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Hint: On this exercise sheet you need the wave functions of electrons in a periodic potential, the so-called
Bloch functions ψn~k(~r). They can be written:

ψn~k(~r) = un~k(~r)ei
~k·~r

where un~k(~r) is a lattice-periodic function with dimension L−3/2. The determination of the wave function
is thus reduced to the determination of un~k(~r).

Problem 1 (Bloch Functions) (3 points)

The Bloch functions are lattice-periodic functions, and therefore can be converted into the reciprocal
space by a Fourier transformation. It may be helpful to express them by dimensionless coefficients
Cn~k(~G),

un~k(~G) ≡
Cn~k(~G)
√
NΩ

with
∑
~G

|Cn~k(~G)|2 = 1,

where Ω is the volume per unit cell, and N is the number of unit cells in the crystal. Assume that the
spin does not have to be considered as a quantum number of the Bloch states. EF is an upper limit for
the energies to be considered. The electron density per unit cell as a function of the Bloch functions
is then given by

ρ(~r) = 2
∑
n

∑
~k∈BZ

Θ(EF − εn~k) |ψn~k(~r)|2.

a) Using the given relations, calculate the normalization of the Bloch states, first per unit cell. How
are the Bloch states defined above normalized with respect to the total crystal volume?

b) N~k is the number of allowed ~k points in the Brillouin zone. Show that the following applies to
the number of electrons:

Ne =
2

N~k

∑
n

∑
~k∈BZ

Θ(EF − εn~k).

c) How many electrons are allowed per band? For the sake of simplicity, consider the case that all
relevant band energies are below the energy EF .

Problem 2 (Free Electrons on a Square Lattice) (3 points)

In this task, we sketch the band structure of free electrons on a square lattice, in order to better
understand electronic band structures. In the process, we will see that even in this simple situation,
the band structures may take a complicated form. Assume the dispersion relation is:

E(~k) =
~2

2m
|~q|2 =

~2

2m

∣∣∣~k − ~G0

∣∣∣2



~k is restricted to the first Brillouin zone and ~G0 is a reciprocal lattice vector of the square lattice.
Sketch the dispersion relation along the path Γ - M in the Brillouin zone (see below) up to an energy
5h2

4ma2 . You can use a computer to do this.

(Hint: You must also consider neighboring Brillouin zones with ~G0 6= 0. In the lecture you will identify
this situation with bands of higher energy.)

Problem 3 (Schrödinger Equation in a Periodic Potential) (4 points)

In the lecture, a general procedure to solve the Schrödinger equation in a periodic potential V (~r) with
Fourier coefficients V~G was discussed. The Fourier coefficients u~k of the Bloch wave functions are given
by the solution of the following eigenvalue problem:(

~2

2m

(
~k − ~G0

)2
− ε
)
c~k−~G0

+
∑
~G

V~G−~G0
c~k−~G = 0 mit u~k(~r) =

∑
~G

c~k−~Ge
−i ~G·~r

Consider a one-dimensional crystal with lattice constant a. The potential is given by V (~r) = 2V0 cos 2πx
a .

The eigenvalue problem can then be rewritten as follows:∑
~G

M~G0, ~G
c~k−~G = ε c~k−~G0

a) What is the structure of the matrix M? Write an expression for the matrix elements M~G0, ~G
.

b) Write a program to diagonalize the matrix M for k = 0. In principal, M is infinitely large. You
can restrict yourself to ten neighboring Brillouin zones in positive and negative direction, i.e. G0 ∈
{−10 2π

a , · · · , 10 2π
a }. The diagonalization yields the energy eigenvalues ε and the eigenfunction

coefficients ck−G0 . Use this to calculate the Bloch wave function of the band with minimal energy.

c) Plot the modulus of the wave function of the band with lowest energy as a function of x. Use the
following parameters: V0 = 100, a = 1, ~ = 1, m = 1. In the case of such a strong potential you
can expect the wave functions to be localized.


