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Chapter 1

| ntroduction

Letus consider a quasi-linear partial differential equa{PDE) of second-order, which
we can write generically as

2 2 2
a11%+2a125x—(5y+a222—£+f(x7y’u7%’g_;t):0’ (11)

wherez, y are not necessarily all spatial coordinates and where weaggume the
coefficientsy;; to be constant. The traditional classification of partiffiedential equa-
tions is then based on the sign of the determin®nt a;1a22 — a?, that we can build
with the coefficients of equation (1.1) and distinguisheséttypes of such equations.
More specifically, equation (1.1) will be (strictlityperbolicf A = 0 has roots that are
real (and distinct)parabolicif A = 0 has real but zero roots, while it will beliptic if
A = 0 has complex roots (see Table 1.1).

Elliptic equations, on the other hand, desciimeindary valugroblems, oBVP,
since the space of relevant solutidislepends on the value that the solution takes on
its boundariegif). Elliptic equations are easily recognizable by the factdblition

Type Condition Example

. . 0%y 9%u
2 . .2
Hyperbolic | a11a20 — a7, < 0 | Wave equation: e v 922

arabolic | ai1az; —aj, =0 | Diffusion equation ot Oz ( 3x>

9%u  0%u

Elliptic aiiazs — a3, >0 | Poisson equation: 92 + e = p(z,y)

Table 1.1:Schematic classification of a quasi-linear partial diffeiad equation of second-order. For each
class, a prototype equation is presented.
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does not depend on time coordinatend a prototype elliptic equation is in fact given
by Poisson equatioftf. Table 1.1).

Hyperbolic and parabolic equations describiéial value boundaryproblems, or
IVBP, since the space of relevant solutidslepends on the value that the solution
(which we assume with compact support) takes on some itiitigl (see upper panel
of Fig. 1.1). In practice, IVBP problems are easily recogbie by the fact that the
solution will depend on the time coordinate Very simple and useful examples of
hyperbolic and parabolic equations are given bywave equatiorand by thediffu-
sion equatioprespectively ¢f. Table 1.1). An important and physically-based differ-
ence between hyperbolic and parabolic equations becorpeseay by considering the
“characteristic velocities” associated to them. Theseasgnt the velocities at which
perturbations are propagated and hfawiee speeds in the case of hyperbolic equations,
while these speeds aiinite in the case of parabolic equations. In this way it is not
difficult to appreciate that while both hyperbolic and pariabequations describe time-
dependent equations, the domain of dependence in a finigeftinthe two classes of
equations can either be finite (as in the case of hyperboliat&mns), or infinite (as in
the case of parabolic equations).

1.1 Discretization of differential operatorsand variables
Consider, for simplicity, a generic one-dimensional IVBRttcould be written as
L{u)—f=0, (1.2)

whereu = u(x,t) and L is a differential operator in the two variablesand¢ acting
onu. One of the most used methods for the solution of such a prolsdy means of
finite differenceslt consists in two “discretization steps”:

e Variables discretizatiorreplace the function(z, t) with a discrete set of values
{u?} that should approximate the pointwise valuespte., u ~ u(xz;,t,);

e Operator discretizationreplace the continuous differential operatbwith a
discretized onef, , that when applied to the s¢t’ }, gives an approximation
to £(u) in terms of differences between the varials

The set of values, = {u;?', j=1,...,J, n=1,...,N} (J andN are the number
of points considered for the space and time variable resedgtis called thegrid
functionand will be denoted byi. After this discretization process, the problem (1.2)
is replaced by }

‘CA(ﬂ)_f:O+6T ) (13)
that is, a discrete representationtaiththe differential operatof and of the variable
u. The above equation is tliiscrete representatioof the problem (1.2). Note that the
righ-hand-side of (1.3) is not exactly zero and it differsrfrit by thetruncation error
€., which will be introduced in Sect. 1.2.3

In the following Sections 2—7 we will concentrate on partidferential equations
of hyperbolic type. Before doing that, however, it is usefutliscretize the continuum
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space of solutions (a “spacetime” in the case of IVBPS) ittigp#oliations such that
the time coordinateis constant on each slice. As shown in the lower panel of Fig. 1
each pointP(z;, t™) in this discretized spacetime will have spatial and timerdote
defined as

x; =z + jAx, 7=0,+1,...,+J,

t" =10 + nAt, n=0,%1,...,£N, (1.4)

whereAt and Az are the increments between two spacelike and timeliketiotisg,
respectively. In this way we can associate a generic solutf@, t) in the continuum
spacetime to a set of discretized solutiafis= u(z;,t™) withi = £I,...,£1,0and
m==M,...,£1,0andl < J; M < N. Clearly, the number of discrete solutions
to be associated to(x, t) will depend on the properties of the discretized spacetime
(i.e,, on the incrementat and Az) which will also determine théruncation error
introduced by the discretization.

Once a discretization of the spacetime is introdudwte differencetechniques
offer a very natural way to express a partial derivative (aedce a partial differential
equation). The basic idea behind these techniques is #abthtion of the differential
equationu(xz;,t™ + At) at a given positiorz; and at a given time¢™ can be Taylor-
expanded in the vicinity ofz t™). Under this simple (and most often reasonable as-
sumption), differential operators can be substituted mpprly weighted differences
of the solution evaluated at different points in the nunanigid. In the following Sec-
tion we will discuss how different choices in the way the #ndifferencing is made
will lead to numerical algorithms with different propesdie

1.2 Errors

Errors are a natural and inevitable heritage of numericalyasis and their presence is
not a nuisance as long their origing is well determined argkugontrol. Three main
errors will be discussed repeatedly in these notes and wéybdiscuss them below.

1.2.1 Machine-precision error

The machine-precision erroreflects the precision of the machine used and can be
expressed in terms of the equality

fp (1.0) =1fp (1.0) + ¢, , (1.5)

wherefp (1.0) is the floating-point description of the numblerStated differently, the
machine-precision error reflects the ability of the machdistinguish two floating
point numbers and is therefore related to the number of fadgnit figures used in the
mantissa.
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1.2.2 Round-off error

The round-off erroris the accumulation of machine-precision errors as a re$ul
floating point operations. Because of the random nature iiclwmachine-precision
errors add-up, this error can be estimated to be

o ~ VNe,, . (1.6)

Clearly, when performing a numerical computation one sthoestrict the number of
operations such that  is below the error at which the results needs to be determined

1.2.3 Truncation error

Thetruncation erroris fundamentally different from the previous two types abes
in that it is not dependent on the machine used but it reflaethtiman decision made
in discretizing the continuum problem. Mathematicallyancherefore be expressed
as

Llu) = f=Ly(@) = f+e. 1.7)

Since the truncation error is totally under the human judgfiriess measure is essential
to guarantee that the discretization operation has beee pragerly and that the dis-
cretized problem is therefore a faithful representatiothef continuum one, modulo
the truncation error.
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Chapter 2

Hyperbolic PDEs. Flux
Consearvative For mulation

Itis often the case, when dealing with hyperbolic equatitites they can be formulated
through conservation laws stating that a given quantity i$ transported in space
and time and is thus locally “conserved”. The resulting “laficontinuity” leads to
equations which are callebnservativeand are of the type

ou

o +V-F(u)=0, (2.1)
whereu(x, t) is thedensityof the conserved quantity; the density flux anet a vector
of spatial coordinates. In most of the physically relevateas, the flux density” will
not depend explicitly orz and¢, but only implicitly through the density(x, t), i.e,
F = F(u(x,t)). The vectorF is also called theonserved fluand takes this name
from the fact that in the integral formulation of the consgion equation (2.1), the
time variation of the integral of over the volumé’ is indeed given by the net flux of
u across the surface enclosihg

Generalizing expression (2.1), we can consider a vectoeon$ities/ and write a

set of conservation equations in the form

%_Itj +V-FU)=80U). (2.2)
Here,S(U) is a generic “source term” indicating the sources and sifiltssovector
U. The main property of the homogeneous equation (2.2) (vhenS(U) = 0) is
that the knowledge of the state-vectdi(z, ¢) at a given point: at time¢ allows to
determine the rate of flow, or flux, of each state variablecat).
Conservation laws of the form given by (2.1) can also be emitis a quasi-linear

form 5T oU
- HAU) 5 =0, (2.3)

whereA(U) = 0F /90U is the Jacobian of the flux vect@t(U).

9
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The use of a conservation form of the equations is partiulaportant when deal-
ing with problems admitting shocks or other discontinifie the solutione.g, when
solving the hydrodynamical equations. A non-conservatiethod,i.e.,, a method in
which the equations are not written in a conservative forrightngive a numerical
solution which appears perfectly reasonable but then yigldorrect results. A well-
known example is offered by Burger’s equatio®,, the momentum equation of an
isothermal gas in which pressure gradients are negleatedybose non-conservative
representation fails dramatically in providing the cotrgwck speed if the initial con-
ditions contain a discontinuity. Moreover, since the hyhmmamical equations follow
from the physical principle of conservation of mass and gnenomentum, the most
obvious choice for the set of variables to be evolved in tim¢hat of the conserved
quantities. It has been proved that non-conservative sebato not converge to the
correct solution if a shock wave is present in the flow, whe@mservative numerical
methods, if convergent, do converge to Weak solutiorof the problem.

In the following, we will concentrate on numerical algorith for the solution of
hyperbolic partial differential equations written in thenservativéform of equation
(2.2). The advection and wave equations can be considengwemrypes of this class
of equations in which withS(U) = 0 and will be used hereafter as our working
examples.



Chapter 3

The advection equation in one
dimension (1D)

A special class of conservative hyperbolic equations aesthcallecadvection equa-
tions in which the time derivative of the conserved quantity isgmrtional to its spatial
derivative. In these caseE(U) is diagonal and given by

FU)=1.U, (3.1)

wherel is the identity matrix.

Because in this case the finite-differencing is simpler &edrésulting algorithms
are easily extended to more complex equations, we will uge @ur “working exam-
ple”. More specifically, the advection equation towe will consider hereafter has, in
1D, the simple expression

ou ou

ot v Ox
and admits the general analytic solution= f(x — vt), representing a wave moving
in the positivez-direction.

=0, (3.2)

3.1 The 1D Upwind scheme: O(At, Ax)

We will start making use of finite-difference techniques évide a discrete representa-
tion of equation (3.2) by first considering the derivativdime. Taylor expanding the
solution aroundz;,t™)) we obtain

u(z;, t" + At) = u(x;, t") + %(mj, t")At + O(At?) (3.3)
or, equivalently,
n n 8“’ "
Wit =l + o | At+ O(At?) . (3.4)
J

11
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Isolating the time derivative and dividing k¢ we obtain

ntl _ u

oul” o uy y
T ) = A7 + O(At) . (3.5)

Adopting a standard convention, we will consider the finiiference representa-
tion of anm-th orderdifferential operatoro™ /9x™ in the generice-direction (where
x could either be a time or a spatial coordinate) to be of opdeand only if

omu

o = La (W) + O(A2) (3.6)

Of course, the time and spatial operators may have finiferdifice representations
with different orders of accuracy and in this case the oVeraler of the equation is
determined by the differential operator with the largeshtation error.

Note also that while the truncation error is expressed ferdifferential operator, the
numerical algorithms will not be expressed in terms of tHféedéntial operators and
will therefore have different (usually smaller) truncatierrors. This is clearly illus-
trated by the equations above, which show that the exptittion (3.4) is of higher
order than the finite-difference expression for the diffitied operator (3.5).

With this definition in mind, it is not difficult to realize thahe finite-difference
expression (3.5) for the time derivative is only first-oréecurate inAt. However,
accuracy is not the most important requirement in numesgnalysis and a first-order
but stable scheme is greatly preferable to one which is higiter (.e., has a smaller
truncation error) but is unstable.

In way similar to what we have done in (3.5) for the time defixega we can derive
a first-order, finite-difference approximation to the spdegvative as

_ j—1
v + O(Ax) . (3.7)

@
ox

While formally similar, the approximation (3.7) suffers thle ambiguity, not present
in expression (3.5), that the first-order term in the Taybgpamnsion can be equally
expressed in terms af;, ; andu?, i.e,

@ n
ox

_ Ui —uf ,
= Ay + O(Ax) . (3.8)

J

This ambiguity is the consequence of the first-order appnexion which prevents
a proper “centring” of the finite-difference stencil. Hovwegvand as long as we are
concerned with an advection equation, this ambiguity ifyeaslved if we think that
the differential equation will simply translate each pamthe initial solution to the
new positionz + vAt over a time intervalA¢. In this case, it is natural to select
the points in the solution at the time-levelthat are “upwind” of the solution at the
positionj and at the time-level + 1, as these are the ones causally connected with
u?’“. Depending then on the direction in which the solution isistated, and hence
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torn
X Or |
O O ® O o n+l
v>0 /
O o—o O O n
-1 ] 1
upwind
O O ® O o n+l
\ v<0
O O o—o O n

-1 j i+l

Figure 3.1:Schematic diagram of an UPWIND evolution scheme.

on the value of the advection velocity two different finite-difference representations
can be given of equation (3.2) and these are

ui ™ —ul _ uj — Ui, O(AL A if 0 3.9

T = — T —|— ( 5 x)7 I v > 9 ( . )

un’+1 —u” U’T'LJrl —u”

ALl S (%> +O(ALAT),  ifu<0,  (310)
X

respectively. As a result, the final finite-difference altfons for determing the solu-
tion at the new time-level will have the form

n n vAt n n 3
uj,+1 =u} — A—x(uj —uj_q)+ O(At?, AzAt) ifv>0, (3.11)

umtl =y — —gc(u?grl —uj)+ O(At?, AzAt) ifv<0.(3.12)



14 CHAPTER 3. THE ADVECTION EQUATION IN ONE DIMENSION (1D)

More in general, for a system of linear hyperbolic equatioith state vectoiU
and flux-vectof, the upwind scheme will take the form

Uit =uj + 2—2 [Fij2) — F7] + O(At?, AzAt) | (3.13)
where thet sign should be chosen according to whether 0 orv < 0. The logic be-
hind the choice of the stencil in an upwind method is is ilatd in Fig. 1.1 where we
have shown a schematic diagram for the two possible valugeafdvection velocity.

The upwind scheme (as well as all of the others we will condidee) is an example
of an explicit scheme, that is of a scheme where the solution at the newl¢veé-
n + 1 can be calculated explicitly from the quantities that aready known at the
previous time-leveh. This is to be contrasted with amplicit scheme in which the
finite-difference representations of the differential &ipn has, on the right-hand-side,
terms at the new time-level + 1. These methods require in general the solution of a
number of coupled algebraic equations and will not be disedigurther here.

The upwind scheme is a stable one in the sense that the solitimot have expo-
nentially growing modes. This can be seen througiom Neumann stability analysis
a useful tool which allows a first simple validation of a givesmmerical scheme. Itis
important to underline that the von Neumann stability asialislocalin the sense that:
a) it does not take into account boundary effetdsit assumes that the coefficients of
the finite difference equations are sufficiently slowly \Wiagyto be considered constant
in time and space (this is a reasonable assumptions if thetieqs are linear). Under
these assumptions, the solution can be seen as a sum of eigesmhich at each grid
point have the form

wherek is the spatial wave number agd= (k) is acomplexnumber.
If we now consider the symbolic representation of the finifeetence equation as

u = (AW, Aat)u? (3.15)

with 7 (AtP, Az?) being the evolution operator of ordem time andy in space, it then
becomes clear from (3.14) and (3.15) that the time evoluifamsingle eigenmode is
nothing but a succession of integer powers of the complexaxaugwhich is therefore
namedamplification factor This naturally leads to a criterion of stability as the ooe f
which the modulus of the ampilfication factor is always lessth,i.e.,

[P =¢¢<1. (3.16)

Using (3.14) in (3.11)—(3.12) we would obtain an amplifioatfactor

£=1—|a| (1 —cos(kAx)) — iasin(kAx) , (3.17)
where At
v

Its quared moduluf|? = £ is then

€2 =1—2]a| (1 —|af) (1 - cos(kAz)) , (3.19)
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COURANT STABLE COURANT UNSTABLE

n+1

-1 j*+1 -1 j+1

Figure 3.2:Schematic diagram of Courant stable and unstable choidimefstepsAt. The two dashed
lines limit the numerical domain of dependence of the sotuﬁt:c;‘“, while the shaded area represents
the physical domain of dependence. Stability is achievednhe first one is larger than the second one.

so that the amplification factor (3.19) is less than one ag &&theCourant-Friedrichs-
Lowy condition(CFL condition)

| <1, (3.20)

is satisfied (condition (3.20) is sometimes referred to $jrap the Courant condition.).
Note that in practice, the CFL condition (3.20) is used teeduine the time-stet
oncew is known andAz has been chosen to achieve a certain accuracy,

At = Copp — (3.21)
v

with ¢, < 1 being the CFL factor. Expression (3.21) also allows a usetfefpreta-
tion of the CFL condition.

From amathematicapoint of view, the condition ensures that the numerical do-
main of dependence of the solutionlésger than the physical one. Frompysical
point of view, on the other hand, the condition ensures thatpropagation speed of
any physical perturbatior(g, the sound speed, or the speed of light) is always smaller
than the numerical one, = Ax/At, i.e,

(3.22)

Equivalently, the CFL conditions prevents any physicahalgo propagate for more
than a fraction of a grid-zone during a single time-stepKig. 3.2)

As a final remark it should be noted that as described so farypiwind method
will yield satisfactory results only in the case in which #guations have an obvious
transport character in one direction. However, in more gaisguations such as a wave
equation, the upwind method will not be adequate and difftszgpressions, based on
finite-volume formulations of the equations will be needgd].
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Figure 3.3:Time evolution of a Gaussian initially centredsat= 0.5 computed using an upwind scheme
with v = 10 and 100 gridpoints. The analytic solution at time= 3 is shown with a solid line the dashed
lines are used to represent the numerical solution at the siame. Two different simulations are reported
with the circles referring to a CFL facter,,;, = 0.99 and squares to a CFL factef,; = 0.50. Note
how dissipation increases as the CFL is reduced.

3.2 ThelD FTCSscheme: O(At, Az?)

Let us consider again the advection equation (3.2) but wefirite difference with a
more accurate approximation of the space derivative. Tddovte can calculate the
two Taylor expansions im; £ Ax

ou 10%u

u(z; + Az, t") = u(z;,t") + %(xj,t")Ax + 5@($]‘7tn)ﬁxz + O(Ax?)
(3.23)
n e Ou n 10%u n
w(z; — Az, t") = u(z;,t") — %(xj,t YAz + Eﬁ(xj,t )Ax2 + O(Axg) ,

(3.24)
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Subtracting now the two expressions and dividin@2iyr we eliminate the first-order
terms and obtain

u n B un,_'_l _ un,_l
% ; == % + O(AJ,‘Q) s (325)
O O ® O O  n+1
FTCS g
O ° o ° O n
-1 J 1

Figure 3.4:Schematic diagram of a FTCS evolution scheme.

Using now the second-order accurate operator (3.25) we mide-flifference equa-
tion (3.2) through the so called FTCS (Forward-Time-CezdeBpace) scheme in which
a first-order approximation is used for the time derivatlwat, a second order one for
the spatial one. Using the a finite-difference notation RMES is then expressed as

u Tt —yn ull y —ul?
I RS (o £ 3 B ?
- , ( - > + O(AL, Ag?) (3.26)
so that o
W = = S — ) + O(A, Aa®At) (8:27)

or more generically, for a system of linear hyperbolic eouret

Uit =uy - % [Fi — Fj_ ]+ O(A#?, Az?At) (3.28)

The stencil for the finite- differencing (3.27) is shown syatigally in Fig. 3.4.

Disappointingly, the FTCS schemetlaconditionally unstabtei.e., the numerical
solution will be destroyed by numerical errors which will bertainly produced and
grow exponentially. This is shown in Fig. 3.5 where we showtime evolution of a
Gaussian using an FTCS scheme 100 gridpoints. The anatjtittan at timet = 0.3
is shown with a solid line the dashed lines are used to reptése numerical solution
at the same time. Note that the solution plotted here refeagiime which is 10 times
smaller than the one in Fig. 3.3. Soon after 0.3 the exponentially growing modes
appear, rapidly destroying the solution.

Applying the definition (3.14) to equation (3.26) and fewediggic steps lead to an
amplification factor

¢ =1—iasin(kAzx) . (3.29)
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Figure 3.5:Time evolution of a Gaussian using an FTCS scheme with 1 and 100 gridpoints. The
analytic solution at time = 0.3 is shown with a solid line, while the dashed line is the nug&rolution at
the same time. Soon after~ 0.3 the exponentially growing modes appear, rapidly destgytie solution.

whose squared modulus is
> = 1+ (asin(kAz))® > 1, (3.30)

thus proving the unconditional instability of the FTCS stiee Because of this, the
FTCS scheme is rarely used and will not produce satisfactsylts but for a very
short timescale as compared to the typical crossing timeeophysical problem under
investigation.

A final aspect of the von Neumann stability worth noticinghsttit is aneces-
sary but not sufficienttondition for stability. In other words, a numerical schetimat
appears stable with respect to a von Neumann stability aisatyight still be unstable.

3.3 ThelD Lax-Friedrichs scheme: O(At, Ax?)

A solution to the stability problems offered by the FTCS sokevas proposed by Lax
and Friedrichs. The basic idea is very simple and is baseé@maaing, in the FTCS
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O © 2, © © n+l
Lax—Friedrichs
o . ° "o o n
-1 j j+1

Figure 3.6:Schematic diagram of a Lax-Friedrichs evolution scheme.

formula (3.26), the term? with its spatial average.e., u} = (u?,; +uj_;)/2, so as
to obtain for an advection equation

n 1 n n a n n
UjH = §(uj+1 +uj_y) — §(uj+1 —uj_,) + O(Az?), (3.31)
and, for a system of linear hyperbolic equations
n+1l _ 1 n n At n Fn O A 2 3 32
Uj _§(Uj+1+Uj’1)_2Ax[ 1~ i)+ O0(Ae?) . (332)

Note that the truncation error in equations (3.31) and (3sS&ported to b&)(Az?)
and notO(At?, Az?At) because we are assuming that the CFL condition is satisfied
and hence\t = O(Ax). We will maintain this assumption hereafter.

The schematic diagram of a Lax-Friedrichs evolution schisrsown in Fig. 3.6.
Perhaps surprisingly, the algorithm (3.32) is nmanditionally stableas can be verified
through a von Neumann stability analysis. Proceeding ag flamthe FTCS scheme
and using (3.14) in (3.32) we would obtain an amplificatioatda whose modulus
squared is

€]? =1 —sin®*(kAz) (1 —a?) , (3.33)

which is< 1 as long as the CFL condition is satisfied.

Although not obvious, the correction introduced by the I[Faiedrichs scheme is
equivalent to the introduction of mumerical dissipatior{viscosity). To see this, we
rewrite (3.32) so that it clearly appears as a correctio3126):

ultt -y ul y —ul 1 /ul g —2ul +u”?
i j j+1 j—1 j+1 J Jj—1
P BN (i b s — . 3.34
At v < 27z > T3 ( At > (3.34)

This is exactly the finite-difference representation ofelgeation
ou ou 1 <A;L'2> 0%u

o Vor T2\ AL ) aa2

(3.35)

where a diffusion termx 9%u/0x2, has appeared on the right hand side. To prove this

we sum the two Taylor expansions (3.23)—(3.24) arauntb eliminate the first-order

derivatives and obtain
9%u "

da?

ut o —2ul +ul
= T oA, (3.36)

J
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where the sum has allowed us to cancel both the teédfisr) and O(Az?). Note
that since the expression for the second derivative in J3s3®(Az?), it is appears
multiplied by Az? /At = O(Ax) in equation (3.35), thus making the right-hand-side
O(Az?) overall. The left-hand-side, on the other hand, is @A) (the time deriva-
tive is O(Ax), while the spatial derivative i©(Az?)). As a result, the dissipative
term goes to zero more rapidly than the intrinsic truncagionr of the Lax-Friedrichs
scheme, thus guaranteeing that the in the continuum liraiatgorithm will converge
to the correct solution of the advection equation.

Figure 3.7:This is the same as in Fig. 3.3 but for a Lax-Friedrichs scheviate how the scheme is stable
but also suffers from a considerable dissipation.

A reasonable objection could be made for the fact that theRréedrichs scheme
has changed the equation whose solution one is interestge.ineq. (3.2)] into a
new equation, in which a spurious humerical dissipationdesesn introduced ., eq.
(3.35)]. Unlessv|At = Az, €] < 1 and the amplitude of the wave is doomed to
decrease (see Fig. 3.7).

However, such objection can be easily circumvented. As imead above, the
dissipative term is always smaller than the truncationrdtres guaranteeing the con-
vergence to the correct solution. Furthermore, it is usifldear in mind that the key
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aspect in any numerical representation of a physical phenomis the determination

of the length scale over which we need to achieve an accuestigtion. In a finite
difference approach, this length scale must necessardgrepass many grid points
and for whichkAz < 1. In this case, expression (3.33) clearly shows that the am-
plification factor is very close to 1 and the effects of diasipn are therefore small.
Note that this is true also for the FTCS scheme so that on @eges the stable and
unstable schemes are equally accurate. On the very smiagi $tavever, which we are
not of interest to uskAx ~ 1 and the stable and unstable schemes are radically dif-
ferent. The first one will be simply inaccurate, the seconelwill have exponentially
growing errors which will rapidly destroy the whole solutidt is rather obvious that
stability and inaccuracy are by far preferable to instaikspecially if the accuracy

is lost over wavelengths that are not of interest or whenritloa recovered easily by
using more refined grids. This is callécbnsistency” of the discretized operator and
will be discussed in detail in Sect. 4.2.2.

3.4 ThelD Leapfrog scheme: O(At?, Az?)

Both the FTCS and the Lax-Friedrichs are “one-level” schemih first-order ap-
proximation for the time derivative and a second-order apipnation for the spatial
derivative. In those circumstanceAt should be taken significantly smaller thamn
(to achieve the desired accuracy), well below the limit isgubby the Courant condi-
tion.

O o) ® O O n+1
Leapfrog
O [ o ® o n
-1 L
O @) o O o n-1

Figure 3.8:Schematic diagram of a Leapfrog evolution scheme.

Second-order accuracy in time can be obtained if we insert

au n u;}+1 o u?*l )
gul A L oad), (3.37)
ot ; 2At

in the FTCS scheme, to find theapfrogscheme

W = —a (U, — ) +O(Ad?) (3.38)
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where it should be noted that the factor 2An: cancels the equivalent factor 2 4xy.

Figure 3.9:This is the same as in Fig. 3.3 but for a Leapfrog scheme. Notethe scheme is stable
and does not suffers from a considerable dissipation eveloioCFL factors. However, the presence of a
little “dip” in the tail of the Gaussian for the case @f.;, = 0.5 is the result of the dispersive nature of the
numerical scheme.

For a set of linear equations, the Leapfrog scheme simplgrbes

n n— At mn n
Urtt =U; 1—A—x[ T — F7 ] +0(A2%) (3.39)
and the schematic diagram of a Leapfrog evolution schenteissin Fig. 3.8.

Also for the case of a Leapfrog scheme there are a number et&sthat should
be noticed:

e In a Leapfrog scheme that is Courant stable, there is no ardplidissipation
(i.e, |¢]? = 1). In fact, a von Neumann stability analysis yields

¢ = —iasin(kAz) + \/1 — Jasin(kAx))? (3.40)
and so that

€)% = o? sin?(kAz) + {1 — [« sin(kAx)]Q} =1 Va<l. (3.41)
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O O n+1

o o n-1

Figure 3.10:Schematic diagram of the decoupled grids in a Leapfrog éeolscheme.

As aresult, the squared modulus of amplification factonisagk 1, provided the
CFL condition is satisfiedcf. Fig. 3.11).

e The Leapfrog scheme is a two-level scheme, requiring rescofrdalues at time-
stepsn andn — 1 to get values at time-step+ 1. This is clear from expression
(5.22) and cannot be avoided by means of algebraic maniposat

e The major disadvantage of this scheme is that odd and eveh puésts are
completely decoupled (see Fig. 8).

In principle, the solutions on the black and white squaresidentical. In
practice, however, their differences increase as the tiogrpsses. This ef-
fect, which becomes evident only on timescales much lortgar the crossing
timescale, can be cured either by discarding one of theisakibr by adding a
dissipative term of the type

st e(ufyy = 2ul g tuly), (3.42)

in the right-hand-side of (5.17), whete< 1 is an adjustable coefficient.

3.5 The 1D Lax-Wendroff scheme: O(At?, Ax?)

The Lax-Wendroff scheme is the second-order accurate €rteof the Lax-Friedrichs
scheme. As for the case of the Leapfrog scheme, in this cased¢meed two time-
levels to obtain the solution at the new time-level.

There are a number of different ways of deriving the Lax-Weffdscheme but it
is probably useful to look at it as to a combination of the IFiedrichs scheme and of
the Leapfrog scheme. In particular a Lax-Wendroff schenmebeaobtained as
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1. A Lax-Friedrichs scheme with half step:
n n At n n
Uy, +U%] - AT [Fi., — F}] + O(Az?),

- —— [F} = F}_,] + O(As?),
whereAt/(2Az) comes from having used a timestap/2;

1 1
2. The evaluation of the quer;If from the values oU;If
2 2

3. A Leapfrog “half-step”:

At 1 1

n+l _ prm n+ n+ 2

Ut = Uy - o [FL - Fj_ﬂ +O(AZ?) . (3.43)
The schematic diagram of a Lax-Wendroff evolution schenslagsvn in Fig. 3.11

and the application of this scheme to the advection equéB@) is straightforward.

More specifically, the “half-step” values can be calculaed

n+1/2 1 n u o n n
ujil//z =3 (uj + ujil) F 5 (ujil — uj) + O(Az?) (3.44)

so that the solution at the new time-level will then be

n n n+1/2 n+1/2
ujJr1 = uj —a (uj+1//2 — uj_l//Q) + O(Ax?) (3.45)
n a n n 042 n n n 2
= uj—3 (ufyy —uf )+ 5 (uffyy —2u} +uf_ )+ O(Az?).
(3.46)
where expression (3.46) has been obtained after substjt(Bi44) in (3.45).
O Q o n+1
Lax—Wendroff i~1/2 j+1/2
‘/ \8/ \' n
-1 j j*1

Figure 3.11:Schematic diagram of a Lax-Wendroff evolution scheme.

Aspects of a Lax-Wendroff scheme worth noticing are:
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¢ In the Lax-Wendroff scheme there might be some amplitudgmhsion. In fact,
a von Neumann stability analysis yields

€ =1 —iasin(kAz) — o [1 — cos(kAz)] , (3.47)
so that the squared modulus of the amplification factor is
€7 =1—a*(1 —a?) [1 — cos®(kAz)] . (3.48)

As a result, the von Neumann stability criterigfi* < 1 is satisfied as long
asa? < 1, or equivalently, as long as the CFL condition is satisfied. Fig.
10). It should be noticed, however, that unlegs= 1, then|¢|? < 1 and some
amplitude dissipation is present. In this respect, thaphsise properties of the
Lax-Friedrichs scheme are not completely lost in the Laxalveff scheme but
are much less severef(Figs. 5 and 10).

e The Lax-Wendroff scheme is a two-level scheme, but can leestét a one-level
form by means of algebraic manipulations. This is clear fexpressions (3.46)
where quantities at time-levelsandn + 1 only appeatr.

3.6 ThelD ICN scheme: O(At?, Ax?)

The idea behind thierative Crank-Nicolsor{ICN) scheme is that of transforming a
stable implicit methodi.e., the Crank-Nicolson (CN) scheme (see Sect. 8.4.2) into an
explicit one through a series of iterations. To see how tohi®ih practice, consider
differencing the advection equation (3.2) having a cergpete derivative but with the
time derivative being backward centrée,,

oy -t
& T ) (3.49)

This scheme is also known as “backward in time, centred itespar BTCS (see
Sect. 8.4.1) and has amplification factor

1

“ 1+iasnkAz (3.50)

§
so thati¢|? < 1 for any choice ofy, thus making the method unconditionally stable.
The Crank-NicolsonCN) scheme, instead, is a second-order accurate method ob-
tained by averaging a BTCS and a FTCS method or, in other werfigtions (3.26)
and (3.49). Doing so one then finds

_ 1 +iasinkAx/2

i —— 51
1 —iasin kAz/2 (3:51)

§
so that the method is stable. Note that although one avelsge®en an explicit and
an implicit scheme, terms containing ! survive on the right hand side of equation
(3.49), thus making the CN scheme implicit.
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Figure 3.12:This is the same as in Fig. 3.3 but for a Lax-Wendroff schemeteNMow the scheme is
stable and does not suffers from a considerable dissipatien for low CFL factors. However, the presence
of a little “dip” in the tail of the Gaussian for the casef,; = 0.5 is the result of the dispersive nature of
the numerical scheme.

The first iteration of iterative Crank-Nicolson starts bycc#ating an intermediate
variable(!) 7 using equation (3.26):

1) ~n+1 n n n
( )Uj —u (M Y (3.52)
At 2Ax ' '

Then another intermediate variabléa is formed by averaging:

(1)1]7,7'+1/2 =
J

% (<1>ay+1 + u?) . (3.53)

Finally the timestep is completed by using equation (3.2@)imwith  on the right-
hand side:

n+1 n 1) -n+1/2 _ (1)-n+1/2
i B R <( un - W ) : (3.54)

j
At 2Ax
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Iterated Crank-Nicolson witkwo iterationsis carried out in much the same way.
After steps (3.52) and (3.53), we calculate

2) ~n+1 n 1) -n+1/2 1) -n+1/2
At 2Ax ’
n 1 ~n n
(2)uj /2= 5 ((Q)Uj oy uj) . (3.56)
Then the final step is computed analogously to equation 3.54
n+1 n 2)—n+1/2 2) —n+1/2
Al Y (i SN AV I (3.57)
At 2Ax

Further iterations can be carried out following the saméclog
To investigate the stability of these iterated schemes wepeibe the amplification
factors relative to the different iterations to be

Me = 1428, (3.58)
@e = 142p-25%, (3.59)
B¢ = 142ip-28%-2i3%, (3.60)
We = 1+42i8—26%-2i8°+26*, (3.61)

where3 = (a/2)sin(kAz), and ¢ corresponds to the FTCS scheme. Note that
the amplification factors (3.58) correspond to those oneldvobtain by expanding
equation (3.51) in powers gf.

Computing the squared moduli of (3.58) one encounters amalting and recur-
sive pattern. In particular, iterations 1 and 2 are unstgb)é > 1); iterations 3 and 4
are stable|¢|? < 1) provideds? < 1; iterations 5 and 6 are also unstable; iterations 7
and 8 are stable provide®f < 1; and so on. Imposing the stability for all wavenum-
bersk, we obtaina?/4 < 1, or At < 2Az which is just the CFL condition [the factor
2 is inherited by the factor 2 in equation (3.26)].

In other words, while the magnitude of the amplification éador iterated Crank-
Nicolson does approach 1 as the number of iterations beciofirgte, the convergence
is not monotonic. The magnitude oscillates above and belswhlever decreasing os-
cillations. All the iterations leading tg|? above 1 are unstable, although the instability
might be very slowly growing as the number of iterations éases. Because the trun-
cation error is not modified by the number of iterations andiigaysO(At?, Az?),

a number of iterations larger than two is never useful; therations, in fact, would
simply amount to a larger computational cost.

3.6.1 ICN asa8-method

In the ICN method thél/-th average is made weighting equally the newly predicted
solution*)*! and the solution at the “old” timeleveti”. This, however, can be
seen as the special case of a more generic averaging of e typ

(]W)anJrl/Q -0 (]W)ﬂnJrl + (1 _ e)un ’ (362)



28 CHAPTER 3. THE ADVECTION EQUATION IN ONE DIMENSION (1D)

where0 < 6 < 1 is a constant coefficient. Predictor-corrector schemewhis type
of averaging are part of a large class of algorithms nafreetthod$10], and we refer
to the ICN generalized in this way as to the[CN” method.

A different and novel generalization of tAdCN can be obtained bywappinghe
averages between two subsequent corrector steps, so thatlifith corrector step

(JVI)ﬂn+1/2 — (1 _ 9) (M),an+1 +Ou™ (3.63)
while in the(M + 1)-th corrector step
(]W+1),an+1/2 _ 9(M+1)ﬂn+1 + (1 _ 9)un ) (364)

Note that as long as the number of iterations is even, theeseguin which the aver-
ages are computed is irrelevant. Indeed, the wei@latsd1 — 6 in eqs. (3.63)—(3.64)
could be inverted and all of the relations discussed hexefaft the swapped weighted
averages would continue to hold after the transformatien 1 — 6.

Constant Arithmetic Averages

Using a von Neumann stability analysis, Teukolsky has shthan for a hyperbolic
equation the ICN scheme witll iterations has an amplification factor [13]

M
Mg =142 (-ip)", (3.65)
n=1

wheres = v[At/(2Az)] sin(kAx) 1. More specifically, zero and one iterations yield
an unconditionally unstable scheme, while two and threatiens a stable one pro-
vided thats? < 1; four and five iterations lead again to an unstable scheme@od.
Furthermore, because the scheme is second-order acaunatdhfe first iteration on,
Teukolsky’s suggestion when using the ICN method for hypkekequations was that
two iterations should be usethd no morg13]. This is the number of iterations we
will consider hereafter.

Constant Weighted Aver ages

Performing the same stability analysis fo6-dCN is only slightly more complicated
and truncating at two iterations the amplification factdioisnd to be

£=1-2if —43%0 + 8i3%0? , (3.66)

where¢ is a shorthand fof?¢. The stability condition in this case translates into
requiring that
166%0* —46%0* —20 +1 <0, (3.67)

or, equivalently, that foé > 3/8
1-,/20-3 14+,/20-32
BV R <B< SRy R

INote that we defings to have the opposite sign of the corresponding quantity eefin ref. [13]

(3.68)
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Figure 3.13Left panel:stability region in thed, ) plane for the two-iteration&ICN

for the advection equation (3.2). Thick solid lines mark lingt at which |{| = 1,
while the dotted contours indicate the values of the amalifim factor in the stable
region. The shaded area fib 1/2 refers to solutions that are linearly unstable [15].
Right panel:same as in the left panel but when the averages between twectons
are swapped. Note that the amplification factor in this cadess sensitive of and
always larger than the corresponding amplification factdhe left panel.

which reduces tg3? < 1 whenf = 1/2. Because the condition (3.68) must hold
for every wavenumbek, we consider hereaftet = vAt/(2Az) and show in the left
panel of Fig. 3.13 the region of stability in the, (3) plane. The thick solid lines mark
the limit at which|¢| = 1, while the dotted contours indicate the different valuethef
amplification factor in the stable region.

A number of comments are worth making. Firstly, althoughdbedition (3.68)
allows for weighting coefficientd8 < 1/2, the#-ICN is stable only if¢ > 1/2. This
is a known property of the weighted Crank-Nicolson schen® §hd inherited by the
0-ICN. In essence, wheft £ 1/2 spurious solutions appear in the method [16] and
these solutions are linearly unstablé i& 1/2, while they are stable fat > 1/2 [15].
For this reason we have shaded the area with 1/2 in the left panel of Fig. 3.13
to exclude it from the stability region. Secondly, the useaofeighting coefficient
6 > 1/2 will still lead to a stable scheme provided that the timestep, 3) is suitably
decreased. Finally, as the contour lines in the left pan€igf3.13 clearly show, the
amplification factor can be very sensitive én

Swapped weighted aver ages

The calculation of the stability of th&ICN when the weighted averages are swapped
asinegs. (3.63) and (3.64) is somewhat more involved; sftere lengthy but straight-
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forward algebra we find the amplification factor to be
€ = 1-2iB—43%0+8ip%0(1 —0), (3.69)

which differs from (3.66) only in that thé? coefficient of theD(3%) term is replaced
by 6(1 — 6). The stability requiremen| < 1 is now expressed as

165%0%(1 — 0)* — 45%0(2 —30) =20 +1 < 0. (3.70)

Solving the condition (3.70) with respect foamounts then to requiring that

4> V2 — 30— /40 — 1162 + 863

2(1 —60)V20 ’ (3.712)
V2 =30+ /40 — 1162 + 363
= 2(1 — 0)v/26 ’ (3.710)

which is again equivalent t6> < 1 whenf = 1/2. The corresponding region of
stability is shown in right panel of Fig. 3.13 and should benpared with left panel of
the same Figure. Note that the average-swapping has nowdeoaisly increased the
amplification factor, which is always larger than the copsding one for thé-ICN

in the relevant region of stability.e.,for 1/2 < 0 < 12).

20f course, when the order of the swapped averages is inviedecthe one shown in egs. (3.63)—(3.64)
the stability region will change int6 < 6 < 1/2.
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3.6.2 Summary

31

In what follow | summarize the most salient aspects of théedéht finite-difference
operators discussed so far and report, for each of themyuhedtion error.., the
amplification factoi¢|? and the finite-difference representation of the advectiprae

tion 3.2.
Method €r €% for (kAx < 1) finite-difference form
Upwind O(At, Ax) 1 —2|a|(1 — |a|) cos(kAx) u?“ =uf Fa(uly,; —ul)
FTCS O(At,Az?) | 1+ sin®(kAz)a? wt =l —aul, —ul )
Lax Friedrichs| O(At,Az?) | 1 —sin*(kAz)(1 — o?) Wt =l ) —a(uly, —uly)
Lepafrog O(At?, Az?) | 1 u;?'“ = u?—l —a(uly, —ul )
Lax Wendroff | O(A#?, Az?) | 1 —a?(1 — a?)sin®(kAx) u?“ =uj — %a(u uf_y)—
% 2(u uly 2u + 1)

Table 3.1:Schematic summary of the finite-difference operators dised so far.
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Chapter 4

Dissipation, Dispersion and
Convergence

We will here discuss a number of problems that often emergawiing finite-difference
techniques for the solution of hyperbolic partial diffetiahequations. In stable numer-
ical schemes the impact of many of these problems can bébuitsduced by going
to sufficiently high resolutions, but it is nevertheless artpnt to have a simple and yet
clear idea of what are the most common sources of these jpnsble

4.1 OntheOrigin of Dissipation and Dispersion

We have already seen in Chapter 3 how the Lax-Friedrichawselzgplied to a linear
advection equation (3.2) yields the finite-difference eggion

n 1 n n a n n
uj“‘1 = 5(%’4—1 +uj_q) — E(qu —ul 1)+ O(Az?). 4.1)
We have also mentioned how expression (4.1) can be rewsatten
n n o n n 1 n n n
uj = uf — §(uj+1 —uj_q)+ 5(%“ —2u +uj_y) + O(Az?) , 4.2)

to underline how the Lax-Friedrichs scheme effectivelyvides a first-order finite-
difference representation of a non-conservative equation

ou ou 0%y

e 4.3
ot "Ver T Cwagz (43)
that is an advection-diffusion equation in which a disgigaterm
Ax?
=v— 4.4
€LF v 2At ? ( )

is present. Given a computational domain of lengtthis scheme will therefore have
a typical diffusion timescale ~ L?/¢, .. Clearly, the larger the diffusion coefficient,
the faster will the solution be completely smeared over tirafutational domain.

33
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In a similar way, it is not difficult to realize that the upwisdheme

u;.“rl =uj -« (u;7 — u?;l) + O(Az?) (4.5)

provides a first-order accurate (in space) approximatiegtation (3.2), but a second-
order approximation to equation

ou ou 0%u
E—Fv% —€wa 5 (46)
where A
VAx
Eow = 5 4.7

Stated differently, also the upwind method reproduces gltdriorder an advection-
diffusion equation with a dissipative term which is respblesfor the gradual dissi-
pation of the advected quantity This is shown in Fig. 4.2 for a wave packeg(,
a periodic function embedded in a Gaussian) propagatinigetaight and where it is
important to notice how the different peaks in the packetaaheected at the correct
speed, although their amplitude is considerably dimirdshe

In Courant-limited implementations, = |v|At/Axz < 1 so that the ratio of the
dissipation coefficients can be written as

€LF

3

=_>1, for a€]0,1]. (4.8)

SERS

Uw

In other words, while the upwind and the Lax-Friedrichs methare both dissipative,
the latter is generically more dissipative despite beingena@curate in space. This can
be easily appreciated by comparing Figs. 3.3 and 3.7 butpatsddes an important
rule: a more accurate numerical scheme is not necessarily a @feone.

A bit of patience and a few lines of algebra would also showtthe Lax-Wendroff
scheme for the advection equation (3.&) pq. (3.46)]

2

n n n n a n n n
uj+1 =uj -« (uj+1 - ujfl) + - (uj+1 —2u} + ujfl) +0(Az?) .  (4.9)

provides a first-order accurate approximation to equaBa?)( a second-order approx-

imation to an advection-diffusion equation with dissipatcoefficient,,, and a third-
order approximation to equation
ou ou 0%u 03u
a—'—v% :ng@ +ﬂLwW ) (410)
where )
avAx vAzx
o =5 Bow = — G (1-a?) . (4.11)

As mentioned in Section 3, the Lax-Wendroff scheme retaimsesof the dissi-
pative nature of the originating Lax-Friedrichs scheme #iglis incorporated in the
dissipative term proportional tg, .. Using expression (4.9), it is easy to deduce the
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Figure 4.1:Time evolution of a wave-packet initially centredzat= 0.5 computed using a Lax-Friedrichs
scheme withC',;, = 0.75. The analytic solution at time = 2 is shown with a solid line the dashed lines
are used to represent the numerical solution at the sameNuote how dissipation reduces the amplitude of
the wave-packet but does not change sensibly the propagztihe wave-packet.

magnitude of this dissipation and compare it with the edaivieone produced with the
Lax-Friedrichs scheme. A couple of lines of algebra show tha
=a’e,, <&, , (4.12)

€ Lw

thus emphasizing that the Lax-Wendroff scheme is condidietass dissipative than
the corresponding Lax-Friedrichs.

The simplest way of quantifying the effects introduced by tight-hand-sides of
equations (4.3), (4.6), and (4.10) is by using a single Eouriode with angular fre-
guencyw and wavenumbek, propagating in the positive-direction,i.e.,

u(z,t) = elke=wt) (4.13)
It is then easy to verify that in the continuum limit

ou . ou 0%u 9 Pu
5 = lwu, — =iku, — = —k"u, 923

o 502 = —ikPu. (4.14)
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Figure 4.2:Time evolution of a wave-packet initially centredsat= 0.5 computed using a Lax-Wendroff
scheme withC',; = 0.75. The analytic solution at time = 2 is shown with a solid line the dashed lines
are used to represent the numerical solution at the sameNote how the amplitude of the wave-packet is
not drastically reduced but the group velocity suffers fragonsiderable error.

In the case in which the finite difference scheme providescanrate approxima-
tion to a purely advection equation, the relations (4.14j & the obvious dispersion
relationw = vk, so that thenumericalmoded(z, ¢t) will have a solution

i(x,t) = eFle=vt) | (4.15)

representing a mode propagating withase velocity;,, = w/k = v, which coincides
with thegroup velocitye, = Ow/0k = v.

However, it is simple to verify that the advection-diffusiequation approximated
by the Lax-Friedrichs scheme (4.3), will have a correspogdblution

u(z,t) = e—eLrkit ik(z—vt) , (4.16)

thus having, besides the advective term, also an expotigrtéaying mode. Simi-
larly, a few lines of algebra are sufficient to realize that tlissipative term does not
couple with the advective one and, as a result, the phaserang gelocities remain
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the same and, = ¢, = v. This is clearly shown in Fig. 4.1 which shows how the
wave packet is sensibly dissipated but, overall, maintdiegorrect group velocity.

Finally, it is possible to verify that the advection-diffas equation approximated
by the Lax-Wendroff scheme (4.10), will have a solution gitgy

i(w,t) = e~ R teik[e— (B k)] (4.17)

where, together with the advective and (smaller) expoabytiecaying modes already
encountered before, there appears adispersivaerm~ j3,,, k*t producing different
propagation speeds for modes with different wavenumbefris Becomes apparent
after calculating the phase and group velocities which amengoy

cp = % =v +BLWI€2 , and Cg = Z—: =v+ SBLWkQ , (4.18)
and provides a simple interpretation of the results showkidn4.2.

4.2 Measuring Dissipation and Convergence

From what discussed so far it appears clear that one is oftéreineed of tools that
allow a rapid comparison among different evolution scher@se might be interested,
for instance, in estimating which of two methods is lessigats/e or whether an evo-
lution scheme which is apparently stable will eventuallsntout to be unstable. In
what follows we discuss some of these tools and how they carsée to ascertain a
fundamental property of the numerical solution: its cogegice

4.2.1 Thesummarising power of norms

A very useful tool that can be used in this context is the dat@n of the*norms” of
the quantity we are interested in. In the continuum limitpheormis defined as

1 b 1/p
||u||p=m</ |u<x,t>|pdx> . (4.19)

and has the same dimensions of the originating quaafityt). The extension of this
concept to a discretised space and time is straightforwaddyglds the commonly
used norms

N
1—norm :: [lul|(t") = %Z luf ], (4.20)
- N 1/2
2—norm :: |Jul|?(t") = % Z(u}l)Q , (4.21)
=1
jN 1/p
p—norm :: || |P (") = % Z(uy)p) . (4.22)
j=1

infinity — norm :: [[ul| (t") = max;j=1, .~(|u]]) - (4.23)
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In the case of a scalar wave equation (see Sect. 5 for a dignjigbe 2-norm has a
physical interpretation and could be associated to the ataf@nergy contained in the

numerical domain; its conservation is therefore a cleanatigre of a non-dissipative
numerical scheme.

3 T T T T T T

log ([l u(t) I

~31 --- Lax—Wen \\ _
I } ]
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.
L \ .
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0 2 4 6 8 10 12 14
t

Figure 4.3:Time evolution of the logarithm of the 2-norms for the diiat numerical schemes discussed
so far. Sommerfeld outgoing boundary conditions were uséki$ example.

Fig. 4.2 compares the 2-norms for the different numerida¢sres discussed so far
and in the case in which Sommerfeld outgoing boundary cumditwere used. Note
how the FTCS scheme is unstable and that the errors are nlkceatparable with the
solution well before a crossing time. Similarly, it is evidé¢hat the use of Sommerfeld

boundary conditions allows a smooth evacuation of the gnierghe wave from the
numerical grid aftet ~ 6.

4.2.2 Consistency and Convergence

Consider therefore a PDE of the type

L(u)—f=0, (4.24)
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where L is a second-order differential quasi-linear operatdr £q. (1.1)]. Let also
L, be the discretized representation of such continuum éiffiéal operator and =
O(AzP, At?) the associated truncation errbe,,

L. (ul) — f =0+ O(AzP, A7) . (4.25)

For compactness let us assume that largest contributidrettruncation error can be
expressed simply as= Ch? = O(h?) whereh corresponds to either the spatial or
time discretization and’ is a real constant coefficient. The finite-difference repnes
tation L, is said to beconsistentf

lime=0, (4.26)
h—0
Let u(zx,t) represent the exact solution to a PDE anthe exact solution of the
finite-difference equation that approximates the PDE withiacation erroO(AxP, At?).
The finite-difference equation is said to benvergentvhen the truncation error tends
to zero as a power gf in Az and a power of in At, namely

}llirr(l)e = AxP + At (4.27)

Note that this condition is much more severe that the singgl@irement that the trun-
cation error will tend to zero aAx and At tend to zero. The latter condition, in fact,
does not ensure that the numerical solution is approachaeptact one at thexpected
rate, that is the rate determined by the truncation errorcandequent to the choice of
the given finite-difference representation of the contmudifferential operator.

Since checking convergence essentially amounts to megshiow the truncation
error changes with resolution, it is useful to defineal (i.e., pointwise) deviation
from the exact solutiom atx = x; as

ej(h) = u;h) —u(z;) (4.28)

be the magnitude of thargesttruncation error (and which could be either in space or
in time) associated to the numerical solutioyi) obtained with grid spacing. If the
numerical method used psth order accurate, then

¢;j(h) = Ch? + O(hPT1y (4.29)

whereC is a constant real coefficient. A different solution complutéth a grid spac-
ing & will have at the same spatial positien a corresponding truncatian (k) error,
so thaterror ratio will be

~—

GJ‘ (h
€j (k
and the “numerical” local convergence order, that is theepaod convergence as mea-
sured from the two numerical solutionsagtwill be

Ri(h,k) =

, (4.30)

~

log R;(h, k)

log(h/k) (4.31)

p=
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In the rather common case in whiéh= 1/2, expressions (4.30) reduces to
Rj(h,h)2) = 2P

and the overall order of accuracy is measured numericalfy-asog, (R). As we will
discuss in the following Sectiothe discrete representation of the continuum equations
is said to be convergent if and onlygif= p, i.e,, if

(4.32)

Stated differently, convergence requires not only thatettier is decreasing and thus
that the method is consistent (see Sect. 4.2.3) but thati@dseasing at thexpected
rate.

In general there will be a minimun resolution, say, , below which the truncation
error will dominate over the others,g.,round-off error. Clearly, one should expect
convergence only fo < h_. and the solution in this case is said to be toavergent
regime

What discussed so far assumes the knowledge of the exatibsgluhich, in gen-
eral, is not available. This does not represent a major oleséad the convergence test
can still be performed by simply employing a third numermadluation of the solution.
This is referred to as ‘self-convergence’test and exploits the fact that the difference
between two numerical solutions does not depend on thelaotaet solution

o =l = (&) — () = ()~ i) = () ~ (k)

min

where of course the two soluti0m§h) andu'® should be evaluated at the same grid-
pointz;. If one of the numerical solutions is not availble at such mp@.g.,because
the spacing used is not uniform) a suitable interpolatiomeisded and attention must
be paid that the error it introduces is much smaller thareeif(h) or €;(k) in order
not to spoil the convergence test.
With (4.29) in mind and using three different numerical $i@|u5u§.h), ugk) u;.l)
with grid spacings such that> k& > [, the numerical error ratio is then defined as
h l = =
P el L1 (0 BT N et

WD T Gk =) T R0

(4.33)

where the numerical solutim:é’) with the associated erref(I) has the role of “refer-
ence” solution since it is the one with the smallest errotheacommon case in which
k = h/2andl = k/2 = h/4, the error ratio assumes the simple expresion

R(h,h/2;h/4) =2P — 1,

so that the computed overall accuracy order is log, (R + 1).

As a final comment we note that all what discussed so far focal lkbonvergence
analysis can be extended tglabalevaluation of the truncation error and this amounts
to essentially replacing all the error estimates discuasede with the corresponding
p-norms.
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4.2.3 Convergence and Stability

We conclude this Chapter with an important theorem thatjsriogether many of the
different concepts exposed so far and provides a uniquepiiation for the interplay
between consistency, convergence and stability. We hareisehe previous Section
that The finite-difference representation is said te@besistentf

lime=0, (4.34)

and it will be said to beonvergentf

lim = —28(°)

Jim = G =P (4.35)

Clearly, alsofor a convergent solutioa — 0 ash — 0; however, conditions (4.27)

and (4.32) underline that while a convergent solutical$® consistent, the latter is not
necessarily true. Stated differently, while there are itdinonsistent representation of
the differential operator, only one will be convergent.

There are numerous ways in which a consistent represemtate differential op-
erator may not be convergentand in large majority of thest®elack of convergence
is related to a programming error (or “bug”). Because of,tbh@vergence tests rep-
resent the most efficient if not the only way of validatingtthize discrete form of
the equations represents a faithful representation ofdhércuum ones (and hence of
picking out bugs!).

The knowledge of convergence has also another rewardiragtapd this is beau-
tifully summarised in the following theorem:

Theorem Given a properly posed initial-value problem and a finitdetif
ence approximation to it that satisfies the consistency itiomd stability
is the necessary and sufficient condition for convergence.

This theorem, known as tleax equivalence theorem”is very powerful as it shows
that for an initial-value problem which has been discretiggth a consistent finite-
difference operator, the concept of stability and convecgeare interchangable. In
general, therefore, proving that the numerical solutiotoisvergent will not only val-
idate that the discrete form of the equations representitdiufarepresentation of the
continuum ones, but also that the solution will be boundeadl dimes.
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Chapter 5

TheWave Equation in 1D

The numerical solution of the wave equation offers a goodnpte of how a higher-
order (in space and time) PDE can be easily solved numeriteitbugh the solution of
a system of coupled 1st-order PDEs.

In one spatial dimenion (1D) the wave equation has the géfoera:

*u 0%

- = 5.1
o2~ " a2 G1)
where, for simplicity, we will assume thatis constanti(e., v # v(z)), thus restricting
our attention to linear problems. Itis much more converigntwrite (5.1) as a system
of coupled first-order conservative PDE. For this we set

ou

ro= v, (5.2)
ou

so that (5.1) can be rewritten as a system of 3 coupled, fidsralifferential equations

oo
3t_v8x’
o _ o
8t_v8x’
o 77

where it should be noted that the equations have the timeadime ofonevariable that
is proportional to the space derivative of thihervariable. This breaks the advective
nature of the equation discussed in the previous Chaptewdiqatevent, for instance,
the use of an upwind scheme.
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Figure 5.1:Plot of the time evolution of the wave equation when the FTEi®me is used. The initial
conditions were given by a Gaussian centered at 5 with unit variance and are shown with the dotted
line. Note the growth of the wave crests and the appearanskoof wavelength noise. When this happens,
the numerical errors have grown to be comparable with thetisal which will be rapidly destroyed.

In vector notation the system (5.4) can be symbolicallytemitas

oU  OF(U)
ot + or 0, (5.4)
where
U:<:), and F(U)z(?v _S)U. (5.5)

51 TheFTCS Scheme

As mentioned in the previous Chapter, the upwind method atabe applied to the
solution of the wave equation and the simplest, first-ordd¢inie method we can use
for the solution of the wave equation is therefore given leyRiiCS scheme. Applying
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it to the first-order system (5.4) and obtain

n n &% n n

T +1 i+ 5(8j+1 —sj_q)+ O(Az?), (5.6)
n n a n n

s R 87+ §(Tj+1 — 7))+ O(Az?), (5.7)

Once the value of” ™! has been calculated, the valueusdan be integrated in time
according to equation (5.3) so that

u;-”rl =uj + Ats] + o(Az?), (5.8)
where it should be noted that+! has the same truncation error/éf-! ands™+!.

Of course, we do not expect that the FTCS scheme applied tsoltiéon of the
wave equation will provide a stable evolution and this isdeshown in Fig. 5.1 which
reports the solution of equations (5.6), (5.6) and (5.8)ifas initial conditions a
Gaussian centered at= 5 with unit variance. Different lines show the solution at
different times and is apparent how the initial profile spiit two part propagating in
two opposite directions. During the evolution, howevee, giror grows (note that the
peaks of the two packets increase with time) and in about orssing time the short
wavelength noise appears (this is shown by the small shaspeoduced when the
wave has left the numerical grid). When this happens, theamiziad errors have grown
to be comparable with the solution, which will be rapidly tleged.

5.2 ThelLax-Friedrichs Scheme

As done in the previous Section, we can apply the Lax-Fribdrscheme to the solu-
tion of the wave equation through the first-order system) @i easily obtain

n 1 n n a n n
7“j+1 = §(Tj+1 +riq) + E(SjJrl —sj_q)+ O(Az?), (5.9)
sttt = l(s" +s7 )+ E(Tn — 7))+ O(Az?) (5.10)
i T gt si) 5l — i ) :

Also in this case, once the value sﬁ‘“ has been calculated, the value ix;‘r“
can be computed according to (5.8).

The solution of equations (5.9), (5.9) and (5.8) with the sanitial data used in
Fig. 5.1 is shown in Fig. 5.2. Note that we encounter here éimeesbehaviour found
in the solution of the advection equation and in particula apparent the progressive
diffusion of the two travelling packets which spread over trumerical grid as they
propagate. As expected, the evolution is not stable andro gmowth is visible many
crossing times after the wave has left the numerical grid.
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Figure 5.2:The same as in Fig. 5.1 but when the Lax-Friedrichs schemseis. (INote the absence of the
late time instabilities but also the effects of the numéritiiusion that widens and lowers the wave fronts.

5.3 TheLeapfrog Scheme

We can adapt the Leapfrog scheme to equations (5.4) for thicso of the wave
equation in one dimension, centering variables on appatghalf-mesh points

n _ ou " _ U?Jrl _u?
lrj+% = U% J+% = 'UT + O(AI) y (511)

n+i n+1 n

nih _OupE M T
STE% - R T O, (5.12)
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and then considering the Leapfrog representation of ezpus({b.4)

ntd ntd
r;l:%l = Ty to (Sjrf - Sj+2) +0(Az?), (5.13)
ntz n—3 + no o _.n +O(A 2) (5 14)
S; = s a(rl L —rl, z?), )

As in the previous examples, the new value for the wave vigrials finally computed
after the integration in time of. Here however, to preserve the second-order accuracy
in time it is necessary to average the time derivatibetweem andn + 1 to obtain

At

n n At n n n n
ujJrl =uj + 7(sj+1 +57) + O(Az®) = uf + 78j+1/2 +0(Az?) . (5.15)
1 — —
- Leapfrog 1
- scheme 1
0.8 — :; _|
0.6 [ .

u(t)
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X

Figure 5.3:The same as in Fig. 5.1 but when the Leapfrog scheme is used.tiNoabsence of the late
time instabilities and of the effects of the numerical diffan.

A simple substitution of (5.11) and (5.12) into (5.13) andl@ shows how the
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Leapfrog representation of the wave equation is nothingt®second-order differenc-
ing:

n+1 n n—1
u” —2u™ +u” u ;= 2u +ul
j AtJ2 i 2 ( j+1 ijz J 1) + O(At?, Ax?) (5.16)
so that the solution at the new time-level is
u}’“ =a? u]+1 + 2u (1 -« ) + o¢2u§l 1— Ughl + O(A$4) . (5.17)

Note that as formulated in (5.17), the Leapfrog scheme has bectively recast
into a “one-level” scheme.

The solution of equations (5.17) and (5.15) with the samgalndata used in
Fig. 5.1 is shown in Fig. 5.3. Note that we do not encountee laesignificant amount
of diffusion for the two travelling wave packets. As expektthe evolution is stable
and no error growth is visible many crossing times after theahas left the numerical
grid.

5.4 TheLax-Wendroff Scheme

Also in the case, the application of this scheme to our sysiEequations (5.4) is
straightforward. We can start with the time evolution of #agiabler to obtain

n+l _ n n+1/2 n+1/2
I = o (52— ) + 0(a?), (5.18)
where the terms in the spatial derivatives are computed as
n+1/2 1 n n n n
Sjil//z = 5 (s] + i) +a(rfy —rf) +O(Aa?), (5.19)
n+1/2 1 n n n n
Sjj_l//g = 5 (Sj + Sj—l) + « (Tj - rj—l) + O(Alz) . (520)

As done for the advection equation, it is convenient not t® eguations (5.18)
and (5.19) as two coupled but distinct equations and ratheoinbine them into two
“one-level” evolution equations forands

it o= i ta [E(Sj—&-l = si) + 5 =27 + Tj—1)] + O(Az?),
(5.21)
n n 1 n n a n n n
;T = s ta {5(7”%1 — i)+ E(Sj+1 —2s5 + 5;‘1)] + O(Az?).
(5.22)

The solution of equations (5.21), (5.22) and (5.15) withgaene initial data used in
Fig. 5.1 is shown in Fig. 5.4. Note that we do not encountee laesignificant amount
of diffusion for the two travelling wave packets. As expektthe evolution is stable
and no error growth is visible many crossing times after theashas left the numerical
grid.
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Figure 5.4:The same as in Fig. 5.1 but when the Lax-Wendroff scheme i iéete the absence of the
late time instabilities and of the effects of the numeridéLidion.
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Chapter 6

Boundary Conditions

Unavoidable and common to all the numerical schemes disdussfar is the problem
of treating the solution on the boundaries of the spatial gs the time evolution pro-
ceeds. Let be the first gridpoint and the last one. It is clear from equations (3.26),
(5.16), (5.21) and (5.22) that the new solution at the botiadaf the spatial grid
(i.e, uPtt wt) is undetermined as it requires the valugis u” . ;. The most natural
boundary conditions for the evolution of a wave equationtlaesso calledsommerfeld
boundary conditiongor radiative boundary conditiosvhich will be discussed in the
following Section. Other boundary conditions of gener&tiast are:

e Dirichlet-type boundary conditions: values of the relevant quantity aneased
at the boundaries of the numerical grid. These values caithe éunctions of
time or be held constantf, boundary conditions for boundary value problems);

—"Periodic” boundary conditions: assume that the numerical domain is
topologically connected in a given direction; this is oftesed in cosmological
simulations (and “videogames”).

¢ von Neumann-type boundary conditions: values of the derivatives of the ratv
guantity are imposed at the boundaries of the numerical dx&ifor Dirichlet,
these values can be either functions of time or be held congta boundary
conditions for boundary value problems);

—"Reflecting” boundary conditions: mimic the presence of a reflecting deun
ary,i.e., of a boundary with zero transmission coefficient;

—"Absorbing” boundary conditions: mimic the presence of an absorbing
boundaryj.e., of a boundary with unit transmission coefficient;

6.1 Outgoing Wave BCs: the outer edge

A scalar wave outgoing in the positiwedirection is described by the advection equa-

tion:
ou ou
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A finite-difference, first-order accurate representatibeguation (6.1) which is cen-
tered in both time (at + 3) and in space (at+ %) is given by (see Fig. 3.11)

n+1
©
(n+1/2)
2 = AN ghost zones
(i-1/2)
n

_—— & ¢——— @
-2 -1 j j+1

Figure 6.1:Schematic representation of the centering for a first-paigtgoing-wave Sommerfeld bound-
ary conditions. An equivalent one can be drawn for an ingowage.

oy L+t = (@ + )] = — gl + ) = (6 )]
and which leads to
u?j_'ll (1+a)= u;”rl (=1+a)+ul; (1-a)+ujf(l+a) (6.2)
Expression (6.2) can also be written as
uﬁ'll =uj — u?HQ +uiqQ, (6.3)
where I—a
Q= e (6.4)

The use of expression (6.3) for the outermost grid point wittee wave is outgoing will

provide first-order accurate and stable boundary conditibiote, however, that (6.3) is
a discrete representation of a physical condition whichldiransmit the wave without
reflection. In practice, however, a certain amount of refieds always produced (the
transmission coefficient is never exactly one); the redidize is then transmitted
back in the numerical box. A few reflections are usually sigfitto reduce the wave
content to values below the machine accuracy.
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6.2 Ingoing Wave BCs: theinner edge

Similarly, a scalar wave outgoing in the negativéirection (or ingoing in the positive
one) is described by the advection equation:

ou_ou
ot Oz

Following the same procedure discussed before, the dhgobiecomes:

n At n At n At n At
g (v gg) = (1 5) v (10 7)o (10 55)

Then

=0 (6.5)

+1 1
u? =uj —u?HQ—Fu?Q , (6.6)

where( is the same quantity as for the out-going wave. If we use éapus(6.3) and
(6.6) to evolve the solution at time-step- 1 at the boundary of our spatial grid, we are
guaranteed that our profile will be completely transportgdya whatever integration
scheme we are adopting (Leapfrog, Lax-Wendroff etc.).

6.3 Periodic Boundary Conditions

These are very simple to impose ang i between 1 and, they are given simply by

u?“ = u’}ﬂ, u’}“ =uptt (6.7)

In the case of a Gaussian leaving the center of the numenichlthese bound-
ary conditions effectively produce a reflection. The bougdanditions (6.7) force
to break the algorithm for the update scheme excluding tedind last points that
need to be computed separately. An alternative procedoresists of introducing a
number of‘ghost” gridpoints outside the computational domain of intereghsb the
solution is calculated using always tkeme stencilor j = 1,2, ..., J and exploiting
the knowledge of the solution also at the ghost gridpomts, 0 and.J + 1.

In the case there is only one ghost gridpoint at either edgesfLD grid, the
boundary conditions are simply given by

n+1l _  n+1 n+1l _  n+1
ug T =ul, uypp =uit . (6.8)
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Chapter 7

Thewave eguation in two
spatial dimensions (2D)

We will now extend the procedures studied so far to the caserafve equation in two
dimensions ) ) )
0°u 5 [(0°u  0%u
— — 2. 7.1
oz~ ¥ (8962 i 8y2) (7.1)

As for the one-dimensional case, also in this case the wavatien can be reduced
to the solution of a set of three first-order advection equnati

or ds

a = 'U% 5 (72)
ol 0s

a = Ua—y s (73)
ds oar 0l

once the following definitions have been made

r = v% , (7.5)
| = vg—;‘ , (7.6)
= % : (7.7)
In vector notation the system can again be written as
%—lt] +VFU) =0, (7.8)
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where

(7.9)
provided we define
0
0 0 E
0
v=] 0 0 ay ) (7.10)
9 9
or Oy

The finite-difference notation should also be extendedctowaat for the two spatial
dimension and we will then assume that, = u(v;, y;,t").

7.1 ThelLax-Friedrichs Scheme

We can look at the system of equations (7.2) and (7.3) as & sgbequations to be

integrated with the procedures so far developed in oneqtsina. Furthermore, we

need to solve for eq. (7.4) which can be written as
Os _ Ok 0Ok
ot Ox oy

once we identifyFy, with —vr andF, with —ul.

The Lax-Friedrichs scheme for this equation is just the gaization of the 1D
expressions discussed so far and yields

(7.11)

At

E[(

At n n
T oAy [(F)ige1 — (F))ij-1]

1
n+1 _ - n n n n _
b= g sty st s+ s

s F)iv1,y — (FY)i-1,4]

1
_ n n n n
= 7 [Sv:+1,j tSic1; TSt Sm‘—ﬂ -

At iy — Ty
1

2 Az

At [ — W

2 Ay ’

(7.12)

with the corresponding stencil being shown in Fig. 7.1 an@énetit should be noted
that the center of the cross-like stencil is not used. A vooriNann stability analysis
can be performed also in 2D and it yields

&= %[cos(k‘XAa:) + cos(kyAy)] — ilox sin(kxAx) + oy sin(kyAy)],  (7.13)
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Figure 7.1:Schematic diagram of a Lax-Friedrichs evolution schemevimdimensions. Note that the
center of the cross-like stencil is not used in this case.

where At A
— U Y
ax = 3 ay =~ —- (7.14)
Stability is therefore obtained if

1

i (a2 +a})>0, (7.15)
or, equally, if

At< BT (7.16)

2(v2 +v3)

Expression (7.16) represents the 2D extension of the CHiilisgacondition. In gen-
eral, for a N dimensional space, the CFL stability condittan be expressed as

Ax;
At < mi —— , 7.17
< min < N > ( )

wherei = 1,...N and|v| = (3.~ v2)1/2. Note, in 2D, the appearence of an averag-

=1 "1

ing coefficientl /4 multiplying the value of the function at the time-level

7.2 ThelLax-Wendroff Scheme

The 2D generalization of the one-dimensional scheme (3s48)so straightforward
and can be described as follows
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1. Compute- and! at the half-time using a half-step Lax-Friedrichs scheme

"+% 1 n n n n o n n
T T ] (rifa i iy T i) + 1 (sPhay = sit1j)
(7.18)
n+3 1 n n n n « n n
Ly ® = g Wy I + 0 +10) + 7 (siye —sio)
(7.19)
wherea = vAt/Ax.
2. Evolves to the time-leveh + 1 using a half-step Leapfrog scheme
n+l _ n (0% nt+i n+i « ln+% ln—Q—% 720
S5 =Si4;t b) Tivi — Ticiy) T o Vi1 “hig-1) - (7.20)
3. Updateu to the time-leveh + 1, i.e,
At
n+l _ n n+1 n
iy =i+ (s sl) (7.21)
4. Evolver and! to the time-leveh + 1, i.e.,
n+1 1 n n n n
i T g (rfay it ity i) +
&7 1 n n+1 1 n n+1
9 [5 (Sv:+1,j + Si+1,j) —3 (Sv:—u + SH,j) ;
(7.22)
n 1 n n n
l',;rl = 7 (I Fligen H 0+ 1) +

a 1 n n 1 n n
3 [5 (si1 + i) — B (stj_1+ SJL)] (7.23)

7.3 TheLeapfrog Scheme

The 2D generalization of the one-dimensional scheme (5sliss straightforward,
but not particularly difficult. As in one dimension, we caarstby rewriting directly
the finite-difference form of the wave equation as

n+1 n n—1 n n n n n n
Wig T2t (Mg T 2 o2 (Mg T 20 U
At? Az2 AyQ

so that, after some algebra, we obtain the explicit form

u?j‘l =a? [“?H,j Fuig g+ uﬁj_l] + 2ui (1 — 20%) — uf;l . (7.24)

The stencil relative to the algorithm (7.24) is illustrated-ig. 7.2.
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Figure 7.2:Schematic diagram of a Leapfrog evolution scheme in two dsimms. Note that the center
of the cross-like stencil is used in this case both at the-tevel . (filled circle) and at the time level + 1
(filled square).

Figs. 7.3 and 7.4 show the solution of the wave equation in &Dgithe scheme
(7.24) and imposing Sommerfeld outogoing-wave boundamngitimns at the edges of
the numerical grid.

Radically different appears the evolution when reflectivardary conditions are
imposed, as it is illustrated in Figs 4. Note that the inigablution {.e., for which
the effects of the boundaries are negligible) is extremighjlar to the one shown in
Figs. 4, but becomes radically different when the wavefiued reached the outer
boundary. As a result of the high (but not perfect!) refldttiof the outer boundaries,
the wave is “trapped” inside the numerical grid and bouneektand forth producing
the characteristic interference patterns.
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'2D_wave_00.dat’ u 1 '2D_wave_02.dat' u 1

2D_wave_04.dat’ u 1:2:3 '2D_wave_06.dat’ u 1:2:3
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Figure 7.3:Plot of the time evolution of the wave equation when the Leapscheme in 2D is used and
Sommerfeld boundary conditions are imposed. Snhapshoteiaising times are illustrated in a clockwise
sequence.
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'2D_wave_00.dat’ u 1

'2D_wave_02.dat' u 1

2D_wave_06.dat' u1:2:3 ——

'2D_wave_08.dat’ u 1:23 ——
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'2D_wave_14.dat’ u 1

Figure 7.4:Plot of the time evolution of the wave equation when the Leapfcheme in 2D is used
and Reflecting boundary conditions are applied. Snapshatsraasing times are illustrated in a clockwise

sequence.
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2D_wave_16.dat’ u 1:23 ——
0

'2D_wave_18.dat' u1:23 ——
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Figure 7.5:Plot of the time evolution of the wave equation when the Leapscheme in 2D is used and

Reflecting boundary conditions are applied.
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Figure 7.6:Plot of the time evolution of the 2-norm when the Leapfrogesok in 2D is used. Note the
radically different behaviour between Sommerfeld and céifig boundary conditions.
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Chapter 8

Par abolic PDES

8.1 Diffusive problems

The inclusion of viscosity in the description of a fluid leadsion trivial complications
in the numerical solution of the hydrodynamic equationgnfran analytical point of
view, the resulting equations are no longer purely hypéciRIDE’s but rather mixed
hyperbolic-parabolic PDE’s. This means that the numerneaethod used to solve them
must necessarily be able to cope with the parabolic parteoétuations. It is therefore
convenientto fully understand the prototypical parabetjaation, the one-dimensional
diffusion equation, both analytically and numericallyfdre attempting to solve any
mixed hyperbolic-parabolic PDE.

8.2 Thediffusion equation in 1D

The description of processes like the heat conduction ifie Body or the spread of a
dye in a motionless fluid is given by the one-dimensidifilision equation

ou(z,t) D 0?u(x,t)
o oz?

HereD is a constant coefficient that determines the magnitudesdfdiffusion” in the
process under investigation (being given by the thermatigotivity and dye diffusion
coefficient respectively in the above mentioned examples).

A complete description of some particular process will diebe possible only
once the initial valuei(e., u(z, 0) = h(x) with z € [0, L]) and the boundary conditions
are specified. The most common boundary conditions (BCsjuazie to prescribe the
value of the function(z, t) at the boundaries,(0, t) = uo(t) andu(L,t) = ur(t), if
the boundaries of the physical domain are modeled to be iarigan and at a distance
L from the origin. This type of BCs are call&lrichlet boundary condition§DBC).

On the other hand, it is possible that the physics of the praliequires the BCs
to be specified in terms of the derivatives«fz,t). This is the case for instance
when 1-D heat conduction in a bar is investigated and the demigs of the bar are

(8.1)
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completely insulated so that no heat flux is present outsiedody. More generally, if
q(z,t) = du(x,t)/0x, the so calledNeumann boundary conditiofiBC) are written
asq(0,t) = qo(t) andgq(L,t) = qr(t). It should be noted however that Dirichlet BCs
and Neumann BCs are not the only possible BCs.

In what follows, first the analytic solution to a simple d#fue problem will be
given and then some numerical methods to solve it will be éxad

8.3 Explicit updating schemes

8.3.1 TheFTCSmethod

The most straightforward way to finite difference equat®ui]is by the FTCS method,
ie,

"t —qyn

; 7 :Du;ﬂ_l—Zu?’—Fu
At Ax?

Unlike for a hyperbolic equation, where the FTCS methodddadin unconditionally
unstable method, the presence of a second space derivatihe imodel parabolic
equation (8.1) allows the FTCS method to be conditionadplst [9]. A von Neumann
stability analysis leads in fact to the stability criterion

n

=L L O(At, A2?) | (8.2)

At
~y=2D N <1, (8.3)

that lends itself to a physical interpretation: the maxintinre step is, up to a numeri-
cal factor, the diffusion time across a cell of widix. This stability condition poses a
serious limit in the use of the above scheme since the typinalscales of interest will
require a number of timesteps which could be prohibitive iltidimensional calcu-
lations. The additional fact that the overall scheme is-brster accurate in time only
strengthens the need for a different method.

8.3.2 TheDu Fort-Franke method and the #-method

With this objective in mind, it is not difficult to think of a wato avoid the reduced
accuracy due to the forward-time finite differencing apptoased in FTCS. A simple
time-centered finite differencing

'r}+1 _ o n—1 n

_ n n
j Y _ plin 2uf +uj

2At Ax?

u

(8.4)

should grant second-order accuracy. Unfortunately, tiethiod is unconditionally un-
stable. To overcome the stability problem, Du Fort and Feafkl] suggested the
following scheme

n _ n,+1_
j i _ plitt Y

(8.5)
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which is obtained from (8.4) with the substitutionf with £ (u” ' 4 w7~ "), that s,
by taking the average of! ** andu} ', i.e,,

n 1 -7 n— Y n n

With this substitution, the method is still explicit and betes unconditionally stable,
but not without a price. A consistency analysis shows, it that the Du Fort-Frankel
method could be inconsistent. The local truncation err8Jis

L (ALY 2
in Azr ) 0Ot |
bR ],’I’L

2
O(AtQ,AxQ, <§—i) ) , (8.8)

which shows that ifAt and Ax tend to zero at the same rates., At = kAxz with
k being a constant, then the truncation error does not vanishf — 0 andAz —
0. Indeed, the solution obtained with this method will effeely be the solution to
equation

A ot
12 Oxt

6 Ot

+... 87

jn

ou(z,t) 2 Ou(x,t) 0*u(x,t)
ot " e VT a2

and not the solution of (8.1). On the other hand, it is alsarcteom (8.7) that having
a timestepAt = kAxz'*¢ with ¢ > 0 will assure the consistency of the method. Of
course, the closer isto 1, the smaller will have to béx in order to achieve consis-
tency. Moreover, accuracy requirements pose an additamedtraint ore. For a first
order-method it is necessary to have- 1/2 while to achieve second-order accuracy
the requirement is = 1. It would be pointless and computationally inefficient td se
¢ > 1 since in this case the dominant contribution to the trucaérror would be
determined by the terr@ (A:ﬂ) which acts as an upper limit to the overall accuracy
order. This means thatis constrained to be in the intervgl2 < ¢ < 1.

The advantages of the Du Fort-Frankel method over the FT@&se should now
be easily seen. To achieve first-order accuracy, a timeAtep- (Ax)3/2 is needed
with the former while the latter requirest ~ (Ax)z. On the other hand, if a timestep
At = (Ax)2 is used the Du Fort-Frankel method gains, second-orderacgU-inally,
any desired accuracy between first and second order coulhimvad with a timestep
that is independent of the diffusion coefficieht The only minor drawback of the
Du Fort-Frankel scheme lies in the requirement of keepiagktof an additional time
level.

A generalization of the Du Fort-Frankel scheme is alsogittéorward. In partic-
ular, when averaging?+1 andu?"l, instead of weighting them equally, it is possible
to average them with different weights. The resulting updaheme is therfore

(8.9)

n n+1 n—1 n
] ; :Duj+1—2(6‘uj (1 =0)ui™h) +uf

2At Ax? ’ (8.10)
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wheref is a variable parameter. In [8] it is shown that the local tation error for this
scheme is

At? 93u Az? 0*u 2At Ou

—— | - D= 20 — 1) — — 8.11
o oe|, "on|, ¥ Vaga, T GW
At? §%u Ay,

Az? Ot% |, v (Aaﬂ’m A ) ’ (612

which clearly shows that consistency could be achievedfpralue ofd if At = kAz?T¢
with € andk being positive real numbers. #f= 1/2 , on the other hand, the scheme
is actually the Du Fort-Frankel schent. [expression (8.7)] with the consistency con-
straints already outlined above. It is therefore clear, tiwaen solving equation (8.1),
timestep considerations show that the only viablecheme is thg = 1/2 scheme,
i.e., the Du Fort-Frankel scheme.

8.3.3 ICN asaf#-method

We next extend the stability analysis of thdCN discussed in Sect. 3.6.1 to the a
parabolic partial differential equation and use as modehéqn the one-dimensional
diffusion equation (8.1). Parabolic equations are commsalved using implicit meth-
ods such as the Crank-Nicolson, which is unconditionaiplet and thus removes the
constraints on the timestepd., At ~ O(Az?)] imposed by explicit schemes [9].
In multidimensional calculations, however, or when theafetquations is of mixed
hyperbolic-parabolic type, implicit schemes can be cursb@e to implement since
the resulting system of algebraic equations does no loreer simple and tridiagonal
matrices of coefficients. In this case, the most conveniehntéce may be to use an
explicit method such as the ICN.

Also in this case, the first step in our analysis is the ddovatf a finite-difference
representation of the right-hand-side of eq. (8.1) whitlsgaond-order, has the form

u ;= 2u +ul
Lo(ul i) =25 I L+ o(Ar?) . (8.13)

Constant Arithmetic Averages

Next, we consider first the case with constant arithmeticaes (.e., 0 = 1/2) and
the expression for the amplification factor aftef-iterations is then purely real and
given by

M
Mg =142 (=) | (8.14)
n=1

wherey = (2DAt/Ax?)sin®(kAz/2). Requiring now for stability that/¢2 < 1 and
bearing in mind that

M
1<) (="t <0, fory<1, (8.15)
n=0
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0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
6 0

Figure 8.1:Left panel:stability region in thed, ) plane for the two-iterationg-ICN
for the diffusion equation (8.1). Thick solid lines mark imait at which¢2 = 1, while
the dotted contours indicate the values of the amplificathator in the stable region.
Right panel: same as in the left panel but with swapping the averages bativeo
corrections.

we find that the scheme is stable famy number of iterations provided that < 1.
Furthermore, because the scheme is second-order acauna¢hie first iteration on,
our suggestion when using the ICN method for parabolic égusits that one iteration
should be usednd no moreln this case, in particular, the ICN method coincides with
a FTCS scheme [9].

Note that the stability conditiofn < 1 introduces again a constraint on the timestep
that must be\t < Az?/(2D) and thusO(Az?). As aresultand at least in this respect,
the ICN method does not seem to offer any advantage over etipéicit methods for
the solution of a parabolic equatién

Constant Weighted Aver ages

We next consider the stability of tielCN method but focus our attention on a two-
iterations scheme since this is the number of iterationslegén the solution of the
parabolic part in a mixed hyperbolic-parabolic equatioremffor instance, operator-
splitting techniques are adopted [9]. In this case, the dicgtion factor is again purely
real and given by

£ = 1—2y+44%0—8y%67, (8.16)
so that stability is achieved if

0<v(1-20y+46°y*) <1. (8.17)

INote that also the Dufort-Frankel method [11], usually diéstl as unconditionally stable, does not es-
cape the timestep constraiatt ~ O(Az?) when a consistent second-order accurate solution is ngéfled
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Sincey > 0 by definition, the left inequality is always satisfied, white right one is
true provided that, fory < 4/3,

— 4 — 4 —
VA Gl ) NP R e Vit Gl 2 (8.18)
4~2 4~2

The stability region described by the condition (8.18) iswh in the left panel
of Fig. 8.1 forsin kAz = 1 and illustrates that the scheme is stable for any value
0 < 6 <1, and also that slightly larger timesteps can be taken viher).2.
Swapped Weighted Aver ages

After some lengthy algebra the calculation of the amplifarafactor for thed-ICN
method with swapped weighted averages yields

E=1-2v+4+%0 —8y%0(1 - 0) , (8.19)
and stability is then given by
—1<1-2y+49%0-8y20(1—0) <1. (8.20)

Note that none of the two inequalities is always true and deoto obtain analytical
expressions for the stable region we solve the conditio20)8with respect t@# and

obtain
2%y — 14+ /42 — 4
g1t 43 s (8.21a)
2%y —1) — /7 (@7® — 472 57 — 4
PGt \/7(4;72 2+ 5y )7 (8.21b)
2y —1 I 421574
5> 12 )+\/7(4772 ¥ +5y-4) (8.210)

The resulting stable region fein kAx = 1 is plotted in the right panel of Fig. 8.1 and
seems to suggest that arbitrarily large values ebuld be considered wheh> 0.6

It should be noted, however, that the amplification factalg®d severely reduced as
larger values ofy are used and indeed it is essentially zero in the lémit 1.

8.4 Implicit updating schemes
8.41 TheBTCS method

Itis common for explicit schemes to be only conditionallgtde and in this respect the
Du Fort-Frankel method is somewhat unusual. Implicit mdfhon the other hand, do
not share this property being typically unconditionalgtde. This suggests to apply an
implicit finite differencing to equation (8.1) in the form af‘backward-time centered-
space” (BTCS) scheme and obtain

=L 4 O(At, A2?) . (8.22)
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As a von Neumann stability analysis shows [9], the diffeneg¢8.22) is uncondition-
ally stable. This method is also calledckward time Rearranging the terms it is easy
to obtain

—yuf + 21+ )t =l = 2u] (8.23)
which shows that to obtaia at time leveln + 1 is necessary to solve a system of linear
equations. Luckily, the system tddiagonal, i.e., only the nearest neighbors of the
diagonal term are non zero, which allows the usspErse matrixechniques (a matrix
is called sparse if the number of non zero elements is smiadpaoed to the number of
all the elements). The main disadvantage of this schemadsethat of requiring the
simultaneous solution a¥ algebraic equations, is that it is only first-order accunate
time.

8.4.2 The Crank-Nicolson method

Combining the stability of an implicit method with the acaay of a method that is
second-order both in space and in time is possible and isw&thby averaging explicit
FTCS and implicit BTCS schemes:

n+1 n n+1 n+1 n+1 n n n
uj —uj D (ufly —2ul™ it + (ufyy — 2u} +ujy)

At 2 Ax?

O(At?, Az?) . (8.24)

This scheme is calle@rank-Nicolsonand is second-order in time since both the left
hand side and the right hand side are centeredini /2. As the fully implicit scheme,
the CN scheme is unconditionally stable and is the best etioic¢he solution of simple
one dimensional diffusive problems.

The disadvantage of this scheme with respect to an expdicérse like the Du Fort-
Frankel scheme lies in the fact that in more than one dimartsie system of linear
equation will no longer be tridiagonal, although it willlsbe sparse. The extension of
the Du Fort-Frankel scheme, on the other hand, is straipkdfial and with the same
constraints as in the one dimensional case. Because ofrttlisther problems which
emerge in multidimensional applications, more powerfulhods, like theAlternating
Direction Implicit (ADI) have been developed. ADI embodies the powerful cohoép
operator splittingor time splitting which requires a more detailed explanation and will
not be given in these notes.
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Appendix A

Semi-analytical solution of the
model parabolic equation

In this appendix we present details on the derivation of #raisanalytic solution to
equation
ou(z,t) 0?u(x,t)
=D Al

ot ox2 (A1)
whereD is a constant coefficient. We will first consider homogeneDinghlet and
then homogeneous Neumann boundary conditions. Becausetiflevaluewu(z,0) =
h(z) is also needed, we will consider two different initial prefilfor the two cases.
The solutions we will obtain are to be considered semi-aitallin the sense that it is
usually necessary to evaluate them numerically. This isesaubse infinite series and
integrals that could not always be evaluated analyticalyimolved.

A.1 Homogeneous Dirichlet boundary conditions

Consider a generic problem for which equation (8.1) hold= @domairi0, L]. Sup-
pose also that the boundary conditions could be writtehcasogeneouBBC, i.e.,

u(0,t) = u(L,t) = 0, and that at time;, = 0 the distribution ofu(z, t) is that shown
in Figure A.1, which could be written as

2x/L if 0<z<L/2
h(z) = u(z,0) = (A.2)
—2x/L+2 if L/2<z<L
while the boundary conditions at€0, t) = u(L,t) = 0.

The equation could be solved by means of the separation @fhlas technique,
i.e., by searching for a solution of the form

u(z,t) = f(x)g(t) , (A3)
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u(x,0)
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o

Figure A.1: Initial value for the diffusive problem (8.1).

which allows to write equation (A.1) as

dg 0% f

Multiplying both sides byl /(f¢) the result is

10g 10%f
= _p-ZL A.5

g Ot f o0x? (A-5)
The left hand side of (A.5) is a function 6bnly while the right hand side depends only
on z. Because of that, their common value can only be a constatht this constant
being a negative number because otherwyise oo (and therefore, — oo) ast — oc.
Thus the common value could be denoted-aswith A > 0 and so (A.5) becomes

199 _

10%f
g ot p

A=DTa

(A.6)

Recaling that the initial condition has been writtenids) it is possible to write the
solution as

u(z,t) = h(z)e ™, (A7)
with the requirement that
— 82_f — )\f (A 8)
ox2 0 ’

The problem (A.8) is arigenvalue problerfor the differential operator- D 92 /92>
with eigenvalue\ andeigenfunctiory (x). The eigenfunctions and eigenvalues will be
determined imposing the boundary conditions.

The general solution to (A.8) can be written as

f(x) = Ae7** + Bel*™ | (A.9)
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with & = /\/D, A and B are constants to be determined through the boundary
conditions. Requiring thaft(0) = 0 it is easily found thaBB = — A and thus

flz) = A(e7™ — ) = —2iAsinka . (A.10)

The second boundary conditiof(Z) = 0 allows to find the eigenvalues and the
eignenfunctions (and the trivial solutiof(z) = 0 as well). In factsin (kL) = 0
as soon as

[ A
kL = D =M, m=0,£1,4+2,43, ... (A.11)
so that the eigenvalues and the eigenfunctions are

Am =D (%)2 , fm(z) = sin (%x) . (A.12)

The solution to (A.8) will therefore be a linear superpasgitiof the eigenfunctions

fm(x)a
u(z,t) = TnZ:l Gy SIN (%x) exp {D (%)Qt} . (A.13)

One last condition is still not satisfied, the initial valuendition. And is exactly
this condition that allows to find the coefficients, such that

u(x,0) = i A, SIN (%x) = h(z) . (A.14)
m=1

This is a Fourier series on the inter{@) L] of the initial valueh(x) and its coefficients
may easily be evaluated keeping in mind the orthogonalibperty of the eigenfunc-
tions. Itis not difficult to show that

L mr  kn 0 if k£#m,k=m=0,
/ sin (Ta:) sin (Ta:> dx =
0 L/2 if k=m,
(A.15)
which allows to compute the coefficients, as
L
Ay = %/0 h(zx) sin (%x) dx . (A.16)

With h(z) as defined in (A.2), the above computation leads to the finatisa which
therefore is

)= 3 amsin (W) xp [0 (B2)7]. 0 = s 202

L m2m2
(A.17)

m=1



T6APPENDIXA. SEMI-ANALYTICAL SOLUTION OF THE MODEL PARABOLIC EQUATION

A.2 Homogeneous Neumann boundary conditions

Once equation (A.1) has been solved for homogenous Dititldendary conditions
it is straightforward to solve it with homogeneous Neumanoaormary conditions. In
fact, the same procedure could be carried over to yield thecosolution.

Once again, let the mathematical domairube [0, L] for ¢ > 0 and if g(z, t) =
Ou/dz the homogeneous Neumann boundary conditions are writigid a9 = ¢(L,t) =
0. Since the boundary conditions require the derivative tishg the initial condition
is chosen so that this condition is satisfied at 0 as well. The initial condition will
then be . o

h(z) = u(z,0) = HQ(Z) —3 (Z) . (A.18)
Everything that has been said in the previous case up to @il®holds. The
boundary conditions now require that
fl(z) = % =ik (A" — Be ™" ) (A.19)
vanishes at the boundaries of the domain. Fig(0) = 0 follows thatA = B while
f'(L) = 0 leads to the same eigenvalyg, = D (m=/L)” as in the previous case.
The eigenfunction on the other hand changes since the deaduition could be now
written as
f(z) = A (e + %) = 2A cos (k) (A.20)

so that the eigenvalue and the eigenfunction in this case are

Am =D (%)2, fm(z) = cos (%x) . (A.21)

To satisfy the initial condition it is necessary that

u(z,0) = i Gy, COS (%x) = h(x) (A.22)
m=0

where the sum now extends fralrto oco. This is because the orthogonality property
of the eigenfunctions, which still holds and could once ads used to compute the
coefficientsa,,,, now reads

L
mm km
/0 cos (T{L) cos <Tx) dx = (A.23)

Because of this, the initial condition could be written as

h(x) =142 (%)3—3 (%)2 = %—i—i @, COS (%I) y Am = 241—;047?77) ’
m=1

(A.24)
so that the complete solution is

1 00 2 1— 5
’U,({L,t) = 5"‘2 A4, COS (%x) exp |:_D (%) t:|’ Am = 24% .
m=1

(A.25)
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