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Aufgabe 1 (Solution of the BCS Hamiltonian) (5=1+4 Punkte)

In the lecture we introduced the BCS Hamiltonian and its effective form in the mean-field approxima-
tion, given by
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In order to diagonalize the Hamiltonian, one introduces the Bogoliubov operators
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a) Show that by demanding the Bogoliubov transformation to be canonical, i.e. it preserves the
commutation relations
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it follows that |ug|? + |vg]* = 1.

b) Use the Bogoliubov transformation to diagonalize H.s¢. This is done by inserting the substitution
of the Bogoliubov operators into H.¢s and requesting that the off-diagonal terms vanish. What
is the dispersion of the Bogoliubov quasiparticles and the ground state energy?

Hint: You can choose v; to be real. As you arrive at the equation
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it may be helpful to multiply by ﬁ—;. Furthermore, you can use that
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Aufgabe 2 (BCS variational ansatz ) (5=2+3 Punkte)

The BCS gap equation can also be obtained by a minimization approach. We define
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and assume that all electrons form pairs, which allows us to write the BCS Hamiltonian as (check this)
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We also consider the usual variational Eigenstate of H as
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with variational parameters ug, v

a) Using the method of Lagrange multipliers, one can minimize the energy
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while keeping the number of particles constant
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by introducing the Lagrange multiplier 4. With the constraint uZ + vZ = 1, the equation to
minimize is then
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Using u% + v% = 1, show that W can be written as (dropping constant terms)
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b) Minimize W with respect to uj, v, using the definitions of
(18) AE = Z VEE’UE’vE’
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and feel free to use a mathematic tool of your choice (Mathematica, Maple ...) to show that one
arrives at the final self-consistent equation
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Hint: Choose ug, vg as real.



