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Übungsgruppenleitung: Karim Zantout, Room 01.142

Frankfurt, 16.04.2019

Theorie zu Magnetismus, Supraleitung und Elektronische Korrelation in
Festkörpern

Sommersemester 2019

Blatt 3
(Abgabe: 07.05.2019)

Aufgabe 1 (Some basis functions in density functional theory) (10=5+5 Punkte)

In order to solve the Kohn-Sham equations [Eq. (1.39) in the lecture notes] in practice, one expands
the single-electron wavefunctions1 ψi(~r) in terms of some simple known functions φp(~r) called basis
functions:

ψi(~r) =

P∑
p=1

cipφp(~r)(1)

Here, the basis set size, which in principle should be infinite, has been truncated to a finite value P
for practical reasons. Given (1), the Kohn-Sham equations can be written in a matrix form as


〈φ1|HKS − εi|φ1〉 〈φ1|HKS − εi|φ2〉 · · ·
〈φ2|HKS − εi|φ1〉 〈φ2|HKS − εi|φ2〉 · · ·

...
...

. . . 〈φP |HKS − εi|φP 〉



ci1

ci2

...

ciP

 =


0

0

...

0

(2)

and solved by performing numerical diagonalization.

(a) (Plane waves) In a periodic solid environment, a natural choice of basis functions are plane
waves:

ψi(~r) =

P∑
p=1

cipφp(~r) ⇒ ψn~k(~r) =
∑
~K

cn
~k
~K
φ~k ~K(~r)

φ~k ~K(~r) = ei(
~

k+ ~K)~r(3)

where K is a reciprocal lattice vector. The expansion is limited to reciprocal lattice vectors K for
which |K| ≤ Kmax. Now, let us consider Ca crystallized in a face-centered-cubic structure with
a conventional lattice constant of 3 Å. Estimate the number of plane waves required to describe
the electrons residing on the Ca 3s states (Fig. 1), whose structure is roughly preserved in a solid.
How realistic would it be to perform density functional theory calculations in this case using the
plane-wave basis?

(Hint : Kmax depends on the smallest relevant length scale dmin as Kmax ≈ 2π
dmin

. )

(b) (Augmented plane waves) From part (a) it should be clear that the plane-wave basis set size
blows up mainly due to the need to describe the rapidly varying electron density in the close vicinity

1We assume a non-spin polarized case and omit the spin index σ.



Figure 1: Left: Radial part of the Ca 3s wavefunction. Right: Partitioning of a unit cell in the augmented
plane waves method.

of a nucleus. In order to (substantially) reduce the basis set size, alternative basis functions can
be used, such as, for instance, the augmented plane waves:

φ~k ~K(~r,E) =


1√
V
ei(
~k+ ~K)~r ~r ∈ I∑

lm

Aα,
~k+ ~K

lm uαl (r′, E)Y lm(r̂′) ~r ∈ Sα

(4)

which are defined in terms of normalized plane waves in the interstitial region I and in terms
of atomic-like functions inside the so-called muffin-tin spherical regions around atoms Sα (see
Fig. 1). In Eq. (4), V is the unit cell volume, uαl (r′, E) are solutions to the radial part of the
Schrödinger equation for a free atom α at energy E, the Y lm(r̂′) are spherical harmonics, and

expansion coefficients Aα,
~k+ ~K

lm are chosen such as to ensure the continuity of the wavefunction
through the muffin-tin sphere boundary; other variables are explained in Fig. 1. The expansion
over the spherical harmonics is limited to some lmax. Determine the number of augmented plane
waves sufficient to perform density functional theory calculations for the crystallized Ca from
the requirement that the shortest plane-wave period (which depends on Kmax) should match the
finest nodal structure of the atomic-like functions at the surface of the Ca muffin-tin spheres (which
depends on lmax and the Ca muffin-tin radius Rα=Ca). Take lmax = 8 and Rα=Ca = 1.06 Å.

Figure 2: Partitioning of a unit cell in the augmented plane waves method.


