Thermal Transport Signatures of Broken-Symmetry Phases in Graphene

Abstract

In the half filled zero-energy Landau level of bilayer graphene, competing phases with spontaneously broken symmetries and an intriguing quantum critical behavior have been predicted. Here we investigate signatures of these broken-symmetry phases in thermal transport measurements. To this end, we calculate the spectrum of spin and valley waves in the nu=0 quantum Hall state of bilayer graphene. The presence of Goldstone modes enables heat transport even at low temperatures, which can serve as compelling evidence for spontaneous symmetry breaking. By varying external electric and magnetic fields, it is possible to determine the nature of the symmetry breaking. Temperature-dependent measurements may yield additional information about gapped modes.

Publication
Phys. Rev. Lett. 119, 027601 (2017)
Falko Pientka
Falko Pientka
Professor of Theoretical Condensed Matter Physics

My research focuses on quantum many-body physics, especially quantum transport in low-dimensional or mesoscopic systems.