ ! 1l 1
_\/(S+1)(25+1)<Q7S 277'” ||Q7S+2’S>N—1

(Q, 8,13 0] @,S,82)y =
1
:—m(Q75+%77’ loll Q.5 —5,s) 5,

<Q,S,T,3 ||0||Q7S+17572>N:
1
= — S+ 1 S+ 1
T (@S bl @S e

(Q,S,r,4 o] Q,5",s,4)y =
= (Q—l,S,T ||O’|| Q_LS/?S)N—l

All matrix elements not shown are zero.
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Appendix D
Details of the Wolff model flow

In this appendix we present the full differential equations for the flow of the couplings
n (5.45). The relevant commutators were evaluated using the symbolic engine of
Mathematica.

OE(l) = Z 2(q1 — q2)(ng, — nq2)vq21q2

q192

+ Z [ a1 — CIZ —2n4, + nqz)”qg(_l + nq4)Uq1q2q4q3Uq2q1q3q4

414929344
—2(¢1 — q2)”q1 (—1+ ”qz)(”qg - ”q4)Uq1qzng4quq1q4q3

+(q1 — q4)”q2(_1 + ”(J3)”q4Uq1Q4Q3qz qung4q1]

+ Z [Q(QI — @3)1, Vi (=1 + 14 )W gog005 — 7as Wi gsa)

4149243

+2(q1 — @) (=1 + Ng, + nqz)nqsvququqaqsm]

+ Z [ Q1 —q2+qs — Q4)”q1( 1+ ”qz)(”q3 - nQ4)WQ1Q2Q3Q4WQ2CI1CI4CI3

914929344

+214, (=1 4+ ng,) (= (1 — @2 — @3+ @4) (2ng, — 10.)War00000s Werarisaa)

(g2 = q0) (=1 + 200 )Wo, o040 Wasasasas)

+2(q1 — @2 + g3 — ) (g, (ng (1 + ngy — 2ng,) + (1 + gy ) (=1 + 14, )W 4230
14, (=1 + 1 )0 (—Waoigaas0 + Wargaasa:)) Wagsauan

+2(q1 — g2 — g3 + qa) (=1 +1g,) (g, — 1ge) (=1 + 14 )W o040 W asasn
F2(—q1 — g2+ g3 + q)ng, (=1 + 165) (=1 + 10) W 40205 Wasqraace

+ng,(=2(q2 — @3)104, (=1 + ngy, + 14 )W, 02030: Wengaq105

g, (=2(q1 — q2) (=1 + 14,) W 2000 Wasqraags

+2(—q2 + q)10 Worqugoa Wasasaaas)
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+2(Q1 - 93)(_1 + an)(_l +ng + nQ3)WCI1Q2(I2CI3W(ISQ4(I4CI1)] (D-l)

31‘/;01192(“ = _(pl - p2)2 %11’2

+ Z (pl +p2 — 2q1)VZD1(thD2CI1]
a
+ Z (p1 —p2+q1— QZ)(ncn - nqg)Vq1q2Up1p2q1q2]
na
+ Z (@1 — q2)(ng, — nqz)VQ1Q2Up1pch2q1]
g
+ 37 (0002 = @)y = (01— @) (=14 14) + (=2 + 1)) X
919293

UpionaseeUnpageas + ((p1 —q)(—1+ ”ql)n% + g, (pr +p2 —2q1 + (—p1 + ql)”ql
+(_p2 + ql)nqg))UP1CI1Q2Q3UQ1P2CI3CI2 + (ql - q2)(_(n(hnqg)
+1g, (=1 + 1g, + 142) ) Up,gsg2a1 Ugr o

+(Q1 - qZ)(annqg - nql(—l +ng, + nqz))Up1q3q1q2Uq2q1q3pz]

N Z [(91 — ©)Vare (Wpiaiaers + 10 (=2Wopipagar + Wiaigops)

q1492

+nCI2 (2Wp1p2(I2CI1 - 2WP1Q1CI2P2 o Wp1Q2CI1p2) + WP1Q2Q1P2)]

+ Z [nqg(_((pl — P2 — @1+ G3) (=1 + 1) Upipogeas W o0s)

419243
+(_p1 + P2 — 1 + q3)nqgUP1P2Q1Q3W(I2Q1QSQ2)

+(p1 —p2t+q— QZ)(_l +ng, + n(I2)nQBUp1p2Q1Q2 quz%m]

+ Z [(n(n — N WV 2(P1 = P2 + 01 — ©2)Woipagiao

q192

+(p1 —P2—q1+ q2)Wp1(I1(I2p2 + (—p1 +p2—q1 + %)Wmcpqlpz)]

+ § : [ —q2 + q3 Ny (an Up1p2(I2(I3 WCI1(I2CI3(11 + Ngs Up1p2Q3Q2 WQ1Q3(I2Q1)]

4192493

+ Z [ = 2(p1 — 1+ @2 — g3) (=1 + 1, ) (Ngy — 1)W1 q1g20s Warpaasae

4919293

+(q1 — g3)(—1+ nq1)( 1+ nqz)Wp1q1q3p2Wq1ng2q3
+(p1— @1+ g2 — CI3)(” (1+ Ng, — ang) + (1 + nqz)(_l + nqz))Wp1q1q2q3Wq1q2q3p2
_(pZ —q1+q — QB)Wp1Q3Q2q1((nq1 - ”qz)(_l + ”(I3)Wq1p2q3cJ2
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(=214, ngs + ngy (=1 + 2ng, + 145) ) Woy 424595 )
(p2 —q1t 42— q3)Wp1Q1(I2Q3(2nq2(_l + nqs)W(I1p2q3q2
+(_((_1 + 2”(12)(_1 + nqs)) + nq1(1 - 2n(I2 + nqs))Wq1(I2q3p2)
(92 — g3)(1 — gy + ngy (=1 + gy + 14 ) Worgs00p: War ga a5
(P — @1 — @2+ @3) (=1 4 ng, + ng,) (=1 + 16 )Wop141030: Warasasms
(p2 —q1— G2+ q3)Wp1Q2q3Q1(nq1(1 + Mgy — anB)quﬂDqs
(=1 4 16, ) 145 (~Worpagsas + Wargagopz))
g, (2(p2 — @1 — @2 + @) (Ngs — 1g)Wii014500 Wanpogoas
+2(=¢2 + @3)1Wpiprpas Wi gagsan
+(QZ - Q3)nqs(_2Wp1p2q3(I2 + WP1Q2q3p2)WQ1q3qw1)
+(p1+ @1 — @2 — 43) (Mg Wi goquas + (204, (=1 + 1g,)
+(L + 16— 214, )10,)Wp14s010:) Wespaasan
—p2— 1+ G2+ q3)(=1+ nq2)(_1 + nqs)Wp1Q2(I1q3WCI2CI1(I3p2
p1+ @1 — @2 — 43)(NgNgy — 20, (=1 + ng, + g )Whig010 Wi asms
F1g, (=1 +1g,) (= ((p1 — @1 — @2 + 63) CWpraaas0: = Wingnasa) Wanpaaogs)
=2(p1 — P2 — @1 + ) Woipogs0 Wanaogoas)
—2(p1— P2+ @1 — Q3)nqsWp1p2(I1q3WCI2Q1Q3q2)

+2(p1 =2+ @ — @) (=1 + Ng, + nqg)nq3Wp1p2q1q2Wq2q3q3q1] (D.2)

(
(
(
(

alUp1p2P3p4(l) = _(pl —P2tpP3— p4)2Up1p2P3p4
+ Z [(pl — P2+ 03 — @) Vs Upipopsas + (=1 + P2 + pa — 01) Vs Upipaaips

q1

+(p1 +P3— D4 — ql)%szplqum + (pZ — D3t Ps— QI)V;JHHUPBMQMJQ]

+ Z [(p4 - Q1)V;)4q1 Up1p2p3(I1 + (p3 - ql)vpgfh Up1p2(I1p4
q1

+(p2 - ql)%ﬂll Up1(11p3p4 + (pl - ql)vpﬂh Up3p4qwz]

+ Z [(p3 + D1 = 2q1) (ngy — 142 )Uprgoqipa Upsaraops

q1492
+(p1 + p2 — 2(]1)(”(11 - nCI2)UP1(I1(I2P4Up3(I2CI1p2
—(p1+p2 = 2q1)(—1+ Ng, + nqz)Up1q1p3q2Uq1p2q2p4

_(p3 + P4 — QCII)(_l + Ny, + nQQ)UPIQZPB(Il Uququz]

+ Z [ — ((p3 =P+ @1 — ©)Upspuqian (—2(ngy — 1) Wpipogoan

q1492
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+(1 + g — 2”(12)Wp1cnquz)) - (p3 —Ps— ¢+ q2)(_1 + ”Qz)Up3p4q2q1 Wi gaape
—(pr—p2ta— Q2)Up1p2q1q2(_2(nq1 - nqz)Wp3p4q2q1 + (1 + Ng, — 2nq2)Wp3q1q2p4)

_(pl —p2—q1+ QZ)(_I + nqz)Up1p2q2q1 Wp3q2q1p4]

+ Z [(n(h - ncm)((pl —P2— Q1+ QZ)Up3p4Q1(I2Wp1(I1Q2p2

q1492

+(p1—p2 + @1 — Q2)Up3p4q2q1(2Wp1p2q1q2 - Wp1q2q1pz)
+(p3s —ps—q1 + Q2)Up1p2q1q2 Wsqrazpa

+(p3s —ps+q1 — Q2)Up1p2q2q1(2Wp3p4q1q2 - Wp3q2q1p4)) (D.3)

oW, DP1P2P3P4 (l) = _(pl — P2+ Pp3— p4)2Wp1p2P3p4
+ Z [ g — 1) (01 — ©@)Upipageas Upspuarae + (P1 — p2)UP1P2Q1Q2Up3p4Q2Q1)]

q1q2

+ Z [ ‘/;14(11 Wplpzpsfh + (p3 - Q1)V;33q1 Wplp2611p4

+(p2 — Q1)szcn Wraipspa + (p1 — ql)‘/pl(II Wp3p4q1pz]

+ Z [(pl — P2+ 3 — @) Vs Woipapsar T (=P1 + D2 + Pa — 1) Vogas Wpipoaups
a1

+(p1 +P3 — P4 — ql)‘/;)Q(Ilelqu?szi + (p2 —P3tPps— QI)%1Q1WPBP4Q1P2]

+ Z [ —((p1 = P2+ @1 — @) (2(—ngs + 14 )Wpipaaras + 2as Wpigea1p2) Wpspagear)

7142
L+ ng, ) ((P1 — ©2)Wpig1010: Wpspaaapa
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p3—ps— @+ @) (=1 + 1) Wi go00s Woapagsar — Wsaiaopa)

P3—Pa— @1+ @) (=1 + 1) Wh 1000100 Wosar asps

)

)
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(

—( (
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—( (
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—(

(

—(

(

(=
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(
+(p3 - QZ)Wp1p4q2p2 Wosaiqige + (pZ - QZ)Wp1p4p3q2 Wapsaa
+(p4 - QZ)prgpgqg Wq1p4q2q1) + (pZ - QI)(_l + nqz)Wp1q1p3p4Wq1q2q2p2
+(p4 - CII)(_I + nqz)Wp1q1p3p2Wq1q2q2p4 (D-4)

In the numerical implementation, the last equation has to be symmetrized explicitly:

1
W gagsa: — §(Wq1qzqzq4 + Weaae) (D.5)
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