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We demonstrate a remarkable property of metallic Fermi liquids: the transverse conductivity

assumes a universal value in the quasi-static (w — 0) limit for wavevectors ¢ in the regime lr;flp <

q < pr, where [y, is the mean free path and pr is the Fermi momentum. This value is (eQ/h)RFs/q
in two dimensions (2D), where Rrs measures the local radius of curvature of the Fermi surface in
momentum space. Even more surprisingly, we find that U(1) spin liquids with a spinon Fermi surface
have the same universal transverse conductivity. This means such spin liquids behave effectively
as metals in this regime, even though they appear insulating in standard transport experiments.
Moreover, we show that transverse current fluctuations result in a universal low-frequency magnetic
noise that can be directly probed by a spin qubit, such as a nitrogen-vacancy center in diamond,
placed at a distance z above of the 2D metal or spin liquid. Specifically the magnetic noise is
given by CwPrs/z, where Ppg is the perimeter of the Fermi surface in momentum space and C'
is a combination of fundamental constants of nature. Therefore these observables are controlled
purely by the geometry of the Fermi surface and are independent of kinematic details of the quasi-
particles, such as their effective mass and interactions. This behavior can be used as a new technique
to measure the size of the Fermi surface of metals and as a smoking gun probe to pinpoint the
presence of the elusive spinon Fermi surface in two-dimensional systems. We estimate that this
universal regime is within reach of current nitrogen-vacancy center spectroscopic techniques for
several spinon Fermi surface candidate materials.

I. INTRODUCTION

There are relatively few measurable properties of sys-
tems with a Fermi surface (FS) that remain unchanged
by details of interactions and dispersion. One notable ex-
ample is the invariance of the period of the quantum os-
cillations [1], which serves as tool to measure of the cross
sectional area of the FS. In this work we will demonstrate
that a different quantity enjoys a similar degree of uni-
versality. This quantity is the quasi-static transverse or
shear conductivity, denoted by o | ¢(g) that measures the
net current in response to a nearly static but spatially os-
cillating transverse or shear force (or equivalently a trans-
verse electric field when the Fermi liquid is charged) with
wavevector q, as depicted in Fig. 1(a). As we will see in
the “quantum” regime where the wavevector of the ap-
plied force satisfies pp > ¢ > lr;}p, where pr denotes the
Fermi momentum and /¢, the mean free path, and in
the low-frequency quasi-static regime (w — 0), the trans-
verse conductivity takes the following universal form in
two dimensions:

o2
o10(q)=(25+ 1)2_hq ZRz (1)

Here e is the electron’s charge, h Planck’s constant, (25+
1) is the spin degeneracy factor, and R; is the absolute
value of the local radius of curvature of the FS at points
i on the FS at which the Fermi velocity is orthogonal to
the direction of the wavevector g, as depicted in Fig. 1(c).
Therefore, this limit is universal in the sense that it is

independent of the quasi-particle mass and interactions,
and only controlled by the local geometric shape of the
FS.

Remarkably, we have found that the exact same limit
of Eq. (1) is also approached by the transverse electric
conductivity of a strongly correlated state, namely, the
U(1) spin liquid with a spinon FS (for reviews see [2—
1]), which has been a “holy grail” of condensed mat-
ter research since the pioneering ideas of Anderson [5].
This state features a form of spin-charge separation above
one-dimension, in which the electron fractionalizes into
a spinful fermion (the spinon) and a spinless boson (the
chargon or holon). The chargon is gapped and the spinon
remains in a gapless FS state, but both particles remain
strongly coupled via an emergent photon field. This
state displays electromagnetic responses that are a sort
of blend of insulating and metallic behavior. On the one
hand, while it has a vanishing electrical conductivity at
g = 0 in the DC zero temperature limit just like insu-
lators, it also displays power-law subgap optical conduc-
tivity [6], and even more strikingly, it can feature quan-
tum oscillations under magnetic fields [7-9] and cyclotron
resonance [10], in analogy to metals. Our findings there-
fore highlight that the electric transverse conductivity of
the spinon FS not only behaves similar to a metal but,
indeed, approaches the same universal limit at low fre-
quencies given in Eq. (1), although, as we will see, the
crossover to such a regime occurs typically at much lower
frequencies than in a metal.

While the universality of this limit of the transverse
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conductivity in ordinary Fermi liquids has been known
since the early days of Landau Fermi liquid theory [11],
to our knowledge, its precise form for anisotropic FSs
has not been derived previously in two-dimensions, al-
though a related dependence of the quasi-static conduc-
tivity at finite wavevector on the FS curvature has also
been discussed in the context of the anomalous skin ef-
fect in 3D metals [12, 13]. More importantly, to this
date there is no report of the experimental observation
of this remarkable universal regime of the transverse con-
ductivity even in ordinary two-dimensional Fermi liquids
or metals. This is largely because it is experimentally
challenging to probe the linear response regime, where
Eq. (1) holds, by controllably applying external trans-
verse electric fields (shear forces) with a finite wavevec-
tor that is not too small (¢ > l;%p) and at very low fre-
quencies. There is however, an alternative way to probe
linear response functions that does not require actively
applying external perturbations on the system, but in-
stead to monitor its fluctuations since the fluctuation-
dissipation theorem dictates that these are governed by
the dissipative part of the same linear response suscep-
tibilities. This is the key idea behind the technique of
magnetic noise spectroscopy of nitrogen-vacancy center
spin qubits [14], which is emerging as a powerful tool to
study current and spin correlations of diverse condensed
matter systems [15—18].

As we will demonstrate, the above regime of the trans-
verse conductivity gives rise to a universal regime of the
magnetic field noise when it is probed at a distance z
above the 2D sample, as depicted in Fig. 1(b), within
the range pp s> lmfp, and at low temperatures and
low frequencies. In this regime, the magnetic field auto-
correlation function at a single point, takes the following
universal form for both ordinary metals and spinon FS
states:

e2u2 w (28 +1
Xp.p. (50 = 0) = 16/7:(})1;( 2: )

Prs + O(w?). (2)

Here Prg is the perimeter of the F'S in momentum space,
and o the permeability of free space. This noise, which
arises from orbital current fluctuations, dominates over
the noise originating from the spin fluctuations in both
the spinon FS state and metals. While this regime can
be achieved for spinons only at much lower frequencies
than for metals, we estimate that the required frequencies
are of the order of MHz in organic spin liquid candidates
and of order of GHz in transition metal dichalcogenide
spin liquid candidates, placing them within experimen-
tal reach of current nitrogen-vacancy noise spectroscopic
techniques [14].

Our paper is organized as follows. In Sec. II, we show
that for a metal in the Landau Fermi liquid regime, the
dissipative part of its conductivity tensor has only a sin-
gle non-vanishing component in the quasi-static limit in
the collisionless quantum regime, o o(q) [Eq. (1)]. The
effects of collisions on the transverse conductivity are dis-
cussed in the isotropic system with a circular FS, where

we establish the criteria on the frequency and wavevec-
tor to observe the universal value o o(q). We begin
Sec. III by introducing our treatment of the low-energy
excitations of the spinon FS state, in which we replace
its effective Lagrangian by the bosonized and linearized
theory of the quantum Fermi liquid to obtain a bosonic
bilinear theory in the Fermi radius operator and the inter-
nal gauge fields. We show that for an isotropic system,
the conductivity obtained within this framework obeys
the Ioffe-Larkin rule, and crucially, has the same quasi-
static limit o ¢(q) in the collisionless quantum regime.
Analogous to the metallic case, we establish the criteria
on the frequency and wavevector to observe the universal
value. The physical intuition behind how an insulating
spinon F'S state exhibits the same quasi-static transverse
conductivity as a metal is discussed in the last subsec-
tion. In Sec. IV, we discuss how the low-frequency trans-
verse conductivity can be probed by magnetic noise spec-
troscopy of nitrogen-vacancy center spin qubits. In the
collisionless regime, we show that the universal trans-
verse conductivity gives rise to a corresponding universal
quantum low-frequency noise [Eq. (2)]. We then proceed
to discuss the effects of collisions on the noise and identify
the relevant regimes for the frequency and the distance
between sample and probe to detect the universal noise
in both metals and spinon FS states experimentally. We
conclude with a summary of our results and discuss their
implications on the detection of U(1) spinon FS states
in Sec. V. The derivations for the various results in each
section are detailed in the Supplementary material [19].

II. TRANSVERSE CONDUCTIVITY OF
ELECTRON FERMI SURFACES

A. Universal transverse conductivity in the
collisionless quantum regime

At low temperatures, metals enter the quantum Lan-
dau Fermi liquid (LFL) regime. Its low-energy dynamics
is described by the kinetic equation linearized to first
order in the departure from the groundstate distribu-
tion dnp(r,t) and the amplitudes of the electromagnetic
fields [11]

Oonp + vp - 8,01 + E - vpd(ep — ep) = I[0np], (3)

Siip = 0np + Z Jpp'O(€p — €r)on,,. (4)
p/

Here €p, and vy, = Jep/Op are the energy and velocity of
a quasiparticle with momentum p, f, » the Landau in-
teraction function, ep the Fermi energy, I the collision in-
tegral, and E the net electric field that includes both the
external field and the self-consistently induced field by
the electronic liquid itself. Here and throughout most of
this paper, we use the convention e = i = 1 for the elec-
tric charge and Planck’s constant. Notice that, at linear
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FIG. 1. (a) Transverse currents (blue arrows) and electric
fields (red arrows) with wavevector q. (b) Schematic of a
spin qubit located at a distance z above a 2D sample detect-
ing the magnetic noise (B By) induced by current fluctuations
(jr,tjr,0) in the sample. (c) Depiction of the particle-hole ex-
citations with small wavevector g that are tangential to the
FS (solid blue line) and dominate the dissipative transverse
conductivity. For a given g these excitations are located near
certain points, {p;}, where the Fermi velocity is orthogonal
to g, and their contribution to the universal transverse con-
ductivity depends only on the local radius of curvature Ry |P¢* ,
which we show explicitly in purple for one of these points pj.
The inset shows the region of the particle-hole continuum [cf.
Fig. 2(b)] containing these (q,w — 0) excitations.

order in dny, and the amplitudes of the electromagnetic
fields, the magnetic field B does not enter into the kinetic
equation. In this paper, we will focus on two-dimensional
(2D) systems. We expect that certain qualitative aspects
such as the universality of the results carry over to the
three-dimensional (3D) case.

The charge current density is given by [11]

1 _
J = v gvpénp, (5)

where A denotes the system area. In the presence of a
quasi-static (w — 0), spatially modulated electric field
with a finite wavevector q, the solution of dn, to the
transport equation Eq. (3) in the absence of collisions
[I = 0 in Eq. (3)] but in the presence of interactions

encoded in the Landau parameters is given by [11]

E(a) - vp3(ep — er)
q-vp—in

5ﬁp == ) (6)
where in — i0T. From the above it can be shown [11, 19]
that there is a finite, spatially oscillating quasi-static cur-
rent that is purely transverse, i.e., J is perpendicular to
q, and therefore, the dissipative conductivity tensor in
this limit has a single non-vanishing transverse compo-
nent,

Re 045, 1(q,w — 0) = ( 8 UL,S(Q) ) , “

where [|(L) denote the components longitudinal (trans-
verse) to the direction ¢ = q/q (see Appendix D of the
Supplementary Material [19] for details). In writing this
equation we have implicitly assumed time-reversal sym-
metry, which forces the Hall conductivity [20-22] to van-
ish. The quasi-static transverse conductivity in Eq. (7) is
given by (momentarily restoring the electric charge and
Planck’s constant)

2
(&
o10(q) = (25+ 1)2_hq ZRF pr(4)s (8)

where (25 4 1) is the spin degeneracy factor, {pI} is
the set of points on the FS at which the Fermi velocity
is orthogonal to ¢ (or equivalently where ¢ is tangential
to the FS), and Rr|p:(4) the absolute value of the local
radius of curvature of the FS at p} (see Fig. 1(c) for
illustration).

We refer to the conductivity in Eq. (8) as the “uni-
versal transverse conductivity”, because it describes a
physical response that only depends on fundamental con-
stants of nature, the wavevector magnitude ¢ = |g|,
and the pure geometry of the FS whereas information
about interactions or even the electron mass disappears.
Since the conductivities predicted within linearized Lan-
dau kinetic equation are identical to those obtained with
the bosonization approach to FS [23-25], and since the
latter is believed to capture ezactly the low-energy and
long-wavelength properties of interacting LFLs (see e.g.
Refs. 26-29 for a detailed review), Eqgs. (7)-(8) are ex-
pected to describe the exact behavior of the conductivity
of a collisionless interacting Fermi liquid in the precise
ordering of limits w < vpq < Er [30]).

We would also like to emphasize that the off-diagonal
components of the conductivity in Eq. (7) vanish generi-
cally only after imposing symmetries, for example when
the wavevector q lies on a symmetric mirror plane [25,
30]. However in the long-wavelength quasi-static limit
w K vpq < Er, Egs. (7)—(8) are expected hold regardless
of spatial symmetries, namely, for any given ¢ along any
direction the current is orthogonal to ¢ in the quasi-static
limit. This is intimately related to the fact that longi-
tudinal electric fields (those with vanishing curl) can be
represented by a scalar electric potential, ¢, and any dis-
sipative electric current response to these fields at finite ¢




(real part of the conductivity), should vanish in the quasi-
static limit, because a static potential leads to a new time
independent Hamiltonian with a well defined equilibrium
state in which dissipative currents cannot exist [31]. Be-
cause of this reasoning, we also expect Eqs. (7)—(8) to
hold even in systems with broken time reversal symme-
try as a statement on the symmetrized real part of the
conductivity tensor that controls dissipative currents.

B. Effects of collisions on the transverse
conductivity

For simplicity, here we will consider a 2D system with
time reversal and all the space symmetries of trivial vac-
uum, which leads to a circular FS. In this special case,
the transverse conductivity from Eq. (8) reduces to

2
oLolg) = (25 + 1)L, (9)
q

where pp o denotes the Fermi radius. To include the ef-
fects of collisions, we proceed to solve the transport equa-
tion Eq. (3). We will restrict to analyzing spin symmetric
fluctuations of the liquid, which can be done equivalently
by considering a spinless model of fermions and restoring
the spin degeneracy factor (254 1) at the end. The Lan-
dau interaction function simplifies, f(0,0") = f(6 — ¢'),
where 6 is an angle that parametrizes points along the
FS. By denoting the local deviation of the Fermi radius
from its equilibrium value as pg(r,#), so that the local
Fermi radius is pr o + pr(7, ), the distribution deviation
is given by onp = 6(p—pr,0)pr(r, 8), which allows Eq. (3)
to simplify into the following form:

Opr(r,0) + vy - Or [pF(r, ) + / %f(@ — 0Npr(r, 9')}

=—F v+ I[pr|. (10)
The collision integral can be modeled as [32-34]
Ipr] = =I(pr — Polpr])
—Ia(pr — Polpr] = Pr[pr] — P-a[pr]), (11)
P.lpr] = eime/g—i]pp(r,ﬁl)e_imel, (12)

which captures momentum-relaxing processes such as
electron-impurity collisions, as well as momentum-
preserving processes originating from electron-electron
collisions, respectively characterized by collision rates I}
and I. Here P, [pr| projects the Fermi radius onto the
m-th harmonic "9,

Following the approach in Ref. 30, we obtain exact
analytic expressions of the response functions by solv-
ing Eq. (10) with finite Landau parameters { Fy, F} } (see
Appendix A of the Supplementary Material [19] for de-
tails). When the driving field is spatially modulated
along an arbitrary direction ¢, due to the mirror sym-
metries of the system, o can be decoupled into a lon-
gitudinal (o) and transverse (o) component, corre-
sponding respectively to the response to the net field

component parallel E|(q) = ¢ - E(q)¢ and orthogonal
E,(q) = E(q) — G- E(q) to the direction of modulation
q,
Jj(q,w) = 0y (q,w)E)(q,w), (13)
JJ_((],LU) = UL(va)EJ_(qvw)' (14)
From the solutions to Eq. (10), we obtain the longitudinal

and transverse conductivities

n 21

o (15

) T e s e a1
n 2

_n 16

o1 (q,w) m P —w, — %l (16)

(g w) = — K _ S 17

P+ (g, w) rw’ T nER 1+ Fp 1

wizw—i(Fl+F2):|:\/[W—i(F1+F2)]2—(UFq)2,

(18)
wiw_ = (vpq)?, (19)
where n = p%70/4ﬂ' denotes the carrier density, m =

m*/(1 + F1) the transport mass, x the compressibility
and Er = p%,/2m* the Fermi energy. The difference
between transverse and longitudinal conductivities can
be more conveniently expressed in terms of resistivities

Pi = Ui_lv
pH(Qaw) = pL(qvw) =+ p*(‘]aw)a (20)

In the limit of vpq < w both conductivities approach the
familiar Drude conductivity,

7’L€2

op(w) = o) (0,w) m(iw+ 1)

=0, (0,w) = (21)
The distinction between the transverse and longitudinal
conductivities become evident at finite ¢, as illustrated in
Fig. 2(a) and Fig. 2(c). Most notably, while the real part
of the longitudinal conductivity vanishes in the quasi-
static limit, the real part of the transverse conductivity

approaches a finite value given by

01(0,0%) = (25 + 1) 2RO (22)
h Q(q)
Q(q) =ap + /> + & — qc, (23)
2 I 1
qD_l‘i‘FlE’ QC—E(Fl-i—Fg), (24)

where we have restored the spin degeneracy factor, elec-
tric charge, and Planck’s constant. This remarkable dif-
ference remains even in the presence of sufficiently strong
interactions, where the shear sound mode emerges out
of the particle-hole continuum wgpear > vrpq and carries
along with it a substantial weight of the transverse cur-
rent fluctuations [25, 30, 35, 36] as illustrated in Fig. 2.
As shown in Fig. 2(d) and summarized in Table I, the
presence of collisions gives rise to two additional trans-
port regimes — the hydrodynamic and diffusive regimes —



Diffusive Hydrodynamic Quantum
q <K Qsx Gir K< q <K @+ g« < q
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TABLE I. Transport regimes of the Landau Fermi liquid when
gc > gqp in which case ¢« = gc and ¢.« = /qcqp. Here, m* =
pr,0/vr denotes the quasiparticle mass while m = m* /(14 F1)
denotes the transport mass, and gs = 25+ 1 denotes the spin
degeneracy factor. When gp > g¢, the hydrodynamic regime
is absent and ¢« = ¢p sets the momentum scale between the
diffusive (¢ < ¢«) and quantum (g > g«) regimes.

when go > qp. These are separated by momentum scales
G+« = \/qcqp and q. = q¢ respectively. Interestingly, the
existence of a well defined window of hydrodynamic be-
havior for the transverse conductivity can be achieved
above some temperature 7' in clean samples with mean
free path lng,, when Ih ~ (Er/27)(kpT/Er)? > It ~
hop [lmep (up to logarithmic corrections) [37], but appar-
ently also in dirty samples I < I}, with large F; > 1.
When ¢¢ < qp, the hydrodynamic regime is absent and
g« = qp sets the momentum scale separating the diffu-
sive and quantum regimes [30]. In the absence of Lan-
dau interaction parameters, these results are in qualita-
tive agreement with those obtained in Ref. 17, where the
quantum regime is referred to as the ballistic regime. In
summary, probing the universal transverse conductivity
in the quantum regime requires a momentum q > gy,
where the quantum momentum scale g, is defined as

qx = max(QCv qD)' (25)

where go and gp were defined in Eq. (23).

As a consistency check, we remark that using the con-
ductivity in the absence of collisions Uﬁ | (q,w) as a start-
ing point, the effect of collisions on the conductivity can
be taken into account by a simple rule discovered in
Ref. 35 (see Appendix B for details),

_ _ _ m

[O'H(Q,(U)] ! :[Uﬁ(Qaw_ZF12)] ! _FQZ
(IAT . w’

— 1 26

w(w —il12) w50 Uﬁ(q,w’) (26)

L@@ =l g0 —ila) ' - (27)

with the short-hand notation I'15 = I'1+15. It is straight-
forward to show that our solutions in Egs. (15)—(19) in-
deed satisfy these relations.

III. CONDUCTIVITY OF U(1) SPINON FERMI
SURFACE STATES

Given the geometric and universal nature of the trans-
verse conductivity in metals established in the previous
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FIG. 2. (a) Conductivity Re 01 (q,w) in the quantum

regime at ¢ = 0.1pp,o [vertical line cut in (b)] for the non-
interacting case (black) and in the presence of interactions
F1 = 3 (green). For nonzero interactions the shear sound res-
onance at wshear emerges from the particle-hole continuum.
Regardless of interactions, Re o (¢,w) approaches the uni-
versal transverse conductivity o o(g) in the w — 0 limit. (b)
Dispersion of collective modes and particle-hole excitations in
a LFL. (c) Solid black and red lines show Re o (q,w) corre-
sponding to those shown in (a) but with a finite collision rate
I =5 x 1073vaF,o and I = 0. For reference, the Drude
conductivity (black dashed) is shown at the same scale. (d)
The different transport regimes in LFLs in the presence of
collisions for the case of gc > gp. The quasi-static transverse
conductivity scales differently with ¢ in each of the regimes,
separated by the momentum scales q. and qsx.



section, it is natural to ask if this behavior extends to
other phases of matter that exhibit FSs. In this section,
we show that gapless quantum spin liquids with a spinon
FS also exhibit the same universal transverse conductiv-

ity.

A. Spinon Fermi surface low-energy theory

We begin by discussing the low-energy effective de-
scription of the spinon FS state (SFSS), in which elec-
trons fractionalize into a spinless boson (the chargon)
and spinful fermion (the spinon). For the underlying mi-
croscopic lattice model, the electron creation operator,
Wi, at lattice site 7 and spin o, can be written as

Uiy = flobf (28)

rorr)

where fiand b are respectively the spinon and char-
gon creation operators. The electron operator is the
only physical operator out of which every microscopic
Hamiltonian is constructed and also the elementary ob-
ject whose action allows to construct physical states. For
example, only electrons hop between lattice sites, and
not isolated spinons or chargons. As a consequence the
lattice partons are always forced to hop together. There-
fore, the spinon, chargon, and electron occupations are
identical in every physical state

Pr = 21/)101/}7“0 = Ps,r = ijgfrg = Pe,r = bibr
: ' 29

Similarly, the lattice particle current density operators
satisfy
j’r‘ :jsm :jcm' (30)
The traditional scenario in which the SFSS can be re-
alized requires the electrons to be at half-filling of the
lattice (one electron per site), allowing the chargons to
form a trivial Mott insulator, and the spinons to form a
Fermi sea with a volume equal to half of the Brillouin
zone, although other variants such as the composite ex-
citon Fermi sea, which have different filling constraints
due to the coexistence of spinon-like particle and hole
pockets, are possible as well [3, 9]. Hence, the ground
state can be taken to be a product state of chargons in
a trivial Mott insulator and the spinons in the Fermi sea
projected to satisfy the constraints from Eq. (29). An ef-
fective field theory capturing this can be formally written
as
L=_LE

spinon

(p—a)+ Lo (P+a—A)+---. (31)

Here a is an internal gauge field and A is the physi-
cal electromagnetic field. In this notation L5 . (p — a)
would be a Lagrangian of Free spinons in a FS state if

we momentarily imagine the internal gauge field a to

be a non-dynamical probe field (an external parameter)
and similarly L%  (p + a — A) would be the one of
bosonic Mott insulator if we imagine the field (A — a)
to be a probe non-dynamical gauge field. At this level in
which the role of the gauge field a is simply to enforce
the constraints of Eq. (29) and Eq. (30), the “--” in
Eq. (31) denotes a list of other terms that only involve
spinon and chargon interactions, but not pure gauge field
terms such as the Maxwell action for a. Such Maxwell
terms arise upon integrating out the chargon degrees of
freedom, which is legitimate within the low-energy de-
scription since they form a gapped Mott insulating state.
Before doing so, we would like to emphasize some im-
portant conceptual points, which will prove useful when
interpreting our results later on. Notice that the La-
grangian in Eq. (31) implies that the self-consistent elec-
tromotive forces that spinon, chargon and electron expe-
rience are

F;=e+vxb, (32)
F.=(E—-e)+vx(B-b), (33)
F,=F +vx B, (34)

where
e=-0,0—0a, b=20,xa, (35)
E=-0,9—-0,A, B=298,x A, (36)

Here we are implicitly replacing the underlying compact
lattice gauge fields by non-compact ones appealing to the
idea that this is legitimate at sufficiently low energies
in the SFSS where the compactness has been argued to
be irrelevant even in two spatial dimensions [38]. Even
though the SFSS is nominally an insulating state to DC
transport, the net electromotive force that the spinons
can experience in response to external electromagnetic
fields can ultimately drive a variety of remarkable elec-
tromagnetic responses of this state, such as the power law
sub-gap optical conductivity [6], quantum oscillations [7—
9], and sub-gap cyclotron resonance [10]. Notice that the
velocity, v, of the electron, chargon, and spinon are iden-
tical as it follows from the constraint in Eq. (30). Thus
even though they all move at the same speed they ac-
tually experience different electromotive forces. This is
at the heart of the very useful Toffe-Larkin rule [39, 40],
which can be obtained by imagining that each of their
currents are driven by their respective effective net elec-
tromotive forces as follows [41]:

js = je = 0s€, (37)
jc:je:UC(E_e)5 (38)

which leads to the following physical electron conductiv-
ity (Toffe-Larkin rule):

o l=o; 4ot (39)

The above formula is valid even when the conductivities
are viewed as frequency and wavevector dependent ten-
SOTS.



For purposes of understanding low-energy properties,
we can consider the Lagrangian that results from that
in Eq. (31) after integrating out the chargons, which to
the leading order in the effective gauge field experienced
by the chargons, A — a, is a Maxwell action because
they are assumed to form a trivial time-reversal-invariant
Mott insulator. The effective Lagrangian density can be
formally written as

FS € 2 1 2
— ks — —(e— EYY——(b-B cee
L= Lihnlp—a) +5(e )’ — 5 (b— B)*+
(40)

“ooum

Here would include higher order, gauge-invariant
terms of the field A — a and other spinon interactions,
and € and p are effective dielectric and magnetic suscepti-
bilities of the Chargons, which we will explicitly relate to
the Mott scale, or more precisely the optical pseudo-gap
of the SFSS later on. Even after all these simplifications,
the effective field theory written above remains strongly
coupled [42], featuring corrections to the spinon single-
particle propagator that are in fact singular to leading
order. It has been long known that such singularities
disappear to leading order in the gauge neutral spinon
particle-hole propagators, whose forms resemble those of
the particle-hole propagators in LFLs [43]. When the
range of the gauge-field propagator is extended, which
is for example physically justified in the related prob-
lem of composite Fermi seas in half-filled Landau levels
with Coulomb interactions, a controlled double expan-
sion approach has been devised to show that, indeed,
such leading RPA LFL-like results are exact in the limit
of a large number of Fermion flavors and for small de-
viations of the range of the gauge propagator from the
Coulomb point [44]. We will employ a treatment that is
ultimately able to reproduce these RPA results at small
(w, q), while also allowing for spinon interaction effects
in the form of Landau parameters to be included, similar
in spirit to the quantum Boltzmann approach employed
in the pioneering work of Ref. 45. In particular, we are
interested in computing the spinon conductivity which
involves only the spinon particle-hole propagator, and
not, the more singular spinon single-particle propagator.

Our approach is to replace the Lagrangian of the SFSS
by the bosonized and linearized theory of the quantum
Fermi liquid [26—-28], which is a second quantized version
of ordinary LFL theory [24, 25]. The resulting theory
is a bosonic bilinear theory in the Fermi radius operator
and the gauge fields, which can therefore be solved ex-
actly. Moreover because the theory is bosonic bilinear,
the quantum and classical equation of motions of its oper-
ators are identical [25] and therefore response functions,
such as the conductivities, can be obtained, without loss
of generality, by simply solving the classical kinetic equa-
tion describing the distribution function of spinons expe-
riencing the e and b fields together with the Maxwell
equations describing the dynamics of these fields. There-

fore our effective Lagrangian can then be written as

£:/d2r£ (41)

1
L=3e—B) —5 (b=B)—po+j, a+ Ll

2
(42)

where £E5 is a short-hand notation for the linearized and
bosonized spinon FS Lagrangian. It is straightforward to
verify that the physical electron density and currents in
the above Lagrangian are identical to the spinon density
and currents, namely, that

i) = (S gg) = min = (5555). @

which is the low-energy version of the microscopic identi-
ties in the underlying model stated in Eqgs. (30) and (31).
Therefore, from here on, we will drop the “s” when refer-
ring to spinon densities and currents. The equations of
motion of the internal gauge fields that follow from the
above Lagrangian are

p=¢€0, (e —E), (44)
Jj= %BT x (b — B) — edi(e — E). (45)

The spinon densities and currents are then related to
the deviation of the spinon distribution function dn, as
follows:

1
P=7 g np, (46)

.1 _
=7 Z VpOTip. (47)
P

The above equations need to be complemented by a ki-
netic equation for the spinon’s F'S describing the response
of low-energy, interacting spinon particle-hole excitations
to the electromotive forces they experience in Eq. (32).
This equation is identical to Eq. (3) that we wrote in
the case of electrons in ordinary metals, except that the
physical electric field E is replaced by the internal elec-
tric field e experienced by the spinons,

0y0np + Vp - D07y + € vpd(ep — ep) = I[ony).  (48)

Just as for electrons, notice that at the linearized level
the effective magnetic field, b, does not enter into the
spinon kinetic equation. This provides a complete set
of coupled equations that will be used to compute the
spinon electrical conductivity in the next section. Also,
it is important to bear in mind that the collision terms,
I[énp], in the case of spinons can be very different from
those of electrons due to gauge field fluctuations. Impu-
rities lead to a momentum-relaxing collisions with a sim-
ple Drude-like form It ~ vp/lmgp, with lng, the spinon
mean free path, but gauge field fluctuations lead to mo-
mentum relaxation rates that have been argued to scale
as Il ~ w*3 in 2D [46], although the scaling with tem-
perature and frequency can be non-trivially affected by
umklapp processes [17].



B. Conductivities of the Spinon Fermi surface state

We will now consider the response of the spinon FS
to a space-time oscillating field E(q,w). For simplicity,
we consider an isotropic system with a circular FS, for
which the mirror symmetries guarantee a decomposition
into transverse and longitudinal responses,

Ji(g,w) = oy(q,w)E)(q,w), (49)
Jilqw)=0.(q,w)EL(q,w). (50)

Using the Faraday’s laws 9, x E = —9,B and 9,, x e =
—0;b, we arrive at the following set of coupled equations
of motion for the combined spinon-gauge field system,

]H(qvw) = zew(EH(q,w) | (qvw))v (51)

iuaw =ies (1= 222 (Bl - esla)

€ pw?
(52)
Jig,w) = oy (g, w)ey(q,w), (53)
jL(qvw) - USL(qaw)eL(qvw)' (54)

Solving these equations (see Appendix A of the Supple-
mentary Material [19]), we arrive at the longitudinal and
transverse conductivities of the SFSS,

o (q.w) = o5t () + 05 g.w), (55)
o1 (gw) = 0cl(qw) + o, (g,w), (56)
1 (0) = g = — D
Os1(q,w) % Fro_ — ii %y (58)

o) =i g @ =y (59)
oo =it 5 (1-S5) -2 @

where we introduce the plasma-like frequency w, and the
velocity of the emergent photon c. Notice that the spinon
longitudinal and transverse conductivities oy and o1
above are identical to those of the electron conductivities
Eqgs. (15)-(20). As we will see, the plasma frequency
controls the Mott scale, or more specifically, it measures
the optical pseudo-gap of the SFSS.

For the case where only Fy and F} are non-zero, one
can solve the full spectrum of collective and particle-
hole excitations of the SFSS exactly from the coupled
Eqgs. (44)—(48). What we find is that the spectrum sep-
arates into a particle-hole continuum and two isolated
collective modes, as shown in Fig. 3(b). One of these
collective modes is purely longitudinal while the other is
purely transverse, the dispersions of which can be directly
obtained from the poles of longitudinal and transverse
conductivities respectively (see Appendix C of the Sup-
plementary Material [19] for full expression). To leading

order in ¢, their dispersions are

1 3+ 2Ly
wr, ™~ wp + e ( 1 ) vig® +O(q"), (61)
P
1 12
wr ~ wp + o (Z + v_2> vEg* + O(g"). (62)
P F

At long wavelengths the longitudinal mode has all its
weight on the charge density and longitudinal charge cur-
rents, and it is the analogue of a plasma oscillation of a
charged fluid. On the other hand, at long wavelengths
the transverse mode is a coherent mixture of the emer-
gent photon and the transverse electric currents, and its
gapping is analogous to the plasma gap of photons in
metals [11]. These modes are gapped here even in 2D
because the emergent photon propagates strictly within
the sample, unlike the physical photon.

In addition, there is a continuum of spinon particle-
hole excitations that remains gapless, as shown in
Fig. 3(a). However, the physical properties of the SFSS
can in general be very distinct from that of metals. This
can be clearly seen, for example, in the conductivity in
response to spatially uniform electric fields, obtained in
the limit q — 0, which governs optical and transport
properties, and is given by

nw

ow)=0(0,w) =0, (0,w) =1

mw2 — mw(w —ilh)’
(63)

As shown in Fig. 3(a), this conductivity features a peak at
w = wp. This peak can be viewed as the optical pseudo-
gap or Mott optical lobe of these correlated states. We
caution that our approach is aimed at capturing only
long-wavelength and low-energy properties of the SFSS,
and, therefore this peak should be taken as a caricature of
these high-frequency optical phenomena. Notably, at low
frequencies the conductivity lacks the distinctive Drude

peak and displays a power law, first obtained in [6], given
by

n INw?

Re o(w) ~ + O(wh). (64)

4
mwp

The aforementioned vanishing of the DC conductivity
and optical pseudo-gap are often emphasized by referring
to the SFSS as an “insulator”. This state, however, can
under some probes resemble a metal [7-10]. Remarkably,
in the long-wavelength quasi-static limit (w < vpqg <
Er), it follows from Egs. (55)—(60) that the transverse
conductivity of this state is identical to that of a metal,
and given by

2
€~ PF,0

h Q(q)

with Q(q) defined in Eq. (23). Likewise, the dissipative
longitudinal conductivity vanishes, o (q,w — 0) — 0,
as expected for a quasi-static longitudinal perturbation.
Importantly, the above implies that the transverse quasi-
static conductivity in the collisionless quantum regime

o1(q,07)=(25+1) (65)
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FIG. 3. (a) Transverse conductivity Re o (¢, w) of the SFSS

in the collisionless limit at ¢ = 0.3pr o [along the vertical line
cut in (b)], with £y = 0 (blue solid curve) and for Fy = 0.5
(blue dashed curve). The corresponding conductivities in
metals are shown in black. Conductivities in both systems
converge to o1 0(¢) in the w — 0 limit. The SFSS conduc-
tivity becomes rapidly suppressed for frequency above Aws.
(b) Dispersion of various collective modes and particle-hole
excitations in the SFSS (F; = 0). (c) Optical conductivity
Re oy(¢ = 0,w) for a metal and a SFSS in the presence of
weak collisions [ = I» = 0.lvppr,o. The Drude peak in
metals is shifted to the plasma frequency w, > Er for the
SFSS. (d) Plots of Re 0. (q,w) for metals (red) and SFSS
(blue) away from the quasi-static w — 0 limit (black). A
smaller frequency 0.1Aws(g«) is required in SF'SSs compared
to 0.1Aw(g«) in metals to probe the quasi-static limit in the
quantum regime q > g«.

q > g« [see Eq. (25)] is also a universal number controlled
only by the geometry of the spinon FS, and it is given by
[cf. Eq. (9)]

e’ pro
O'J_70(q) = (25+ 1)%77, (66)

and more generally for FSs of arbitrary shapes [cf.
Eq. (8)] by

2
e
oLola) = (25 + g > Relpsa)- (67)

Although the transverse conductivities of metals and
SFSSs approach the same value in the quasi-static limit,
their behavior is markedly different at finite frequencies,
as shown in Figs. 3(c)—(d). In the case of metals, the
transverse conductivity vanishes for frequencies exceed-
ing the particle-hole continuum threshold, w 2 vpq. In
the case of SFSSs, however, the transverse conductivity
vanishes rapidly over a much narrower frequency window
as illustrated in Fig. 3(a), which can be characterized by
its half-peak frequency

Auwy(q) = E2LQ(g), (68)

where Q(q) is defined in Eq. (23) (see Appendix E of the
Supplementary Material [19] for details). Therefore to
reach the quasi-static regime, the transverse conductiv-
ity of the SFSS should be measured at w < Aws(g). In
particular, to probe the universal transverse conductiv-
ity in the quantum regime, the transverse conductivity
needs to be measured for wavevectors above ¢ > g¢ [see
Eq.(25)] and for frequencies below scales Aw and Aws
respectively for metals and SFSSs, given by

Aw(q) = vrg, (69)
2
VpC™ 3
Aws(q) = == ¢3.
ws(q) 2 q (70)

The shaded region of the particle-hole continuum in
Fig. 3(b) is where the universal quantum behavior ap-
pears. These frequencies are estimated for some spinon
FS candidate 2D materials in Table II for ¢ = 0.1pp 0.
More details on the organic material candidates d-mit
and x-ET can be found in Ref. 3. The suggestion that
1T-TaSs might harbor a U(1) spin liquid is more re-
cent [48, 49], and more specifically, the case for a spinon
FS state has been argued based on heat transport mea-
surements [50]. The possibility that a state like the
spinon F'S might be realized in monolayer WTes has been
highlighted by the recent remarkable observation of clear
quantum oscillations of resistivity in a strongly insulating
regime [51].

Notice that the additional frequency-dependent scat-
tering rate of the spinons I, ~ w*? induced by gauge
field fluctuations [16] does not affect the quasi-static limit
of the transverse conductivity in Eq. (65), and also it



Spinon FS candidate €F wp Aws/2m  Aws/2m

(meV) (meV) (c=0.5vr) (¢ = 2vr)
EtMesSb[Pd(dmit)2]. 59 80 [10] 7.8 GHz 120 GHz
k-(ET)2Cuz(CN)3 98 87[10] 30 CGHz 480 GHz
1T-TaS, 1753 200 [10] 33 THz 520 THz
monolayer WTe, 29 60 [51] 1.6 GHz 26 GHz

TABLE II. Order-of-magnitude estimate of the frequency
width scale of transverse conductivity [see Fig. 3(a)] for var-
ious U(1) spinon FS candidate systems at ¢ = 0.1pp,o esti-
mated from Eq. (70).

will not change the width of the transverse conductiv-
ity frequency dependence from Eq. (68), provided that
Aws < Er, which is a criterion easily satisfied as seen in
Table II. The precise scaling of the low-frequency scatter-
ing rate in the spinon FS is still a subject of debate (see
e.g. [17]), but provided this rate is much smaller than Fp,
we expect the quasi-static limit of the transverse conduc-
tivity to be given by Eq. (65), and will feature a window
of wavevectors I, < vpq < Ep over which it will be gov-
erned by the universal quantum limit of Eqs. (66)—(67).

C. Physical picture for the transverse metallic
conductivity of spinons

We would like to give an intuitive explanation for the
apparent contradiction that at low frequencies the longi-
tudinal transport properties of the SFSS are characteris-
tic of an insulator, whereas its transverse conductivity is
identical to a metallic Fermi liquid. From Eqgs. (37)—-(38)
or equivalently Eqs. (51)—(54) it follows that the electric
fields experienced by the spinons can be written as

Oc,a

ea:”)J_ - Eav (71)

Oc,a t 05,0
where the frequency and wavevector dependences are im-
plicit. Now, the key to the dramatic difference of re-
sponses lies in the different behavior of the chargon’s
longitudinal and transverse conductivity, which are sim-
ply those of an ordinary dielectric diamagnetic insulator
with permittivities (e, ). Insulators can support non-
zero transverse currents, because these have zero diver-
gence and encode the spatial variation of the magnetiza-
tion without leading to charge density fluctuations, while
long-wavelength currents are suppressed at low frequen-
cies because of the incompressibility of insulators. In
fact, while the longitudinal conductivity of the chargon
insulator vanishes analytically at low frequencies,

Oc,|| (qvw) = €W, (72)

the transverse conductivity diverges as

4 (73)

O—C,J_((Lw — O) =
Jw
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The above forms follow simply from the classic relations
between polarization, electric fields and longitudinal cur-
rents on one hand, P = €¢E|, j; = 9;P, and magne-
tization, magnetic fields, and transverse currents on the
other, B = uM, j, = 8,X M, combined with Faraday’s
law 8, X E = —9; B. These results are therefore expected
to be exact at low frequencies and long wavelengths in
a trivial ordinary insulating ground state. It follows
that the effective longitudinal electric field, e, that the
spinons experience in the regime vpq < w < I't K wy, is

_wFl wF1
eH ~ 2—2 (1 > EH (74)
wP wZD

where we used the Drude form for the spinon conductiv-
ity. Therefore, we see that at low frequencies an external
longitudinal electric field will induce a vanishingly small
longitudinal effective electric field on the spinons, and
this is the reason for the absence of their electrical Drude
weight. In other words, one cannot apply an effectively
DC longitudinal electric field e on the spinons, because
we do not have external sources outside the sample for
this field and because its effective coupling to the physical
external field F) vanishes at small frequencies. This can
also be intuitively pictured from the Ioffe-Larkin rule, by
noting that the most insulating resistor dominates (see
Fig. 4), which in this case is the chargon, leading to an
essentially insulating response.

Remarkably, on the other hand, in the transverse
quasi-static limit [¢ < pr, w < min(vrg, ¢q)], the trans-
verse electric field experienced by the spinons approaches
the full externally applied transverse electric field,

pw 27 (28 + 1)pp> B (75)

o (1 'ET oW

This behavior can be understood again by appealing
to the Ioffe-Larkin rule and noting that in this case
the diverging transverse conductivity of the chargons in
Eq.(73), leads to the spinons dominating the transverse
resistivity in this case. Notably, Eq. (39) combined with
Faraday’s laws for both the emergent and the physical
electromagnetic fields imply that within linear response
theory, the effective magnetic field experienced by the
spinons, b, approaches the external physical magnetic
field, B, in this limit, b ~ B. This property is in line
with the curious mean-field finding in Ref. 9 that the
effective field experienced by spinons with a parabolic
dispersion equals the external magnetic field in 2D at
zero temperature. More broadly, this is intimately re-
lated to the distinction between applying static magnetic
fields and electric fields to spinons, where the former are
known to induce an average emergent magnetic field that
the spinons experience in resemblance to metals, while
remaining largely unresponsive to DC electric fields.
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FIG. 4. Tllustration of the difference between the chargon
current (a), which corresponds to the non-dissipative magne-
tization current, to the spinon current (b) that is solely re-
sponsible for the dissipative DC transverse conductivity. (c)
Analogous to resistors connected in series, the least conduc-
tive of the two will dominate the response.

IV. SPIN QUBIT NOISE SPECTROSCOPY OF
METALS AND SPINON FERMI SURFACE
STATES

Nitrogen vacancy (NV) center spin qubits are emerging
as powerful and versatile detectors of magnetic proper-
ties of condensed matter systems [14]. In particular, the
NV center allows to measure the two-time autocorrela-
tion function of the magnetic field, at a point located
at a distance z > 0 above the sample, xB,B, (2,t) =
(Bu(r + 22,t)B,(r + 2£,0)), where translational invari-
ance in the 2D sample coordinate r is assumed [14, 52].
This magnetic field fluctuations, are related to the dissi-
pative part of the causal retarded correlation function of

magnetic fields [14, 17, 18, 53]
2 hw
N (z,w) = —% coth(ﬂT)ImXB“BV (z,w).  (76)

The magnetic field has contributions from the orbital
magnetic moments caused by electric currents in the sam-
ple and the spin magnetic moments. We will first dis-
cuss the contributions arising from electric currents and
demonstrate later on that the spin fluctuation contribu-
tions are subdominant at low frequencies.

A. Universal quantum low-frequency noise

The contribution from currents can be obtained by us-
ing the Biot-Savart law. As detailed in Appendix F of
the Supplementary Material [19] (see also Ref. 17), we
have found that the low-frequency noise is controlled by
the transverse quasi-static conductivity alone, and it is
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given by

_ hw [ d*q

XB.p. (2w = 0) =~ 1 m€_2qzaL,o(Q) + 0(w?),

(77)

2 2
uiw [ d°q _ P A A s
X/];’iBj (z,w = 0) % / 2 2751 o(q)q - €4 - é;

+ O(W?), (78)

where pi is the permeability of free space, and i,j = x,y
denote the directions in the plane of the 2D sample with
corresponding basis vectors é; ;. Here and in the follow-
ing, we write 7' and F” to denote the real and imaginary
parts of the complex function F = F/'+iF". The remain-
ing components of the noise x5 p_(2,w — 0) vanish in
the presence of a symmetry that enforces the quasipar-
ticle dispersion to satisfy e, = e€_p, such as time rever-
sal or space inversion (see discussion in Appendix F of
the Supplementary Material [19]). An interesting prop-
erty that can serve as a consistency check of the low-
frequency regime in which only transverse currents con-
trol the noise, is that the trace of the in-plane noise tensor
equals the out-of-plane noise in this regime,

X5, 8, (%,w) + X5, ,(2,w) = Xp.p.(2,w) + OW?).
(79)

When the NV center is located at distances so as to probe
the quantum collisionless regime (also referred to as bal-
listic in Ref. 17), the above formula together with Eq. (8)
leads to a remarkable geometric expression for the low-
frequency noise

el w(2S+1)

3
~6rh s or Prs + O(w?). (80)

XB.p.(z,w —0)
See Appendix F of the Supplementary Material [19] for
derivation. Here Ppg is the perimeter of the FS in mo-
mentum space, which in the special case of a circular
FS equals 27pp . Therefore, in the quantum regime, the
low-frequency noise only depends on the perimeter of the
FS, and not on dynamical properties such as the quasi-
particle mass or interactions, and following the discussion
in Sec. ITI B, we see that it is identical for the SF'SS and
metallic Fermi liquids.

Both the frequency and distance dependence of
Eq. (80) are fingerprints of the regime of universal quan-
tum low-frequency noise, which can serve as consistency
checks in experiments. In particular, the linear in w-
dependence of the noise is a hall-mark of systems with fi-
nite density of gapless states that contribute to magnetic
noise either via current or spin fluctuations. Therefore,
in addition to SF'SSs and metals, it would also be present
in idealized magnets with perfect SU(2) spin rotational
symmetry leading to a quadratic magnon dispersion, and
in Zs spin liquids with a F'S, as is shown in Ref. 18 for the
noise from spin contributions for some of these systems.
The dependence on distance appears to be even more spe-
cial, as it distinguishes between SFSSs with U(1) gauge



fields, where x’;_p_oc 1/z, and gapless Zy SFSSs. In the
latter case, orbital current fluctuations are suppressed
due to a gapped gauge field. Consequently, the spin fluc-
tuations, X, g, g, (2,w) 1/23 (see below), dominate
the noise and the distance dependence could serve as a
smoking gun to detect the elusive U(1) SFSS in correlated
materials. We discuss the detailed distance dependence
in the next subsection.

B. Collisions and spin contributions to
low-frequency noise

For simplicity, we focus here on the case of isotropic
systems with circular FS. In this case, as we detail in
Appendix H of the Supplementary Material [19], the only
non-trivial components of the magnetic noise can be writ-
ten as

2
fiow 2z
Kb (50) = 222 [ dage=0* (o]0, + 0" (4,))
(81)
2
Hiow 2z
o, (20) =12 [ dage 20707 (g, ), 82)

where i € x,y in the above. The ge~29* factor in the inte-
grand acts like a filtering function that is peaked around
g ~ z~! that allows the noise from current fluctuations
to be probed at different wavevectors gq. This wavevec-
tor selection is analogous to the noise from spin fluc-
tuations, which is facilitated instead by a ¢3e~29* fac-
tor in the integrand [18] (see also Appendix G of the
Supplementary Material [19]). For purposes of prob-
ing the finite but low-frequency regime, in which the
noise approximates its quasi-static quantum response

XB.p.(%w) =~ Xp.p. (2,0 = 0),

i wpr,o
167h 2z
we focus in the following discussion on the out-of-plane
noise x'5_p_(2,w). At low frequencies w < vr/z, in which
case 0{(¢q,w) < 0’ (q,w) and therefore X3 p (z,w) =~
Xp.p.(2,w)/2.

To reach the quantum regime of noise given in Eq. (80)
and Eq. (83) in both metals and SFSSs, experiments
must measure the noise at distances that are much larger
than the typical Fermi wavelength pg)lo, but much smaller
than the classical collision length z, ~ ¢; ', with ¢, de-
fined in Eq. (25), namely,

Xp.p. (2,0 —0) ~ (25 +1) (83)

(1+ Fy)v v
2F11 F’(F1+FF2)>' (84

At low temperatures, where the momentum preserving
collision rate I vanishes, and the momentum relaxing
collisions rates are dominated by elastic impurities I ~
Upl;%p (assuming F} is not large), the above criterion can
be simply expressed as

pF7%<z<z*—min<

Pro < 2 <K 2 ~ lmp. (85)
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In general, the noise at longer distances will deviate from
the behavior of Eq. (80) and Eq. (83) as shown in Fig. 9
and summarized in Table III. The behavior of the noise
in the classical hydrodynamic or diffusive regimes was
discussed in Ref. 17 and we review it and extend it to SF-
SSs in Appendix H of the Supplementary Material [19].
While the aforementioned requirement on the distance is
the same for metals and SF'SSs, the requirement in terms
of the frequency are more stringent for the SFSS than
for the metal. This is a consequence of the behavior of
the transverse conductivity illustrated in Fig. 3(a), and
discussed in the text surrounding Egs. (68)—(70). More
specifically, provided the noise is measured at a distance
satisfying Eq. (84), in order to reach the quantum regime
in metals the frequency must be in the regime

w< X for metals. (86)
z

However, in the case of SF'SSs within a distance satisfying
Eq. (84), the noise must be measured at frequencies

2
_ vpce” 1
< Aws(g=2"Y = —=
w wolg =27") 2w2 23

for SFSSs. (87)

Typical values of Awg are shown in Table II for sev-
eral spinon FS candidates. The behavior of the noise
at different finite frequencies for metals and SFSSs as a
function of distance is shown in Fig. 9. We can see in
this figure that satisfying the frequency requirement of
Eq. (86)— (87), which guarantees that the noise is probing
the quasi-static behavior of the transverse conductivity,
is actually easier in the quantum regime than in the clas-
sical regimes for both metals and SFSSs. This is because
the classical regimes are accessed at larger distances from
the sample and both frequency scales vp/z (for metals)
and Aw, (for SFSSs) decrease as the distance from the
sample increases (the probed wavevector decreases).

In addition to current fluctuations, spin fluctuations
also contribute to the noise and may therefore affect its
frequency and distance dependence. However, it can be
shown that (see Appendix G) the low-frequency limit of
the magnetic noise originating from spin fluctuations is
given by

e2ut (gom* 2w
" ~ 5. 0 s
Xspin, B;53, (2, 0) = =03 82 ( 4dmyg > pr,02°’ (88)

where mg is the electron rest mass in vacuum. In the
low-frequency limit from Eqgs. (86)—(87) where the noise
is dictated by the quasistatic behavior of the transverse
conductivity, the ratio of the noise originating from spin
fluctuations to the noise from current fluctuations from
Eq. (83) is given by

Xgpin,Bsz (Z5w - O) ’ (gsm*)2 2 (89)
X/J;’ZBZ (z,w—0) | \4mg p%70z27

Therefore we see that the spin noise is suppressed by
a factor (ppz)~2 relative to the current noise, in the



quantum regime and therefore it is highly subdominant
once the criterion Eq. (84) is satisfied. More details of
the behavior of the spin noise in the quantum limit are
presented in Appendix G of the Supplementary Mate-
rial [19].

Before closing this section we would like to contrast our
work with and make a few comments on a recent and very
interesting, closely related study of magnetic noise of spin
liquid states in Ref. 18. We begin by noting that Ref. 18
focused only on the contributions to magnetic noise orig-
inating from spin fluctuations such as those we describe
in Appendix G of the Supplementary Material [19], but
did not consider the possibility of orbital current fluctu-
ations. The latter can be justified in strongly insulat-
ing spin liquid states such as those with Zo gauge fields
and electrically neutral spinons, but it is not necessarily
justified in U(1) spin liquids, especially when they fea-
ture a gapless F'S as we have demonstrated in our study.
At the distances relevant for probing the universal noise,
pI;.,l() &K 2z K lmfp, the low-frequency noise [w < Aw; with
Aws given in Eq. (87)] is dominated by the universal re-
sult « w/z in Eq. (83). For frequencies above Aw, the
noise decreases with frequency due to the suppression of
orbital currents and the much weaker noise contribution
from spin fluctuations oc w/2z% dominates only at a para-
metrically larger frequency scale, namely, in the regime

przlws(g=1/2) K w <K % (90)

The noise in this regime is suppressed by a factor ~
(prz)~? with respect to the zero-frequency noise.

Another discrepancy between our results and those of
Ref. 18 concerns the comparison of Zy and U(1) spin
liquids with a FS. In the presence of time reversal sym-
metry and neglecting spin-orbit coupling, the spin anti-
symmetric fluctuations of the SFSS decouple from the
spin-symmetric fluctuations and also from the U(1) gauge
fields, and hence they behave as in ordinary metals, irre-
spective of the gauge structure. In particular this means,
the low-frequency spin noise, given by Eqs. (76) and (88),
obeys the same scaling coth(Bw/2)w/2® with frequency,
temperature and distance for U(1) or Z» gauge fields (as-
suming temperature remains low enough compared to the
Fermi energy that collisions can be ignored). This is in
contrast to Tables I and IT of Ref. 18, which predict dif-
ferent distance and temperature dependences of the noise
from spin fluctuations in Zs and U(1) spin liquids with a
FS in certain limiting cases. The origin of these discrep-
ancies appear to be mistakes in Ref. 18 in the calculation
of the spin correlation functions in the case of the Zo
spin liquid, which we highlight explicitly in Appendix G
of the Supplementary Material [19].

Moreover, the equivalence of the scaling with distance
and frequency of the spin fluctuations in Zs and U(1) spin
liquids with a FS remains true at elevated frequencies,
which implies that the range of validity of our results for
the noise arising from spin fluctuations in Appendix G
is identical to the one expected for an ordinary LFL,
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Diffusive Hydrodynamic Quantum
Z 2> Zax Zan 2> Z 2> Zx Zx 2> Z
XB. 5. (%) = wf(z) £

TABLE III. Frequency and distance dependence of low-
frequency magnetic noise from current fluctuations in var-
ious transport regimes which is the same in both metals
and SFSSs. For the hydrodynamic regime, the function
f(2) ~ Ei(—2/2z«) — Ei(—2/2++), where Ei(z) denotes the ex-
ponential integral function (See Appendix H of the Supple-
mentary Material for details [19]).

namely, w < vp/z. In contrast, Eq. (B28) of Ref. 18
predicts a different range of validity. The origin of this
issue is that Ref. 18 computed the spin correlator from
a single bubble diagram with dressed Green’s functions
containing an imaginary self-energy scaling as ~ w?/3,
but without any vertex corrections. As has been shown
before [13-15], if one tries to go beyond the RPA-like
treatmeant with bare bubble diagrams, the vertex cor-
rections are crucial, because they cancel divergences from
the self-energy in gauge invariant particle-hole correla-
tion functions in the U(1) SFSS restoring the behavior of
LFL theory at small w and gq.

We conclude that SFSSs with U(1) or Z, gauge fields
can be distinguished in noise spectroscopy because the
former has a dominant orbital current contribution with
a different distance dependence at low frequencies. In
contrast, the contribution from spin fluctuations to the
noise does not depend on the gauge field and is the same
in both cases to the behavior of spin fluctuations in or-
dinary metals.

z, Zyw
10—1 L
. f(@)
\ - Z_z
10t ~—_
3
N
@ L — =0
& 10 w metals
; — w=0.1Aw(q,)
1070 — = 0.1Aw,(q,)
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2/ pry
FIG. 5. Plots showing the deviation of the magnetic noise

due to current fluctuations from the quasi-static noise (black)
for metals at frequency w = 0.1Aw(g«) (red) and SFSSs at fre-
quency w = 0.1Aw;(g«) (blue) corresponding to those shown
in Fig. 3.



V. SUMMARY AND DISCUSSION

In this paper, we have derived several remarkable re-
sults that may each have profound consequences for the
study of material properties:

First, we have extended previous work to show that
the quasi-static transverse electrical conductivity of two-
dimensional metals in the quantum (or ballistic) limit
DF > q > l;l%p takes a universal form, given in Eq. (1),
which is only controlled by the FS geometry and is in-
dependent of kinematic details or interactions. This is
a direct consequence of the quantum degeneracy of elec-
trons in the FS and markedly different from the classical
Drude-type transport at zero wavevector.

Second, we have demonstrated that the universal
transverse conductivity manifests itself as a universal
low-frequency magnetic noise above the 2D sample, given
by Eq. (2), which can be directly measured by spin qubit
noise spectroscopy. In experiments, the dependence of
the noise on the qubit-sample distance can be used to
identify the quantum regime, in which the noise is fully
determined by the F'S perimeter.

Third, we have found that the quasi-static transverse
electrical conductivity and the corresponding magnetic
noise of two-dimensional U(1) spin liquids with a spinon
FS are identical to those of a metal. In a sense, we
have shown that in a certain limit the SF'SS behaves in
the same way as an ordinary metal. This is in striking
contrast to the insulating behavior of SF'SSs in standard
transport experiments at zero wavevector. We have also
pointed out how noise spectroscopy can be used to distin-
guish between spinon FS states with Zy and U(1) gauge
fields.

At first glance, one might feel uneasy about the metal-
lic behavior of a U(1) SFSS, especially because it is a
common jargon in the community to refer to the spinon
as a “neutral fermion”. How can then a “neutral fermion”
respond to a long-wavelength transverse quasi-static elec-
tric field in the same way as an ordinary electron? This
viewpoint is based on traditional parton descriptions of
the SFSS, where the spinon is viewed as carrying zero
electric charge and the chargon carrying the full charge
of the electron. However, this charge assignment is es-
sentially a book-keeping convention that is motivated by
viewing this state as an “electrical insulator”. Only the
net charge assignment to the combined spinon and char-
gon bound state is physical, and if calculations are done
in a consistent and gauge-invariant fashion, it is equally
legitimate to assign the electrical charge to the spinon
while viewing the chargon as electrically neutral.

Nevertheless, the above concern about the metallic re-
sponse of a SF'SS might seem particularly worrysome, if
one takes the standpoint that such a state can in princi-
ple emerge out of a pure-spin Heisenberg-like model, in
which there are no microscopic electrons in the Hilbert
space, as has sometimes been emphasized by referring
to the U(1) SFSS as a spin Bose metal [54, 55]. Our re-
sults can be reconciled with this point of view by noticing
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that, according to Eq. (68), the metallic behavior of the
transverse conductivity only occurs in a frequency win-
dow Awg that decreases as ~ 1 /wz, where w,, is the ef-
fective plasma scale of the problem. This plasma scale is
essentially the Mott scale, or more precisely the scale con-
trolling the pseudo-gap for optical absorption at ¢ = 0.
To put it another way, if we take the Fermi energy to be
controlled by the Heisenberg-like exchange scale of the
problem vppr o ~ J (since this scale often controls the
spinon energy bandwidth in lattice models [3]), take the
effective speed of light to be comparable to the Fermi ve-
locity ¢ ~ vp, and take the optical gap to be controlled by
a Hubbard-like scale wp ~ U (see e.g. Ref. 56), the edge
of the particle-hole continuum of the spinon excitations
would be at frequencies

4
PF.0

~

; (91)

<l E

while the metallic behavior of the transverse conductivity
would emerge at a much lower frequency scale Awg of the

order

@ Gh) e

J U pro)

Therefore this window of low-frequency transverse metal-
licity is expected to disappear if one takes U — oo while
keeping the Heisenberg scale J constant. Our result im-
plies that even though the SFSS can emerge and be un-
derstood in the limit of U — oo where the electron might
disappear from the relevant Hilbert space, a large but
finite U scale remains in a sense a relevant perturba-
tion that alters the low-frequency and long-wavelength
responses of this phase of matter in a non-perturbative
fashion. It also emphasizes the complex and non-trivial
behavior of physical observables near the corner of small
w and ¢ of the spinon particle-hole continuum whose be-
havior changes even more dramatically than in an ordi-
nary metal, especially the transverse conductivity that
resembles that of an insulator when first taking ¢ — 0
and then w — 0, while behaving like a metal in the re-
verse order of limits.

We would like to close by making a strong case for vi-
ability of the observation of the universal low-frequency
noise as a powerful experimental “smoking gun” for the
presence of the U(1) SFSS in correlated materials. The
key to be able to confirm this regime in materials lies
in observing the predicted scaling with frequency w and
distance z from the sample o< w/z, which emerges at low
temperatures (I' < Ep) and in the clean long wavelength
regime (pb?)lo <Lz K l;tl'p)- The observation of linear in
w scaling of the noise signals that the system has a finite
density of states contributing, such as it is the case for
the spin noise of a different SFSS with Zs gauge field.
Therefore, while this linear w scaling of the noise would
be a non-trivial indicator the presence of a finite density
of states in the system of interest, it alone is not suffi-
cient to distinguish the SFSS from other states. The 1/z




dependence is however much more special, as this is di-
rectly an indication of the 1/q scaling of the transverse
conductivity. To our knowledge the only other states of
matter in 2D that can produce the same 1/z scaling are
metallic states with a FS in the clean long-wavelength
regime (py 10 K 2 L lmpp). The additional fact that the
prefactor of the noise in this regime is controlled only by
the perimeter of the FS in momentum space and univer-
sal constants of nature [see Eq. (2)], makes this a highly
robust indication of the presence of the SF'SS. A possi-
ble metallic FS state can be easily ruled out by ordinary
DC transport measurements, since the DC conductivity
of the spinon is expected to vanish in the ideal zero tem-
perature limit in analogy to an insulator.

Finally, we would like to contrast the metallic univer-
sal transverse conductivity and the universal magnetic
field noise, with other remarkable and non-trivial be-
haviors that can be used to advocate for the presence
of the SFSS, namely, the presence of quantum oscilla-
tions [7-9] and cyclotron resonance [10]. One aspect that
makes our proposal conceptually advantageous over the
above is that the transverse conductivity and the mag-
netic field noise are determined by the linear response
correlation functions of the SFSS, which do not require
active modification of the state of interest. This is espe-
cially true for the noise, which is ideally a non-invasive
probe that simply monitors the fluctuations of the equi-
librium state [14]. On the other hand, observing quantum
oscillations and cyclotron resonance requires exerting an
external magnetic field, which induces non-perturbative
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modifications to the FS state and, strictly speaking, de-
mands a description beyond the linear-response regime.
In the clean limit, such non-perturbative modifications
occur ideally at arbitrarily low magnetic fields and are
therefore finger-prints of the FS, but in practice they re-
quire the application of sizable magnetic fields to over-
come disorder and temperature fluctuations, making it
more delicate to differentiate from competing scenarios
such as the quantum oscillations expected in inverted
band insulators with small gaps [57-59]. Also, it is worth
emphasizing that even though the oscillations and cy-
clotron resonance of SF'SS resemble those of metals, the
detailed features can be different and depend on hard to
estimate microscopic constants such as the ratio of ef-
fective magnetic field to applied physical magnetic field
that the spinons experience [60]. The robustness of the
expected universal magnetic noise against microscopic
details summarized in Eq. (2) is therefore a highly ap-
pealing feature of this probe. The above prompts us to
advocate that the observation of the regime of univer-
sal low-frequency noise from Eq. (2), would constitute a
“smoking gun” evidence to finally pin-point the presence
of the long-sought-after U(1) SFSS in correlated materi-
als.
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Appendix A: Derivation of the conductivities of isotropic metals and spinon Fermi surface states

In this appendix, we outline the derivation of the longitudinal and transverse conductivities of isotropic SFSSs,
Egs. (55)—(60) in the main text, following the discussion in Sections IIT A-III B. The corresponding conductivities for
metals, Egs. (15)—(16) in the main text, are obtained in a similar fashion and will not be shown here explicitly. The
linearized kinetic equation with collisions reads,

0i1po + VrDe - O (Pe + /d9/F9,9'p0/> =e-pg — I'i(po — Polpe]) — I'2(pe — Polpe] — Pilpe] — P-1[ps]), (A1)

where Pj[pg] = e'? i %eiil(’pg, while the linearized coupled spinon-gauge field equations of motion read,

2
€0, (e—E)= / %5(191?,0 — k)ps, (A2)
0. % (b B) — cudile~ B) = 25, [ 5o~ o (A3)

where € and p are the gauge dielectric constant and magnetic permeability respectively and m is the transport mass.
Using ansatz of the form pg = p(q,0,w)e’ @97 E = E(q,w)e’“'=97) and e = e(q,w)e!@'~9") (similarly for B
and b), for F;~1 = 0, we have the following coupled equations (henceforth suppressing the w label):

(iw —ivpqeos O + I + I2) p(q,0) = e(q) - po + (iFovpqcos® + I + 1) Py(q) + (iF1vrgcosO + 15) pi(q,6),(A4)
—icq - (e(q) - B(q)) = T2 Po(a). (A5)
~iq x (bla) - Bla))  iepsela) ~ Bla)) = w2 (P (@)i+ Py (@)d). (A6)

where henceforth 6 is taken relative to g, pg = cos g + sin G, and

p(q,0) = Y Pi(q)e"’ = Py(q) + sz(q, 0), (A7)
l=—00

pi(q,0) =2 (P (q)cos (1) + P (q)sin (1)) , (A8)

Pt(q) = / % cos(18)p(q, 0), /% sin(10)p(q, 0). (A9)

Rewriting the LKE,

—ié(q) - po + (Fo cosf — il — 21:’2) Py(q) + (Fl cos O — 21:’2) p1(q,0)
p(,0) = - , (A10)
(s—cos@—zfl —ZFQ)

~ I .
N Nt R C V) (A11)
Vrq Urq Urq

Anticipating the decoupling between the even and odd solutions, we express the gauge and EM fields in terms of

their transverse and longitudinal components relative to ¢, f = f| ¢+ f1¢L + f-2 (f = e,b,E,B and 2 = ¢ X 41 )
and project Eq. (A10) to the Oth and 1st components,

Py(q) = —igd)(@)21(a) +q (Fofi (@) =i (1 + 12) 20(@)) Po(@) + 24 (Fie(0) —il21(a)) P (q), (A12)
P (q) = —igg) () 22(a) + a (Fof2(a) i (11 + 1) 21(0)) Po(@) + 20 (Fa2s(a) = ilo2(a)) P (@), (A13)
P (a) = a(2la) - 22(0)) (21 (a) — 212P] (@) +24(21(a) = 23(0) ) Fu Py (a), (A14)

g =L /d9 (cos 6)! . de (cos 6)! (A15)
i\ 2 (s—cos@—ifl—ifg) S D) (w—wvpqcosl — il —ils)’

)
)
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with the linearized coupled spinon-gauge field equations of motion,

%Po(q) = —ieq(e|(q) — Ey(q)), (A16)
%Pf(q) = —iew(e(q) — By (9)), (A17)
ol b (g) = iuta(b(q) ~ B.(a)) — iew(e. (a)  E. () S

——ie (20 esta) - Baa) (419)

where in the last line we used the respective Faraday’s laws 8, x E = —0;B and 8, x e = —0;b and defined the
velocity of the gauge boson in the medium ¢ =1/, /ep.
For the case I’ 1,2 > 0, we extend s into the complex plane (z) and evaluate these integrals by a change of variables

_ 6
z=e",

11 (22 + 1)

Ql(Q)—EEF a2 (A20)
11
= = (Res(0)(1 — 61,0) + Res(z¢)), (A21)
11 1—60) d1 24+ 1) _¢)!
- __ = (( l,(;) — ( (Z + ) ) + (Zg +Z ﬁ) ) , (A22)
q2 (1—-1) dz (z=2-)(z—21) ) |.— Ze — Z_¢
where in the above C' denotes the unit circle and
zp =CEVCG -1, zyz_ =1, (A23)
(=s—i(l1+ 1Y), (A24)
¢ = —sau(s) (A25)
For |z4| # |2—| # 1, corresponding to solutions outside the particle-hole continuum, we have explicitly
2z sgn(s) 1
0(q) = iZ-1" ¢ =1 (A26)
1 2Z+1\  sgn(s) oz
&)=~ (1+Z§_1> =Ty Jeo1 = 2e520(q), (A27)
1 (2¢)? sgn(s)  Cz
2(4) 2q( C+Z£_Z£_1 . Jo1 (f2(9) (A28)
1 (20)3 1 1 2z 1
2(q) =—— 24202+ ==L | == -2 — ) = = 4 ((g), A29
5(a) 4q( e R G AR e d IR (A29)
1 (2¢)* ¢ 1 Cee
2(q) = —= [ 2(2 2P+ —— =2~ = (02 A30
(@) =5, ( 20+ 20"+ o ) =4 g el s ) = o (A30)
1 1
20(q) — $22(q) = 5257 21(q) — 23(q) = 2_ng5 (A31)

As a consistency check, let us rewrite Eq. (A13),

Pl @) = ~ia (@)D )¢ +a (st (@)~ (B + F2) ola)se) Poa) + 20 (Fi (= + C000) ) — iTath(a)¢) P a)

=(P(q) —iq (ﬁl + f2) 20(q)(z¢ — () Po(q) — F1 P} (q)

" Pu(q), (A32)

P;(Q):TFI 0

which is consistent with the relation obtained from Eq. (A16) and Eq. (A17) with the quasi-particle mass m* = £=% =
(1 + F1)m as is expected since the relaxation terms introduced do not violate charge conservation.



19

This allows us to solve for Py(q) in terms of e|(q),

—iq{? ~ e
Po(q) = A —&y(q) = —ilT (e (@) (A33)
l—gq (Fole(Q) —1 (Fl + Fz) -QO(Q)) —297% (F192(Q) - ZF2-Ql(q))
flg) = L h(g) (A34)
URG 1 — q00(q) (Fozf —i (fa + f’g)) — 20221 (q) (F1< - if’g)
1 1
_ 1 b ; (A35)
VFd sgn(s)z_e/C2 — 1 — (FO — (rl + FQ) z,g) —2pt (F1< - iFQ)
and using Eq. (A16), we have
eaBi(@) = B2 Rofa) (1 o (A36)
1€ = — — € — —— ,
g o O qPF,o 1T}§(q)
o 1)
Pr0 . i
—=P, =ieq |1 —eq——— E A37
o0 O(q) q < qu,O Hﬁ(q)) I (Q) ( )
and from Eq. (A17), we obtain the longitudinal conductivity o (q),
2
. PF, PF,0 PF, S
ifa) = L piq) = PRI Sy (g) = 0 (0) ) (0), (A38)
-1
2r 1
o =jew |1 —eq— ——— . A39
1(a) ( T Hﬁ(q)> (A39)

The longitudinal resistivity can be written as a linear sum of the bosonic (chargon) p.| and fermionic (spinon)
ps| (q) contributions,

pi(a) = o7 (q) = pey + ps)(a), (A40)
q 27 1

1
- = - - A4l
Pel = 700 Psll(@) = == pro TE(@) (Ad1)
Similarly, we can solve for the transverse component Eq. (A14),
- —igq (!?o(tJ) - Qz(q)) . -

Py (q) = - - é1(q) = —ilI(g)eL(q), (A42)

1+ 2i(20(q) - 22()) T2 — 20(21(a) - %))

. 1 q(Qo(tJ) - Qz(q))
119 (q) = S - ~ (A43)
P91 + 2iq (!?o(q) - Qz(q))Fz —2q (Ql(q) - Qs(q))Fl
_ 1 3 (A44)
Vrq 1+ 27;251—’2 - Flzg
(A45)
The transverse conductivity o (¢) is obtained from Eq. (A19),
. _ (pro)® -, A
Jjilq) = 5 P (q)=01(9)EL(q), (A46)
™m
w? — 2q¢? w? — c2q2> m 27 1 )_1
— 1 — ') == ___ A47
oLle) = ie ( w > < ‘ < w pr.0 PF,0 115 (q) (A47)
The transverse resistivity can be written as a linear sum of the bosonic p., (¢) and fermionic contributions ps; (¢),
pi(a) =07 (a) = per(a) + psi (), (A48)
1 w? m 27 1

per(q) = iew <m> . psila) = _%I?,Om’ (A49)

implying a series-stacking of these resistances, i.e. the Ioffe-Larkin rule.
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Appendix B: Alternative derivation of the effect of collions on the conductivity

A useful consistency check can be done by comparing our calculation in the presence of collisions to a method
proposed in Ref. 35 by Conti and Vignale. In Ref. 35 the authors demonstrate that the current-current response
functions of a Fermi liquid x| 1 (¢,w) in the presence of collisions can be obtained from the same response functions
Xﬁl(q,w) in the absence of collisions by a simple set of rules [see Eqgs. (5.10)—(5.13) of Ref. 35, note the different

convention with an opposite sign of w]:

e For momentum relaxing collisions with rate I7:

1 w — iFl 1 iFl li w’2 (Bl)
= - — _ im
X (g, w) w  Xjj(gw—il1)  ww = ilh) @0 X|(g,w')
1 — I} 1
x1(g,w) w X (qw—il1)
e For momentum conserving collisions with rate I:
1 w—iFQ 1 ’LFQm ZFQ ( w’2
_ Hem 1 ) B3
X (g, w) w  xj(q,w—ily) TN T P i) W Xj (g, w’) )
1 — il 1 i 1
_wY—u2 - : Ham (B4)
x1(g,w) w X(gw—ilk)  won

If both types of collisions are present, we can simply concatenate the two relations. After some simple manipulations,
we obtain the following expressions for the conductivity o(w) = —ix(q,w)/w (note that x already contains the
diamagnetic contribution in Ref. 35):

1 1 m iFlg o./
—= —Ih————F—— lim ———— B5
o)(q,w) oﬁ(q, w—1il12) n wlw—il) W50 Uﬁ(q’ w’) (B5)

1 1 m
= - —I5— B6
o1(qw) oY (qw—il1) “n (B6)
with the short-hand notation Iy = I'1 + I'. In our case, we have from Eq. (15) of the main text
oo /s _ —ig?

I g ) — P (aw) = (B7)

Using Eqs. (B5)—(B7), it is straightforward to verify that our results in Eqs. (15)—(19) of the main text, can be
obtained from the same results in the absence of collisions by the substitutions above.

Appendix C: Dispersion of collective modes in metals and spinon Fermi surface states

In this appendix, we show explicitly the dispersion relations of the collective modes of the SFSS for the case
Fi>1 = 0. These can be obtained by solving for the poles of the longitudinal and transverse conductivities of the
SFSS, or equivalently, the zeroes of their respective resistivities, Eq. (A40) and Eq. (A48).

(14 Fo)g® + 2w
\/(1 +2F)q? + 4u?

wr, =

(C1)

and the transverse collective mode dispersion,

2 2\ —1/2 2.2 2 2 2.2 2 2 2.2

_ Ur9q c°q Vpq coq VRq c°q
wT—wp<2— 2w2> 1+7<1—2w >+\/1+2w2 <1—2w2+2w2). (02)

p p p

2
p p p



21

To leading order in ¢, we find

34 2F
WL 2wy + ( : o)vq +O(qh) (C3)
P
1 1 c?
~ L 4
wr wP+2wp <4+’U%> +O( ) (C)

i.e. Eqgs. (61)—(62) in the main text.

Appendix D: Derivation of the quasi-static transverse conductivity

In this appendix, we derive the result of the universal transverse conductivity and the magnetic noise spectrum
for anisotropic FSs given in Eqgs. (8) of the main text. The charge current of a Fermi liquid in the presence of a
quasi-static (w — 0) electrical field is given by substituting Eq. (6) into Eq. (5) of the main text [see Eq. (3.121) from
Ref. 11, in units of i = 1]

Ty = =15 8l — ) (B vy { P () +imita o)}, (D1)

Up

where A, v, = %—;’;, ep and ep are respectively the system area, quasiparticle velocity, energy dispersion and the
Fermi energy. For an anisotropic FS, the Fermi momentum pr(6) as well as the Fermi velocity vp(6) varies with
angle in momentum space. Nonetheless, independent of the symmetries of the FS, it follows that the real part of
the conductivity is nonzero only when g and v, are orthogonal. Hence the only non-trivial component of the real
conductivity tensor is the transverse-transverse component Re o | (q,w — 0) = 01 o(q), i.e. Eq. (7) of the main text.
Without loss of generality, let us consider the case with ¢ = ¢& is along the positive z-direction so that E = E | g
and Jq = J| 9. We find,

UJ_O —7—25 ) - 'Up) 5(‘1""17)

p pz) 816 8y€
[T, an(i )

p Pz “p by “p
52<p P |
vy . . vl =0, €p, mH(p) =00, €p, D2
47rq Z/ /myx vpmml(p)| P p;ip i () piYp; €p (D2)
62 8p ep’.‘
Im =—— — (D3)
47rq Z 4drq 02 €pr

where {p}} denote the set of points on the FS at which the Fermi velocity is orthogonal to g or equivalently, where
the tangents are parallel to g. For general g, the above can be written, restoring A = h/27 and spin degeneracy
gs = 25 + 1, as

o1o(q) =(25+1) @] (D4)

2hq

where RF|p:(4) denotes the radius of curvature (or equivalently the inverse curvature) of the FS at p}. For a circular
FS, the quasiparticle mass is constant so that Rr = pr ¢ = m*vr, and for any given ¢ there are two points giving rise
to a factor of two so that

o10(g)=(25+ 1) - e, 0 isotropic FS. (D5)

q

We derive also the imaginary transverse-transverse conductivity Im o, | (g,w — 0), a result we will use in a
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subsequent section. We find,

I 11 g,0 - 0) = =5 ey — )00 ()

- q-vp
- _4;22 / 0 / pd . |—er|(9)) (vvgw) v e(0) = pro +pr(f)
e vh(9))” = (vE(0),v%(0)) = i
=~ [ WO TS ve(0) = (£(0).04(0)) = loe ()] (cosbe(0) sinr (0)
o2
- / do 7(6), o
(f (0) cos @ — rp(0) sin 9) :
1(9) _ TF(H) F , ’I“F(e) = iTF (9), (D7)

12(0) +72(0) 7r(0)sin@ + 1 (6) cosf ~

where rr(0) denotes the Fermi radius, vr(#) the Fermi velocity, and the last line was obtained from the gradient of
the normal to rr(0),

rr(0)sin@ — 7p(0) cos O
7p(0) sin @ + rp(0) cos 6’
For a system with spatial inversion symmetry, only the diagonal components of .5 are non-trivial, o = o] and

o1, = o). In particular, rp(6) = rp(6 4+ 7), so that the integrand Z(6 + n) = —Z(0) and Im o, (q,w — 0) = 0. In
this case, the quasi-static transverse-transverse conductivity is purely real [11],

tanfp(6) = (D8)

o1(q,w—0)=01,0(q), time reversal or space inversion symmetry. (D9)

Appendix E: Effect of finite frequency on momentum-dependence of transverse conductivity in the different
transport regimes

In this appendix, we analyze the effects of finite frequency and collision on the transverse conductivity leading to
the discussion in Sec. II B of the main text. The transverse conductivity of the SF'SS can be expressed in terms of the
momentum scales ¢o and gp as

ne? 2i/vp e? DF.0
O'L(QaQqu;J): W - e :gsﬁcg(i’)7
Fig- — g+ —2i(gc — (1 + F1)qp/2) + 2qu (W) @ 9w Gp

0+ = qu —iqc =/ (qw —igc)? — ¢®,  q+q- = ¢°, (E2)

2 I 1
= 1+F1é’ G0 =N+ 1), m"=m(l+F), (E3)
where we recast frequencies w and w,, in terms of their associated momenta ¢, = w/vr and g, = w,/vr, and gg = 25+1
denotes the spin degeneracy factor. In the following, it is implicit that g, is always much larger than every other
momentum scale. The transverse conductivity for metals is therefore o (¢, ¢u) ~ 01(¢, ¢w, gp = 0). We consider the
case go > qp for which the hydrodynamic regime exists. Let us first study the effect of small frequency ¢, < gc on
the momentum dependence in the quantum regime ¢ > q¢, for which case we expand Q(q, ¢, ¢p) to leading order in

quw:

(E1)

qp

29’ :
Q¢ 4w @p) = Q(q) — W +iqu€(q. ) + O(g2), (E4)

Q(q) =ap + /> + ¢ — qc, (E5)

g, q0) = a1 + —L - + 24, o= (E6)
L=\ et T U R ) T R

where we restrict to F7 > 0 so that |a;| < 1. The real part of the transverse conductivity takes a simple form in this
limit,

82
Re 01 (q,quw,qp) pr0Q(4) > } +0(q2). (ET)

~gso-
h Q) + a2 [£00.0) — 4
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In the quantum regime, Q(q) ~ ¢ > qc > qp, the above expressions further simplify such that the frequency scale at
which Re o deviates from its ¢~! dependence in the quasi-static limit is given by q., ~ ¢//|€2 — Qq?/(q2 + ¢2%)3/2].
For metals and spinon FSs respectively, we have (for simplicity we consider F; < 1),

3\ 1/2
Au(g) ~ e o (3l (E3)
2 — I'1 qc
\/‘52(%0)—%
2
Vrq VpC™ 3

Aws(q) ¥ ——— ~ (1 + F1)—¢°, E9
@ £(q,qp)] ( ) 2w} (E9)

i.e. Egs. (69) and (70) of the main text when F} = 0. At much larger frequencies w > Aw)(g), the g-dependence of
the transverse conductivities for the SFSS is given by

e? PF.09 e? c * PF oq5
Re 01 (q,Gus Gp) = 95— 55— =~ gs—(1 + F1)? (—) — E10
( v) h q2€%(q,qp) A ) vr)  q2q) (E10)

while for the metallic case, the expansion in small g, is no longer valid and a large q,, expansion is required instead,
from which one finds,

2 2 2
e’ (1+ F1)°pro qcq -5
R ~gg————— o . E11
e 01(g,4qw) > gs 12 a0+ G5 )t (¢,°) (E11)

For completeness, we perform the same analysis for the diffusive and hydrodynamic transport regimes, which can
be studied concurrently by expanding Q(q, ¢, ¢p) to leading order in qal:

Q¢ 4w, ) = Q(q) + 16u€(q, @, ap) + Olas?), (E12)

(¢, qur ap) = ‘- s ’ (B13)
1+ F (14 Fi)(g2 — (¢/vr)?¢?)

e pr,o0Q(q)
Re 01(q, 9w, p) ~ 95— " : (E14)
! h Q2(q) + 42€%(q; qw ap)
Similarly, the ¢-dependence of Re o, in each regime deviates from its quasi-static limit [see Table I of the main
text] at frequencies larger than the scale set by Q(q) ~ ¢u|€(¢, ¢u, gp)|, where Q(¢) ~ ¢p in the diffusive regime and
Q(q) ~ ¢*/2qc¢ in the hydrodynamic regime. These results are summarized in Table IV and V for metals and spinon

FSs respectively for the case of F} < 1, the g-dependence of which are illustrated in Fig. 6.

Diffusive Hydrodynamic Quantum
q K Qsx G K q < @« g < ¢q
(I+F1)vrgp 1+F o Fi41 1 3/
Aw(q) 2 gc T 3—F1qc "
e2 (14 F1)2 v3pr,0ap e2 (14F1)2 vipro e2 (14+11) %0 pr o qcv?
Reoi(qw> Aw(q) gsf 75— ISR et 1 954 <QD+ 57 qz)

TABLE IV. The g-dependence of the real part of the transverse conductivity in metals, Re o1 (¢,w > Aw(q)), for the various
transport regimes (gc > gp) at frequencies larger than the respective cutoff frequency scales Aw(q) required for quasi-static
approximation for the case of F; < 1.

Conversely, a given frequency determines a momentum scale, G(w) and §s(w) for the metal and spinon FS re-
spectively, such that the corresponding transverse conductivity can be approximated by its quasi-static limit when
q > G(s)(w). This momentum scale is obtained by inverting the appropriate cutoff frequency scale Aw(y(q) that
is consistent with the transport regime the momentum scale lies in, and is therefore determined by two threshold
frequencies wpp(s) and wy(s),

1+ F B+l

wpH = —— “URqD, WHQ = 31_ T, URaC (E15)
1+ K 2 1+ F 2

WDHs = TE”FQCQ%} WHQs = TFUF(]%' (E16)

p p
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Diffusive Hydrodynamic Quantum
q K Qs Qrx K q K Gx g« < q
(1+F1)vrgp ¢ - (14+F1)vp 2 4 (14+F1)vp 2 3
Aws(q > qo — = = g
(g> qo) 5 w21 rr—t 5 74
e? (1+F1)2 U2PF,O‘1D A e? (1+F1)2 U2PF,0 A e? (1+F1)2 U2PF,O o
Re 01(a> qo,w> Awila)) 951 o 1d’ S R et L A e wr - U
1
2,2 10\ 3
€2 (14 F1)? vipr09pw? €2 (14F1)2 vgpr,0 w? 2 14F (Pro%@ 3
Re 0. (q < qo,w) 95— - o ISR ao w—§q2 gs 7 wél 1

TABLE V. The g-dependence of the real part of the transverse conductivity in spinon FSs, Re o (¢,w > Aws(q)), for the
various transport regimes (gc > ¢p) at frequencies larger than the respective cutoff frequency scales Aws(gq) required for
quasi-static approximation for the case of F; < 1. At small frequencies w < vrqc of interest, its behavior is always different
from the quasi-static limit when ¢ < qo.

The momentum scales for metals and SFSSs are summarized in Table VI.

Diffusive Hydrodynamic Quantum
w < WpH(s) WpH(s) < W < WHQ(s) WHQ(s) < W
1/2
i(w) ~0 49c w / (3=F1)gc w? /
q - 1+F1 VR Fi+1 ()
1/2 1/4 1/3
s (w) 2w,V 190 ¥2 w )Y 2wy
ds (14+F1)gp 2 vp 1+F1 ¢ vp (14+F1) 2 vp

TABLE VI. Expressions for the momentum scales g(w) and gs(w), in metals and SFSSs respectively, such that Re o (¢ >
Gs(w),w) =~ 01 (q,0%) = gs(€*/h)pr.0/Q(q) and Re o (¢ > §(w),w) =~ o1 (¢,07) = gs(e*/h)pr.0/Q(q).

Particular care has to be taken for SFSSs. The presence of the emergent photon with dispersion w = cq gives
rise to a divergent (¢, ¢w,qp) on resonance, and consequently, a vanishing transverse conductivity. Unlike in the
quantum regime, the momentum at which resonance occurs for a given frequency, go = w/c, becomes relevant in the
hydrodynamic and diffusive regimes even when w < vpge. In particular, when ¢ < qo, frequencies larger than the
Fermi energy are required to satisfy Q(q) > ¢w|€(¢, qu, ap)l;

> 2—w§ > E (E17)
YT 0+ F)wQl T T

Consequently, at low frequencies of interest, the transverse conductivity of the SFSS never approaches its quasi-static
behavior when ¢ < qq.

For completeness, let us consider the case gqp 2 q¢, in which the hydrodynamic regime is absent. In this case, as
pointed out in the main text, ¢. = gp sets the momentum scale that separates the diffusive from quantum transport
regimes. For F} > 0, ¢p takes a maximum value 2qc when F; = 0 and Is = 0. By proceeding with an analogous
analysis, one finds the same results as in the case of qo > ¢p from Tables IV, V and VI, but with the following
threshold frequencies that determine the appropriate form of the momentum scale G )(w),

WDQ = VUr(QD, (E18)
14+ F 2
WpQs = 5 Equ%’ (E19)

p
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the metallic frequency and momentum scales required in the quantum regime,

2§ 1/2

Aw(g > qp) ~v ( —> , E20
( D) ~VF | g F (E20)

_ 5P w23
g(w > wpq) ~ ( 5 1QD_2) : (E21)

U
and the asymptotic g-dependence of the real part of the transverse conductivity in metals,

(14 F)?

Re 0.1 (g,0 3 Au(q)) ~ gg o LTI Pro (E22)

h 4q2

Re 0,(q,w)/ g1 0(q)

Quantum

65.1

a/ pro

FIG. 6. The effect of finite frequency on Re o (¢,w) of metals (red dashed curve) and SFSS (blue solid curve) in the different
transport regimes with Fi = 0. Both systems have the same conductivity in the strict quasi-static w — 0 limit (black). At
finite frequencies, the respective conductivities approach this quasi-static limit only at momenta much larger than a frequency-
dependent momentum cut-off scale, which is much larger in SFSSs (¢s) than in metals (§). Plots are shown for frequencies
w1 = 0.01Aw(g«) in red, and w2 = 0.01Aws(g«) in blue, where we K wr@s K w1 K WHQ.

Finally, we analyze the case of spinons with frequency-dependent momentum relaxation rate induced by gauge
field fluctuations, I, ~ Ep 1 354/ 3 with ¢ = max(w,T), which directly alters the transverse conductivity when
q < I,/ur [16]. A consistent treatment within our framework is to add this term to the impurity scattering rate
N —-nw) =+ Egp Y St/ 3. where we consider the more interesting low-temperature limit. We further consider
for simplicity the case with I = 0, so that the transverse conductivity is expressed in terms of ¢ (w) = I'1(w) /v,
with ¢p = 2q1(w)/(1+ F1) and gc = ¢1(w). The analysis proceeds largely as per the case with gp 2 gc before and is
identical at frequencies Iy > I, as well as momenta g > q.,, q1. We therefore focus on the frequency range, I, > I7,
or equivalently, the ultra-clean limit I3 — 0. Expanding in large ¢, one finds

2q qa 20\ "*
sy Quwy ~ v ay — Z—p ’ Ao = <—w) = 17 E23
Q2 4u: ) 1+ F g2 — (c/vr)*q? PF.0 o

and thus the transverse conductivity,

2
Re o) (w > vpq) ~ gs% (

(E24)

3

pro\2/3 1+ Fy a?, 4 < qo
) 1 x ct —2/3 4
2 ks T 90 ¢ < gw

where the second regime is significant only when ¢ > vp. These scaling regimes are shown in Fig. 7, showing that
the effect of I, only becomes significant at large frequencies for which I, > I3, and only for the range of ¢ for
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which Re o) (w > vpq). Therefore, even in ultra-clean samples in which the diffusive regime vanishes, effect of I,
is negligible when probing the universal quasi-static transverse conductivity at frequencies and momenta satisfying

w K Aws(q) < vpg.

Re g, (q,w)/ g1 0(q)

Quantum

qu;3

a/ pro

FIG. 7. Plots of Re 0 (g,w) of the SFSS for various frequencies, showing that the effect of including (solid plots) or omitting
(dashed plots) the frequency-dependent momentum relaxation starts becoming noticeable only at frequencies for which I, ~ I'1
(blue) and significant at larger frequencies for which I, > I (red). Frequencies plotted here are w1 = 0.0lwpgs, Tw, = I1
and I, = 351", with w1 K wpgs K w2 K ws.

We close this appendix by showing that the various classical (i.e. non-quantum) regimes admits a hydrodynamical
interpretation by rederiving the above asymptotic transverse conductivities starting from the Navier-Stokes equation
with an additional per unit area external force, f, and friction f = —nm~yv,

1030 = nm(0; +v - 8p)v + 8pp — f — fy, (E25)

For metals, f = neFE, so that linearizing the above equation in v, one finds that the transverse current j, = nev,
has an associated transverse conductivity

7’L€2 62 PF.0

= = 95— ——, E26
LT (iw+7+ 7L¢?) P50 Q¢ 40) (120)

2

¢ .

Q'(¢:q0) = dp + o, + b0 (B27)

C

2 7 nPF 0 2

b= —, qo=— =— E28
dp 1+ F, op’ dc A o 1+ ( )

i.e. Eq. (E12) with redefined parameters g, and ¢j,. For the SFSS, we consider the force per unit area f = nee, and
consider the relation between the physical current, spinon and chargon currents, respectively Eqgs. (30), (37) and (38)
in the main text, the SFSS conductivity can be obtained straightforwardly by applying the Ioffe-Larkin rule Eq. (39)
using the expression for the chargon conductivity, Eq. (60) in the main text, which follows from Maxwell’s equations.
Doing so recovers Eq. (E12) in its entirety with redefined parameters g, and ¢J,

¢
2q¢

Q' (¢, 9w, a) = dp + + 1w€(q; G, @p)- (E29)

The ¢- and w-dependences in the various cases immediately follow from the previous analysis.
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Appendix F: Derivation of low-frequency magnetic noise from conductivity

In this appendix, we derive the unequal time magnetic field correlations associated to the current correlations of the
system in the collisionless regime I o = 0 leading to the discussion in Sec. IV A of the main text, and in particular,
the expression for the low-frequency noise Eq. (2). We begin by decomposing the density and current fluctuations into
different longitudinal (||) and transverse (L) Fourier modes. Treating each mode as an independent source, we solve

Maxwell’s equations to obtain the associated electromagnetic field distributions El'(z, 2, ¢) = Elll’L(w, z)elwt-a)

and B”’l(cc, z,t) = Blll’L(w, 2)e!@t=a%) where x is a 2D-vector denoting the coordinate parallel to the plane of the
system while z denotes the out-of-plane coordinate. For a longitudinal mode,

p(x, 2, 1) = pgd(z)el@t=—a®), (F1)
Jy(@,2,t) = jjgd(2)e" @ mIPg jy o= vpg, (F2)

where v = w/q is the velocity of the traveling wave moving along the modulation direction ¢. In contrast, a transverse
mode has no density fluctuations,

plx, z,t) =0, (F3)
Jo(@, 2, t) = jiq0(2)e" " I®g, Gx gL =2, (F4)

where we have assumed a charge neutral background. The corresponding magnetic fields generated by these source
modes are

Ho _d|y . o

Bjy(w,2) = rsgn(z)e” 7y ¢ x 2, (F5)
Ho —gaiz . 5 A

BqL(w,z) = 706 7 ‘JJ_)q x (sgn(z)Z + ivq) , (F6)

where 7 = 1/4/1 — w?/c?¢? is the Lorentz factor and ¢ the speed of light.

In the non-relativistic limit, v — 1 and the frequency dependence of B lll’J‘ drop out. Consequently, these expressions
can be directly quantized, so that the time-evolution of the corresponding magnetic field operators to is completely
encoded by that of the current operators [25],

Bl(zt) = %sgn(z)efq‘z‘j'”’q(t) X 3, (F7)
By (z0) = Boem 5, (1) x (sgn(2)2 + id) (Fs)

In practice, it is more useful to express the components of the magnetic field operator in a reference frame in which
g is defined by its angle 6, from the z-axis.

By(2,t) = B (2,0) + By (2,8) = Ba.a(2, ) + Bay(2,)§ + Ba2(2,1)%, (F9)
Baua(z,) = e Wlsgn(z) (JL.qa(t) cos 0 + jyo(8)sin, ) . (F10)
Bauy () = 5re W¥lsgn(z) (J1.q(6) sin 0, — Jj q(t) cos6, ) . (F11)
B (z,) = —iE2e 141, o), (F12)

Without loss of generality, let us consider the magnetic response at a point £ = y = 0 and some finite distance
z > 0 above the system,

x8,8,(2:1) = =i00) { | Bu(z.1), Bu(2,0)] ), (F13)
B#(Z,t) = ZBQ-,#(Z’t)v (F14)

where p,v = x,y,z and O(t) denotes the Heaviside function. Using the operator relations Eqgs. (F7) and (F8), the
magnetic noise can be written explicitly in terms of current correlators, or equivalently conductivities,

Niois (@8) = =10) { [jual) o) ) (F15)
Niods (4:0) = —iw0as (q,) (F16)
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where «, 8 = ||, L. It follows from Eq. (7) of the main text that in the quasi-static limit, that the diagonal components
of the magnetic noise tensor are

2 d2
X%mb (z,w—0)= % 4—736_2qzaj_)0(q) 6082(9(1), (F17)
2 d2
X, 5, (20 = 0) = BZ [ 272070 (q) sin’(6,), (F18)
2 2
pow [ d7q s,
X/J/BZBZ(ZM —0) = % He 2 Ul,o(‘])v (F19)

while the off-diagonal components are

_ piw [ d’q

X%,By (z,w —0) = X%me (z,w) = e Heﬁqzal)o(q) cos(0q) sin(6y), (F20)
pow [d*q _,
X%mBz (z,w—0) = —XjézBz (z,w) = sgn(z)T / Fef “Im 01, (q,w — 0) Cos(eq)a (F21)
T
pow [ d*q 2
Xp, 5. (2, w—0)=—x5 p (z,w) = sgn(z)T / 4—26_ %Im o (q,w — 0)sin(6,), (F22)
y=z zDy T

where F' and F” denotes respectively the real and imaginary parts of a complex function F = F' + i F".
In the presence of a symmetry that enforces the quasiparticle dispersion to satisfy e, = e_p such as time reversal
or space inversion, The diagonal components of the magnetic noise tensor are

1" N%W d*q —2¢z 2 .2
XB,B, (% w) = e me (Re 01(q,w)cos*(0y) + Re o)/(q,w) sin (Hq)) , (F23)
" /1’(2)“’Y d2q —2qz 02 2
XB, B, (2,w) = | =€ (Re 01 (g,w)sin®(6,) + Re o)(q,w) cos?(6,)) , (F24)
2w d2 B
Vg (zw) = B2 [ T Re 0 (q,w), (25)

while the off-diagonal components of the magnetic noise tensor are

X5, () = ¥y, (20) = 282 [ D92 (e g, (g.0) — e oy (g.0) cos(B)sin(0,). (F20)
pgw [ d*q

X, (21 = =X, (50) = ()22 [ e o (g,) cos(0,), (F27)
piw [ d*q

XB,B.(%,w) = —Xp.p,(2,w) = sgn(z)% / meﬂqzlm o1 (g,w)sin(0y). (F28)

In the quasi-static limit, the off-diagonal components x; 5 and x'éy p. vanish since Im o (g,w — 0) = 0 [Eq. (D9)],
such that the only non-trivial components can be summarized by Eq. (77) and Eq. (78) in the main text,

2w d2 B

Vb (0 = 0) = B2 [ S o225 (g) + O(?), (F29)
20 d’q e A

X%iBj (7,0 = 0) =~ % 4—7;;e o1 0(q)q- €G- &5+ OW?), (F'30)

with corrections O(w?). The leading term in the noise spectrum therefore captures geometric properties of the FS, a
result that is common to both metals and spinon FS stats.

In the quantum transport regime, the out-of-plane component Xz p_(2,w — 0) in particular can be evaluated even
for an anisotropic FS as we show in the following. Substituting Eq. (8) in the main text to Eq. (F19), we have

y (954 )t [Tl oW F
XB.p, (z,w —0) ~ (2 +1)327rh; : E; Flpz(0,) + O(w”). (F31)

Notice that the set of points {p}(6,)} = {P; (84 + 7)}; the integration with respect to 6, corresponds to integrating
|Rr| around the FS twice. For a convex FS; one can perform this integration by first choosing an arbitrary interior
point as the origin and then constructing a support function r(y¢) characterized by the distance r and angle ¢ of the
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shortest line drawn from the origin to the tangent curve for every point along the curve. The points {p}(6,)} are
characterized by the angles ¢ = 6, £+ 7/2, such that dy = df, and

2
P (0y) = /0 de (r(y) + 83,7‘(90)) = Prg, convex FS. (F32)

/FdquRF
0 i

which is a known mathematical result [61, 62], where Ppg denotes the perimeter of the (convex) FS.

In fact, this result holds for a generic FS with concave regions. To see this, we split the |Rp| integration into
concave and convex regions of the FS. For each convex region, we choose an interior point as the origin as before.
For each concave region, we choose an ezterior point as the origin relative to which the region is convex. Support
functions for each region r,, can be defined with respect to their support angles ¢,, about their respective origins.
The crucial point in this construction is that the angles characterizing the points within each region m is once again
related to 0, via ¢, = 04 = 7/2 such that df; = dy,,. The integration over each region gives its arc length ¢,,, the
sum of which corresponds to the perimeter of the FS,

s ¢7n,f
/0 deq Z ‘RFlp;‘(eq)’ = Z/gb d‘pm (T(QOm) + azmrm((pm)) = me = ,PFS' (F33)

The construction procedure is illustrated in Fig. 8.

FIG. 8. Left: Schematic showing the set of points {p;(64)} on the same anisotropic F'S as that shown in Fig. 1(c) of the main
text, with Fermi velocities (green arrows) orthogonal to g along a different direction. Right: Construction of the support angles
»m and functions 7y, (¢m) for two of the six points in the left panel. The origin (red dot) for the concave region m = 1 (red)
is a point outside of the FS while the origin (blue dot) for convex region m = 2 (blue) is a point inside the FS. All angles are
defined relative to the z-axis (bold black line).

Consequently,
e?ud w (28 +1)

” —0) ~ _ 3 F34
XBZBZ(Z’W 0) 167h = o Prs + O(w?), (F34)
For a circular 'S, Prs = 27mpr o so that
" 62/1'(2) WPF,0 3
XB.B.(2,w—0)~(25+1) —— + O(w”), isotropic FS. (F35)

167h

Appendix G: Derivation of low-frequency noise contribution from spin correlations

In this appendix we derive the contribution of the spin fluctuations to the magnetic noise spectrum arising from
spin-3 fermions and show that it is subdominant compared to contribution from current fluctuations, Eqs. (88)—(89)
of the main text. The vector potential at points @ due to a given magnetization M (xs) is

A(z) = @/dSmsM(ws) x(@—@) _ po (/d%sw - /d%svs x M) , (G1)

 4r |z — x4)3  4rm |z — x| T — T
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where the second term can be written as a surface integral which vanishes for physical distributions M (x,). This
vector potential gives rise to a magnetic field,

B _ Mo 3 B Vs x M(xs)
B(x) =V x A(z) = - /d xs(x — xy) X e a P (G2)
Consider the magnetization of a 2D system
M(ms> = Mk(s(zs)eiikqlsa Ts = (r57zs)a rs = (Isays>a (G3)

where k = (kg, ky) is a momentum in the plane parallel to the system. It can be shown that this gives rise to a
magnetic field

B(z) = k%e_ik're_k‘z‘ (isgn(z)M,jif + My, — kM, - k) . (G4)

The intrinsic spin magnetic dipole moment of an electron is given by p, = —gsupS/h. The magnetization operator
in momentum space is

~ 1 . .
Mk:_igs‘uBgcl‘Fkacp’ (G5)

where & = (6%,6Y,6%) denote the pauli matrices. At x = y = 0, the generic magnetic field operator is given by

B(z) = —gH0gsip pr,k(z), bpi(2) = ke ICL—Hc (zsgn(z)a k+6 —ké - k) Cp. (G6)
k,p

Note that only the first term changes sign under k — —k. At time ¢ > 0,
B(z,t) = e B(z)e” (GT)

For simplicity, let us consider a paramagnetically ordered system with an isotropic FS described by the the free
fermion Hamiltonian H = ", c}; <Ck,s 50 that the spin and momentum sectors are decoupled. The time-dependent
magnetic noise at the origin x =y = 0 at zero temperature is then

7 A .
Xopin .55 (2,8) = —0(0) ([Bilz: 1), By(2)]), . (G8)
where the expectation value is taken over the ground state. In frequency space, one finds
. _ L e m%ki* —2k|2| k G9
Xsp1n7BiBj(Z7w) = 16ﬂogsﬂBaU 9 e Xoo (k,w), (G9)
0 7T
T do . L . S
ai; = aji = Tr U > (—isgn(z)&zk +&— ke k) (isgn(z)&zk +&— ke k) ] =26, (G10)
0 ™ [ 7
m* pr.o w +1id k w + 10 k
olbyw)= ——= |Us | ——— — — , W =(- R 21,
oolhw) = 5220 oy (20— R gy (SR B | () = ¢ smlRe G

(G11)

where the trace in «;; is performed over spin degrees of freedom, fi, = O(pr,0 — k) is the zero temperature Fermi
distribution, yos (k,w) is the 2D one-spin Lindhard function, and m* the quasiparticle mass. The imaginary part is

1 * oo N
Xepin, 5,5, (2, W) = —5@1—6#395#23%29% 0 2/ dick?e?hrrols| [9(1 —s2)y /1 =52 —0(1 - s})y/1~ Si} :
BB, aPeo 2 | V
(G12)

o= — = . k= —. G13
2Er  vRpFRo DF,0 ( )

ES:I:E, d d K
k2

Solving for the constraints provided by the Heaviside function, the integral becomes

1 m* I;s,> P . - ~ ~ ~
Xgpin,BiBj (Z,W) = _6ZJEN(2)Q§M23HP%,O . 2;(—8) /]NCSK dkke 2kpr o] |\/(k2 _ k§1<) (k§7> _ k2)7 (G14)

kie=1-V1I-20=0+0&%, k>=1+V1-20=2-0+0G?, (G15)
ko c=-1+VI+t20=0+0@?), k_>=1+VI+20=2+&+0@?. (G16)
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For z > 0 and in the large distance limit, 2]~€i7>pF702 >~ 4dpp oz > 1,1e. z > 1/4pp o, the above can be approximated
by

1 * ~ o] s - — —
X:/slpin,BiBj (2,w) = 6i; 1—6M(2Jg§ﬂ23 %pf«“,o "2 Z sks,> [ dkke2kPro® \ k? — k§,< (G17)
s==+

s,<

1 m* . /;§’< wz
~ 0ij T 1092 3P0 2;25(1 — 5) [ PLC (a)] L a=20 (G18)

where K5 denotes the K-Bessel function of the second kind. Expanding K5 in the o < 1 limit, or equivalently, the
low-frequency limit w < vp/2z,

. (2w) 5 e?ud (95)2 m* \ 2 wpro 2 (G19)
. Zw) ~ =8 —2 (2 . ,
Xspin, B B; (%5 71672 \ 2 2mg z  pE 22

where my is the electron rest mass. Comparing this to the current contribution [Eq. (F35) with S = 1/2], we find

" Zz,w—0 2 * 0\ 2 2
Xspm,Bsz( )‘ ~ (%) < m > (G2O)

X5.p. (2,w = 0) 2 2mg p%)022 ’

ie. al/ p%7022 suppression of the spin fluctuation contribution relative to the current fluctuation contribution and
can therefore be neglected at large distances z > 1/pr 0.
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Comments on Ref. 18

Our results for the spin fluctuations above are identical for the Zs and U(1) spin liquids with a spinon FS. This
disagrees with some results obtained in Ref. 18. Specifically, Table I of that reference claims the noise in the two
types of spin liquids has a different dependence on temperature in the clean case when 7' > w. In contrast, we obtain
a linear in T behavior from Eq. (76) in both cases. In addition, Table IT of Ref. 18 predicts a different dependence on
height 2 (called d therein) for the two spin liquids in clean systems in the limit 7' < w. We obtain a =3 dependence
of the noise from spin fluctuations in both cases. In the following we point out specific mistakes in Ref. 18, that led
to the erroneous conclusions.

The error in the derivation of the z-dependence originates from the incorrect approximation of the following integral
in Eq. (B7) in the appendix of Ref. 18,

(2utw)/veq 2

/ du /u? — 10 =2 (L) . (G21)
(2p—w)/vrq Urq \Vrq

Writing u = ug + z, ug = 2u/vrq ~ pr/q > 1 and s = w/vpq < ug, we find instead

@2ptw)/vg 4
/ du Vu? — 1~ 2ugs — PO coad v (G22)
(

+_a
2u—w)/vrg uo — (vrq)*  2p

so that the noise [Eq. (B8) in the appendix of Ref. 18] in the w — 0 limit should read

oo 2 0
" 3 —2qz 4q wi / 2 —2qz w
Xspi oc/ dq q°e X w dq q°e ~—, G23
N . Vie? — w? (vrq)? 0 2 (G22)

identical to the result they obtained for the U(1) quantum spin liquid with spinon FS and our result above.
The error in the T' dependence originates from an incorrect approximation of the integral in Eq. (B9) in the appendix
of Ref. 18,

- u? —1 2
/1 duCOSh2[(quu —2u)/2T] 7 (v/;—q) : (G24)

Because the cosh? is exponentially large in its argument, the main contribution to this integral originates from values
u in an interval of width ~ T'/vpq around u ~ 2u/vpq. For p>> T, vpq this restricts the integral to values u > 1 and
we can approximate

o0 2_ ] 0
/ du—5—" ~ / du—y— (G25)
1 cosh®[(vpqu — 211) /2T 1 cosh®[(vpqu — 211) /2T
wl
~ ; G26
(or? (20
where we have used the indefinite integral
/ i u _ log[cosh(a — bu)] —21— bu tanh(a — bu) (Ga7)
cosh”(bu — a) b

and expanded to leading order in vpq/p and T'/u. This means that there should be an extra factor of T'/u in the
noise in Eq. (29) and Eq. (B10) of Ref. 18 and the noise for the the Zs FS should also be linear in T in Table I in
agreement with our results.
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Appendix H: Effects of collision on low-frequency noise

In this appendix, we analyze in detail the low-frequency noise obtained in the presence of collisions leading to the
discussion in Sec. IV B of the main text. For simplicity, we consider isotropic systems with circular FSs. In this case,
the non-trivial components of the magnetic noise from current fluctuations following Eqs. (F23)—(F25) are

2
/’L w —2qz
XB,, (z,w) = 1?5—7r dqge 24 (Re o (q,w) + Re 01 (q,w)), (H1)
2(4}
XB.p.(2,w) = % /dqqe*zque o1(g,w). (H2)

Of particular interest is the out-of-plane component, which can be approximated by approximating the respective
transverse conductivities as

Re 0. (g.w) ~ ©(q = 45 (@) )7 (4,07) + 6 ds) (@) — ) Re .1 (g,): (H3)

As per the discussion in Ref. 18, the distance z sets a cutoff scale ¢, = 1/2z at which the system’s response is
probed. For cases when the various momentum scales {g., ¢«, G««, §(s)(w)} (also go for the SFSS) are well separated,
the noise can be approximated by integrating the corresponding expression for the transverse conductivity, found in
Tables. IV-VI and Table. I in the main text, over the region of ¢ in which ¢, lies. This approximation gives rise to a
wht1z=("+2) dependence of the noise when the corresponding transverse conductivity scales as Re o | (q,w) ox wlg" for
n > —2. For the special case of n = —2, i.e. the quasi-static transverse conductivity in the hydrodynamic transport
regime. In this case, instead of the naive z°-dependence, the z-dependence is well approximated by

f(2) = Ei(—2¢+2) — Ei(—2¢4x2), (H4)

where Ei(z) denotes the exponential integral function. Consequently, the z-dependence of the noise is given by the
distance scale at which it is probed at with respect to the associated distance scales set by the above momentum scales,
z; = 1/2q;. This accounts for the different z-dependences in the various regimes shown in Fig. 9 and Tables. VII-VIII
below. As an illustration, we consider the case of the SFSS with ¢y < gux < §(5)(w) < gx, for which case the noise
at distances Z,(w) < z < z. can be approximated as

/L(QJW sy (w)
8

S R (E8 B Y
87 Jy 5h 8 qow? wy

XB. B, (%,w) ~ dg ge *”Re 0 (q,w)

G

2 €213 VEPFR.O é I'(9)
647h qow wp (22)8

~gs(1+ F1) (H5)
where I" denotes the gamma function.

Therefore, in order to access the system’s response in the quasi-static quantum regime, the noise should be probe
at distances z < z,, where z, ~ I the system mean free path in the 7" — 0 limit.

Metals Diffusive Hydrodynamic Quantum
23> Zaw Zaw D> 2D 2w 2k D Z

Xbop (2> 5w) wf(2) @
- 1 1 1
XB.p. (2 <EW) Tz P o

TABLE VII. Frequency (w) and distance (z) dependence of magnetic noise from current fluctuations in various transport
regimes in metals, where f(z) is given in Eq. (H4).
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SFSSs Diffusive Hydrodynamic Quantum

XB.5. (2> Z:(w)) = wf(z) ©

~ 1 1 1
Xb.5. (70 € 2 < % (W) =% L L
3 3 13/3

X%:Bz (z < 20) 2)—2 ‘:— “’22

TABLE VIII. Analogue of Table. VII for SFSSs.

XB, XB,
T 1. T 1.2
Q Q
~ 0.8 - 1.
N N
06 0.8
0.6
04 04
0.2 0.2
0 0
w ! VEPFo
()
z, Z,s

Im Xg, B, (Z,w)

Ballistic Hydrodynamic

| | | |
Zs1

25.2 Z4 %

z/ prg

FIG. 9. Plots of the rescaled magnetic noise Xn, x x5, . 2/wpr,0, as a function of the out-of-plane distance z from the 2D
sample, as well as frequency w, for (a) an isotropic metal and (b) an isotropic SF'SS with w, = 2vrpr,o, for which there is an
additional peak. (c) Magnetic noise due to current fluctuations obtained from transverse conductivities at the same frequencies
w1 and wy shown in Fig. 6 for SFSS (solid plots) and metals (dashed plot).



