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Chapter 1

| ntroduction

Letus consider a quasi-linear partial differential equafiPDE) of second-order, which
we can write generically as

0%u 0%u 0%u ou Ou
9 AN gu duy _ 1.1
Mg, 12 0x0y 22 Oy? .y, ox’ 8y) 0, (1.1)

wherex, y are not necessarily all spatial coordinates and where weagdlume the
coefficientsz,; to be constant. The traditional classification of partiffiedéential equa-
tions is then based on the sign of the determin&nrt aq;a22 — a2, that we can build
with the coefficients of equation (1.1) and distinguisheeéttypes of such equations.
More specifically, equation (1.1) will be (strictifyperbolicif A = 0 has roots that are
real (and distinct)parabolicif A = 0 has real but zero roots, while it will baliptic if
A = 0 has complex roots (see Table 1.1).

Elliptic equations, on the other hand, descrifmeindary valugroblems, oBVP,
since the space of relevant solutidnglepends on the value that the solution takes on
its boundariesi). Elliptic equations are easily recognizable by the factgbltion

Type Condition Example

Hyperbolic | ai1a92 — a2, < 0 | Wave equation: % — UQ%
Parabolic | ajjas2 — a2, = 0 | Diffusion equation: % = (% <D%)
Elliptic ajiase — a3, >0 | Poisson equation: % + giyz; = p(x,y)

Table 1.1:Schematic classification of a quasi-linear partial diffetia equation of second-order. For each
class, a prototype equation is presented.
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does not depend on time coordinatend a prototype elliptic equation is in fact given
by Poisson equatioftf. Table 1.1).

Hyperbolic and parabolic equations descrihigial value problems, ol VP, since
the space of relevant solutiofisdepends on the value that the solutio(which we as-
sume with compact support) takes on some initial time (spewupanel of Fig. 1.1). In
practice, IVP problems are easily recognizable by the fattthe solution will depend
on the time coordinate Very simple and useful examples of hyperbolic and paraboli
equations are given by theave equatiorand by thediffusion equationrespectively
(cf. Table 1.1). An important and physically-based differenetueen hyperbolic and
parabolic equations becomes apparent by considering ttzedcteristic velocities” as-
sociated to them. These represent the velocities at whidhrpations are propagated
and havdinite speeds in the case of hyperbolic equations, while thesalsgaaeinfi-
nite in the case of parabolic equations. In this way it is not diffito appreciate that
while both hyperbolic and parabolic equations describetttapendent equations, the
domain of dependence in a finite time for the two classes oétbops can either be
finite (as in the case of hyperbolic equations), or infinite ifathe case of parabolic
equations).

1.1 Discretization of variables and of solution space
Consider the, for simplicity, a generic one-dimensiond? fat could be written as
L(u)=0, (1.2)

whereu = u(z,t) andL is a differential operator in the two variablesandt acting
onu. One of the most used methods for the solution of such a prolddy means of
finite differenceslt consists in two “discretization steps”

o Variables discretizatiorreplace the function(z, t) with a discrete set of values
{u’} that should approximate the pointwise valuespte., u ~ u(z;,t,);

e Operator discretizationreplace the continuous differential operatomwith a
discretized onef, , that when applied to the s¢t” }, gives an approximation
to £(u) in terms of differences between the varials

The setofvaluegu?, j =1,...,J,n=1,...,N}(JandN are the number of points
considered for the space and time variable respectivebglied thegrid functionand
will be denoted byii. After this discretization process, the problem (1.2) [daieed by

L,(W)=0, (1.3)

that is, a finite-difference equation for the grid functionhe above equation is the
finite difference representatiaf the problem (1.2).

In the following Sections 2—7 we will concentrate on partiéiferential equations
of hyperbolic type. Before doing that, however, it is usefutliscretize the continuum
space of solutions (a “spacetime” in the case of IVPSs) inigpftiations such that the
time coordinate is constant on each slice. As shown in the lower panel of Ely. 1
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each pointP(z;, t™) in this discretized spacetime will have spatial and timerdimate
defined as

x; =0+ jAz, j=0,£1,...,+J,

t" =t + nAt, n=0,%1,...,&£N, (1.4)

whereAt and Az are the increments between two spacelike and timeliketiofia,
respectively. In this way we can associate a generic solut{e, t) in the continuum
spacetime to a set of discretized solutiafis = u(z;, t™) withi = £7,...,+1,0and
m==+M,...,£1,0andl < J; M < N. Clearly, the number of discrete solutions
to be associated to(x,t) will depend on the properties of the discretized spacetime
(i.e, on the incrementa\¢t and Az) which will also determine théruncation error
introduced by the discretization.

Once a discretization of the spacetime is introdudetdte differencetechniques
offer a very natural way to express a partial derivative (aedce a partial differential
equation). The basic idea behind these techniques is thabthtion of the differential
equationu(z;,t" + At) at a given positiorr; and at a given time™ can be Taylor-
expanded in the vicinity ofz t™). Under this simple (and most often reasonable as-
sumption), differential operators can be substituted mperly weighted differences
of the solution evaluated at different points in the nunanigid. In the following Sec-
tion we will discuss how different choices in the way the #ndifferencing is made
will lead to numerical algorithms with different propesie
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Figure 1.1: Upper panel: Schematic distinction between IVPs and BVPsower Panel: Schematic

discretization of a hyperbolic IVP



Chapter 2

Hyperbolic PDEs. Flux
Conservative Formulation

Itis often the case, when dealing with hyperbolic equatitet they can be formulated
through conservation laws stating that a given quantity i$ transported in space
and time and is thus locally “conserved”. The resulting “lafacontinuity” leads to
equations which are callembnservativeand are of the type

ou

5 + V- -F(u)=0, (2.1)
whereu(x, t) is thedensityof the conserved quantit¥, the density flux anc a vector
of spatial coordinates. In most of the physically relevatas, the flux density will
not depend explicitly ox andt¢, but only implicitly through the density(x, t), i.e,
F = F(u(x,t)). The vectorF is also called theonserved fluand takes this name
from the fact that in the integral formulation of the consgion equation (2.1), the
time variation of the integral of over the volume’ is indeed given by the net flux of
u across the surface enclosibg

Generalizing expression (2.1), we can consider a vectoens$itiesU and write a

set of conservation equations in the form

88—? +V-F(U)=S8(U). (2.2)
Here,S(U) is a generic “source term” indicating the sources and sifiltssovector
U. The main property of the homogeneous equation (2.2) whenS(U) = 0) is
that the knowledge of the state-vecid(z,¢) at a given point: at timet¢ allows to
determine the rate of flow, or flux, of each state variable:at).
Conservation laws of the form given by (2.1) can also be amitis a quasi-linear

form 5U 5U
- tAU) - =0, (2.3)

whereA (U) = 0F /09U is the Jacobian of the flux vectsi(U).

7
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The use of a conservation form of the equations is partityulaportant when deal-
ing with problems admitting shocks or other discontingitiie the solutiong.g, when
solving the hydrodynamical equations. A non-conservatiathod,i.e.,, a method in
which the equations are not written in a conservative forrightngive a numerical
solution which appears perfectly reasonable but then yigdorrect results. A well-
known example is offered by Burger's equatio®,., the momentum equation of an
isothermal gas in which pressure gradients are negleateldyhose non-conservative
representation fails dramatically in providing the cotr&guock speed if the initial con-
ditions contain a discontinuity. Moreover, since the hylramical equations follow
from the physical principle of conservation of mass and gyrenomentum, the most
obvious choice for the set of variables to be evolved in tim#éat of the conserved
quantities. It has been proved that non-conservative sebato not converge to the
correct solution if a shock wave is present in the flow, wheEmservative numerical
methods, if convergent, do converge to theak solutiorof the problem.

In the following, we will concentrate on numerical algorith for the solution of
hyperbolic partial differential equations written in thenservativdorm of equation
(2.2). The advection and wave equations can be considepdtasypes of this class of
equations in which witl$ (U) = 0 and will be used hereafter as our working examples.



Chapter 3

The advection equation in one
dimension (1D)

A special class of conservative hyperbolic equations agesthcallecadvection equa-
tions in which the time derivative of the conserved quantity isgartional to its spatial
derivative. In these casds(U) is diagonal and given by

F(U)=11-U, (3.1)

wherel is the identity matrix.

Because in this case the finite-differencing is simpler &edrésulting algorithms
are easily extended to more complex equations, we will uge @ur “working exam-
ple”. More specifically, the advection equation towe will consider hereafter has, in
1D, the simple expression

ou ou

- — =0 3.2

ot oz 32
and admits the general analytic solutien= f(x — vt), representing a wave moving
in the positiver-direction.

3.1 The 1D Upwind scheme: O(At, Ax)

We will start making use of finite-difference techniques évide a discrete representa-
tion of equation (3.2) by first considering the derivativdiine. Taylor expanding the
solution aroundz;,t™)) we obtain

(e, 17+ A1) = (e, 17) + Oy, )AL+ O(AP)

or, equivalently,

ntl

; —u?—i-@ At + O(A?) .

8t]

u

9
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Isolating the time derivative and dividing k¥t we obtain

ou|"  uftt—ur
—| =2— At) . .
ot |, Al + O(At) (3.3)
Adopting a standard convention, we will consider the fimitiference representa-
tion of anm-th orderdifferential operatoro™ /9x™ in the generice-direction (where
x could either be a time or a spatial coordinate) to be of opdeand only if

% =L, (u) + O(AxP) . (3.4)

Of course, the time and spatial operators may have FDRs vi#eht orders of accu-
racy and in this case the overall order of the equation israeted by the differential
operator with the largest truncation error.

Note also that while the truncation error is expressed ferdifferential operator, the
numerical algorithms will not be expressed in terms of tHféedéntial operators and
will therefore have different (usually smaller) truncatierrors. This is clearly illus-
trated by the equations above, which show that the exphtittion (3.3) is of higher
order than the finite-difference expression for the diffitiesd operator (3.3).

With this definition in mind, it is not difficult to realize thahe finite-difference
expression (3.3) for the time derivative is only first-oréecurate inA¢t. However,
accuracy is not the most important requirement in numeenalysis and a first-order
but stable scheme is greatly preferable to one which is higiter (.e., has a smaller
truncation error) but is unstable.

In way similar to what we have done in (3.3) for the time derixe we can derive
a first-order, finite-difference approximation to the spdegvative as

n ut —um

S B et
) = s + O(Ax) . (3.5)

@
ox

While formally similar, the approximation (3.5) suffers thie ambiguity, not present
in expression (3.3), that the first-order term in the Taybgpamsion can be equally
expressed in terms of?, ; anduj, i.e,

n

Ju
ox

n n
_ Uiy Yy

L+ O0(A). (3.6)

J
This ambiguity is the consequence of the first-order appnation which prevents

a proper “centring” of the finite-difference stencil. Hovweeyvand as long as we are

concerned with an advection equation, this ambiguity ifyeaslved if we think that

the differential equation will simply translate each pdimthe initial solution to the

new positionz + vAt over a time intervalAt. In this case, it is natural to select

the points in the solution at the time-leuvelthat are “upwind” of the solution at the

positionj and at the time-level + 1, as these are the ones causally connected with

u?“. Depending then on the direction in which the solution isstated, and hence
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torn
X Or |
¢ ¢ ® ¢ O n+1
v>0 /
O o—o O O n
-1 j j+1
upwind
¢) ¢) ® ¢) O n+1
\ v<0
O O o—o O n

Figure 3.1:Schematic diagram of an UPWIND evolution scheme.

on the value of the advection velocity two different finite-difference representations
can be given of equation (3.2) and these are

u?"'l —uf ui —uj g )

Sy vamn il e e + O(At, Ax) , ifv>0, (3.7

ur.l+1 —um” u” o =y

Jth Ry (%) + O(At, Ax) , ifv<0, (3.8)
x

respectively. As a result, the final finite-difference altjons for determing the solu-
tion at the new time-level will have the form

N+l _ n_UAt

J J Az

At
P = = S — ) + O(A, AzAt), i< 0. (3.10)

u (ul —ul_y) + O(A, AzAt),  ifv>0, (3.9)
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More in general, for a system of linear hyperbolic equatioitt state vectoiU
and flux-vectofF, the upwind scheme will take the form

Ut - Uy s 2 [F
where thet sign should be chosen according to whether 0 orv < 0. The logic be-
hind the choice of the stencil in an upwind method is is ilatgd in Fig. 1.1 where we
have shown a schematic diagram for the two possible valueafdvection velocity.

The upwind scheme (as well as all of the others we will condidee) is an example
of an explicit scheme, that is of a scheme where the solution at the newl¢wveé-
n + 1 can be calculated explicitly from the quantities that aready known at the
previous time-leveh. This is to be contrasted with amplicit scheme in which the
FDR of the differential equation has, on the right-handesidrms at the new time-level
n + 1. These methods require in general the solution of a numbawgsled algebraic
equations and will not be discussed further here.

The upwind scheme is a stable one in the sense that the solitimot have expo-
nentially growing modes. This can be seen througlom Neumann stability analysis
a useful tool which allows a first simple validation of a givemmerical scheme. Itis
important to underline that the von Neumann stability asialislocal in the sense that:
a) it does not take into account boundary effetisit assumes that the coefficients of
the finite difference equations are sufficiently slowly \iagyto be considered constant
in time and space (this is a reasonable assumptions if thegtieqa are linear). Under
these assumptions, the solution can be seen as a sum of eigesmhich at each grid
point have the form

—F}] + O(A#?, AzAt) (3.11)

up = ¢reta (3.12)
wherek is the spatial wave number agd= £(k) is acomplexnumber.
If we now consider the symbolic representation of the finifleetence equation as
u?“ =T (A, AzT)uj , (3.13)

with 7 (AtP, Az?) being the evolution operator of ordem time andyg in space, it then
becomes clear from (3.12) and (3.13) that the time evolutifom single eigenmode is
nothing but a succession of integer powers of the complexaeugwhich is therefore
namedamplification factor This naturally leads to a criterion of stability as the ooe f
which the modulus of the ampilfication factor is always lessth,i.e.,

€)? =¢¢* <1. (3.14)
Using (3.12) in (3.9)—(3.10) we would obtain an amplificatfactor
& =1—|a| (1 —cos(kAx)) — iasin(kAx) , (3.15)

where
(3.16)

(0%

vt
Az
Its quared moduluk|? = &€ is then

1€ =1—2]al (1 —|a|) (1 — cos(kAx)) , (3.17)
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COURANT STABLE COURANT UNSTABLE

n+1

-1 j+1 -1 j+1

Figure 3.2:Schematic diagram of Courant stable and unstable choidéa@fstepsAt. The two dashed
lines limit the numerical domain of dependence of the soiutitm?‘“, while the shaded area represents
the physical domain of dependence. Stability is achieveeinvthe first one is larger than the second one.

so that the amplification factor (3.17) is less than one ag &stheCourant-Friedrichs-
Lowy condition(CFL condition)

o <1, (3.18)

is satisfied (condition (3.18) is sometimes referred to §rap the Courant condition.).
Note that in practice, the CFL condition (3.18) is used teedwuine the time-step\t
oncev is known andAz has been chosen to achieve a certain accuracy,

A
At =g =2 (3.19)

CFL )
|v]

with ¢, < 1 being the CFL factor. Expression (3.19) also allows a usatelpreta-
tion of the CFL condition.

From amathematicapoint of view, the condition ensures that the numerical do-
main of dependence of the solutionléasger than the physical one. Fromphysical
point of view, on the other hand, the condition ensures thatpropagation speed of
any physical perturbatiore(g, the sound speed, or the speed of light) is always smaller
than the numerical one, = Az/At, i.e,

Az Az

CCFLE S Uy = Kt . (320)

vl =

Equivalently, the CFL conditions prevents any physicahalgo propagate for more
than a fraction of a grid-zone during a single time-stfpKig. 3.2)

As a final remark it should be noted that as described so farypiwind method
will yield satisfactory results only in the case in which #guations have an obvious
transport character in one direction. However, in more ges#uations such as a wave
equation, the upwind method will not be adequate and difteegpressions, based on
finite-volume formulations of the equations will be needéd].
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Figure 3.3:Time evolution of a Gaussian initially centredaat= 0.5 computed using an upwind scheme
with v = 10 and 100 gridpoints. The analytic solution at tithe= 3 is shown with a solid line the dashed
lines are used to represent the numerical solution at the siame. Two different simulations are reported
with the circles referring to a CFL factet,.;, = 0.99 and squares to a CFL factog,; = 0.50. Note
how dissipation increases as the CFL is reduced.

3.2 ThelD FTCSscheme: O(At, Az?)

Let us consider again the advection equation (3.2) but wefirote difference with a
more accurate approximation of the space derivative. Tddovte can calculate the
two Taylor expansions im; £ Ax

n - Ou n 1 0% n
u(z; + Az, t") = u(z,,t )+%(xj,t )Aeri@(xj’t YAz? + O(Az?)
(3.21)
n n OUu " 1 0%u "
u(z; — Az, t") = u(z,t )—%(.I'j,t )Ax—i—gﬁ(xj,t YAz? + O(A2?)

(3.22)
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Subtracting now the two expressions and dividin@2byr we eliminate the first-order
terms and obtain

ou|” . un+1 - Un,1
O } = % + O(A:Z?Q) , (3.23)
©) O © O O n+1l
FTCS g
©) @ ; @ O N
-1 J 1

Figure 3.4:Schematic diagram of a FTCS evolution scheme.

Using now the second-order accurate operator (3.23) wemide-fifference equa-
tion (3.2) through the so called FTCS (Forward-Time-Ceade8pace) scheme in which
a first-order approximation is used for the time derivatiwat a second order one for
the spatial one. Using the a finite-difference notation RMES is then expressed as

ut —yn u? o —u?
J J j+1 j—1 2
A R (i s At, A .24
Y v( SR )-i—(?( t, Az<), (3.24)
so that
n n « n n
utl = - §(uj+1 —ul ) + O(A#?, Az?At) | (3.25)

or more generically, for a system of linear hyperbolic etpurest

Ut - QAA—’; [F, —F" ] + O(A2, Az?At) (3.26)

The stencil for the finite- differencing (3.25) is shown syatitally in Fig. 3.4.

Disappointingly, the FTCS schemeuaconditionally unstablei.e., the numerical
solution will be destroyed by numerical errors which will bertainly produced and
grow exponentially. This is shown in Fig. 3.5 where we showtilme evolution of a
Gaussian using an FTCS scheme 100 gridpoints. The anatjtitta at timet = 0.3
is shown with a solid line the dashed lines are used to reptrése numerical solution
at the same time. Note that the solution plotted here refeastime which is 10 times
smaller than the one in Fig. 3.3. Soon after 0.3 the exponentially growing modes
appeatr, rapidly destroying the solution.

Applying the definition (3.12) to equation (3.24) and fewedlgaic steps lead to an
amplification factor

¢ =1—iasin(kAzx) . (3.27)
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Figure 3.5:Time evolution of a Gaussian using an FTCS scheme with 1 and 100 gridpoints. The
analytic solution at time = 0.3 is shown with a solid line, while the dashed line is the nugersolution at
the same time. Soon after~ 0.3 the exponentially growing modes appear, rapidly destigifire solution.

whose squared modulus is
€2 = 1+ (asin(kAz))® > 1, (3.28)

thus proving the unconditional instability of the FTCS stiee Because of this, the
FTCS scheme is rarely used and will not produce satisfactsylts but for a very
short timescale as compared to the typical crossing timeephysical problem under
investigation.

A final aspect of the von Neumann stability worth noticinghsitit is aneces-
sary but not sufficienicondition for stability. In other words, a numerical schetmat
appears stable with respect to a von Neumann stability sisatyight still be unstable.

3.3 ThelD Lax-Friedrichs scheme: O(At, Az?)

A solution to the stability problems offered by the FTCS suokevas proposed by Lax
and Friedrichs. The basic idea is very simple and is baseémaging, in the FTCS



3.3. THE 1D LAX-FRIEDRICHS SCHEMEO (AT, AX?) 17

© o o} o © n+l1
Lax—Friedrichs
o e ° e o n
-1 j j+1

Figure 3.6:Schematic diagram of a Lax-Friedrichs evolution scheme.

formula (3.24), the term? with its spatial averagé.e., u} = (u?,, +u}_;)/2, S0 as
to obtain for an advection equation

n 1 n n a n n
uitt = §(uj+1 +uj_y) — E(Uj-u —uj_y) +O(Az?), (3.29)
and, for a system of linear hyperbolic equations

At

1
Ut = §(U§?+1 +U7 ) - AL [Fl, —F' ] +0(A2%). (3.30)

Note that the truncation error in equations (3.29) and (3s8éeported to b&(Az?)

and notO(At?, Az?At) because we are assuming that the CFL condition is satisfied

and hence\t = O(Ax). We will maintain this assumption hereafter.

The schematic diagram of a Lax-Friedrichs evolution schisnsown in Fig. 3.6.
Perhaps surprisingly, the algorithm (3.30) is noonditionally stableas can be verified
through a von Neumann stability analysis. Proceeding ae flamthe FTCS scheme
and using (3.12) in (3.30) we would obtain an amplificatiootda whose modulus
squared is

1€)? = 1 — sin®(kAx) (1- az) , (3.31)
which is< 1 as long as the CFL condition is satisfied.

Although not obvious, the correction introduced by the [Fbedrichs scheme is
equivalent to the introduction of lmumerical dissipatiorfviscosity). To see this, we
rewrite (3.30) so that it clearly appears as a correctio3 124)):

un Tl — u - u? 1 /u™ —2u” +u?
J J j+1 j—1 j+1 J j—1
R BT e b S bt} — . 3.32

At Y ( 97z ) T3 ( At ) (3.32)

This is exactly the finite-difference representation ofelqeation

ou ou 1 (Az?\ 0%u
o Vo 2 (—At ) Frek (3.33)
where a diffusion termx 9%u/dx2, has appeared on the right hand side. To prove this
we sum the two Taylor expansions (3.21)—(3.22) arauntb eliminate the first-order
derivatives and obtain
0?2

u = 2u" +u
= T O(Ar) (3.34)

J
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where the sum has allowed us to cancel both the teffisz) and O(Az3). Note
that since the expression for the second derivative in [33@(Az?), it is appears
multiplied by Az? /At = O(Ax) in equation (3.33), thus making the right-hand-side
O(Ax3) overall. The left-hand-side, on the other hand, is @A) (the time deriva-
tive is O(Ax), while the spatial derivative i©(Az?)). As a result, the dissipative
term goes to zero more rapidly than the intrinsic truncagioor of the Lax-Friedrichs
scheme, thus guaranteeing that the in the continuum liraiatgorithm will converge
to the correct solution of the advection equation.

Figure 3.7:This is the same as in Fig. 3.3 but for a Lax-Friedrichs schevoge how the scheme is stable
but also suffers from a considerable dissipation.

A reasonable objection could be made for the fact that theRréedrichs scheme
has changed the equation whose solution one is interestige.ineq. (3.2)] into a
new equation, in which a spurious numerical dissipationdeses introduced ., eq.
(3.33)]. Unlesgv|At = Az, |¢] < 1 and the amplitude of the wave is doomed to
decrease (see Fig. 3.7).

However, such objection can be easily circumvented. As imead above, the
dissipative term is always smaller than the truncationreires guaranteeing the con-
vergence to the the correct solution. Furthermore, it i$ulse bear in mind that the
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key aspect in any numerical representation of a physicahghenon is the determi-
nation of the length scale over which we need to achieve amratecdescription. In

a finite difference approach, this length scale must nedgssacompass many grid
points and for whichkAxz < 1. In this case, expression (3.31) clearly shows that the
amplification factor is very close to 1 and the effects of igigson are therefore small.
Note that this is true also for the FTCS scheme so that on tees the stable and
unstable schemes are equally accurate. On the very smial $tavever, which we are
not of interest to uskAz ~ 1 and the stable and unstable schemes are radically dif-
ferent. The first one will be simply inaccurate, the seconel wiill have exponentially
growing errors which will rapidly destroy the whole solutidlt is rather obvious that
stability and inaccuracy are by far preferable to instahikspecially if the accuracy

is lost over wavelengths that are not of interest or whenritloa recovered easily by
using more refined grids. This is callécbnsistency” of the discretized operator and
will be discussed in detail in Sect. 4.2.2.

3.4 ThelD Leapfrog scheme: O(At?, Az?)

Both the FTCS and the Lax-Friedrichs are “one-level” schemih first-order ap-
proximation for the time derivative and a second-order apipnation for the spatial
derivative. In those circumstanceat should be taken significantly smaller thamn:
(to achieve the desired accuracy), well below the limit isgabby the Courant condi-
tion.

O ¢ © O o n+1
Leapfrog
O [ 0 ° O n
-1 )l
O o) o O o n-1

Figure 3.8:Schematic diagram of a Leapfrog evolution scheme.

Second-order accuracy in time can be obtained if we insert

Ou " U?H_u?_l 2
- = A .
ot |, SAZ + O(At?) , (3.35)

in the FTCS scheme, to find theapfrogscheme

W = o (g ) +O(Aa?) (330)
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where it should be noted that the factor 2An: cancels the equivalent factor 2 4xy.

Figure 3.9:This is the same as in Fig. 3.3 but for a Leapfrog scheme. Nwotethe scheme is stable
and does not suffers from a considerable dissipation evelofoCFL factors. However, the presence of a
little “dip” in the tail of the Gaussian for the case @f.;, = 0.5 is the result of the dispersive nature of the
numerical scheme.

For a set of linear equations, the Leapfrog scheme simplgrbes

urtt=urt - ~ [F}' . —F7 4] +O(Az?) (3.37)
and the schematic diagram of a Leapfrog evolution schenfeissin Fig. 3.8.
Also for the case of a Leapfrog scheme there are a number ettsihat should

be noticed:

¢ In a Leapfrog scheme that is Courant stable, there is no amdplidissipation
(i.e, |¢]? = 1). In fact, a von Neumann stability analysis yields

£ = —iasin(kAz) £ /1 — [asin(kAz)]?, (3.38)
and so that

]2 = a?sin?(kAz) + {1 — [asin(kAz)]*} = 1 Va<l. (3.39)
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O O n+1

o ® n-1

Figure 3.10:Schematic diagram of the decoupled grids in a Leapfrog &ieslischeme.

As a result, the squared modulus of amplification factonigagk 1, provided the
CFL condition is satisfiedcf. Fig. 3.11).

e The Leapfrog scheme is a two-level scheme, requiring recofrdalues at time-
stepsn andn — 1 to get values at time-step+ 1. This is clear from expression
(5.22) and cannot be avoided by means of algebraic manipudat

e The major disadvantage of this scheme is that odd and eveh puaists are
completely decoupled (see Fig. 8).

In principle, the solutions on the black and white squaresidentical. In
practice, however, their differences increase as the timgrpsses. This ef-
fect, which becomes evident only on timescales much lorigar the crossing
timescale, can be cured either by discarding one of theisakior by adding a
dissipative term of the type

cete(ul = 2ul g +ulyy), (3.40)

in the right-hand-side of (5.17), where< 1 is an adjustable coefficient.

3.5 The 1D Lax-Wendroff scheme: O(At?, Az?)

The Lax-Wendroff scheme is the second-order accurate sigteof the Lax-Friedrichs
scheme. As for the case of the Leapfrog scheme, in this cased¢meed two time-
levels to obtain the solution at the new time-level.

There are a number of different ways of deriving the Lax-Weffdscheme but it
is probably useful to look at it as to a combination of the lFiedrichs scheme and of
the Leapfrog scheme. In particular a Lax-Wendroff schenmebesobtained as
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1. A Lax-Friedrichs scheme with half step:

wbh Lo AL
SR 5 (Ui + Uj] = o= [Fi — Fj] + 0(A2%)

n+% 1 n n At n n 2
Ui _i=35 (U7 +Uj.] - N [F} —F}_,] +O0(A2?),

whereAt/(2Az) comes from having used a timestap,/2;

1 1
2. The evaluation of the fluxdéjif from the values oU?If
2 2

3. A Leapfrog “half-step™:

At 1 1

n+1 __ n n+ n+ 2

U’ 7Uj—A—w F]_%Z—Fji%2 + O(Az) . (3.41)
The schematic diagram of a Lax-Wendroff evolution schenstgsvn in Fig. 3.11

and the application of this scheme to the advection equd8d) is straightforward.

More specifically, the “half-step” values can be calculaed

1 o
n+1/2 n u n n
uj:l:l//Q =3 (uj + ujil) + 5 (ujil - Uj) + O(Az?), (3.42)
so that the solution at the new time-level will then be

Wt = —a (W - w02 (3.43)

n o n n a2 n n n 2
uj =5 (W —uj) + 5 (W1 = 2uj +uf_,) + O(Az?) .

J 2
(3.44)
where expression (3.44) has been obtained after subsgjt(8i42) in (3.43).
o K o n+l
Lax-Wendroff j-1/2 j*1/2
‘,’ \8/ \‘ n
-1 | j+1

Figure 3.11:Schematic diagram of a Lax-Wendroff evolution scheme.

Aspects of a Lax-Wendroff scheme worth noticing are:
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¢ In the Lax-Wendroff scheme there might be some amplitudgghsion. In fact,
a von Neumann stability analysis yields

¢ =1 —iasin(kAz) — o?[1 — cos(kAz)] , (3.45)
so that the squared modulus of the amplification factor is
€7 =1—a*(1 —a?) [1 — cos®(kAz)] . (3.46)

As a result, the von Neumann stability criteriggi?> < 1 is satisfied as long
asa? < 1, or equivalently, as long as the CFL condition is satisfief. Fig.
10). It should be noticed, however, that unlegs= 1, then|¢|? < 1 and some
amplitude dissipation is present. In this respect, thapmhsise properties of the
Lax-Friedrichs scheme are not completely lost in the Laxzlveff scheme but
are much less severef(Figs. 5 and 10).

e The Lax-Wendroff scheme is a two-level scheme, but can lestéta one-level
form by means of algebraic manipulations. This is clear fexpressions (3.44)
where quantities at time-levelsandn + 1 only appear.

3.6 ThelD ICN scheme: O(A#?, Az?)

The idea behind thiterative Crank-NicolsorfICN) scheme is that of transforming a
stable implicit methodi.e., the Crank-Nicolson (CN) scheme (see Sect. 8.4.2) into an
explicit one through a series of iterations. To see how tohi®ih practice, consider
differencing the advection equation (3.2) having a cengpete derivative but with the
time derivative being backward centrée,,

D Y S
T ) (347

This scheme is also known as “backward in time, centred icespar BTCS (see
Sect. 8.4.1) and has amplification factor

1

1 +iasin kAzx’ (3.48)

3
so thati¢|? < 1 for any choice ofy, thus making the method unconditionally stable.
The Crank-NicolsonCN) scheme, instead, is a second-order accurate method ob-
tained by averaging a BTCS and a FTCS method or, in other werfgtions (3.24)
and (3.47). Doing so one then finds

_ 1+iasinkAxz/2

- 1—iasinkAx/2 "’ (3.49)

§

so that the method is stable. Note that although one avelsye®en an explicit and
an implicit scheme, terms containing ™! survive on the right hand side of equation
(3.47), thus making the CN scheme implicit.
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Figure 3.12:This is the same as in Fig. 3.3 but for a Lax-Wendroff schemeteNow the scheme is
stable and does not suffers from a considerable dissipatien for low CFL factors. However, the presence
of a little “dip” in the tail of the Gaussian for the casef,; = 0.5 is the result of the dispersive nature of
the numerical scheme.

The first iteration of iterative Crank-Nicolson starts byoccdating an intermediate
variable() ¢ using equation (3.24):

L) gn+1 _

JT%' _ (M) _ (3.50)

Then another intermediate variableu is formed by averaging:

n 1 ~n n
()g+1/2 ; (<1>uj+1 +uj) _ (3.51)
Finally the timestep is completed by using equation (3.2@imwith z on the right-
hand side:

(3.52)

j
2Ax

n n _n+1/2 _n+1/2
wn up . (1)uj+1/ _ (1)u]_71/
At
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Iterated Crank-Nicolson witkwo iterationsis carried out in much the same way.
After steps (3.50) and (3.51), we calculate

2) ~n+1 n 1)-n+1/2 1) -n+1/2
( )uj —up ., ( )uj+1 _( )uj_1 359
At 2Ax ’ '
=T 1 ~n n
(Q)uj /2 - 3 ((Q)uj gy uj) . (3.54)
Then the final step is computed analogously to equation 3.52
n+1 n 2)-—n+1/2 2)-n+1/2
Al Y il N A I (3.55)
At 2Ax

Further iterations can be carried out following the saméclog
To investigate the stability of these iterated schemes wepcte the amplification
factors relative to the different iterations to be

Me = 1428, (3.56)
@e = 1+42i8-262, (3.57)
B¢ = 1+42i8-28%-2i3%, (3.58)
We = 1+42i8-26%-2i8%+26*, (3.59)

where = (a/2)sin(kAz), andM¢ corresponds to the FTCS scheme. Note that
the amplification factors (3.56) correspond to those onelavobtain by expanding
equation (3.49) in powers gf.

Computing the squared moduli of (3.56) one encounters amalting and recur-
sive pattern. In particular, iterations 1 and 2 are unstgblé > 1); iterations 3 and 4
are stable|€|? < 1) provideds? < 1; iterations 5 and 6 are also unstable; iterations 7
and 8 are stable providetf < 1; and so on. Imposing the stability for all wavenum-
bersk, we obtaina?/4 < 1, or At < 2Az which is just the CFL condition [the factor
2 is inherited by the factor 2 in equation (3.24)].

In other words, while the magnitude of the amplification ¢aidor iterated Crank-
Nicolson does approach 1 as the number of iterations becofirgte, the convergence
is not monotonic. The magnitude oscillates above and belsithlever decreasing os-
cillations. All the iterations leading tg|? above 1 are unstable, although the instability
might be very slowly growing as the number of iterations @ases. Because the trun-
cation error is not modified by the number of iterations andiigaysO(At?, Az?),

a number of iterations larger than two is never useful; thiterations, in fact, would
simply amount to a larger computational cost.

3.6.1 ICN asa@-method

In the ICN method thé\/-th average is made weighting equally the newly predicted
solution*)7*! and the solution at the “old” timeleveli”. This, however, can be
seen as the special case of a more generic averaging of e typ

(M)gn+1/2 — g Mg+l (1 — g)u™ (3.60)
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where0 < 6 < 1 is a constant coefficient. Predictor-corrector schemegjsiis type
of averaging are part of a large class of algorithms nafreetthodg10], and we refer
to the ICN generalized in this way as to the[CN” method.

A different and novel generalization of tldCN can be obtained bswappinghe
averages between two subsequent corrector steps, so thatlifith corrector step

(M)an+1/2 — (1 _ 9) (]LI),[/H—I + Qu™ , (361)
while in the(M + 1)-th corrector step
(MED 12 = g (MHED Gt 4 (1 — f)u” (3.62)

Note that as long as the number of iterations is even, theesegun which the aver-
ages are computed is irrelevant. Indeed, the wei@latsd1 — 6 in eqs. (3.61)—(3.62)
could be inverted and all of the relations discussed hexefift the swapped weighted
averages would continue to hold after the transformatien 1 — 6.

Constant Arithmetic Averages

Using a von Neumann stability analysis, Teukolsky has shthan for a hyperbolic
equation the ICN scheme witl! iterations has an amplification factor [13]

M
(Mye—142 Z (—ip)" , (3.63)

n=1

where3 = v[At/(2Az)] sin(kAx) 1. More specifically, zero and one iterations yield
an unconditionally unstable scheme, while two and threatitens a stable one pro-
vided thats? < 1; four and five iterations lead again to an unstable scheme@od.
Furthermore, because the scheme is second-order acauatéhie first iteration on,
Teukolsky’s suggestion when using the ICN method for hypkelequations was that
two iterations should be usethd no morg13]. This is the number of iterations we
will consider hereafter.

Constant Weighted Averages

Performing the same stability analysis fo6-4CN is only slightly more complicated
and truncating at two iterations the amplification factdioisnd to be

€ =1-2i3 —45%0 + 8i°¢> | (3.64)

where¢ is a shorthand fof?¢. The stability condition in this case translates into
requiring that
163%0* —458%0> =20+ 1 <0, (3.65)

or, equivalently, that foé > 3/8
by b=
ey <p< By E—

INote that we defings to have the opposite sign of the corresponding quantity eefin ref. [13]

(3.66)
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Figure 3.13Left panel:stability region in thed, 5) plane for the two-iteration&-ICN

for the advection equation (3.2). Thick solid lines mark lingit at which |¢| = 1,
while the dotted contours indicate the values of the amaplifin factor in the stable
region. The shaded area fb< 1/2 refers to solutions that are linearly unstable [15].
Right panel:same as in the left panel but when the averages between tnextons
are swapped. Note that the amplification factor in this cadess sensitive of and
always larger than the corresponding amplification fagtdhe left panel.

which reduces tg3? < 1 whend = 1/2. Because the condition (3.66) must hold
for every wavenumbek, we consider hereaftet = vAt/(2Ax) and show in the left
panel of Fig. 3.13 the region of stability in the, (3) plane. The thick solid lines mark
the limit at which|¢| = 1, while the dotted contours indicate the different valuethef
amplification factor in the stable region.

A number of comments are worth making. Firstly, althoughdbedition (3.66)
allows for weighting coefficient§ < 1/2, thed-ICN is stable only if¢ > 1/2. This
is a known property of the weighted Crank-Nicolson schen® &hd inherited by the
0-ICN. In essence, wheft # 1/2 spurious solutions appear in the method [16] and
these solutions are linearly unstablé ik 1/2, while they are stable fdt > 1/2 [15].
For this reason we have shaded the area With 1/2 in the left panel of Fig. 3.13
to exclude it from the stability region. Secondly, the useaofeighting coefficient
6 > 1/2 will still lead to a stable scheme provided that the timegtep, 3) is suitably
decreased. Finally, as the contour lines in the left pan€&igf3.13 clearly show, the
amplification factor can be very sensitive én

Swapped weighted aver ages

The calculation of the stability of th&ICN when the weighted averages are swapped
asinegs. (3.61) and (3.62) is somewhat more involved; aftere lengthy but straight-
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forward algebra we find the amplification factor to be
€ = 1-2iB—43%0+8ip%0(1 —0), (3.67)

which differs from (3.64) only in that thé? coefficient of theO(3?) term is replaced
by (1 — 0). The stability requiremenrjt| < 1 is now expressed as

163%0%(1 — 6)* —43%0(2 - 30) —20+1 <0 .. (3.68)

Solving the condition (3.68) with respect foamounts then to requiring that

V2 — 30— /40 — 1162 + 863

bz 2(1 —0)V20 ’ (3.692)
V2 — 30 + V40 — 1102 + 863
hs 2(1 —60)Vv20 ’ (3.690)

which is again equivalent t6> < 1 whenf = 1/2. The corresponding region of
stability is shown in right panel of Fig. 3.13 and should benpared with left panel of
the same Figure. Note that the average-swapping has nowdeoaisly increased the
amplification factor, which is always larger than the copeesding one for thé-ICN

in the relevant region of stability.e.,for 1/2 < 0 < 12).

20f course, when the order of the swapped averages is invieaiecthe one shown in egs. (3.61)—(3.62)
the stability region will change intd < 6 < 1/2.



Chapter 4

Dissipation, Dispersion and
Convergence

We will here discuss a number of problems that often emerganwbing finite-difference
techniques for the solution of hyperbolic partial diffetiahequations. In stable numer-
ical schemes the impact of many of these problems can béosuieduced by going
to sufficiently high resolutions, but it is nevertheless artpnt to have a simple and yet
clear idea of what are the most common sources of these pneble

4.1 OntheOrigin of Dissipation and Dispersion

We have already seen in Chapter 3 how the Lax-Friedrichaselagpplied to a linear
advection equation (3.2) yields the finite-difference esgion

n 1 n n a n n
uj+1 = §(Uj+1 +ui_y) - 5(uj+1 —uj_q)+ o(Az?) . (4.1)
We have also mentioned how expression (4.1) can be rewaten

ujH =uj — §(uj+1 —uj_q)+ 5(%“ —2uf +uj_q)+ O(Azx?) (4.2)

to underline how the Lax-Friedrichs scheme effectivelyvites a first-order finite-
difference representation of a non-conservative equation

ou ou 0%u
E +’U% _ELF@ 5 (43)
that is an advection-diffusion equation in which a dissifaterm
Ax?
Evp = UQ—At s (44)

is present. Given a computational domain of lengtthis scheme will therefore have
a typical diffusion timescale ~ L? /¢, .. Clearly, the larger the diffusion coefficient,
the faster will the solution be completely smeared over threfutational domain.

29
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In a similar way, it is not difficult to realize that the upwisdheme

WP = o (uf — ) + O(A?), 9

provides a first-order accurate (in space) approximati@gtetion (3.2), but a second-
order approximation to equation

ou ou 0%
E‘FU% —EUWW s (46)
where A
VAT
Evw = 5 4.7)

Stated differently, also the upwind method reproduces gitdriorder an advection-
diffusion equation with a dissipative term which is respblesfor the gradual dissi-
pation of the advected quantity. This is shown in Fig. 4.2 for a wave packeg(,
a periodic function embedded in a Gaussian) propagatingeaitjht and where it is
important to notice how the different peaks in the packetaaheected at the correct
speed, although their amplitude is considerably dimirdshe

In Courant-limited implementations, = |v|At/Axz < 1 so that the ratio of the
dissipation coefficients can be written as

€Lr
9

>1, for a€l0,1]. (4.8)

Q|+

uw

In other words, while the upwind and the Lax-Friedrichs nedthare both dissipative,
the latter is generically more dissipative despite beingaaacurate in space. This can
be easily appreciated by comparing Figs. 3.3 and 3.7 butpt»ades an important
rule: a more accurate numerical scheme is not necessarily a @blieone.

A bit of patience and a few lines of algebra would also showtthal ax-Wendroff
scheme for the advection equation (3.&) pq. (3.44)]

v AL v2 A2

n+l _ n n n
T uj_1)+ 2Az2

U; I 9Ar (uj+1 -

(uly —2u? +ul_))+0(Az?) . (4.9)

provides a first-order accurate approximation to equaBa2)(a second-order approx-

imation to an advection-diffusion equation with dissipatcoefficient,,, and a third-
order approximation to equation
Ju ou 0%u Pu
ot "o = “agr Thwgg (419
where )
vAzx
B =~ —¢ (1-a?) . (4.11)

As mentioned in Section 3, the Lax-Wendroff scheme retaimsesof the dissi-
pative nature of the originating Lax-Friedrichs scheme #islis incorporated in the
dissipative term proportional tg,,,,. Using expression (4.9), it is easy to deduce the
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Figure 4.1:Time evolution of a wave-packet initially centredzat= 0.5 computed using a Lax-Friedrichs
scheme withC.; = 0.75. The analytic solution at timé = 2 is shown with a solid line the dashed lines
are used to represent the numerical solution at the sameNuote how dissipation reduces the amplitude of
the wave-packet but does not change sensibly the propagztthe wave-packet.

magnitude of this dissipation and compare it with the edaivieone produced with the
Lax-Friedrichs scheme. A couple of lines of algebra show tha
Cow = avfx = a2€LF L Epp s (4.12)

thus emphasizing that the Lax-Wendroff scheme is condidietass dissipative than
the corresponding Lax-Friedrichs.

The simplest way of quantifying the effects introduced by tight-hand-sides of
equations (4.3), (4.6), and (4.10) is by using a single ouriode with angular fre-
quencyw and wavenumbek, propagating in the positive-direction,i.e.,

u(t, ) = ko=t (4.13)
It is then easy to verify that in the continuum limit
du . ou . 0%u 9 Pu 3
op = lwu, %:lku, w:*ku, @:*WU- (4.14)
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Figure 4.2:Time evolution of a wave-packet initially centredzat= 0.5 computed using a Lax-Wendroff
scheme withC'.; = 0.75. The analytic solution at tim& = 2 is shown with a solid line the dashed lines
are used to represent the numerical solution at the sameNpte how the amplitude of the wave-packet is
not drastically reduced but the group velocity suffers fragonsiderable error.

In the case in which the finite difference scheme providescanrate approxima-
tion to a purely advection equation, the relations (4.14¥lI® the obvious dispersion
relationw = vk, so that theaumericalmoded(¢, =) will have a solution

a(t, ) = k@t | (4.15)

representing a mode propagating withase velocity;, = w/k = v, which coincides
with thegroup velocityc, = dw/0k = v.

However, it is simple to verify that the advection-diffusiequation approximated
by the Lax-Friedrichs scheme (4.3), will have a correspogdblution

u(t,x) = eeLrk tgik(@—vt) (4.16)

thus having, besides the advective term, also an expotigmécaying mode. Simi-
larly, a few lines of algebra are sufficient to realize that tlissipative term does not
couple with the advective one and, as a result, the phaseraog gelocities remain
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the same and, = ¢, = v. This is clearly shown in Fig. 4.1 which shows how the
wave packet is sensibly dissipated but, overall, maintdiesorrect group velocity.

Finally, it is possible to verify that the advection-diffas equation approximated
by the Lax-Wendroff scheme (4.10), will have a solution gity

a(t, z) = e—aLwk2t6ik[x7(v+[3ka2)t] 7 (4.17)

where, together with the advective and (smaller) expoaéyntiecaying modes already
encountered before, there appears aldispersivaerm~ g, kt producing different
propagation speeds for modes with different wavenumbetss Becomes apparent
after calculating the phase and group velocities which aengoy

0
cp = % = v+ Bk’ and Cg = 8_: = v+ 30, k%, (4.18)

and provides a simple interpretation of the results showkign4.2.

4.2 Measuring Dissipation and Convergence

From what discussed so far it appears clear that one is oftdreineed of tools that
allow a rapid comparison among different evolution scher@gge might be interested,
for instance, in estimating which of two methods is lessigats/e or whether an evo-
lution scheme which is apparently stable will eventuallgntout to be unstable. In
what follows we discuss some of these tools and how they carsbe to ascertain a
fundamental property of the numerical solution: its cogegice

4.2.1 Thesummarising power of norms

A very useful tool that can be used in this context is the dat@n of the*norms” of
the quantity we are interested in. In the continuum limitpheormis defined as

1/p

1 b ,
lully = = (/ lu(t, 2)| dx) . (4.19)

and has the same dimensions of the originating quaatityxz). The extension of this
concept to a discretised space and time is straightforwaddy&elds the commonly
used norms

N
1l—norm : [lul[(t™) = Z (4.20)

1/2
1 N
2—norm :: [[ul|*(t") = (Z ) , (4.21)

j=

—

1/p

(ult)? . (4.22)

(B

p—norm :: [lulP(t™) = =

N

Jj=1

infinity — norm :: [Jul| (t") = maxj:17,,,N(|u?|) . (4.23)
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In the case of a scalar wave equation (see Sect. 5 for a disnjigbe 2-norm has a
physical interpretation and could be associated to the atr@fe@nergy contained in the
numerical domain; its conservation is therefore a cleanatigre of a non-dissipative
numerical scheme.

3 T T LI LI LI LI T T LI

logo(Il u(t) [1%)

4 —_ Leap % |
L \****************t
75 L1 1 ‘ I ‘ I ‘ (| ‘ I ‘ L1 1 ‘ I
0 2 4 6 8 10 12 14
t

Figure 4.3:Time evolution of the logarithm of the 2-norms for the digfat numerical schemes discussed
so far. Sommerfeld outgoing boundary conditions were usékis example.

Fig. 4.2 compares the 2-norms for the different numeridaésees discussed so far
and in the case in which Sommerfeld outgoing boundary comditwere used. Note
how the FTCS scheme is unstable and that the errors are ylteatparable with the
solution well before a crossing time. Similarly, it is evidéhat the use of Sommerfeld
boundary conditions allows a smooth evacuation of the gnierghe wave from the
numerical grid aftet ~ 6.

4.2.2 Consistency and Convergence

Consider therefore a PDE of the type

L(u)—f=0, (4.24)
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whereL is a second-order differential quasi-linear operatér gq. (1.1)]. Let also
L, be the discretized representation of such continuum difiiéail operator and =
O(AzP, At?) the associated truncation errbe,,

Lo(ul) = f =0+ O(AzP, At9) . (4.25)

For compactness let us assume that largest contributidrettruncation error can be
expressed simply as= Ch? = O(h?) whereh corresponds to either the spatial or
time discretization and’ is a real constant coefficient. The finite-difference repnes
tation £, is said to beconsistentf
lime=20, (4.26)
h—0
Let u(t, z) represent the exact solution to a PDE anthe exact solution of the
finite-difference equation that approximates the PDE withiacation erroO(AxP, At?).
The finite-difference equation is said to benvergentwvhen the truncation error tends
to zero as a power gf in Az and a power ofy in At. Note that this condition is
much more severe that the simple requirement that the ttioncarror will tend to
zero asAx andAt tend to zero. The latter condition, in fact, is thatohsistencysee
also Sect. 4.2.3) and does not ensure that the numericdlosola approaching the
exact one at thexpectedate, that is the rate determined by the truncation error and
consequent to the choice of the given finite-differenceasgntation of the continuum
differential operator.
Since checking convergence essentially amounts to measliow the truncation
error changes with resolution, it is useful to definleal (i.e., pointwise) deviation
from the analytic solutiom atx = z; as

€j(h) = ugh) — u(z5) (4.27)

be the magnitude of thargesttruncation error (and which could be either in space or

in time) associated to the numerical soluti@%) obtained with grid spacing. If the
the numerical method usedpsth order accurate, then

ej(h) = Ch? +O(hPT1) | (4.28)

whereC' is a constant real coefficient. A different solution compluréth a grid spac-
ing & will have at the same spatial positian a corresponding truncatian (k) error,
so thaterror ratio will be

R;(h,k) = Z EZ; : (4.29)

and the “numerical” local convergence order, that is theepaod convergence as mea-
sured from the two numerical solutionsagtwill be

log R;(h, k)
log(h/k)

In the rather common case in whigh= 1 /2, expressions (4.29) reduces to

P (4.30)

R;j(h,h/2) =27,
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and the overall order of accuracy is measured numericaly-asog, (R). As we will
discuss in the following Sectiothe discrete representation of the continuum equations
is said to be convergent if and onlyjif= p, i.e,, if

o _log(e)
1 = =p. 4.31
oo log(Ch) P (4.31)

Stated differently, convergence requires not only thatettier is decreasing and thus
that the method is consistent (see Sect. 4.2.3) but thatizdseasing at thexpected
rate.

In general there will be a minimun resolution, gay._, below which the truncation
error will dominate over the othere,g.,round-off error. Clearly, one should expect
convergence only fat < h_, and the solution in this case is said to be roavergent
regime

What discussed so far assumes the knowledge of the anabyittos, which, in
general, is not available. This does not represent a magiaole and the convergence
test can still be performed by simply employing a third nuicsrevaluation of the
solution. This is referred to as ‘“self-convergencetest and exploits the fact that
the difference between two numerical solutions does notdémn the actual exact
solution

uf —ul = (& (h) = u(ay)) = (k) —ulz;)) = &(k) = (k).

where of course the two squtioméh) andug.k) should be evaluated at the same grid-
pointz;. If one of the numerical solutions is not availble at such mpg.g.,because
the spacing used is not uniform) a suitable interpolatiomeieded and attention must
be paid that the error it introduces is much smaller tharee#f(%) or ¢;(k) in order
not to spoil the convergence test.

) RO

With (4.28) in mind and using three different numerical $i@IUSu§.h U
with grid spacings such that> k > [, the numerical error ratio is then defined as

(h) 0} 51

Uy — Uy e;j(h) —e;(1)  hP—1P

Ri(hkil)= 2 1 _ & ) _ = (4.32)
i WP a0 T G ) W1

where the numerical solutionrél) with the associated errer (1) has the role of “refer-
ence” solution since it is the one with the smallest errothlacommon case in which
k = h/2andl = k/2 = h/4, the error ratio assumes the simple expresion

R(h,h/2;h/4) =2F — 1,

so that the computed overall accuracy order is log, (R + 1).

As a final comment we note that all what discussed so far focal loonvergence
analysis can be extended tglabal evaluation of the truncation error and this amounts
to essentially replacing all the error estimates discussede with the corresponding
p-norms.
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4.2.3 Convergence and Stability

We conclude this Chapter with an important theorem thatgsriogether many of the
different concepts exposed so far and provides a uniquepnetation for the interplay
between consistency, convergence and stability. We hareieghe previous Section
that The finite-difference representation is said tabesistentf

%ILI%)G =0, (4.33)

and it will be said to beonvergentf

1
lim p = ~28L6)

=E— < = 4.34
o P log(Ch) P (4.34)

Clearly, also for a convergent solution — 0 ash — 0; however, conditions (4.26)

and (4.31) underline that while a convergent soluticgl$® consistent, the latter is not
necessarily true. Stated differently, while there are itdinonsistent representation of
the differential operator, only one will be convergent.

There are numerous ways in which a consistent represamtdtiodifferential oper-
ator may not be convergent and in large majority of the cdsektk of convergence is
related to a programming error (or “bug”). Because of thisy\wergence tests represent
the most efficient if not only way of validating that the distr form of the equations
represents a faithful representation of the continuum daed hence of picking out
bugs!).

The knowledge of convergence has also another rewardirggapd this is beau-
tifully summarised in the following theorem:

Theorem Given a properly posed initial-value problem and a finiteetif
ence approximation to it that satisfies the consistency itiond stability
is the necessary and sufficient condition for convergence.

This theorem, known as tHeax equivalence theoremis very powerful as it shows
that for an initial-value problem which has been discretiagth a consistent finite-
difference operator, the concept of stability and convecgeare interchangable. In
general, therefore, proving that the numerical solutiocoisvergent will not only val-
idate that the discrete form of the equations representitdifiarepresentation of the
continuum ones, but also that the solution will be boundeadl dimes.
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Chapter 5

TheWave Equation in 1D

The numerical solution of the wave equation offers a goodnpta of how a higher-
order (in space and time) PDE can be easily solved numeritathugh the solution of
a system of coupled 1st-order PDEs.

In one spatial dimenion (1D) the wave equation has the gefoera:

0%u 5 0%u

72 = Voz (5-1)

where, for simplicity, we will assume thatis constanti(e., v # v(z)), thus restricting
our attention to linear problems. Itis much more converten¢write (5.1) as a system
of coupled first-order conservative PDE. For this we set

ou

= v— 5.2

Pl (52)
ou

= = 5.3

s = o (53

so that (5.1) can be rewritten as a system of 3 coupled, fidgrdalifferential equations

or 9s
ot~ Yoz
9s ar
ot~ Yoz’
u

ot %

where it should be noted that the equations have the timeatiee ofonevariable that
is proportional to the space derivative of thimervariable. This breaks the advective
nature of the equation discussed in the previous Chaptewdlatevent, for instance,
the use of an upwind scheme.

39
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0.8 [~ .
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Figure 5.1:Plot of the time evolution of the wave equation when the FTEi&se is used. The initial
conditions were given by a Gaussian centered at 5 with unit variance and are shown with the dotted
line. Note the growth of the wave crests and the appearansieoot wavelength noise. When this happens,
the numerical errors have grown to be comparable with thetieol which will be rapidly destroyed.

In vector notation the system (5.4) can be symbolicallytemitas

U  OF(U)
= T a =0 (5.4)
where
U:(Z), and F(U):(Ov S)U (5.5)

51 TheFTCS Scheme

As mentioned in the previous Chapter, the upwind method aabe applied to the
solution of the wave equation and the simplest, first-ordeinne method we can use
for the solution of the wave equation is therefore given l®yRACS scheme. Applying
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it to the first-order system (5.4) and obtain

R %(S;H —s7,) + O(Az?), (5.6)
n n - n n
ST = i+ 5 =) + O(Az%), (6.7)

Once the value oi}’“ has been calculated, the valueuofan be integrated in time
according to equation (5.3) so that

n+1 n n 2
uj+ = uj + Ats] + O(Azr7) (5.8)

where it should be noted that*! has the same truncation erroréft! ands”+!.

Of course, we do not expect that the FTCS scheme applied teolaéon of the
wave equation will provide a stable evolution and this isdieshown in Fig. 5.1 which
reports the solution of equations (5.6), (5.6) and (5.8)intaas initial conditions a
Gaussian centered at= 5 with unit variance. Different lines show the solution at
different times and is apparent how the initial profile spiit two part propagating in
two opposite directions. During the evolution, howevee, éror grows (note that the
peaks of the two packets increase with time) and in about orssing time the short
wavelength noise appears (this is shown by the small shaisgeoduced when the
wave has left the numerical grid). When this happens, theamagad errors have grown
to be comparable with the solution, which will be rapidly tleged.

5.2 ThelLax-Friedrichs Scheme

As done in the previous Section, we can apply the Lax-Friddrscheme to the solu-
tion of the wave equation through the first-order system) @l easily obtain

it = §(rj+1 +Tj_1)+5(5j+1 —s7_1) +0(Az?), (5.9
n+1 _ l n n g n _an O A 2 510
85 = 2(5j+1 +s7 )+ 2(7’j+1 1)+ O(Az?), (5.10)

Also in this case, once the value sijf“ has been calculated, the value ft_ﬁ“
can be computed according to (5.8).

The solution of equations (5.9), (5.9) and (5.8) with the sanitial data used in
Fig. 5.1 is shown in Fig. 5.2. Note that we encounter here sineesbehaviour found
in the solution of the advection equation and in particulés apparent the progressive
diffusion of the two travelling packets which spread over trumerical grid as they
propagate. As expected, the evolution is not stable androo growth is visible many
crossing times after the wave has left the numerical grid.
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1 _
- Lax-Friedrichs @ ]
08 - scheme “ 7]
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u(t)
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Figure 5.2:The same as in Fig. 5.1 but when the Lax-Friedrichs schemseis. (Note the absence of the
late time instabilities but also the effects of the numéritfusion that widens and lowers the wave fronts.

5.3 ThelLeapfrog Scheme

We can adapt the Leapfrog scheme to equations (5.4) for tlicso of the wave
equation in one dimension, centering variables on appatghialf-mesh points

n — du " _ U?+1 — u.;l
TjJr% = % m = UT + O(AIL’) y (511)
Jj+
n+3 n+1 n
nty _ Ou|? U Y
Rias P - 4 Y o, (5.12)
J ot j At
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and then considering the Leapfrog representation of espg(b.4)

ntl  opad
P = e (s - )+ oaa?) (5.13)
n+ty n—j3 n n

8; = s *ta (rﬂé *Tj,%) + O(Az?) (5.14)

As in the previous examples, the new value for the wave vigrials finally computed
after the integration in time of. Here however, to preserve the second-order accuracy
in time it is necessary to average the time derivatibetweem andn + 1 to obtain

At
n T2 L o(Az?) . (5.15)

At
uth = 4 (5" 4 s7) + O(Az?) =u

J J 2 J J 2
1= _
- Leapfrog A
- scheme ]
0.8 ; -

u(t)

0 2 4 6 8 10
X

Figure 5.3:The same as in Fig. 5.1 but when the Leapfrog scheme is used.tiNoabsence of the late
time instabilities and of the effects of the numerical dsffn.

A simple substitution of (5.11) and (5.12) into (5.13) andl@ shows how the
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Leapfrog representation of the wave equation is nothindgt®second-order differenc-
ing:

n+l n n—1 n _ n n
u Tty (“j+1 2uj + uj 4

i ALs > +O(At?, Az?),  (5.16)

so that the solution at the new time-level is

u?"'l = Oé2u?+1 +2uf (1 - o?) + a2uj_1 - u?_l +0(Az?) . (5.17)

Note that as formulated in (5.17), the Leapfrog scheme has bectively recast
into a “one-level” scheme.

The solution of equations (5.17) and (5.15) with the samgalndata used in
Fig. 5.1 is shown in Fig. 5.3. Note that we do not encountee laesignificant amount
of diffusion for the two travelling wave packets. As expektthe evolution is stable
and no error growth is visible many crossing times after theenhas left the numerical
grid.

5.4 TheLax-Wendroff Scheme

Also in the case, the application of this scheme to our sysiEequations (5.4) is
straightforward. We can start with the time evolution of Hagiabler to obtain

=g b (S5 SN Yo .19

where the terms in the spatial derivatives are computed as

n+1/2 1 n n n n
Sjil//2 = 5 (sf +s) +a (i —rf) + o(Az?), (5.19)
n 1 n n n n

Sgil//; = 5 (sf+si1) +a(rf —ri) + O(Az?). (5.20)

As done for the advection equation, it is convenient not te eguations (5.18)
and (5.19) as two coupled but distinct equations and ratheoinbine them into two
“one-level” evolution equations forands

n n 1 n n Qon n s
T LR ry +a |:§(Sj+1 - Sj—l) + §(rj+1 - QTJ' + Tj—l):|

+o(A?), (5.21)
n+1 n 1 n n Qon i w
s’ = s ta 5(7"3‘+1 - 'rj—l) + §(Sj+1 — 255 + Sj—l)

+0(Az?) . (5.22)

The solution of equations (5.21), (5.22) and (5.15) withghmne initial data used in
Fig. 5.1 is shown in Fig. 5.4. Note that we do not encountee laesignificant amount



5.4. THE LAX-WENDROFF SCHEME 45

of diffusion for the two travelling wave packets. As expegtthe evolution is stable
and no error growth is visible many crossing times after taeenhas left the numerical
grid.

A final remark should be made on the last three evolution selsaronsidered. We
have seen that all of them are stable and the last two, ircpéatj also show very little
sign of numerical diffusion. We need at this point a way of memg the “quality”
of the solution and, more precisely, a way of estimating therall truncation error,
the dissipation and the stability of the solution. A systéodiscussion of this will be
presented in Section 4.2.

1= _
: Lax—Wendroff ::"‘ “‘:‘_ :
Scheme ; | i

0.8 o .
0.6 - .

0 2 4 6 8 10
X

Figure 5.4:The same as in Fig. 5.1 but when the Lax-Wendroff scheme i Usete the absence of the
late time instabilities and of the effects of the numeriaéudion.
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Chapter 6

Boundary Conditions

Unavoidable and common to all the numerical schemes diedisssfar is the problem
of treating the solution on the boundaries of the spatial gs the time evolution pro-
ceeds. Let be the first gridpoint and the last one. Itis clear from equations (3.24),
(5.16), (5.21) and (5.22) that the new solution at the botiadaof the spatial grid
(i.e, uf ™ w7 tt) is undetermined as it requires the valugsu’;, ;. The most natural
boundary conditions for the evolution of a wave equatiortlaeeso calledsommerfeld
boundary conditiongor radiative boundary conditionsvhich will be discussed in the
following Section. Other boundary conditions of generétiast are:

e Dirichlet boundary conditions: values of the relevant quantity aggosed at the
boundaries of the numerical grid. These values can be ditinetions of time
or be held constant{. boundary conditions for boundary value problems);

"Periodic” boundary conditions: assume that the numerical domaips to
logically connected in a given direction; this is often ugedosmological sim-
ulations (and “videogames”).

e von Neumann boundary conditions: values of the derivatives of the v
guantity are imposed at the boundaries of the numerical dkgifor Dirichlet,
these values can be either functions of time or be held coh&f boundary
conditions for boundary value problems);

"Reflecting” boundary conditions: mimic the presence of a reflecting Heun
ary,i.e., of a boundary with zero transmission coefficient;

"Absorbing” boundary conditions: mimic the presence of an absorbing
boundaryij.e., of a boundary with unit transmission coefficient;

6.1 Outgoing Wave BCs: the outer edge
A scalar wave outgoing in the positivedirection is described by the advection equa-
tion:

ou ou
S e =0 (6.1)
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A finite-difference, first-order accurate representatibeguation (6.1) which is cen-
tered in both time (at + %) and in space (at + %) is given by (see Fig. 3.11)

n+1
©
(n+1/2)
T e ghost zones
(i-1/2)
n

_— & ¢—————— @
-2 i1 j j*1

Figure 6.1:Schematic representation of the centering for a first-palggoing-wave Sommerfeld bound-
ary conditions. An equivalent one can be drawn for an ingeiage.

1 n n n n U n n n
AL () +uf™h) = (ufyy + )] =~ Al P ) — (W )]
and which leads to

w4 a) =uf" ' (“1+ @) +ufyy (1 - ) +uf (14 ) (6.2)

Expression (6.2) can also be written as

wi = — Q4 Q) (6.3)
where .
—
= . A4
@ 1+« (6.4)

The use of expression (6.3) for the outermost grid point wittee wave is outgoing will

provide first-order accurate and stable boundary conditiblote, however, that (6.3) is
a discrete representation of a physical condition whichldiransmit the wave without
reflection. In practice, however, a certain amount of reifbeds always produced (the
transmission coefficient is never exactly one); the redidizae is then transmitted
back in the numerical box. A few reflections are usually sigfitto reduce the wave
content to values below the machine accuracy.



6.2. INGOING WAVE BCS: THE INNER EDGE 49

6.2 Ingoing Wave BCs: theinner edge

Similarly, a scalar wave outgoing in the negativ€irection (or ingoing in the positive
one) is described by the advection equation:

ou Ou
Friar 0 (6.5)

Following the same procedure discussed before, the algoliecomes:

At At At At
n+1 n+1 n n
u; (1 + Tz:) = Ui (1 - _ﬁr) T Ui (1 + _ﬁr) +u; (1 - _ﬁr)

Then
witt =i —u Q4w (6.6)

whereQ is the same quantity as for the out-going wave. If we use émps(6.3) and
(6.6) to evolve the solution at time-step- 1 at the boundary of our spatial grid, we are
guaranteed that our profile will be completely transporteeya whatever integration
scheme we are adopting (Leapfrog, Lax-Wendroff etc.).

6.3 Periodic Boundary Conditions

These are very simple to impose and it between 1 and, they are given simply by

u?'ﬂ = u?f}, u?"'l = ug"'l , (6.7)

In the case of a Gaussian leaving the center of the numenithl these bound-
ary conditions effectively produce a reflection. The bougdanditions (6.7) force
to break the algorithm for the update scheme excluding tledind last points that
need to be computed separately. An alternative procedaresists of introducing a
number of‘ghost” gridpoints outside the computational domain of intereshsd the
solution is calculated using always th@me stencilor j = 1,2,..., J and exploiting
the knowledge of the solution also at the ghost gridpomt, 0 andJ + 1.

In the case there is only one ghost gridpoint at either edgibeflD grid, the
boundary conditions are simply given by

n+l _  n+l n+l _  n+l
ug T =, uy =uyt (6.8)
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Chapter 7

Thewave equation in two
spatial dimensions (2D)

We will now extend the procedures studied so far to the casenafve equation in two
dimensions ) ) )
0%u 5 (0% O0%u
— = —+— . 7.1
oz ¥ (aﬂ + ay2) (7.1)

As for the one-dimensional case, also in this case the wavatien can be reduced
to the solution of a set of three first-order advection equati

or Js

5 = ’U@ 5 (72)
ol 0s

a = Ua—y , (73)
Os or 0l

L o— (). (7.4)

once the following definitions have been made

r = v%, (7.5)
ou
= Vv— 7.
= g (76)
ou

In vector notation the system can again be written as

%—Ij +VF(U) =0, (7.8)
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where
v 0 0
u=|1 |, and FU=10 —-v 0 |U=-v )
S 0 0 —v s
(7.9)
provided we define
0
0 0 92
0
=| 0 0 =
V= By . (7.10)
9 9
dr Oy

The finite-difference notation should also be extended toaat for the two spatial
dimension and we will then assume that, = u(x;, y;,t").

7.1 ThelLax-Friedrichs Scheme

We can look at the system of equations (7.2) and (7.3) as & s@baequations to be
integrated with the procedures so far developed in one+tina. Furthermore, we
need to solve for eq. (7.4) which can be written as

Os _ Ok Ok
ot Ox oy
once we identifyFy with —vr andFy with —vl.
The Lax-Friedrichs scheme for this equation is just the gdization of the 1D
expressions discussed so far and yields

(7.11)

At
~5AL (F)iv1,5 — (F)i-1,4])

At n n
“2Ay [(Fig1 — (F))i-1]

n+1
0,J

n n n n
1 [sit1,5 + 811y T S0 + i)

1 At Tn+1 J— rn_l .
= Z I:S;l+17] + S?fl,j + SZ]+1 + S?-,jfl} — 7 |: T ]A:I: (] J
LA [ =1

2 Ay ’

(7.12)

with the corresponding stencil being shown in Fig. 7.1 anenetit should be noted
that the center of the cross-like stencil is not used. A vooriN@nn stability analysis
can be performed also in 2D and it yields

&= %[cos(kxAz) + cos(kyAy)] — iloy sin(kcAx) + oy sin(ky Ay)],  (7.13)
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Figure 7.1:Schematic diagram of a Lax-Friedrichs evolution schemevindimensions. Note that the
center of the cross-like stencil is not used in this case.

where At At
Vx vy
< = , = . 7.14
@ Ax Uy Az ( )
Stability is therefore obtained if
1
5~ (f+a7) >0, (7.15)
or, equally, if
At < __ Az , (7.16)

2(v2 + v}%)
Expression (7.16) represents the 2D extension of the CHiilisgacondition. In gen-
eral, for a N dimensional space, the CFL stability condittan be expressed as
Ax

WIUI) ’
wherei = 1,...N and|v| = (3°;_, v?)'/2. Note, in 2D, the appearence of an averag-

ing coefficientl /4 multiplying the value of the function at the time-level

At < min ( (7.17)

N

7.2 ThelLax-Wendroff Scheme

The 2D generalization of the one-dimensional scheme (3s4a)so straightforward
and can be described as follows
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1. Compute- and! at the half-time using a half-step Lax-Friedrichs scheme

n+3 1 n n n n o n n
i.j ? o= 1 (7”1'+1.,j T T T Ti,jfl) + 1 (SiJrl,j - 51'71,3') )
(7.18)
n+% 1 n n n n « n n
g ® = 7 Wy + i i + 1) + 7 (ST — sim)
(7.19)
wherea = vAt/Ax.
2. Evolves to the time-leveh + 1 using a half-step Leapfrog scheme
n+1 n 8% n+i n+i (6% n+i n+1
sty =si;t 3 (TiJrl?j - TH?]-) t3g (li,jﬁl — lm-fl) : (7.20)
3. Updateu to the time-leveh + 1, i.e,
At
n+l _  n n+1 n
Uij = Wi+ (sii'+siy) - (7.21)
4. Evolver and! to the time-leveh + 1, i.e,,
n+1 1 n n n n
T ) (TiJrl,j e Tl T ri,jfl) +
afl n n+1 1 n n+1
9 [5 (Si+1,j + 5i+1,j) 5 (Sifl.,j + Si—l,j) )
(7.22)
n 1 n n n
myt o= 1 (g + g H U+ 15 0) +
a1l n n+1 1 n n+1
9 [5 (siyer +si541) — 5 (sij1 + Szj—l):| (7.23)

7.3 TheLeapfrog Scheme

The 2D generalization of the one-dimensional scheme (5s1&)ss straightforward,
but not particularly difficult. As in one dimension, we caarstby rewriting directly
the finite-difference form of the wave equation as

n+l n n—1 n _ n n n _ n n
Uig TG Uy e (g T2 Uy o2 (Wi T2 Ui
At? Az? Ay?

so that, after some algebra, we obtain the explicit form
uf;rl = o? [u;ﬁru Fuig g tulg + u?_’jfl] + 2w (1 — 20%) — u?;l . (7.24)

The stencil relative to the algorithm (7.24) is illustratad-ig. 7.2.
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i+1 ° ¢ °

J-1 J J+1

Figure 7.2:Schematic diagram of a Leapfrog evolution scheme in two dsimns. Note that the center
of the cross-like stencil is used in this case both at the-tewel . (filled circle) and at the time level + 1
(filled square).

Figs. 7.3 and 7.4 show the solution of the wave equation in &Bgithe scheme
(7.24) and imposing Sommerfeld outogoing-wave boundangitions at the edges of
the numerical grid.

Radically different appears the evolution when reflectigeriary conditions are
imposed, as it is illustrated in Figs 4. Note that the inigablution {.e., for which
the effects of the boundaries are negligible) is extremihilar to the one shown in
Figs. 4, but becomes radically different when the waveftwest reached the outer
boundary. As a result of the high (but not perfect!) reflagtiof the outer boundaries,
the wave is “trapped” inside the numerical grid and boun@ekland forth producing
the characteristic interference patterns.
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Figure 7.3:Plot of the time evolution of the wave equation when the Lempcheme in 2D is used and
Sommerfeld boundary conditions are imposed. SnapshotEi@aising times are illustrated in a clockwise

sequence.
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'2D_wave_00.dat" u 1
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Figure 7.4:Plot of the time evolution of the wave equation when the Lespicheme in 2D is used

and Reflecting boundary conditions are applied. Snapshatsraasing times are illustrated in a clockwise

sequence.
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Figure 7.5:Plot of the time evolution of the wave equation when the Lempcheme in 2D is used and

Reflecting boundary conditions are applied.
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log (Il u(t) [1?)

Figure 7.6:Plot of the time evolution of the 2-norm when the Leapfrogesok in 2D is used. Note the
radically different behaviour between Sommerfeld and ctifig boundary conditions.
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Chapter 8

Par abolic PDES

8.1 Diffusive problems

The inclusion of viscosity in the description of a fluid leadsion trivial complications
in the numerical solution of the hydrodynamic equationsnian analytical point of
view, the resulting equations are no longer purely hypéclddDE’s but rather mixed
hyperbolic-parabolic PDE’s. This means that the numerigathod used to solve them
must necessarily be able to cope with the parabolic parteogétiuations. It is therefore
convenient to fully understand the prototypical parabetjoation, the one-dimensional
diffusion equation, both analytically and numericallyfdre attempting to solve any
mixed hyperbolic-parabolic PDE.

8.2 Thediffusion equation in 1D

The description of processes like the heat conduction idid lsody or the spread of a
dye in a motionless fluid is given by the one-dimensidatitilision equation
ou(z,t) 0u(z,t)
e D - (8.1)
Here D is a constant coefficient that determines the magnitudeedfdiffusion” in the
process under investigation (being given by the thermadiaotivity and dye diffusion
coefficient respectively in the above mentioned examples).

A complete description of some particular process will diebe possible only
once the initial valuei(e., u(z, 0) = h(x) with z € [0, L]) and the boundary conditions
are specified. The most common boundary conditions (BCsjwarle to prescribe the
value of the function:(z, t) at the boundaries(0, t) = uo(t) andu(L,t) = ur(t), if
the boundaries of the physical domain are modeled to be iartha and at a distance
L from the origin. This type of BCs are call@&lrichlet boundary condition§DBC).

On the other hand, it is possible that the physics of the prablequires the BCs
to be specified in terms of the derivatives «fx,t). This is the case for instance
when 1-D heat conduction in a bar is investigated and the demigs of the bar are
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completely insulated so that no heat flux is present outbiel@ody. More generally, if
q(z,t) = Ou(x,t)/0z, the so calledNeumann boundary conditiofsIBC) are written
asq(0,t) = qo(t) andq(L,t) = qr(t). It should be noted however that Dirichlet BCs
and Neumann BCs are not the only possible BCs.

In what follows, first the analytic solution to a simple d#fue problem will be
given and then some numerical methods to solve it will be éxadn

8.3 Explicit updating schemes

8.3.1 TheFTCSmethod

The most straightforward way to finite difference equat®mis by the FTCS method,
ie,

1
n+ —u”

S W Y Ra
At Az?

Unlike for a hyperbolic equation, where the FTCS methodddadin unconditionally
unstable method, the presence of a second space derivatihe imodel parabolic
equation (8.1) allows the FTCS method to be conditionalipkst [9]. A von Neumann
stability analysis leads in fact to the stability criterion

n

- =L | O(At, Az?), (8.2)

At
y=2D— <1

<1, (8.3)

that lends itself to a physical interpretation: the maxintimre step is, up to a numeri-
cal factor, the diffusion time across a cell of widx. This stability condition poses a
serious limit in the use of the above scheme since the typinalscales of interest will
require a number of timesteps which could be prohibitive intidimensional calcu-
lations. The additional fact that the overall scheme is-firster accurate in time only
strengthens the need for a different method.

8.3.2 TheDu Fort-Franke method and the #-method

With this objective in mind, it is not difficult to think of a wato avoid the reduced
accuracy due to the forward-time finite differencing appftoased in FTCS. A simple
time-centered finite differencing

j i _ pYn T2yt
2At Ax?

(8.4)

should grant second-order accuracy. Unfortunately, tlegod is unconditionally un-
stable. To overcome the stability problem, Du Fort and Feafikl] suggested the
following scheme

n n+1 n—1 n
j i _plmiTY Y U
2At Ax? ’

(8.5)
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which is obtained from (8.4) with the substitutionf with £ (u? ' 4+ 7~ "), that s,
by taking the average af; "' andu’ ', i.e,

L=\ gl
it = i i fi O(Az®). (86

Y <1+’y)u3 +<1+7) (u]+1+u]71)+ ( x) ( )
With this substitution, the method is still explicit and betes unconditionally stable,
but not without a price. A consistency analysis shows, in, fd@at the the Du Fort-
Frankel method could be inconsistent. The local truncagtioor is [8]

n At\? 5%u
; Az ot2
J,n in

2
0<At2,Am2, (%) ) , (8.8)

which shows that ifAt and Az tend to zero at the same rates., At = kAz with
k being a constant, then the truncation error does not vaoishf — 0 andAz —
0. Indeed, the solution obtained with this method will effeely be the solution to
equation

Az? 0%y
12 Ozt

At? 93u

o % + ... (8.7)

Jin

Ou(z,t) 5 0%u(x,t) 0u(z,t)

En +k 2 = D R (8.9)
and not the solution of (8.1). On the other hand, it is alsarcteom (8.7) that having

a timestepAt = kAxz'*¢ with e > 0 will assure the consistency of the method. Of
course, the closer isto 1, the smaller will have to béz in order to achieve consis-
tency. Moreover, accuracy requirements pose an additomredtraint ore. For a first
order-method it is necessary to have- 1/2 while to achieve second-order accuracy
the requirement is = 1. It would be pointless and computationally inefficient td se
¢ > 1 since in this case the dominant contribution to the truncaéirror would be
determined by the terr® (A:cQ) which acts as an upper limit to the overall accuracy
order. This means thatis constrained to be in the intervgl2 < ¢ < 1.

The advantages of the Du Fort-Frankel method over the FTG&nhse should now
be easily seen. To achieve first-order accuracy, a timesteg- (Ax)3/2 is needed
with the former while the latter requireSt ~ (Az)?. On the other hand, if a timestep
At = (A:c)2 is used the the Du Fort-Frankel method gains, second-oreracy.
Finally, any desired accuracy between first and second caléd be achieved with a
timestep that is independent of the diffusion coefficiBntThe only minor drawback
of the Du Fort-Frankel scheme lies in the requirement of kegpack of an additional
time level.

A generalization of the Du Fort-Frankel scheme is also gittéorward. In partic-
ular, when averaging;?+1 andu?fl, instead of weighting them equally, it is possible
to average them with different weights. The resulting updaheme is therfore

+1 -1 +1 -1
P =l _ Du?H -2 (Gu? — (1= 0)uf ) +ul g

2At Ax? ’

u

(8.10)
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wheref is a variable parameter. In [8] it is shown that the local tation error for this
scheme is

At? 93y Ax? 0*u 2At Ou

— | - D=/~ 20 —1)"—— 11
oo, Pimom|, ¥ Vag T G
At? 9%u AN

Az? 02|, i (AxQ’At A ) ’ (842

which clearly shows that consistency could be achievedfpralue off if At = kAz*T¢
with £ andk being positive real numbers. #f= 1/2, on the other hand, the scheme
is actually the Du Fort-Frankel schendd.[expression (8.7)] with the consistency con-
straints already outlined above. It is therefore clear, taen solving equation (8.1),
timestep considerations show that the only viablecheme is thg = 1/2 scheme,
i.e., the Du Fort-Frankel scheme.

8.3.3 ICN asa@-method

We next extend the stability analysis of tAdCN discussed in Sect. 3.6.1 to the a
parabolic partial differential equation and use as modabéqn the one-dimensional
diffusion equation (8.1). Parabolic equations are comgsalved using implicit meth-
ods such as the Crank-Nicolson, which is unconditionalpkst and thus removes the
constraints on the timestepd., At ~ O(Az?)] imposed by explicit schemes [9].
In multidimensional calculations, however, or when theafetquations is of mixed
hyperbolic-parabolic type, implicit schemes can be cursdi@e to implement since
the resulting system of algebraic equations does no lormer simple and tridiagonal
matrices of coefficients. In this case, the most conveniehtéce may be to use an
explicit method such as the ICN.

Also in this case, the first step in our analysis is the dadwedf a finite-difference
representation of the right-hand-side of eq. (8.1) whitkegaond-order, has the form

u? ;= 2u +ul_
Lol ) =15 A:52 =L L o(A2?) . (8.13)

Constant Arithmetic Aver ages

Next, we consider first the case with constant arithmeticames (e.,0 = 1/2) and
the expression for the amplification factor aftef-iterations is then purely real and
given by

M
Mg =142 (9", (8.14)
n=1
wherey = (2DAt/Az?) sin®(kAz/2). Requiring now for stability that/¢2 < 1 and
bearing in mind that

M
“1<) (=)' <0, fory<i, (8.15)

n=0
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0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
0 0

Figure 8.1:Left panel:stability region in the , v) plane for the two-iterationg-ICN
for the diffusion equation (8.1). Thick solid lines mark fimit at which¢2 = 1, while
the dotted contours indicate the values of the amplificaféator in the stable region.
Right panel: same as in the left panel but with swapping the averages bativeo
corrections.

we find that the scheme is stable famy number of iterations provided that < 1.
Furthermore, because the scheme is second-order acaunai¢hie first iteration on,
our suggestion when using the ICN method for parabolic égusits that one iteration
should be usednd no moreln this case, in particular, the ICN method coincides with
a FTCS scheme [9].

Note that the stability conditiof < 1 introduces again a constraint on the timestep
that must be\t < Az?/(2D) and thusO(Az?). As aresultand at least in this respect,
the ICN method does not seem to offer any advantage over etipiicit methods for
the solution of a parabolic equatién

Constant Weighted Averages

We next consider the stability of tieICN method but focus our attention on a two-
iterations scheme since this is the number of iterationsleeén the solution of the
parabolic part in a mixed hyperbolic-parabolic equatioremfor instance, operator-
splitting techniques are adopted [9]. In this case, the divgition factor is again purely
real and given by

£ = 1—2y+49%0 —8y%67, (8.16)
so that stability is achieved if

0<v(1-20y+46°y*) <1. (8.17)

INote that also the Dufort-Frankel method [11], usually diéstl as unconditionally stable, does not es-
cape the timestep constraift ~ O (Axz?) when a consistent second-order accurate solution is nég8Hed
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Sincey > 0 by definition, the left inequality is always satisfied, white right one is
true provided that, fory < 4/3,

VA Gl ) NP R e Vit A Gl 2 (8.18)
4~2 4~2

The stability region described by the condition (8.18) iswh in the left panel
of Fig. 8.1 forsin kAz = 1 and illustrates that the scheme is stable for any value
0 < 0 < 1, and also that slightly larger timesteps can be taken vihero.2.
Swapped Weighted Averages

After some lengthy algebra the calculation of the amplifarafactor for thed-ICN
method with swapped weighted averages yields

E=1—-2v+4+%0 —8y%0(1 —0) , (8.19)
and stability is then given by
—1<1-2y4+4y%0-8y%0(1-0)<1. (8.20)

Note that none of the two inequalities is always true and deoto obtain analytical
expressions for the stable region we solve the conditio20f8with respect t@ and

obtain
9y — 1447 —4
pc ItV oS (8.21a)

dry
%y —1)— /7 (4P —42 1 5y -4
p< 12 )\/V(MV2 V2 + 5y )7 (8.21b)
2y —1 13 42+ 5y —4
5> 12 )+\/v(432 P+ -4 (6.210)

The resulting stable region fein KAz = 1 is plotted in the right panel of Fig. 8.1 and
seems to suggest that arbitrarily large values abuld be considered wheh> 0.6

It should be noted, however, that the amplification factaalé®o severely reduced as
larger values ofy are used and indeed it is essentially zero in the limit 1.

8.4 Implicit updating schemes
8.41 TheBTCS method

It is common for explicit schemes to be only conditionallgige and in this respect the
Du Fort-Frankel method is somewhat unusual. Implicit méfhon the other hand, do
not share this property being typically unconditionallgtde. This suggests to apply an
implicit finite differencing to equation (8.1) in the form af‘backward-time centered-

space” (BTCS) scheme and obtain

Ly u = 2un T L

=D It T I=L 4 O(AL, Ax?) . (8.22)

u
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As a von Neumann stability analysis shows [9], the diffenen¢8.22) is uncondition-
ally stable. This method is also calledckward time Rearranging the terms it is easy
to obtain

—Wu?jll +2(1+ 'y)u}“rl — 'yuﬁrll =2uf , (8.23)
which shows that to obtaim at time leveln + 1 is necessary to solve a system of linear
equations. Luckily, the system tddiagonal, i.e., only the nearest neighbors of the
diagonal term are non zero, which allows the usspafrse matrixechnigues (a matrix
is called sparse if the number of non zero elements is smalpaoed to the number of
all the elements). The main disadvantage of this schemajdsethat of requiring the
simultaneous solution a¥ algebraic equations, is that it is only first-order accuiate
time.

8.4.2 The Crank-Nicolson method

Combining the stability of an implicit method with the acaay of a method that is
second-order both in space and in time is possible and isethby averaging explicit
FTCS and implicit BTCS schemes:

wIt — D (i — 202+l 4 (W — 2ul ol )
At 2 Ax?

O(A#2, Az?) . (8.24)

This scheme is calle@rank-Nicolsorand is second-order in time since both the left
hand side and the right hand side are centerediiri /2. As the fully implicit scheme,
the CN scheme is unconditionally stable and is the best etioic¢he solution of simple
one dimensional diffusive problems.

The disadvantage of this scheme with respect to an expdicérse like the Du Fort-
Frankel scheme lies in the fact that in more than one dimertsie system of linear
equation will no longer be tridiagonal, although it willlsbe sparse. The extension of
the Du Fort-Frankel scheme, on the other hand, is straigiial and with the same
constraints as in the one dimensional case. Because ofrtlisther problems which
emerge in multidimensional applications, more powerfuthods, like theAlternating
Direction Implicit (ADI) have been developed. ADI embodies the powerful conoép
operator splittingor time splitting which requires a more detailed explanation and will
not be given in these notes.
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Appendix A

Semi-analytical solution of the
model parabolic equation

In this appendix we present details on the derivation of #misanalytic solution to
equation
2
Ou(z,t) _ D8 u(zx,t) 7 (A1)
ot Ox?

whereD is a constant coefficient. We will first consider homogeneDinghlet and
then homogeneous Neumann boundary conditions. Becaubetihlevalueu(z,0) =
h(z) is also needed, we will consider two different initial prefilfor the two cases.
The solutions we will obtain are to be considered semi-ditalyin the sense that it is
usually necessary to evaluate them numerically. This ises@aubise infinite series and
integrals that could not always be evaluated analyticatyimvolved.

A.1 Homogeneous Dirichlet boundary conditions

Consider a generic problem for which equation (8.1) holds axdomair0, L]. Sup-
pose also that the boundary conditions could be writtehaasogeneou®BC, i.e.,

u(0,t) = u(L,t) = 0, and that at time, = 0 the distribution ofu(z, t) is that shown
in Figure A.1, which could be written as

2x/L if 0<z<L/2
h(z) = u(z,0) = (A.2)
—2x/L 42 if L/2<x<L
while the boundary conditions at€0,t) = u(L,t) = 0.

The equation could be solved by means of the separation @blas technique,
i.e., by searching for a solution of the form

u(x,t) = f(m)g(t) ) (A.3)
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u(x,0)

-

0.8

0.6

0.4

0.2

0 1 T 1 1 L L
0.2 0.4 0.6 0.8 1

x/L

o

Figure A.1: Initial value for the diffusive problem (8.1).

which allows to write equation (A.1) as

dg 0% f

Multiplying both sides byl /( f¢) the result is

10g 10%f

-——=D-—=. A5

g ot f 0x? (A-5)
The left hand side of (A.5) is a function obnly while the right hand side depends only
on x. Because of that, their common value can only be a constatht this constant
being a negative number because otherwyise oo (and therefores — oo) ast — oc.
Thus the common value could be denoted-aswith A > 0 and so (A.5) becomes

2
199, _ Lo

5= =Digm (A.6)

Recaling that the initial condition has been written/ds) it is possible to write the
solution as

u(z,t) = h(z)e ™, (A7)
with the requirement that
p%I g (A8)
ox2 T '

The problem (A.8) is arigenvalue problerfor the differential operator D 92 /9x?
with eigenvalue\ andeigenfunctionf(x). The eigenfunctions and eigenvalues will be
determined imposing the boundary conditions.

The general solution to (A.8) can be written as

f(x) = Ae™™* 4 Belk™ | (A.9)
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with & = /\/D, A and B are constants to be determined through the boundary
conditions. Requiring that(0) = 0 it is easily found thaB = — A and thus

flz) = A(e™* — k) = —2iAsinkz . (A.10)

The second boundary conditiof(L) = 0 allows to find the eigenvalues and the
eignenfunctions (and the trivial solutiof(z) = 0 as well). In factsin (kL) = 0
as soon as

A
kL:\/B:mﬂ, m=0,4+1,42,+3, ... (A.11)
so that the eigenvalues and the eigenfunctions are

Am =D (%)2 . fm(z) =sin (%x) . (A.12)

The solution to (A.8) will therefore be a linear superpasitiof the eigenfunctions

fm($),
u(z,t) = i (. SID (%x) exp {D (%)2 t} . (A.13)

One last condition is still not satisfied, the initial valuendition. And is exactly
this condition that allows to find the coefficients, such that

u(z,0) = i A, Sin (%z) = h(z) . (A.14)
m=1

This is a Fourier series on the inter{@) L] of the initial valueh(z) and its coefficients
may easily be evaluated keeping in mind the orthogonalibperty of the eigenfunc-
tions. Itis not difficult to show that

/.L. mr ' (kﬂr) 0 if k£#m,k=m=0,
sin (—z) sin | —z |dx =
0 L L I

/2 it k=m,
(A.15)
which allows to compute the coefficients, as
2 L . o/mm
Ay, = Z/o h(x) sin (Tz) dx . (A.16)

With h(x) as defined in (A.2), the above computation leads to the finatisa which
therefore is

)= 3 ansin (BE) exp [0 (B2)"4. 0 = s 202

L m2m?

(A.17)

m=1
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A.2 Homogeneous Neumann boundary conditions

Once equation (A.1) has been solved for homogenous Dititldendary conditions
it is straightforward to solve it with homogeneous Neumaoaoridary conditions. In
fact, the same procedure could be carried over to yield theciosolution.

Once again, let the mathematical domairmbe [0, L] for ¢ > 0 and if g(z, t) =
Ou/dz the homogeneous Neumann boundary conditions are writigidag = ¢(L,t) =
0. Since the boundary conditions require the derivative sk the initial condition
is chosen so that this condition is satisfied at 0 as well. The initial condition will
then be s 2

h(z) = u(z,0) = 1 +2 (Z) ~3 (E) . (A.18)

Everything that has been said in the previous case up to @il®holds. The

boundary conditions now require that

fl(z) = j_x = ik (A" — Be™ ™ ) (A.19)
vanishes at the boundaries of the domain. Fig(0) = 0 follows thatA = B while
F/(L) = 0 leads to the same eigenvalig, = D (mx/L)* as in the previous case.
The eigenfunction on the other hand changes since the desadution could be now
written as

flx)y=A (e”” + 67“”) = 2A cos (kx) (A.20)
so that the eigenvalue and the eigenfunction in this case are
mm\ 2 mm
Am =D (T) , fm(x) = cos (Tx) . (A.22)

To satisfy the initial condition it is necessary that

u(z,0) = i Gy, COS (%x) = h(z) (A.22)
m=0

where the sum now extends frabrto co. This is because the orthogonality property
of the eigenfunctions, which still holds and could once ads used to compute the
coefficientsa,,,, now reads

L mn (kﬂr )
cos(—x)cos| —z |dz = (A.23)
) eos (e eos (

Because of this, the initial condition could be written as
x\3 r\2 1 & mm 1 — cos (mm)
nw)=142(7) -3(7) = 2t 2 meos ((Te)» em=2—
(A.24)
so that the complete solution is

1 & 2 1 — cos
w(@,t) = 5+ am cos (%1’) exp {—D (E) t], 0, — gtz cos(mm)
m=1

L mimd

(A.25)
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Plan of the talk

* Numerical relativity: Why!?
* Numerical relativity: Why so hard?

* Numerical relativity: How!?
° vacuum
* non-vacuum: relativistic hydrodynamics/MHD

* | will assume basic knowledge of general relativity




Numerical Rclativitg: why?

Among other things, numerical relativity aims at:

* solve Einstein equations without approximations(!)...

e solve the binary problem(s)...

e investigate the complex physics of gravitational collapse
e investigate the formation and dynamics of horizons

e investigate structure and stability of NSs

» modelling sources of gravitational waves




Mocle”ing source of GWs

A simple, back-of-the-envelope calculation in the Newtonian
quadrupole approximation shows that the luminosity In
gravitational waves (energy emitted in gws per unit time) Is

w=(8) (22~ (9)(3)

.e. Intense sources are compact, massive and move at
relativistic speeds: general relativity Is indispensable.

What makes gw-astronomy challenging is

G

(C_5> ~ 3.8 x 107 %erg 571

.e. even the gws from the most intense sources will
statistically reach us as very weak




Notjust an academic exercise

The calculation of the waveforms Is not just an academic
achievement. Several millions €s and thousands man-hours are
dedicated to one of the most challenging physical experiments.

Knowledge of the

= \waveforms can

I compensate for the
Bvery small S/N
(matched-filtering). =

Enhance detection and
allow for source-
characterization
possible.




Numerical Relativitgz why so hard?...

* No obviously “better” formulation of the Einstein equations

* ADM, conformal traceless decomposition, first-order hyperbolic, harmonic, ...?/

* Coordinates (spatial and time) do not have a specific meaning
* this gauge freedom needs to be handled with care!

77




Whlch Part 01[ the sPacetlme to cover?..

. The spatial slices have
boundary | finite extent (outer
" |boundary in strong
field region)
slices

f \ /\ The spatial slices have

_ infinite extent (infinity
" N 7 |
Images by DfPollney N - i
conformal N\ _—

on the grid)
slices
The standard choice
for most groups -

spécelike

The slices are on In-
OUthIﬂg |Ight cones chalracteristic
(ideal for radiation, less slices \
for intuition...)




Numerical Relativitg: why so hard?. ..

* No obviously “better” formulation of the Einstein equations

* ADM, conformal decomposition, first-order hyperbolic form, harmonic, ...¢??
* Coordinates (spatial and time) do not have a special meaning

* this gauge freedom need to be handled with care!

* gauge conditions must avoid singularities

* gauge condrtions must counteract grid stretching




Choosing the right teml:)oral gauge

Suppose you want to follow the gravitational
collapse to a bh and assume a simplistic gauge
choice:

Time

a=I|,p=0 (geodesic slicing)

That would lead rapidly to a code crash! No
chance of ever measuring gws!. ..

Singularity where
curvature is infinite

Need to use smarter gauges! A

You want time to advance at different rates . ;H{
at different positions in the grid: “singularity Gravtas
avoiding slicing”

a =o(t,x), P=Pp(t,x}) (e.g. maximal slicing)

Some chance of measuring gwsl. ..




Numerical Relativitg: why so hard?. ..

* No obviously “better” formulation of the Einstein equations

* ADM, conformal decomposition, first-order hyperbolic form, harmonic, ...¢??
* Coordinates (spatial and time) do not have a special meaning

* this gauge freedom need to be handled with care!

* gauge conditions must avoid singularities

* gauge condrtions must counteract grid stretching

* Einstein field equations are highly nonlinear
* essentially unknown in these regimes (well-posedeness not enough!...)

* Physical singularities are the “butter-and-bread” of NR
* delicate techniques are needed to “excise” the troublesome region




excising Parts of the space’time with singularitics. &

apparent horizon found on a given X,

\ In principle, the yellow region Is causally
=

disconnected from the blue one (ligth
cones are “tilted In"); no boundary
conditions would be needed at the
apparent horizon.

In practice, the actual excision region
(“legosphere”: black region) carved well
inside the horizon.

NEES

: f : : : o the Einstein equations are highly nonlinear in the
yellow region! All sorts of numerical problems...
:/isz
—.—Q—JO—C—?

excision boundary ~ horizon

o the (apparent) horizon must be found; this is an
expensive operation. ..

o the excised region has to move on the grid...

Images by D. Pollney




Numerical Relativitg: why so hard?. ..

* No obviously “better” formulation of the Einstein equations

* ADM, conformal decomposition, first-order hyperbolic form, harmonic, ...¢??
* Coordinates (spatial and time) do not have a special meaning

* this gauge freedom need to be handled with care!

* gauge conditions must avoid singularities

* gauge condrtions must counteract grid stretching

* Einstein field equations are highly nonlinear
* essentially unknown in these regimes (well-posedeness not enough!...)

* Physical singularities are the “butter-and-bread” of NR
* delicate techniques are needed to “excise” the troublesome region

* Simply more equations to solve: stretching supercomputers resources!

* large turn-around times make experimentation difficult (2-3 weeks/simulation)

* implementations of AMR techniques is extremely problematic




Numerical Relativitg: how?. ..

Let's recall the equations we are dealing with:

el %gWR = 8717, (field equations)

SV el sl (conservation of energy — momentum)
Vulput) =0, (conservation of baryon number)
PP P (equation of state)

In this first lecture we will consider T, = 0 and deal only
with the Einstein field equations in vacuum: 6, highly-nonlinear,
2nd order partial differential equations




Disregarding the intrinsinc equality between spatial and time coordinates,
numerical relativity follows the traditional approach in the solution of time-
dependent problems and foliates the 4D spacetime in a series of t=const

spatial hypersurfaces >.; , ie a stack of 3D spacetimes

ds? = —(a® — 3;84)dt? + 26;dztdt + ;. dx*dx’
J

« :: lapse function
Measures the clock “ticking-rates” on two 2.y

(3; :: shitt vector

Measures the “stretching” of coordinates
Vi - 3 — metric tensor
Measures distances among points on a >4

n=_ (8- §d)

unit timelike 4-vector normal to Et




Given a space-like slice 25¢, while the three-metricVij measures
spatial (!) distances among points, the extrinsic curvature £
measures the curvature of the spatial hypersurface relative to
the embedding 4D spacetime (l.e., it "bending”)

Sn=—K(5P)

h

Consider a vector at one position P and then
parallel-transport it to a new location P> + 0P

The difference In the two vectors Is proportional
to the extrinsic curvature and this can erther be
positive or negative




Solving the Einstein equations




The conformal factor Q5 the conformal 3-metric %j ,the trace of the
extrinsic curvature K ,the trace-free conformal extrinsic curvature

A € ) /L' . .
tensor A;; , and the “"Gammas I™ represent our evolution variables

1 1
¢® = ln(det(gw)) 19 1“(”07
%’j =€ ¢9¢j,
&= ”Kw,
1
ggin)a

Aij — 6_4¢(K7;j .

A~ .

1 ~ ik




DA = e -V, V,a+a(Riy; — Si;)] +a (Kz‘izg = QAzlA§> :

o o e e 1
Bl = —’vaivja + [AijAw == §K2 e (,0—|— S)] :

2
= 22 TR e e e < -
Dl = —2418;0 + 20 (1%, 4% - PG K =795, % 64770;0)
I ~ij ~m(j S ey
=B floe et Rt et

where D; = at = ﬁg and Lﬁ s the Lie derivative along the shift




The evolution equations to be solved from one time slice to
the next via finite-difference methods are therefore: 6+6+3
+ |+ 1=17/;the above set of equations is not hyperbolic.

Other formulations have different properties and the ADM
one (used for many years) is only weakly hyperbolic.

In addition, we also compute 3+1=4 elliptic equations: the
“constraints’.

H= GCR+K? - K;;KY =0, (Hamiltonian constraint)

M'=D;(KY —gYK)=0, (momentum constraints)

Note we don't actually search for a solution but just monitor
how large the violation is, i.e. H and M"




Wave-extraction teclmiques

Computing the waveforms is the ultimate goal of most numerical

relativity and there are several ways of extracting gws from numerical
relativity codes:

- asymptotic measurements
* null slicing
e conformal compactification
- non-asymptotic measurements (finite-size extraction worldtube)
* Weyl scalars
* perturbative matching to a Schwarzschild background

All have different degrees of success and this depends on the
efficiency of the process which is very different for different sources

AM

= 10~2 (binary bhs) — 10~ (collapse to bh)




Wave-extraction techniques

In both approaches, “observers'” are placed on nested 2-spheres and
calculate there either the Weyl scalars or decompose the metric
into tensor spherical-harmonics to calculate the gauge-invariant
perturbations of a Schwarschild black hole

Once the waveforms are
calculated, all the related
quantities: energy, momentum
and angular momentum
radiated can be derived

simply.




Weyl scalars

At a sufficiently large distance from the source and in a Newman-Penrose
tetrad frame the gws in the two polarizations Ax , A4 can be written as

t T
Mee==Th ==~ dt’/ dt" v,
(Se 210 ©) O O

where, according to the Peeling theorem, Y4 is the scalar with the smallest
fall-off O(1/r)

[t is then possible, for instance, to compute the projection of the momentum

flux on the equatorial plane as
t
| aew,
)

2
dF; : 2
F; = — = lim —/dﬂni
This quantity will be used later to calculate the recoll velocity.

dt r—oo | 167




Gauge~invariant Pertubations

1 : 1
heihe = L5 (a1 [ ag o) iz -0 (2)
- X \/ir % (Qﬁm S Qﬁm( ) im ,ra2
where @/, Q?m are the odd and even-parity gauge-invariant perturbations
of a Schwarschild black hole. Similarly, it is possible to compute the projection

of the momentum flux in on the equatorial plane as

Fa© A" = el e @m Qi Qm—1 T Yem Q@ (1)

?l—-1)(£+3 . , S
+\/(2§ T 1)é£ = 3)) lwm (QZ_mQXH ) O m_l)

+dom (Qz_sz_—i—l —(m+1) S Q?mQZLl —(m—|-1)) ] } |




Solving the hydrodynamics/MH
equations




Handling the matter content of the spacetime

Let: w the fluid's 4-velocity, P the
pressure, P the rest-mass
density, € the specific internal
energy density ande = p(1 + €)
the total energy density

Let also © be the fluid 3-velocity as
measured by the Eulerian observers
n

. 0; | z .
'UE—u : >’UZ:—<u—t_|_/87’)

n-u a \Uu

From these quantities we construct the ideal-fluid stress-energy tensor

e e S e
2

b
TH = (p+ pe + p+ b )ulu” + (p + E)g“” — oMb + ...




The relavistic hydrodynamics/magnetohydrodynamics (MHD) equations
are then the result of conservation of energy and momentum

BB =R (Euler egs.)

u, TH, , =0, (energy eq.)
puut +put =0, (continuity eq.)

p = p(p,€) , (EOS)

where h,u,/ s the projection operator orthogonal to w:
=

h il =




The problem of discretization. ..

A generic problem arises when a Cauchy problem described by a
set of continuous PDEs is solved in a discretized form: the
numerical solution Is, at best, piecewise constant,

- This is particularly problematic

u(x.t)- contimuous & \when discretizing
hydrodynamical egs in
compressible fluids, whose
nonlinear properties
generically produce, in a finite
time, nonlinear waves with
discontinurties (ie shocks,
rarefaction waves, etc) even
from smooth initial datal

u (Xj, t"): piecewise const.
J




Conservative form of the equations

The homogeneous partial differential equation
Oru(x,t) + alu(x, t)|0,u(x,t) =0

s written In said to be in flux-conservative (fc) form if written as
Oru(x,t) + 0, Flu(z,t)] =0

* In conservative systems, knowledge of the state vectorl at one
point in spacetime allows to determine the flux F'(u) (and so the
evolution) for each state variable.

* [heorems (Lax,\/\/endrofﬁ Hou, I_eFloch)

» fc formulation converges to the weak solution of the problem
(ie a solution of the integral form of the fc form)

* nfc converges to the wrong weak solution of the problem




The importance of a conservative formulation

If the problem is linear, the importance of a conservative formulation is clear as
it allows for analytic solutions. Just rewrite the flux conservative equations as

das

where A () is the Jacobian matrix of const. coefficients. In this way, the :
equations are cast as a set of i linear equations for the characteristic variables 0"

Oyw; + Ao, w; =0 — ’U_Ji(CIZ, t) = ’U_JZ(CIZ — A\, O)

with A being the diagonal matrix of the eigenvalues A; . The solution is then

u(x,t) = Z wi(x — \t, 0) R’

and RZ are the right eigenvectors of A(Z_L)




Consider for simplicity an non-magnetized ideal fluid
hy TH2 =0, (Euler egs.)
u, TH., =0, (energy eq.)
puut + put , =0, (continuity eq.)
p=p(p;e€) , (EOS)
The first step In rewriting the above equations in a fc form requires

the identification of surtable “conserved” quantities in place of the
“primritive” variables (,0, €, vj) A little algebra shows that these are:

75 R e AT
Sj = ,OhW2’Uj ,
T RS ==,

where h = 1+ €+ p/p is the specific enthalpy and the Lorentz
factor is defined as W = (1 — ;;v%07) 71/2 = auf




In this way one obtains the “Valencia” formulation (Banyuls et al. 97) of
the relativistic hydrodynamics equations

=AU +a[AF ()]} = 5(0).

where
FO(U) = (D7 SjvT)T )
F*(U) = [D(av* — 8°), 8;(av” — 3%) +p5§-,7(owi — ) + ']t
s(U) = [O, TH (8,905 + Fzyg(;j),oz(T“O({)M Ina — T’“’FBM)} .

Note that the source terms do not contain derivatives of the
hydrodynamical quantities (leaving intact the principal part) and
vanish in a flat spacetime




Finite-Volume methods

For simplicity, assume unidimensional setting, uniform grid.

Finite-Volume Methods are based on subdividing the spatial domain
into intervals (“finite volumes” or grid cells) and keeping track of an
approximation to the integral

1 LTit1/2
o 5 P i S swte e Nty S e

Li—1/2

=~

over each of these volumes.
If u(x, t)is smooth, then this integral agrees withu(z, t) at the midpoint
of the interval to O(Az?).

At each time step, we update these values using approximations to
the flux through the endpoints of the intervals.




Advantages of finite-volume methods

By reasoning in terms of finite-volumes, it Is easier to use important
properties of the conservation laws in deriving numerical methods.

In particular, we can ensure that the numerical method is conservative in a
way that mimics the true solution and this is important for correctly
calculating shock waves.

The quantity =
Z u, Ax
Gl

approximates the integral of u over the entire interval |a, b]

If we use a method in conservative form, then this discrete sum will
change only due to the fluxes at the boundaries * = aand £ = b .
In this way conservation (eg of mass) is guaranteed provided that the
boundary conditions are properly imposed.




Discretising the problem...

Let’s restrict to a simpler but instructive problem: a homogeneous, flux- conservative
differential equation for the scalar function u(:C, t) in one dimension

ou(x,t) + 0y flu(x,t)] =0

lts generic, discretized form is

AN s .
TS |
el (Fj+1/2 = Fj—l/z)
1 Lit1/2
where U;" = A—aj/ Ut ) dpe—and
Li—1/2
tn—I—l

= 1 “some a imati
= pproximation to the
Fj‘|‘1/2 = Kt = f[u(xj—i—l/%t)]dt average flux at j+1/2”
Any finite-difference form of () must represent Fj41/2 in the most accurate way.
Different forms of calculating Fj+1/2 lead to different evolution schemes (Forward-
Time-Centred-Space, Lax, Runge-Kutta, etc..., see www.aei.mpg.de/~rezzolla)




Possible solutions to the discontinurties problem:
% |5t order accurate schemes

e generally fine, but very Inaccurate across discontinuities
(eccessive  diffusion, e.g. Lax method)

% 2" order accurate schemes
e generally introduce oscillations across discontinurties
% 2" order accurate schemes with artificial viscosity
e mimic Nature but not good In relativistic regimes
% Godunov Methods

e discontinuities are not eliminated, rather they are explorted!




High-Resolution Shock-Capturing (Godunov) Methods

Based on a simple, yet brilliant idea by Godunov ('59). An example of how
basic physics can boost research in computational physics.

|dea: a piecewise constant description of hydrodynamical quantities produce a
collection of local Riemann problems whose solution can be found exactly.
tn—l—l

R 1 -
Fj:|:1/2 = Kt/ F[U(ij+1/2,t)]dt

t’l’L

where a(xj—|—1/27t)7 RS [tnatn+1]

s the exact solution of the Riemann problem with initial data

£ Ol Dl SO B i
u(x]ﬂ/zat = { (R A e e (DTS e ESiEt
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cell boundaries where fluxes are required

Solution at the time n+| of
the two Riemann problems at

the cell boundaries x;,,, and

Spacetime evolution of the
two Riemann problems at the

cell boundaries x;,;, and X,

Each problem leads to a shock
wave and a rarefaction wave
moving in gpposite directions

Initial data at the time n for
the two Riemann problems

at the cell boundaries x;, )

and X,




A quick primer..

The numerical solution of a Riemann problem is
based on three basic steps:

|) first reconstruct
2) then solve

3) finally average, convert and build...




First reconstrunct...

t=n

piecewise linear reconsir. Higher accuracy Is reached with a
better representation of the solution.
"Reconstructing” the initial data for the
Riemann:. prosiemes=ats= ~the s==cel
boundaries can be made with a
number of algorithmes;

The most Interesting are the TVDs
(minmod, MC, Superbee) for which
the solution is

Where ¢ s a coefficient based linear reconst \
on the slope of U and varying u(z) = ¢(u)u2nd—0rd CEaNp ¢(u)]ulst_°rd
from O (near a discontinuity) tol [

(in smooth regions of the slope limiter

solution).




then solve...

While in principle one could solve “exactly” the Riemann problem at
each cell interface, this is almost never done in practice. Rather
“approximate” Riemann solvers are used in place of the exact ones and a
number of them are available (Roe, Marquina, HLLE, etc...). As an
example, Roe’s approximate Riemann solver can be calculated as

|
F, = = | Fy(wg) + Fy(wr) Z|An|Awn

where wgr, wr, are the values of the primritive variables at the right/left
sides of the i-th interface and {An, Rn} are the eigenvalues and right
eigenvectors of the Jacobian matrix. The coefficients A, measure the
jumps of the characteristic variables across the characteristic field

U(wr) — U(wp) = > AdpR




finally: average, convert and build...

Once the solution in terms of the conserved variables D, Sj and=EShas

been obtained, it Is necessary to return to the primitive variables after
inverting numerically the set of equations

) el P
S — Clorei
T = phW S —pWe—p o

Once the primitive variables have been calculated, the stress-energy
tensor can be reconstructed and used on the right hand side of the
Einstein equations.

This is repeated at each grid point and for each time level...




Summary

M The modelling of sources of gravitational waves in fully nonlinear
regimes requires the numerical solution of the Einstein equations
together with those of relativistic hydrodynamics/MHD

M Distinct techniques are required to solve the fields and the fluids:
standard finite-difference methods for the Einstein equations and finite-
volume methods for the hydrodynamics equations

%4 Solving the Einstein equations involves a number of complications
related to the high nonlinearity of the equations, the appearance of
singularities, and the need of large domains to extract the gravitational
waves. Luckily, most of these are now under control.

M When dealing with the relativistic hydrodynamics or MHD
equations, shocks are to be expected and need to be properly
handled: the best way of doing this is to write the equations In a flux-
conservative form and to use HRSC methods




