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Exercise 1: Left- and right-handed projection operators (3+7 points)
We define the following projection operators, projecting on the left- and right-handed
components of the Dirac spinors
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i) Show the following properties of projection operators

P} =P, P:=Pr, P,Pr=PrP,=0. (2)

ii) The helicity is defined as the projection of the spin S of a particle on its momentum
P
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Show that in case of the massless Dirac equation, the left- and right-handed spi-
nors defined by Prus(p) and Prvs(p) are eigenstates of the helicity operator and
determine the eigenvalues. Does this also hold for m # 07
Exercise 2: Covariant Electrodynamics (5 points)

The Lagrange density of Electrodynamics is given as
1
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with x = 2# = (t,x), A*(x) = (¢(z), A(x)), where ¢(z) is the scalar- and A(z) the
vector-potential. The current is given as j* = (p(z),j(x)), where p(x) is the distribution
of electric charge and j(x) the electric current. The electromagnetic tensor is defined as

FH o= 9" AY (z) — 0" A*(x). (5)
Use the Euler-Lagrange equations
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to derive the covariant inhomogenous Maxwell equations.

Exercise 3: Functional derivative (5 points)

Consider the following 1-dimensional action

tr

ﬂﬂzjiuwwwwwx (7)

t;

with Lagrange function

Calculate the functional derivative ‘;i([?)] for t; <t <ty.




