Goethe-Universität Frankfurt Fachbereich Physik

Lecturer: Prof. Dr. Roser Valentí, Room 1.130 Tutorial supervisor: Karim Zantout, Room 1.142

Frankfurt, 16.01.2020

Einführung in die Theoretische Festkörperphysik Winter term 2019/2020

Exercise 11

(Due date: 27.01.2020)

Problem 1 (Specific heat of a semiconductor) (3 points)

Consider a semiconductor model where the density of states for valence and conducting band are constant, i.e.

$$\rho(E) = \begin{cases} \frac{1}{E_0} &, \ 0 < E < E_0 \text{ and } E_0 + \Delta < E < 2E_0 + \Delta \\ 0 &, \ \text{else} \end{cases}$$

Moreover, we assume one electron per unit cell in the system. How does the specific heat depend on the temperature in the limit of low temperatures?

Problem 2 (Extrinsic Semiconductor) (4 points)

Consider a semiconductor with gap Δ , doped with donor atoms with concentration n_D . The doping introduces energy levels within the band gap, with distance ϵ_D from the conduction band edge. Let the chemical potential be located close to the conduction band edge, $\mu \approx \Delta$ (with respect to the upper valence band edge which defines E = 0 here).

Hint: We consider temperatures $k_B T \ll \Delta$, which is fulfilled at room temperature for semiconductors with a large gap Δ . Electrons and holes are treated as free particles with same effective mass $m_e = m_L$. Furthermore, we approximate the dispersive bands as constant for simplicity.

- a) How many electrons are provided by the donor atoms on average (assuming single ionization)?
- b) From the neutrality condition $n_e = n_L$, derive the relation

(1)
$$n_D = 2A \left(A e^{\frac{\epsilon_D}{k_B T}} + 1 \right) \left(\frac{m_e k_B T}{2\pi \hbar^2} \right)^{3/2}$$

Hint: Show that the valence band almost doesn't provide any conduction electrons.

Problem 3 (Slater determinant) (3 points)

We consider the fermionic creation operator $c_k^{\dagger} = \sum_{r_i} e^{ikr_i} c_{r_i}^{\dagger}$ that creates states $|k\rangle$ with wave function $\psi_k(r) = \langle r|k\rangle = \langle 0|c_r c_k^{\dagger}|0\rangle$. Rewrite the wave function

$$\psi_{k_1,k_2,k_3}(r_1,r_2,r_3) = \langle 0|c_{r_1}c_{r_2}c_{r_3}c_{k_1}^{\dagger}c_{k_2}^{\dagger}c_{k_3}^{\dagger}|0\rangle$$

of a system of 3 fermions in terms of a Slater determinant.