
It’s About Time
Howard Hinnant

A <chrono> Tutorial

sep/19/2016

Where You Can Find This Library

• Everything discussed in this presentation
is found in the header <chrono>.

• Everything is in namespace std::chrono.

What We Will Be
Talking About

• Motivation. Why <chrono>?

• Time durations

• Points in time

• Clocks

• Examples

Why Bother?
(with <chrono>)

• Isn’t an integral count (of seconds or whatever)
sufficient?

sleep(10);

• Sleep for 10 seconds?
• 10 milliseconds?
• 10 nanoseconds?

Why Bother?
(with <chrono>)

• Isn’t an integral count (of seconds or whatever)
sufficient?

sleep(10ms);

• Ah: 10 milliseconds.

Why Bother?
(with <chrono>)

• In general using an arithmetic type to represent a
duration or time point is intrinsically ambiguous.

• Help the compiler help you to find logic errors at
compile time by making distinct concepts, distinct
types.

What We Will Be
Talking About

• Motivation. Why <chrono>?

• Time durations

• Points in time

• Clocks

• Examples

Time Duration

• A time duration is just a period of time.
• 3 seconds.
• 3 minutes.
• 3 hours.

seconds
• Lets start with std::chrono::seconds.

• seconds is an arithmetic-like type.
• sizeof(seconds) == 8.
• It is trivially destructible.
• It is trivially default constructible.
• It is trivially copy constructible.
• It is trivially copy assignable.
• It is trivially move constructible.
• It is trivially move assignable.

• This is all just like long long and int64_t.

seconds

class seconds
{
 int64_t sec_;
public:
 seconds() = default;
 // etc.
 // ...  
};

Very simple, very fast:

seconds

seconds s; // no initialization

seconds s{}; // zero initialization

Scalar-like construction behavior:

seconds

seconds s = 3;
// error: Not implicitly constructible from int

Construction:

seconds

seconds s = 3;
// error: Not implicitly constructible from int

seconds s{3}; // Ok: 3 seconds

Construction:

seconds

seconds s = 3;
// error: Not implicitly constructible from int

seconds s{3}; // Ok: 3 seconds

cout << s << '\n'; // unfortunately, not ok

Construction:

But the library I present tomorrow fixes this.

seconds

seconds s = 3;
// error: Not implicitly constructible from int

seconds s{3}; // Ok: 3 seconds

cout << s << '\n'; // unfortunately, not ok

cout << s.count() << "s\n"; // 3s

Construction:

seconds

void f(seconds d)
{
 cout << d.count() << "s\n";  
}

No implicit path from int to seconds!

seconds

void f(seconds d)
{
 cout << d.count() << "s\n";  
}

f(3);
// error: Not implicitly constructible from int

It is just as important what seconds
won't do as what it does do!

No implicit path from int to seconds!

seconds

void f(seconds d)
{
 cout << d.count() << "s\n";  
}

No implicit path from int to seconds!

f(3);
// error: Not implicitly constructible from int

seconds

f(seconds{3}); // ok, 3s
f(3s); // ok, 3s Requires C++14
seconds x{3};
f(x); // ok, 3s

void f(seconds d)
{
 cout << d.count() << "s\n";  
}

No implicit path from int to seconds!

f(3);
// error: Not implicitly constructible from int

seconds

void f(seconds d)
{
 cout << d.count() << "s\n";  
}

Addition and subtraction just like int:

seconds

auto x = 3s;
x += 2s;
f(x); // ok, 5s
x = x - 1s;
f(x); // ok, 4s
f(x + 1); // error: seconds + int not allowed

void f(seconds d)
{
 cout << d.count() << "s\n";  
}

Addition and subtraction just like int:

seconds
Comparison, all 6 operators, just like int:

void f(seconds d)
{
 if (d <= time_limit)
 cout << "in time: ";
 else  
 cout << "out of time: ";
 cout << d.count() << "s\n";
}

constexpr auto time_limit = 2s;

seconds
Comparison, all 6 operators, just like int:

void f(seconds s)
{
 if (d <= time_limit)
 cout << "in time: ";
 else  
 cout << "out of time: ";
 cout << d.count() << "s\n";
}

constexpr auto time_limit = 2;

error: seconds <= int not allowed

seconds

seconds
f(seconds x, seconds y)
{
 return x + y;
}

int64_t
f(int64_t x, int64_t y)
{
 return x + y;
}

How much does this cost?!

Compile both functions with optimizations
on and inspect the assembly.

seconds
How much does this cost?!

__Z1fNSt3__16chrono8durationIxNS_5ratioILl1...
@_Z1fNSt3__16chrono8durationIxNS_5ratioILl1...

.cfi_startproc
BB#0:

pushq %rbp
Ltmp0:

.cfi_def_cfa_offset 16
Ltmp1:

.cfi_offset %rbp, -16
movq %rsp, %rbp

Ltmp2:
.cfi_def_cfa_register %rbp
leaq (%rdi,%rsi), %rax
popq %rbp
retq
.cfi_endproc

__Z1fxx: ##
@_Z1fxx

.cfi_startproc
BB#0:

pushq %rbp
Ltmp0:

.cfi_def_cfa_offset 16
Ltmp1:

.cfi_offset %rbp, -16
movq %rsp, %rbp

Ltmp2:
.cfi_def_cfa_register %rbp
leaq (%rdi,%rsi), %rax
popq %rbp
retq
.cfi_endproc

Exactly the same object code generation
(release configuration, except for name mangling).

seconds
What is the range?

seconds m = seconds::min();
seconds M = seconds::max();

You can query seconds
for its range.

On every platform implemented
this is +/- 292 billion years.

If you overflow, you've got issues.

seconds

So seconds is just a wrapper around an
integral type, and acts just like an integral type
(sans conversions to other integral types).

Is this such a big deal?!

Yes

What if suddenly you needed to transform
your million-line seconds-based code to
deal with milliseconds?

milliseconds

<chrono> also has a type called milliseconds...

milliseconds

class milliseconds
{
 int64_t ms_;
public:
 milliseconds() = default;
 // etc.
 // ...  
};

And milliseconds works just like seconds:

Except its range is only +/-292 million years.

So you just search and replace seconds for milliseconds?

milliseconds

So you just search and replace seconds for milliseconds?

No

milliseconds

It is much safer than that!

milliseconds

void f(seconds d)
{
 cout << d.count() << "s\n";  
}

You can modify a small piece of code at time:

milliseconds

void f(milliseconds d)
{
 cout << d.count() << "ms\n";  
}

You can modify a small piece of code at time:

milliseconds

void f(milliseconds d)
{
 cout << d.count() << "ms\n";  
}

Clients either continue to work, or fail at compile time:

milliseconds

void f(milliseconds d)
{
 cout << d.count() << "ms\n";  
}

Clients either continue to work, or fail at compile time:

f(3);
// error: Not implicitly constructible from int

milliseconds

void f(milliseconds d)
{
 cout << d.count() << "ms\n";  
}

Clients either continue to work, or fail at compile time:

f(seconds{3}); // ok, no change needed! 3000ms
f(3s); // ok, no change needed! 3000ms
seconds x{3};
f(x); // ok, no change needed! 3000ms

f(3);
// error: Not implicitly constructible from int

void f(seconds d)
{
 if (d <= time_limit)
 cout << "in time: ";
 else  
 cout << "out of time: ";
 cout << d.count() << "s\n";
}

milliseconds
Clients either continue to work, or fail at compile time:

void f(milliseconds d)
{
 if (d <= time_limit)
 cout << "in time: ";
 else  
 cout << "out of time: ";
 cout << d.count() << "ms\n";
}

milliseconds
Clients either continue to work, or fail at compile time:

void f(milliseconds d)
{
 if (d <= time_limit)
 cout << "in time: ";
 else  
 cout << "out of time: ";
 cout << d.count() << "ms\n";
}

f(3s); // ok, no change needed! out of time: 3000ms

constexpr auto time_limit = 2s;

milliseconds
Clients either continue to work, or fail at compile time:

No change
needed!

milliseconds
<chrono> knows about the relationship between
milliseconds and seconds. It knows it has to multiply
by 1000 to convert seconds to milliseconds.

milliseconds
<chrono> knows about the relationship between
milliseconds and seconds. It knows it has to multiply
by 1000 to convert seconds to milliseconds.

You should not manually code conversions from
seconds to milliseconds. It is a simple computation.
But it is easy to get wrong in one obscure place out
of many in a million-line program.

Let <chrono> do this conversion for you. It
does it in only one place, and is tested over
many applications. And it is no less efficient
than you could have coded manually.

milliseconds

milliseconds
f(seconds x)
{
 return x;
}

int64_t
f(int64_t x)
{
 return x*1000;
}

How much does this cost?!

milliseconds
How much does this cost?!

__Z1fNSt3__16chrono8durationIxNS...: ##
@_Z1fNSt3__16chrono8durationIxNS...

.cfi_startproc
BB#0:

pushq %rbp
Ltmp0:

.cfi_def_cfa_offset 16
Ltmp1:

.cfi_offset %rbp, -16
movq %rsp, %rbp

Ltmp2:
.cfi_def_cfa_register %rbp
imulq $1000, %rdi, %rax ## imm = 0x3E8
popq %rbp
retq
.cfi_endproc

__Z1fx: ##
@_Z1fx

.cfi_startproc
BB#0:

pushq %rbp
Ltmp0:

.cfi_def_cfa_offset 16
Ltmp1:

.cfi_offset %rbp, -16
movq %rsp, %rbp

Ltmp2:
.cfi_def_cfa_register %rbp
imulq $1000, %rdi, %rax ## imm = 0x3E8
popq %rbp
retq
.cfi_endproc

Exactly the same object code generation
(release configuration, except for name mangling).

milliseconds

<chrono> allows you to migrate from seconds to
milliseconds a piece at a time. Code across such a
transition will either be correct, or will not compile.

milliseconds

auto x = 2s;
auto y = 3ms;
f(x + y); // 2003ms
f(y - x); // -1997ms

Even "mixed mode" arithmetic works just fine:

In General

If it compiles, it is working.

If it doesn't compile, don't escape the type system (using
count()) to fix it, unless you understand why it didn't work.

I/O or interfacing with legacy code is the typical reason for
needing to use count().

If you escape the type system and it compiles, all
subsequent run time errors are on you.

What about converting
milliseconds to seconds?

In general: If a <chrono> conversion is loss-less,
then it is implicit.
If a conversion is not loss-less, it does not compile
without special syntax.

Example:
seconds x = 3400ms; // error: no conversion

What about converting
milliseconds to seconds?

In general: If a <chrono> conversion is loss-less,
then it is implicit.
If a conversion is not loss-less, it does not compile
without special syntax.

Example:
seconds x = 3400ms; // error: no conversion
seconds x = duration_cast<seconds>(3400ms); // 3s

duration_cast means: convert
with truncation towards zero.

What about converting
milliseconds to seconds?
duration_cast<duration> truncates towards zero.

In C++1z (hopefully C++17)
floor<duration> truncates towards
negative infinity.
round<duration> truncates towards
nearest and towards even on a tie.
ceil<duration> truncates towards
positive infinity.

What about converting
milliseconds to seconds?
Only use an explicit cast when an implicit
conversion won't work.

If the implicit conversion compiles, it will be exact.

Otherwise it won't compile and you can make the
decision of which rounding mode you need
(towards zero, towards infinity, towards negative
infinity, towards nearest).

Wait, there's more...

seconds
milliseconds
microseconds
nanoseconds

minutes
hours

Everything I've said about seconds and milliseconds
is also true for all of these other units.

All of these units work together
seamlessly

seconds
milliseconds
microseconds
nanoseconds

minutes
hours

auto x = 2h;
auto y = 3us;
f(x + y);

void f(nanoseconds d)
{
 cout << d.count() << "ns\n";  
}

// 7200000003000ns

This is overkill for my
application

using seconds32 = std::chrono::duration<int32_t>;

I'm building a TRS-80 emulator
and all I need is a 32-bit second.

<chrono> still has you covered.

seconds32 will interoperate with the entire <chrono>
library as described for std::chrono::seconds, but
use int32_t as the "representation".

This is overkill for my
application

using seconds32 = std::chrono::duration<uint32_t>;

I meant unsigned 32 bits.

whatever...

I'm building a TRS-80 emulator
and all I need is a 32-bit second.

This is overkill for my
application

using seconds32 = duration<safe<uint32_t>>;

Find (or build) a "safeint" library that does
what you want, and then:

I meant unsigned 32 bits.
And I need overflow protection.

I'm building a TRS-80 emulator
and all I need is a 32-bit second.

Generalized Representation

Yes, even floating point types.

In general, you can plug any arithmetic type, or
emulation thereof, into duration<Rep> and you will get a
type that means seconds, using that representation.

Generalized Representation

using fseconds = duration<float>;

void f(fseconds d)
{
 cout << d.count() << "s\n";
}

f(45ms + 63us); // 0.045063s

For floating-point representations, you can implicitly
convert from any precision without using duration_cast.
The rationale is that there is no truncation error (only
rounding error). And so implicit conversion is safe.

Generalized Representation

template <class T>
using my_ms = std::chrono::duration<T, std::milli>;

void f(my_ms<float> d)
{
 cout << d.count() << "ms\n";
}

f(45ms + 63us); // 45.063ms

Can I do generalized representation with milliseconds?

Generalized Representation

using nanoseconds = duration<int_least64_t, nano>;
using microseconds = duration<int_least55_t, micro>;
using milliseconds = duration<int_least45_t, milli>;
using seconds = duration<int_least35_t >;

The standard specifies:

Generalized Representation

using nano = ratio<1, 1'000'000'000>;
using micro = ratio<1, 1'000'000>;
using milli = ratio<1, 1'000>;

The standard specifies:

Where ratio<N, D> is:
template <intmax_t N, intmax_t D = 1>
class ratio
{
 static constexpr intmax_t num; // N/D reduced to  
 static constexpr intmax_t den; // lowest terms
 using type = ratio<num, den>;  
};

Generalized Representation

using nanoseconds = duration<int_least64_t, nano>;
using microseconds = duration<int_least55_t, micro>;
using milliseconds = duration<int_least45_t, milli>;
using seconds = duration<int_least35_t, ratio<1>>;
using minutes = duration<int_least29_t, ratio<60>>;
using hours = duration<int_least23_t, ratio<3600>>;

The standard specifies:

template <class Rep, class Period = ratio<1>>
class duration {
 Rep rep_;
public:  
};

Durations
template <class Rep, class Period = ratio<1>>
class duration {
public:
 using rep = Rep;
 using period = Period;
 // ...  
};

Every duration has a nested type rep, which is
its representation, and a nested type period
which is a fraction representing the period of
the duration's "tick" in units of seconds.

milliseconds::rep is int64_t
milliseconds::period::num is 1
milliseconds::period::den is 1000

Generalized Duration Unit
You can build any duration that meets your needs:

using frames = duration<int32_t, ratio<1, 60>>;

And things will just work, following all of the previously
outlined rules:

f(frames{1}); // 16.6667ms
f(45ms + frames{5}); // 128.333ms

void f(duration<float, milli> d);

Deep Dive

45 [int64_t, 1/1000] + 5 [int32_t, 1/60]

pseudo syntax:

45ms + frames{5}

Everything inside [] is always computed at compile time.

Deep Dive

45 [int64_t, 1/1000] + 5 [int32_t, 1/60]

45*3 [int64_t, 1/3000] + 5*50 [int64_t, 1/3000]

pseudo syntax:

Find common_type and convert to it:

45ms + frames{5}

Computed least common multiple at compile time!

Deep Dive

45 [int64_t, 1/1000] + 5 [int32_t, 1/60]

45*3 [int64_t, 1/3000] + 5*50 [int64_t, 1/3000]

385 [int64_t, 1/3000]

pseudo syntax:

Find common_type and convert to it:

Do arithmetic in common_type:

45ms + frames{5}

Deep Dive

45 [int64_t, 1/1000] + 5 [int32_t, 1/60]

45*3 [int64_t, 1/3000] + 5*50 [int64_t, 1/3000]

385 [int64_t, 1/3000]

128.333 [float, 1/1000]

pseudo syntax:

Find common_type and convert to it:

Do arithmetic in common_type:

45ms + frames{5}

Convert to duration<float, milli>:

Deep Dive
void test(milliseconds x, frames y) {
 f(x + y);
}

LCPI0_0:
.long 1077936128 ## float 3
.align 4, 0x90

__Z4testNSt3__16chrono8durationIxNS_5ratioILl1ELl1000EEEEENS1_IiNS2_ILl1ELl60EEEEE:
.cfi_startproc

BB#0:
pushq %rbp

Ltmp0:
.cfi_def_cfa_offset 16

Ltmp1:
.cfi_offset %rbp, -16
movq %rsp, %rbp

Ltmp2:
.cfi_def_cfa_register %rbp
leaq (%rdi,%rdi,2), %rax
movslq %esi, %rcx
imulq $50, %rcx, %rcx
addq %rax, %rcx
cvtsi2ssq %rcx, %xmm0
divss LCPI0_0(%rip), %xmm0
popq %rbp
jmp __Z1fNSt3__16chrono8durationIfNS_5ratioILl1ELl1000EEEEE ## TAILCALL
.cfi_endproc

// * 50

// * 3

// / 3

// x + y

All of the complicated work
is done at compile time.

I know it is a lot
Feel like you've been drinking from the fire hose?

Wait, there's more...

But before we go on
Recall back in the beginning when there were just
seconds, and then maybe milliseconds are introduced?

All of this fancy stuff about frames, and nanoseconds,
and floating point milliseconds, and 32 bit
representations...

It is all there only in case you need it. You don't pay for
it if you don't use it. This whole shebang is still just as
simple as a wrapper around a int64_t which means
seconds.

Simple. Only as complicated as you need it to be.

But before we go on
Simple. Only as complicated as you need it to be.

seconds is to duration<int64_t, ratio<1, 1>>
as

string is to basic_string<char, char_traits<char>, allocator<char>>

You can just use it without worrying about the
fact that it is a specialization of a template.

But before we go on
Simple. Only as complicated as you need it to be.

And type-safe.
This library lives and dies by converting one type to another.

If the conversion is loss-less (seconds to
milliseconds), it can be made implicitly.

If the conversion is lossy (milliseconds to
seconds) it can be made with duration_cast.

If the conversion is dangerous, it must
be made with explicit conversion syntax
(int to seconds or seconds to int).

But before we go on
Simple. Only as complicated as you need it to be.

And type-safe.

If you make a reasonable change that doesn't involve
explicit type conversion syntax (and it compiles), you can
have confidence that you have not introduced a bug.

Use the weakest type conversion possible:
• Implicit if at all possible.
• duration_cast if you need to specify truncation.
• .count() in a Kobayashi Maru.

What We Will Be
Talking About

• Motivation. Why <chrono>?

• Time durations

• Points in time

• Clocks

• Examples

time_point

So far we've only talked about time durations.

Relax.

Your knowledge of durations will carry over to time_points.

There is not that much more to learn.

time_point

A duration such as 10'000s means any 10,000s.
Or if you prefer 2h + 46min + 40s.

But:

time_point<system_clock, seconds> tp{10'000s};

Means:

1970-01-01 02:46:40 UTC

(Not specified, but de facto standard)

time_point
A time_point refers to a specific point in time, with
respect to some clock, and has a precision of
some duration:

template <class Clock,
 class Duration = typename Clock::duration>
class time_point {
 Duration d_;
public:
 using clock = Clock;
 using duration = Duration;
 // ...  
};

time_point

time_points and durations can have the exact same
representation, but they mean different things.

template <class Clock,
 class Duration = typename Clock::duration>
class time_point {
 Duration d_;
public:
 using clock = Clock;
 using duration = Duration;
 // ...  
};

time_point
When it comes to arithmetic, time_points are
similar to pointers: time_points can be
subtracted, but not added. Their difference is
not another time_point but rather a duration.

You can add/subtract a duration to/from a
time_point, resulting in another time_point.

auto d = tp1 - tp2;

auto tp2 = tp1 + d;

It is a 100% self-consistent algebra,
type-checked at compile-time.

time_point
time_points convert much like the durations do:

Implicitly when the conversion does not
involve truncation error.

sys_time<milliseconds> tp2 = tp; // 5000ms

using namespace std::chrono;
template <class D>
 using sys_time = time_point<system_clock, D>;
sys_time<seconds> tp{5s}; // 5s

time_point
time_points convert much like the durations do:

Implicitly when the conversion does not
involve truncation error.
With time_point_cast when you want to force a
truncation error.

sys_time<milliseconds> tp2 = tp; // 5000ms

using namespace std::chrono;
template <class D>
 using sys_time = time_point<system_clock, D>;

tp = time_point_cast<seconds>(tp2); // 5s

sys_time<seconds> tp{5s}; // 5s

time_point
time_points convert much like the durations do:

Implicitly when the conversion does not
involve truncation error.

With .time_since_epoch() when you want to
force a time_point to duration conversion.

Explicitly when you want to force a duration to
time_point conversion.

With time_point_cast when you want to force a
truncation error.

What We Will Be
Talking About

• Motivation. Why <chrono>?

• Time durations

• Points in time

• Clocks

• Examples

clocks
A clock is a bundle of a duration, a time_point
and a static function to get the current time.

struct some_clock
{
 using duration = chrono::duration<int64_t, microseconds>;
 using rep = duration::rep;
 using period = duration::period;
 using time_point = chrono::time_point<some_clock>;
 static constexpr bool is_steady = false;  

 static time_point now() noexcept;
};

clocks
Every time_point is associated with a clock.

time_points associated with different clocks
do not convert to one another.

system_clock::time_point tp = system_clock::now();
steady_clock::time_point tp2 = tp;

error: no viable conversionDifferent clocks

{

clocks
Every time_point is associated with a clock.

Applications can have as many different clocks
as they want to.
There are two useful std-supplied clocks:

std::chrono::system_clock
std::chrono::steady_clock

Ignore std::chrono::high_resolution_clock as
it is a type alias for one of the above clocks.

time_points associated with different clocks
do not convert to one another.

clocks
std::chrono::system_clock

Use system_clock when you need time_points
that must relate to some calendar.
system_clock can tell you what time of day it is,
and what the date is.

clocks

Use steady_clock when just need a stopwatch.

std::chrono::steady_clock

It is good for timing, but can not
give you the time of day.

clocks
Whatever clock you use, you can get its
time_point like this:

clock::time_point tp

clock::time_point tp

clocks

And you can get the current time like this:

= clock::now();

auto tp

clocks

Or like this:

= clock::now();

What We Will Be
Talking About

• Motivation. Why <chrono>?

• Time durations

• Points in time

• Clocks

• Examples

auto t0 = steady_clock::now();

Examples:
Timing:

Output:

135169457ns

f();
auto t1 = steady_clock::now();
cout << nanoseconds{t1-t0}.count() << "ns\n";

Examples:
Timing:

auto t0 = steady_clock::now();
f();
auto t1 = steady_clock::now();
cout << duration<double>{t1-t0}.count() << "s\n";

Output:

0.135169s

Examples:
Timing:

auto t0 = steady_clock::now();
f();
auto t1 = steady_clock::now();
cout << duration_cast<milliseconds>(t1-t0).count() << "ms\n";

Output:

135ms

Examples:
mutex timed try lock:

std::timed_mutex mut;
if (mut.try_lock_for(500ms))
 // got the lock
if (mut.try_lock_until(steady_clock::now() + 500ms))
 // got the lock

Examples:
Custom duration:

using days = duration<int, ratio_multiply<ratio<24>,
 hours::period>>;

using days = duration<int, ratio<86400>>; // same thing

Examples:
Sleep with custom duration:

std::this_thread::sleep_for(days{1});

Examples:
Sleep with custom duration:

std::this_thread::sleep_for(days{1});

using weeks = duration<int, ratio_multiply<ratio<7>,
 days::period>>;

std::this_thread::sleep_for(weeks{2});

Examples:
Time since epoch

(de facto standard 1970-01-01 00:00:00 UTC).

auto tp = time_point_cast<seconds>(system_clock::now());
cout << tp.time_since_epoch().count() << "s\n";

1469456123s

Examples:
Time since epoch

(de facto standard 1970-01-01 00:00:00 UTC).

auto tp = time_point_cast<seconds>(system_clock::now());
cout << tp.time_since_epoch().count() << "s\n";

1469456123s

auto td = time_point_cast<days>(tp);
cout << td.time_since_epoch().count() << " days\n";

17007 days

Summary
• duration
• time_point
• clock

<chrono>

Summary
• duration
• time_point
• clock

• Compile-time errors are favored over run-time
errors.

• As efficient as hand-written code (or better).
• Feature rich, but you don't pay for features

you don't use.

<chrono>

Summary
• duration
• time_point
• clock

• Designed a decade ago.
• Voted into C++11 in 2008.

• Standard C++ for half a decade now.
• This is not bleeding edge, it is best practice.

<chrono>

Summary
• duration
• time_point
• clock

• Designed a decade ago.
• Voted into C++11 in 2008.

• Standard C++ for half a decade now.
• This is not bleeding edge, it is best practice.
• Bleeding edge in time computations is my

talk tomorrow at 4:45pm which builds upon
(not obsoletes) <chrono>...

<chrono>

