Goethe-Universität Frankfurt Fachbereich Physik

Lehrende: Prof. Dr. Roser Valentí, Raum 01.130 Übungsgruppenleitung: Karim Zantout, Room 01.142

Frankfurt, 19.06.2019

Theorie zu Magnetismus, Supraleitung und Elektronische Korrelation in Festkörpern

Sommersemester 2019

Blatt 11

(Abgabe: 02.07.2019)

Aufgabe 1 (Solution of the BCS Hamiltonian) (5=1+4 Punkte)

In the lecture we introduced the BCS Hamiltonian and its effective form in the mean-field approximation, given by

$$(1) \hspace{1cm} H_{eff} = \sum_{\vec{k}\sigma} \xi_{\vec{k}} c_{\vec{k}\sigma}^{\dagger} c_{\vec{k}\sigma} - \Delta^* \sum_{\vec{k}} c_{-\vec{k}\downarrow} c_{\vec{k}\uparrow} - \Delta \sum_{\vec{k}} c_{\vec{k}\uparrow}^{\dagger} c_{-\vec{k}\downarrow}^{\dagger} + \frac{|\Delta|^2}{V},$$

where

$$\xi_{\vec{k}} = \epsilon_{\vec{k}} - E_I$$

(3)
$$\Delta = V \sum_{\vec{k}'} \langle c_{-\vec{k}'\downarrow} c_{\vec{k}'\uparrow} \rangle$$

(4)
$$\Delta^* = V \sum_{\vec{k}'} \langle c^{\dagger}_{\vec{k}'\uparrow} c^{\dagger}_{-\vec{k}'\downarrow} \rangle.$$

In order to diagonalize the Hamiltonian, one introduces the Bogoliubov operators

$$\alpha_{\vec{k}} = u_{\vec{k}} c_{\vec{k}\uparrow} - v_{\vec{k}} c_{-\vec{k}\downarrow}^{\dagger}$$

$$\beta_{\vec{k}} = u_{\vec{k}} c_{-\vec{k}\downarrow} + v_{\vec{k}} c_{\vec{k}\uparrow}^{\dagger}.$$

a) Show that by demanding the Bogoliubov transformation to be canonical, i.e. it preserves the commutation relations

(7)
$$\{\alpha, \beta\} = \{\alpha, \beta^{\dagger}\} = 0$$

(8)
$$\{\alpha, \alpha^{\dagger}\} = \{\beta, \beta^{\dagger}\} = 1,$$

it follows that $|u_{\vec{k}}|^2 + |v_{\vec{k}}|^2 = 1$.

b) Use the Bogoliubov transformation to diagonalize H_{eff} . This is done by inserting the substitution of the Bogoliubov operators into H_{eff} and requesting that the off-diagonal terms vanish. What is the dispersion of the Bogoliubov quasiparticles and the ground state energy? Hint: You can choose $v_{\vec{k}}$ to be real. As you arrive at the equation

(9)
$$2u_{\vec{k}}v_{\vec{k}}\xi_{\vec{k}} - \Delta u_{\vec{k}}^2 + \Delta^* v_{\vec{k}}^2 = 0$$

it may be helpful to multiply by $\frac{\Delta^*}{u_{\vec{k}}^2}$. Furthermore, you can use that $\frac{\Delta^* v_{\vec{k}}}{u_{\vec{k}}} > 0$.

Aufgabe 2 (BCS variational ansatz) (5=2+3 Punkte)

The BCS gap equation can also be obtained by a minimization approach. We define

$$(10) b_{\vec{k}} := c_{-\vec{k}\downarrow} c_{\vec{k}\uparrow}$$

$$b_{\vec{k}}^{\dagger} := c_{\vec{k}\uparrow}^{\dagger} c_{-\vec{k}\downarrow}^{\dagger},$$

and assume that all electrons form pairs, which allows us to write the BCS Hamiltonian as (check this)

(12)
$$H = \sum_{\vec{k}} 2\epsilon_{\vec{k}} b_{\vec{k}}^{\dagger} b_{\vec{k}} + \sum_{\vec{k}\vec{k'}} V_{\vec{k}\vec{k'}} b_{\vec{k'}}^{\dagger} b_{\vec{k}}.$$

We also consider the usual variational Eigenstate of H as

(13)
$$|\Psi\rangle = \prod_{\vec{k}} \left(u_{\vec{k}} + v_{\vec{k}} b_{\vec{k}}^{\dagger} \right) |0\rangle,$$

with variational parameters $u_{\vec{k}}, v_{\vec{k}}$.

a) Using the method of Lagrange multipliers, one can minimize the energy

(14)
$$E = \frac{\langle \Psi | H | \Psi \rangle}{\langle \Psi | \Psi \rangle},$$

while keeping the number of particles constant

(15)
$$N = \frac{\langle \Psi | \sum_{\vec{k}\sigma} c_{\vec{k}\sigma}^{\dagger} c_{\vec{k}\sigma} | \Psi \rangle}{\langle \Psi | \Psi \rangle} = \frac{\langle \Psi | 2 \sum_{\vec{k}} b_{\vec{k}}^{\dagger} b_{\vec{k}} | \Psi \rangle}{\langle \Psi | \Psi \rangle},$$

by introducing the Lagrange multiplier μ . With the constraint $u_{\vec{k}}^2 + v_{\vec{k}}^2 = 1$, the equation to minimize is then

$$(16) \hspace{1cm} W=E+\mu\left(N-\frac{\langle\Psi|2\sum_{\vec{k}}b_{\vec{k}}^{\dagger}b_{\vec{k}}|\Psi\rangle}{\langle\Psi|\Psi\rangle}\right)+\lambda(u_{\vec{k}}^2+v_{\vec{k}}^2-1).$$

Using $u_{\vec{k}}^2 + v_{\vec{k}}^2 = 1$, show that W can be written as (dropping constant terms)

$$(17) W = \sum_{\vec{k}} 2(\epsilon_{\vec{k}} - \mu)v_{\vec{k}}^2 + \sum_{\vec{k}\vec{k'}} V_{\vec{k}\vec{k'}} u_{\vec{k'}} v_{\vec{k'}} u_{\vec{k}} v_{\vec{k}} + \lambda(u_{\vec{k}}^2 + v_{\vec{k}}^2 - 1).$$

b) Minimize W with respect to $u_{\vec{k}}, v_{\vec{k}}$, using the definitions of

(18)
$$\Delta_{\vec{k}} := -\sum_{\vec{k'}} V_{\vec{k}\vec{k'}} u_{\vec{k'}} v_{\vec{k'}}$$

(19)
$$E_{\vec{k}} := \sqrt{(\epsilon_{\vec{k}} - \mu)^2 + \Delta_{\vec{k}}^2},$$

and feel free to use a mathematic tool of your choice (Mathematica, Maple ...) to show that one arrives at the final self-consistent equation

(20)
$$\Delta_{\vec{k}} = -\sum_{\vec{k}'} V_{\vec{k}\vec{k}'} \frac{\Delta_{\vec{k}'}}{2E_{\vec{k}'}}.$$

Hint: Choose $u_{\vec{k}}, v_{\vec{k}}$ as real.