Goethe-Universität Frankfurt Fachbereich Physik

Lecturer: Prof. Dr. Roser Valentí, Room 1.130 Tutorial supervisor: Karim Zantout, Room 1.142

Frankfurt, 04.11.2019

Einführung in die Theoretische Festkörperphysik Winter term 2019/2020

Exercise 3

(Due date: 11.11.2019)

Problem 1 (Chemical Binding Energy) (4 points)

The interaction energy between two ions i and j of an ionic solid is give by

(1)
$$U_{ij} = \frac{Z_i Z_j e^2}{4\pi\varepsilon_0 r_{ij}} + \lambda e^{-r_{ij}/\rho}, \quad \lambda > 0,$$

where Z_i is the charge of the *i*-th ion and r_{ij} is the distance between the *i*-th ion and the *j*-th ion.

- a) The first term is the Coulomb interaction between the ions. What does the second term qualitatively represent?
- b) Calculate the binding energy in the case of a one-dimensional ionic solid with alternating charges +e and -e.

<u>Hinweis</u>: The second term in equation (1) is so strongly decaying that you only have to consider it for your nearest neighbor.

c) Calculate the equilibrium distance between the ions. Suppose $\rho = 0.35$ Å and $\lambda = 0.5 \cdot 10^{-8}$ erg. <u>Hinweis:</u> Calculate the solution numerically, e.g. using the bisection method or by entering the relevant terms in a common coordinate system. For a numeric method to converge, you may need to select appropriate units. SI units are not helpful here because the numbers are too small.

Problem 2 (Coupling Constant) (3 points)

Consider a 1D atomic chain where the atoms are located at positions $R_n = na$, $n \in \mathbb{N}$. Let *a* be the lattice parameter. The force between two atoms can be modeled by Hooke's law with stiffness $K_{ij} = K(R_i - R_j)$, i.e. the atoms are coupled not only to the nearest neighbors. Assume a linear dispersion $(\omega(k) = \eta |k|)$, where η is a constant. Determine K_{ij} .

<u>Hint</u>: Write down $K_{ij}(k)$ explicitly and calculate the inverse Fourier transform.

Problem 3 (Photoelectric Effect) (3 points)

Let a hydrogen atom be in its ground state with well-known wave function:

(2)
$$\langle \vec{r} | 0 \rangle = \frac{e^{-r/a_0}}{\sqrt{\pi a_0^3}},$$

where a_0 is the Bohr radius. This atom is being radiated by a radiation field with polarisation vector $\vec{\epsilon} = \hat{z}$ and the electron is emitted. The final state is given by

(3)
$$\langle \vec{r} | f \rangle = \frac{e^{i \vec{p}_f \cdot \vec{r}/\hbar}}{(2\pi\hbar)^{3/2}}.$$

In the electric dipole approximation we get – in this special case – a "transition probability"

(4)
$$\omega_{0\to f} \propto \left| \left\langle 0 \left| \hat{A} \right| f \right\rangle \right|^2 \delta(E_f - E_0 - \hbar \omega),$$

where $\left\langle \vec{r} \left| \hat{A} \right| \vec{r'} \right\rangle = \delta(\vec{r} - \vec{r'}) \frac{\partial}{\partial z}$, *E* is the state energy and $\hbar \omega$ is the photon energy. Calculate the transition probability explicitly. How does it depend on the emission direction of the photo-electron?