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Listed below are the exercises that have been assigned during the course
and collected according to the lecture in which they were assigned. Solu-
tions to these exercises need to be handed in to claim the credit points.
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Lecture I

• Root Finding
A completely ionized, homogeneous hydrogen plasma is irradiated by X-rays
and the electron scattering optical depth is very large. The electrons at tempera-
ture Te are exchanging energy with protons at temperature Tp via Coulomb colli-
sions and with photons at temperature Tγ via Compton scattering. The magnetic
fields and all other radiative processes are negligible. Under these conditions the
energy balance equation for the electron plasma can be written as

Q
U

ρc2
(Te − Tγ) =

Λ

c3

(
Tp
Te
− 1

)
1√
Te

, (1)

whereQ := 4κesKB/mec
2 = 2.7×10−10 cm2 g−1 K−1 (with κes = 0.4 cm2 g−1

being the electron scattering opacity), U/(ρc2) is the ratio between the radiation
energy density and the rest-mass energy density of the electron-positron plasma,
and Λ = 4.4× 1030 is a constant.

(i) Consider the case in which the electrons are heated by Coulomb colli-
sions with the protons at temperature Tp = 109K and cooled via inverse Comp-
ton scattering with photons at temperature Tγ = 107K. Solve equation (1) with
U/(ρc2) = 1 and find the equilibrium temperature for the electrons Te. The
bracketing interval can be found after plotting (1) as a function of Te.

(ii) Consider now the case in which the electrons are cooled by Coulomb
collisions with the protons at temperature Tp = 107K and heated via Comp-
ton scattering with photons at temperature Tγ = 109K. Solve equation (1) with
U/(ρc2) = 8 × 10−5 and find the equilibrium temperature for the electrons us-
ing as bracketing interval T1 = 107K and T2 = 109K. Is the Newton-Raphson
method efficient? If not explain why.

NOTE

• Use both the bisection and the Newton-Raphson methods concentrating on the
number of iterations necessary to reach the desidered accuracy of ε = 10−7.

• To make results comparable use as speed of light c = 2.99× 1010 cm s−1.
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Lecture II

• Linear Algebra
Consider the following set of linear algebraic equations

A · x = b , (2)

where A is a square matrix of (n× n) coefficients and x, b are the vectors [i.e.
(n× 1) matrices] of unknowns and “right-hand-side” quantities, respectively.

Fill now the matrices A so that its elements aij are

aij =
1

cos(i+ ε) + sin(j + ε)
, (3)

where ε = 10−5 is a small constant number. Similarly, fill the vector b so that its
elements bi are

bi =
1

i
− ε . (4)

(i) Solve the system (2) using Cramer’s rule when n = 3. Compute the
number of operations made to obtain the solution.

(ii) Solve the system (2) using a LU-decomposition when n = 10. Compute
the number of operations made to obtain the solution.

(iii) Compute, both for (i) and (ii), the residual vector R

R = A · x− b . (5)
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Lecture III

• Polynomial Interpolation
Consider the function

y(x) = 3 + 200x− 30x2 + 4x3 − x4 . (6)

and evaluate it at N = 100 points equally spaced in the interval I : x ∈
[−10, 10] .

(i) Find its roots in I if they exist.

(ii) Interpolate the value of the function at x = −5 and x = 5 using a linear,
a quadratic and a cubic interpolating polynomial. Calculate the error made in
each case.

• Cubic Spline
Consider the function

y(x) =
∑
i

Ai cos
(

2π
mi

L
x
)
, (7)

in the interval I : x ∈ [0, 20], where Ai = (1, 1/2,−1/2), mi = (8, 24, 8/3),
L = 64.

(i) Interpolate the value of the function at x = 12 using a linear, a quadratic
and a cubic interpolating polynomial. Calculate the error made in each case.

(ii) Interpolate the value of the function at x = 12 using now a cubic spline.
Compare with the results obtained before.

• Bilinear Interpolation
Consider the function

z(x, y) = x2 − y2 + 1 (8)

in the interval I : x, y ∈ [−10, 10].

(i) Interpolate the value of the function at the point (5, 0) using a bilinear
interpolation method. Calculate the error made and its scaling with the size of
the interpolating grid.
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Lecture IV

• Closed Quadratures
Consider the following integral

I1 =

∫ π/2

0

sin2m−1 θ cos2n−1 θdθ (9)

where m > 0, n > 0.

(i) Calculate I1 numerically using the trapezoidal extended closed formula
(cf. your lecture notes).

(ii) Calculate I1 numerically using Simpson’s extended closed formula (cf.
your lecture notes).

(iii) Compare the results obtained in (i) and (ii) validating the scaling of the
two formulas in terms of the number of points N .

• Open Quadratures
Consider the following integral

I2 =

∫ ∞
0

xp−1

1 + x
dx (10)

where 0 < p < 1.

(i) Calculate I2 numerically using the following extended open formula of
order O

(
1/N2

)
∫ xN

x1

f(x)dx = h

[
3

2
f2 + f3 + f4 + . . .+ fN−2 +

3

2
fN−1

]
+O

(
1

N2

)
(11)

(ii) Calculate I2 numerically using the following extended open formula of
order O

(
1/N4

)
∫ xN

x1

f(x)dx = h

[
27

12
f2 + 0 +

13

12
f4 +

4

3
f5 + . . .

+
4

3
fN−4 +

13

12
fN−3 + 0 +

27

12
fN−1

]
+O

(
1

N4

)
(12)

where the coefficients of the interior points are 4/3 and 2/3, alternatively.

(iii) Compare the results obtained in (i) and (ii) validating the scaling of the
two formulas in terms of the number of points N .
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NOTES

• I suggest to use p = 0.5 and to try first using m = 1, n = 1 and then m = 2,
n = 4. What are the differencese found?

• Plotting the integrand is always a good idea.

• Both I1 and I2 can be calculated analytically. A good investment of your time is
in reading that book of tabulated integrals you never use...

• You don’t really want to calculate I2 between 0 and ∞! Think about a useful
variable transformation that would make the integration between 0 and 1.

• The scaling of the error with N in the open formulas is derived for continuous
functions. Do not expect miracles.
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Lecture V

• Non-Uniform Deviates
An astrophysicist has developed a code to evolve the trajectories of photons
produced by a perfect black-body at a temperature T = 6 × 103 K. As initial
conditions she will need to specify for each photon its energy and direction of
propagation. Provide her with the initial distribution of 104 black-body photons
with ν between 0 and 5 × 104 K, to which she will then assign a random ini-
tial direction of propagation. [Hint: Recall that the number density of photons
N (ν, T ) at temperature T and with frequencies between ν and ν + dν is

dN (ν, T ) =
8πν2

c3

[
exp

(
hν

kT

)
− 1

]−1
dν . (13)

and where you can set h = c = k = 1.] Produce a plot of the photon distribution
function.

• Monte Carlo Integrals: 1D
Given the function f(x) = (1 + x2)−1, consider its definite integral

I =

∫ 1

0

1

1 + x2
dx =

π

4
. (14)

(i) Evalute I numerically through a Monte Carlo integration using N =
10, 20, 50, 100, 200, 500, 1000, 2000, 5000 random points. For the same number
of points calculate also the variance

S = 〈f2〉 − 〈f〉2 , (15)

where

〈f2〉 :=
1

N

N∑
i=1

(f(xi))
2 , 〈f〉2 :=

(
1

N

N∑
i=1

f(xi)

)2

. (16)

Plot both I and S versus N and discuss whether your results are in accordance
with what you expect.

(ii) Consider the new function w(x) = (4 − 2x)/3 which has a definite
integral

∫ 1

0
w(x)dx = 1. Using w(x) we can rewrite the integral I as

I =

∫ 1

0

f(x)

w(x)
w(x)dx =

∫ 1

0

f(y)

w(y)
dy , (17)

where the new variable y is defined so that

dy

dx
= w(x) y =

1

3
x(4− x) . (18)
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[You are encouraged to prove (17)]. Use now the Monte Carlo integration tech-
niques to calculate the integral (17) ans show that this transformation reduces the
variance and thus increases the accuracy for the same number of random points.

• Monte Carlo Integrals: 3D (Optional)
The coordinates of the center of mass of an object with uniform density ρ can be
written as

xi
CM

=

∫
V
ρxidxdydz∫
V
ρdxdydz

(19)

(i) Calculate the xi
CM

and their variances for the portion of the torus of
equation

z2 +
(√

x2 + y2 − 3
)2
≤ 1 , (20)

limited by

1 ≤ x ≤ 4 − 3 ≤ y ≤ 4 − 1 ≤ z ≤ 1 (21)

[see “Numerical Recipes”, §7.6 for the figure of the truncated torus.]
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Lecture VI

Integration of ODEs: bound particle-orbits around a Schwarzschild black hole
Consider a massive test-particle moving in a generic bound orbit around a Schwarz-
schild black hole of mass M = 5M� (hereafter we will assume G = c2 = M� = 1).
The equations of motion will be the geodesic equations for that spacetime and these
can be recast in a convenient form in terms of the periastron r1 and of the eccentricity
0 ≤ e < 1 as

dt

dχ
=

p2M

(p− 2− 2e cosχ)(1 + e cosχ)2

[
(p− 2− 2e)(p− 2 + 2e)

p− 6− 2e cosχ

]1/2
,

(22)

dφ

dχ
=

(
p

p− 6− 2e cosχ

)1/2

, (23)

where

• t is the time coordinate

• χ ∈ [0, 2π] is a single-valued, cyclic parameter along the orbit related to the
radial coordinate through the expression

r(χ) =
pM

1 + e cosχ
, (24)

so that r ∈ [pM/(1 + e), pM/(1− e)].

• φ is the azimuthal coordinate (the trajectory is in the plane θ = π/2)

• p is a constant of the orbit, usually referred to as the latus rectum and defined as

p :=
(1 + e)r1

M
, (25)

In practice, the radial coordinate r will oscillate during the orbit between the minimum
value at the periastron r1 and the maximum value at the apoastron r2 := pM/(1− e).

(i) Solve the set of coupled ordinary differential equations (22)–(23) for the following
choice of initial conditions

(a) r1 = 7.0M , e = 0.3

(b) r1 = 6.1M , e = 0.2

(c) r1 = 5.26M, e = 0.22722
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(ii) Verify that the change in φ after one complete revolution in which χ changes by 2π
is 2(1 + 3/p)π so that the precession of the periastron in one revolution is

∆φ =
6π

p
=

6πM

r1(1 + e)
. (26)

(iii) Plot the following quantities

(a) r vs t

(b) r vs χ

(c) φ vs χ

(d) r cosφ vs χ

(e) r sinφ vs χ

(f) r cosφ vs r sinφ

NOTE

• Perform the integrations using a 2nd-order and a 4th-order Runge-Kutta algo-
rithm and compare the results

• If motivated, implement a 4th scheme with with step-size adjustment. Measure
the computational gain.

• Note that equation (26) has been derived as a first-order expansion in powers of
1/p of the right-hand-side of equation (23). Don’t expect it to be valid beyond
its range of validity. Consider it also in the case of Mercury.
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Lecture VII

Hyperbolic PDEs: the wave equation in 1D
Given the scalar wave equation

∂2u

∂t2
=
∂2u

∂x2
, (27)

a) Build a numerical code to solve for (27) on a grid with extents x ∈ [0, 1] and
with initial conditions given by

u(x) = exp[−(x− x0)2/σ2] , (28)

with x0 = 0.5 and σ = 0.1.

b) Perform the time integration of equation (27) implementing the following
numerical schemes:

(i) FTCS;

(ii) Lax;

(iii) Leapfrog;

(iv) Lax-Wendroff;

Compare the results obtained with the analytic solution to equation (27) paying
attention to the stability, accuracy and dissipation of the scheme used.

c) Impose either Outgoing wave or Periodic boundary conditions.

Hyperbolic PDEs: the wave equation in 2D (Optional)
Solve the equivalent equation (27) in two dimensions by using a Leapfrog and/or Lax-
Wendroff evolution scheme.

NOTE: You don’t need to build four/eight different codes to solve the first problem.
Construct a driver routine and four subroutines that update the solution to the new time
level.
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Lecture VIII

Parabolic PDEs: the diffusion equation in 1D
Given the scalar diffusion equation

∂u

∂t
= D

∂2u

∂x2
, (29)

where D is a constant diffusion coefficient.

a) Build a numerical code to solve for (29) on a grid with extents x ∈ [0, 1] and
with initial conditions given by

u(x) = exp[−(x− x0)2/σ2] , (30)

with x0 = 0.5 and σ = 0.1.

b) Perform the time integration of equation (29) implementing the following
numerical schemes:

(i) FTCS. Check what happens when the stability condition is violated.

(ii) BTCS. Check what happens when the timestep is changed.

(iii) Dufort-Frankel. Check the accuracy of the solution and compare with
the other methods.

Optional

• Perform the time integration of equation (29) implementing a Crank-Nicholson
scheme.

• Perform the time integration of equation (29) and compare it with the semi-
analytic solution.

NOTE: You may want to establish first the time at which you want the final solution
(e.g. a fraction of the diffusion timescale, with D = 1) and then reach that time in the
appropriate number of timesteps.
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Lecture IX

Elliptic Partial Differential Equations
In a two-dimensional Cartesian coordinate system {x, y} consider the following linear
elliptic equation

∇2φ = −5 sin(x+ 2y) , (31)

where

∇2 =
∂2

∂x2
+

∂2

∂y2
. (32)

a) Solve (31) in a computational domain with x ∈ [0, π] and y ∈ [0, π] using the
Gauss-Seidel method. Continue your iteration at least until the L∞ norm of the
k-th residual

L∞(ξk) := max
{
ξ
(k)
i,j

}
= max

{(
∇2φ

)(k)
i,j

+ 5 sin(x+ 2y)
}
, (33)

is L∞(ξk) < 10−6. Repeat your calculations for three grid resolutions (e.g.
using 322, 642 and 1282 gridpoints).

b) For each iteration calculate the ratio

L∞(ξk)− L∞(ξk−1)

L∞(ξk−1)
, (34)

and plot it versus the number of iterations for the different grid resolutions used.
Comment on your findings.

c) Using the analytic solution to (31)

φA = sin(x+ 2y) , (35)

calculate the following norms of φ in terms of the analytic solution

LA
∞(φk) := max

{
φ
(k)
i,j − φA

}
, (36)

LA
2 (φk) :=

1

NxNy

Nx∑
i=1

Ny∑
j=1

[
φ
(k)
i,j − φA

]2
, (37)

where Nx and Ny are the number of gridpoints in the two directions. Plot the
results versus the number of iterations for the different grid resolutions used;
comment your findings.

d) Extend the calculations made in a) until L∞(ξk) reaches the roundoff error.
Can you reach machine accuracy also for LA

∞(φk)? Explain why.
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NOTES

• Initial Data: initial data close to the correct solutions are always a good way
to achieve rapid convergence. This exercise, however, is sufficiently simple that
the convergence will be reached even if you start from trivial initial data such as
φ = 1 ∀ (x, y).

• Boundary Conditions: most of the times the boundary conditions are not known
and need to be deduced either from the behaviour of the solution or from the form
of the equation. In this exercise the analytic solution is known and the boundary
conditions to be imposed can be that φ = φA at the boundaries.

Optional

i) Recalculate points a), b), and c) using the SOR iteration procedure. Compare
the results with those obtained using the Gauss-Seidel iteration procedure.

ii) Do not impose analytic boundary conditions but deduce the value of φ at the
boundaries from the values it assumes in the interior of the grid, using high order
extrapolation routines.
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Lecture X

Numerical Fourier Transforms
Consider the function h(t) defined in the domain t ∈ [0, 1], as

h(t) :=

3∑
i=1

Ai cos (ωit) (38)

where Ai = (−0.5, 0.5, 0.75) and ωi = 2πfi with fi = (2.0, 3.0, 9.0).

a) Discretize h(t), i.e. consider N evaluations of h(t) at fixed values of t

hn(t) := h(t = n∆) , n = 0, 1, . . . N − 1. (39)

b) Add a random noise at each discrete value of h, i.e.

hn(tn)→ hn(tn) + aξ (40)

with a = 0.5 and ξ is a uniform random number in the interval [−1, 1].

c) Calculate a discrete Fourier transform of hn, with N = 128 (you can use also
a pre-packaged routine, e.g. four1 of the Numerical Recipe book).

d) Remove the noise from H(f) by setting to zero all the Re{|H(f)|} with
Re{|H(f)|} < 3〈H(f)〉, where 〈H(f)〉 is the mean value of Re{|H(f)|}. Call
the “cleaned” Fourier transform Hc(f).

e) Convolve the cleaned Fourier transform Hc(f) with a filter Fc, i.e. Hc(f)→
Hc(f)× Fc(f) to remove any spurious high frequency peaks, e.g.

Fc(f) =

 1 for f ≤ fN

0 for f > fN

where fN := 1/(2∆) is the Nyquist frequency and f is always positive.

f) Calculate the inverse Fourier transform of the new Hc(f) and compare it with
the original data h(t). Use Parseval’s theorem to obtain the right amplitude.

g) Repeat the exercise changing the amplitudesAi and frequencies ωi. Comment
on your results.

h) Repeat the exercise convolving the cleaned Fourier transform Hc(f) with
a filter preserving only the peak with the largest power. Compare the inverse
Fourier transform obtained in this way with the original data h(t).

i) Repeat the exercise with now t ∈ [0, 10] and N = 1280. Compare the results
to when t ∈ [0, 1] and N = 128 and express your conclusions.
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