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Chapter 1

Introduction

Visible matter underlies four fundamental forces. The standard model of particle physics is
capable of describing three of them, namely electromagnetic, weak and strong force. How-
ever, by now it is not possible to include gravity into the model. The theory of strong
interaction is called Quantum Chromodynamics, QCD. Gell-Mann and Zweig proposed a
model of the three light quarks, up, down and strange, which groups hadronic matter into
octets and decuplets. Later three more quarks were found, charm, bottom and top. It was
found that the ∆ + + baryon, which consists of three up quarks with parallel spin, does not
obey the Pauli principle. Thus a new quantum number, color had to be introduced. It was
confirmed by studying the crosssection of the electron-positron annihilation, that there exist
three different colors, Nc = 3. Color-neutral bound states can be formed by either combing
three quarks of all three colors or combining two quarks of the same flavor, one with color
and another one with anti-color. This means bound states can be formed from three quarks
of three different colors (baryons) or quark-anti-quark pairs (mesons). Mesonic states can
be grouped into a singlet and an octet for SU(3) and baryonic states can be grouped into a
singlet, two octets, and one decuplet.

In the early, hot universe a state named the Quark gluon plasma (QGP) existed. It is sup-
posed that the QCD transition from QGP to hadronic matter took place at T = 150 −
200MeV at t = 10−5 − 10−4s after the Big Bang. The transition of free quarks and gluons
in the QGP to confined particles in hadronic matter is called the Deconfinement transition.
In the region of massless quarks QCD exhibits chiral symmetry, which is sponatneously bro-
ken. For hot temperatures this symmetry is expected to be restored. In the region of cold
temperature and high baryon density there also exists a transition from hadronic matter to
a color superconducting phase, see Figure 1.0.1. [29]

Using perturbative methods and simulations, some gaps in the QCD phase diagram could be
filled. Though wide regions remain inaccessible. For nonzero chemical potential the reason is
the sign problem, which makes standard Metropolis simulation not feasible. Several methods
to solve this have been discovered, as phase quenched QCD, reweighting, purely imaginary
chemical potential or simulating with the Compex Langevin algorithm, which is based on
the Complex Langevin Equation. The latter will be the topic of this thesis, in particular the
application to QCD on the lattice.

QCD on the lattice discretizes the theory onto a space-time lattice, where the discretization
serves as a regulator. As full theory has many degrees of freedom, which make a simulation
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1. Introduction

Figure 1.0.1: QCD phase diagram, taken from [9].

long and numerically costly, an effective theory will be introduced, which resembles QCD in
a defined parameter region, having far less degrees of freedom than the original theory.

The goal of this thesis is twofold. The first part considers testing the Complex Langevin
algorithm in the Deconfinement region for an effective lattice theory. As CL has been shown
to work improperly in some cases, we will discuss some tools to control the simulation to
obtain reasonable results. After an introduction to continuum QCD and lattice QCD, as
well as an effective theory in chapter 2, we will continue in chapter 3 with introducing the
aspects of the (Complex) Langevin equation (CLE). This will especially involve presenting
the tools that can be used to control CL dynamics. It will also be shown how the CLE is
applied to the effective theory. Numerical analysis of the deconfinement transition with and
without fermionic contributions will be presented and discussed in section 5.2, as well as the
application of the tools, which were introduced to control the dynamics of the CLE.

The second part contemplates the chiral condensate, which is the order parameter of the
chiral transition. This will be purpose of chapter 4. The chiral condensate will be derived
from the QCD action, followed by an analytical calculation of the chiral condensate in the
effective theory. Though Wilson fermions, which will be used throughout the thesis, break
chiral symmetry explicitly, it is of interest to see, if chiral restoration will take place never-
theless. This will be the subject of section 5.3.
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Chapter 2

Quantum Chromodynamics

In this section we will recap some information about Quantum Chromodynamics (QCD) in
the continuum as well as the discretization of QCD on the lattice (LQCD). The discretization
serves as a regulator to the theory. [11] An effective Polyakov loop theory for strong coupling
and heavy quarks in QCD had been derived, using Wilson fermions. [13][17] The main
aspects of this effective theory will be displayed. Important symmetries of QCD and the
effective theories will be discussed as well as the Columbia plot, giving an overview over phase
transitions for zero chemical potential. Detailed information can be found in [11][15][28].

2.1 Continuum QCD
Quantum chromodynamics describes the theory of the strong interaction, acting on quarks
and gluons. The fermions of the theory, the quarks, are described by Dirac 4-spinors,

ψf,α,c(x), ψ̄f,α,c(x), (2.1.1)

with indices in flavor space f = 1, 2, ...Nf , Nf = 6, in Dirac space α = 0, 1, 2, 3 and in color
space, c = 1, 2, ..N2

c − 1, Nc = 3. x = (x0, x1, x2, x3) is a vector in Minkowski space-time.
The bosons of the theory are the gluons,

Aµ,cd(x). (2.1.2)

µ = 0, 1, 2, 3 is the Lorentz index and c, d are color indices. Gluons carry color charges as
well and therefore are self-interacting with each other.
The continuum Lagrangian has a fermionic and a gluonic part. In Minkowski space-time it
takes the form

LM = Lf + Lg =
∑
f

ψ̄f,α,c(iγµDµ −m)ψf,α,c −
1
4F

a
µνF

aµν . (2.1.3)

F a
µν(x) is the field strength tensor of the gauge fields and defined in the following way:

F a
µν = ∂µA

a
ν − ∂νAaµ + gfabcA

b
µA

c
ν , (2.1.4)

with the gauge coupling g and the structure constant fabc. We quantize the theory us-
ing Feynman’s path integral formalism. Then we can describe the partition function of a
quanized theory as an integral over the action,

ZM =
∫
d[ψ̄, ψ, A]eiSM =

∫
d[ψ̄, ψ, A]ei

∫
d4xLM . (2.1.5)
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2. Quantum Chromodynamics

The integration measure over the entire field space was abbreviated as

d[ψ̄, ψ, A] =
∏
x

d ψ̄(x)d ψ(x)dA(x). (2.1.6)

The action is defined as the space-time integral over the Lagrangian:

SM =
∫
d4xLM . (2.1.7)

The formulation in Minkowski space-time, denoted by the indexM , has a complex integrand
eiSM for a real action SM , which will become oscillating. This would make numerical
calculations not feasible. Therefore one can apply a Wick rotation changing from real to
imaginary time:

t→ −iτ, SM → iSE, LM → −LE. (2.1.8)

This relates the Euclidean space-time and the Minkowski space-time. We furthermore com-
pactify the Euclidean time τ to the interval (0, β). β is the inverse temperature, β = 1/T .
After Wick rotating the system we get the Lagrangian in Euclidean space-time

LE = ψ̄( /Dµ +m)ψ + 1
4F

a
µνF

a
µν . (2.1.9)

The sign of the mass term has now changed, compared to the term in Minkowski space-time.
The partition function in Euclidean space-time then reads

ZE =
∫
d[ψ̄, ψ, A]e−SE =

∫
d[ψ̄, ψ, A]e−

∫ 1/T
0 dτ

∫
d3xLE . (2.1.10)

To distinguish the Euclidean metric from the Minkowski metric, we will number the Eu-
clidean Lorentz indices µ = 1, 2, 3, 4, where µ = 4 corresponds to the time component in
Euclidean space-time. From now on we will stay with the Euclidean action without denoting
it explicitly anymore, leaving out the superscript "E".

2.2 QCD on the lattice
To perform lattice simulations we need to discretize the theory of QCD onto a lattice. In
this section we will see how the discretization to the lattice is done. We will introduce the
gauge fields on the lattice, followed by adding fermions. The latter is a more challenging
business. This overview follows [15]. We define the four dimensional lattice Λ as

Λ = {n = (n1, n2, n3, n4) | n1, n2, n3 = 0, 1, ...Ns − 1; n4 = 0, 1, ..Nτ − 1}, (2.2.1)

where n ∈ Λ denotes points on the lattice with lattice spacing a. For simplicity as = aτ = a,
but in general they can be chosen distinctly. Nτ is the temporal extent of the lattice and Ns

is the spatial extent. We will sometimes refer to the spatial lattice Λs ⊂ Λ,

Λs = {n = (n1, n2, n3) | n1, n2, n3 = 0, 1, ...Ns − 1}. (2.2.2)
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2.2 QCD on the lattice

2.2.1 Gauge fields on the lattice
The gauge fields can be written as gauge links Uµ(n) on the lattice, connecting the lattice
points n and n+ aµ̂ in positive µ-direction. We can also define gauge links that are oriented
in negative µ-direction as U−µ(n) = U †µ(n−aµ̂). The relation between the gauge links, which
are elements of the SU(3) group, and the continuum gauge fields, which are elements of a
Lie algebra, is

Uµ(n) = eigaAµ(n), Uµ(n) ∈ SU(3). (2.2.3)

A gauge invariant quantity is the shortest, non-trivial closed loop formed by four gauge links,
the plaquette:

Uµ,ν(n) = Uµ(n)Uν(n+ µ̂)U †µ(n+ ν̂)U †ν(n). (2.2.4)

Now we can use the plaquette to define the gauge-invariant Wilson gauge action:

Sg = β

2Nc

∑
P

(Tr(UP ) + Tr(U †P )), β = 2Nc

g2 . (2.2.5)

This action consists of a sum over permutations of the plaquettes and the inverse of the
coupling constant g.
One can show that the trace over a closed loop is a gauge-invariant quantity. Two commonly
used objects are the Wilson loop and the Polyakov loop.

Wilson loop

The Wilson loop describes a loop between spatial points m and n and temporal points 0 and
nt,

L : (m, nt) S→ (n, nt) T †→ (n, 0) S†→ (m, 0) T→ (m, nt). (2.2.6)

S(m,n, nt) is a Wilson line, connecting two spatial points m,n at time nt and T (n, nt) is
the temporal transporter connecting the times 0 and nt at the same point n. To make this
loop invariant we have to take the trace, which defines the Wilson loop:

W [U ] = Tr
 ∏

(n,µ)∈L
Uµ(n)

. (2.2.7)

Polyakov loop

Next we consider a loop with temporal extent Nτ and we can gauge the spatial links to
1, leading to S = 1. This leaves us with two temporal propagators T (m, Nτ ), T (n, , Nτ )†,
which are oriented in opposite directions. Due to periodic boundary conditions in temporal
direction those are closed loops winding around the temporal extent. This quantity is a
temporal Wilson line,

W (m) =
Nτ−1∏
j=0

U4(m, j). (2.2.8)

We can make these loops gauge-invariant, by taking the trace,

L(m) = TrW (m) = Tr
Nτ−1∏
j=0

U4(m, j)
. (2.2.9)
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2. Quantum Chromodynamics

This quantity defines the Polyakov loop.
The Polyakov loop plays an important rule in the pure gauge deconfinement transition. We
consider the correlator of a static quark - anti-quark pair,

〈L(m)L(n)†〉 = e−Fqq̄(r)/T . (2.2.10)

Fqq̄ is the free energy of the quark anti-quark pair with r = a|m − n|. The free energy is
growing with the distance between the quark and the anti-quark r, and therefore

lim
r→∞
〈L(m)L(n)†〉 = 〈L(m)〉〈L(n)†〉 = |〈L〉|2 → 0. (2.2.11)

This makes the Polyakov loop serve as an order parameter for the deconfinement transition,
where 〈L〉 vanishes in the confined phase and 〈L〉 is finite in the deconfined phase. For low
temperatures the system stays in the confined phase, until at a critical temperature Tc the
system undergoes a phase transition and will stay in the second phase for T > Tc.
The expectation value of a single Polyakov loop can be seen as the probability of observing
a single static quark,

|〈L〉| ∝ e−Fq/T . (2.2.12)

In the confined phase Fq → ∞, which means one would need an infinite amount of energy
to remove a single quark from the system.

2.2.2 Fermions on the lattice
A more delicate business is to introduce fermions to the theory on the lattice. We will see
that a naive introduction analogously to introducing the gauge fields will not be sufficient.
We will introduce the Wilson action for fermions.

Naive discretization of the fermion action and fermion doubling

We use the discretized fermion spinors [15]

ψ(n), ψ̄(n), n ∈ Λ. (2.2.13)

One can discretize the partial derivative acting on the quark field using the central difference
method,

∂µψ(n) = 1
2a(ψ(n+ µ̂)− ψ(n− µ̂)) +O(a2). (2.2.14)

It appears that the fermion action is not gauge-invariant when using this discretization of
the derivative. To make the action invariant we need to add gauge links Uµ and we get a
naive formulation of the fermion action: [20]

SN = a4 1
2a
∑
n,µ

[
ψ̄nγµUµ,nψn+µ̂ − ψ̄nγµU †µ,nψn−µ̂

]
+ a4m

∑
n

ψ̄nψn

= a4∑
n

ψ̄n

(
1
2a
∑
µ

γµ
[
Uµ,nδn,m−µ̂ − U †µ,nδn,m+µ̂

]
+mδnm

)
ψm

≡ a4∑
n

ψ̄nD(n,m)ψm.

(2.2.15)
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2.2 QCD on the lattice

This action is indeed invariant under a gauge transformation.
D(n,m) is the naive Dirac operator in coordinate-space. One can transform the Dirac
operator to momentum-space and calculate the inverse of it,

D−1(p) =
m− i

a

∑
µ γµ sin(pµa)

m2 + 1
a2
∑
µ γµ sin2(pµa) . (2.2.16)

The massless inverse propagator D−1(p) has poles for pµ = 0, π/a, which means for p =
(p0, p1, p2, p3) there are in total 16 different momenta pµ leading to a pole of D−1(p). This
corresponds to 16 fermions, where we would expect to get only one. These 15 unphysical
fermions are called doublers and their existence arising from the naive formulation of the
fermion action is called fermion doubling or species doubling. One possibility to remove the
doublers is the introduction of an additional term to the action, the Wilson term.

Wilson fermions

To remove the doublers, as just mentioned, we can add the Wilson term. Adding Wilson
fermions adds a mass term which highers the mass of the fermion doublers to values around
the cutoff energy. Therefore the doublers decouple from the theory. The mass term looks as
follows [28]:

m
∑
n

ψ̄nψn → m
∑
n

ψ̄nψn + ar

2
∑
nµ

∂µψ̄n∂µψn

= m
∑
n

ψ̄nψn + ar

2
∑
nµ

1
a

(ψ̄n+aµ̂ − ψ̄n)1
a

(ψn+aµ̂ − ψn)

=
(
m+ 4r

a

)∑
n

ψ̄nψn −
r

2a
∑
nµ

(ψ̄n+aµ̂ψn + ψ̄nψn+aµ̂).

(2.2.17)

The parameter r is called the Wilson parameter. In most applications one will see it set to
r = 1. However, we will continue the derivation with a general r until we will derive the
chiral condensate. For the simulations r = 1 was used.
Adding the Wilson term to the naive fermion action we get the result for the fermionic action
with Wilson fermions,

SF = a4
(

1
2a
∑
n,µ

[
ψ̄nγµUµ,nψn+µ̂ − ψ̄nγµU †µ,n−µ̂ψn−µ̂

]

+
(
m+ 4r

a

)∑
n

ψ̄nψn −
r

2a
∑
nµ

(ψ̄nUµ,nψn+aµ̂ + ψ̄nU
†
µ,n−µ̂ψn−aµ̂)

)

= a4
((
m+ 4r

a

)∑
n

ψ̄nψn −
1
2a
∑
n,µ

[
ψ̄n(r − γµ)Uµ,nψn+µ̂ + ψ̄n(r + γµ)U †µ,n−µ̂ψn−µ̂

])

= a3
(

(am+ 4r)
∑
n

ψ̄nψn −
1
2
∑
n,µ

[
ψ̄n(r − γµ)Uµ,nψn+µ̂ + ψ̄n(r + γµ)U †µ,n−µ̂ψn−µ̂

])
.

(2.2.18)

It is commonly used to rescale the fermion fields by a factor a−3/2 [19], and with

C = am+ 4r ≡ 1/(2κf ) (2.2.19)
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2. Quantum Chromodynamics

we obtain the rescaled fermion fields

ψ̄ → ψ̄r = a−3/2C−1/2ψ̄, ψ → ψr = a−3/2C−1/2ψ. (2.2.20)

Alltogether the rescaled fermion action reads [20]

SfF,r = a4
(∑

n

ψ̄nψn − κf
∑
n,µ

[
ψ̄n(r − γµ)Uµ,nψn+µ̂ + ψ̄n(r + γµ)U †µ,n−µ̂ψn−µ̂

])
. (2.2.21)

The index r denotes quantities formulated using the rescaled fields ψ̄r, ψr. As the rescaled
action is commonly used as the Wilson fermion action, we will leave out the index r in
upcoming calculations and come back to this specific notation, when it is needed to derive
the expression for the chiral condensate.

2.3 An effective Polyakov loop theory for LQCD
Now that we know how the QCD action on the lattice looks like, we will derive an effective
action, which reproduces QCD in some particular parameter region and is numerically less
costly than the full theory. We will shortly review the most important steps of deriving the
effective theory.

We start with LQCD in (3 + 1) dimensions including the Wilson gauge action from Equa-
tion 2.2.5 and the action for Wilson fermions from Equation 2.2.21. Combining these results
we can write the partition function

Z =
∫
d[Uµ]

∏
Nf

detQfe
−Sg . (2.3.1)

The integration measure was abbreviated as∫
d[Uµ] =

∏
n∈Λ

4∏
µ=1

∫
dUµ(n). (2.3.2)

To derive the effective action we have to perform two series expansions: For the gauge
action we have to perform a strong coupling expansion in β = 2Nc

g2 → 0 and for the fermion
determinant we do a hopping parameter expansion in κ = 1/(2am+ 8)→ 0. We will though
see that the theory will be valid for higher values of the expansion parameters, the strong
coupling expansion will be valid up to the region of the deconfinement transition, where
β ≈ 6. [17] We will derive an expression for the gauge contribution to the effective action
and the fermion contribution, respectively. In the end the effective partition function will
be of the form

Zeff =
∫
d[U4]e−Seff , −Seff = ln

∫
d[Ui]

∏
Nf

detQfe
−Sg . (2.3.3)

2.3.1 Pure gauge action in the strong coupling limit
The derivation of the effective theory for the strong coupling expansion in U(Nc), and in
particular Nc = 2, 3, with Wilson gauge action has been done in detail in [17]. We will focus
on Nc = 3 and start with the partition function

Z =
∫
d[Uµ]

∏
P

exp
[
β

2Nc

(TrUP + TrU †P )
]
. (2.3.4)
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2.3 An effective Polyakov loop theory for LQCD

Using periodic boundary conditions in temporal direction and integrating over spatial gauge
links Ui(n, n4) to get the effective action:

Zeff =
∫
d[U4]e−Seff

−Seff = ln
∫
d[Ui]e−Sg ≡ λ1S1 + λ2S2 + . . .

(2.3.5)

The effective action has been expanded around β = 0 applying a character expansion. Then
it was sorted by orders of effective couplings λn = λn(β,Nτ ). After integrating out the
spatial gauge links the Sn will only depend on temporal gauge links U4(n, n4). The theory
can then be reformulated in terms of Polyakov loops,

Lj ≡ L(nj) ≡ TrW (nj) ≡ Tr
Nτ−1∏
n4=0

U4(nj, n4). (2.3.6)

I introduced the shortcut Lj = L(nj) for readability. This effective theory is now three
dimensional, as the time dependence is only implicit.

Performing a character expansion and finally doing a finite cluster expansion results in the
action for nearest and next-to-nearest neighbor interactions for SU(3):

S1 =
∑
<ij>

ln
[
1 + λ1(LiL∗j + L∗iLj)

]
, λ1 = uNτ +O(uNτ+4)

S2 =
∑
[kl]

ln [1 + λ2(LkL∗l + L∗kLl)], λ2 = u2Nτ+2 +O(u2Nτ+4)
(2.3.7)

< ij > denotes the set of all nearest neighbor pairs on the lattice, separated by the lattice
spacing a and [kl] denotes the set of all next-to-nearest neighbor pairs with a distance a

√
2

apart. λ1, λ2 are the respective nearest and next-to-nearest neighbor couplings and can be
expressed in terms of u = β

18 + O(β2)1 and the exact structure depends on Nτ . Corrections
to the leading order λ1(u,Nτ ) = uNτ come from additional plaquettes and can be found in
[17].

The contribution of higher order representations can be included as well, e.g. the one from
the adjoint representation,2

Sa =
∑
〈ij〉

(1 + λa(χa(Wi)χa(Wj))), λa = 9
8u

2Nτ +O(2uNτ+1) (2.3.8)

with the characters in the adjoint representation χa(Wi) = |Li|2 − 1.

1Higher order corrections to u up to O(β14) can be found in [19], eq. 3.357 and following.
2This is how the contribution to the gauge action of the adjoint representation was implemented in the

Complex Langevin algorithm and the Metropolis algorithm presented in [25]. It has been ruled out and
discussed recently, that this definition is not sufficient. The results, which will be presented in chapter 5,
had already been generated and thus will suffer from this issue.
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2. Quantum Chromodynamics

2.3.2 Heavy fermions in the hopping parameter expansion
Next we introduce fermions to the effective theory. This will be done via a hopping param-
eter expansion in κf = 1/(2amf + 8) = 0 [20]. This is an expansion around static, infinitely
heavy quarks, as κf ∝ 1

mf
→ 0 ↔ mf → ∞. f is the flavor index, the mass and hence

the hopping parameter take different values for different quarks. We will start in the strong
coupling region β = 0. Including dynamical quarks then gives corrections to the static limit.
For the kinetic part we will derive the contributing action in different orders of κf , up to κ4

f .

We start with rewriting and expanding the Wilson Dirac operator Qf in terms of the hopping
parameter, [20]

det (Qf ) = det [1− κfM ] = exp (Tr log[1− κfM ]) = exp
( ∞∑
l=1

κf
l
TrM l

)
, (2.3.9)

with the hopping matrix M . We can factorize the quark determinant into a contribution for
static and kinetic quarks respectively,

det (Qf ) = det (Qf,stat) · det (Qf,kin) = det [1− T ] det [1−
S+
n,n+î + S−

n,n+î

1− T
]. (2.3.10)

Qf,stat is the inverse static propagator, which describes hoppings in temporal direction, and
Qf,kin is the inverse kinetic quark propagator, which describes hoppings in spatial and tem-
poral direction.
In the following the static and the kinetic determinant will be discussed. In the end we will
get an expression for the effective action.

Static quark determinant

For the static quark contribution we only consider temporal hoppings, as static quarks are
assumed to be infinitely heavy and thus only propagate in time. Forming closed quark lines
can only be achieved by windings around the temporal extent, which was defined as the
temporal Wilson line. With this the contribution for static quarks takes the form

det
c,s,n

(Qf,stat) =
∏
n

det
c

[1+ h1(κf , Nτ , µ)W ]2 det
c

[1+ h̄1(κf , Nτ , µ)W †]2. (2.3.11)

We can make use of relations for the spin- and the color determinant and rewrite the static
determinant in terms of traces over temporal Wilson lines, the Polyakov loops. Doing so we
get the contributions of quarks and anti-quarks to the fermion action of the static determi-
nant,

detQf,stat =
∏
n

(1 + h1Ln + h2
1L
†
n + h3

1)2(1 + h̄1L
†
n + h̄2

1Ln + h̄3
1)2, (2.3.12)

with the effective fermionic coupling constants h1 = eNτ (aµ+ln 2κ), h̄1 = eNτ (−aµ+ln 2κ).
The static determinant for Nf distinct flavors looks like

det(Qstat) =
Nf∏
f=1

det (Qf,stat), (2.3.13)

and for Nf degenerate flavors it looks like

det(Qstat) = det (Qf,stat)Nf =
∏
n

(1 + h1Ln + h2
1L
†
n + h3

1)2Nf (1 + h̄1L
†
n + h̄2

1Ln + h̄3
1)2Nf .

(2.3.14)
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2.3 An effective Polyakov loop theory for LQCD

Kinetic quark determinant up to order κ4

Next we consider dynamical quarks. The kinetic quark determinant consists of the static
quark propagator and two spatial hoppings, in positive (S+) and negative (S−) spatial
direction. From (2.3.10) we get

detQkin = det [1− S+ + S−

1− T
] = det [1− P −M ] = exp

(
Tr
∞∑
l=1

(−1
l
(P +M)l)

)
(2.3.15)

We introduced the new quantities P (M), which contain the static quark propagator and
a spatial hop in positive (negative) direction. It is necessary to derive an expression for
the static propagator before one continues with calculating the expression for the kinetic
quark determinant. The static propagator describes purely temporal hoppings and has been
calculated in [20]. Knowing the expression for the static propagator one can perform the
sum in (2.3.15). Each spatial hop P and M comes with a factor of κ. We will perform the
sum up to n = 4, so that we arrive at the desired κ4-contribution of the kinetic determinant.
To form a closed loop, we need an equal amount of P ’s and M ’s, so terms with an unequal
number of P ’s and M ’s will not contribute, e.g. P , M , PPPM , PMMM and permutations
of that.
After performing the sum and collecting terms with the same contribution we obtain

e−Skin = detQkin = exp (−Tr(PM)− Tr(PPMM)− 1
2Tr(PMPM) +O(κ6))

= 1− Tr(PM)− Tr(PPMM)− 1
2Tr(PMPM) + 1

2(Tr(PM))2 +O(κ6).
(2.3.16)

To be able to perform the integration over the spatial links Ui we expanded the exponential
in the second step.

We furthermore only consider pairs of P ’s and M ’s that hop in the same spatial direction
and therefore form closed loops. There arise different contributions of the aforementioned
terms [18]:

∑
ij

Tr(PiMj) =
∑
i

Tr(PiMi)∑
ijkl

Tr(PiPjMkMl) =
∑
i

Tr(PiPiMiMi) +
∑
i 6=j

Tr(PiPjMjMi) +
∑
i 6=j

Tr(PiPjMiMj)

1
2
∑
ijkl

Tr(PiMjPkMl) = 1
2
∑
i

Tr(PiMiPiMi) + 1
2
∑
i 6=j

Tr(PiMjPiMj) + 1
2
∑
i 6=j

Tr(PiMjPjMi)

1
2
∑
ijkl

Tr(PiMj)Tr(PkMl) = 1
2
∑
i

Tr(PiMi)
∑
j

Tr(PjMj)

(2.3.17)

The final results for the κ4- corrections can be found in the appendix of [20].

Leading order κ2 contribution

The leading order correction to static determinant is a nearest-neighbour interaction of order
κ2, which means we include two spatial hops. We already discussed, that only closed loops
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2. Quantum Chromodynamics

give contributions and therefore to form a closed loop with two spatial hoppings the P and
M have to describe spatial hoppings in the same spatial direction, Pi, Mi. The kinetic
determinant of order κ2 then takes the form

detQkin = e−
∑

i
Tr(PiMi). (2.3.18)

If we want to calculate the partition function of the leading order kinetic determinant, we
have to perform the gauge integral over the determinant. This can not be done with the
determinant in exponential form. Therefore we have to expand the exponential, [20]∫

d[Ui] detQkin = 1−
∫
d[Ui]

∑
i

Tr(PiMi) +O(κ4)

= 1− 2h2Nf

∑
n,i

(W11(n)−W †
11(n)) · (W11(n + î)−W †

11(n + î)) +O(κ4).

(2.3.19)

The leading order correction to the static determinant is an interaction between two neigh-
boring lattice points. From the partition function we see that this interaction can take place
between two fermions, two antifermions or one fermion and one antifermion. The strength
of this interaction to leading order is described by the coupling

h2 = κ2Nτ

Nc

. (2.3.20)

The degrees of freedom are now the traces over Wilson lines, for which we introduced the
following abbreviation,

Wn+m,n ≡ Tr (h1W )n
(1 + h1W )n+m , W †

n+m,n ≡ Tr (h̄1W
†)n

(1 + h̄1W †)n+m
. (2.3.21)

Those quantities don’t have a temporal contribution anymore. It can be shown that the
Wn+m,n can be reformulated in terms of Polyakov loops. This will be shown and applied in
chapter 3. To get the correct convergence behavior it is convenient to do a resummation [20]
and write the action back into the exponential.3

2.3.3 Gauge corrections
We started the derivation for the fermionic part of the effecitve theory in the strong cou-
pling limit, at β = 0. Introducing a nonzero β also introduces mixing terms between
strong coupling and hopping parameter expansion terms. The contributions coming from
the mixing terms can be absorbed into the coupling constants such that λ1(β) = λ1(β, κ),
h1(κ) = h1(κ, β) and h2(κ) = h2(κ, β) and for higher order couplings respectively. There
will be corrections to the gauge action, coming from fermions and corrections to the fermion
action coming from gauge links.

Fermion corrections to gauge action
The first correction comes from the possibility to replace each gaug plaquette by four spatial
hoppings. This can be done allover the lattice and therefore this can be seen as a shift in β,

β → β + 48Nfκ
4. (2.3.22)

3For the κ2 contribution the resummation has been explicitly shown in [25].
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2.4 Symmetries of full QCD and the effective action

It is also possible to only replace two neighboring plaquettes by six spatial hoppings,

λ1(β, κ) = uNτ + 16NfNτκ

9u2 . (2.3.23)

Gauge corrections to fermion action
The gauge corrections to the nearest-neighbor interaction are

h1(κ, u,Nτ ≥ 3) = exp [Nτ (µ+ ln(2κ))] exp
[
6Nτκ

2u

(
1− uNτ−1

1− u + 4u4 − 12κ2

+9κ2u+ 4κ2u2 − 4κ4
)]
,

(2.3.24)

and analogously for h̄1. Corrections to higher order gauge couplings up to κ4-corrections can
be found in [20].

2.4 Symmetries of full QCD and the effective action

2.4.1 Z(3) symmetry
QCD in the pure gauge sector and in the quenched limit, which is pure gauge combined
with static, infinitely heavy quarks, mf →∞, exhibits the Z(Nc = 3), or center symmetry.
[20][24] For a center transformation,

U4(x, t)→ zU4(x, t), (2.4.1)

one has to multiply all temporal gauge links U4 at one particular time x4 = t with the same
element z,

z = {1, ei2/3π, e−i2/3π} ∈ Z(3) ⊂ SU(3). (2.4.2)
z is an element of the center group Z(3) of SU(2) and commutes with the gauge links. It
can be shown, that the plaquette is invariant under a center transformation. [15] This is due
to the fact that plaquette closes in such a way that there is one temporal gauge link oriented
in one direction and another temporal gauge link oriented in opposite direction. By the
property zz† = 1 this factor cancels out by a trivially closing loop. From this follows that a
pure gauge theory, formed in terms of plaquettes is invariant under a center transformation.
The pure gauge part of the effective theory is constructed in a way, such that it is invariant
under a Z(3) transformation.
A single Polyakov loop winds around the temporal extent and picks up a center element,

L(x, x4 +Nτ )→ zL(x, x4). (2.4.3)

Therefore a Polyakov loop is not invariant under a Z(3) transformation.
If the Z(3) symmetry is realized, the Polyakov loop will average out over those three phases,

〈L〉 = 〈1L+ ei2/3πL+ e−i2/3πL〉 = 0. (2.4.4)

In case of a broken Z(3) symmetry, one of the three sectors is favored to be populated
and therefore 〈L〉 does not vanish anymore. This is another perspective to show that the
Polykov loop serves as an order parameter for the Z(3) transition, as it was also argued in
section 2.2.1. The breaking of the center symmetry happens at a critical temperature Tc.

16



2. Quantum Chromodynamics

What happens, if we add dynamical fermions to the theory? When performing the sum in the
exponent in Equation 2.3.15, one has to take into account all loops, which also includes terms
like κNτ (L+L∗). As Polyakov loops are not invariant under Z(3) transformations, dynamical
quarks break center symmetry explicitly. Therefore the Polyakov loop is strictly speaking
not an order parameter anymore. One can view the dynamical quarks corresponding to a
symmetry breaking term in the potential, [29]

V (L)→ V (L)− h1Re(L), (2.4.5)

with h1 ∝ (2κ)Nτ (for µ = 0). The hopping parameter is proportional to the inverse mass.
Therefore a small value of κ corresponds to a high mass. Furthermore a small value of κ < 1
leads to a small value of h1. Hence the explicit symmetry breaking effect of big masses is
small. It can be shown that there is a critical coupling hc. For values h < hc the transition
is of first order and for h > hc the transition becomes a crossover. This will be subject of
section 5.2.

2.4.2 Chiral symmetry
QCD with Nf massless quarks exhibits chiral symmetry: [15]

U(Nf )L ⊗ U(Nf )R = SU(Nf )L ⊗ SU(Nf )R ⊗ U(1)V ⊗ U(1)A, (2.4.6)

where the symmetry SU(Nf )L⊗SU(Nf )R is called chiral symmetry. Chiral symmetry leads
to a decoupling of left- and right-handed massless fermions in the action,

L(ψ, ψ̄, A) = ψ̄R /DψR + ψ̄R /DψR. (2.4.7)

Where
ψR,L = PR,Lψ, ψ̄R,L = ψ̄PR,L, (2.4.8)

with the left- and right-handed projectors

PR,L = 1
2(1± γ5). (2.4.9)

The mass-term of the action mixes the two components,

mψ̄ψ = m(ψ̄RψL + ψ̄LψR), (2.4.10)

and therefore a massterm explicitly breaks the chiral symmtery.

We consider again the symmetry of the massless fermion Lagrangian. The axial U(1)A-
symmetry is explicitly broken by quantum effects, called axial anomaly. The axial Noether
current corresponding to this symmetry, jµ,5 = ψ̄γµγ5ψ, is not conserved, ∂µjµ,5 6= 0. This
is called Adler-Bell-Jackiw anomaly. [23]
The chiral symmetry is spontaneously broken by the vacuum expectation value of scalar
quark densities, into

SU(2)L ⊗ SU(2)R → SU(2)V . (2.4.11)

In real-world QCD there is an approximate chiral symmetry for the two lightest quarks,
the up- and down-quark. Compared to the other quarks they have rather light masses,
mu = 2.16(49)MeV, md = 4.67(48)MeV [7] and therefore are referred to as light quarks. If
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2.4 Symmetries of full QCD and the effective action

(a) Deconfinement transition taken from [15]. (b) Columbia plot taken from [27]

Figure 2.4.1: Phase structure of QCD for µ = 0.

chiral symmetry was realized one would expect degenerate masses for the nucleons and their
respective particles with opposite parity. But one observes that nucleons have the masses
mN ≈ 940MeV , while mN∗ ≈ 1535MeV . [15]
The order parameter for chiral symmetry is the chiral condensate 〈ψ̄ψ〉. The chiral conden-
sate is not invariant under a chiral transformation, thus a non-vanishing chiral condensate
corresponds to the spontaneously broken chiral symmetry. It is expected that for high tem-
peratures chiral symmetry is restored.
The Goldstone theorem tells, that to a spontanously broken continous symmetry there exist
massless Goldstone bosons for each generator of the broken symmetry. For massless QCD
with Nf = 2 this would correspond to N2

f − 1 = 3 massless Goldstone bosons, the pions. As
the two lightest quarks have nonzero masses, the pions gain their masses by explicit chiral
symmetry breaking.

In the effective theory with Wilson fermions chiral symmetry is explicitly broken, even in the
massless case. This is due to the introduction of the Wilson-term, that solves the problem
of the doublers, but leads to an explicit breaking of chiral symmetry. The No-go theorem
states, that one can not construct a chiral symmetric theory on the lattice and getting rid
of the fermion doublers at the same time. [21]

2.4.3 LQCD transitions at µ = 0
We saw that the deconfinement transition is related to a spontaneous breaking of the Z(3)
symmetry. The phase transition takes place at a critical temperature Tc ≈ 270MeV , as
can be seen in Figure 5.2.11(a). In the case of two degenerate quark masses, mu = md,
when decreasing the mass the first order transtion goes over into a second order transi-
tion and afterwards the transition becomes a crossover. Phase transitions of Lattice QCD
at zero chemical potential can be described by the Columbia plot. The Columbia plot in
Figure 5.2.11(b) shows the type of phase transition depending on the quark masses for degen-
erate up- and down-quarks and the strange-quark. The masses each range from 0 to∞. The
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2. Quantum Chromodynamics

upper right corner describes the pure gauge case, as infinitely heavy quarks decouple from
the theory. The deconfinemnt transition is of first order and weakens with finite, decreasing
quark masses. This is because dynamical quarks break the Z(3) symmetry explicitly, the
lower the mass, the more severe is the breaking. The case which was seen in Figure 5.2.11(a)
is to be found on the upper horizontal axis. The upper left part of the plot is blurred out,
because so far it is not confirmed what the exact pattern of the phase transition there is.
The effective theory has been derived using a hopping parameter expansion κ → 0, corre-
sponding to heavy quarks. Therefore the deconfinement transition is located in the upper
right corner of the Columbia plot.

The lower left corner describes a system with zero masses, exhibiting chiral symmetry. This
symmetry is spontaneously broken. The phase transtion will be first order and will weaken
for increasing, finite quark masses.
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Chapter 3

The Complex Langevin Equation

If we are introducing a nonzero chemical potential, we have to deal with a complex action.
This action can not be simulated with common Metropolis algorithm as this is based on
selecting a probability corresponding to the action. This issue is known as the sign problem
and makes use of other algorithms necessary. One candidate is letting a system evolve
following a Complex Langevin Equation.
In this chapter the basics of the (Complex) Langevin equation ((C)LE) will be presented.
First we will picture the approach by Parisi and Wu [10][22] considering the (real) Langevin
equation (LE). We will then discuss the changes originating from complexifying the equation
and hence the evolution. Connected to this we will recap the two main problems of CLE,
namely the instability of the simulations and the convergence to the wrong limit and how to
solve those. Instabilities of the simulation can be cured using an adaptive stepsize method
with appropriate small stepsize [3]. This will be discussed in 3.2. The convergence to a
wrong result can be controlled by applying the Langevin operator to an observable. This
will be explained in 3.3. At the end of this chapter the CLE will be applied to the effective
theory, that was presented in the previous chapter. This will also include the numerical
setup for the simulations, which will be discussed and analysed later.

3.1 The approach by Parisi and Wu
The general assumption of Stochastic quantization, or equivalently the application of the
Langevin equation, is that equilibrium is reached for t → ∞ and that the correlation
functions of a statistical system in equilibrium become equal to the corresponding Green
functions,

lim
t→∞
〈φ(x1, t) · · ·φ(xk, t)〉η = 〈φ(x1) · · ·φ(xk)〉. (3.1.1)

Therefore the average values of physical observables can be obtained as stochastic averages
in equilibrium. [4]

First one introduces a new fictitious time t as an additional parameter of the fields φ, in
which the system will evolve,

φ(x)→ φ(x, t), (3.1.2)

where x is a d-dimensional vector in Euclidean space-time. For our purpose a d = 4 dimen-
sional Euclidean vector with the spatial vector x and Euclidean time x4 is sufficient,

x = (x1, x2, x3, x4) = (x, x4). (3.1.3)
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3. The Complex Langevin Equation

The second step is to describe the fictitious time evolution of the fields as a stochastic process
using the Langevin equation,

∂φ(x, t)
∂t

= −∂S(φ(x, t))
∂φ(x, t)︸ ︷︷ ︸

driftterm K(x,t)

+ η(x, t)︸ ︷︷ ︸
Gaussian noise

. (3.1.4)

One can consider the system being coupled to a thermal heat reservoir with temperature
T , reaching a thermal equilibrium for large t. [22] The driftterm describes a driving force.
The coupling to the heat reservoir can be described by the Gaussian noise field η, which
corresponds to thermal fluctuations. The average of the Gaussian noise term has to vanish
and it shouldn’t have a correlation in time and space. This is described by the fluctuation-
dissipation theorem or Nyquist theorem,

〈ηni 〉 = 0, 〈ηni ηmj 〉 = 2δijδnm. (3.1.5)

The goal of applying the LE to a physical system is to converge to the probability measure
of the equilibrium, e−S, where observables can be measured. One can prove that for a real
action this is fulfilled. In the above case we only considered real variables and therefore the
system will converge to its equilibrium distribution.

Complex action
As the QCD action, in particular the fermion determinant, will become complex if we include
a nonzero chemical potential µ [12], we need the Complex Langevin equation (CLE) to
describe the corresponding evolution. Now convergence to e−S is not guaranteed anymore,
as S ∈ C and therefore e−S cannot be interpreted as a probability distribution. [6] The
evolution equation still looks the same as in Equation 3.1.4, but now the process will drift
into the complex plane. One can split up the CLE in a real and a complex part [2],

∂φR(x, t)
∂t

= KR(x, t) + ηR(x, t)

∂φI(x, t)
∂t

= KI(x, t) + ηI(x, t).
(3.1.6)

The driftterms are then defined as

KR(x, t) = −Re∂S(φ(x, t))
∂φ(x, t)

KI(x, t) = −Im∂S(φ(x, t))
∂φ(x, t) .

(3.1.7)

One issue of the CLE is convergence to a wrong limit. To avoid this it was shown in [3] that
choosing ηI = 0 is useful and will be considered in the following.

As a last step we have to solve the CLE. This will be done numerically and therefore one
can discretize the CLE corresponding to the new time t on the lattice,

φRn (ϑ+ 1) = φRn (ϑ) + εKR
n [φ(ϑ)] +

√
εηn(ϑ)

φIn(ϑ+ 1) = φIn(t) + εKI
n[φ(ϑ)]

(3.1.8)

The index n denotes the nth lattice point and we consider the ϑth step in the new fictitious
time t = ε · ϑ. ε is the stepsize in t-direction and ϑ ∈ N0. At each time step t the fields
at each lattice point φ(n), n = 0, . . . N3

s − 1 have to be updated, the driftterms have to be
calculated and the Gaussian white noise η has to be chosen randomly.
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3.2 Adaptive stepsize

3.2 Adaptive stepsize
One of the main problems of applying Complex Langevin dynamics is the instability of the
simulations, also called runaways. It was shown in [1] that they appear when the driftterms
show large fluctuations and drift into unstable directions in the complex field space. This
can be solved using an adaptive stepsize which detects those fluctuations of the driftterms
and choses appropiately small stepsizes in those regions. Nevertheless it is not proven that
an adaptive stepsize method can cure the problem of instabilities in general.
In the analysis of the results two different methods of applying an adaptive stepsize will be
compared: a method used by Neuman1 and one method discussed by Aarts [1].
For each Langevin step ϑ we have one driftterm K(x, ϑ) at one particular spatial point x,
whose value is higher than those for all other xj. This maximal dirftterm is denoted by
Kmax(ϑ) and is obtained by

Kmax(ϑ) = max
n
|Kn(ϑ)| = max

n

√
KR
n

2(ϑ) +KI
n

2(ϑ). (3.2.1)

This maximal driftterm will be used to control the stepsize. We should also mention that the
discretization of the Langevin time becomes tj = ∑j

i=1 εi, as due to the adaptive procedure
the stepsize is not equal anymore.

3.2.1 Aarts’ adaptive stepsize method

In [1] were shown two methods for chosing an adaptive stepsize. The second method pre-
sented therein was used for the numerical solution of the CLE of this thesis and is referred
to as Aarts’ adaptive stepsize method. In this adaptive stepsize method εKmax is bounded
in the following way:

1
p
K ≤ εKmax ≤ pK. (3.2.2)

p,K have to be chosen beforehand. It was shown that a choice of p = 2,K = 2 × 10−4 was
an appropriate choice. Changing them ”by a factor two or more”2, would only change the
statistics but not the results.

3.2.2 Neuman’s adaptive stepsize method

This method was used in the CL code by Mathias Neuman and serves for a comparison
with the aforementioned method. It will be referred to as Neuman adaptive stepsize method.
For the application we have to calculate the maximal driftterm, as it was defined in Equa-
tion 3.2.1. After we have found the maximal, finite driftterm we can calculate the stepsize
via

ε(ϑ) = min
(
εmax,

0.1
Kmax(ϑ)

)
. (3.2.3)

εmax has to be chosen by hand and serves as an upper bound for the stepsize.

1This method was implemented in the Complex Langevin code Mathias Neuman left in phil-shared
2[1], p. 158.
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3. The Complex Langevin Equation

3.3 Langevin operator
The second main problem of CL dynamics is the convergence to a wrong limit. This can be
caused by either ”insufficient falloff of the probability distribution in the imaginary directions
or too strong growth of the time-evolved observables in the imaginary directions”.3 Therefore
it is necessary to have some tools to check if the results are reliable. One possibility would
be to compare with data obtained with other algorithms, like Metropolis. But as in the
regions of interest Metropolis and other resampling methods fail due to the Sign Problem,
it is required to have other tools to check the convergence. A criterion of correctness was
introduced in [5]. To check if a simulation converges to the correct result, one can apply
the Langevin operator to an observable. If the average value of this quantity vanishes, this
proofs that the result is correct,

〈L̃O〉 = 0. (3.3.1)
The Langevin operator L̃ is defined by4

L̃ ≡ [∇z − (∇Sz)]∇z. (3.3.2)

It will be shown how to apply it to the Polyakov loop in the next section.

3.4 Implementation of CL on the lattice for the effec-
tive theory

We will now discuss in further detail how the CLE is implemented and in particular how it
is applied to the effective Polyakov loop theory for QCD on the lattice. The discretization
of the CLE was done according to Equation 3.1.8. To be able to apply this discretization
scheme we need to formulate the effective theory in terms of complex fields φ. How this is
done will be shown first, followed by an explicit example for the calculation of the driftterms.

3.4.1 Reformulation into a Polyakov loop theory
The effective theory is formulated in terms of traces over temporal Wilson lines as shown
in section 2.3. The theory can be reformulated in terms of Polyakov loops. We start with
parametrizing the Polyakov loops such that the temporal gauge links take a diagonal form,

U4 = diag(eiφa , eiφb , e−i(φa+φb)), (3.4.1)

with eigenvalues eiφl , l = a, b, c, φc = φa+φb. [16] The Polyakov loop can then be expressed
in the following way

L(φa, φb) = eiφa + eiφb + e−i(φa+φb), φa, φb ∈ [−π, π). (3.4.2)

Changing the integration measure from temporal gauge links to Polyakov loops introduces
a Jacobian eV . Changing from an integration over Polyakov loops to an integration over
the complex fields φa, φb introduces the same Jacobian a second time. After changing the
integration measure we get the following expression for the partition function:

Z =
∫
d[U4]e−Seff =

∫
d[L]e−Seff eV =

∫
d[φa]d[φb]e−Seff e2V . (3.4.3)

3[5], p. 1-2.
4For details about the derivation of the Langevin operator see [3][5].
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3.4 Implementation of CL on the lattice for the effective theory

The SU(3) potential, which was introduced by the Jacobian, takes the form [16]

V (n) = − ln
[
sin2

(
φa(n)− φb(n)

2

)
sin2

(
2φa(n) + φb(n)

2

)
sin2

(
φa(n) + 2φb(n)

2

)]
.

(3.4.4)
It can be shown that the theory can be reformulated in terms of Polyakov loops, using the
generating function, [20]

G[α, β] = ln det [α + βh1W ] = ln [α3 + α2βh1L+ αβ2h2
1L
† + β3h3

1]. (3.4.5)

To get the relation between the Wn+m,n, which appear in the action of the effective theory,
and the Polyakov loops, one has to take the derivative of the generating function w.rp.t.
α, β and in the end set α = β = 1,

Wn+m,n ≡ Tr (h1W )n
(1 + h1W )n+m = (−1)m+n−1

(m+ n− 1)!

(
∂

∂α

)m (
∂

∂β

)n
G[α, β]

∣∣∣
α=β=1

. (3.4.6)

As we already saw in section 2.3.2 the κ2 contribution contains W11, W
†
11, where we made

use of the definition in Equation 3.4.6. Those quantities can be reformulated in terms of
Polyakov loops. For m = 0, n = 1 one gets

W11(n) = Tr h1W (n)
1 + h1W (n) = h1L(n) + 2h2

1L
∗(n) + 3h3

1
1 + h1L(n) + h2

1L
∗(n) + h3

1
, (3.4.7)

W †
11(n) = Tr h̄1W

†(n)
1 + h̄1W †(n)

= h̄1L
∗(n) + 2h̄2

1L(n) + 3h̄3
1

1 + h̄1L∗(n) + h̄2
1L(n) + h̄3

1
. (3.4.8)

3.4.2 Numerical setup
Initializing the fields

Now we take a look at how to initialize the fields φa, φb that were used to parametrize the
Polyakov loops. In Equation 3.4.2 we stated, that φa, φb ∈ [−π, π). The choice of the initial
configuration is not as important, if one has a long enough thermalization procedure, during
which the equilibrium distribution is reached as the fields will evolve during the Complex
Langevin evolution and also become complex. The fields were initialized in the following
way,

φa/b,init = 0.1 ·R, (3.4.9)
where R is a random number, normally distributed with µ = 0, σ =

√
2. With this we have

approximately R ∈ [−4, 4) and therefore φa, φb ∈ [−0.4, 0.4).
Due to the Nyquist theorem Equation 3.1.5 the Gaussian white noise η(n, t) is distributed in
the same way as R and during the simulation one chooses η = R randomly with µ = 0, σ =√

2.

Adaptive stepsize method

In section 3.2 it was in general shown how to apply an adaptive stepsize method to a system
with one complex field evolving in CL time. Now I will show how to implement the adaptive
stepsize method using two complex fields φa, φb, which parametrize the Polyakov loop,

φa/b(ni) = φRa/b(ni) + iφIa/b(ni). (3.4.10)
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3. The Complex Langevin Equation

Each of the two fields follows the above discretized Langevin equation. We now have to
modify Equation 3.2.1, which was defined for only one complex field. We are using the
combined absolute values of |Ka|, |Kb| to define the maximal driftterm,

Kmax(ϑ) = max
n
|Kn(ϑ)| = max

n
(|Ka,n(ϑ)|+ |Kb,n(ϑ)|). (3.4.11)

For the Aarts’ adaptive stepsize method the parameters p = 2, K = 2 · 10−2 were chosen.

3.4.3 Calculating driftterms for the effective action
We will now calulate the driftterms for the Haar measure potential and the static action.
The driftterm for the κ2-correction is shown in Appendix A.

Driftterm of the Haar measure potential

To calculate the driftterm of the Haar measure potential, which we saw in Equation 3.4.4,
we have to take the derivatives of the potential w.rp.t. the fields φa, φb and then take the
negative of this result. The Haar measure potential is already in a form depending on
the fields φa, φb explicitly. After some derivation we get the following expressions for the
driftterms

Ka,n(ϑ) = + cot
(
φa,n − φb,n

2

)
+ 2 cot

(
φa,n + φb,n

2

)
+ cot

(
φa,n

2 + φb,n

)
,

Kb,n(ϑ) = − cot
(
φa,n − φb,n

2

)
+ cot

(
φa,n + φb,n

2

)
+ 2 cot

(
φa,n

2 + φb,n

)
.

(3.4.12)

The CL time dependence of the fields, φa/b(n, ϑ), was neglected for better readability.

Driftterm of the static determinant

The static determinant depends on Polyakov loops L(φa, φb) and so we have to apply the
chain rule,

Ki,stat(n) = −
(
∂Sstat(n)
∂L(n)

∂L(n)
∂φi(n) + ∂Sstat(n)

∂L∗(n)
∂L∗(n)
∂φi(n)

)
. (3.4.13)

The chain rule applies to both fields in the same way, thus we abbreviated the expression
using i = a, b. For Nf = 1 the local action of the static determinant including quarks and
anti-quarks is

Sstat(n) = − log [(1 + h1Ln + h2
1L
∗
n + h3

1)2(1 + h̄1L
∗
n + h̄2

1Ln + h̄3
1)2]

= −2 log (1 + h1Ln + h2
1L
∗
n + h3

1)− 2 log (1 + h̄1L
∗
n + h̄2

1Ln + h̄3
1).

(3.4.14)

With this we can calculate the driftterm as

Ki,stat(~x) = −
(
∂Sstat(n)
∂L(n)

∂L(n)
∂φi(~x) + ∂Sstat(n)

∂L∗(n)
∂L∗(n)
∂φi(~x)

)

= − ∂

∂L(n)
∂L(n)
∂φi

−2 log (1 + h1L~x + h2
1L
†
~x + h3

1)︸ ︷︷ ︸
≡u(φa,φb)

− 2 log (1 + h̄1L
∗
~x + h̄2

1L~x + h̄3
1)︸ ︷︷ ︸

≡v(φa,φb)


= +2

 h1 ∗ ∂L
∂φi

+ h2
1
∂L∗

∂φi

1 + h1L~x + h2
1L
∗
~x + h3

1
+

h̄1 ∗ ∂L
∗

∂φi
+ h̄2

1
∂L
∂φi

1 + h̄1L∗~x + h̄2
1L~x + h̄3

1

 .
(3.4.15)
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3.4 Implementation of CL on the lattice for the effective theory

In the second line we defined u(φa, φb), v(φa, φb) as an abbreviation of the argument of the
logarithm. The definition of the derivative of a function inside a logarithm was used in the
third line,

d

dx
log f(x) =

d
dx
f(x)
f(x) . (3.4.16)

The derivative of u, v w.rp.t. φi is

∂u

∂φi
= h1 ∗

∂L

∂φi
+ h2

1
∂L∗

∂φi
,

∂v

∂φi
= h̄1 ∗

∂L∗

∂φi
+ h̄2

1
∂L

∂φi
. (3.4.17)

And the derivatives of L,L∗ w.rp.t. φi are:

∂L

∂φi
= ieiφi − ie−i(φa+φb),

∂L∗

∂φi
= −ie−iφi + iei(φa+φb). (3.4.18)

The driftterms of higher order corrections to the action can be obtained in the same way,
but especially for the κ4-contribution this expression will become very long and therefore
are not shown here. The driftterms are calculated analytically and were hardcoded in the
Complex Langevin simulation.

3.4.4 Langevin operator
The Langevin operator was introduced as a tool to check the correctness of the Complex
Langevin dynamics. This can be applied to the Polyakov loop as an observable. We used
the parametrization of the Polyakov loop as was motivated in Equation 3.4.2. This means
that in our case we can write the Langevin operator as follows:

L̃ ≡
∑
i=a,b

[∇i − (∇iS(φa, φb))]∇i =
∑
i=a,b

[∇i +Ki(φa, φb)]∇i. (3.4.19)

We used that Ki = −∇iS(φa, φb). Thus applying the Langevin operator on L gives:

〈L̃L〉 = ( [∇a +Ka(φa, φb)]∇a + [∇b +Kb(φa, φb)]∇b )L(φa, φb) (3.4.20)

With the second derivative of L w.rp.t. the fields,

∂2L

∂φ2
i

= −eiφi − e−i(φa+φb), (3.4.21)

we get

〈L̃L〉 = −eiφa − eiφb − 2e−i(φa+φb) + i[Ka(eiφa − e−i(φa+φb)) +Kb(eiφb − e−i(φa+φb))]. (3.4.22)

The driftterms are obtained during the simulation, where the quantity L̃L is complex. Thus
we will save the real and imaginary part separately. The numerical analysis of this criterion
for correctness will be done in subsection 5.2.1.
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Chapter 4

Chiral condensate on the lattice

Chiral symmetry was introduced in subsection 2.4.2. The order parameter of this symmetry
is the chiral condensate. In the symmetric phase, below a critical temperature Tc, the expec-
tation value of the chiral condensate vanishes. For T > Tc chiral symmetry is spontaneously
broken, 〈ψ̄ψ〉 6= 0. For high temperatiures the chiral symmetry is expected to be restored.
[24] A spontaneous symmetry breaking requires an infinitely large system, |Λ| → ∞. Fur-
thermore it is mandatory to send m→ 0 so that there is no explicit symmetry breaking due
to the mass term.

The goal of this section is to calculate the chiral condensate for the effective action ana-
lytically. We will start with deriving the relation between the rescaled and the unrescaled
action. Then the expression for the chiral condensate will be deduced from the continuum
QCD partition function. We will end this chapter with calculating the analytical expression
for the chiral condensate up to κ2-corrections from the effective theory.

4.1 Relation between the fermion fields in the QCD
action and in the effective action

The rescaling procedure follows [15]. We remember from subsection 2.2.2 that we could write
the fermion action like

SF = a3
(

(am+ 4r)
∑
x

ψ̄xψx −
1
2
∑
x,µ

[
ψ̄x(r − γµ)Uµ,xψx+µ̂ + ψ̄x(r + γµ)U †µ,x−µ̂ψx−µ̂

])
.

(4.1.1)
Rescaling the fermion fields ψ̄, ψ each with a factor a−3/2C−1/2, where C(f) = am(f) + 4r ≡
1/(2κ(f)), we obtain the rescaled fermion action1

S
(f)
F,r =

∑
x

ψ̄x,rψx,r − κ(f)∑
x,µ

[
ψ̄x,r(r − γµ)Uµ,xψx+µ̂,r + ψ̄x,r(r + γµ)U †µ,x−µ̂ψx−µ̂,r

]
. (4.1.2)

The index r denotes quantities formulated using the rescaled fields ψ̄r, ψr, and the index F
denotes that only the fermionic part of the action is considered. The superscript (f) means
one particular flavor. I also want to emphasize that the scaling parameter C(f) depends on
the flavor mass and is therefore flavor sensitive. For now I will stay with one flavor and leave

1[20], eq. (3.14).
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4.1 Relation between the fermion fields in the QCD action and in the effective action

out the superscript for readability. The case including several flavors will be shown at the
end of this section. This leads to the relation between SF and SF,r:

SF = C · SF,r. (4.1.3)

In the following I want to deduce the relation between ZF and ZF,r and furthermore the
relation between ln(ZF ) and ln(ZF,r). From this we can then derive the relation between
〈ψ̄ψ〉 and 〈ψ̄ψ〉r. In the effective action section 2.3 the fermionic fields are contained in the
Wilson Dirac operator. Therefore we start with the relation between the original and the
rescaled operator:

Q[U ] = C · (1− κM [U ]) ≡ C ·Qr[U ]. (4.1.4)
This leads to the relation for the fermion determinant

det(Q[U ]) = det(C ·Qr[U ]) = C4·Nc·1 · det(Qr[U ]), (4.1.5)

where C is a number and Q is a matrix in Dirac, color and flavor space. Inserting this in
the expression for the partition function leads to:

Z =
∫
d[U4]

∫
d[Ui] det(Q[U ])e−Sg

= C4·Nc ·
∫
d[U4]

∫
d[Ui] det(Qr[U ])e−Sg

= C4·Nc · Zr.

(4.1.6)

Finally we find the expression

ln(Z) = ln(C4·Nc · Zr) = 4 ·Nc ln(C) + ln(Zr) = 4 ·Nc ln
(

1
2κ(m)

)
+ ln(Zr). (4.1.7)

We see that from taking the logarithm of the partition function we get an additional term
depending on the fermion mass.

Several flavors

If we include several flavors we have to multiply the different fermion determinants to get
the partition function

Z =
∫
d[U4]

∫
d[Ui] det(Q(u)[U ]) det(Q(d)[U ]) . . . e−Sg

=
∫
d[U4]

∫
d[Ui]C(u)4·Nc det(Q(u)

r [U ])C(d)4·Nc det(Q(d)
r [U ]) . . . e−Sg

= (C(u) · C(d) · . . .)4·Nc ·
∫
d[U4]

∫
d[Ui] det(Q(u)

r [U ]) det(Q(d)
r [U ]) . . . e−Sg

= (C(u) · C(d) · . . .)4·Nc · Zr.

(4.1.8)

We get an additional factor C(f)4·Nc for each flavor as each flavor comes with a rescaling
factor C(f)4·Nc . The logarithm of the partition function for two different flavors then looks
like

ln(Z) = ln((C(u) · C(d))4·Nc · Zr) = 4 ·Nc (ln(C(u)) + ln(C(d))) + ln(Zr). (4.1.9)

28



4. Chiral condensate on the lattice

Nf degenerate flavors

We can simplify the expressions if we use Nf degenerate quarks. If we include Nf quarks
of the same flavor we can also write

Z =
∫
d[U4]

∫
d[Ui](detQ[U ])Nf e−Sg . (4.1.10)

For the quark determinant we then get, making use of (4.1.4):

(detQ[U ])Nf = (det(C ·Qr[U ]))Nf = (C4·Nc · (detQr[U ]))Nf

= (C4·Nc)Nf · (detQr[U ])Nf = C4·Nc·Nf · (detQr[U ])Nf .
(4.1.11)

Inserting this in the expression for the partition function gives

Z =
∫
d[U4]

∫
d[Ui](detQ[U ])Nf e−Sg

= C4·Nc·Nf ·
∫
d[U4]

∫
d[Ui](detQr[U ])Nf e−Sg

= C4·Nc·Nf · Zr.

(4.1.12)

Finally we find the expression

ln(Z) = ln(C4·Nc·Nf · Zr) = 4 ·Nc ·Nf · ln(C) + ln(Zr). (4.1.13)

4.2 Derivation of the chiral condensate
The expectation value of an observable O is defined in the following way,

〈O〉 = 1
Z

∫
d[ψ̄, ψ, U ] Oe−S. (4.2.1)

The normalization factor is the inverse partition function,

Z =
∫
d[ψ̄, ψ, U ] e−S. (4.2.2)

We will stay with one flavor, if not explicitly stated elsewise. Therefore the superscript (f)
will be neglected. With the definition Equation 4.2.1 we can write down the expectation
value of the chiral condensate,

〈ψ̄ψ〉 = 1
Z

∫
d[ψ̄, ψ, U ] ψ̄ψe−

∫ 1/T
0 dx4

∫
d3x ψ̄i(6Dµ,E+ami+γ4µi)ψi+ 1

4F
a
µνF

aµν

= 1
Z

∫
d[ψ̄, ψ, U ] ψ̄ψe−

∫ 1/T
0 dx4

∫
d3x ψ̄iamiψi−

∫ 1/T
0 dx4

∫
d3x ψ̄i( /Dµ,E+γ4µi)ψi+ 1

4F
a
µνF

aµν

= 1
Z

∫
d[ψ̄, ψ, U ]

(
−T
V

)
∂

∂am

(
e−
∫ 1/T

0 dx4
∫
d3x ψ̄iamiψi

)
e−
∫ 1/T

0 dx4
∫
d3x ψ̄i( /Dµ,E+γ4µi)ψi+ 1

4F
a
µνF

aµν

= −T
V

∂(ln(Z))
∂am

.

(4.2.3)

From the second to the third step we rewrote the observable ψ̄ψ as the derivative of the
term e−

∫
dx4d3x mψ̄ψ w.rp.t. the mass m, as the derivative brings down the factor ψ̄ψ from

the exponent. Furthermore we have to take care that the mass term comes with a minus

29



4.2 Derivation of the chiral condensate

sign. From the integration over
∫ 1/T

0 dx4
∫
d3x we get an additional factor V/T . To normalize

the chiral condensate we have to divide by this factor. In the last step the factor 1/Z gets
absorbed into the outer derivative of ∂ ln(Z)/∂m.

Having defined the expression for the chiral condensate we are interested in the relation
between the chiral condensate and the rescaled chiral condensate. The expression T/V on
the lattice takes the form 1

a4NτN3
s
. Making use of (4.1.7) we get for the case of one flavor:

〈ψ̄ψ〉 = − 1
a4NτN3

s

∂(ln(Z))
∂am

= − 1
a4NτN3

s

∂

∂am
(4 ·Nc ln(C) + ln(Zr))

= − 1
a4NτN3

s

(
4Nc

∂(ln(C))
∂am

+ ∂(ln(Zr))
∂am

)

= − 1
a4NτN3

s

(
4Nc

1
C
· 1 + ∂(ln(Zr))

∂am

)

= − 1
a4NτN3

s

(
4Nc

1
am+ 4r + ∂(ln(Zr))

∂am

)

= − 1
a4NτN3

s

(
4Nc · 2κ+ ∂(ln(Zr))

∂am

)

= −4Nc · 2κ
a4NτN3

s

− 1
a4NτN3

s

∂(ln(Zr))
∂am

= − 8Nc κ

a4NτN3
s

+ 〈ψ̄ψ〉r.

(4.2.4)

We used the definition of the chiral condensate corresponding to the action with rescaled
fields:

〈ψ̄ψ〉r = − 1
a4NτN3

s

∂(ln(Zr))
∂am

. (4.2.5)

From the last line we see that if we are using the rescaled fields ψ̄r, ψr, we get a shift term
− 8Ncκ
a4NτN3

s
to obtain the chiral condensate of the original fields. From this we get the relation

between the chiral condensate of the rescaled and the original fields as

〈ψ̄ψ〉 = 〈ψ̄ψ〉r −
8Nc κ

a4NτN3
s

. (4.2.6)

For Nf degenerate quarks this relation looks like

〈ψ̄ψ〉 = 〈ψ̄ψ〉r −
8NcNf κ

a4NτN3
s

. (4.2.7)

To conclude the results from this derivation we have to consider the shift term for the chiral
condensate of the effective theory to obtain the chiral condensate for QCD.
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4. Chiral condensate on the lattice

4.3 Analytical evaluation of the chiral condensate in
the Strong coupling limit for µ = 0

In this chapter we will derive the analytical expression for the chiral condensate, starting
with the contribution of static quarks. We will continue with the expression for the κ2-
correction. Throughout this chapter Nf = 1, 2 degenerate quarks will be assumed. In the
case of Nf = 2 considering m = mu = md. As done before the superscript (f) will be
neglected. We will start in the strong coupling limit and set β = 0 and furthermore set the
Wilson parameter r = 1 from now on.

Before we explicitly calculate the chiral condensate for the different fermionic contributions,
we will derive a more general expression of which derivatives have to be considered. Due to
the rescaling of the fields the action does not depend on the fermion masses m explicitly, but
implicitly through the hopping parameter κ = κ(m). Therefore it is practical to formulate
the derivative of the partition function w.rp.t. m using the chain rule. In the first step we
take the outer derivative of the logarithm,

∂(ln(Zr))
∂am

= 1
Zr

∂Zr
∂am

. (4.3.1)

The mass dependence of the effective action is contained in the fermionic coupling constants,
h1(κ(m)), h̄1(κ(m)), h2(κ(m)), h31(κ(m)), . . .. This means that we have to include partial
derivatives w.rp.t. the coupling constants,

∂Zr
∂am

= ∂Zr
∂h1

∂h1

∂κ

∂κ

∂am
+ ∂Zr

∂h̄1

∂h̄1

∂κ

∂κ

∂am
+ ∂Zr
∂h2

∂h2

∂κ

∂κ

∂am
+ . . . . (4.3.2)

The chain rule applies in the same way to the rescaled and the unrescaled fields. With the
index (r) we refer both to the original and to the rescaled fields,

〈ψ̄ψ〉(r) = − 1
a4NτN3

s

∂(ln(Z(r)))
∂am

= − 1
a4NτN3

s

1
Z(r)

(
∂Z(r)

∂h1

∂h1

∂κ

∂κ

∂am
+ ∂Z(r)

∂h̄1

∂h̄1

∂κ

∂κ

∂am
+ ∂Z(r)

∂h2

∂h2

∂κ

∂κ

∂am
+ . . .

)
.

(4.3.3)

The first step will be to calculate the partition function analytically and from this we can
take the derivatives w.rp.t. the mass for Nf = 1 up to O(κ2) explicitly. The analyti-
cal calculation for Nf = 2 is much more cumbersome. Thus the case of Nf = 2 has been
calculated using Mathematica and the plotted results will be shown at the end of this section.

4.3.1 Static determinant
We will start with the static contribution to the chiral condensate. The partition function
was calculated in [20], resulting in

Zstat =
∫ ∏

k

dWke
−
∫

[dUi]Sstat =
∫ ∏

k

dWk detQNf
k,stat

=
∏
k

∫
dWk detQNf

k,stat =
∏
k

z0 = zV0 .
(4.3.4)

31



4.3 Analytical evaluation of the chiral condensate in the Strong coupling limit for µ = 0

The integrals over k are independent of each other and therefore factorize. Those gauge
integrals of type

I(m,n)(n) =
∫
dW (n)(TrW (n))n(TrW †(n))m =

∫
dW (n)(L(n))n(L∗(n))m. (4.3.5)

can be performed analogously to [20], Appendix B2. The partition function for Nf = 1 takes
the form

Z(h1, h̄1) =
∫ ∏

k

dWk(1 + h1Lk + h2
1L
∗
k + h3

1)2(1 + h̄1L
∗
k + h̄2

1Lk + h̄3
1)2 ≡ zV0

= [(1 + 4h3
1 + h6

1) + (4h1 + 6h4
1)h̄1 + (10h2

1 + 6h5
1)h̄2

1 + (4 + 20h3
1 + 4h6

1)h̄3
1

+ (6h1 + 10h4
1)h̄4

1 + (6h2
1 + 4h5

1)h̄5
1 + (1 + 4h3

1 + h6
1)h̄6

1 ]V .

(4.3.6)

This expression depends on h1, h̄1 only. As seen in the previous calculation we can express
Z in terms of z0 and get a rather simple expression for the outer derivative of the logaritm,

∂ ln(Z)
∂am

= ∂ ln(zV0 )
∂am

= V ∂ ln(z0)
∂am

= V

z0

∂z0

∂am
. (4.3.7)

Applying the chain rule to the inner derivative we get:
∂z0

∂am
= ∂z0

∂h1

∂h1

∂κ

∂κ

∂am
+ ∂z0

∂h̄1

∂h̄1

∂κ

∂κ

∂am
=
(
∂z0

∂h1

∂h1

∂κ
+ ∂z0

∂h̄1

∂h̄1

∂κ

)
∂κ

∂am
. (4.3.8)

As h1 and h̄1 have the same dependence on κ, their derivatives w.rp.t. κ have the same
structure,

∂h1

∂κ
= ∂

∂κ
exp (Nτaµ) · (2κ)Nτ = exp (Nτaµ) · 2 ·Nτ (2κ)Nτ−1

= 2Nτ

2κ exp (Nτaµ) · (2κ)Nτ = Nτ

κ
· h1,

∂h̄1

∂κ
= . . . = Nτ

κ
· h̄1.

(4.3.9)

For the derivative of κ w.rp.t. m we use Equation 2.2.19:

κ = 1
2am+ 8 ⇔

∂κ

∂am
= −2 1

(2am+ 8)2 = −2κ2. (4.3.10)

Inserting this in Equation 4.3.8 and using V = a3N3
s gives

∂ ln(Z)
∂am

= a3N3
s

1
z0

(
∂z0

∂h1

∂h1

∂κ
+ ∂z0

∂h̄1

∂h̄1

∂κ

)
∂κ

∂am
= −2κ2a3N3

s

1
z0

(
∂z0

∂h1

∂h1

∂κ
+ ∂z0

∂h̄1

∂h̄1

∂κ

)
.

(4.3.11)
For the chiral condensate we then get

〈ψ̄ψ〉r = − 1
a4NτN3

s

∂(ln(Z))
∂am

= − 1
a4NτN3

s

·
(
−2κ2a3N3

s

1
z0

(
∂z0

∂h1

∂h1

∂κ
+ ∂z0

∂h̄1

∂h̄1

∂κ

))

= 2κ2

aNτ

1
z0

(
∂z0

∂h1

∂h1

∂κ
+ ∂z0

∂h̄1

∂h̄1

∂κ

)
.

(4.3.12)

2A Mathematica script to evaluate gauge integrals over Polyakov loops has been provided by Amine
Chabane, based on [14].
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4. Chiral condensate on the lattice

We can simplify this expression using the derivatives of h1, h̄1 w.rp.t. κ from Equation 4.3.9,

〈ψ̄ψ〉r = 2κ2

aNτ

1
z0

(
∂z0

∂h1

aNτ

κ
· h1 + ∂z0

∂h̄1

aNτ

κ
· h̄1

)

= 2κ
z0

(
∂z0

∂h1
· h1 + ∂z0

∂h̄1
· h̄1

)
.

(4.3.13)

After some calculation the analytical expression for the chiral condensate of static quarks
and anti-quarks with Nf = 1 looks like

〈ψ̄ψ〉r = 2κ
z0

(
(12h3

1 + 6h6
1) + (8h1 + 30h4

1)h̄1 + (40h2
1 + 42h5

1)h̄2
1

+(12 + 120h3
1 + 36h6

1)h̄3
1 + (30h1 + 80h4

1)h̄4
1

+(42h2
1 + 40h5

1)h̄5
1 + (6 + 36h3

1 + 12h6
1)h̄6

1

)
.

(4.3.14)

The equations containing the different derivatives from above look the same also for the case
of Nf > 1 degenerate quarks. But the expression of z0 will look different as this is calculated
based on det(Qstat)Nf .

The analytical results of the partition function and the chiral condensate for static quarks
and anti-quarks for Nf = 2 can be found in section B.1.

4.3.2 κ2- correction to the chiral condensate

The analytical expression has already been calculated for fermions in the cold dense limit.
[20] We will include anti-quarks in the derivation of the partition function including the static
determinant and the κ2-correction. Afterwards the chiral condensate will be calculated.

We start with evaluating the partition function,

Z =
∫ ∏

k

dWk detQNf
k,stat exp (−2h2Nf

∑
<i,j>

(W11,i −W †
11,i)(W11,j −W †

11,j))

=
∫ ∏

k

dWk detQNf
k,stat(1− 2h2Nf

∑
<i,j>

(W11,i −W †
11,i)(W11,j −W †

11,j)) +O(κ4)

≡ Zstat + Zκ2 +O(κ4).

(4.3.15)

The notation Zstat, Zκ2 is used to structure the calculations for readability. From the first
to the second line we expanded the exponent. To be able to perform the gauge integral it’s
furthermore necessary to rewrite the Wilson loops in terms of Polyakov loops as shown in
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4.3 Analytical evaluation of the chiral condensate in the Strong coupling limit for µ = 0

Equation 3.4.6. With this we can write for the contribution of κ2:

Zκ2 = −
∫ ∏

k

dWk detQNf
k,stat2h2Nf

∑
i,j

(W11,i −W †
11,i)(W11,j −W †

11,j)

= −
∫ ∏

k

dWk detQNf
k,stat2h2Nf

∑
i,j

(
h1Li + 2h2

1L
∗
i + 3h3

1
1 + h1Li + h2

1L
∗
i + h3

1
− h̄1L

∗
i + 2h̄2

1Li + 3h̄3
1

1 + h̄1L∗i + h̄2
1Li + h̄3

1

)
·

×
(
h1Lj + 2h2

1L
∗
l + 3h3

1
1 + h1Lj + h2

1L
∗
j + h3

1
−

h̄1L
∗
j + 2h̄2

1Lj + 3h̄3
1

1 + h̄1L∗j + h̄2
1Lj + h̄3

1

)

= −2h2Nf

∑
i,j

∫ ∏
k 6=i
k 6=j

dWk detQNf
k,stat dWi dWj

×
[
(1 + h1Li + h2

1L
∗
i + h3

1)2Nf−1(1 + h̄1L
∗
i + h̄2

1Li + h̄3
1)2Nf (h1Li + 2h2

1L
∗
i + 3h3

1)

−(1 + h1Li + h2
1L
∗
i + h3

1)2Nf (1 + h̄1L
∗
i + h̄2

1Li + h̄3
1)2Nf−1(h̄1L

∗
i + 2h̄2

1Li + 3h̄3
1)
]

×
[
(1 + h1Lj + h2

1L
∗
j + h3

1)2Nf−1(1 + h̄1L
∗
j + h̄2

1Lj + h̄3
1)2Nf (h1Lj + 2h2

1L
∗
j + 3h3

1)

−(1 + h1Lj + h2
1L
∗
j + h3

1)2Nf (1 + h̄1L
∗
j + h̄2

1Lj + h̄3
1)2Nf−1(h̄1L

∗
j + 2h̄2

1Lj + 3h̄3
1)
]
.

(4.3.16)

We used that for ni,nj the denominator of (W †
11) W11 cancels with the (anti-)fermion part

of static determinant. The temporal gauge integral over the product over spatial points
nk, k 6= i, k 6= j is the integral over the static determinant only, which we already saw in
Equation 4.3.4. In the present case this integral appears V − 2 times, which results in zV−2

0 .
The two terms at points ni and nj are treated separately and therefore are excluded from
this integral. Let’s consider the integral at spatial point n. We can call the difference of
these terms z1,∫

dWi

[
(1 + h1Li + h2

1L
∗
i + h3

1)2Nf−1(1 + h̄1L
∗
i + h̄2

1Li + h̄3
1)2Nf (h1Li + 2h2

1L
∗
i + 3h3

1)

−(1 + h1Li + h2
1L
∗
i + h3

1)2Nf (1 + h̄1L
∗
i + h̄2

1Li + h̄3
1)2Nf−1(h̄1L

∗
i + 2h̄2

1Li + 3h̄3
1)
]

≡ z1.

(4.3.17)

The contribution to Z at space point nj looks the same as the one at ni. As this contribution
appears twice, at space points ni and nj, this term contributes as z2

1 . Alltogether we can
write in a compact way:

Zκ2 = −3V · 2h2Nfz
V−2
0 z2

1 . (4.3.18)
The prefactor 3V comes from the sum over 〈i, j〉, where we have d∗V nearest neighbor pairs
with d = 3. This leads to the expression for Z:

Z = Zstat + Zκ2 = zV0 − 6V h2Nfz
V−2
0 z2

1 = zV0 (1− 6V h2Nf
z2

1
z2

0
). (4.3.19)

As stated in the end of subsection 4.3.1 this expression is also valid for Nf > 1. What will
be different for various Nf is the exact expression for z0, z1. Therefore also the upcoming
calculation of the chiral condensate will be valid for different Nf .
We can do a resummation to ensure convergence, [20]

Z = zV0 (1− 6V h2Nf
z2

1
z2

0
) = zV0 exp(−6V h2Nf

z2
1
z2

0
+O(κ4)). (4.3.20)
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4. Chiral condensate on the lattice

Now we have derived the expression for the partition function. Taking the logarithm of it
we get to the starting point of calculating the chiral condensate:

ln(Z) = ln(zV0 exp(−6V h2Nf
z2

1
z2

0
)) = V ln(z0)︸ ︷︷ ︸

ln(Zstat)

−6V h2Nf
z2

1
z2

0︸ ︷︷ ︸
ln(Zκ2 )

= ln(Zstat) + ln(Zκ2).

(4.3.21)

Due to taking the logarithm of Z we can write this as a sum of the different contributions
coming from the static determinant and the κ2-correction:

〈ψ̄ψ〉 ∝ ∂ ln(Z)
∂am

= ∂(ln(Zstat) + ln(Zκ2))
∂am

= ∂ ln(Zstat)
∂am

+ ∂ ln(Zκ2)
∂am

, (4.3.22)

which means that the chiral condensate is a sum of its so far two contributions

〈ψ̄ψ〉 = 〈ψ̄ψ〉stat + 〈ψ̄ψ〉κ2 . (4.3.23)

We already know the contribution of the static determinant, therefore we continue with the
second term. Now we also have to consider the derivative of h2 w.rp.t. κ:

∂ ln(Zκ2)
∂am

= ∂ ln(Zκ2)
∂h1

∂h1

∂κ

∂κ

∂am
+ ∂ ln(Zκ2)

∂h̄1

∂h̄1

∂κ

∂κ

∂am
+ ∂ ln(Zκ2)

∂h2

∂h2

∂κ

∂κ

∂am
. (4.3.24)

The derivative of h2 w.rp.t. κ looks like

∂h2

∂κ
= 2κNτ

Nc

. (4.3.25)

We start the derivation with the explicit expression the derivative of ln(Zκ2),

∂ ln(Zκ2)
∂am

= ∂

∂am
(−6V h2Nf

z2
1
z2

0
) = −6V Nf

∂

∂am
(h2

z2
1
z2

0
)

= −6V Nf

(
∂

∂h1

∂h1

∂κ

∂κ

∂am
+ ∂

∂h̄1

∂h̄1

∂κ

∂κ

∂am
+ ∂

∂h2

∂h2

∂κ

∂κ

∂am

)
(h2

z2
1
z2

0
).

(4.3.26)

After some calculation we get the expression for the κ2-contribution to the chiral condensate,

〈ψ̄ψ〉κ2 = −T
V

∂ ln(Zκ2)
∂am

= −T
V

12κ2V Nf
z1

z2
0

(
2h2

[(
∂z1

∂h1

∂h1

∂κ
+ ∂z1

∂h̄1

∂h̄1

∂κ

)
− z1

z0

(
∂z0

∂h1

∂h1

∂κ
+ ∂z0

∂h̄1

∂h̄1

∂κ

)]
+ z1

∂h2

∂κ

)

= −12κ2 Nf

aNτ

z1

z2
0

(
2h2

[(
∂z1

∂h1

∂h1

∂κ
+ ∂z1

∂h̄1

∂h̄1

∂κ

)
− z1

z0

(
∂z0

∂h1

∂h1

∂κ
+ ∂z0

∂h̄1

∂h̄1

∂κ

)]
+ z1

∂h2

∂κ

)
.

(4.3.27)

We can again insert the expression of the derivatives of h1, h̄1, h2 from Equation 4.3.9 and
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4.3 Analytical evaluation of the chiral condensate in the Strong coupling limit for µ = 0

(a) Static determinant and κ2 contribution. (b) Static determinant, κ2 contributions
and shift.

Figure 4.3.1: Chiral condensate as a function of κ for fermionic contributions up to κ2

only, with (right) and without (left) the shift. Comparison between analytical (line) and
numerical (dots) results for β = 0, Nτ = Ns = 4, Nf = 2.

Equation 4.3.25 and get an expression for the κ2-correction to the chiral condensate:

〈ψ̄ψ〉κ2 = −T
V

∂ ln(Zκ2)
∂am

= −12κ2 Nf

aNτ
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z2
0
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(4.3.28)

4.3.3 Comparison with numerical results for Nf = 2
To complete this chapter we compare analytical and numerical methods for the chiral con-
densate as a function of κ for Nf = 2. The simulation has been done using the Metropolis
algorithm from [25]. The left image in Figure 4.3.1 shows the comparison of analytical and
numerical results for the action using the static determinant and κ2-corrections. In the
right figure we also added the contribution of the shift that was introduced by rescaling the
fermion fields. The numerical data for the chiral condensate for the pure fermion action
agrees well with the analytical data.
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Chapter 5

Results

In this chapter we will discuss the numerical results. We will start with some data analysis in
section 5.1 and show how the localization and characterization of a phase transition can be
obtained. Subsequently the numerical results for the Deconfinement transition are shown in
section 5.2, starting with the pure gauge case. This is numerically less costly than simulating
the full theory and therefore a good starting point to investigate several properties of the
Complex Langevin dynamics applied to the effective theory. The next step is then to include
fermions and higher gauge corrections and do the simulation based on the findings in the
pure gauge simulation.
In section 5.3 the results for the chiral condensate will be shown.

5.1 Data analysis
In this section we recap useful information about the observables obtained from the simu-
lations. We define how expectation values are obtained during a simulation and introduce
some observables that were measured in the simulation, such as the Polyakov loop. Another
important step of the data analysis is the estimation of errors. In this context we will discuss
the binning procedure and Bootstrap resampling. Putting some physics in the data analy-
sis, of particular interest are the localization and characterization of phase transitions. The
necessary tools will be provided in the end of this subsection.

5.1.1 Observables
Expectation values in Euclidean field theory are obtained as

〈O〉 = 1
Z

∫
d[U ]e−S[U ]O[U ], (5.1.1)

with the partition function
Z = 1

Z

∫
d[U ]e−S[U ]. (5.1.2)

This integral can in general not be evaluated analytically and therefore one uses computer
simulations. The idea of a Monte Carlo (MC) simulation is to calculate those expectation
values numerically. One assumes that at each MC step one measures an observable O[Un],
where Un is distributed with a probability ∝ e−S[Un], and from this one gets the expectation
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5.1 Data analysis

value as
〈O〉 ≈ 1

N

∑
Un

O[Un]. (5.1.3)

N is the number of total measurements. In the simulation the observable O[Un] for each
configuration Un can also be seen as an observable at a particular Monte Carlo time t during
the process, O[Un]↔ O(t). To get the observables O(t), we have to measure observables at
each spatial lattice point n and average over the spatial volume,

O(t) = 1
N3
s

∑
n∈Λs

O(n, t). (5.1.4)

The order parameter of the Deconfinement transition is the Polyakov loop. To locate the
phase transition we will observe the Polyakov loop as a function of the gauge coupling λ1.
At the phase transition the Polyakov loop expectation value 〈L〉 will change from 0 in the
confined phase to a finite value in the deconfined phase. We will measure the absolute value
of the Polyakov loop, which can be achieved by either taking the absolute value after or
before averaging over the volume at a particular time t,

Q1(t) = 1
N3
s

|
∑
n

Ln(t)|, Q2(t) = 1
N3
s

∑
n

|Ln(t)|. (5.1.5)

The Polyakov loop is measured at each step in Monte Carlo time t, which in the Langevin
simulation corresponds to the Langevin time, for each point n = 0, . . . , Ns3−1 on the lattice.
We hence get the Langevin time expectation value for the two Polyakov loop observables,

〈Q1/2〉 = 1
N

∑
t

Q1/2(t). (5.1.6)

5.1.2 Error analysis
An important step in the analysis is to control the autocorrelation between data and the
estimation of errors in the simulation. To reduce the correlation one can apply binning to
the data. [8] The error estimation can be achieved with different methods, like Jackknife
or bootstrap resampling. For the error estimation in this thesis the bootstrap resampling
method was used. As an adaptive stepsize method was used during the simulation, we need
to weight the sample data with the stepsize when applying the binning and the bootstrap
resampling. This will be discussed after the introduction of the original methods.

Autocorrelation

An important question is over which period of simulation time the data are correlated. This
is only a brief recap, as it is merely used to estimate how many sweeps are needed between
each measurement. For more detailed information consult [8]. Numerical data obtained
from a Monte Carlo algorithm are correlated. For an accurate estimation of the correlation
between data the evaluation of the integrated autocorrelation time τint is necessary. If one
picks an observable O(t) at time t, the integrated autocorrelation time estimates after how
many Monte Carlo steps the observable is independent of the inital one. Hence O(t) and
O(t+ τint) are supposed to be independent of each other. If a sample consits of N data, one
would effectively have

Nindep = N

τint
(5.1.7)

independent data. As a conclusion one can discard τint data in between two measurements.
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Binning

To reduce the autocorrelation between the data it is useful to bin the data. From the original
dataset of R data we build Rbs bins consisting of Rb data, Rb ·Rbs = R. The bins are formed
in order, the first Rb data x1, . . . , xRb go in the first bin, the data xRb+1, . . . , x2Rb go in the
second bin and so on. In general R does not have to be divisible by Rbs without remainder.
Thus the last bin will contain less data that the other bins. Afterwards one calculates the
average value for each bin,

xbj = 1
Rb

j·Rb∑
i=1+(j−1)Rb

xi, b = 1, . . . , Rbs. (5.1.8)

Those Rbs bin averages are in the next step used to calculate the errors. Hence the errors
are not calculated from the original data set but from the binned data sets.

Weighted binning

When an adaptive stepsize is used one has to take the different stepsizes into consideration
to calculate the Langevin time average. This is done by weighting the observables at each
time step with the corresponding stepsize ε. Then the average values of the bins are obtained
as

xbjweighted = 1
Rb

∑j·Rb
i=1+(j−1)Rb εixi∑

i εi
, j = 1, . . . , Rbs. (5.1.9)

These averages will be used to calculate the errors in the next step, using the weighted
bootstrap resampling method.

Bootstrap resampling

We will now discuss how to obtain the expectation values and the errors of the original or
the binned data from the simulation. We assume a data set consisting of R data. From
this set we randomly choose N data points, from which we form a bootstrap sample. It
is possible to have the same xi appearing repeatedly in one set. In this way we form M
bootstrap samples,

{x1
1, x

1
2, · · ·x1

N}, {x2
1, x

2
2, · · ·x2

N}, · · · {xM1 , xM2 , · · ·xMN }. (5.1.10)

For each of the M bootstrap samples we have to calculate the average xBα ,

xBα = 1
N

N∑
i=1

xαi , i = 1, . . . N, α = 1, . . .M. (5.1.11)

We obtain the expectation value of the observable by taking the average over all bootstrap
sets,

xB = 1
M

M∑
α=1

xBα . (5.1.12)

The error can be computed with the standard deviation of the bootstrap sample,

σ2
xB

= 1
M − 1

M∑
k=1

(xB − xBk )2. (5.1.13)
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Weighted Bootstrap resampling

As we are using an adaptive stepsize method the same argument as for the weighted binning
holds and we have to apply a weighted bootstrap sampling. For the weighted Bootstrap
resampling we follow the steps shown before. Now we do an additional resampling for the
weight factors, which is the adaptive stepsize ε,

{ε11, ε12, · · · ε1N}, {ε21, ε22, · · · ε2N}, · · · {εM1 , εM2 , · · · εMN }. (5.1.14)

We then get the weighted average for one bootstrap sample as

xBα,weighted =
∑
i ε
α
i · xαi∑
i ε
α
i

, i = 1, . . . N, α = 1, . . .M. (5.1.15)

And in the end we obtain the average over all bootstrap sets

xBweighted = 1
M

M∑
α=1

xBα,weighted. (5.1.16)

5.1.3 Moments
A central point in statistics are moments, [8][27]

λn = 〈On〉. (5.1.17)

In particular reduced moments, which are moments about the mean, will be useful in the
course of the analysis of numerical results,

µn = 〈(O − 〈O〉)n〉. (5.1.18)

The reduced second moment is the variance, and if we multiply this quantity by the spatial
volume of the lattice we get the susceptibility,

χ(O) = N3
s µ2 = N3

s (〈O2〉 − 〈O〉2). (5.1.19)

The relation to the variance makes the susceptibility an indicator for how much the results
are deviating from the mean. Away from a phase transition the system stays in one phase
and the fluctuations around the mean are small. Around a phase transition there are two
phases, in which the system can stay. The system fluctuates between those phases which
results in large fluctuations. It follows that at the phase transition the susceptibilty shows
a maximum and is therefore a quantity for locating a phase transition.
The location of the phase transition can also be determined by the vanishing third central
moment µ3,

µ3 = 〈(O − 〈O〉)3〉 = 〈O3〉 − 3〈O2〉〈O〉+ 2〈O〉2. (5.1.20)
One can furthermore define standardised reduced moments,

Bn = µn

µ
n/2
2

. (5.1.21)

B3 is the skewness and can be used for analysis in the same way as the third reduced moment.
B4 is the kurtosis,

B4 = 〈(O − 〈O〉)4〉
〈(O − 〈O〉)2〉2

= 〈O
4〉 − 4〈O3〉〈O〉+ 6〈O2〉〈O〉2 − 3〈O〉4
〈O2〉2 − 2〈O2〉〈O〉2 + 〈O〉4 . (5.1.22)
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1st order 3D Ising Crossover
B4(βc) 1 1.604 3

Table 5.1.1: Order of the phase transition indicated by the value of the kurtosis at the
phase transition, B4(βc).

Its minimum signals the phase transition and it can also used to determine the order of the
phase transition, which is displayed in Table 5.1.1. It has to be stressed that the order of
the phase transition can only be deduced from the value of B4 at the critical temperature.
Away from the phase boundary the order parameter fluctuates around the mean following a
normal distribution. In this case the kurtosis is always 3, but does not necessarily denote a
crossover. [27] Therefore to determine the order of the phase transition it is necessary to first
locate the phase transition, e.g. analysing the susceptibility or the skewness and afterwards
calculate the kurtosis in an appropriate region around the phase transition. The analysis of
the order of the transition from the kurtosis is an elaborate business. For the purpose of this
thesis it is sufficient to state that the susceptibility scales with the volume. At a first order
phase transition the peak of the susceptibility increases with increasing spatial volume. For
a crossover the peak of the susceptibility saturates with increasing volume.

5.2 Deconfinement transition in SU(3) for µ = 0
The deconfinement transition is related to the spontaneous breaking of the Z(3) symmetry
in pure gauge theory, signalling by a transition from vanishing Polyakov expectation value
to a finite value. As dynamical quarks break Z(3) symmetry explicitly, the Polyakov loop
is strictly speaking not an order parameter anymore. Thus this explicit breaking becomes
small for large quark mass, which applies to the effective theory which was derived for heavy
quarks because of κ→ 0. So we can investigate the theory looking at the Polyakov loop as
an approximate order parameter still.

The numerical results concerning the deconfinement transition will be shown in the next
sections. We will start in the pure gauge case with only nearest neighbor interactions. In
this regime we will investigate the Complex Langevin dynamics and check if the tools for
correctness introduced in chapter 3 work properly. Afterwards we will simulate for the full
effective theory including fermions applying the findings from the basic investigation in pure
gauge.

5.2.1 Pure gauge theory for Nτ = 6
The simulation of the pure gauge sector has been done for nearest neighbor interaction only,
meaning that we include only the λ1 part of the gauge action. It is though not necessary to
use the Complex Langevin algorithm in the pure gauge case, as without fermions there is no
sign problem, which arises from the complex fermion determinant. But this case is a rather
simple way to check the properties of the CL evolution.
To prevent the simulation from runaways, the simulation has been done for different meth-
ods of the adaptive stepsize. As the Complex Langevin algorithm is known to give wrong
results [3][5], we need different tools to check if the results are going in the correct direction.
Therefore we will compare with data produced using the Metropolis algorithm from [25]
and we will apply the Langevin operator proposed in [3][5]. The critical value λ1,c can be
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Figure 5.2.1: Time evolution during the thermalization period of the Polyakov loop ob-
servable Q2 for Nτ = 6, Ns = 12, λ1 = 0.1878.

determined by looking at the susceptibility of the order parameter, which for the deconfine-
ment transition is the Polyakov loop L. We will use the Polyakov loop observables Q1, Q2.
The histograms and the evolution in Langevintime are as well useful tools to observe the
developement of CL simulation.

Simulation parameters

A starting point for a successful simulation is to estimate how long the thermalization to
equilibrium takes, how to achieve independent data and how many data are needed to give
sufficiently accurate results.

We start with estimating which time the thermalization process requires. Therefore we look
at the time evolution for Metropolis and CL. The trajectory through the thermalization
process for Q2 is shown in Figure 5.2.1. From this it can be deduced that around the phase
transition for the CL simulation 30, 000 thermalization steps are sufficient. In the Metropolis
simulation the system is already in the beginning fluctuating in the vicinity of the two phases.
Hence for the Metropolis simulation one needs significantly less steps to reach equilibrium.
Thus 2, 000 thermalization steps were chosen.

The next step is to estimate how many data have to be discarded in between two mea-
surements to obtain approximately independent data. In Equation 5.1.7 it was shown that
an amount of τint data has to be neglected to achieve this. For the Metropolis algorithm,
which was used in this thesis to generate data for comparison with CL, the integrated au-
tocorrelation time was computed in [25]1 to be τint ≈ 120 away from a phase transition and
τint ≈ 1600 close to a phase transition. It was shown that 150 sweeps were sufficient. During
the CL and Metropolis simulations 200 data were discarded in between each measurement.

1In [25] the definition of the autocorrelation from [15], τGattringer
int was used. In this thesis the definition

from [8] was used, τBerg
int , with the relation τBerg

int = 2τGattringer
int . This is why I am using the estimate of τint,

while in [25] 2τint is used to estimate the autocorrelation between data.
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Figure 5.2.2: 〈Q2〉 and susceptibility χ(Q2) as a function of λ1 for Nτ = 6, Ns = 16 for
different adaptive stepsize methods for the Complex Langevin simulation in comparison with
the the Metropolis simulation.

The Complex Langevin simulation in this section was done with 40, 000 measurements, for
the Metropolis simulation 10, 000 data were generated.

Checking correctness of the Complex Langevin simulation

We start with comparing different methods of choosing an adaptive stepsize for CL with data
generated using the aforementioned Metropolis algorithm. Figure 5.2.2 shows the average
value of the the Polyakov loop observable Q2 for different adaptive stepsize methods (ASM)
for CL and comparing it with data obtained from the Metropolis simulation. The Aarts
ASM with p = 2, K = 0.02 was used, as well as the Neuman ASM, once with εmax = 10−3

and once with εmax = 10−4. Comparing the Neuman ASM for different εmax, but the same
amount of data, we see that an εmax = 10−4 is not sufficient to describe the correct behavior.
For this limited simulation time the stepsize is to small to explore the configuration space
properly. If the stepsize is too small we need higher statistics to achieve correct results,
which makes the simulation computationally more expensive. Thus using εmax = 10−3 is an
appropriate choice as it agrees well with the Metropolis data, as well as the data using the
Aarts ASM with the given parameters.

The next tool to check correctness is the application of the Langevin operator to the Polyakov
loop. The expression of the Langevin operator acting on the Polyakov loop was derived in
section 3.4. During the simulation the quantity L̃L is complex. Thus we save the real and
imaginary part separately, Re(L̃L), Im(L̃L). This quantities as a function of λ1 are shown
in Figure 5.2.3. In agreement with the results we got from comparing the CL with Metropo-
lis, we also find here that the simulation using Aarts ASM and the Neuman ASM using
εmax = 10−3 show Re(L̃L) ≈ 0 and Im(L̃L) ≈ 0. The results from Neuman’s ASM using
εmax = 10−4 for λ1 < λ1,c show a noticeably higher deviation from zero than the results for
the other two methods. Especially for λ1 > λ1,c the deviation from zero is quite big, tough
this is already away from the region of interest.

From this we can conclude that Aarts ASM with p = 2, K = 0.02 and Neuman’s ASM with
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Figure 5.2.3: Real part and imaginary part of the Langevin operator acting on L, respec-
tively for Ns = 16. Comparison for different adaptive stepsize methods for the Complex
Langevin simulation.
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Figure 5.2.4: Locating the phase transition: 〈Q2〉 and susceptibility χ(Q2) as a function
of λ1 for Nτ = 6 for different spatial volumes. The simulation was done using the Complex
Langevin algorithm with Aarts ASM for p = 2, K = 0.02.

εmax = 10−3 give sufficiently accurate results. This has been proven by comparison with
Metropolis generated data and by applying the Langevin operator to the order parameter
L. Hence we used the Aarts ASM with p = 2, K = 0.02 in the investigation for finding the
critical value λ1,c, at which the deconfinement transition takes place.

Locating the phase transition

We already discussed different moments and related quantities, that can be used to locate
a phase transition. Additionally we look at the histograms around that region and at the
trajectory in Langevin time space. We will also comment on issues of the CL simulation
during this analysis.

We start with investigating the maximum of the susceptibility of the absolute value of the
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Q1 Q2
Ns λ1,c βc λ1,c βc
8 0.1876(3) 6.3259(2) 0.1876(2) 6.3259(2)
12 0.1876(3) 6.3259(2) 0.18774(2) 6.32605(5)
16 0.18770(2) 6.325600(2) 0.18772(2) 6.3260(10)

Table 5.2.1: Critical couplings λ1,c, βc obtained from the peak of the susceptibility of Q1, Q2
for different spatial extents and Nτ = 6. Results obtained from CL simulation.
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Figure 5.2.5: Locating the phase transition: susceptibility χ(Q1) and third reduced moment
µ3(Q1) as a function of λ1 for Nτ = 6 for different spatial volume. Simulation using CL.
More data around the phase transition have been included compared to Figure 5.2.4.

Polyakov loop, which is described by either Q1 or Q2. It is expected that Q1 and Q2 indicate
the phase transition respectively at λQ1

1,c ≈ λQ2
1,c . The first observable will be Q2. The behavior

of 〈Q2〉 and the respective suscceptibility as a function of λ1 are shown in Figure 5.2.4. As
suspected, the change of 〈Q2〉 becomes steeper with increasing volume. With considering
the susceptibility in Figure 5.2.4(b) we find λ1,c = 0.18772(2) for Ns = 16. The results for
different volumes are found in Table 5.2.1. To achieve results with higher accuracy one would
need more data around the phase transition, which would require high enough statistics and
rather more sweeps in between the measurements, as the integrated autocorrelation time
becomes larger around the phase transition.

Next we continue with studying the behavior of 〈Q1〉 around the phase transition. Fig-
ure 5.2.5 shows the susceptibility and the third reduced moment of Q1. The susceptibility
peaks at λ1 = 0.18770(2) for Ns = 16. Locating the value at which µ3 crosses zero is more
tricky, as µ3 is fluctuating and changing between positive and negative values frequently
close to the transition. Therefore the error is bigger, λ1 = 0.1878(1).

Including all these results we can say that 0.1877 < λ1,c < 0.1879 and thus λ1,c = 0.1878(1)
when studying the peak of the susceptibility and the location at which the third reduced
moment vanishes.

The next step is to look at the histograms and the Monte Carlo history to get some further
knowledge about the dynamics of the Complex Langevin simulation. We will furthermore
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Figure 5.2.6: Histograms and trajectories of the simulation for the observable Q2 for
Nτ = 6, Ns = 16 slightly below, at and slightly above λ1,c. The simulation was done using
the Complex Langevin algorithm with Aarts ASM for p = 2, K = 0.02.

compare it with the dynamics of the Metropolis simulation. The histograms show how much
the two phases are visited during the simulation. Before the phase transition takes place
the system is supposed to be in the first phase. When the system comes closer to the phase
transition, tunneling to the second phase appears. We expect to see one peak at the value of
the first phase and a smaller peak at the value of the second phase. At the phase transition
both peaks become equally high. Going away from the phase transition to λ1 > λ1,c the
second phase is majorly visited and the peak corresponding to the first phase decreases until
it vanishes as the system stays in the second phase.

Figure 5.2.6 shows the histograms and the Monte Carlo trajectories of the CL simulation
for Ns = 16 slightly below, at and slightly above the critical coupling. We use the Polyakov
observable Q2 in the following description. We can see a transition between the two phases,
around Q1

2 ≈ 0.93 in the first phase and Q2
2 ≈ 1.05 in the second phase. Before the transition

takes place, shown at λ1 = 0.1870, the system mainly stays in the first phase. Though look-
ing at the corresponding trajectory it is not entirely clear, if the system is already tunneling
or if it is not thermalized enough. For tunneling speaks that the peak value of Q2,max ≈ 1.1,
which is around the mean of the second phase. For not enough thermalization speaks that
in Figure 5.2.1 for CL we pass values of Q2 which are higher than the mean of the phase
before the system equilibrates and fluctuates around the mean. One could clarify this issue
by investigating a higher amount of data and the corresponding history of the trajectory.
We can compare this case already with the Metropolis data from Figure 5.2.7(a). For the
same λ1 = 0.187 the system stays in the first phase, except for a few fluctuations, and a
thermalization of 2, 000 steps was already enough.
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Figure 5.2.7: Histograms and trajectories of the simulation for the observable Q2 for
Nτ = 6, Ns = 16 slightly below, at and slightly above λ1,c. The simulation was done using
the Metorpolis algorithm.

Another difference between Metropolis and CL dynamics occurs when we take a look at
the vicinity of the phase transition around λ1,c. There is a slight discrepancy between
the results from the Complex Langevin simulation and the Metropolis simulation. We get
λ

(CL)
1,c = 0.1878(2) and λ

(M)
1,c = 0.1880(5). Quantitatively both results are reliable, but it

should be emphasized that the dynamics of the system differs depending on the algorithm
used. The height of the two phases in the histogram for Metropolis, λ(M)

1,c = 0.188 are almost
equal, whereas for CL at λ1 = 0.1878 the peak belonging to the first phase is noticeably
higher. The reason for this is that in the Metropolis simulation the tunneling between the
two phases happens much more often, cf. Figure 5.2.7(e), than in the simulation using CL, cf.
Figure 5.2.6(e). And for CL already at λ1 = 0.188 there is no significant tunneling happen-
ing anymore, although we have four times more data (40, 000) compared to the Metropolis
simulation (10, 000 data). What is noticeable as well is that the value of the critical coupling
obtained by analyzing the susceptibility, λ1,c = 0.18772(2), differs from the observation done
from the histograms, where λ1,c = 0.1878(2) is slightly below the phase transition.

We already saw that CL dynamics have a tunneling issue. It turns out that the severeness
will depend on the spatial extent of the lattice. To see this we look at Figure 5.2.8. At
λ1 = 0.1876 ⇔ β = 6.3259, for Ns = 12 both phases are almost equally high, whereas for
Ns = 16 the system stays more in the first phase, indicating that this is still β < βc. This
observation comes from too few tunneling especially for Ns = 16. Thus to obtain sufficient
tunneling we need more data with increasing spatial volume. For λ1 = 0.1878⇔ β = 6.3261,
the abundance of states in the second phase grows for Ns = 16, meaning that we get closer
to the phase transition.

In Figure 5.2.9 we see the histograms close around λ1,c for Ns = 12. This yields to λ1,c =
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(b) Time evolution for λ1 = 0.1876.
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(c) Histograms for λ1 = 0.1878.
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Figure 5.2.8: Histogram and time evolution of the simulation for the observable Q2 for
Nτ = 6 for different volumes Ns = 8, 12, 16. The simulation was done using Complex
Langevin algorithm with Aarts ASM for p = 2, K = 0.02.

0.1772(2) for Ns = 12. In the error range this agrees with the result which was found when
studying the peak of the susceptibility.
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Figure 5.2.9: Histogram of Q2 for Nτ = 6, Ns = 12 around the phase transition. The
simulation was done using Complex Langevin algorithm with Aarts ASM for p = 2, K = 0.02.

To conclude the results obtained from the Complex Langevin simulation, we find that
0.187 < λ1,c < 0.188. We can roughly approximate this result to λCL1,c = 0.1875(5). The
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value λ1,c = 0.18788(30) from [17] lies in this range as well. Thus the accuracy of our CL
simulation is rather broad in this region. A higher accuracy of the results could be achieved
with higher statistics around the phase transition.

Compared to the Metropolis simulation the CL simulation is computationally excessively
more expensive. The difference in the numerical performance comes from the the fact that
calculating the driftterms at each Langevin time step takes longer than a Metropolis update.
Aside from that the CL simulation requires a longer thermalization procedure and in general
needs more data, depending on the volume, to show appropriate tunneling behavior. It is
furthermore important to control the dynamics with the tools that were shown to ensure
correct results.

Characterizing the phase transition

The order of the phase transition is of particular interest. It was discussed that analyzing
the fourth standardized moment B4 is quite a delicate business. Therefore we will look at
the scaling of the susceptibility with spatial volume instead. We saw in Figure 5.2.4 and
Figure 5.2.5 that the peak of the susceptibility grows with increasing spatial volume. This
indicates the phase transition to be of first order.

The goal of investigating the pure gauge deconfinement transition was to get some infor-
mation about the dynamics of the CL simulation and getting used to the tools which are
advantageous to check the correctness of the results. To conclude the findings, an adaptive
stepsize method has to be chosen, where the Aarts AS with p = 2, K = 0.02 gave satis-
fying results. Due to insufficient tunneling for higher spatial volume a choice of Ns = 12
with N = 40, 000 data is appropriate. Higher spatial volumes require a higher amount of
statistics. We need to stress that simulations with those parameters work well in the pure
gauge case. For simulations including fermions it is still necessary to check the correctness
of the results, especially comparing with results from a Metropolis simulation, applying the
Langevin operator and using an adaptive stepsize method.

5.2.2 Adding quarks up to O(κ4) for Nτ = 4
With the results from the investigation of the CL dynamics in the pure gauge effective theory
we proceed with studying the deconfinement phase transition including quarks.

As argued in subsection 2.4.1 including dynamical quarks leads to an explicit breaking of
the Z(3) symmetry, which is though small for large fermion masses. It was shown that there
exists a critical h1,c, where at h1 < h1,c there is expected to be a first order phase transition
going into a crossover for h1 > h1,c in the effective theory. At (h1,c, λ1,c) there is a second
order tricritical point. This behavior is shown in Figure 5.2.10.

For Nτ = 4, Nf = 1 for the full effective theory and 〈Q2〉 as order parameter the location of
the critical endpoint was found to be at (λc, hc) = (0.16497(27), 0.00194(17))2. [25]

2λ, h are equal to λ1, h1, which is used throughout this thesis. To not confuse the critical couplings at
the critical point from [25], λc, hc, with the critical couplings, at which the first order phase transition takes
place, we will stay with the notation λ1,c, h1,c.
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Figure 5.2.10: Phase boundary of the deconfinement phase transition as expected for the
effective theory, taken from [13].
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Figure 5.2.11: Q2 and corresponding susceptibility for Nτ = 4, Ns = 12, Nf = 1, h1 =
0.0006. Comparison between Metropolis and Complex Langevin simulation.

We investigated one particular parameter set in the first order region, simulating at h1 =
0.0006 < hc = 0.00194. It follows that we are expecting to see a first order phase transition
to take place at λ1,c > λc = 0.16497(27). We included the following contributions to the
effective action in the simulation: The quark contributions were considered up to O(κ4) in
the hopping parameter expansion. The gauge contributions include nearest neighbor cou-
pling λ1, next-to-nearest neighbor coupling λ2, as well as the contribution from the adjoint
representation λa3 from the strong coupling expansion.

To see the big picture we first look at how the Polyakov loop observable Q2 as a function of
λ1 changes in Figure 5.2.11, where the CL and Metropolis simulations are compared. Both
simulations agree well.

Before we start with locating and characterizing the phase transition, we check if the cri-
terion for correctness is fulfilled. Figure 5.2.12 shows the real and imaginary part of the
Langevin operator acting on L to vanish for λ1 < λ1,c. This is an indicator for the simu-

3Short reminder: the contribution from the adjoint representation was implemented improperly, see
comment in section 2.3.
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Figure 5.2.12: Real and imaginary part of the Langevin operator acting on L for Nτ =
4, Ns = 12, h1 = 0.0006.
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Figure 5.2.13: Susceptibility of the absolute Polyakov loop variables Q1 and Q2 for Nτ =
4, Ns = 12, Nf = 1, h1 = 0.0006.

lation converging to the correct result. Around the phase transition the Langevin operator
acting on L increases, though the deviation from zero is small enough to ensure reliable
results. This is in agreement with what we found when we compared with the Metropo-
lis simulation data. This means that the Aarts AS with p = 2, K = 0.02 and 200 sweeps
in between the measurements is a good choice also for the effective theory including fermions.

To quantitatively locate the phase transition we already discussed three possible quanti-
ties, we focus on the maximum of the susceptibility. The location of the peak of the
susceptibility for the quantities Q1, Q2 is contrasted in Figure 5.2.13 and the quantita-
tive results obtained from the Complex Langevin simulation are shown in Table 5.2.2.
We got the same results for the critical couplings of Q1 and Q2. For the Metropolis
data we get λM1,c = 0.1666(2) for Ns = 12 for Q1, Q2 respectively. Including Metropo-
lis and CL simulation for different volumes, the critical coupling has to be in the range
λCL,Ns=12

1,c = 0.1664(2) < λ1,c < λCL,Ns=16
1,c = 0.1668(1). A rough estimate could be taken to

be λ1,c = 0.1666(3) for the critical coupling at the first order transition for h1 = 0.0006. This
is indeed bigger than the critical coupling at the critical point λc = 0.16497(27) and smaller
than λ0 = 0.167310(32).
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5.3 Chiral condensate

Ns λ1,c β1,c
12 0.1664(2) 6.0446(5)
16 0.1668(1) 6.0457(3)
20 0.1664(1) 6.0446(2)

Table 5.2.2: Critical couplings λ1,c, βc obtained from the peak of the the susceptibility of
Q1, Q2 for different spatial extents Ns and Nτ = 4, Nf = 1, h1 = 0.0006. The critical coupling
is found to be the same for Q1 and Q2 and therefore displayed only once. Results obtained
from CL simulation.

We are as well interested in the order of the phase transition. Therefore we look at how the
peak of the susceptibility behaves with increasing volume. This can be seen in Figure 5.2.13.
We see that the peak is growing with increasing spatial volume. This signals a first order
phase transition as expected.

With these results we can say that, as in the pure gauge case, the Complex Langevin algo-
rithm serves very well to describe the first order deconfinement transition of the full effective
theory. We have tools by hand to control the CL dynamics and the next step would be
to include a nonzero chemical potential, the purpose of why we started implementing the
Complex Langevin equation. CL doesn’t see the sign problem, which arises when including
a chemical potential. A sufficient amount of statistics should be ensured to obtain accurate
results.

5.3 Chiral condensate
As mentioned in subsection 2.4.3 there is a restoration of the chiral symmetry expected to
take place in the small mass region for high temperature. We now want to see if this can be
confirmed for Wilson fermions in the effective theory. The simulations in this section have
been exclusively done using the Metropolis algorithm.

5.3.1 Numerical results
It is expected that QCD exhibits restoration of the chiral symmetry at high temperatures.
Though chiral symmetry is explicitly broken by Wilson fermions, we want to check if there is
a partial restoration happening. Large temperatures are realized at a small temporal lattice
extent Nτ .
We look at the chiral condensate as a function of the gauge coupling β. For the simulation
the definition of the chiral condensate as it was derived in Equation 4.2.3 was used. Com-
monly in literature the absolute value of the chiral condensate is taken. This is why the
results herein have a global minussign compared to most results in literature. This is also
valid for comparison with [20], fig 5.15, where the chiral condensate decreases with increas-
ing β, where according to the above definition the chiral condensate increases for increasing β.

We recap the behavior of the different contributions of the effective action to the chiral con-
densate for κ = 0.04. The corresponding plots are shown in Figure 5.3.1. The contribution
of the static determinant is small compared the other contributions and therefore negligible.
The κ2-correction doesn’t change this behavior and therefore is not shown here explicitly.
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Figure 5.3.1: Chiral condensate as a function of β for Nτ = 4, Nf = 2, κ = 0.04 shown
for different contributions to the action and for different volumes.

The κ4-correction leads to an increase of the chiral condensate with β and is caused by
vacuum graphs of order κ4u and κ6u2. [20] Including the λ1 contribution leads to a rapid
change of the order parameter, the chiral condensate, at the critical coupling β = βc. The
global shift, which is now also included in Figure 5.3.1(d), comes from the rescaled fields and
therefore

〈ψ̄ψ〉(β = 0) = −8Nf Nc κ

Nτ

. (5.3.1)

For the parameters used in Figure 5.3.1, κ = 0.04, Nτ = 4, Nf = 2, Nc = 3 the shift is
〈ψ̄ψ〉(β = 0) = −0.48, which is successfully reproduced in the simulation.

The next interesting topic is to locate the phase transition and discuss the order of the tran-
sition. A small value of κ corresponds to heavy quarks. Thus we are close to the upper right
corner in the Columbia plot. Decreasing the mass, we move along the upper horizontal line
towards the upper left corner. As discussed earlier, the system is expected to undergo a first
order transition in the heavy mass region for low κ, until a second order tricritical point is
crossed, going over into a broad crossover region. For high κ, or equivalently small masses,
we get close to the chiral limit. This is the region in the Columbia plot, which is still under
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5.3 Chiral condensate

investigation. It is possible that chiral symmetry is restored, showing a first order transition.4
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Figure 5.3.2: Chiral condensate and corresponding susceptibility as a function of β for
Nτ = 4, κ = 0.04 shown for different volumes.

We first take a look at the case of heavy fermions, κ = 0.04. The simulation was done
using the effective action including the static determinant, κ2- and κ4- corrections as well
as the λ1-correction. Figure 5.3.2 shows the chiral condensate as a function of β and the
respective susceptibility. Looking at the chiral condensate we see that for Ns = 8 there is
an outlier around the transition, which is not the case anymore if we decrease the volume.
We infer that we need at least a spatial volume of V = 123 to obtain a good estimate for
the chiral condensate. The location of the transition is determined by the maximum of
the susceptibilty to be at βc = 6.100(5). Now we have to analyse the order of the phase
transition. We see that the peak of the susceptibility grows with increasing volume, except
for an outlier at the phase transition for Ns = 12. This corresponds to a first order transition.

Now we want to investigate how the transition as a function of the coupling β changes if
we vary κ. We are using an action including the static determinant, κ2, κ4, λ1 and the
shift. Gauge fields have no explicit contribution to the chiral condensate but they change
the evolution of the simulation. Figure 5.3.3 shows the chiral condensate and the respective
susceptibility as a function of β around βc for different values of κ. Increasing κ, the tran-
sition smoothes out, becoming a broad crossover. For small κ = 0.04 the chiral condensate
at the phase transition changes quite rapidly and the susceptibility is rather narrow around
the transition. The transition is of first order. This is in agreement with κc = 0.0691(9),
which was found in [13]. For κ = 0.04 < κc we expected and saw a first order transition, for
κ > κc one expects the transition to be a crossover. This is indeed the case: the more we
increase κ, the broader the chiral condensate and its susceptibility become around the phase
transition. It was already argued that for small quark masses the Z(3) symmetry is only
slightly broken, we are still able to see the first order transition. With decreasing mass the
breaking becomes more severe, the transition weakens and becoming a crossover. Hence up
to κ = 0.3 we could not confirm a first order transition to take place, signalling the partial

4An overview over different scenarios of the Columbia plot in the chiral region can be found in [27], p.
48-49.
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Figure 5.3.3: Chiral condensate and respective susceptibility as a function of β for Nτ =
4, Ns = 12 using the action including Static determinant, κ2, κ4, λ1, shift for different values
of κ.

κ βc
0.04 6.100(5)
0.08 6.094(10)
0.12 6.070(5)
0.16 6.013(10)
0.20 5.90(5)

Table 5.3.1: Critical coupling βc for different values of κ for Nτ = 4, Ns = 12.

restoration of chiral symmetry.5

We analyzed the critical coupling βc as a function of κ. The results are shown in Table 5.3.1
and visualized in Figure 5.3.4. The results agree quite with the results in [20]. Though the
values presented in here are slightly smaller than the data to compare with.

Decreasing the mass even more, looking at κ = 0.3 in Figure 5.3.5, the transition becomes
broader, as it was already argued. The susceptibility shows some odd behavior, as it is again
increasing for β > βc away from the phase transition. This might be a convergence problem
of being away from the phase transition. Thus this cannot be the maximum of susceptibility
locating the phase transition, as from Table 5.3.1 we expect βc to decrease with increasing
κ. Nevertheless the peak of the susceptibility for κ = 0.3 saturates, telling that this is a
crossover.

5Chiral symmetry is explicitly broken by Wilson fermions and thus cannot be restored in a strict sense,
thus the term ”partial” restoration.
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Figure 5.3.5: Chiral condensate and corresponding susceptibility as a function of the in-
verse coupling β for Nτ = 4, κ = 0.3 for different spatial extents.

We found found the critical coupling βc as a function of κ being in good agreement with
the results shown in [20]. It was shown that the chiral condensate and the Polyakov loop
serve as appropriate indicators for a phase transition. We could confirm the deconfinement
transition to be of first order in the case of κ = 0.04. With increasing κ the transition turns
into a crossover, the crossover region spreads at least until κ = 0.3. Thus for Wilson fermions
in the effective theory partial chiral restoration could not be emulated.
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Chapter 6

Conclusion and outlook

In this thesis it was shown that the Complex Langevin equation can be used to describe the
QCD deconfinement phase transition. The application of the Langevin operator as a crite-
rion for correctness worked well and using an adaptive stepsize method led to well agreement
between CL and Metropolis data, not only in the pure gauge case but also in the case with
additional fermions.

The main issues of the CLE, which are convergence to the wrong limit and runaways, were
shown to be controlled using the criterion for correctness and an adaptive stepsize method.
Including nonzero chemical potential one has to carefully make use of these tools, to ensure
correct results. This is the more important as one enters regions in which the sign problem
becomes severe and therefore no data from e.g. Metropolis algorithm can be used to com-
pare with. Nevertheless the simulation using the CLE has some disadvantages still, which
are high numerical costs, as a long thermalization procedure is needed, and a large amount
of data is required to ensure an appropriate tunneling behavior. For higher spatial volume
more data are required.

So far in this thesis the region for zero chemical potential was investigated exclusively. As a
next step one could add a chemical potential, which was the reason why we introduced the
Complex Langevin method.

In the case of the chiral condensate an investigation of the different contributions to the
action has been presented as well as the evolution of the critical coupling βc depending on
the inverse quark mass κ. For a (partial) restoration of chiral symmetry one would expect a
first order phase transition for light quarks. In the case of the effective theory with Wilson
quarks this could not be confirmed. However it was proven that at κ = 0.04 the chiral
condensate and the Polyakov loop signal a first order phase transition, which becomes a
crossover for increasing κ.

57



Appendix A

Driftterms

A.1 Chain rule for fermionic driftterms
The fermionic part of the effective action can be written as a sum over the action for different
orders in κ, Seff = S0 + S2 + S4. We have to calculate the driftterms Kj

i (~x) locally, where
i = a, b denotes with respect to which field, φa or φb we take the derivative and j = 0, 2, 4
denotes the order in κ. The fermionic action depends on the Wm+n,n(n). Thus we have to
apply a more advanced chain rule than in the static case, namely

Kj
i (n) = −∂S

j(n)
∂φi(n)

= −
∑
W

∂Sj

∂Wm+n,n(n)

(
∂Wm+n,n(n)
∂Ln(φi)

∂Ln(φi)
∂φi(n) + ∂Wm+n,n(n)

∂L∗n(φi)
∂L∗n(φi)
∂φi(n)

)

−
∑
W †

∂Sj

∂W †
m+n,n(n)

(
∂W †

m+n,n(n)
∂Ln(φi)

∂Ln(φi)
∂φi(n) + ∂W †

m+n,n(n)
∂L∗n(φi)

∂L∗n(φi)
∂φi(n)

) (A.1.1)

We have to calculate the driftterms Ki(n) locally, where i = a, b denotes derivatives with
respect to the fields φa and φb and j = 2, 4 corresponds to the order in κ. j = 0 denotes the
static contribution. The fermionic driftterms then add up to

Ki(n) =
∑
j

Kj
i (n). (A.1.2)

A.1.1 Driftterm of the κ2-correction
To apply the chainrule for the κ2-correction from Equation A.1.1, we need to know the rela-
tion between W11,W

†
11 and the Polyakov loop. How to switch was shown in Equation 3.4.6,

and we get the following results for m = 0, n = 1 [20]

W11(n) = Tr h1W (n)
1 + h1W (n) = h1L(n) + 2h2

1L
∗(n) + 3h3

1
1 + h1L(n) + h2

1L
∗(n) + h3

1
, (A.1.3)

W †
11(n) = Tr h̄1W

†(n)
1 + h̄1W †(n)

= h̄1L
∗(n) + 2h̄2

1L(n) + 3h̄3
1

1 + h̄1L∗(n) + h̄2
1L(n) + h̄3

1
. (A.1.4)

The next step is to take the derivatives ofW11,W
†
11 w.rp.t. the Polyakov loop and its complex

conjugate,
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∂W11(n)
∂Ln

= h1(1 + h1Ln + h2
1L
∗
n + h3

1)− (h1Ln + 2h2
1L
∗
n + 3h2

1) · h1

(1 + h1Ln + h2
1L
∗
n + h3

1)2

= h1(1− h2
1L
∗
n − 2h3

1)
(1 + h1Ln + h2

1L
∗
n + h3

1)2

∂W11(n)
∂L∗n

= 2h2
1 · (1 + h1Ln + h2

1L
∗
n + h3

1)− (h1Ln + 2h2
1L
∗
n + 3h3

1) · h2
1

(1 + h1Ln + h2
1L
∗
n + h3

1)2

= h2
1(2 + h1Ln − h3

1)
(1 + h1Ln + h2

1L
∗
n + h3

1)2

∂W †
11(n)
∂Ln

= 2h̄2
1 · (1 + h̄1L

∗
n + h̄2

1Ln + h̄3
1)− (h̄1L

∗
n + 2h̄2

1Ln + 3h̄3
1) · h̄2

1

(1 + h̄1L∗n + h̄2
1Ln + h̄3

1)2

= h̄2
1(2 + h̄1L

∗
n − h̄3

1)
(1 + h̄1L∗n + h̄2

1Ln + h̄3
1)2

∂W †
11(n)
∂L∗n

= h̄1(1 + h̄1L
∗
n + h̄2

1Ln + h̄3
1)− (h̄1L

∗
n + 2h̄2

1Ln + 3h̄2
1) · h̄1

(1 + h̄1L∗n + h̄2
1Ln + h̄3

1)2

= h̄1(1− h̄2
1Ln − 2h̄3

1)
(1 + h̄1L∗n + h̄2

1Ln + h̄3
1)2
.

(A.1.5)

Then we can plug these results into Equation A.1.1, where the derivatives only act on
variables at spatial point n, but not at n + î. The driftterm belonging to the κ2-correction
then reads

K2
i (n) = − ∂S2

∂W11,n

∂W11,n

∂Ln(φi)
∂Ln(φi)
φi(n) −

∂S2

∂W †
11,n

∂W †
11,n

∂Ln(φi)
∂Ln(φi)
φi(n)

= − ∂S2

∂W11,n

(
∂W11,n

∂Ln(φi)
∂Ln(φi)
φi(n) + ∂W11,n

∂L∗n(φi)
∂L∗n(φi)
φi(n)

)

− ∂S2

∂W †
11,n

 ∂W †
11,n

∂Ln(φi)
∂Ln(φi)
φi(n) +

∂W †
11,n

∂L∗n(φi)
∂L∗n(φi)
φi(n)


= −h2Nf

∑
i

h1(1− h2
1L
∗
n − 2h3

1) ∂Ln

φi(n) + h2
1(2 + h1Ln − h3

1) ∂L∗n
φi(n)

(1 + h1Ln + h2
1L
∗
n + h3

1)2 . . .

. . .−
h̄2

1(2 + h̄1L
∗
n − h̄3

1) ∂Ln

φi(n) + h̄1(1− h̄2
1Ln − 2h̄3

1) ∂L∗n
φi(n)

(1 + h̄1L∗n + h̄2
1Ln + h̄3

1)2

 · (W11(n + î)−W †
11(n + î)).

(A.1.6)

A.1.2 Derivatives for driffterms of κ4-correction
The κ4- corrections contain terms proportional to W11,W21,W22 and

W00(n) ≡ Tr 1
(1 + h1W (n))(1 + h̄1W †(n))

, (A.1.7)

whose nomenclature is not strictly following the one that was introduced.1 The κ4- contri-
bution is rather lengthy and thus the driftterms are not shown in full detail. Instead the

1A more accurate nomenclature can be found in [26], p. 15. The term W00 would then be named W1010.
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A.1 Chain rule for fermionic driftterms

traced temporal Wilson lines and the derivatives w.rp.t. the Polyakov loop and its complex
conjugate are shown, as those quantities are the key to construct the driftterms of the action
shown in [20], Appendix A. The calculation of the driftterms is then straight forward, analo-
gously to the case shown for the κ2- contribution. For readability the spatial dependence is
not shown explicitly anymore. We now give the explicit expressions for W21,W22 and their
conjugate, as well as the derivative of those quantities w.rp.t. the Polyakov loop and its
complex conjugate.
For m = n = 1:

W21 = Tr h1W

(1 + h1W )2 = h1(L+ 4h3
1L+ 4h1L

∗ + h4
1L
∗ + h2

1(9 + LL∗))
(1 + h1L+ h2

1L
∗ + h3

1)2

W †
21 = Tr h̄1W

†

(1 + h̄1W †)2
= h̄1(L∗ + 4h̄3

1L
∗ + 4h̄1L+ h̄4

1L+ h̄2
1(9 + LL∗))

(1 + h̄1L∗ + h̄2
1L+ h̄3

1)2
.

(A.1.8)

For m = 0, n = 2:

W22 = Tr
(

h1W

1 + h1W

)2

= h2
1((4h3

1 − 2)L∗ + L2 + 2h2
1L
∗2 + 3h4

1 + 2h1(−3 + LL∗))
(1 + h1L+ h2

1L
∗ + h3

1)2

W †
22 = Tr

(
h̄1W

†

1 + h̄1W †

)2

= h̄2
1((4h̄3

1 − 2)L+ L∗2 + 2h̄2
1L

2 + 3h̄4
1 + 2h̄1(−3 + LL∗))

(1 + h̄1L∗ + h̄2
1L+ h̄3

1)2
.

(A.1.9)

The derivative of the traced temporal Wilson lines w.rp.t. the Polyakov loop and its complex
conjugate look like

∂W21

∂L
= h2

1(1− 2L− 8h1L
∗ + h2

1(L∗ − 2(9 + LL∗)) + h3
1(4− 8L)− 2h4

1L
∗)

(1 + h1L+ h2
1L
∗ + h3

1)3

∂W21

∂L∗
= h2

1(4− 2L+ h1(5L− 8L∗) + h2
1(L2 + 4L∗ − 2(9 + LL∗))

(1 + h1L+ h2
1L
∗ + h3

1)3

+ h2
1(h3

1(5 + LL∗ − 8L) + h4
1(2L− 2L∗) + h5

1L
∗ + h6

1)
(1 + h1L+ h2

1L
∗ + h3

1)3

∂W22

∂L
= 2h2

1(L+ 3h1L
∗ + 6h2

1 + h3
1(L− L∗2)− 3h4

1L
∗ − 3h5

1)
(1 + h1L+ h2

1L
∗ + h3

1)3

∂W22

∂L∗
= 2h2

1(−1 + 3h2
1L
∗ + h3

1(7 + LL∗) + 3h4
1L− h6

1))
(1 + h1L+ h2

1L
∗ + h3

1)3 .

(A.1.10)

The derivatives of W †
21,W

†
22 look similar, thus they are not displayed here.

The expression for W00 and the derivatives w.rp.t. the Polyakov loop can be obtained in the
same way.
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Appendix B

Chiral condensate

B.1 Nf = 2, contribution of the static determinant

B.1.1 Partition function

The analytic expression of the partition function for Nf = 2 reads

Z(h1, h̄1) =
∫

[dU0]
∏
k

(1 + h1Lk + h2
1L
∗
k + h3

1)4(1 + h̄1L
∗
k + h̄2

1Lk + h̄3
1)4

= zV0
= [(1 + 20h3

1 + 50h6
1 + 20h9

1 + h12
1 )

+ (16h1 + 180h4
1 + 240h7

1 + 40h10
1 )h̄1

+ (136h2
1 + 816h5

1 + 570h8
1 + 40h11

1 )h̄2
1

+ (20 + 816h3
1 + 2320h6

1 + 800h9
1 + 20h12

1 )h̄3
1

+ (180h1 + 2651h4
1 + 3720h7

1 + 570h10
1 )h̄4

1

+ (816h2
1 + 5312h5

1 + 3720h8
1 + 240h11

1 )h̄5
1

+ (50 + 2320h3
1 + 6832h6

1 + 2320h9
1 + 50h12

1 )h̄6
1

+ (240h1 + 3720h4
1 + 5312h7

1 + 816h10
1 )h̄7

1

+ (570h2
1 + 3720h5

1 + 2651h8
1 + 180h11

1 )h̄8
1

+ (20 + 800h3
1 + 2320h6

1 + 816h9
1 + 20h12

1 )h̄9
1

+ (40h1 + 570h4
1 + 816h7

1 + 136h10
1 )h̄10

1

+ (40h2
1 + 240h5

1 + 180h8
1 + 16h11

1 )h̄11
1

+ (1 + 20h3
1 + 50h6

1 + 20h9
1 + h12

1 )h̄12
1 ]V .

(B.1.1)
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B.2 Nf = 2, contribution of the κ2- correction

B.1.2 Chiral condensate
For Nf = 2 and only considering the static determinant we get the chiral condensate as:

〈ψ̄ψ〉r = 2κ
z0

(
(60h3

1 + 300h6
1 + 180h9

1 + 12h12
1 )

+(32h1 + 900h4
1 + 1920h7

1 + 440h10
1 )h̄1

+(544h2
1 + 5712h5

1 + 5700h8
1 + 520h11

1 )h̄2
1

+(60 + 4896h3
1 + 20880h6

1 + 9600h9
1 + 300h12

1 )h̄3
1

+(900h1 + 21208h4
1 + 40920h7

1 + 7980h10
1 )h̄4

1

+(5712h2
1 + 53120h5

1 + 48360h8
1 + 3840h11

1 )h̄5
1

+(300 + 20880h3
1 + 81984h6

1 + 34800h9
1 + 900h12

1 )h̄6
1

+(1920h1 + 40920h4
1 + 74368h7

1 + 13872h10
1 )h̄7

1

+(5700h2
1 + 48360h5

1 + 42416h8
1 + 3420h11

1 )h̄8
1

+(180 + 9600h3
1 + 34800h6

1 + 14688h9
1 + 420h12

1 )h̄9
1

+(440h1 + 7980h4
1 + 13872h7

1 + 2720h10
1 )h̄10

1

+(520h2
1 + 3840h5

1 + 3420h8
1 + 352h11

1 )h̄11
1

+(12 + 300h3
1 + 900h6

1 + 420h9
1 + 24h12

1 )h̄12
1

)
.

(B.1.2)

B.2 Nf = 2, contribution of the κ2- correction
The unresummed partition function looks like

Z = Zstat + Zκ2 = zV0 (1− 6V h2Nf
z2

1
z2

0
) +O(κ4). (B.2.1)

The contribution of the κ2-correction to the partition function, z1, for Nf = 2 looks like:

z1 = (15h3
1 + 75h6

1 + 45h9
1 + 3h12

1 ) + (135h4
1 + 360h7

1 + 90h10
1 )h̄1

+ (612h5
1 + 855h8

1 + 90h11
1 )h̄2

1

+ (15 + 1740h6
1 + 1200h9

1 + 45h12
1 )h̄3

1

+ (−135h1 + 2790h7
1 + 855h10

1 )h̄4
1

+ (−612h2
1 + 2790h8

1 + 360h1
11)h̄5

1

+ (−75− 1740h3
1 + 1740h19 + 75h112)h̄6

1

+ (360h1 − 2790h4
1 + 612h110)h̄7

1

+ (−855h2
1 + 2790h5

1 + 135h11
1 )h̄8

1

+ (−45− 1200h3
1 − 1740h6

1 + 15h12
1 )h̄9

1

+ (−90h1 − 855h4
1 − 612h7

1)h̄10
1

+ (90h2
1 − 360h5

1 − 135h8
1)h̄11

1

+ (−3− 45h3
1 + 75h6

1 − 15h9
1)h̄12

1 .

(B.2.2)
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