
Numerical Methods for the Solution of Partial

Differential Equations

Luciano Rezzolla

Institute for Theoretical Physics,

Frankfurt, Germany

July 10, 2020

Contents

1 Introduction 3

1.1 The discretisation process . 5

1.1.1 Spatial norms . 7

1.2 Numerical errors . 8

1.2.1 Machine-precision error 8

1.2.2 Round-off error . 9

1.2.3 Truncation error . 9

1.2.4 Consistency, convergence and stability 14

2 Hyperbolic PDEs: Flux Conservative Formulation 17

3 The advection equation in one dimension (1D) 19

3.1 The 1D Upwind scheme: O(∆t,∆x) 19

3.2 The 1D FTCS scheme: O(∆t,∆x2) 24

3.3 The 1D Lax-Friedrichs scheme: O(∆t,∆x2) 28

3.4 The 1D Leapfrog scheme: O(∆t2,∆x2) 31

3.5 The 1D Lax-Wendroff scheme: O(∆t2,∆x2) 33

3.6 The 1D ICN scheme: O(∆t2,∆x2) 35

3.6.1 ICN as a θ-method . 38

3.7 Summary . 42

3.7.1 Finite-difference stencils 43

4 Dissipation, Dispersion and Convergence 47

4.1 On the Origin of Dissipation and Dispersion 47

4.2 Measuring Dissipation and Convergence 52

i

ii CONTENTS

5 The Wave Equation in 1D 53

5.1 The FTCS Scheme . 55

5.2 The Lax-Friedrichs Scheme . 55

5.3 The Leapfrog Scheme . 56

5.4 The Lax-Wendroff Scheme . 58

6 Boundary Conditions 61

6.1 Outgoing Wave BCs: the outer edge 62

6.2 Ingoing Wave BCs: the inner edge 63

6.3 Periodic Boundary Conditions . 63

7 The wave equation in two spatial dimensions (2D) 65

7.1 The Lax-Friedrichs Scheme . 66

7.2 The Lax-Wendroff Scheme . 68

7.3 The Leapfrog Scheme . 70

7.4 Boundary conditions in 2D . 70

7.4.1 Outgoing-wave BCs . 70

7.4.2 Periodic BCs . 72

8 Parabolic PDEs 79

8.1 Diffusive problems . 79

8.2 The diffusion equation in 1D . 79

8.3 Semi-analytical solution of the model parabolic equation 80

8.3.1 Homogeneous Dirichlet boundary conditions 80

8.3.2 Homogeneous Neumann boundary conditions 83

8.4 Explicit updating schemes . 84

8.4.1 The FTCS method . 84

8.4.2 The Du Fort-Frankel method and the θ-method 85

8.4.3 ICN as a θ-method . 87

8.5 Implicit updating schemes . 89

8.5.1 The BTCS method . 89

8.5.2 The Crank-Nicolson method 90

CONTENTS 1

Acknowledgements

I am indebted to the several students who have helped me with the typing of the

lectures notes into at TEXformat. They are too numerous to be reported here

but my special thanks go to Olindo Zanotti for his help with the hyperbolic

equations and to Gregor Leiler for his help with the parabolic equations and

Chapter 3.6.

2 CONTENTS

Chapter 1

Introduction

Let us consider a partial differential equation (PDE) of second-order in two

dimensions (x, y), which we can write generically as

a11
∂2u

∂x2
+ 2a12

∂2u

∂x∂y
+ a22

∂2u

∂y2
+ f(x, y, u) = 0 , (1.1)

where x, y are not all spatial coordinates and where we will assume the co-

efficients aij to be functions of position only, i.e., aij = aij(x, y). The PDE

(1.1) is then said to be “linear with variable coefficients”. On the other hand,

the PDE (1.1) is said to be “quasi-linear ” (or loosely speaking “nonlinear”) if

aij = aij(x, y, u).

The traditional classification of partial differential equations is then based

on the sign of the determinant ∆ := a11a22 − a212 that we can build with the

coefficients of equation (1.1) and distinguishes three types of such equations.

More specifically, equation (1.1) will be (see Table 1.1)

• (strictly) hyperbolic if ∆ = 0 has roots that are real and distinct.

• parabolic if ∆ = 0 has real but zero roots. will be

• elliptic if ∆ = 0 has complex roots.

Elliptic equations, on the other hand, describe boundary value problems, or

BVP, since the space of relevant solutions Ω depends on the value that the

solution takes on its boundaries dΩ. Elliptic equations in physics are easily

recognisable by the fact the solution does not depend on time coordinate t and

a prototype elliptic equation is in fact given by Poisson equation (cf. Table 1.1).

3

4 CHAPTER 1. INTRODUCTION

dΩ dΩ

dΩ

t

x

Initial Value Problem

space of relevant solutions

with initial data L

L

Ω

x

Ω

y Boundary Value Problem

dΩ dΩ

dΩ dΩ

t

x

continuous spacetime

space of relevant solutions

with initial data L

L

t

x

discretized spacetime

j+1

L

jj−1

n−1

n

Ω Ω

n+1

Figure 1.1: Upper panel: Schematic distinction between IVBPs and BVPs. Lower Panel:

Schematic discretization of a hyperbolic IVBP

1.1. THE DISCRETISATION PROCESS 5

Type Condition Example (2 dimensions)

Hyperbolic a11a22 − a212 < 0 Wave equation:
∂2u

∂t2
= v2

∂2u

∂x2

Parabolic a11a22 − a212 = 0 Diffusion equation:
∂u

∂t
=

∂

∂x

(

D
∂u

∂x

)

Elliptic a11a22 − a212 > 0 Poisson equation:
∂2u

∂x2
+

∂2u

∂y2
= ρ(x, y)

Table 1.1: Schematic classification of a quasi-linear partial differential equation of second-

order. For each class, a prototype equation is presented.

Hyperbolic and parabolic equations describe initial value boundary problems,

or IVBP, since the space of relevant solutions Ω depends on the value that the

solution L (which we assume with compact support) takes on some initial time

(see upper panel of Fig. 1.1). In practice, IVBP problems in physics are easily

recognisable by the fact that the solution will depend on the time coordinate t.

Very simple and useful examples of hyperbolic and parabolic equations are given

by the wave equation and by the diffusion equation, respectively (cf. Table 1.1).

An important and physically-based difference between hyperbolic and parabolic

equations becomes apparent by considering the “characteristic velocities” asso-

ciated to them. These represent the velocities at which perturbations are prop-

agated and have finite speeds in the case of hyperbolic equations, while these

speeds are infinite in the case of parabolic equations. Since characteristic speeds

are strictly real, they not defined for elliptic equations.

In this way, it is not difficult to appreciate that while both hyperbolic and

parabolic equations describe time-dependent equations, the domain of depen-

dence in a finite time for the two classes of equations can either be finite (as

in the case of hyperbolic equations), or infinite (as in the case of parabolic

equations).

1.1 The discretisation process

Given a set of partial differential equations of hyperbolic type, the correspond-

ing Cauchy or initial-value problem (IVP) consists in finding a solution at an

6 CHAPTER 1. INTRODUCTION

arbitrary future time once the solution is known at an initial time, which is

also referred to as the initial data. For simplicity, let us consider a well-posed

initial-value problem in one spatial dimension and write it generically as (the

generalisation to the multidimensional case is straightforward)

L(u)−F = 0 , (1.2)

where u = u(x, t) is a smooth function in the two variables x and t, L is a

differential operator acting on u, and F = F(u) is a function of u only and not

of its derivatives. To fix ideas, one could think that the generic expression (1.2)

actually refers to an advection equation, so that L(u) = (∂t+ v∂x)u and F = 0.

Independently of the specific numerical method employed, the numerical

solution of (1.2) consists of three “discretisation steps”, i.e.,

• Spacetime discretisation: define a finite set of spacelike foliations of the

spacetime “ordered” through the discrete time coordinate

tn := t0 + n∆t , n = 0, 1, . . . , Nt , (1.3)

where ∆t represents the separation between two spacelike foliations and

can, in general, be a function of space and time. On each of such foliations,

say the one at t = tn, “order” the spatial positions through the discrete

coordinates

xj := x0 + j∆x , j = 0, 1, . . . , J , (1.4)

where we have simplified the notation, i.e., xn
j → xj and where also ∆x

can be a function of space and time. The set of spacetime points {xn
k} is

also referred to as gridpoints. The points x0 and xJ mark the edges of the

computational domain.

• Variable discretisation: replace the function u(x, t) with a discrete set

of values {un
j } that approximate the exact pointwise values of u at the

gridpoints {xn
j }, i.e., Un

j , through the gridfunction {un
j } defined as

{un
j } ≈ u

(

{xn
j }
)

= u(x = xj , t = tn) =: {Un
j } , (1.5)

with n = 0, 1, . . . , Nt, and j = 0, 1, . . . , J . In this way, we can represent

a generic solution u(x, t) of the generic equation (1.2) in the continuum

1.1. THE DISCRETISATION PROCESS 7

spacetime with an infinite set of discretised solutions {un
j }, whose proper-

ties will depend both on the details of the discretisation (i.e., on ∆t and

∆x) and on the method used to discretise the differential operator (see

below).

• Operator discretisation: replace the continuous differential operator L
with a discretised one, L

h
, that when applied to the gridfunction {un

j }
gives an approximation to L(u) in terms of algebraic combinations of the

values {un
j }.

Through this discretisation process, the continuum initial-value problem

(1.2) is replaced by the discrete initial-value problem

L(u)−F = 0 7−→ L
h

(

un
j

)

− F
h
= 0 , (1.6)

that is, by a discrete representation of both the differential operator L and of

the function u, where h := ∆x. Note that the right-hand side of Eq. (1.6)2

is zero because the differential operator acts on the numerical solution un
j , but

this is no longer the case if the operator acts on the exact pointwise values of u

at the gridpoints {xn
j }, i.e.,

L
h

(

Un
j

)

− F
h
6= 0 . (1.7)

The amount by which it differs from zero is actually very important as it reflects

the error made in the discretisation of the operator, whose significance will be

clarified below [cf., Eqs. (1.15), and (1.17)].

1.1.1 Spatial norms

A very useful tool in assessing the global properties of a discretised solution

is offered by the (spatial) discretised norms. We recall that for a continuum

function u(x, t), smooth in the interval x ∈ [a, b], the corresponding p-norm is

defined as

‖u‖p :=

(

1

(b − a)

∫ b

a

|u(x, t)|pdx
)1/p

, (1.8)

and has the same dimensions as the originating quantity u(x, t). The extension

of the definition (1.8) to a discretised space and time is straightforward and

8 CHAPTER 1. INTRODUCTION

yields the following discretised norms most commonly used

||u(tn)||1 =
1

J

J
∑

j=0

|un
j | = ||u(tn)|| , :: one–norm, (1.9)

||u(tn)||2 =





1

J

J
∑

j=0

(un
j)

2





1/2

, :: two–norm, (1.10)

||u(tn)||p =





1

J

J
∑

j=0

|un
j |p




1/p

, :: p–norm, (1.11)

||u(tn)||∞ = max(|un
j |) , j = 0, . . . J , :: infinity–norm. (1.12)

Note that the discretised two-norm ‖u‖2 effectively corresponds to a root mean

square of the discretised solution un
j and indeed it is often used as a measure of

the average of the solution over the computational domain.

1.2 Numerical errors

Errors are an inevitable property of the numerical solution of a mathematical

problem and their presence is not a nuisance as long as their origin is well

understood and their behaviour matches the expected one. Like an experimental

physicist, who has to determine all the sources of error in his measurements, so

a computational physicist must determine all the contributions to his numerical

solution that make it differ from the exact one, that is, the numerical errors.

Three main errors will be discussed repeatedly in the following chapters and we

briefly discuss them below.

1.2.1 Machine-precision error

The machine-precision error is a consequence of the fact that any machine will

represent a rational number with a finite set of significant figures. It can be

expressed in terms of the equality

fp (1.0) = fp (1.0) + ǫ
M
, (1.13)

where fp (1.0) is the floating-point representation of the number 1. Stated dif-

ferently, the machine-precision error reflects the ability of the machine to dis-

1.2. NUMERICAL ERRORS 9

tinguish two floating-point numbers and is therefore a genuine property of the

machine.

1.2.2 Round-off error

The round-off error is the accumulation of machine-precision errors as a result

of N
FP

floating-point operations. Because of the incoherent nature in which

machine-precision errors add up, this error can be estimated to be

ǫ
RO

≈
√

N
FP
ǫ
M
. (1.14)

When performing a numerical computation one should restrict the number of

operations such that ǫ
RO

is below the error at which the results need to be

determined.

1.2.3 Truncation error

The truncation error (either local or global) is fundamentally different from

the previous two types of errors in that it is entirely under human control

and reflects the decision made in discretising the continuum problem. As we

will discuss below, the truncation error is the most important tool to assess

the correct discretisation of a system of partial differential equations, and it is

therefore useful to dedicate a brief discussion to this concept.

For simplicity, we consider a hyperbolic system of partial differential equa-

tions in one dimension with a discretisation ∆t in time and ∆x in space. If

u(x, t) is the exact solution of the system (1.2) at t = tn and x = xj , we can

measure the difference between the exact solution of the continuum problem,

u(tn, xj), and its numerical counterpart un
j , that is, using Eqs. (1.2) and (1.6),

we can define the local truncation error (or “residual”) as [cf., Eq. (1.6)]

(ǫ(h))nj :=
[

L
h

(

Un
j

)

− F
h

]

− [L(u)−F] = L
h

(

Un
j

)

− F
h
, (1.15)

where Un
j := u(x = xj , t = tn) are the values of the continuum (exact) solution

at the discretised locations in the spacetime [cf., Eq. (1.5)]. In other words, the

local truncation error measures the difference from zero when the discretised

operators are applied to the exact solution. In this respect, it represents the

10 CHAPTER 1. INTRODUCTION

error we have selected when a specific mathematical choice has been made in

the discretisation of the differential operator L. In general, the local truncation

error can be written as a combination of an error associated with the time

discretisation and an error associated with the spatial discretisation, i.e.,

(ǫ(h))nj = O (c1∆tq + c2∆xp) , (1.16)

where c1 and c2 are assumed to be two constant coefficients. The discre-

tised problem (1.3) is then said to have a local order of accuracy r, where

r = min(p, q). Note that in the above definition we have assumed that c1 ∼ c2;

if the coefficients are very different, e.g., c1 ≪ c2, it is then possible that the

order of accuracy is p even if p > q. This is actually the case in most practical

numerical simulations, where the time discretisation has a smaller order of ac-

curacy, but where the use of small time-steps makes the spatial discretisation

the dominant truncation error.

It is quite clear that the truncation error is totally under human judgement

and its measure is essential to guarantee that the discretisation operation has

been made properly and that the discretised problem is therefore a faithful rep-

resentation of the continuum one, but for the truncation error. Let us elaborate

further on this concept and simplify our notation a bit. In the vast majority of

discretisation methods for hyperbolic problems, a constraint requires that the

time and spatial discretisation are comparable,1 i.e., ∆x = O(∆t), so that we

do not need to distinguish between the space and time discretisation and just

consider a generic discretisation interval h := ∆x ∼ ∆t. Let us then drop the

index n referring to the time slice and indicate the local truncation error simply

as

ǫ
(h)
j = Chpj +O(hpj+1) , (1.17)

with C a constant. Given the local numerical solution u
(h)
j obtained with grid

spacing h and a discrete differential operator which is p-th order accurate at xj ,

we can calculate the local error, E
(h)
j , as the difference between the exact and

the numerical solution at xn
j , i.e.,

E
(h)
j := Uj − u

(h)
j . (1.18)

The local truncation error and the local error are clearly related and this relation

is particularly simple to derive in the case of linear problem, where

E
(h)
j = (Lh)

−1ǫ
(h)
j = Chp̃j +O(hp̃j+1) , (1.19)

1We will see below that this constraint is imposed by the Courant–Friedrichs–Lewy (CFL)

condition

1.2. NUMERICAL ERRORS 11

so that we can immediately obtain a measure of the local error simply in term

of the spacing of the discretisation.2 Note that the E
(h)
j measures a numerical

error and is thus proportional to p̃j ; in this sense it is fundamentally different

from ǫ
(h)
j , which represents instead a mathematical error and is proportional to

pj.

If a different solution is computed with a grid spacing k < h, it will then

have, at the same time t = tn and spatial position xj , a corresponding error

E
(k)
j , so that we can introduce the error ratio as

Rj(h, k) :=
E

(h)
j

E
(k)
j

=
hp̃j

kp̃j
+O(hp̃j+1) , (1.20)

from which we can compute the numerical local order of accuracy as

p̃j :=
log |Rj(h, k)|
log(h/k)

. (1.21)

Note that p and p̃j are conceptually similar but distinct. The first one represents

the accuracy order in the continuum limit, while the second one is the accuracy

order as measured from the numerical solution of the continuum problem at

x = xj . As we will comment later on, it is important to establish the relations

between p and p̃j as the resolution is changed. Assuming now that the two

resolutions scale as k = h/γ, the error ratio (1.20) and the corresponding order

of accuracy can be written respectively as

Rj(h, h/γ) = γp̃j = 2p̃j , p̃j = log |Rj(h, h/γ)| / log(γ) = log2 |Rj | , (1.22)

where the second equalities in (1.22) are written in the (rather common) case

in which the grid spacing is simply halved, i.e., γ = 2.

When defining the local error (1.18), we have assumed knowledge of the

exact solution Uj, which, however, is in general not available. This does not

represent a major obstacle and the local accuracy order can still be computed

by simply employing a third (or more) numerical evaluation of the solution. We

therefore exploit the fact that the difference between two numerical solutions

does not depend on the actual exact solution and write

u
(h)
j − u

(k)
j =

(

Uj − E
(h)
j

)

−
(

Uj − E
(k)
j

)

= E
(k)
j − E

(h)
j , (1.23)

2Of course, for Eq. (1.19) to be valid, the inverse operator (Lh)
−1 must not be singular

for h → 0; a similar relation can be found also in the case of nonlinear problems.

12 CHAPTER 1. INTRODUCTION

where, of course, the two solutions u
(h)
j and u

(k)
j should be evaluated at the same

gridpoint t = tn, x = xj . If one of the numerical solutions is not available at such

a point (e.g., because the spacing used is not uniform) a suitable interpolation is

needed and attention must be paid that the error it introduces is much smaller

than either E
(h)
j or E

(k)
j in order not to spoil the measurement of the order of

accuracy.

Using the definition (1.18) and three different numerical solutions u
(h)
j , u

(k)
j ,

u
(ℓ)
j with grid spacings h, k and ℓ such that ℓ < k < h, two different error ratios

can then be defined as3

Rj(h, k; ℓ) :=
u
(h)
j − u

(ℓ)
j

u
(k)
j − u

(ℓ)
j

=
E

(h)
j − E

(ℓ)
j

E
(k)
j − E

(ℓ)
j

=
hp̃j − ℓp̃j

kp̃j − ℓp̃j
, (1.24)

Rj(h, k, ℓ) :=
u
(h)
j − u

(k)
j

u
(k)
j − u

(ℓ)
j

=
E

(h)
j − E

(k)
j

E
(k)
j − E

(ℓ)
j

=
hp̃j − kp̃j

kp̃j − ℓp̃j
, (1.25)

where in (1.24) we have taken the numerical solution u
(ℓ)
j with the associated

error E
(ℓ)
j as the “reference” solution, since it is the one with the smallest error.

Assuming again for concreteness the different resolutions have the same ratio γ,

i.e., that k = h/γ and ℓ = k/γ = h/γ2, then the error ratios assume the simple

expressions4

Rj(h, h/γ;h/γ
2) = γp̃j + 1 = 2p̃j + 1 , Rj(h, h/γ, h/γ

2) = γp̃j = 2p̃j ,

(1.26)

where, again, the second equalities in (1.26) refer to the case in which the grid

spacing is halved. As a result, the corresponding orders of numerical accuracy

can be computed equivalently as

p̃j =
log |Rj(h, h/γ;h/γ

2)− 1|
log(γ)

= log2 |Rj(h, h/2;h/4)− 1| , (1.27)

or as

p̃j =
log |Rj(h, h/γ, h/γ

2)|
log(γ)

= log2 |Rj(h, h/2, h/4)| . (1.28)

All of our considerations so far have been “local”, in the sense that both the

truncation error E
(h)
j and the order of accuracy p̃j have been computed at a

3Note the slight but important difference in the notation of Eqs. (1.24) and (1.25),

i.e., Rj(h, k; ℓ) and Rj(h, k, ℓ).
4If the resolutions are not in a constant ratio, a nonlinear equation needs to te solved via

a root-finding algorithm.

1.2. NUMERICAL ERRORS 13

representative spatial position x = xj . Of course, such considerations should

apply equally for any position in the computational grid and therefore also in a

“global” sense, that is, when the truncation error and the order of accuracy are

computed relative to a “global” measurement in terms of quantities that can

be considered as spatial averages of the solution. Any representative spatially

averaged measure can be used, e.g., a volume integral of the solution, but par-

ticularly useful are the spatial norms introduced in the previous section. For

any spatial norm, therefore, it will be possible to define a global truncation error

as the extension of the definition (1.15), i.e.,

ǫ(h) := ||ǫ(h)j || = ||L
h

(

Un
j

)

− F
h
|| , (1.29)

as well as the global error as the extension of the definition (1.18), i.e.,

E(h) := ||E(h)
j || = ||Uj − u

(h)
j || . (1.30)

These global measurements can then be used to define a global order of accuracy

as the extension of the definition (1.21), i.e.,

p̃ :=
log |R(h, k)|
log(h/k)

, (1.31)

where now the global error ratio for two resolutions h and k is given by [cf., (1.20)]

R(h, k) :=
E(h)

E(k)
=

hp̃

kp̃
+O(hp̃+1) , (1.32)

and the errors ǫ(h) and ǫ(k) are computed via the norms (1.29). Following a logic

which is identical to that followed before for the local order of accuracy, we can

compute the global error ratio also when the exact solution is not known. More

specifically, in this case, given three resolutions h, k and ℓ with k = h/γ, ℓ = k/γ,

the global orders of accuracy can be computed equivalently as

p̃ =
log |R(h, h/γ;h/γ2)− 1|

log(γ)
= log2 |R(h, h/2;h/4)− 1| , (1.33)

or as

p̃ =
log |R(h, h/γ, h/γ2)|

log(γ)
= log2 |R(h, h/2, h/4)| . (1.34)

14 CHAPTER 1. INTRODUCTION

1.2.4 Consistency, convergence and stability

Many of the concepts and quantities introduced in the previous section represent

the building blocks for two important definitions that will be presented here.

Let us therefore go back to the hyperbolic partial differential equation [cf., Eq.

(1.2)] where, we recall, L is a quasi-linear differential operator and F is a generic

source term that depends on u but not on its derivatives. We indicate again

with L
h
the discretised representation of the continuum differential operator and

with ǫ(h) the associated global truncation error [cf., Eq. (1.29)], which can be

conveniently expressed as ǫ(h) = Chp = O(hp), with C a real constant coefficient

[cf., (1.17)]. The discretised representation L
h
of the partial differential operator

L(u) is then said to satisfy the global consistency condition if

lim
h→0

ǫ(h) = 0 . (1.35)

In addition, L
h
is said to satisfy the global convergence condition if

lim
h→0

E(h) = lim
h→0

Chp = 0 , (1.36)

where the first equality follows from taking the norm of Eq. (1.19), and where

p is then called the global convergence order. Note that local consistency con-

ditions and local convergence can be defined in a very similar fashion by simply

replacing ǫ(h) with ǫ
(h)
j in Eq. (1.35), and E(h) with E

(h)
j in Eq. (1.36), re-

spectively. Of course, these changes would then lead to local convergence order

p̃j .

The convergence condition (1.36) can also be expressed in a different, more

revealing way. Using in fact the definition of the numerical order of accuracy

made in Eq. (1.21), the discretised operator L
h
is said to be locally convergent

if

lim
h→0

p̃ :=
log(E(h))

log(Ch)
= p , (1.37)

that is, if the accuracy order coincides with the convergence order, or, equiva-

lently, if the measured numerical local truncation error coincides with the ex-

pected continuum one. Note that the convergence condition (1.36) is much

more restrictive than the consistency one (1.35). While both require the local

truncation error to decrease with increasing resolution and to vanish in the con-

tinuum limit, the convergence condition requires that this happens at a very

precise rate, that is, the convergence rate. Therefore, consistency is a necessary

condition for convergence, but not a sufficient one.

1.2. NUMERICAL ERRORS 15

A few remarks are worth making. First, in practice, there will be a mini-

mum resolution, h
min

, below which the truncation error will dominate over the

others, e.g., round-off error. Clearly, one should expect convergence only for

h < h
min

and the solution in this case is said to be in a convergent regime. Sec-

ond, as already anticipated, the consistency and convergence conditions (1.35)

and (1.36), which have been expressed above for the global truncation error,

can be easily extended to the local truncation error following the logic behind

expressions (1.15) and (1.21). Third, when validating the correct discretisation

of a partial differential equation, the convergence condition (1.36) is verified by

computing the numerical solution at different resolutions and by estimating the

truncation error through the exact solution [cf., Eq. (1.22)]. This is usually

referred to as the “convergence test”, with two resolutions being sufficient.5 If

the exact solution is not known, it is sufficient to perform an additional mea-

surement at a third resolution, comparing the three different truncation errors

to estimate the order of accuracy [cf., Eq. (1.24)]. This is usually referred to as

the “self-convergence test”.

We conclude this section with an important theorem that brings together

many of the concepts discussed so far and provides a unique interpretation for

the interplay between consistency, convergence and stability. Indeed, the mea-

surement of a convergent discretisation also has another important aspect, which

requires, however, yet another definition. Let us consider again the discretised

representation L
h
of the partial differential operator L(u) and recall that its

application across a time interval ∆t introduces an associated truncation error

ǫ(h). The evolution from time t = 0 to t = tn can then be thought of as the

application n-times of the operator L
h
to the corresponding solution um

j with

m = 1, . . . , n. The application of this operator should be such that the error

accumulated does not grow unbounded and we express this requirement through

the condition of numerical stability. More specifically, indicating with Ln
h
the

n-th application of the operator L
h
, the latter is said to be numerically stable

if for each time T = tn there is a constant Cs and a value h0 such that

‖Ln
h
‖1 ≤ Cs , for all nh ≤ T , and h < h0 . (1.38)

In essence, although our initial-value problem has been chosen to be well-posed,

its discretisation can still lead to a solution that grows unbounded if an “un-

stable” numerical method is used. Hence, stability is a primary requirement for

5In practice, the truncation errors measured with the two resolutions are used to draw a

straight line in a log-log plot of ǫj versus h, whose slope should match the expected one.

16 CHAPTER 1. INTRODUCTION

any discretised operator and the numerical solution of a well-posed initial-value

problem is simply hopeless if performed with an unstable method.

Note that the operator is clearly stable if ‖L
h
‖1 ≤ 1, since ‖Ln

h
‖1 ≤ ‖L

h
‖n1 ≤

1. In most practical situations, however, a certain growth is allowed, for instance

if the solution intrinsically grows with time, so that the stability condition is

enforced by requiring that ‖L
h
‖1 ≤ 1 + γh, and

‖L
h
‖n1 ≤ (1 + γh)n ≤ eγhn ≤ eγT . (1.39)

Stated differently, the solution at later times is bounded to grow at most ex-

ponentially. With this definition in hand, we can state the following theorem

Theorem Given a well-posed initial-value linear problem and a

finite-difference approximation to it that satisfies the consistency

condition, stability is a necessary and sufficient condition for con-

vergence.

This theorem, known as the Lax equivalence theorem shows that for an initial-

value problem which has been discretised with a consistent finite-difference op-

erator (which we will introduce in detail in the next section), the concept of

stability and convergence are interchangeable. In principle, therefore, proving

that the numerical solution is convergent will not only validate that the discrete

form of the equations represents a faithful representation of the continuum ones,

but also that the solution will be bounded at all times. In practice, however,

since the theorem strictly holds only for linear partial differential equations, it

has a limited impact for most of the problems of physical interest. A proof of

the Lax equivalence theorem can also be found in [11].

Chapter 2

Hyperbolic PDEs: Flux

Conservative Formulation

It is often the case, when dealing with hyperbolic equations, that they can

be formulated through conservation laws stating that a given quantity “u” is

transported in space and time and is thus locally “conserved”. The resulting

“law of continuity” leads to equations which are called conservative and are of

the type
∂u

∂t
+∇ · F (u) = 0 , (2.1)

where u(x, t) is the density of the conserved quantity, F the density flux and

x a vector of spatial coordinates. In most of the physically relevant cases,

the flux density F will not depend explicitly on x and t, but only implicitly

through the density u(x, t), i.e., F = F (u(x, t)). The vector F is also called the

conserved flux and takes this name from the fact that in the integral formulation

of the conservation equation (2.1), the time variation of the integral of u over

a reference volume V is indeed given by the net flux of u across the surface

enclosing V .

Generalising expression (2.1), we can consider a vector of densities U and

write a set of conservation equations in the form

∂U

∂t
+∇ · F (U) = S(U) . (2.2)

Here, S(U) is a generic “source term” indicating the sources and sinks of

the vector U . The main property of the homogeneous equation (2.2) (i.e., when

S(U) = 0) is that the knowledge of the state-vector U(x, t) at a given point x

17

18CHAPTER 2. HYPERBOLIC PDES: FLUX CONSERVATIVE FORMULATION

at time t allows to determine the rate of flow, or flux, of each state variable at

(x, t).

Conservation laws of the form given by (2.2) can also be written as a quasi-

linear form
∂U

∂t
+A(U)

∂U

∂x
= 0 , (2.3)

where A(U) := ∂F /∂U is the Jacobian of the flux vector F (U).

The use of a conservation form of the equations is particularly important

when dealing with problems admitting shocks or other discontinuities in the

solution, e.g., when solving the hydrodynamical equations. A non-conservative

method, i.e., a method in which the equations are not written in a conserva-

tive form, might give a numerical solution which appears perfectly reasonable

but then yields incorrect results. A well-known example is offered by Burger’s

equation, i.e., the momentum equation of an isothermal gas in which pressure

gradients are neglected, and whose non-conservative representation fails dra-

matically in providing the correct shock speed if the initial conditions contain

a discontinuity. Moreover, since the hydrodynamical equations follow from the

physical principle of conservation of mass and energy-momentum, the most ob-

vious choice for the set of variables to be evolved in time is that of the conserved

quantities. It has been proved that non-conservative schemes do not converge

to the correct solution if a shock wave is present in the flow, whereas conserva-

tive numerical methods, if convergent, do converge to the weak solution of the

problem.

In the following, we will concentrate on numerical algorithms for the solution

of hyperbolic partial differential equations written in the conservative form of

equation (2.2). The advection and wave equations can be considered as pro-

totypes of this class of equations in which with S(U) = 0 and will be used

hereafter as our working examples.

Chapter 3

The advection equation in

one dimension (1D)

A special class of conservative hyperbolic equations are the so called advection

equations, in which the time derivative of the conserved quantity is proportional

to its spatial derivative. In these cases, F (U) is diagonal and given by

F (U) = vI ·U , (3.1)

where I is the identity matrix.

Because in this case the finite-differencing is simpler and the resulting al-

gorithms are easily extended to more complex equations, we will use it as our

“working example”. More specifically, the advection equation for u we will

consider hereafter has, in 1D, the simple expression

∂u

∂t
+ v

∂u

∂x
= 0 , (3.2)

and admits the general analytic solution u = f(x − vt), representing a wave

moving in the positive x-direction if v > 0.

3.1 The 1D Upwind scheme: O(∆t,∆x)

We will start making use of finite-difference techniques to derive a discrete rep-

resentation of equation (3.2) by first considering the derivative in time. Taylor

expanding the solution around (xj , t
n) we obtain

u(xj , t
n +∆t) = u(xj , t

n) +
∂u

∂t
(xj , t

n)∆t+O(∆t2) , (3.3)

19

20CHAPTER 3. THE ADVECTION EQUATION IN ONE DIMENSION (1D)

or, equivalently,

un+1
j = un

j +
∂u

∂t

∣

∣

∣

∣

n

j

∆t+O(∆t2) . (3.4)

Isolating the time derivative and dividing by ∆t we obtain

∂u

∂t

∣

∣

∣

∣

n

j

=
un+1
j − un

j

∆t
+O(∆t) . (3.5)

Adopting a standard convention, we will consider the finite-difference rep-

resentation of an m-th order differential operator ∂m/∂xm in the generic x-

direction (where x could either be a time or a spatial coordinate) to be of order

p if and only if

∂mu

∂xm

∣

∣

∣

∣

xn
j

=
∂mu

∂xm

∣

∣

∣

∣

n

j

= Lh(u
n
j) +O(∆xp) . (3.6)

Of course, the time and spatial operators may have finite-difference representa-

tions with different orders of accuracy and in this case the overall order of the

equation is determined by the differential operator with the largest truncation

error.

Note also that while the truncation error is expressed for the differential oper-

ator, the numerical algorithms will not be expressed in terms of the differential

operators and will therefore have different (usually smaller) truncation errors.

This is clearly illustrated by the equations above, which show that the explicit

solution (3.4) is of higher order than the finite-difference expression for the

differential operator (3.5).

With this definition in mind, it is not difficult to realise that the finite-

difference expression (3.5) for the time derivative is only first-order accurate

in ∆t. However, accuracy is not the most important requirement in numerical

analysis and a first-order but stable scheme is greatly preferable to one which

is higher order (i.e., has a smaller truncation error) but is unstable.

In way similar to what we have done in (3.5) for the time derivative, we can

derive a first-order, finite-difference approximation to the space derivative as

∂u

∂x

∣

∣

∣

∣

n

j

=
un
j − un

j−1

∆x
+O(∆x) . (3.7)

While formally similar, the approximation (3.7) suffers of the ambiguity, not

present in expression (3.5), that the first-order term in the Taylor expansion

can be equally expressed in terms of un
j+1 and un

j , i.e.,

∂u

∂x

∣

∣

∣

∣

n

j

=
un
j+1 − un

j

∆x
+O(∆x) . (3.8)

3.1. THE 1D UPWIND SCHEME: O(∆T,∆X) 21

t or n

x or j

jj−1 j+1
n

n+1

jj−1 j+1
n

n+1

v<0

v>0

upwind

Figure 3.1: Schematic diagram of an UPWIND evolution scheme.

This ambiguity is the consequence of the first-order approximation which

prevents a proper “centring” of the finite-difference stencil. However, and as

long as we are concerned with an advection equation, this ambiguity is easily

solved if we think that the differential equation will simply translate each point

in the initial solution to the new position x+v∆t over a time interval ∆t. In this

case, it is natural to select the points in the solution at the time-level n that are

“upwind” of the solution at the position j and at the time-level n+ 1, as these

are the ones causally connected with un+1
j . Depending then on the direction in

which the solution is translated, and hence on the value of the advection velocity

v, two different finite-difference representations can be given of equation (3.2)

22CHAPTER 3. THE ADVECTION EQUATION IN ONE DIMENSION (1D)

and these are

un+1
j − un

j

∆t
= −v

(

un
j − un

j−1

∆x

)

+O(∆t,∆x) , if v > 0 , (3.9)

un+1
j − un

j

∆t
= −v

(

un
j+1 − un

j

∆x

)

+O(∆t,∆x) , if v < 0 , (3.10)

respectively. As a result, the final finite-difference algorithms for determining

the solution at the new time-level will have the form

un+1
j = un

j − v∆t

∆x
(un

j − un
j−1) +O(∆t2,∆x∆t) , if v > 0 , (3.11)

un+1
j = un

j − v∆t

∆x
(un

j+1 − un
j) +O(∆t2,∆x∆t) , if v < 0 . (3.12)

More in general, for a system of linear hyperbolic equations with state vector

U and flux-vector F, the upwind scheme will take the form

U
n+1
j = U

n
j ± ∆t

∆x

[

F
n
j∓1 − F

n
j

]

+O(∆t2,∆x∆t) , (3.13)

where the ± sign should be chosen according to whether v > 0 or v < 0. The

logic behind the choice of the stencil in an upwind method is is illustrated in

Fig. 1.1 where we have shown a schematic diagram for the two possible values

of the advection velocity.

The upwind scheme (as well as all of the others we will consider here) is an

example of an explicit scheme, that is of a scheme where the solution at the new

time-level n+1 can be calculated explicitly from the quantities that are already

known at the previous time-level n. This is to be contrasted with an implicit

scheme in which the finite-difference representations of the differential equation

has, on the right-hand-side, terms at the new time-level n+ 1. These methods

require in general the solution of a number of coupled algebraic equations and

will not be discussed further here.

The upwind scheme is a stable one in the sense that the solution will not

have exponentially growing modes. This can be seen through a von Neumann

stability analysis, a useful tool which allows a first simple validation of a given

numerical scheme. It is important to underline that the von-Neumann stability

analysis is local in the sense that: a) it does not take into account boundary

effects; b) it assumes that the coefficients of the finite-difference equations are

sufficiently slowly varying to be considered constant in time and space (this is a

reasonable assumptions if the equations are linear). Under these assumptions,

3.1. THE 1D UPWIND SCHEME: O(∆T,∆X) 23

the solution can be seen as a sum of eigenmodes which at each grid point have

the form

un
j = ξneikxj , (3.14)

where k is the spatial wave number and ξ = ξ(k) is a complex number.

If we now consider the symbolic representation of the finite-difference equa-

tion as

un+1
j = T (∆tp,∆xq)un

j , (3.15)

with T (∆tp,∆xq) being the evolution operator of order p in time and q in

space, it then becomes clear from (3.14) and (3.15) that the time evolution of

a single eigenmode is nothing but a succession of integer powers of the complex

number ξ which is therefore named amplification factor. This naturally leads

to a criterion of stability as the one for which the modulus of the amplification

factor is always less or equal than 1, i.e.,

|ξ|2 = ξξ∗ ≤ 1 . (3.16)

∆ t

n+1
COURANT STABLE COURANT UNSTABLE

n

j+1j-1 j+1j-1

Figure 3.2: Schematic diagram of Courant stable and unstable choices of time-steps ∆t.

The two dashed lines limit the numerical domain of dependence of the solution at xn+1

j , while

the shaded area represents the physical domain of dependence. Stability is achieved when the

first one is larger than the second one.

Using (3.14) in (3.11)–(3.12) we would obtain an amplification factor

ξ = 1− |α| (1− cos(k∆x)) − iα sin(k∆x) , (3.17)

where

α :=
v∆t

∆x
. (3.18)

Its squared modulus |ξ|2 := ξξ∗ is then

|ξ|2 = 1− 2 |α| (1− |α|) (1− cos(k∆x)) , (3.19)

24CHAPTER 3. THE ADVECTION EQUATION IN ONE DIMENSION (1D)

so that the amplification factor (3.19) is less than one as long as the Courant-

Friedrichs-Löwy condition (CFL condition)

|α| ≤ 1 , (3.20)

is satisfied (condition (3.20) is sometimes referred to simply as the Courant

condition.). Note that in practice, the CFL condition (3.20) is used to determine

the time-step ∆t once v is known and ∆x has been chosen to achieve a certain

accuracy, i.e.,

∆t = c
CFL

∆x

|v| , (3.21)

with c
CFL

< 1 being the CFL factor. Expression (3.21) also allows a useful

interpretation of the CFL condition.

From a mathematical point of view, the condition ensures that the numerical

domain of dependence of the solution is larger than the physical one. From

a physical point of view, on the other hand, the condition ensures that the

propagation speed of any physical perturbation (e.g., the sound speed, or the

speed of light) is always smaller than the numerical one v
N
:= ∆x/∆t, i.e.,

|v| = c
CFL

∆x

∆t
≤ v

N
:=

∆x

∆t
. (3.22)

Equivalently, the CFL conditions prevents any physical signal to propagate for

more than a fraction of a grid-zone during a single time-step (cf. Fig. 3.2)

As a final remark it should be noted that as described so far, the upwind

method will yield satisfactory results only in the case in which the equations

have an obvious transport character in one direction. However, in more general

situations such as a wave equation, the upwind method will not be adequate

and different expressions, based on finite-volume formulations of the equations

will be needed [1, 4].

3.2 The 1D FTCS scheme: O(∆t,∆x2)

Let us consider again the advection equation (3.2) but we now finite difference

with a more accurate approximation of the space derivative. To do this we can

3.2. THE 1D FTCS SCHEME: O(∆T,∆X2) 25

Figure 3.3: Time evolution of a Gaussian initially centred at x = 0.5 computed using an

upwind scheme with v = 10 and 100 gridpoints. The analytic solution at time t = 3 is shown

with a solid line the dashed lines are used to represent the numerical solution at the same time.

Two different simulations are reported with the circles referring to a CFL factor c
CFL

= 0.99

and squares to a CFL factor c
CFL

= 0.50. Note how dissipation increases as the CFL is

reduced.

calculate the two Taylor expansions in xj ±∆x

u(xj +∆x, tn) = u(xj , t
n) +

∂u

∂x
(xj , t

n)∆x +
1

2

∂2u

∂x2
(xj , t

n)∆x2 +O(∆x3) ,

(3.23)

u(xj −∆x, tn) = u(xj , t
n)− ∂u

∂x
(xj , t

n)∆x +
1

2

∂2u

∂x2
(xj , t

n)∆x2 +O(∆x3) ,

(3.24)

26CHAPTER 3. THE ADVECTION EQUATION IN ONE DIMENSION (1D)

Subtracting now the two expressions and dividing by 2∆x we eliminate the

first-order terms and obtain

∂u

∂x

∣

∣

∣

∣

n

j

=
un
j+1 − un

j−1

2∆x
+O(∆x2) , (3.25)

jj−1 j+1

FTCS

n

n+1

Figure 3.4: Schematic diagram of a FTCS evolution scheme.

Using now the second-order accurate operator (3.25) we can finite-difference

equation (3.2) through the so called FTCS (Forward-Time-Centered-Space)

scheme in which a first-order approximation is used for the time derivative, but

a second order one for the spatial one. Using the a finite-difference notation,

the FTCS is then expressed as

un+1
j − un

j

∆t
= −v

(

un
j+1 − un

j−1

2∆x

)

+O(∆t,∆x2) , (3.26)

so that

un+1
j = un

j − α

2
(un

j+1 − un
j−1) +O(∆t2,∆x2∆t) , (3.27)

or more generically, for a system of linear hyperbolic equations

U
n+1
j = U

n
j − ∆t

2∆x

[

F
n
j+1 − F

n
j−1

]

+O(∆t2,∆x2∆t) , (3.28)

The stencil for the finite- differencing (3.27) is shown symbolically in Fig. 3.4.

Disappointingly, the FTCS scheme is unconditionally unstable: i.e., the nu-

merical solution will be destroyed by numerical errors which will be certainly

produced and grow exponentially. This is shown in Fig. 3.5 where we show the

time evolution of a Gaussian using an FTCS scheme 100 gridpoints. The ana-

lytic solution at time t = 0.3 is shown with a solid line the dashed lines are used

to represent the numerical solution at the same time. Note that the solution

plotted here refers to a time which is 10 times smaller than the one in Fig. 3.3.

3.2. THE 1D FTCS SCHEME: O(∆T,∆X2) 27

Figure 3.5: Time evolution of a Gaussian using an FTCS scheme with v = 1 and 100

gridpoints. The analytic solution at time t = 0.3 is shown with a solid line, while the dashed

line is the numerical solution at the same time. Soon after t ≃ 0.3 the exponentially growing

modes appear, rapidly destroying the solution.

Soon after t ≃ 0.3 the exponentially growing modes appear, rapidly destroying

the solution.

Applying the definition (3.14) to equation (3.27) and few algebraic steps lead

to an amplification factor

ξ = 1− iα sin(k∆x) . (3.29)

whose squared modulus is

|ξ|2 = 1 + (α sin(k∆x))
2
> 1 , (3.30)

thus proving the unconditional instability of the FTCS scheme. Because of this,

the FTCS scheme is rarely used and will not produce satisfactory results but for

28CHAPTER 3. THE ADVECTION EQUATION IN ONE DIMENSION (1D)

a very short timescale as compared to the typical crossing time of the physical

problem under investigation.

A final aspect of the von-Neumann stability worth noticing is that it is a

necessary but not sufficient condition for stability. In other words, a numerical

scheme that appears stable with respect to a von-Neumann stability analysis

might still be unstable.

3.3 The 1D Lax-Friedrichs scheme: O(∆t,∆x2)

jj−1 j+1
n

n+1

Lax−Friedrichs

Figure 3.6: Schematic diagram of a Lax-Friedrichs evolution scheme.

A solution to the stability problems offered by the FTCS scheme was pro-

posed by Lax and Friedrichs. The basic idea is very simple and is based on

replacing, in the FTCS formula (3.27), the term un
j with its spatial average,

i.e., un
j = (un

j+1 + un
j−1)/2, so as to obtain for an advection equation

un+1
j =

1

2
(un

j+1 + un
j−1)−

α

2
(un

j+1 − un
j−1) +O(∆x2) , (3.31)

and, for a system of linear hyperbolic equations

U
n+1
j =

1

2
(Un

j+1 +U
n
j−1)−

∆t

2∆x

[

F
n
j+1 − F

n
j−1

]

+O(∆x2) . (3.32)

Note that the truncation error in equations (3.31) and (3.32) is reported to

be O(∆x2) and not O(∆t2,∆x2∆t) because we are assuming that the CFL

condition is satisfied and hence ∆t = O(∆x). We will maintain this assumption

hereafter.

The schematic diagram of a Lax-Friedrichs evolution scheme is shown in

Fig. 3.6. Perhaps surprisingly, the algorithm (3.32) is now conditionally stable

as can be verified through a von Neumann stability analysis. Proceeding as done

for the FTCS scheme and using (3.14) in (3.32) we would obtain an amplification

3.3. THE 1D LAX-FRIEDRICHS SCHEME: O(∆T,∆X2) 29

factor whose modulus squared is

|ξ|2 = 1− sin2(k∆x)
(

1− α2
)

, (3.33)

which is < 1 as long as the CFL condition is satisfied.

Although not obvious, the correction introduced by the Lax-Friedrichs scheme

is equivalent to the introduction of a numerical dissipation (viscosity). To see

this, we rewrite (3.32) so that it clearly appears as a correction to (3.27):

un+1
j − un

j

∆t
= −v

(

un
j+1 − un

j−1

2∆x

)

+
1

2

(

un
j+1 − 2un

j + un
j−1

∆t

)

. (3.34)

This is exactly the finite-difference representation of the equation

∂u

∂t
+ v

∂u

∂x
=

1

2

(

∆x2

∆t

)

∂2u

∂x2
, (3.35)

where a diffusion term, ∝ ∂2u/∂x2, has appeared on the right-hand-side. To

prove this, we sum the two Taylor expansions (3.23)–(3.24) around xj to elimi-

nate the first-order derivatives and obtain

∂2u

∂x2

∣

∣

∣

∣

n

j

=
un
j+1 − 2un

j + un
j−1

∆x2
+O(∆x2) , (3.36)

where the sum has allowed us to cancel both the terms O(∆x) and O(∆x3).

Note that since the expression for the second derivative in (3.36) is O(∆x2), it

is appears multiplied by ∆x2/∆t = O(∆x) in equation (3.35), thus making the

right-hand-side O(∆x3) overall. The left-hand-side, on the other hand, is only

O(∆x) (the time derivative is O(∆x), while the spatial derivative is O(∆x2)).

As a result, the dissipative term goes to zero more rapidly than the intrinsic

truncation error of the Lax-Friedrichs scheme, thus guaranteeing that the in

the continuum limit the algorithm will converge to the correct solution of the

advection equation.

A reasonable objection could be made for the fact that the Lax-Friedrichs

scheme has changed the equation whose solution one is interested in [i.e., Eq.

(3.2)] into a new equation, in which a spurious numerical dissipation has been

introduced [i.e., Eq. (3.35)]. Unless |v|∆t = ∆x, |ξ| < 1 and the amplitude of

the wave is doomed to decrease (see Fig. 3.7).

However, such objection can be easily circumvented. As mentioned above,

the dissipative term is always smaller than the truncation error thus guarantee-

ing the convergence to the correct solution. Furthermore, it is useful to bear

30CHAPTER 3. THE ADVECTION EQUATION IN ONE DIMENSION (1D)

Figure 3.7: This is the same as in Fig. 3.3 but for a Lax-Friedrichs scheme. Note how the

scheme is stable but also suffers from a considerable dissipation.

in mind that the key aspect in any numerical representation of a physical phe-

nomenon is the determination of the length scale over which we need to achieve

an accurate description. In a finite-difference approach, this length scale must

necessarily encompass many grid points and for which k∆x ≪ 1. In this case,

expression (3.33) clearly shows that the amplification factor is very close to 1

and the effects of dissipation are therefore small. Note that this is true also for

the FTCS scheme so that on these scales the stable and unstable schemes are

equally accurate. On the very small scales however, which we are not of interest

to us, k∆x ∼ 1 and the stable and unstable schemes are radically different.

The first one will be simply inaccurate, the second one will have exponentially

growing errors which will rapidly destroy the whole solution. It is rather obvi-

ous that stability and inaccuracy are by far preferable to instability, especially

if the accuracy is lost over wavelengths that are not of interest or when it can

3.4. THE 1D LEAPFROG SCHEME: O(∆T 2,∆X2) 31

be recovered easily by using more refined grids.

3.4 The 1D Leapfrog scheme: O(∆t2,∆x2)

Both the FTCS and the Lax-Friedrichs are “one-level” schemes with first-order

approximation for the time derivative and a second-order approximation for

the spatial derivative. In those circumstances v∆t should be taken significantly

smaller than ∆x (to achieve the desired accuracy), well below the limit imposed

by the Courant condition.

j−1 j+1
n

n+1

Leapfrog

n−1

j

Figure 3.8: Schematic diagram of a Leapfrog evolution scheme.

Second-order accuracy in time can be obtained if we insert

∂u

∂t

∣

∣

∣

∣

n

j

=
un+1
j − un−1

j

2∆t
+O(∆t2) , (3.37)

in the FTCS scheme, to find the Leapfrog scheme

un+1
j = un−1

j − α
(

un
j+1 − un

j−1

)

+O(∆x2) , (3.38)

where it should be noted that the factor 2 in ∆x cancels the equivalent factor

2 in ∆t.

For a set of linear equations, the Leapfrog scheme simply becomes

U
n+1
j = U

n−1
j − ∆t

∆x

[

F
n
j+1 − F

n
j−1

]

+O(∆x2) , (3.39)

and the schematic diagram of a Leapfrog evolution scheme is shown in Fig. 3.8.

Also for the case of a Leapfrog scheme there are a number of aspects that

should be noticed:

32CHAPTER 3. THE ADVECTION EQUATION IN ONE DIMENSION (1D)

Figure 3.9: This is the same as in Fig. 3.3 but for a Leapfrog scheme. Note how the scheme is

stable and does not suffers from a considerable dissipation even for low CFL factors. However,

the presence of a little “dip” in the tail of the Gaussian for the case of c
CFL

= 0.5 is the result

of the dispersive nature of the numerical scheme.

• In a Leapfrog scheme that is Courant stable, there is no amplitude dissi-

pation (i.e., |ξ|2 = 1). In fact, a von Neumann stability analysis yields

ξ = −iα sin(k∆x) ±
√

1− [α sin(k∆x)]2 , (3.40)

and so that

|ξ|2 = α2 sin2(k∆x) + {1− [α sin(k∆x)]2} = 1 ∀ α ≤ 1 . (3.41)

As a result, the squared modulus of amplification factor is always 1, pro-

vided the CFL condition is satisfied (cf. Fig. 3.11).

• The Leapfrog scheme is a two-level scheme, requiring records of values at

time-steps n and n− 1 to get values at time-step n+1. This is clear from

3.5. THE 1D LAX-WENDROFF SCHEME: O(∆T 2,∆X2) 33

n+1

n-1

n

Figure 3.10: Schematic diagram of the decoupled grids in a Leapfrog evolution scheme.

expression (5.22) and cannot be avoided by means of algebraic manipula-

tions.

• The major disadvantage of this scheme is that odd and even mesh points

are completely decoupled (see Fig. 8).

In principle, the solutions on the black and white squares are identical. In

practice, however, their differences increase as the time progresses. This

effect, which becomes evident only on timescales much longer then the

crossing timescale, can be cured either by discarding one of the solutions

or by adding a dissipative term of the type

. . .+ ǫ(un
j+1 − 2un

j+1 + un
j+1) , (3.42)

in the right-hand-side of (5.17), where ǫ ≪ 1 is an adjustable coefficient.

3.5 The 1D Lax-Wendroff scheme: O(∆t2,∆x2)

The Lax-Wendroff scheme is the second-order accurate extension of the Lax-

Friedrichs scheme. As for the case of the Leapfrog scheme, in this case too we

need two time-levels to obtain the solution at the new time-level.

There are a number of different ways of deriving the Lax-Wendroff scheme

but it is probably useful to look at it as to a combination of the Lax-Friedrichs

34CHAPTER 3. THE ADVECTION EQUATION IN ONE DIMENSION (1D)

scheme and of the Leapfrog scheme. In particular a Lax-Wendroff scheme can

be obtained as

1. A Lax-Friedrichs scheme with half step:

U
n+ 1

2

j+ 1

2

=
1

2

[

U
n
j+1 +U

n
j

]

− ∆t

2∆x

[

F
n
j+1 − F

n
j

]

+O(∆x2) ,

U
n+ 1

2

j− 1

2

=
1

2

[

U
n
j +U

n
j−1

]

− ∆t

2∆x

[

F
n
j − F

n
j−1

]

+O(∆x2) ,

where ∆t/(2∆x) comes from having used a timestep ∆t/2;

2. The evaluation of the fluxes F
n+ 1

2

j± 1

2

from the values of U
n+ 1

2

j± 1

2

3. A Leapfrog “half-step”:

U
n+1
j = U

n
j − ∆t

∆x

[

F
n+ 1

2

j+ 1

2

− F
n+ 1

2

j− 1

2

]

+O(∆x2) . (3.43)

The schematic diagram of a Lax-Wendroff evolution scheme is shown in

Fig. 3.11 and the application of this scheme to the advection equation (3.2) is

straightforward. More specifically, the “half-step” values can be calculated as

u
n+1/2
j±1/2 =

1

2

(

un
j + uu

j±1

)

∓ α

2

(

un
j±1 − un

j

)

+O(∆x2) , (3.44)

so that the solution at the new time-level will then be

un+1
j = un

j − α
(

u
n+1/2
j+1/2 − u

n+1/2
j−1/2

)

+O(∆x2) (3.45)

= un
j − α

2

(

un
j+1 − un

j−1

)

+
α2

2

(

un
j+1 − 2un

j + un
j−1

)

+O(∆x2) .

(3.46)

where expression (3.46) has been obtained after substituting (3.44) in (3.45).

Aspects of a Lax-Wendroff scheme worth noticing are:

• In the Lax-Wendroff scheme there might be some amplitude dissipation.

In fact, a von-Neumann stability analysis yields

ξ = 1− iα sin(k∆x) − α2 [1− cos(k∆x)] , (3.47)

so that the squared modulus of the amplification factor is

|ξ|2 = 1− α2(1− α2)
[

1− cos2(k∆x)
]

. (3.48)

3.6. THE 1D ICN SCHEME: O(∆T 2,∆X2) 35

n+1

n
j−1 j j+1

n+1/2
j+1/2j−1/2Lax−Wendroff

Figure 3.11: Schematic diagram of a Lax-Wendroff evolution scheme.

As a result, the von-Neumann stability criterion |ξ|2 ≤ 1 is satisfied as

long as α2 ≤ 1, or equivalently, as long as the CFL condition is satisfied.

(cf. Fig. 10). It should be noticed, however, that unless α2 = 1, then

|ξ|2 < 1 and some amplitude dissipation is present. In this respect, the

dissipative properties of the Lax-Friedrichs scheme are not completely lost

in the Lax-Wendroff scheme but are much less severe (cf. Figs. 5 and 10).

• The Lax-Wendroff scheme is a two-level scheme, but can be recast in a

one-level form by means of algebraic manipulations. This is clear from

expressions (3.46) where quantities at time-levels n and n+1 only appear.

3.6 The 1D ICN scheme: O(∆t2,∆x2)

The idea behind the iterative Crank-Nicolson (ICN) scheme is that of trans-

forming a stable implicit method, i.e., the Crank-Nicolson (CN) scheme (see

Sect. 8.5.2) into an explicit one through a series of iterations. To see how to

do this in practice, consider differencing the advection equation (3.2) having a

centred space derivative but with the time derivative being backward centred,

i.e.,
un+1
j − un

j

∆t
= −v

(

un+1
j+1 − un+1

j−1

2∆x

)

. (3.49)

This scheme is also known as “backward in time, centred in space” or BTCS

(see Sect. 8.5.1) and has amplification factor

ξ =
1

1 + iα sin k∆x
, (3.50)

36CHAPTER 3. THE ADVECTION EQUATION IN ONE DIMENSION (1D)

Figure 3.12: This is the same as in Fig. 3.3 but for a Lax-Wendroff scheme. Note how the

scheme is stable and does not suffers from a considerable dissipation even for low CFL factors.

However, the presence of a little “dip” in the tail of the Gaussian for the case of c
CFL

= 0.5

is the result of the dispersive nature of the numerical scheme.

so that |ξ|2 < 1 for any choice of α, thus making the method unconditionally

stable.

The Crank-Nicolson (CN) scheme, instead, is a second-order accurate method

obtained by averaging a BTCS and a FTCS method or, in other words, equa-

tions (3.26) and (3.49). Doing so one then finds

ξ =
1 + iα sin k∆x/2

1− iα sin k∆x/2
. (3.51)

so that the method is stable. Note that although one averages between an

explicit and an implicit scheme, terms containing un+1 survive on the right-

hand-side of equation (3.49), thus making the CN scheme implicit.

The first iteration of iterative Crank-Nicolson starts by calculating an inter-

3.6. THE 1D ICN SCHEME: O(∆T 2,∆X2) 37

mediate variable (1)ũ using equation (3.26):

(1)ũn+1
j − un

j

∆t
= −v

(

un
j+1 − un

j−1

2∆x

)

. (3.52)

Then another intermediate variable (1)ū is formed by averaging:

(1)ū
n+1/2
j :=

1

2

(

(1)ũn+1
j + un

j

)

. (3.53)

Finally the timestep is completed by using equation (3.26) again with ū on the

right-hand side:

un+1
j − un

j

∆t
= −v

(

(1)ū
n+1/2
j+1 − (1)ū

n+1/2
j−1

2∆x

)

. (3.54)

Iterated Crank-Nicolson with two iterations is carried out in much the same

way. After steps (3.52) and (3.53), we calculate

(2)ũn+1
j − un

j

∆t
= −v

(

(1)ū
n+1/2
j+1 − (1)ū

n+1/2
j−1

2∆x

)

, (3.55)

(2)ū
n+1/2
j :=

1

2

(

(2)ũn+1
j + un

j

)

. (3.56)

Then the final step is computed analogously to equation (3.54):

un+1
j − un

j

∆t
= −v

(

(2)ū
n+1/2
j+1 − (2)ū

n+1/2
j−1

2∆x

)

. (3.57)

Further iterations can be carried out following the same logic.

To investigate the stability of these iterated schemes we compute the ampli-

fication factors relative to the different iterations to be

(1)ξ = 1 + 2iβ , (3.58)

(2)ξ = 1 + 2iβ − 2β2 , (3.59)

(3)ξ = 1 + 2iβ − 2β2 − 2iβ3 , (3.60)

(4)ξ = 1 + 2iβ − 2β2 − 2iβ3 + 2β4 , (3.61)

where β := (α/2) sin(k∆x), and (1)ξ corresponds to the FTCS scheme. Note

that the amplification factors (3.58) correspond to those one would obtain by

expanding equation (3.51) in powers of β.

Computing the squared moduli of (3.58) one encounters an alternating and

recursive pattern. In particular, iterations 1 and 2 are unstable (|ξ|2 > 1);

38CHAPTER 3. THE ADVECTION EQUATION IN ONE DIMENSION (1D)

iterations 3 and 4 are stable (|ξ|2 < 1) provided β2 ≤ 1; iterations 5 and 6 are

also unstable; iterations 7 and 8 are stable provided β2 ≤ 1; and so on. Imposing

the stability for all wavenumbers k, we obtain α2/4 ≤ 1, or ∆t ≤ 2∆x which

is just the CFL condition [the factor 2 is inherited by the factor 2 in equation

(3.26)].

In other words, while the magnitude of the amplification factor for the it-

erated Crank-Nicolson scheme does approach 1 as the number of iterations be-

comes infinite, the convergence is not monotonic. The magnitude oscillates

above and below 1 with ever decreasing oscillations. All the iterations leading

to |ξ|2 above 1 are unstable, although the instability might be very slowly grow-

ing as the number of iterations increases. Because the truncation error is not

modified by the number of iterations and is always O(∆t2,∆x2), a number of

iterations larger than two is never useful; three iterations, in fact, would simply

amount to a larger computational cost.

3.6.1 ICN as a θ-method

In the ICN method the M -th average is made weighting equally the newly

predicted solution (M)ũn+1
j and the solution at the “old” timelevel” un. This,

however, can be seen as the special case of a more generic averaging of the type

(M)ūn+1/2 = θ (M)ũn+1 + (1 − θ)un , (3.62)

where 0 < θ < 1 is a constant coefficient. Predictor-corrector schemes using this

type of averaging are part of a large class of algorithms named θ-methods [11],

and we refer to the ICN generalized in this way as to the “θ-ICN” method.

A different and novel generalisation of the θ-ICN can be obtained by swap-

ping the averages between two subsequent corrector steps, so that in the M -th

corrector step
(M)ūn+1/2 = (1 − θ) (M)ũn+1 + θun , (3.63)

while in the (M + 1)-th corrector step

(M+1)ūn+1/2 = θ (M+1)ũn+1 + (1 − θ)un . (3.64)

Note that as long as the number of iterations is even, the sequence in which

the averages are computed is irrelevant. Indeed, the weights θ and 1 − θ in

eqs. (3.63)–(3.64) could be inverted and all of the relations discussed hereafter for

the swapped weighted averages would continue to hold after the transformation

θ → 1− θ.

3.6. THE 1D ICN SCHEME: O(∆T 2,∆X2) 39

Constant Arithmetic Averages

Using a von-Neumann stability analysis, Teukolsky has shown that for a hyper-

bolic equation the ICN scheme with M iterations has an amplification factor [14]

(M)ξ = 1 + 2

M
∑

n=1

(−iβ)
n
, (3.65)

where β := v[∆t/(2∆x)] sin(k∆x) 1. More specifically, zero and one iterations

yield an unconditionally unstable scheme, while two and three iterations a stable

one provided that β2 ≤ 1; four and five iterations lead again to an unstable

scheme and so on. Furthermore, because the scheme is second-order accurate

from the first iteration on, Teukolsky’s suggestion when using the ICN method

for hyperbolic equations was that two iterations should be used and no more [14].

This is the number of iterations we will consider hereafter.

Constant Weighted Averages

Performing the same stability analysis for a θ-ICN is only slightly more com-

plicated and truncating at two iterations the amplification factor is found to

be

ξ = 1− 2iβ − 4β2θ + 8iβ3θ2 , (3.66)

where ξ is a shorthand for (2)ξ. The stability condition in this case translates

into requiring that

16β4θ4 − 4β2θ2 − 2θ + 1 ≤ 0 , (3.67)

or, equivalently, that for θ > 3/8

√

1
2 −

√

2θ − 3
4

2θ
≤ β ≤

√

1
2 +

√

2θ − 3
4

2θ
, (3.68)

which reduces to β2 ≤ 1 when θ = 1/2. Because the condition (3.68) must hold

for every wavenumber k, we consider hereafter β := v∆t/(2∆x) and show in

the left panel of Fig. 3.13 the region of stability in the (θ, β) plane. The thick

solid lines mark the limit at which |ξ| = 1, while the dotted contours indicate

the different values of the amplification factor in the stable region.

A number of comments are worth making. Firstly, although the condi-

tion (3.68) allows for weighting coefficients θ < 1/2, the θ-ICN is stable only if

1Note that we define β to have the opposite sign of the corresponding quantity defined in

ref. [14]

40CHAPTER 3. THE ADVECTION EQUATION IN ONE DIMENSION (1D)

Figure 3.13: Left panel: stability region in the (θ, β) plane for the two-iterations

θ-ICN for the advection equation (3.2). Thick solid lines mark the limit at

which |ξ| = 1, while the dotted contours indicate the values of the amplification

factor in the stable region. The shaded area for θ < 1/2 refers to solutions

that are linearly unstable [16]. Right panel: same as in the left panel but when

the averages between two corrections are swapped. Note that the amplification

factor in this case is less sensitive on θ and always larger than the corresponding

amplification factor in the left panel.

3.6. THE 1D ICN SCHEME: O(∆T 2,∆X2) 41

θ ≥ 1/2. This is a known property of the weighted Crank-Nicolson scheme [11]

and inherited by the θ-ICN. In essence, when θ 6= 1/2 spurious solutions appear

in the method [17] and these solutions are linearly unstable if θ < 1/2, while

they are stable for θ > 1/2 [16]. For this reason we have shaded the area with

θ < 1/2 in the left panel of Fig. 3.13 to exclude it from the stability region.

Secondly, the use of a weighting coefficient θ > 1/2 will still lead to a stable

scheme provided that the timestep (i.e., β) is suitably decreased. Finally, as

the contour lines in the left panel of Fig. 3.13 clearly show, the amplification

factor can be very sensitive on θ.

Swapped weighted averages

The calculation of the stability of the θ-ICN when the weighted averages are

swapped as in eqs. (3.63) and (3.64) is somewhat more involved; after some

lengthy but straightforward algebra we find the amplification factor to be

ξ = 1− 2iβ − 4β2θ + 8iβ3θ(1− θ) , (3.69)

which differs from (3.66) only in that the θ2 coefficient of the O(β3) term is

replaced by θ(1− θ). The stability requirement |ξ| ≤ 1 is now expressed as

16β4θ2(1− θ)2 − 4β2θ(2− 3θ)− 2θ + 1 ≤ 0 . (3.70)

Solving the condition (3.70) with respect to β amounts then to requiring that

β ≥
√

2− 3θ −
√
4θ − 11θ2 + 8θ3

2(1− θ)
√
2θ

, (3.71a)

β ≤
√

2− 3θ +
√
4θ − 11θ2 + 8θ3

2(1− θ)
√
2θ

, (3.71b)

which is again equivalent to β2 ≤ 1 when θ = 1/2. The corresponding region of

stability is shown in right panel of Fig. 3.13 and should be compared with left

panel of the same Figure. Note that the average-swapping has now considerably

increased the amplification factor, which is always larger than the corresponding

one for the θ-ICN in the relevant region of stability (i.e., for 1/2 ≤ θ ≤ 1 2).

2Of course, when the order of the swapped averages is inverted from the one shown in

eqs. (3.63)–(3.64) the stability region will change into 0 ≤ θ ≤ 1/2.

42CHAPTER 3. THE ADVECTION EQUATION IN ONE DIMENSION (1D)

3.7 Summary

In what follows I summarise the most salient aspects of the different finite-

difference operators discussed so far and report, for each of them, the truncation

error ǫ
T
, the amplification factor |ξ|2 and the finite-difference representation of

the advection equation 3.2. I recall that α := v∆t/∆x

Method ǫ
T

|ξ|2 for (k∆x ≪ 1) finite-difference form

Upwind O(∆t,∆x) 1− 2|α|(1− |α|) cos(k∆x) un+1
j = un

j ∓ α(un
j±1 − un

j)

FTCS O(∆t,∆x2) 1 + sin2(k∆x)α2 un+1
j = un

j − α(un
j+1 − un

j−1)

Lax Friedrichs O(∆t,∆x2) 1− sin2(k∆x)(1 − α2) un+1
j = 1

2 (u
n
j+1 + un

j−1)

− 1
2α(u

n
j+1 − un

j−1)

Leapfrog O(∆t2,∆x2) 1 un+1
j = un−1

j − α(un
j+1 − un

j−1)

Lax Wendroff O(∆t2,∆x2) 1− α2(1− α2) sin2(k∆x) un+1
j = un

j − 1
2α(u

n
j+1 − un

j−1)

+ 1
2α

2(un
j+1 − 2un

j + un
j−1)

Table 3.1: Schematic summary of the finite-difference operators discussed so far.

3.7. SUMMARY 43

3.7.1 Finite-difference stencils

In what follow I summarise the most used finite-difference stencils for derivatives

of order 1 to 4

Finite-difference stencils for ∂u/∂x

type Difference Stencil LTE

forward (−uj + uj+1) /h O(h)

backward (−uj−1 + uj) /h O(h)

forward (−3uj + 4uj+1 − uj+2) /h O(h2)

backward (uj−2 − 4uj−1 + 3uj) /2h O(h2)

centered (−uj−1 + uj+1) /2h O(h2)

forward (−25uj + 48uj+1 − 36uj+2 + 16uj+3 − 3uj+4) /12h O(h4)

backward (3uj−4 − 16uj−3 + 36uj−2 − 48uj−1 + 25uj) /12h O(h4)

centered (uj−2 − 8uj−1 + 8uj+1 − uj+2) /12h O(h4)

Table 3.2: Finite-difference stencils for ∂u/∂x

44CHAPTER 3. THE ADVECTION EQUATION IN ONE DIMENSION (1D)

Finite-difference stencils for ∂2u/∂2x

type Difference Stencil LTE

forward (uj − 2uj+1 + uj+2) /h
2 O(h)

backward (uj−2 − 2uj−1 + uj) /h
2 O(h)

forward (2uj − 5uj+1 + 4uj+2 − uj+3) /h
2 O(h2)

backward (−uj−3 + 4uj−2 − 5uj−1 + 2uj) /h
2 O(h2)

centered (uj−1 − 2uj + uj+1) /h
2 O(h2)

forward (45uj − 154uj+1 + 214uj+2 − 156uj+3 + 61uj+4 − 10uj+5) /12h
2 O(h4)

backward (−10uj−5 + 61uj−4 − 156uj−3 + 214uj−2 − 154uj−1 + 45uj) /12h
2 O(h4)

centered (−uj−2 + 16uj−1 − 30uj + 16uj+1 − uj+2) /12h
2 O(h4)

Table 3.3: Finite-difference stencils for ∂2u/∂2x

3.7. SUMMARY 45

Finite-difference stencils for ∂3u/∂3x

type Difference Stencil LTE

forward (−uj + 3uj+1 − 3uj+2 + uj+3) /h
3 O(h)

backward (−uj−3 + 3uj−2 − 3uj−1 + uj) /h
3 O(h)

forward (−5uj + 18uj+1 − 24uj+2 + 14uj+3 − 3uj+4) /2h
3 O(h2)

backward (3uj−4 − 14uj−3 + 24uj−2 − 18uj−1 + 5uj) /2h
3 O(h2)

centered (−uj−2 + 2uj−1 − 2uj+1 + uj+2) /2h
3 O(h2)

Table 3.4: Finite-difference stencils for ∂3u/∂3x

46CHAPTER 3. THE ADVECTION EQUATION IN ONE DIMENSION (1D)

Finite-difference stencils for ∂4u/∂4x

type Difference Stencil LTE

forward (uj − 4uj+1 + 6uj+2 − 4uj+3 + uj+4) /h
4 O(h)

backward (uj−4 − 4uj−3 + 6uj−2 − 4uj−1 + uj) /h
4 O(h)

forward (3uj − 14uj+1 + 26uj+2 − 24uj+3 + 11uj+4 − 2uj+5) /h
4 O(h2)

backward (−2uj−5 + 11uj−4 − 24uj−3 + 26uj−2 − 14uj−1 + 3uj) /h
4 O(h2)

centered (uj−2 − 4uj−1 + 6uj − 4uj+1 + uj+2) /h
4 O(h2)

Table 3.5: Finite-difference stencils for ∂4u/∂4x

Chapter 4

Dissipation, Dispersion and

Convergence

We will here discuss a number of problems that often emerge when using finite-

difference techniques for the solution of hyperbolic partial differential equations.

In stable numerical schemes, the impact of many of these problems can be

suitably reduced by going to sufficiently high resolutions, but it is nevertheless

important to have a simple and yet clear idea of what are the most common

sources of these problems.

4.1 On the Origin of Dissipation and Dispersion

We have already seen in Chapter 3 how the Lax-Friedrichs scheme applied to a

linear advection equation (3.2) yields the finite-difference expression

un+1
j =

1

2
(un

j+1 + un
j−1)−

α

2
(un

j+1 − un
j−1) +O(∆x2) . (4.1)

We have also mentioned how expression (4.1) can be rewritten as

un+1
j = un

j − α

2
(un

j+1 − un
j−1) +

1

2
(un

j+1 − 2un
j + un

j−1) +O(∆x2) , (4.2)

to underline how the Lax-Friedrichs scheme effectively provides a first-order

finite-difference representation of a non-conservative equation

∂u

∂t
+ v

∂u

∂x
= ε

LF

∂2u

∂x2
, (4.3)

47

48 CHAPTER 4. DISSIPATION, DISPERSION AND CONVERGENCE

that is an advection-diffusion equation in which a dissipative term

ε
LF

:= v
∆x2

2∆t
= α

∆x

2
, (4.4)

is present. Given a computational domain of length L, this scheme will therefore

have a typical diffusion timescale τ ≃ L2/ε
LF
. Clearly, the larger the diffusion

coefficient, the faster will the solution be completely smeared over the compu-

tational domain.

In a similar way, it is not difficult to realise that the upwind scheme

un+1
j = un

j − α
(

un
j − un

j−1

)

+O(∆x2) , (4.5)

provides a first-order accurate (in space) approximation to equation (3.2), but

a second-order approximation to equation

∂u

∂t
+ v

∂u

∂x
= ε

UW

∂2u

∂x2
, (4.6)

where

ε
UW

:=
v∆x

2
. (4.7)

Stated differently, also the upwind method reproduces at higher order an advection-

diffusion equation with a dissipative term that is responsible for the gradual dis-

sipation of the advected quantity u. This is shown in Fig. 4.2 for a wave packet

(i.e., a periodic function embedded in a Gaussian) propagating to the right and

where it is important to notice how the different peaks in the packet are advected

at the correct speed, although their amplitude is considerably diminished.

In Courant-limited implementations, α = |v|∆t/∆x < 1, so that the ratio of

the dissipation coefficients can be written as

ε
LF

ε
UW

=
1

α
≥ 1 , for α ∈ [0, 1] . (4.8)

In other words, while the upwind and the Lax-Friedrichs methods are both

dissipative, the latter is generically more dissipative despite being more accurate

in space. This can be easily appreciated by comparing Figs. 3.3 and 3.7 but also

provides an important rule: a more accurate numerical scheme is not necessarily

a preferable one.

A bit of patience and a few lines of algebra would also show that the Lax-

Wendroff scheme for the advection equation (3.2) [cf. Eq. (3.46)]

un+1
j = un

j − α
(

un
j+1 − un

j−1

)

+
α2

2

(

un
j+1 − 2un

j + un
j−1

)

+O(∆x2) . (4.9)

4.1. ON THE ORIGIN OF DISSIPATION AND DISPERSION 49

provides a first-order accurate approximation to equation (3.2), a second-order

approximation to an advection-diffusion equation with dissipation coefficient

ε
LW

, and a third-order approximation to equation

∂u

∂t
+ v

∂u

∂x
= ε

LW

∂2u

∂x2
+ β

LW

∂3u

∂x3
, (4.10)

where

ε
LW

:=
αv∆x

2
, β

LW
:= −v∆x2

6

(

1− α2
)

. (4.11)

Figure 4.1: Time evolution of a wave-packet initially centred at x = 0.5 computed using a

Lax-Friedrichs scheme with C
CFL

= 0.75. The analytic solution at time t = 2 is shown with

a solid line the dashed lines are used to represent the numerical solution at the same time.

Note how dissipation reduces the amplitude of the wave-packet but does not change sensibly

the propagation of the wave-packet.

As mentioned in Section 3, the Lax-Wendroff scheme retains some of the dis-

sipative nature of the originating Lax-Friedrichs scheme and this is incorporated

in the dissipative term proportional to ε
LW

. Using expression (4.9), it is easy

50 CHAPTER 4. DISSIPATION, DISPERSION AND CONVERGENCE

to deduce the magnitude of this dissipation and compare it with the equivalent

one produced with the Lax-Friedrichs scheme. A couple of lines of algebra show

that

ε
LW

= α2ε
LF

= α3∆x

2
≪ ε

LF
, (4.12)

thus emphasizing that the Lax-Wendroff scheme is considerably less dissipative

than the corresponding Lax-Friedrichs.

The simplest way of quantifying the effects introduced by the right-hand-

sides of equations (4.3), (4.6), and (4.10) is by using a single Fourier mode with

angular frequency ω and wavenumber k, propagating in the positive x-direction,

i.e.,

u(x, t) = ei(kx−ωt) . (4.13)

It is then easy to verify that in the continuum limit

∂u

∂t
= −iωu ,

∂u

∂x
= iku ,

∂2u

∂x2
= −k2u ,

∂3u

∂x3
= −ik3u . (4.14)

In the case in which the finite-difference scheme provides an accurate ap-

proximation to a purely advection equation, the relations (4.14) lead to the

obvious dispersion relation ω = vk, so that the numerical mode ũ(x, t) will have

a solution

ũ(x, t) = eik(x−vt) , (4.15)

representing a mode propagating with phase velocity cp := ω/k = v, which

coincides with the group velocity cg := ∂ω/∂k = v.

However, it is simple to verify that the advection-diffusion equation approx-

imated by the Lax-Friedrichs scheme (4.3), will have a corresponding solution

ũ(x, t) = e−εLFk
2teik(x−vt) , (4.16)

thus having, besides the advective term, also an exponentially decaying mode

over a timescale τ = εLFk
2. Similarly, a few lines of algebra are sufficient to

realise that the dissipative term does not couple with the advective one and,

as a result, the phase and group velocities remain the same and cp = cg = v.

This is clearly shown in Fig. 4.1 which shows how the wave packet is sensibly

dissipated but, overall, maintains the correct group velocity.

Finally, it is possible to verify that the advection-diffusion equation approx-

imated by the Lax-Wendroff scheme (4.10), will have a solution given by

ũ(x, t) = e−εLWk2teik[x−(v+βLWk2)t] , (4.17)

4.1. ON THE ORIGIN OF DISSIPATION AND DISPERSION 51

Figure 4.2: Time evolution of a wave-packet initially centred at x = 0.5 computed using a

Lax-Wendroff scheme with C
CFL

= 0.75. The analytic solution at time t = 2 is shown with

a solid line the dashed lines are used to represent the numerical solution at the same time.

Note how the amplitude of the wave-packet is not drastically reduced but the group velocity

suffers from a considerable error.

where, together with the advective and (smaller) exponentially decaying modes

already encountered before, there appears also a dispersive term ∼ β
LW

k2t pro-

ducing different propagation speeds for modes with different wavenumbers. This

becomes apparent after calculating the phase and group velocities which are

given by

cp =
ω

k
= v + β

LW
k2 , and cg =

∂ω

∂k
= v + 3β

LW
k2 , (4.18)

and provides a simple interpretation of the results shown in Fig. 4.2.

52 CHAPTER 4. DISSIPATION, DISPERSION AND CONVERGENCE

4.2 Measuring Dissipation and Convergence

From what discussed so far it appears clear that one is often in the need of tools

that allow a rapid comparison among different evolution schemes. One might be

interested, for instance, in estimating which of two methods is less dissipative

or whether an evolution scheme which is apparently stable will eventually turn

out to be unstable. All of these features of a numerical method can be easily

assessed through the use of the norms discussed in Section 1.1.1.

Chapter 5

The Wave Equation in 1D

The numerical solution of the wave equation offers a good example of how a

higher-order (in space and time) PDE can be easily solved numerically through

the solution of a system of coupled 1st-order PDEs.

In one spatial dimension (1D) the wave equation has the general form:

∂2u

∂t2
= v2

∂2u

∂x2
, (5.1)

where, for simplicity, we will assume that v is constant (i.e., v 6= v(x)), thus

restricting our attention to linear problems. It is much more convenient to

rewrite (5.1) as a system of coupled first-order conservative PDE. For this we

set

r = v
∂u

∂x
, (5.2)

s =
∂u

∂t
, (5.3)

so that (5.1) can be rewritten as a system of three coupled, first-order differential

equations










































∂r

∂t
= v

∂s

∂x
,

∂s

∂t
= v

∂r

∂x
,

∂u

∂t
= s ,

53

54 CHAPTER 5. THE WAVE EQUATION IN 1D

where it should be noted that the equations have the time derivative of one

variable that is proportional to the space derivative of the other variable. This

breaks the advective nature of the equation discussed in the previous Chapter

and will prevent, for instance, the use of an upwind scheme.

Figure 5.1: Plot of the time evolution of the wave equation when the FTCS scheme is used.

The initial conditions were given by a Gaussian centered at x = 5 with unit variance and are

shown with the dotted line. Note the growth of the wave crests and the appearance of short

wavelength noise. When this happens, the numerical errors have grown to be comparable with

the solution which will be rapidly destroyed.

In vector notation the system (5.4) can be symbolically written as

∂U

∂t
+

∂F (U)

∂x
= 0 , (5.4)

where

U =

(

r

s

)

, and F (U) =

(

0 −v

−v 0

)

U . (5.5)

5.1. THE FTCS SCHEME 55

5.1 The FTCS Scheme

As mentioned in the previous Chapter, the upwind method cannot be applied to

the solution of the wave equation and the simplest, first-order in time method

we can use for the solution of the wave equation is therefore given by the FTCS

scheme. Applying it to the first-order system (5.4) and obtain

rn+1
j = rnj +

α

2
(snj+1 − snj−1) +O(∆x2) , (5.6)

sn+1
j = snj +

α

2
(rnj+1 − rnj−1) +O(∆x2) , (5.7)

Once the value of sn+1
j has been calculated, the value of u can be integrated

in time according to equation (5.3) so that

un+1
j = un

j +∆tsnj +O(∆x2) , (5.8)

where it should be noted that un+1 has the same truncation error of rn+1 and

sn+1.

Of course, we do not expect that the FTCS scheme applied to the solution

of the wave equation will provide a stable evolution and this is clearly shown

in Fig. 5.1 which reports the solution of equations (5.6), (5.6) and (5.8) having

as initial conditions a Gaussian centered at x = 5 with unit variance. Different

lines show the solution at different times and is apparent how the initial profile

splits in two part propagating in two opposite directions. During the evolution,

however, the error grows (note that the peaks of the two packets increase with

time) and in about one crossing time the short wavelength noise appears (this is

shown by the small sharp peaks produced when the wave has left the numerical

grid). When this happens, the numerical errors have grown to be comparable

with the solution, which will be rapidly destroyed.

5.2 The Lax-Friedrichs Scheme

As done in the previous Section, we can apply the Lax-Friedrichs scheme to the

solution of the wave equation through the first-order system (5.4) and easily

obtain

56 CHAPTER 5. THE WAVE EQUATION IN 1D

rn+1
j =

1

2
(rnj+1 + rnj−1) +

α

2
(snj+1 − snj−1) +O(∆x2) , (5.9)

sn+1
j =

1

2
(snj+1 + snj−1) +

α

2
(rnj+1 − rnj−1) +O(∆x2) , (5.10)

Also in this case, once the value of sn+1
j has been calculated, the value for

un+1
j can be computed according to (5.8).

The solution of equations (5.9), (5.9) and (5.8) with the same initial data

used in Fig. 5.1 is shown in Fig. 5.2. Note that we encounter here the same

behaviour found in the solution of the advection equation and in particular it

is apparent the progressive diffusion of the two travelling packets which spread

over the numerical grid as they propagate. As expected, the evolution is not

stable and no error growth is visible many crossing times after the wave has left

the numerical grid.

5.3 The Leapfrog Scheme

We can adapt the Leapfrog scheme to equations (5.4) for the solution of the

wave equation in one dimension, centring variables on appropriate half-mesh

points

rnj+ 1

2

:= v
∂u

∂x

∣

∣

∣

∣

n

j+ 1

2

= v
un
j+1 − un

j

∆x
+O(∆x) , (5.11)

s
n+ 1

2

j :=
∂u

∂t

∣

∣

∣

∣

n+ 1

2

j

=
un+1
j − un

j

∆t
+O(∆t) , (5.12)

and then considering the Leapfrog representation of equations (5.4)

rn+1
j+ 1

2

= rnj+ 1

2

+ α
(

s
n+ 1

2

j+1 − s
n+ 1

2

j

)

+O(∆x2) , (5.13)

s
n+ 1

2

j = s
n− 1

2

j + α
(

rnj+ 1

2

− rnj− 1

2

)

+O(∆x2) , (5.14)

As in the previous examples, the new value for the wave variable u is finally

computed after the integration in time of s. Here however, to preserve the

second-order accuracy in time it is necessary to average the time derivative s

between n and n+ 1 to obtain

un+1
j = un

j +
∆t

2
(sn+1

j + snj) +O(∆x2) = un
j +

∆t

2
s
n+1/2
j +O(∆x2) . (5.15)

5.3. THE LEAPFROG SCHEME 57

Lax−Friedrichs
scheme

Figure 5.2: The same as in Fig. 5.1 but when the Lax-Friedrichs scheme is used. Note the

absence of the late time instabilities but also the effects of the numerical diffusion that widens

and lowers the wave fronts.

A simple substitution of (5.11) and (5.12) into (5.13) and (5.14) shows how

the Leapfrog representation of the wave equation is nothing but its second-order

differencing:

un+1
j − 2un

j + un−1
j

∆t2
= v2

(

un
j+1 − 2un

j + un
j−1

∆x2

)

+O(∆t2,∆x2) , (5.16)

so that the solution at the new time-level is

un+1
j = α2un

j+1 + 2un
j

(

1− α2
)

+ α2un
j−1 − un−1

j +O(∆x4) . (5.17)

Note that as formulated in (5.17), the Leapfrog scheme has been effectively

recast into a “one-level” scheme.

58 CHAPTER 5. THE WAVE EQUATION IN 1D

Leapfrog

scheme

Figure 5.3: The same as in Fig. 5.1 but when the Leapfrog scheme is used. Note the absence

of the late time instabilities and of the effects of the numerical diffusion.

The solution of equations (5.17) and (5.15) with the same initial data used

in Fig. 5.1 is shown in Fig. 5.3. Note that we do not encounter here a signifi-

cant amount of diffusion for the two travelling wave packets. As expected, the

evolution is stable and no error growth is visible many crossing times after the

wave has left the numerical grid.

5.4 The Lax-Wendroff Scheme

Also in the case, the application of this scheme to our system of equations (5.4)

is straightforward. We can start with the time evolution of the variable r to

5.4. THE LAX-WENDROFF SCHEME 59

obtain

rn+1
j = rnj + α

(

s
n+1/2
j+1/2 − s

n+1/2
j−1/2

)

+O(∆x2) , (5.18)

where the terms in the spatial derivatives are computed as

s
n+1/2
j+1/2 =

1

2

(

snj + snj+1

)

+ α
(

rnj+1 − rnj
)

+O(∆x2) , (5.19)

s
n+1/2
j−1/2 =

1

2

(

snj + snj−1

)

+ α
(

rnj − rnj−1

)

+O(∆x2) . (5.20)

As done for the advection equation, it is convenient not to use equations

(5.18) and (5.19) as two coupled but distinct equations and rather to combine

them into two “one-level” evolution equations for r and s

rn+1
j = rnj + α

[

1

2
(snj+1 − snj−1) +

α

2
(rnj+1 − 2rnj + rnj−1)

]

+ O(∆x2) ,

(5.21)

sn+1
j = snj + α

[

1

2
(rnj+1 − rnj−1) +

α

2
(snj+1 − 2snj + snj−1)

]

+ O(∆x2) .

(5.22)

The solution of equations (5.21), (5.22) and (5.15) with the same initial

data used in Fig. 5.1 is shown in Fig. 5.4. Note that we do not encounter here a

significant amount of diffusion for the two travelling wave packets. As expected,

the evolution is stable and no error growth is visible many crossing times after

the wave has left the numerical grid.

60 CHAPTER 5. THE WAVE EQUATION IN 1D

Figure 5.4: The same as in Fig. 5.1 but when the Lax-Wendroff scheme is used. Note the

absence of the late time instabilities and of the effects of the numerical diffusion.

Chapter 6

Boundary Conditions

Unavoidable and common to all the numerical schemes discussed so far is the

problem of treating the solution on the boundaries of the spatial grid as the time

evolution proceeds. Let 1 be the first gridpoint and J the last one. It is clear

from equations (3.26), (5.16), (5.21) and (5.22) that the new solution at the

boundaries of the spatial grid (i.e., un+1
1 ,un+1

J) is undetermined as it requires

the values un
0 , u

n
J+1. The most natural boundary conditions for the evolution of

a wave equation are the so called Sommerfeld boundary conditions (or radiative

boundary conditions) which will be discussed in the following Section. Other

boundary conditions of general interest are:

• Dirichlet-type boundary conditions: values of the relevant quantity are

imposed at the boundaries of the numerical grid. These values can be

either functions of time or be held constant (cf. boundary conditions for

boundary value problems);

–”Periodic” boundary conditions: assume that the numerical domain

is topologically connected in a given direction; this is often used in cos-

mological simulations (and “videogames”).

• von Neumann-type boundary conditions: values of the derivatives of

the relevant quantity are imposed at the boundaries of the numerical grid.

As for Dirichlet, these values can be either functions of time or be held

constant (cf. boundary conditions for boundary value problems);

–”Reflecting” boundary conditions: mimic the presence of a reflecting

boundary, i.e., of a boundary with zero transmission coefficient;

61

62 CHAPTER 6. BOUNDARY CONDITIONS

–”Absorbing” boundary conditions: mimic the presence of an absorb-

ing boundary, i.e., of a boundary with unit transmission coefficient;

6.1 Outgoing Wave BCs: the outer edge

A scalar wave outgoing in the positive x-direction is described by the advection

equation:
∂u

∂t
+ v

∂u

∂x
= 0 (6.1)

A finite-difference, first-order accurate representation of equation (6.1) which is

centered in both time (at n+ 1
2) and in space (at j+ 1

2) is given by (see Fig. 3.11)

j−1. . . j−2

n

n+1

j j+1

ghost zones

(n + 1/2)

(j − 1/2)

Figure 6.1: Schematic representation of the centring for a first-order, outgoing-wave Som-

merfeld boundary conditions. An equivalent one can be drawn for an ingoing-wave.

1

2∆t

[

(un+1
j+1 + un+1

j)− (un
j+1 + un

j)
]

= − v

2∆x
[(un+1

j+1 + un
j+1)− (un+1

j + un
j)]

and which leads to

un+1
j+1 (1 + α) = un+1

j (−1 + α) + un
j+1 (1− α) + un

j (1 + α) (6.2)

Expression (6.2) can also be written as

un+1
j+1 = un

j − un+1
j Q+ un

j+1Q , (6.3)

6.2. INGOING WAVE BCS: THE INNER EDGE 63

where

Q :=
1− α

1 + α
=

∆x− v∆t

∆x+ v∆t
. (6.4)

The use of expression (6.3) for the outermost grid point where the wave is

outgoing will provide first-order accurate and stable boundary conditions. Note,

however, that (6.3) is a discrete representation of a physical condition which

would transmit the wave without reflection. In practice, however, a certain

amount of reflection is always produced (the transmission coefficient is never

exactly one); the residual wave is then transmitted back in the numerical box.

A few reflections are usually sufficient to reduce the wave content to values

below the machine accuracy.

6.2 Ingoing Wave BCs: the inner edge

Similarly, a scalar wave outgoing in the negative x-direction (or ingoing in the

positive one) is described by the advection equation:

∂u

∂t
− v

∂u

∂x
= 0 (6.5)

Following the same procedure discussed before, the algorithm becomes:

un+1
j (1 + α) = −un+1

j+1 (1− α) + un
j+1 (1 + α) + un

j (1− α)

Then

un+1
j = un

j+1 − un+1
j+1Q+ un

jQ , (6.6)

where Q is the same quantity as for the out-going wave. If we use equations

(6.3) and (6.6) to evolve the solution at time-step n+ 1 at the boundary of our

spatial grid, we are guaranteed that our profile will be completely transported

away, whatever integration scheme we are adopting (Leapfrog, Lax-Wendroff

etc.).

6.3 Periodic Boundary Conditions

These are very simple to impose and if j is between 1 and J , they are given

simply by

un+1
1 = un+1

J−1, un+1
J = un+1

2 , (6.7)

In the case of a Gaussian leaving the center of the numerical grid, these

boundary conditions effectively produce a reflection. The boundary conditions

64 CHAPTER 6. BOUNDARY CONDITIONS

(6.7) force to break the algorithm for the update scheme excluding the first and

last points that need to be computed separately.

An alternative procedure consists of introducing a number of “ghost” grid-

points outside the computational domain of interest so that the solution is cal-

culated using always the same stencil for j = 1, 2, . . . , J and exploiting the

knowledge of the solution also at the ghost gridpoints, e.g., 0 and J + 1.

In the case there is only one ghost gridpoint at either edge of the 1D grid,

the boundary conditions are simply given by

un+1
0 = un+1

J , un+1
J+1 = un+1

1 . (6.8)

Chapter 7

The wave equation in two

spatial dimensions (2D)

We will now extend the procedures studied so far to the case of a wave equation

in two dimensions
∂2u

∂t2
= v2

(

∂2u

∂x2
+

∂2u

∂y2

)

. (7.1)

As for the one-dimensional case, also in this case the wave equation can be

reduced to the solution of a set of three first-order advection equations

∂r

∂t
= v

∂s

∂x
, (7.2)

∂l

∂t
= v

∂s

∂y
, (7.3)

∂s

∂t
= v

(

∂r

∂x
+

∂l

∂y

)

, (7.4)

once the following definitions have been made

r = v
∂u

∂x
, (7.5)

l = v
∂u

∂y
, (7.6)

s =
∂u

∂t
. (7.7)

65

66CHAPTER 7. THEWAVE EQUATION IN TWO SPATIAL DIMENSIONS (2D)

In vector notation the system can again be written as

∂U

∂t
+∇F (U) = 0 , (7.8)

where

U =







r

l

s






, and F (U) =







−v 0 0

0 −v 0

0 0 −v






·U = −v







r

l

s






,

(7.9)

provided we define

∇ :=

























0 0
∂

∂x

0 0
∂

∂y

∂

∂x

∂

∂y
0

























. (7.10)

The finite-difference notation should also be extended to account for the two

spatial dimension and we will then assume that un
i,j := u(xi, yj , t

n).

7.1 The Lax-Friedrichs Scheme

We can look at the system of equations (7.2) and (7.3) as a set of two equa-

tions to be integrated with the procedures so far developed in one-dimension.

Furthermore, we need to solve for Eq. (7.4) which can be written as

∂s

∂t
= −∂Fx

∂x
− ∂Fy

∂y
(7.11)

once we identify Fx with −vr and Fy with −vl.

The Lax-Friedrichs scheme for this equation is just the generalisation of the

1D expressions discussed so far and yields

sn+1
i,j =

1

4

[

sni+1,j + sni−1,j + sni,j+1 + sni,j−1

]

− ∆t

2∆x
[(Fn

x)i+1,j − (Fn
x)i−1,j]

− ∆t

2∆y

[

(Fn
y)i,j+1 − (Fn

y)i,j−1

]

,

=
1

4

[

sni+1,j + sni−1,j + sni,j+1 + sni,j−1

]

− vx ∆t

2

[

rni+1,j − rni−1,j

∆x

]

−vy ∆t

2

[

lni,j+1 − lni,j−1

∆y

]

,

(7.12)

7.1. THE LAX-FRIEDRICHS SCHEME 67

Figure 7.1: Schematic diagram of a Lax-Friedrichs evolution scheme in two dimensions.

Note that the center of the cross-like stencil is not used in this case.

with the corresponding stencil being shown in Fig. 7.1 and where it should be

noted that the center of the cross-like stencil is not used. A von-Neumann

stability analysis can be performed also in 2D and it yields

ξ =
1

2
[cos(kx∆x) + cos(ky∆y)]− i[αx sin(kx∆x) + αy sin(ky∆y)] , (7.13)

where

αx :=
vx∆t

∆x
, αy :=

vy∆t

∆y
. (7.14)

Stability is therefore obtained if

1

2
− (α2

y + α2
y) ≥ 0 , (7.15)

or, equally, if

∆t ≤ ∆x
√

2(v2x + v2y)
, (7.16)

Expression (7.16) represents the 2D extension of the CFL stability condition. In

general, for a N -dimensional space, the CFL stability condition can be expressed

as

∆t ≤ min

(

∆xi

Nṽ

)

, (7.17)

68CHAPTER 7. THEWAVE EQUATION IN TWO SPATIAL DIMENSIONS (2D)

where i = 1, ...N and ṽ := (
∑N

i=1 v
2
i)

1/2. Note, in 2D, the appearance of an

averaging coefficient 1/4 multiplying the value of the function at the time-level

n.

7.2 The Lax-Wendroff Scheme

The 2D generalisation of the one-dimensional scheme (3.43) is also straightfor-

ward and can be described as follows

1. Compute r, l and s at the half-time using a half-step Lax-Friedrichs scheme

r
n+ 1

2

i+ 1

2
,j
=

1

2

[(

rni+1,j + rni,j
)

+ αx

(

sni+1,j − sni,j
)]

,

(7.18)

r
n+ 1

2

i− 1

2
,j
=

1

2

[(

rni,j + rni−1,j

)

+ αx

(

sni,j − sni−1,j

)]

,

(7.19)

l
n+ 1

2

i,j+ 1

2

=
1

2

[(

lni,j+1 + lni,j
)

+ αy

(

sni,j+1 − sni,j
)]

,

(7.20)

l
n+ 1

2

i,j− 1

2

=
1

2

[(

lni,j + lni,j−1

)

+ αy

(

sni,j − sni,j−1

)]

,

(7.21)

s
n+ 1

2

i+ 1

2
,j
=

1

2

[

(

sni+1,j + sni,j
)

+ αx

(

rni+1,j − rni,j
)

+
αy

2

(

lni,j+1 − lni,j−1

)

]

,

(7.22)

s
n+ 1

2

i− 1

2
,j
=

1

2

[

(

sni,j + sni−1,j

)

+ αx

(

rni,j − rni−1,j

)

+
αy

2

(

lni,j+1 − lni,j−1

)

]

,

(7.23)

s
n+ 1

2

i,j+ 1

2

=
1

2

[

(

sni,j+1 + sni,j
)

+
αx

2

(

rni+1,j − rni−1,j

)

+ αy

(

lni,j+1 − lni,j
)

]

,

(7.24)

s
n+ 1

2

i,j− 1

2

=
1

2

[

(

sni,j + sni,j−1

)

+
αx

2

(

rni+1,j − rni−1,j

)

+ αy

(

lni,j − lni,j−1

)

]

,

(7.25)

where αx := v∆t/∆x and αy := v∆t/∆y.

7.2. THE LAX-WENDROFF SCHEME 69

2. Evolve r, l and s to the time-level n+1 using a half-step Leapfrog scheme

rn+1
i,j = rni,j + αx

(

s
n+ 1

2

i+ 1

2
,j
− s

n+ 1

2

i− 1

2
,j

)

,

(7.26)

ln+1
i,j = lni,j + αy

(

s
n+ 1

2

i,j+ 1

2

− s
n+ 1

2

i,j− 1

2

)

,

(7.27)

sn+1
i,j = sni,j + αx

(

r
n+ 1

2

i+ 1

2
,j
− r

n+ 1

2

i− 1

2
,j

)

+ αy

(

l
n+ 1

2

i,j+ 1

2

− l
n+ 1

2

i,j− 1

2

)

. (7.28)

3. Update u to the time-level n+ 1, i.e.,

un+1
i,j = un

i,j +
∆t

2

(

sn+1
i,j + sni,j

)

. (7.29)

Alternatively, steps 1. and 2. can be combined analytically to yield the

direct integration of r, l and s from level n to level n+ 1 as

rn+1
i,j = rni,j + αx

[

1

2

(

sni+1,j − sni−1,j

)

+
αx

2

(

rni+1,j − 2rni,j + rni−1,j

)

]

,

(7.30)

ln+1
i,j = lni,j + αy

[

1

2

(

sni,j+1 − sni,j−1

)

+
αy

2

(

sni,j+1 − 2sni,j + sni,j−1

)

]

,

(7.31)

sn+1
i,j = sni,j + αx

[

1

2

(

rni+1,j − rni−1,j

)

+
αx

2

(

sni+1,j − 2sni,j + sni−1,j

)

]

+

αy

[

1

2

(

lni,j+1 − lni,j−1

)

+
αy

2

(

sni,j+1 − 2sni,j + sni,j−1

)

]

,

(7.32)

Such a form of the equations is simpler to implement and allows a transparent

distinction between the advective and the dissipative terms produced by the

presence of second spatial-derivatives terms. More specifically, the system above

can be written in a compact form as

rn+1
i,j = rni,j +

αx

2
Dxs

n
i,j +

α2
x

2
Dxxr

n
i,j , (7.33)

ln+1
i,j = lni,j +

αy

2
Dys

n
i,j +

α2
y

2
Dyys

n
i,j , (7.34)

sn+1
i,j = sni,j +

αx

2
Dxr

n
i,j +

αy

2
Dyl

n
i,j +

α2
x

2
Dxxs

n
i,j +

α2
y

2
Dyys

n
i,j , (7.35)

70CHAPTER 7. THEWAVE EQUATION IN TWO SPATIAL DIMENSIONS (2D)

where we have omitted for compactness the spatial indices and we have used

the compact notation

Dxφi,j := φi+1,j − φi−1,j , Dyφi,j := φi,j+1 − φi,j−1 , (7.36)

Dxxφi,j := φi+1,j − 2φi,j + φi−1,j , Dyyφi,j := φi,j+1 − 2φi,j + φi,j−1 . (7.37)

Expressions (7.33)-(7.37) can be easily extended to higher spatial dimensions

and readily implemented in a recursive loop.

7.3 The Leapfrog Scheme

The 2D generalisation of the one-dimensional scheme (5.16) is less straight-

forward, but not particularly difficult. As in one dimension, we can start by

rewriting directly the finite-difference form of the wave equation as

un+1
i,j − 2un

i,j + un−1
i,j

∆t2
= v2

(

un
i+1,j − 2un

i,j + un
i−1,j

∆x2

)

+ v2
(

un
i,j+1 − 2un

i,j + un
i,j−1

∆y2

)

so that, after some algebra, we obtain the explicit form

un+1
i,j = α2

[

un
i+1,j + un

i−1,j + un
i,j+1 + un

i,j−1

]

+ 2un
i,j(1− 2α2)− un−1

i,j . (7.38)

The stencil relative to the algorithm (7.38) is illustrated in Fig. 7.2.

Figs. 7.3 and 7.4 show the solution of the wave equation in 2D using the

scheme (7.38) and imposing Sommerfeld outgoing-wave boundary conditions at

the edges of the numerical grid.

Radically different appears the evolution when reflective boundary condi-

tions are imposed, as it is illustrated in Figs 4. Note that the initial evolution

(i.e., for which the effects of the boundaries are negligible) is extremely similar

to the one shown in Figs. 4, but becomes radically different when the wavefront

has reached the outer boundary. As a result of the high (but not perfect!) reflec-

tivity of the outer boundaries, the wave is “trapped” inside the numerical grid

and bounces back and forth producing the characteristic interference patterns.

7.4 Boundary conditions in 2D

7.4.1 Outgoing-wave BCs

Also in 2D, the Outgoing-wave boundary conditions can be expressed by im-

posing that the at the boundary the solution is locally given by an advection

7.4. BOUNDARY CONDITIONS IN 2D 71

Figure 7.2: Schematic diagram of a Leapfrog evolution scheme in two dimensions. Note that

the center of the cross-like stencil is used in this case both at the time-level n (filled circle)

and at the time level n+ 1 (filled square).

equation, whose finite-difference, first-order accurate representation can be obt-

tained in a way which is logically similar to the one discussed in 1D. As a result,

the Sommerfeld outgoing boundary conditions in the x-direction can then be

expressed as

un+1
1,j = un

2,j +Qx(u
n+1
2,j − un

1,j) , (7.39)

un+1
M,j = un

M−1,j +Qx(u
n+1
M−1,j − un

M,j) , (7.40)

where we have assumed that i = 1, 2, . . .M and j = 1, 2, . . .N . Similarly,

the Sommerfeld outgoing boundary conditions in the y-direction can then be

expressed as

un+1
i,1 = un

i,2 +Qy(u
n
i,2 − un+1

i,1) , (7.41)

un+1
i,N = un

i,N−1 +Qy(u
n
i,N−1 − un+1

i,N) , (7.42)

where i = 1, 2, . . .M and

Qx :=
1− α

1 + α
=

∆x− vx∆t

∆x+ vx∆t
, (7.43)

Qy :=
1− α

1 + α
=

∆y − vy∆t

∆y + vy∆t
, (7.44)

72CHAPTER 7. THEWAVE EQUATION IN TWO SPATIAL DIMENSIONS (2D)

7.4.2 Periodic BCs

Also in this case, imposing the boundary conditions is logically the same as in

the 1D case, so that the periodic boundary conditions for the outer edges in the

x-direction can be simply expressed as

un+1
1,j = un

M−1,j , un+1
M,j = un

2,j , (7.45)

with j = 1, 2, . . .N . Similarly, the periodic boundary conditions for the outer

edges in the x-direction can be simply expressed as

un+1
i,1 = un

i,N−1 , un+1
i,N = un

i,2 , (7.46)

with i = 1, 2, . . .M .

7.4. BOUNDARY CONDITIONS IN 2D 73

74CHAPTER 7. THEWAVE EQUATION IN TWO SPATIAL DIMENSIONS (2D)

’2D_wave_00.dat’ u 1:2:3
 0.8
 0.6
 0.4
 0.2

-10
-5

0
5

10 -10

-5

0

5

10

-0.6
-0.4
-0.2

0
0.2
0.4
0.6
0.8

1

’2D_wave_02.dat’ u 1:2:3
 0.2
 0.1
 0

 -0.1
 -0.2

-10
-5

0
5

10 -10

-5

0

5

10

-0.6
-0.4
-0.2

0
0.2
0.4
0.6
0.8

1

’2D_wave_04.dat’ u 1:2:3
 0.15
 0.1

 0.05
 0

 -0.05
 -0.1

-10
-5

0
5

10 -10

-5

0

5

10

-0.6
-0.4
-0.2

0
0.2
0.4
0.6
0.8

1

’2D_wave_06.dat’ u 1:2:3
 0.1

 0.05
 0

 -0.05

-10
-5

0
5

10 -10

-5

0

5

10

-0.6
-0.4
-0.2

0
0.2
0.4
0.6
0.8

1

’2D_wave_08.dat’ u 1:2:3
 0.1

 0.05
 0

 -0.05

-10
-5

0
5

10 -10

-5

0

5

10

-0.6
-0.4
-0.2

0
0.2
0.4
0.6
0.8

1

’2D_wave_10.dat’ u 1:2:3
 0.05
 0

 -0.05

-10
-5

0
5

10 -10

-5

0

5

10

-0.6
-0.4
-0.2

0
0.2
0.4
0.6
0.8

1

’2D_wave_12.dat’ u 1:2:3
 0.05
 0

 -0.05

-10
-5

0
5

10 -10

-5

0

5

10

-0.6
-0.4
-0.2

0
0.2
0.4
0.6
0.8

1

’2D_wave_14.dat’ u 1:2:3
 0.05
 0

 -0.05

-10
-5

0
5

10 -10

-5

0

5

10

-0.6
-0.4
-0.2

0
0.2
0.4
0.6
0.8

1

Figure 7.3: Plot of the time evolution of the wave equation when the Leapfrog scheme in

2D is used and Sommerfeld boundary conditions are imposed. Snapshots at increasing times

are illustrated in a clockwise sequence.

7.4. BOUNDARY CONDITIONS IN 2D 75

’2D_wave_00.dat’ u 1:2:3
 0.8
 0.6
 0.4
 0.2

-10
-5

0
5

10 -10

-5

0

5

10

-0.6
-0.4
-0.2

0
0.2
0.4
0.6
0.8

1

’2D_wave_02.dat’ u 1:2:3
 0.2
 0.1
 0

 -0.1
 -0.2

-10
-5

0
5

10 -10

-5

0

5

10

-0.6
-0.4
-0.2

0
0.2
0.4
0.6
0.8

1

’2D_wave_04.dat’ u 1:2:3
 0.15
 0.1
 0.05
 0

 -0.05
 -0.1

-10
-5

0
5

10 -10

-5

0

5

10

-0.6
-0.4
-0.2

0
0.2
0.4
0.6
0.8

1

’2D_wave_06.dat’ u 1:2:3
 0.1

 0.05
 0

 -0.05

-10
-5

0
5

10 -10

-5

0

5

10

-0.6
-0.4
-0.2

0
0.2
0.4
0.6
0.8

1

’2D_wave_08.dat’ u 1:2:3
 0.1
 0.05
 0

 -0.05

-10
-5

0
5

10 -10

-5

0

5

10

-0.6
-0.4
-0.2

0
0.2
0.4
0.6
0.8

1

’2D_wave_10.dat’ u 1:2:3
 0.15
 0.1

 0.05
 0

 -0.05

-10
-5

0
5

10 -10

-5

0

5

10

-0.6
-0.4
-0.2

0
0.2
0.4
0.6
0.8

1

’2D_wave_12.dat’ u 1:2:3
 0.15
 0.1
 0.05
 0

 -0.05
 -0.1

-10
-5

0
5

10 -10

-5

0

5

10

-0.6
-0.4
-0.2

0
0.2
0.4
0.6
0.8

1

’2D_wave_14.dat’ u 1:2:3
 0.3
 0.2
 0.1
 0

-10
-5

0
5

10 -10

-5

0

5

10

-0.6
-0.4
-0.2

0
0.2
0.4
0.6
0.8

1

Figure 7.4: Plot of the time evolution of the wave equation when the Leapfrog scheme in

2D is used and Reflecting boundary conditions are applied. Snapshots at increasing times are

illustrated in a clockwise sequence.

76CHAPTER 7. THEWAVE EQUATION IN TWO SPATIAL DIMENSIONS (2D)

’2D_wave_16.dat’ u 1:2:3
 0.1
 0

 -0.1

-10
-5

0
5

10 -10

-5

0

5

10

-0.6
-0.4
-0.2

0
0.2
0.4
0.6
0.8

1

’2D_wave_18.dat’ u 1:2:3
 0.1

 0.05
 0

 -0.05

-10
-5

0
5

10 -10

-5

0

5

10

-0.6
-0.4
-0.2

0
0.2
0.4
0.6
0.8

1

’2D_wave_20.dat’ u 1:2:3
 0.2
 0.1
 0

-10
-5

0
5

10 -10

-5

0

5

10

-0.6
-0.4
-0.2

0
0.2
0.4
0.6
0.8

1

’2D_wave_22.dat’ u 1:2:3
 0.1
 0

 -0.1

-10
-5

0
5

10 -10

-5

0

5

10

-0.6
-0.4
-0.2

0
0.2
0.4
0.6
0.8

1

’2D_wave_24.dat’ u 1:2:3
 0.15
 0.1

 0.05
 0

 -0.05

-10
-5

0
5

10 -10

-5

0

5

10

-0.6
-0.4
-0.2

0
0.2
0.4
0.6
0.8

1

’2D_wave_26.dat’ u 1:2:3
 0.1

 0.05
 0

 -0.05
 -0.1

-10
-5

0
5

10 -10

-5

0

5

10

-0.6
-0.4
-0.2

0
0.2
0.4
0.6
0.8

1

’2D_wave_28.dat’ u 1:2:3
 0.1

 0.05
 0

 -0.05

-10
-5

0
5

10 -10

-5

0

5

10

-0.6
-0.4
-0.2

0
0.2
0.4
0.6
0.8

1

’2D_wave_30.dat’ u 1:2:3
 0.1

 0.05
 0

 -0.05

-10
-5

0
5

10 -10

-5

0

5

10

-0.6
-0.4
-0.2

0
0.2
0.4
0.6
0.8

1

Figure 7.5: Plot of the time evolution of the wave equation when the Leapfrog scheme in

2D is used and Reflecting boundary conditions are applied.

7.4. BOUNDARY CONDITIONS IN 2D 77

Figure 7.6: Plot of the time evolution of the 2-norm when the Leapfrog scheme in 2D is

used. Note the radically different behaviour between Sommerfeld and reflecting boundary

conditions.

78CHAPTER 7. THEWAVE EQUATION IN TWO SPATIAL DIMENSIONS (2D)

Chapter 8

Parabolic PDEs

8.1 Diffusive problems

The inclusion of viscosity in the description of a fluid leads to non trivial com-

plications in the numerical solution of the hydrodynamic equations. From an

analytical point of view, the resulting equations are no longer purely hyper-

bolic PDEs, but rather mixed hyperbolic-parabolic PDEs. This means that the

numerical method used to solve them must necessarily be able to cope with

the parabolic part of the equations. It is therefore convenient to fully under-

stand the prototypical parabolic equation, the one-dimensional diffusion equa-

tion, both analytically and numerically, before attempting to solve any mixed

hyperbolic-parabolic PDE.

8.2 The diffusion equation in 1D

The description of processes like the heat conduction in a solid body or the

spread of a dye in a motionless fluid is given by the one-dimensional diffusion

equation
∂u(x, t)

∂t
= D

∂2u(x, t)

∂x2
. (8.1)

HereD > 0 is a constant coefficient that determines the magnitude of the “diffu-

sion” in the process under investigation (being given by the thermal conductivity

and dye diffusion coefficient respectively in the above mentioned examples).

In what follows, some numerical methods will be presented to solve a simple

diffusive problem in 1+1 dimensions distinguishing explicit methods from im-

79

80 CHAPTER 8. PARABOLIC PDES

plicit methods. Before that, however we present a semi-analytic solution of the

model parabolic equation (8.1). is presented in Appendix 8.3.

8.3 Semi-analytical solution of the model parabolic

equation

In this appendix we present details on the derivation of the semi-analytic solu-

tion to equation
∂u(x, t)

∂t
= D

∂2u(x, t)

∂x2
, (8.2)

where D is a constant coefficient. We will first consider homogeneous Dirichlet

and then homogeneous Neumann boundary conditions. Because the initial value

u(x, 0) = h(x) is also needed, we will consider two different initial profiles for

the two cases. The solutions we will obtain are to be considered semi-analytical

in the sense that they inovlve infinite series and integrals that could not always

be evaluated analytically.

8.3.1 Homogeneous Dirichlet boundary conditions

Consider a generic problem for which equation (8.1) holds over a domain [0, L].

Suppose also that the boundary conditions could be written as homogeneous

Dirichlet boundary conditions, i.e., u(0, t) = u(L, t) = 0, and that at time

t0 = 0 the distribution of u(x, t) is that shown in Figure 8.1, which could be

written as

h(x) := u(x, 0) =











2x/L if 0 ≤ x ≤ L/2

−2x/L+ 2 if L/2 < x ≤ L

(8.3)

while the boundary conditions are u(0, t) = u(L, t) = 0.

The equation could be solved by means of the separation-of-variables tech-

nique, i.e., by searching for a solution of the form

u(x, t) = f(x)g(t) , (8.4)

which allows us to write equation (8.2) as

f
∂g

∂t
= Dg

∂2f

∂x2
. (8.5)

8.3. SEMI-ANALYTICAL SOLUTIONOF THEMODEL PARABOLIC EQUATION81

x/L

0 0.2 0.4 0.6 0.8 1

u
(x

,0
)

0

0.2

0.4

0.6

0.8

1

Figure 8.1: Initial value for the diffusive problem (8.1).

Multiplying both sides by 1/(fg) the result is

1

g

∂g

∂t
= D

1

f

∂2f

∂x2
. (8.6)

The left-hand-side of (8.6) is a function of t only, while the right-hand-side

depends only on x. Because of that, their common value can only be a constant,

with this constant being a negative number because otherwise g → ∞ (and

therefore u → ∞) as t → ∞. Thus the common value could be denoted as −λ

with λ > 0 and so (8.6) becomes

1

g

∂g

∂t
= −λ = D

1

f

∂2f

∂x2
. (8.7)

Recalling that the initial condition has been written as h(x), it is possible to

write the solution as

u(x, t) = h(x)e−λt , (8.8)

with the requirement that

−D
∂2f

∂x2
= λf . (8.9)

The problem (8.9) is an eigenvalue problem for the differential operator−D∂2/∂x2

with eigenvalue λ and eigenfunction f(x). The eigenfunctions and eigenvalues

will be determined imposing the boundary conditions.

The general solution to (8.9) can be written as

f(x) = Ae−ikx +Beikx , (8.10)

82 CHAPTER 8. PARABOLIC PDES

with k :=
√

λ/D, and with A and B that are constants to be determined

through the boundary conditions. Requiring that f(0) = 0, yields B = −A and

thus

f(x) = A
(

e−ikx − eikx
)

= −2iA sinkx . (8.11)

The second boundary condition f(L) = 0 allows to find the eigenvalues and the

eigenfunctions (and the trivial solution f(x) = 0 as well). In fact sin (kL) = 0

as soon as

kL =

√

λ

D
L = mπ , m = 0,±1,±2,±3, . . . (8.12)

so that the m-th eigenvalue and the eigenfunction are

λm = D
(mπ

L

)2

, fm(x) = sin
(mπ

L
x
)

. (8.13)

The solution to (8.9) will therefore be a linear superposition of the eigenfunctions

fm(x),

u(x, t) =
∞
∑

m=1

am sin
(mπ

L
x
)

exp

[

−D
(mπ

L

)2

t

]

. (8.14)

One last condition is still not satisfied, namely, that coming from the initial-

value condition, and it is exactly this condition that allows to find the coefficients

am such that

u(x, 0) =

∞
∑

m=1

am sin
(mπ

L
x
)

= h(x) . (8.15)

This is a Fourier series on the interval [0, L] of the initial value function h(x)

and its coefficients may easily be evaluated keeping in mind the orthogonality

property of the trigonometric functions. It is not difficult to show that

∫ L

0

sin
(mπ

L
x
)

sin

(

kπ

L
x

)

dx =











0 if k 6= m, k = m = 0 ,

L/2 if k = m,

(8.16)

which allows to compute the coefficients am as

am =
2

L

∫ L

0

h(x) sin
(mπ

L
x
)

dx . (8.17)

When using the very simple expression for h(x) given by Eq. (8.3), the above

computation leads to the final solution which therefore is

u(x, t) =

∞
∑

m=1

am sin
(mπ

L
x
)

exp

[

−D
(mπ

L

)2

t

]

, am = 8
sin (mπ/2)

m2π2
.

(8.18)

8.3. SEMI-ANALYTICAL SOLUTIONOF THEMODEL PARABOLIC EQUATION83

In other words, the analytic solution to the diffusion equation is a series

of (trigonometric) Fourier modes, each with its own diffusion timescale τm =

L2/[D(mπ)2]. Since τm ∼ 1/m2, modes with smaller wavenumber (larger m)

will be dissipated faster, while modes with larger wavenumber (smaller m) will

be dissipated more slowly.

8.3.2 Homogeneous Neumann boundary conditions

Once equation (8.2) has been solved for homogeneous Dirichlet boundary con-

ditions it is straightforward to solve it with homogeneous Neumann boundary

conditions. In fact, the same procedure could be carried over to yield the correct

solution.

Once again, let the mathematical domain be x ∈ [0, L] for t > 0 and if

q(x, t) :=
∂u

∂x
(8.19)

the homogeneous Neumann boundary conditions are written as q(0, t) = q(L, t) =

0. Since the boundary conditions require the derivative to vanish, the initial con-

dition is chosen so that this condition is satisfied at t = 0 as well. The initial

condition will then be

h(x) := u(x, 0) = 1 + 2
(x

L

)3

− 3
(x

L

)2

. (8.20)

Everything that has been said in the previous case up to (8.10) still holds.

The boundary conditions now require that

f ′(x) :=
df

dx
= ik

(

Aeikx −Be−ikx ,
)

(8.21)

vanishes at the boundaries of the domain. From f ′(0) = 0 follows that A = B

while f ′(L) = 0 leads to the same eigenvalue λm = D (mπ/L)
2
as in the previous

case. The eigenfunction on the other hand changes since the general solution

could be now written as

f(x) = A
(

eikx + e−ikx
)

= 2A cos (kx) (8.22)

so that the eigenvalue and the eigenfunction in this case are

λm = D
(mπ

L

)2

, fm(x) = cos
(mπ

L
x
)

. (8.23)

To satisfy the initial condition it is necessary that

u(x, 0) =

∞
∑

m=0

am cos
(mπ

L
x
)

= h(x) (8.24)

84 CHAPTER 8. PARABOLIC PDES

where the sum now extends from 0 to ∞. This is because the orthogonality

property of the eigenfunctions, which still holds and could once again be used

to compute the coefficients am, now reads
∫ L

0

cos
(mπ

L
x
)

cos

(

kπ

L
x

)

dx = (8.25)

Because of this, the initial condition could be written as

h(x) = 1+2
(x

L

)3

−3
(x

L

)2

=
1

2
+

∞
∑

m=1

am cos
(mπ

L
x
)

, am = 24

(

1− cos (mπ)

m4π4

)

,

(8.26)

so that the complete solution is

u(x, t) =
1

2
+

∞
∑

m=1

am cos
(mπ

L
x
)

exp

[

−D
(mπ

L

)2

t

]

, am = 24

(

1− cos (mπ)

m4π4

)

.

(8.27)

8.4 Explicit updating schemes

8.4.1 The FTCS method

The most straightforward way to finite-difference equation (8.1) is by the FTCS

method, i.e.,

un+1
j − un

j

∆t
= D

un
j+1 − 2un

j + un
j−1

∆x2
+O(∆t,∆x2) , (8.28)

Unlike the case for a hyperbolic equation, where the FTCS method leads to an

unconditionally unstable method, the presence of a second-order spatial deriva-

tive in the model parabolic equation (8.1) allows the FTCS method to be con-

ditionally stable [10]. A von Neumann stability analysis leads in fact to the

stability criterion

γ := 2D
∆t

∆x2
≤ 1 . (8.29)

Recalling that the diffusion timescale over a lengthscale L in Eq. (8.2) is given by

τ ≃ L2/D, the condition (8.29) that lends itself to a physical interpretation: the

maximum time step is, up to a numerical factor, the diffusion time across a cell

of width ∆x. This stability condition poses a serious limit in the use of the above

scheme since the typical timescales of interest will require a number of timesteps

which could be prohibitive in multidimensional calculations. The additional fact

that the overall scheme is first-order accurate in time only strengthens the need

for a different method.

8.4. EXPLICIT UPDATING SCHEMES 85

8.4.2 The Du Fort-Frankel method and the θ-method

With this objective in mind, it is not difficult to think of a way to avoid the

reduced accuracy due to the forward-time finite differencing approach used in

FTCS. A simple time-centered finite differencing

un+1
j − un−1

j

2∆t
= D

un
j+1 − 2un

j + un
j−1

∆x2
(8.30)

should grant second-order accuracy. Unfortunately, this method is uncondition-

ally unstable. To overcome the stability problem, Du Fort and Frankel [12]

suggested the following scheme

un+1
j − un−1

j

2∆t
= D

un
j+1 − un+1

j − un−1
j + un

j−1

∆x2
, (8.31)

which is obtained from (8.30) with the substitution of un
j with 1

2 (u
n+1
j + un−1

j),

that is, by taking the time average of u at xj . Writing this explicitly yields

un+1
j =

(

1− γ

1 + γ

)

un−1
j +

(

γ

1 + γ

)

(

un
j+1 + un

j−1

)

+O(∆x2) . (8.32)

With this substitution, the method is still explicit and becomes unconditionally

stable, but not without a price. A consistency analysis shows, in fact, that the

Du Fort-Frankel method could be inconsistent. The local truncation error is [8]

ǫ =
∆t2

6

∂3u

∂t3

∣

∣

∣

∣

j,n

− D
∆x2

12

∂4u

∂x4

∣

∣

∣

∣

j,n

+

(

∆t

∆x

)2
∂2u

∂t2

∣

∣

∣

∣

∣

j,n

+ . . . (8.33)

= O
(

∆t2,∆x2,

(

∆t

∆x

)2
)

, (8.34)

which shows that if ∆t and ∆x tend to zero at the same rate, i.e., ∆t = k∆x

with k being a constant, then the truncation error does not vanish for ∆t → 0

and ∆x → 0. Indeed, the solution obtained with this method will not the

solution of (8.1), but effectively the solution of the equation

∂u(x, t)

∂t
+ k2

∂2u(x, t)

∂t2
= D

∂2u(x, t)

∂x2
, (8.35)

which is also known as the “telegraph equation” (see [9] for a discussion).

On the other hand, it is also clear from (8.33) that having a timestep ∆t =

k∆x1+ε with ε > 0 will assure the consistency of the method. Of course, the

closer is ε to 1, the smaller will have to be ∆x in order to achieve consistency.

Moreover, accuracy requirements pose an additional constraint on ε. For a first

86 CHAPTER 8. PARABOLIC PDES

order-method it is necessary to have ε = 1/2, while to achieve second-order

accuracy the requirement is ε = 1. It would be pointless and computationally

inefficient to set ε > 1 since in this case the dominant contribution to the

truncation error would be determined by the term O
(

∆x2
)

which acts as an

upper limit to the overall accuracy order. This means that ε is constrained to

be in the interval 1/2 ≤ ε ≤ 1.

The advantages of the Du Fort-Frankel method over the FTCS scheme should

now be easily seen. To achieve first-order accuracy, a timestep ∆t = (∆x)
3/2

is

needed with the Du Fort-Frankel method, while the FTCS scheme requires ∆t ≈
(∆x)

2
, hence smaller timesteps. On the other hand, if a timestep ∆t = (∆x)

2

is used, then the Du Fort-Frankel method gains second-order accuracy. Finally,

any desired accuracy between first and second order could be achieved with

a timestep that is independent of the diffusion coefficient D. The only minor

drawback of the Du Fort-Frankel scheme lies in the requirement of keeping track

of an additional time level.

A generalisation of the Du Fort-Frankel scheme is also straightforward. In

particular, when averaging un+1
j and un−1

j , instead of weighting them equally, it

is possible to average them with different weights. The resulting update scheme

is therefore

un+1
j − un−1

j

2∆t
= D

un
j+1 − 2

(

θun+1
j − (1− θ)un−1

j

)

+ un
j−1

∆x2
, (8.36)

where θ is a variable parameter. In [8] it is shown that the local truncation error

for this scheme is

∆t2

6

∂3u

∂t3

∣

∣

∣

∣

j,n

− D
∆x2

12

∂4u

∂x4

∣

∣

∣

∣

j,n

+ (2θ − 1)
2∆t

∆x2

∂u

∂t

∣

∣

∣

∣

j,n

+ (8.37)

∆t2

∆x2

∂2u

∂t2

∣

∣

∣

∣

j,n

+O
(

∆t3

∆x2
,∆t4,∆x4

)

, (8.38)

which clearly shows that consistency could be achieved for any value of θ but

only if ∆t = k∆x2+ε with ε and k being positive real numbers. If θ = 1/2

, on the other hand, the scheme is actually the Du Fort-Frankel scheme [cf.

expression (8.33)] with the consistency constraints already outlined above. It is

therefore clear that, when solving equation (8.1), timestep considerations show

that the only viable θ-scheme is the θ = 1/2 scheme, i.e., the Du Fort-Frankel

scheme.

8.4. EXPLICIT UPDATING SCHEMES 87

8.4.3 ICN as a θ-method

We next extend the stability analysis of the θ-ICN discussed in Sect. 3.6.1 to

the a parabolic partial differential equation and use as model equation the one-

dimensional diffusion equation (8.1). Parabolic equations are commonly solved

using implicit methods such as the Crank-Nicolson, which is unconditionally

stable and thus removes the constraints on the timestep [i.e., ∆t ≈ O(∆x2)]

imposed by explicit schemes [10]. In multidimensional calculations, however,

or when the set of equations is of mixed hyperbolic-parabolic type, implicit

schemes can be cumbersome to implement since the resulting system of algebraic

equations does no longer have simple and tridiagonal matrices of coefficients.

In this case, the most convenient choice may be to use an explicit method such

as the ICN.

Also in this case, the first step in our analysis is the derivation of a finite-

difference representation of the right-hand-side of eq. (8.1) which, at second-

order, has the form

L
∆
(un

j,j±1) =
un
j+1 − 2un

j + un
j−1

∆x2
+O(∆x2) . (8.39)

Constant Arithmetic Averages

Next, we consider first the case with constant arithmetic averages (i.e., θ = 1/2)

and the expression for the amplification factor after M -iterations is then purely

real and given by

(M)ξ = 1 + 2

M
∑

n=1

(−γ)
n
, (8.40)

where γ := (2D∆t/∆x2) sin2(k∆x/2). Requiring now for stability that
√

ξ2 ≤ 1

and bearing in mind that

− 1 ≤
M
∑

n=0

(−γ)
n+1 ≤ 0 , for γ ≤ 1 , (8.41)

we find that the scheme is stable for any number of iterations provided that

γ ≤ 1. Furthermore, because the scheme is second-order accurate from the first

iteration on, our suggestion when using the ICN method for parabolic equations

is that one iteration should be used and no more. In this case, in particular,

the ICN method coincides with a FTCS scheme [10].

Note that the stability condition γ ≤ 1 introduces again a constraint on the

timestep that must be ∆t ≤ ∆x2/(2D) and thus O(∆x2). As a result and at

88 CHAPTER 8. PARABOLIC PDES

Figure 8.2: Left panel: stability region in the (θ, γ) plane for the two-iterations

θ-ICN for the diffusion equation (8.1). Thick solid lines mark the limit at which

ξ2 = 1, while the dotted contours indicate the values of the amplification factor

in the stable region. Right panel: same as in the left panel but with swapping

the averages between two corrections.

least in this respect, the ICN method does not seem to offer any advantage over

other explicit methods for the solution of a parabolic equation 1.

Constant Weighted Averages

We next consider the stability of the θ-ICN method but focus our attention

on a two-iterations scheme since this is the number of iterations needed in the

solution of the parabolic part in a mixed hyperbolic-parabolic equation when,

for instance, operator-splitting techniques are adopted [10]. In this case, the

amplification factor is again purely real and given by

ξ = 1− 2γ + 4γ2θ − 8γ3θ2 , (8.42)

so that stability is achieved if

0 ≤ γ
(

1− 2θγ + 4θ2γ2
)

≤ 1 . (8.43)

1Note that also the Dufort-Frankel method [12], usually described as unconditionally stable,

does not escape the timestep constraint ∆t ≈ O(∆x2) when a consistent second-order accurate

solution is needed [8].

8.4. EXPLICIT UPDATING SCHEMES 89

Since γ > 0 by definition, the left inequality is always satisfied, while the right

one is true provided that, for γ < 4/3,

γ −
√

γ(4− 3γ)

4γ2
≤ θ ≤ γ +

√

γ(4− 3γ)

4γ2
. (8.44)

The stability region described by the condition (8.44) is shown in the left

panel of Fig. 8.2 for sink∆x = 1 and illustrates that the scheme is stable for

any value 0 ≤ θ ≤ 1, and also that slightly larger timesteps can be taken when

θ ≃ 0.2.

Swapped Weighted Averages

After some lengthy algebra the calculation of the amplification factor for the

θ-ICN method with swapped weighted averages yields

ξ = 1− 2γ + 4γ2θ − 8γ3θ(1 − θ) , (8.45)

and stability is then given by

− 1 ≤ 1− 2γ + 4γ2θ − 8γ3θ(1 − θ) ≤ 1 . (8.46)

Note that none of the two inequalities is always true and in order to obtain

analytical expressions for the stable region we solve the condition (8.46) with

respect to θ and obtain

θ ≤ 2γ − 1 +
√

4γ2 − 4γ + 5

4γ
, (8.47a)

θ ≤ γ(2γ − 1)−
√

γ (4γ3 − 4γ2 + 5γ − 4)

4γ2
, (8.47b)

θ ≥ γ(2γ − 1) +
√

γ (4γ3 − 4γ2 + 5γ − 4)

4γ2
. (8.47c)

The resulting stable region for sin k∆x = 1 is plotted in the right panel of Fig. 8.2

and seems to suggest that arbitrarily large values of γ could be considered when

θ & 0.6 It should be noted, however, that the amplification factor is also severely

reduced as larger values of γ are used and indeed it is essentially zero in the

limit θ → 1.

90 CHAPTER 8. PARABOLIC PDES

8.5 Implicit updating schemes

8.5.1 The BTCS method

It is common for explicit schemes to be only conditionally stable and in this

respect the Du Fort-Frankel method is somewhat unusual. Implicit methods, on

the other hand, do not share this property being typically unconditionally stable.

A simple example of an implicit finite-differencing scheme can be obtained by

considering a discretisation of equation (8.1) in the form of a “backward-time

centered-space” (BTCS) scheme, namely

un+1
j − un

j

∆t
= D

un+1
j+1 − 2un+1

j + un+1
j−1

∆x2
+O(∆t,∆x2) . (8.48)

As a von-Neumann stability analysis shows [10], the amplification factor is given

by

ξ = 1/

[

1 + 2γ sin2
(

k∆x

2

)]

, (8.49)

so that the finite-differencing (8.48) is unconditionally stable. This method is

also called backward time. Rearranging the terms it is easy to obtain

− γun+1
j−1 + 2(1 + γ)un+1

j − γun+1
j+1 = 2un

j , (8.50)

which shows that to obtain u at time level n+1 is necessary to solve a system of

linear equations with a right-hand-side given by u at time level n. Luckily, the

system is tridiagonal, i.e., only the nearest neighbours of the diagonal term are

non zero, which allows the use of sparse matrix techniques (a matrix is called

sparse if the number of non zero elements is small compared to the number of all

the elements). The main disadvantage of this scheme, besides that of requiring

the simultaneous solution of N algebraic equations, is that it is only first-order

accurate in time.

8.5.2 The Crank-Nicolson method

Combining the stability of an implicit method with the accuracy of a method

that is second-order both in space and in time is possible and is achieved by

averaging explicit FTCS and implicit BTCS schemes:

un+1
j − un

j

∆t
=

D

2

[

(un+1
j+1 − 2un+1

j + un+1
j−1) + (un

j+1 − 2un
j + un

j−1)

∆x2

]

+

O(∆t2,∆x2) . (8.51)

8.5. IMPLICIT UPDATING SCHEMES 91

This scheme is called Crank-Nicolson and is second-order in time since both the

left-hand-side and the right-hand-side are centered in n+1/2. A more compact

and computer-ready representation of the algorithm is then given by

−γ

4
un+1
j−1+

(

1 +
γ

2

)

un+1
j −γ

4
un+1
j+1 =

γ

4
un
j−1+

(

1− γ

2

)

un
j+

γ

4
un
j+1+O(∆t2,∆x2) .

(8.52)

The amplification factor in this case is given by

ξ =

[

1− γ sin2
(

k∆x

2

)]

/

[

1 + γ sin2
(

k∆x

2

)]

, (8.53)

so that, as with the fully implicit BTCS scheme, the CN scheme is uncondition-

ally stable. For this reason and for being higher order than BTCS, is the best

choice for the solution of simple one-dimensional diffusive problems.

The disadvantage of this scheme with respect to an explicit scheme like

the Du Fort-Frankel scheme lies in the fact that in more than one dimension

the system of linear equation will no longer be tridiagonal, although it will

still be sparse. The extension of the Du Fort-Frankel scheme, on the other

hand, is straightforward and with the same constraints as in the one-dimensional

case. Because of this and other problems which emerge in multidimensional

applications, more powerful methods, like the Alternating Direction Implicit

(ADI) have been developed. ADI embodies the powerful concept of operator

splitting or time splitting, which requires a more detailed explanation and will

not be given in these notes.

92 CHAPTER 8. PARABOLIC PDES

Bibliography

[1] Leveque, R. J. 2002, Finite Volume Methods for Hyperbolic Problems,

Cambridge University Press, Cambridge, UK.

[2] Potter, D 1973, Computational Physics, Wiley, New York, USA

[3] Press, W. H. et al., D 1992, Numerical Recipes, Cambridge University

Press, Cambridge, UK.

[4] Toro, E. F. 1997, Riemann Solvers and Numerical Methods for Fluid

Dynamics, Springer.

[5] Vesely, F. J. 1994, Computational Physics: An Introduction, Plenum,

New York, USA

[6] E. C. Zachmanoglou and D. W. Thoe. Introduction to Partial Differential

Equations with Applications. Dover Publications, Inc, 1986.

[7] A. Iserles. A First Course in the Numerical Analysis of Differential Equa-

tions. Cambridge University Press, 1996.

[8] G. D. Smith. Numerical Solution of Partial Differential Equations: Finite

Difference Methods. Oxford University Press, third edition, 1986.

[9] L. Rezzolla and O. Zanotti Relativistic Hydrodynamics. Oxford University

Press, 2013.

[10] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Nu-

merical Recipes in Fortran 77 - The Art of Scientific Computing, volume

One. Cambridge University Press, second edition, 1997.

[11] R. D. Richtmyer and K. W. Morton. Difference Methods for Initial-Value

Problems. Interscience - a division of John Wiley & Sons, second edition,

1967.

93

94 BIBLIOGRAPHY

[12] E. C. Du Fort and S. P. Frankel. Stability conditions in the numerical treat-

ment of parabolic differential equations. Mathematical Tables and Other

Aids to Computation, 7(43):135–152, July 1953.

[13] R. J. LeVeque. Finite-difference Methods for Dif-

ferential Equations - Lecture Notes. URL =

ftp://amath.washington.edu/pub/rjl/papers/amath58X.ps.gz.

[14] S. A. Teukolsky. Stability of the iterated Crank-Nicolson method in nu-

merical relativity. Physical Review D, 61(087501), 2000.

[15] J. Crank and P. Nicolson. A practical method for the numerical evaluation

of solutions of partial differential equations of the heat-conduction type.

Proc. Camb. Philos. Soc., 43:50–67, 1947.

[16] G. J. Barclay, D. F. Griffiths, and D. J. Higham. Theta method dynamics.

LMS Journal of Computation and Mathematics, 3:27–43, 2000.

[17] A. M. Stuart and A. T. Peplow. The dynamics of the theta method. SIAM

Journal on Scientific and Statistical Computing, 12(6):1351–1372, 1991.

[18] R. J. LeVeque. Numerical Methods for Conservation Laws. Birkhäuser-

Verlag, Basel, Switzerland, 1992.

	Introduction
	The discretisation process
	Spatial norms

	Numerical errors
	Machine-precision error
	Round-off error
	Truncation error
	Consistency, convergence and stability

	Hyperbolic PDEs: Flux Conservative Formulation
	The advection equation in one dimension (1D)
	The 1D Upwind scheme: O(t, x)
	The 1D FTCS scheme: O(t, x2)
	The 1D Lax-Friedrichs scheme: O(t, x2)
	The 1D Leapfrog scheme: O(t2, x2)
	The 1D Lax-Wendroff scheme: O(t2, x2)
	The 1D ICN scheme: O(t2, x2)
	ICN as a bold0mu mumu -method

	Summary
	Finite-difference stencils

	Dissipation, Dispersion and Convergence
	On the Origin of Dissipation and Dispersion
	Measuring Dissipation and Convergence

	The Wave Equation in 1D
	The FTCS Scheme
	The Lax-Friedrichs Scheme
	The Leapfrog Scheme
	The Lax-Wendroff Scheme

	Boundary Conditions
	Outgoing Wave BCs: the outer edge
	Ingoing Wave BCs: the inner edge
	Periodic Boundary Conditions

	The wave equation in two spatial dimensions (2D)
	The Lax-Friedrichs Scheme
	The Lax-Wendroff Scheme
	The Leapfrog Scheme
	Boundary conditions in 2D
	Outgoing-wave BCs
	Periodic BCs

	Parabolic PDEs
	Diffusive problems
	The diffusion equation in 1D
	Semi-analytical solution of the model parabolic equation
	Homogeneous Dirichlet boundary conditions
	Homogeneous Neumann boundary conditions

	Explicit updating schemes
	The FTCS method
	The Du Fort-Frankel method and the -method
	ICN as a bold0mu mumu -method

	Implicit updating schemes
	The BTCS method
	The Crank-Nicolson method

