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Abstract

In this work, we will derive an effective theory of lattice QCD in 1+1 dimensions
in the strong coupling and heavy quark regime. The lattice action will be expanded
around heavy quarks so that the integrals over the gauge links can be carried out.
This effective action that we calculated is then resummed to an exponential. The
resummation produces a correction term which can be inserted in two different ways.
We further will obtain some gauge corrections to the effective theory. The effective
theory is then mapped to the linked cluster expansion, where we need to take care
of the correction terms arising from the resummation of the effective theory. In the
last step, we will calculate some thermodynamic quantities and discuss our results.
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Chapter 1

Introduction

Three of the four fundamental forces, electromagnetism, the weak interaction, and
the strong interaction, are described by the standard model; only gravity is excluded.
These three forces are formulated as quantum field theories which are categorised
in gauge groups by their symmetry.

Quantum Chromodynamics (QCD) is the theory of strong interactions, the in-
teractions between quarks and gluons. Six quark flavours are known, the up, down,
strange, charm, top, and bottom quark.

Since quarks are fermions, in addition to the electric charge and the flavour
charge, a third charge is needed to fulfil the Pauli exclusion principle. Particles
like the ∆++, which contains three up-quarks with parallel spins, need an addi-
tional quantum number so that the wave function can be symmetric. This quantum
number is known as colour and takes the values red, green, and blue.

Free particles always appear as colour singlets that can be built from three
(anti-) quarks or a quark-antiquark pair; this is called colour confinement. Another
phenomenon is the asymptotic freedom. It describes the behaviour of quarks at
small distances or, equivalently, at high momentum transfer. This leads to a weaker
coupling at higher energies.

These phenomena indicate a rich phase structure of QCD. The phase diagram in
the temperature-chemical potential plane, of which one version is sketched in figure

Figure 1.1: Sketch of the QCD phase diagram, taken from [1]
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CHAPTER 1. INTRODUCTION 5

1.1, is of specific interest. At low temperatures and chemical potentials, the quarks
are confined to hadronic states. The quark-gluon plasma can be reached moving to
higher temperatures. After the crossover transition [2], the energies are high enough
for the quarks and gluons to deconfine. This means that the quarks and gluons can
move freely, only weakly interacting with each other. It is possible that the crossover
turns into a first order phase transition at an unknown critical endpoint at higher
chemical potentials.

At zero temperature and a baryon chemical potential around the proton mass,
a first order liquid-gas transition is found. At higher temperatures, this transition
ends in a critical endpoint. It is predicted that at much higher chemical potentials
a colour superconducting phases exist, as a result of quarks on the Fermi surface
forming Cooper pairs.

Here, we are going to use the approach of lattice QCD [3,4] in order to examine
the behaviour of the strong interaction. As we are replacing the continuous space-
time with a lattice, space-time has to be discretised. This means that the Lagrangian
of continuum QCD

L = −1

4
F a
µν(x)F µνa(x) + ψ̄(i /D −m)ψ (1.0.1)

has to be discretised as well.
The gauge part of the Lagrangian has to be rewritten in terms of the so-called

gauge links Uµ(x). They represent the gauge fields, connecting neighbouring lattice
sites. Because of the behaviour of the gauge link under a local SU(3) rotation

Uµ(x)→ WxUµ(x)W †
x+µ, Wx ∈ SU(3), (1.0.2)

only closed loops are gauge invariant. The smallest closed loop is called plaquette
and is build from four link variables:

Uµ,ν(x) = Uµ(x)Uν(x+ µ)U †µ(x+ ν)U †ν(x). (1.0.3)

With the plaquette at hand, we can build the Wilson gauge action [3]

Sg[U ] =
β

Nc

∑
x

∑
µ<ν

Re tr(1−Uµ,ν(x)) =
β

2Nc

∑
P

(trUP +trU †P ), β =
2Nc

g2
. (1.0.4)

Deriving the fermionic action is more complicated since the problem of fermion
doubling arises when using a naive approach of discretising the fermion action.

There are different methods of dealing with this issue; we are going to use the
approach of Wilson fermions. In this approach, an additional term that breaks chiral
symmetry is added to the Lagrangian. This leads to the fermion action

Sf = ψ̄(x)Q[U ]ψ(x) (1.0.5)

with the Wilson-Dirac-operator

Q[U ] = 1− κf
3∑

ν=0

[
eaµδν0(1 + γν)Uν(x)δy,x+ν̂ + e−aµδν0(1− γν)U †ν(y)δy,x−ν̂

]
. (1.0.6)
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This thesis starts with chapter 2, which contains the derivation of an effective theory
of LQCD in 1+1 dimensions. In order to derive the effective theory, the action of
lattice QCD is expanded around heavy quarks and β → 0, afterwards the gauge
links are integrated out.

The effective action will further be resummed to an exponential, and we will
introduce two ways on how to take care of some correction terms of subleading
order. Finally, some gauge corrections will be calculated.

In chapter 3, the effective theory is analytically evaluated. The linked cluster
expansion is introduced and used to calculate some thermodynamic quantities of
the effective theory. These results will be analysed and discussed.

Chapter 4 will finally give a conclusion of the results, as well as a short outlook.



Chapter 2

The Effective Theory

This chapter is based on [5–7], where this derivation is performed in 3+1 dimensions.
We will perform the calculations in 1+1 dimensions, so the index µ runs only

from 0 to 1. For this reason, we need to use a two-dimensional formulation of the
gamma matrices in our calculations. The euclidean formulation of the two gamma
matrices in two dimensions is similar to the first two Pauli matrices:

γ0 = σ1 =

(
0 1
1 0

)
, γ1 = σ2 =

(
0 −i
i 0

)
(2.0.1)

Furthermore, we will have to pay attention when traces occur, since the trace
over the identity matrix equals 2 instead of 4.

The derivation of the effective theory in 1+1 dimensions starts with the LQCD
partition function with the Wilson gauge action and the Wilson fermion action

Z =

∫ ∏
x,µ

dUµ(x) detQ [Uµ] e−Sg [Uµ] (2.0.2)

with

Sg =
β

2Nc

∑
P

(trUP + trU †P ), β =
2N

g2
. (2.0.3)

Performing an integration over the spatial gauge link variables will yield the effective
action

Zeff =

∫ ∏
x

dU0(x) e−Seff [U0], Seff = − log

∫ ∏
x

dU1(x) detQ [Uµ] e−Sg [Uµ].

(2.0.4)
Now, we will perform an expansion around the gauge action and afterwards an
expansion around the fermion determinant, in order to obtain the effective theory.

2.1 The Character Expansion

The gauge action is expanded around β → 0 using the character expansion [8]

− Seff = log

∫
[dU1]

∏
p

[
1 +

∑
r 6=0

drar(β)χr(Up)
]
. (2.1.1)
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8 2.2. THE HOPPING PARAMETER EXPANSION

The sum extends over all irreducible representations r, with the dimension dr, the
expansion coefficients ar(β), and the characters χr(Up) = trU r

p .
Terms that do not wind through the temporal boundary of the lattice can be

neglected because they become constant contributions independent of the link vari-
ables after the integration over the spatial links and therefore cancel out in the
expectation values.

In order to obtain the leading contribution, the plaquettes without temporal
links are neglected, only chains of plaquettes looping through the temporal boundary
remain.

Now, to perform the spatial link integration, the following group integrals are
necessary: ∫

dUχr(XU)χs(U
−1Y ) =

δrs
dr
χr(XY ) (2.1.2)∫

dUχr(U) = δr,0. (2.1.3)

This integration process is the reason why all the plaquettes of a graph belong to
the same representation.

From this, we get:

− Seff = log
∏
〈ij〉

[
1 +

∑
r 6=0

[ar(β)]NTχr(Wi)χr(Wj)
]
. (2.1.4)

Using the fundamental representation leads to the leading order contribution of this
nearest neighbour interaction of Polyakov loops

− Seff =
∑
〈~x~y〉

log [1 + λ1(L∗~xL~y + L~xL
∗
~y)], λ1 = uNt +O(uNt+4), (2.1.5)

with the Polyakov loops

L(~x) = trW (~x) = tr
Nt−1∏
t=0

U0(~x, t). (2.1.6)

The corrections to the coupling λ1, known up to order uNt+10 [8], can be obtained
by including spatial plaquettes.

We will now proceed to perform the hopping parameter expansion and leave the
expansion of the gauge action behind since it is not of further relevance for this
thesis. Due to the fact that the calculations are performed in the cold regime, the
pure gauge contribution is exponentially suppressed and thus can be neglected.

2.2 The Hopping Parameter Expansion

In the next step, we will expand the quark determinant around heavy quarks, i.e.,
κ = 0, with κ as the hopping parameter. We perform this expansion in the strong
coupling limit, which we discussed in the previous chapter. The results from this
section and the pure gauge contribution can be included independently from each
other.
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The Wilson Dirac operator, eq. 1.0.6, can be rewritten as

Qf [U ] = 1− κfM [U ], κf =
1

2(1 + d+ am)
(2.2.1)

with the hopping matrix M [U ] and the hopping parameter κf [9]. We can now
expand the quark determinant

detQ = exp ( tr log[1− κfM ]) = exp

(
−
∞∑
n=1

κnf
n

trMn

)
. (2.2.2)

Every factor of M carries a Kronecker delta δy,x±µ̂, which can be interpreted as
a single hop on the lattice. Every hop also carries a spin factor (1 ± γµ). When
looking at this and the identity (1 − γµ)(1 + γµ) = 0, it gets apparent that only
closed fermion loops without backtracking will give non-vanishing contributions.
Therefore, we receive all closed quark lines free of backtracking of length n from this
expansion.

2.2.1 The Static Quark Determinant

The first step in the derivation of the effective action is the calculation of the static
quark determinant. We will perform this derivation in the case of Nf = 1, so the
flavour index can be dropped. However, in chapter 2.2.5, the calculation will be
extended to two flavours. The hopping matrix M [U ] can be split into temporal
and spatial hoppings, where hopping refers to quark lines connecting neighbouring
lattice sites. These temporal and spatial hoppings are then split into positive and
negative components. It is now possible to split up the hopping matrix

det
c,s,x

Qx,y = det [1− T+
x,y − T−x,y − S+

x,y − S−x,y] (2.2.3)

using the temporal hoppings Tx,y and the spatial hoppings Sx,y

T+
x,y = κeaµ(1 + γ0)U0(x)δy,x+0̂,

T−x,y = κeaµ(1− γ0)U †0(y)δy,x−0̂,

S+
x,y = κ(1 + γ1)U1(x)δy,x+1̂,

S−x,y = κ(1− γ1)U †1(y)δy,x−1̂. (2.2.4)

The indices c, s and x of the determinant show that the determinant has to be
calculated in the colour, spin, and coordinate space.

As a next step, we split the quark determinant itself into a static and a kinetic
part

det
c,s,x

Qx,y = det(1− T − S) = det(1− Tx,y) det

(
1− Sx,y

1− Tx,y

)
. (2.2.5)

We will examine the kinetic quark determinant in the following section.
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The static quark determinant contains a positive and a negative part and can be
rewritten with the trace-log identity

detQstat = det(1− T ) = exp

(
−
∞∑
n=1

1

n
tr(T+ + T−)n

)
. (2.2.6)

Because backtracking is prohibited, it is not possible to have terms that mix T+ and
T−. This means that the static determinant can be separated into two parts.

detQstat = det(1− T+) det(1− T−). (2.2.7)

These combinations will reduce to temporal Wilson lines W (~x) =
∏Nt−1

t=0 U0(~x, t),
loops through the temporal boundary of the lattice, because only closed quark lines
contribute and we can only move in the temporal direction while in the static limit.

Inserting the temporal hoppings and using the relation (1 + γ0)2 = 2(1 + γ0) as
well as the trace-log identity, the coordinate space determinant can be calculated:

det
c,s,x

Qstat =
∏
~x

det
c,s

[1 +
1

2
(2κ)NteNtaµ(1 + γ0)W~x] det

c,s
[1 +

1

2
(2κ)Nte−Ntaµ(1− γ0)W †

~x ]

(2.2.8)
The additional minus sign in equation 2.2.7 stems from the antiperiodic boundary
conditions. The spin determinant can be evaluated with the relation
dets [1 + α(1± γµ)] = [1 + 2α]2:

det
c,s,x

Qstat =
∏
~x

det
c

[1 + (2κ)NteNtaµW~x]
2 det

c
[1 + (2κ)Nte−NtaµW †

~x ]2 (2.2.9)

We further introduce the effective couplings for the quarks and antiquarks

h1(µ,Nt) = (2κ)NteNtaµ

h̄1(µ,Nt) = (2κ)Nte−Ntaµ. (2.2.10)

With the couplings, the static determinant simplifies to

det
c,s,x

Qstat =
∏
~x

det
c

[1 + h1(µ,Nt)W~x]
2 det

c
[1 + h̄1(µ,Nt)W

†
~x ]2. (2.2.11)

We use the relation for SU(3) matrices calculated in Appendix A.1

det[1 + αU ] = 1 + α trU + α2 trU † + α3 (2.2.12)

in order to calculate the remaining colour determinant.
This leads to the final expression for the static determinant:

det
c,s,x

Qstat =
∏
~x

(1 + h1L~x + h2
1L
†
~x + h3

1)2(1 + h̄1L
†
~x + h̄2

1L~x + h̄3
1)2. (2.2.13)

Now, we proceed to calculate the kinetic quark determinant. We rewrite it to

detQkin = det

(
1−

S+
x,y + S−x,y
1− T

)
= det (1− P −M) (2.2.14)
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with

P = Px = (1− Tx,y)−1(S+
x,y)

M = Mx = (1− Tx,y)−1(S−x,y). (2.2.15)

We see that it is necessary to calculate the static propagator (1 − Tx,y)−1 in order
to expand the kinetic quark determinant.

2.2.2 The Static Quark Propagator

In order to start the calculation of the static quark propagator 1, we rewrite T+ and
T− in a form that is more convenient for this approach:

T±(x, y) = z±P±U±0(tx, ~x) δtx,ty−1 δ~x,~y b
∓
ty (2.2.16)

with

z± = 2κe±aµ, P± =
1

2
(1± γ0), U+0(tx, ~x) = U0(x), U−0(tx, ~x) = U †0(y)

b−t =

{
−1, t = 0

1, t 6= 0
, b+

t =

{
−1, t = Nt − 1

1, t 6= Nt − 1
(2.2.17)

We can see that z+ = h
1
Nt
1 and the antiperiodic boundary conditions are taken care

of by the factors b− and b+. Because we want to expand the static quark propagator,
we need to make sure that the convergence radius ρ(T ) is smaller than 1, which is
easily fulfilled for z < 1 as

ρ(T ) = z ρ

(
1

2
(1± γ0)

)
ρ(U0(x)) ρ(δx,y−0̂) = z. (2.2.18)

We can now proceed to expand the static quark propagator using the requirement
that backtracking is forbidden, so T+T− = 0:

(Qstat)
−1 = (1− T )−1 =

∞∑
j=0

T j = 1 +
∞∑
j=0

[(T+)j + (T−)j]. (2.2.19)

Because the calculation of the sums over T+ and T− are analogous to each other,
we will discuss only the calculation for T+ in more detail.

First, we are going to plug in the expression for T+:

(T+)j(x, y) = δ~x,~yδtx,ty−jz
j
+P

j
+

[
j−1∏
i=0

U0(tx + i, ~x)

][
j−1∏
i=0

b−ty−i

]

= δ~x,~yδtx,ty−jz
j
+P+

j−1∏
i=0

U0(tx + i, ~x) b−ty−i. (2.2.20)

1Based on private notes from Jonas Scheunert
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Because of the relation (1 + γ0)2 = 2(1 + γ0), we can use the identity (P+)j = P+.
As we are in the static case, we can always assume that ~x = ~y.

We will proceed to look at two separate cases, one where tx = ty and one where
tx 6= ty. We will start with the first case, where we change the exponent from j to
jNt to fulfil the constraint tx = ty:

(T+)jNt(x, y) = P+h
j
1W

j(tx, ~x)(−1)j (2.2.21)

with

h1 = zNt+ , W (tx, ~x) =
Nt−1∏
i=0

U0(tx + i, ~x). (2.2.22)

In the second case, the constraint ty − tx + jNt > 0 has to be fulfilled. This leads to

(T+)ty−tx+jNt(x, y) = P+z
ty−tx
+ hj1

{
W (tx, ty, ~x)W j(ty, ~x)(−1)j, tx < ty

W (tx, ty, ~x)W j−1(ty, ~x)(−1)j, tx > ty
(2.2.23)

with

W (tx, ty, ~x) =

{∏ty−tx−1
i=0 U0(tx + i, ~x) if tx < ty∏Nt−tx+ty−1
i=0 U0(tx + i, ~x) if tx ≥ ty

. (2.2.24)

When defining the step function with θ(0) = 0, the results can be summarised and
rewritten to the final expression:

∞∑
j=1

(T+)j(x, y) = δ~x,~yP+[− δtx,tyh1W (tx, ~x)(1 + h1W (tx, ~x))−1

+ zty−txW (tx, ty, ~x)(1 + h1W (ty, ~x))−1(θ(ty − tx)− h1θ(tx − ty))]. (2.2.25)

In a similar way we calculate the contribution for
∑∞

j=1(T−)j(x, y), only z+ is re-

placed by z− and W with W †. This leads to the full static quark propagator:

Q−1
stat(x, y) = δ~x,~y

{
δtx,ty

[
1− P+

h1W (tx, ~x)

1 + h1W (tx, ~x)
− P−

h̄1W
†(tx, ~x)

1 + h̄1W †(tx, ~x)

]
+ θ(ty − tx)

[
P+z

ty−ty
+

W (tx, ty, ~x)

1 + h1W (ty, ~x)
− P−ztx−ty− h̄1

W †(tx, ty, ~x)

1 + h̄1W †(ty, ~x)

]
+ θ(tx − ty)

[
− P+z

ty−tx
+ h1

W (tx, ty, ~x)

1 + h1W (ty, ~x)
+ P−z

tx−ty
−

W †(tx, ty, ~x)

1 + h̄1W †(ty, ~x)

]}
(2.2.26)

For convenience, the static propagator can be split up again:

Q−1
stat(x, y) = A+(x, y) + A−(x, y) + γ0(B+(x, y)−B−(x, y)) (2.2.27)

with

A+(x, y) =
1

2
δx,y

[
1− h1W

1 + h1W

]
+

1

2
δ~x,~yh

ty−tx
Nt

1

W (tx, ty)

1 + h1W

[
θ(ty − tx)− h1θ(tx − ty)

]
A−(x, y) =

1

2
δx,y

[
1− h̄1W

†

1 + h̄1W †

]
+

1

2
δ~x,~yh̄

ty−tx
Nt

1

W †(tx, ty)

1 + h̄1W †

[
θ(tx − ty)− h̄1θ(ty − tx)

]
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B+(x, y) = −1

2
δx,y

h1W

1 + h1W
+

1

2
δ~x,~yh

ty−tx
Nt

1

W (tx, ty)

1 + h1W

[
θ(ty − tx)− h1θ(tx − ty)

]
B−(x, y) = −1

2
δx,y

h̄1W
†

1 + h̄1W † +
1

2
δ~x,~yh̄

ty−tx
Nt

1

W †(tx, ty)

1 + h̄1W †

[
θ(tx − ty)− h̄1θ(ty − tx)

]
.

(2.2.28)

We will further use the shorter notation

Q−1
stat(x, y) = Ax,y + γ0Bx,y (2.2.29)

with Ax,y = A+(x, y) + A−(x, y) and Bx,y = B+(x, y)−B−(x, y).

As we completed the derivation of the static quark propagator, we can start
calculating the kinetic quark determinant.

2.2.3 The Kinetic Quark Determinant to Leading Order

In this work, we will perform the expansion of the kinetic quark determinant

det[1− P −M ] = exp

(
tr
∞∑
n=1

[− 1

n
(P +M)n]

)
(2.2.30)

to order κ4. It is again based on [5, 7].

In the first step, we will perform the expansion to leading order. As only closed
loops contribute, only terms with an equal number of P and M terms have to be
considered, so the leading order is

detQkin = exp
(
−
∑
i

trPiMi +O(κ4)
)
. (2.2.31)

Because every P and everyM comes with a factor of κ, the leading order contribution
is of order κ2.

We dropped the indices here and in the following chapter because we have only
one spatial dimension:

detQkin = exp
(
− trPM +O(κ4)

)
. (2.2.32)

Now, we plug in the static quark propagator:

detQkin = exp
(
−
∑
x,y

tr [(Qstat)
−1
x,yS

+

y,y+1̂
(Qstat)

−1

y+1̂,x+1̂
S−
x+1̂,x

] +O(κ4)
)

(2.2.33)

This is analogous to an arbitrary propagation in the temporal direction, one spatial
hop forward, again an arbitrary temporal propagation, and another spatial hop
backwards.
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Furthermore, we can insert the definitions of the static quark propagator and
the spatial hoppings:

detQkin = exp
(
− κ2

∑
x,y

tr [(Ax,y + γ0Bx,y)(1 + γ1)U1(y)

(Ay+1̂,x+1̂ + γ0By+1̂,x+1̂)(1− γ1)U †1(x)] +O(κ4)
)

(2.2.34)

After evaluating the gamma matrices, all terms, except for one, drop out:

detQkin = exp
(
− 4κ2

∑
x,y

tr [Bx,yU1(y)By+1̂,x+1̂U
†
1(x)] +O(κ4)

)
(2.2.35)

In order to perform the integration over the spatial gauge links, we need the following
group integrals [10]:∫

dUUij =0∫
dUU †ij =0∫

dUUijU
†
kl =

1

Nc

δilδjk∫
dUUijUabU

†
klU

†
cd =

1

N2
c − 1

[
δilδadδjkδbc + δidδalδjcδbk

]
− 1

Nc(N2
c − 1)

[
δidδalδjkδbc + δilδadδjcδbk

]
(2.2.36)

The last integral is only relevant for some terms of the O(κ4) action.
Because single occupied links vanish, we can assume that x = y.
In order to actually perform the integration, we have to expand the exponential

first. This leads to∫
[dU1] exp(− trPM) = 1 +

∫
[dU1] trPM +O(κ4). (2.2.37)

The integration over the expanded term gives∫
[dU1]

∑
x

tr [Bx,xU1(x)Bx+1̂,x+1̂U
†
1(x)]

=
4κ2

Nc

∑
x

tr[B+
x,x −B−x,x] tr[B+

x+1̂,x+1̂
−B−

x+1̂,x+1̂
] (2.2.38)

In the last step, we plug in the expressions for B+ and B−∫
[dU1] detQkin =1− κ2Nτ

Nc

∑
~x

(
tr
( h1W~x

1 + h1W~x

)
− tr

( h̄1W
†
~x

1 + h̄1W
†
~x

))
(

tr
( h1W~x+1̂

1 + h1W~x+1̂

)
− tr

( h̄1W
†
~x+1̂

1 + h̄1W
†
~x+1̂

))
+O(κ4). (2.2.39)
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As those terms are quite lengthy, we also introduce a shorter notation where

Wn1m1n2m2(~x) = tr
( (h1W~x)

m1

(1 + h1W~x)n1

(h̄1W
†
~x)m2

(1 + h̄1W
†
~x)n2

)
(2.2.40)

and for even more brevity, because we will need those terms a lot

W−
n1m1n2m2

(~x) = Wn1m100 −W00n2m2

W+
n1m1n2m2

(~x) = Wn1m100 +W00n2m2 . (2.2.41)

Also, we introduce the nearest neighbour coupling constant

h2(κ,Nτ ) =
κ2Nτ

Nc

(2.2.42)

Plugging in this coupling constant, the expression above takes its final form∫
[dU1] detQkin = 1− h2

∑
x

W−
1111(~x)W−

1111(~x+ 1̂) +O(κ4). (2.2.43)

2.2.4 The Kinetic Quark Determinant to Next to Leading
Order

In this chapter, we will perform the calculation of the kinetic quark determinant to
order O(κ4).

Expanding the sum to this order leads to

detQkin = exp (− trPM − trPPMM − trPMPM +O(κ6)) (2.2.44)

The exponential has to be expanded again because of the integration, which leads
to an additional term:

detQkin = 1− trPM − trPPMM − trPMPM − trPM trPM +O(κ6). (2.2.45)

We will only show the calculation regarding the term trPPMM , the full action for
an arbitrary number of degenerate flavours can then be found in the appendix B.1.

Again, we need to plug in the static quark propagator and the spatial hoppings

trPPMM =
∑
x,y

tr [(Qstat)
−1
x,xS

+

x,x+1̂
(Qstat)

−1

x+1̂,y+1̂
S+

y+1̂,y+1̂+1̂

(Qstat)
−1

y+1̂+1̂,y+1̂+1̂
S−
y+1̂+1̂,y+1̂

(Qstat)
−1

y+1̂,x+1̂
S−
x+1̂,x

]

= κ4
∑
x,y

tr [(Ax,x + γ0Bx,x)(1 + γ1)U1(x)

(Ax+1̂,y+1̂ + γ0Bx+1̂,y+1̂)(1 + γ1)U1(y + 1̂)

Ay+1̂+1̂,y+1̂+1̂ + γ0By+1̂+1̂,y+1̂+1̂)(1 + γ1)U †1(y + 1̂)

Ay+1̂,x+1̂ + γ0By+1̂,x+1̂)(1 + γ1)U †1(x)]. (2.2.46)
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As before, most of the terms vanish after the evaluation of the gamma matrices:

trPPMM =16κ4
∑
x,y

tr [Bx,xU1(x)Ax+1,y+1U1(y + 1)

By+1+1,y+1+1U
†
1(y + 1)Ay+1,x+1U

†
1(x)]. (2.2.47)

Since we have doubly occupied spatial links, the integration is the same as in chapter
2.2.3:∫

[dU1] trPPMM = 16
κ4

N2
c

∑
x,y

tr[Bx,x] tr[Ax+1̂,y+1̂Ay+1̂,x+1̂] tr[By+1̂+1̂,y+1̂+1̂].

(2.2.48)

We can set ~x = ~y because Ax,y describes a purely temporal propagation. When
plugging in the definitions of A and B, we get two different contributions, one
where x0 = y0 and one where x0 6= y0.

First, we calculate the term for x0 = y0. This contribution is evaluated in the
same way as in the previous chapter 2.2.3. It results in the first term of equation
2.2.51.

The second term stems from the contribution where x0 6= y0. In this case,
Ax+1̂,y+1̂ and Ay+1̂,x+1̂ describe fractional Wilson lines which will form one loop
around the lattice when multiplied. They can be followed by an arbitrary number
of closed loops. Also, forward and backward propagations can mix, because the
spatial hoppings are already integrated out, so the backtracking restriction is not
violated. These propagations lead to the term proportional to the sum, 2.2.49.

Writing down both contributions in the form of 2.2.40 and 2.2.41 leads to:∫
[dU1] trPPMM = −h31

∑
~x

W−
1111(~x− 1̂)

(
2 · 1−W−

1111(~x)
)2

W−
1111(~x+ 1̂)

− h32

∑
x

W−
1111(~x− 1̂)

(
W−

2121(~x)− 2 1
Nτ−1

Nτ−1∑
t=1

(2κ)2tW1010(~x)
)
W−

1111(~x+ 1̂)

(2.2.49)

with

h31 =
κ4Nτ

N2
c

=
h2

2

Nτ

, h32 =
κ4Nτ (Nτ − 1)

N2
c

=
h2

2Nτ (Nτ − 1)

Nτ

. (2.2.50)

Furthermore, we can evaluate the sum and rewrite the other terms, which leads to
the result:∫

[dU1] trPPMM =− h31

∑
~x

[
W−

1111(~x− 1̂)W+
2222(~x)W−

1111(~x+ 1̂)

+ 2W−
1111(~x− 1̂)W1111(~x)W−

1111(~x+ 1̂)

− 4W−
1111(~x− 1̂)W+

1111(~x)W−
1111(~x+ 1̂)

]
− h32

∑
x

[
W−

1111(~x− 1̂)W+
2121(~x)W−

1111(~x+ 1̂)

2[(2κ)2Nτ−(2κ)2]
((2κ)2−1)(Nτ−1)

W−
1111(~x− 1̂)W1010(~x)W−

1111(~x+ 1̂)
]
. (2.2.51)
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The remaining terms, 2.2.44, are calculated similarly, and the final result can be
found in appendix B.1.

2.2.5 Multiple Flavours

The previous calculation was done for one flavour, Nf = 1. It is also possible to
expand this to multiple flavours. Every new flavour adds a second quark determinant
and new hopping parameters

Z =

∫
[dUµ]

Nf∑
f=1

detQstat,f exp

(
−

Nf∑
f=1

∞∑
n=1

1

n
tr(Pf +Mf )

n

)
. (2.2.52)

We will perform our calculation with the assumption of degenerate flavours. This
is a great simplification, as the additional flavours enter as the number Nf :

Z =

∫
[dUµ] detQ

Nf
stat exp

(
−Nf

∞∑
n=1

1

n
tr(P +M)n

)
(2.2.53)

2.3 Resummation

In chapter 2.2.3 and 2.2.4 it was necessary to expand the exponential of the kinetic
quark determinant. Hence, we can resum the effective theory to an exponential
again. This resummation will improve the convergence of the effective action as it
includes an infinite number of graphs.

The effective action is available to order O(κ4), so the term proportional to κ2

and the last term of B.1.1 can be resummed.
Here, we wrote down the relevant terms, omitting the rest of the O(κ4) effective

action, as this would compromise readability:

1−Nf
h2

2

∑
~x

∑
i=±1

W−
1111(~x)W−

1111(~x+ î)

+N2
f

h2
2(Nτ − 1)

4Nτ

∑
~x

∑
i=±1

[W−
1111(~x)]2[W−

1111(~x+ î)]2 (2.3.1)

The O(κ4)-term is proportional to Nτ (Nτ − 1), which makes the resummation a
bit more complicated, as we would need a term proportional to N2

τ for a perfect
resummation. When we split this term, the leading order term resums perfectly, as
expected, but the subleading order term is still present:

= 1−Nf
h2

2

∑
~x

∑
i=±1

W−
1111(~x)W−

1111(~x+ î) +N2
f

h2
2

4

∑
~x

∑
i=±1

W−
1111(~x)W−

1111(~x+ î)

+N2
f

h2
2

4Nτ

∑
~x

∑
i=±1

[W−
1111(~x)]2[W−

1111(~x+ î)]2. (2.3.2)

In order to take care of this subleading order term, we perform the resummation
with the leading order term and implement the subleading order term as a correction
term.



18 2.4. GAUGE CORRECTIONS

Figure 2.1: The first three detours of O(κ2un)

We will implement the correction term in two different ways. As the first pos-
sibility, further called the first correction, we will add the correction term after the
exponential:

= exp

(
−Nf

∑
~x

∑
i=±1

h2

2
W−

1111(~x)W−
1111(~x+ î)

)
−
∑
~x

∑
i=±1

N2
f

4

h2
2

Nτ

[W−
1111(~x)]2[W−

1111(~x+ î)]2 +O
(
κ6Nτ

N3
c

)
(2.3.3)

This process does not change when going to higher orders, we would just add all the
correction terms after the exponential.

As the second option, further called the second or alternative correction, we put
the correction term in the exponential:

exp

(
−Nf

∑
~x

∑
i=±1

h2

2
W−

1111(~x)W−
1111(~x+ î)

−
∑
~x

∑
i=±1

N2
f

4

h2
2

Nτ

[W−
1111(~x)]2[W−

1111(~x+ î)]2
)

+O
(
κ6Nτ

N3
c

)
(2.3.4)

To order κ4 this is trivial, but at higher orders, it is important to calculate counter-
correction terms. This is necessary because after expanding the newly obtained
exponential again to the order it was expanded to previously, it should be identical
to the unresummed effective action.

This makes the calculation of the second correction term a little bit more com-
plicated, but, as we see later, the evaluation of the effective theory is easier.

The terms we neglected in this chapter will appear in the exponential in their
normal form.

2.4 Gauge corrections

Until now, we only considered pure gluonic and pure fermionic contributions. In
this section, we will discuss how the expansion in κ is affected when mixed with the
expansion in β. These corrections can be absorbed into the coupling constants, for
example h1(κ) = h1(β, κ).

2.4.1 Corrections to the h1 Coupling

The gauge corrections for h1 had been calculated for the three dimensional case
in [9, 11], the corrections for the anti-quark coupling h̄1 are identical to these.
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We receive the corrections by adding detours to the winding graphs. The result-
ing diagrams reduce to Polyakov loops after the integration. In order to obtain these
diagrams, additional detours of the quark lines are formed and filled with plaquettes
as we see, for example, in figure 2.1.

Diagrams of this type also build the leading order corrections at O(κ2). All
diagrams can be placed at Nτ locations and can point in the positive or negative
spatial direction, resulting in a factor of 2. We also receive a factor of κ2 from
the two additional links and the factor un from the plaquettes filling the detours.
Adding up all detours of this type leads to the contribution:

Nτ−1∑
n=1

2Nτκ
2un = 2Nτκ

2u− uNτ
1− u

. (2.4.1)

In the following, we will include all corrections up to O(κnum), with n + m ≤ 7.
The calculation of these detours is explained in appendix A.5.

We can resum the term of the detour A.5.4, which is proportional to N2
τ , to an

exponential. We also include the other terms we calculated, which leads to the total
contribution:

h1(κ,Nτ , u) = h1(κ,Nτ ) exp

(
2Nτκ

2u− uNτ
1− u

+κ4Nτ

[
−8u+6u2+4u3Nτ

])
. (2.4.2)

2.4.2 Corrections to the h2 Couplings

The corrections for h2 were discussed in [12], and the corrections for h2
2, h31 , and

h32 were evaluated in [5].
The corrections to h2 are depicted in figure 2.2. Because we are in the one-

dimensional case, there is only one type of corrections. These corrections stem from
graphs where the spatial quark hoppings take place at different locations. As the
links have to be at least doubly occupied, the space between them is filled with
plaquettes. Similar to the leading order correction of h1, up to Nτ − 1 plaquettes
can fill the space between the spatial links and those contributions can be summed

t

~x

t

~x

Figure 2.2: Diagrams of the corrections for h2, on the left O(1), on the right O(u)
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up. A factor of 2 is added since, in contrary to h1, the orientation of the plaquettes
is not specified. This leads to the sum

Nτ−1∑
n=1

2un = 2
u− uNτ
1− u

(2.4.3)

and then to the entire correction of h2

h2(κ,Nτ , u) =
κ2Nτ

Nc

(
1 + 2

u− uNτ
1− u

)
. (2.4.4)

Next, we are going to calculate the corrections for h2
2. Again, we only get corrections

from inserting plaquettes between the spatial quark hoppings. The three Polyakov
loops, depicted in figure 2.3, lead to two sums and, if we split up both pairs, a factor
of 4 because there are two possibilities for the orientations of the plaquettes. If we
split up one pair, we receive a factor of 2 for the orientation and a factor of 2 because
it is not fixed at what pair the plaquette is inserted. The sums take the form

4

(Nτ−1∑
n=1

un
)(Nτ−1∑

n=0

un
)

= 4
(1− uNτ )(u− uNτ )

(1− u)2
(2.4.5)

which leads to the correction

h2
2(κ,Nτ , u) =

κ4Nτ

N2
c

(
1 + 4

(1− uNτ )(u− uNτ )
(1− u)2

)
. (2.4.6)

We can also obtain this correction by squaring the corrections for h2, but the method
above is a more instructional way of calculating the correction.

There are two other couplings, both taking place between two Polyakov loops.
With the first coupling, h31 = κ4Nτ

N2
c

, all four spatial links share the same position and

with the second one, h32 = κ4Nτ (Nτ−1)
N2
c

, the spatial links are only doubly occupied.

t

~x

t

~x

t

~x

t

~x

Figure 2.3: Diagrams of the corrections for h2
2, on the left O(1), in the middle one

version of O(u) and on the right two versions of O(u2)
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t

~x

t

~x

Figure 2.4: Diagrams of the corrections for h31 , on the left O(1) and on the right
O(u)

Figure 2.4 shows the contributions to h31 . Again, only one type of the contribu-
tions exists in one dimension. The prefactor 4 of the sum stems from the orientation
of the plaquettes and the possibility to choose which pair will be split up:

2 · 2
Nτ−1∑
n=1

un = 4
u− uNτ
1− u

. (2.4.7)

This leads to the correction

h31(κ,Nτ , u) =
κ4Nτ

N2
c

(
1 + 4

u− uNτ
1− u

)
. (2.4.8)

The last coupling h32 has the more complicated form

t

~x

t

~x

t

~x

Figure 2.5: Diagrams of the corrections for h32 , on the left O(1), in the middle
O(u2), Nτ = 4 with one split up pair and on the right O(u2), Nτ = 4 with two split
up pairs
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Figure 2.6: All diagrams of the corrections for h32 at order O(u3), O(u4), and O(u5)

h32(κ,Nτ , u) =
κ4Nτ (Nτ − 1)

N2
c

(
1 +

Nτ−2∑
n=1

4nun
Nτ − (n+ 1)

Nτ − 1

)
, (2.4.9)

with n as the number of plaquettes.
As we can see in figure 2.5, the term Nτ − (n+ 1) arises, because we can’t have

spatial links from the different pairs at the same spatial position since these are the
contributions from h31 . We divide by Nτ − 1 to take care of the fact that both links
are actually at a fixed position, in contrast to the assumption above that we can
choose their position freely.

In order to obtain the prefactor of
∑Nτ−2

n=1 4n, we need to add up all the prefactors
of the diagrams for every order. In figure 2.6 we see all diagrams for the ordersO(u3),
O(u4), and O(u5). For each diagram, we have to determine the possible placement
and orientation of the plaquettes.

The first diagram for order O(u3) receives a prefactor of 4 for the two possi-
ble orientations for the plaquette and the distinguishable link pairs, both giving a
contribution of 2. The second diagram gives a prefactor of 8 since the link distin-
guishable pairs lead to a factor of 2, and we receive a factor of 4 from the orientation
of the plaquettes. Adding up those prefactors leads to an overall factor of 12, which
is equivalent to 4n at n = 3.

The prefactors of the first two diagrams of order O(u4) are identical to the ones
from order O(u3). The third one has a prefactor of 4, because we have two possible
orientations for the plaquettes between the otherwise indistinguishable link pairs.
This leads to an overall prefactor of 16, which is again equivalent to 4n at n = 4.

For the first two diagrams of order O(u5), we receive again the prefactors 4 and
8. The third diagram also gives a prefactor of 8 because, in contrast to the third
diagram of order O(u4), the two link pairs are distinguishable. This leads to the
prefactor of 20, or 4n at n = 5.

This process is repeated at every order, so we always receive an additional factor
of 4 with every step. This leads to the conclusion that the universal prefactor of
order O(un) is 4n.

Now that the derivation of the effective theory is complete, we will evaluate it
with the linked cluster expansion in the next chapter.



Chapter 3

Analytic Treatment of the
Effective Theory

In this chapter, we will evaluate the effective theory with the linked cluster expan-
sion.

3.1 Linked Cluster Expansion

In this part, we will introduce the linked cluster expansion. We will discuss the
foundations at the example of a scalar field with nearest neighbour coupling. This
introduction is based on the work of [7, 13–16].

3.1.1 Classical Linked Cluster Expansion

The partition function of the scalar field with a two-point coupling has the form:

Z =

∫
[dφi] e

−S0[φi]+
1
2

∑
x,y φi(x)vij(x,y)φj(y) (3.1.1)

with the fields φi(x) and the coupling vij(x, y), which we assume is small, so that
we can perform an expansion around the free theory.

We rewrite the partition function in terms of the source fields Ji(x):

Z[J ] =

∫
[dφ]e−S[φ]+

∑
x

∑
i Ji(x)φi(x) (3.1.2)

For the calculation of thermodynamic quantities, we define the grand canonical
potential, or generating functional of connected correlation functions, W :

W [J, v] = logZ[J, v] (3.1.3)

The linked cluster expansion is equivalent to a Taylor expansion of the generating
functional with respect to the coupling vij(x, y) around the free theory:

W [J, v] =

(
exp

(∑
x,y

vij(x, y)
δ

δv̂ij(x, y)

))
W [J, v̂]

∣∣∣∣∣
v̂=0

. (3.1.4)

23
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We rewrite the derivatives with respect to the couplings as derivatives with respect
to the sources:

δW
δvij(x, y)

=
1

2

(
δ2W

δJi(x)δJj(y)
+

δW
δJi(x)

δW
δJj(y)

)
. (3.1.5)

W [J ] is also the generating functional of the connected n-point functions:

δW
δJi(x)

∣∣∣
J=0

=
1

Z

∫
[dφi]φi(x)e−S[φi] ≡ 〈φi(x)〉. (3.1.6)

For higher order derivatives, it also produces the cumulants:

δ2W
δJi(x)δJj(y)

∣∣∣∣
J=0

= 〈φi(x)φj(y)〉 − 〈φi(x)〉〈φj(y)〉. (3.1.7)

The methods of moments and cumulants are explained in appendix A.4.
The linked cluster expansion performed to second order gives:

W [J, v] =W [J, 0] +
∑
x,y

∑
i,j

vij(x, y)
δW [J, v̂]

δv̂ij(x, y)

∣∣∣∣
v̂=0

+
1

2

∑
x,y

∑
z,w

∑
i,j

∑
k,l

vij(x, y)vkl(z, w)
δ2W [J, v̂]

δv̂ij(x, y)δv̂kl(z, w)

∣∣∣∣∣
v̂=0

+ . . . (3.1.8)

We can also define the coupled n-point functions:

Mn(x1, x2, . . . , xn) =
δnW [J, v]

δJ(x1)δJ(x2) . . . δJ(xn)
. (3.1.9)

These then define the free n-point functions:

Mn(x1, x2, . . . , xn)|v=0 ≡Mn(x1) δ(x1, x2, . . . , xn). (3.1.10)

The Kronecker deltas arise from the free theory because of:

x 6= y ⇒ 〈φi(x)φj(y)〉|v=0 = 〈φi(x)〉〈φj(y)〉 (3.1.11)

The Kronecker deltas lead to the disappearance of any disconnected graphs, which
makes the linked cluster expansion an expansion in connected graphs.

We rewrite the derivatives with respect to the couplings from equation 3.1.8
to derivatives with respect to the sources, so they are expressed as free n-point
functions:

W [v] =W [0] +
1

2

∑
x,y

∑
i,j

Mi(x)vij(x, y)Mj(y)

+
1

4

∑
x,y

∑
i,j,k,l

Mik(x)vij(x, y)vkl(x, y)Mjl(y)

+
1

2

∑
x,y,z

∑
i,j,k,l

Mi(x)vij(x, y)Mjk(y)vkl(y, z)Ml(z) + . . . . (3.1.12)

As this process gets quite lengthy at higher orders, the graphical approach discussed
in the next section will be very useful in further calculations.
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3.1.2 Graphical Definition of the Linked Cluster Expansion

In order to understand the graphical linked cluster expansion, we have to establish
some definitions from graph theory and also a rule for their implementation, analo-
gous to [7, 13].

A graph is defined as a set of vertices and bonds with every bond connecting two
distinct vertices. An n-rooted graph has n fixed, distinguishable, external vertices,
all remaining internal vertices are free.

The number of edges incident at a vertex is called the valence of that vertex. An
n-valent vertex has a valence n.

A graph where any pair of vertices is joined by a continuous sequence of bonds
is called connected otherwise it is disconnected.

If it is possible to find a labelling of the bonds and vertices of two n-rooted
graphs so that the bonds and vertices of those two graphs can be made identical,
those graphs are isomorphic. The symmetry factor is the number of distinct isomor-
phic labellings of a graph.

For the calculation of W , we need the set of all topologically distinct 0-rooted
connected graphs. The number of bonds determines the order of the graph, so for
order O(v2) we need all 0-rooted graphs with one or two bonds. We will also need
a rule that describes how to switch between the mathematical expression and the
graphical representation of W .

1. Assign a symbol x1, x2, . . . , xn to every vertex

2. Add a factor v(xi, xj) to every bond connecting the vertices xi and xj

3. Add a factor Mp(xi) for every vertex xi with valence p

4. For every vertex symbol xi add a sum over the entire lattice

5. Divide by the symmetry factor of the graph

This leads to the graphical expression of the grand canonical potential, which is
equivalent to 3.1.12

W [v] = +
1

2
+

1

2
+

1

4
+ . . . (3.1.13)

The equality between this graphical rule and the linked cluster expansion of the
grand canonical potential is proven in [17,18].

Until now, we did not specify the type of the interaction. When we choose the
interaction to be a nearest neighbour coupling

v(x, y) =

{
v for x and y nearest neighbours

0 else
, (3.1.14)

the mathematical expression of the grand canonical potential simplifies to:

W [v] = NM0 +
q

2
vNM2

1 +
q

4
v2NM2

2 +
q2

2
v2NM2

1M2 + . . . (3.1.15)
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N is the number of lattice sites and stems from the sum over the whole lattice. q is
called the embedding number and differs depending on the lattice that is used, in
our case it is equivalent to 2d, with d the dimension of the lattice. It describes how
many possibilities we have to put the graph on a given lattice without violating the
restriction of the nearest-neighbour coupling.

3.1.3 Generalisation of the Linked Cluster Expansion to
Polymer Interactions

Later, we will need a possibility to perform the linked cluster expansion on a three-
point coupling. Therefore, we are going to introduce a generalisation established
in [15].

First, we need to expand the scalar field by a three-point coupling:

Z =

∫
[dφi] exp

(
− S0[φi] +

1

2!

∑
x,y

∑
i,j

vij(x, y)φi(x)φj(y)+

1

3!

∑
x,y,z

∑
i,j,k

uijk(x, y, z)φi(x)φj(y)φk(z)
)
. (3.1.16)

By following the steps of chapter 3.1.1, we obtain the linked cluster expansion for
the grand canonical potential

W [v, u] =

[
exp

( 1

2!

∑
x,y

∑
i,j

vij(x, y)
δ

δv̂ij(x, y)

)
exp

( 1

3!

∑
x,y,z

∑
i,j,k

uijk(x, y, z)
δ

δûijk(x, y, z)

)]
W [v̂, û]

∣∣∣∣∣
v̂=û=0

. (3.1.17)

Furthermore, we have to express the derivative with respect to the three-point cou-
pling as a derivative with respect to the sources:

δW
δuijk(x, y, z)

=
δ3W

δJi(x)δJj(y)δJk(z)
+

δW
δJi(x)

δ2W
δJj(y)δJk(z)

δW
δJj(y)

δ2W
δJi(x)δJk(z)

+
δW
δJk(z)

δ2W
δJi(x)δJj(y)

+
δW
δJi(x)

δW
δJj(y)

δW
δJk(z)

. (3.1.18)

When we go up to order O(v2, u), which means the graphs can have up to two bonds,
and assume a cyclic three-point coupling, we get:
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W [v] =W [0] +
1

2

∑
x,y

∑
i,j

Mi(x)vij(x, y)Mj(y)

+
1

4

∑
x,y

∑
i,j,k,l

Mik(x)vij(x, y)vkl(x, y)Mjl(y)

+
1

2

∑
x,y,z

∑
i,j,k,l

Mi(x)vij(x, y)Mjk(y)vkl(y, z)Ml(z)

+
1

3!

∑
x,y,z

∑
i,j,k

uijk(x, y, z)Mi(x)Mj(y)Mk(z)

+
1

2

∑
x,y

∑
i,j,k

uijk(x, y, y)Mi(x)Mjk(y) + . . . (3.1.19)

We specify the three-point interaction as a set of two nearest neighbour interactions:

u(x, y, z) =


u for〈x, y〉 and 〈y, z〉 nearest neighbours,

u for〈x, y〉 and 〈x, z〉 nearest neighbours,

u for〈x, z〉 and 〈y, z〉 nearest neighbours,

0 else

(3.1.20)

This shortens the expression of W :

W [v, u] =NM0 +
q

2
vNM2

1 +
q2

2
v2NM2

1M2 +
q

4
v2NM2

2

+
q2

2
uNM3

1 +
q

2
uNM1M2 + . . . (3.1.21)

As we won’t go to higher orders, the two- and three-point interactions don’t mix,
which makes the rules for the graphical representation a lot simpler.

The graphical representation will look like this:

W [v] = +
1

2
+

1

2
+

1

4
+

1

2
+

1

2
+ . . . (3.1.22)

The purple coloured bonds belong to the two-point coupling and the blue coloured
bonds to the three-point coupling. Some graphs have circles around their vertices,
one for every base interaction, in order to make the two vertices of the last graph
distinguishable. Therefore, the triangular graph with the two-point coupling has a
circle around its middle vertex because the two couplings meet there, whereas the
graph with the three-point coupling hasn’t because only one interaction takes place.

Because those are the only graphs we will consider, our rules stay simple. Now,
we determine Mn by counting the number of the circles, including the dot, at each
vertex. The vertex without a circle leads to n = 1, a vertex with one circle to n = 2
etc. We also have to take into account that the symmetry factor depends on the type
of the interaction because more vertices are now distinguishable. We can see this
with the last graph, which does not have the same symmetry factor as its two-point
coupling counterpart.
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When going to higher orders, this gets more complicated because the different
couplings start mixing. Since we don’t need to consider this case, we will now apply
the linked cluster expansion to the effective theory.

3.2 Linked Cluster Expansion of the Effective

Theory

As we derived the necessary parts of the formalism, we can now map the effective
theory to it, according to [7]. At first, we will disregard the correction term of the
resummation, but we will discuss its implementation in the last part of this chapter.

3.2.1 Application to the Effective Theory

Here, we will apply the linked cluster expansion to the resummed effective action to
order O(κ2) and at Nf = 1,

Z =

∫
[dU0] detQstat exp

(
− h2

2

∑
〈x,y〉

W−
1111(x)W−

1111(y)
)
, (3.2.1)

where 〈x, y〉 describes pairs of nearest neighbours. We can rewrite the sum as∑
x

∑
i±1, which leads to the additional factor of 1

2
in order to avoid overcounting.

Comparing this to the partition function for the two-point coupling

Z =

∫
[dφi] exp

(
S0[φi] +

1

2

∑
x,y

φi(x)vij(x, y)φj(y)
)

(3.2.2)

shows how it is possible to connect both equations:

φi ⇔ W−
1111, v ⇔ h2, e−S0[φi] ⇔ J (U0,W

−
1111) detQstat (3.2.3)

with J (U0,W
−
1111) as the Jacobian determinant. We do not have to calculate it

explicitly since the free energy depends solely on the expectation values of the free
theory.

At order O(κ4), we have more than one field, which leads to the correspondence:

φi ↔(W−
1111,W

+
2222,W1111, [W

−
1111]2,W+

2121,W1010,W
+
1111,W0000)

e−S0[φi] ⇔J (U0,W
−
1111,W

+
2222,W1111, [W

−
1111]2,W+

2121,W1010,W
+
1111,W0000) detQstat.

(3.2.4)

The two- and three-point interactions are written down in appendix B.2, as these
expressions are quite lengthy.

After we established this relation between the linked cluster expansion and the
effective theory, we can solve the remaining integrals over U0.
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3.2.2 Calculation of the n-Point Functions

To calculate the integrals, we have to express the n-point functions in terms of
cumulants. For brevity, we introduce the following naming scheme for the integrals:

z[(n1m1n2m2)x]k =

∫
dW detQ

Nf
stat(W

x
n1m1n2m2

)k (3.2.5)

with x either +, −, or blank.
The only exception from the naming scheme is z0, which stands for

z0 =

∫
dW detQ

Nf
stat. (3.2.6)

The n-point functions relevant for our calculations are of the form:

M0 = log z0, M1 =
z(1111)−

z0

, M2 =
z(2222)+

z0

, M3 =
z(1111)

z0

,

M4 =
z[(1111)−]2

z0

, M5 =
z(2121)+

z0

, M6 =
z(1010)

z0

, M7 =
z(1111)+

z0

,

M8 = 1, M11 =
z[(1111)−]2

z0

−
z2

(1111)−

z2
0

. (3.2.7)

We also have to rewrite the Wn1m1n2m2 terms in terms of Polyakov loops. This
calculation is described in appendix A.2. The integrals will then be solved with the
techniques presented in appendix A.3.

We wrote down the results for Nf = 1 and Nf = 2 in appendix B.3, as they are
quite lengthy.

3.2.3 Calculation of the Correction Term

Now, we still need to implement the correction term 2.3 into the framework of the
linked cluster expansion.

Considering the first correction term, the effective action looks like

Z =

∫
[dU0] detQstat exp(So)−

∫
[dU0] detQstat Scorr, (3.2.8)

with So denoting the effective action without the correction term and

Scorr =
∑
~x

N2
f

2

h2
2

Nτ

[W−
1111(~x)]2[W−

1111(~x− 1̂)]2 (3.2.9)

the correction term.
We will expand the generating functional at Scorr = 0, as we can not apply the

linked cluster expansion directly to this action
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W = logZ

= log

(∫
[dU0] detQstat exp(So)

)
− 1∫

[dU0] detQstat exp(So)
·
∫

[dU0] detQstat Scorr

= log

(∫
[dU0] detQstat exp(So)

)
− exp

(
− log

(∫
[dU0] detQstat exp(So)

))∫
[dU0] detQstat Scorr. (3.2.10)

The first term and the term inside the exponential had been calculated previously
in chapter 3.2.1.

The correction term itself evaluates to:∫
[dU0] detQstat Scorr = V

N2
f

2

h2
2

Nτ

z2
((1111)−)2z

V−2
0 (3.2.11)

with V the spatial volume of the lattice.
At higher orders, this integration gets more complicated because one has to take

care of the embedding of the correction terms.
The second correction is unproblematic to this order because we can evaluate it

with the normal linked cluster expansion.
It is not entirely clear how to take care of this correction when going to higher

orders because it is only possible to investigate this problem when all the terms
to order O(κ8) are known fully, without the abbreviations of the dense limit. The
correction terms can either be evaluated only to first order in the linked cluster
expansion or to the highest order that was used for the other terms. Because of
the counter correction terms, it is probably necessary to perform the evaluation to
the highest order, but it was not possible to investigate this problem further in this
thesis.

3.3 Observables

In this chapter, we will calculate the pressure p, the baryon number density nB, the
baryon mass mB, and the binding energy ε, analogous to [6, 7, 15].

The pressure is defined as proportional to the generating functional:

p = T

(
∂

∂V
logZ

)
T,z

=
T

V
W . (3.3.1)

The quark number is defined as the derivative of the generating functional with
respect to the fugacity:

nq = z

(
∂

∂z
logZ

)
β,V

. (3.3.2)
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Using a simple relation between the fugacity and h1

z
∂

∂z

∣∣∣
T,V

= h1
∂

∂h1

∣∣∣
T,V

(3.3.3)

we can rewrite the quark number in terms of h1:

nq = h1

(
∂

∂h1

W
V

)
T,V

(3.3.4)

The antiquark density is calculated similarly, only replacing h1 with h̄1. Combining
both the quark and the antiquark density leads to the baryon number density:

nB =
1

3

(
h1

∂

∂h1

W
V
− h̄1

∂

∂h̄1

W
V

)
T,V

. (3.3.5)

In our plots, the baryon chemical potential will be normalised with the baryon
mass [19]

amM,β=0 = −2 log(2κ)

amB,β=0 = −3 log(2κ). (3.3.6)

The lowest order gauge corrections for the masses in three dimensions are known
from [6]. For our one dimensional result, we calculated them up to order O(κnum)
with n+m ≤ 7:

amM = mM,β=0 − 8κ2 u

1− u
+ 32κ4u− 64κ4u2 − 80κ4u3

amB = mB,β=0 − 6κ2 u

1− u
+ 24κ4u− 54κ4u2 − 60κ4u3. (3.3.7)

An outline of the calculation of the masses and their corrections can also be found
in A.6.

The binding energy is calculated as a dimensionless ratio, which contains the
energy density e and the baryon mass:

ε =
e−mBnB
mBnB

(3.3.8)

The energy density is defined as the derivative of the generating functional with
respect to the lattice spacing a:

e = − 1

Nτ

(
∂

∂a

W
V

)
z

. (3.3.9)

We can replace the derivative with respect to a with derivatives with respect to the
couplings:

e =− 1

Nτ

∂κ

∂a

∂h1

∂κ

∂

∂h1

W
V

∣∣∣∣
z

− 1

Nτ

∂κ

∂a

∂h̄1

∂κ

∂

∂h̄1

W
V

∣∣∣∣
z

− 1

Nτ

∂κ

∂a

∂h2

∂κ

∂

∂h2

W
V

∣∣∣∣
z

− 1

Nτ

∂κ

∂a

∂h31

∂κ

∂

∂h31

W
V

∣∣∣∣
z

− 1

Nτ

∂κ

∂a

∂h32

∂κ

∂

∂h32

W
V

∣∣∣∣
z

(3.3.10)
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Making use of the equation

∂κ

∂a
= −κmB

3
, (3.3.11)

the energy density simplifies to:

e =
κmB

3Nτ

(
∂h1

∂κ

∂

∂h1

W
V

+
∂h̄1

∂κ

∂

∂h̄1

W
V

+
∂h2

∂κ

∂

∂h2

W
V

+
∂h31

∂κ

∂

∂h31

W
V

+
∂h32

∂κ

∂

∂h32

W
V

)
.

(3.3.12)

3.4 Results

We present every observable for the generating functional to order κ2, identified
with W2, and to order κ4 without the correction term, depicted as W4. Further,
we present the observables for the κ4 action including the correction term. Wcorr

corresponds to the first correction term, where we added it after the exponential, and
Wcalt corresponds to the second, or alternative, correction term, where we inserted
the correction into the exponential. Most of the times, the single terms will overlap,
it is mostly the first correction term that differs visibly from the rest.

Figure 3.1 shows the baryon number density at different values of κ, Nτ , V , u,
and Nf . Every plot shows the silver blaze property, which means that the baryon
number density stays at zero until the chemical potential reaches the constituent
quark mass. Slightly before this point, the baryon number density starts to rise
and eventually, we will reach the saturation with the value 2Nf . The saturation is
a lattice artefact, so even before it is reached, the results are mainly dependent on
these artefacts and can be ignored.

The first correction term dips between µ = 1 and the saturation. Due to the
connection of h2 with κ and Nτ , decreasing one of them decreases the difference
between the different terms, especially the dip for Wcorr. Also, the change in the
volume V has this effect on the first correction term. Including the gauge corrections,
so that u 6= 0, increases the difference between the terms. When switching to
Nf = 2, the corrections differ more from the uncorrected terms, so we keep the
volume smaller as the first correction term would start to diverge badly at V = 75.

Figure 3.2 shows the behaviour of the pressure. It generally increases with in-
creasing baryon chemical potential, just as we expected. Here we have the same
effects as with the baryon number density, when lowering κ, Nτ and V , considering
u 6= 0 and changing to Nf = 2. We can also observe that the overall value of the
pressure increases with smaller κ, Nτ , and higher Nf , but stays mostly the same
when changing the volume or turning on u.

In figure 3.3, the plots for the binding energy can be found. The binding energy
drops below 0, which indicates that the quarks are bound. Overall, the behaviour
stays the same as for the pressure and the baryon number density. For the terms of
order κ4, the contribution gets bigger at lower Nτ and higher κ but seems mostly
unchanged by a change in the volume or by turning on the gauge corrections. When
going to higher Nf , the contribution gets smaller. The first correction term Wcorr is
actually saturating in the first plot and the last two plots, but at much lower values
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Figure 3.1: The baryon number density for Nf = 1 at different values of κ, Nτ , Vm
and u and at Nf = 2
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Figure 3.2: The pressure for Nf = 1 at different values of κ, Nτ , Vm and u and at
Nf = 2
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Figure 3.3: The binding energy for Nf = 1 at different values of κ, Nτ , Vm and u
and at Nf = 2.

of the binding energy, so that the other graphs would not be distinguishable when
scaling the plot according to it.

Figure 3.4 shows the baryon number density at varying u. For the first correction
term, mainly the depth of the dip changes, it gets bigger for higher u. The second
correction term changes less with u. The transition moves further to the left for
higher u and at very high u its shift to the left as well as the shape indicate that
the expansion breaks down.

In figure 3.5, we see two different plots. In the left plot, the correction terms
themselves are plotted for two different values of Nτ . We can see that the contri-
bution of the first correction term is much bigger as the contribution of the second
correction term. Also, they grow with increasing Nτ , which is a behaviour we don’t
want because those terms should be neglected when going to the high-Nτ -limit.

In the right, we see all the terms of subleading order of Nτ at different values of
Nτ . Here, the terms get again bigger with increasing Nτ .

Luckily, the contribution of all those terms is quite small compared to the overall
contribution. But as the error of the high-Nτ -limit increases when going to bigger
κ, which is necessary to reach the continuum limit [7], [5], it is of great use to have
an estimate of the influence of these terms.
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Figure 3.5: The correction terms for Nf = 1 at different Nτ . In the left we see the
correction terms and in the right we see the Low-Nτ -corrections.

In figure 3.6, we see six of these curves. We have the first correction term and
the second correction term at an error of 20% and 10%, as well as Nf = 1 and
Nf = 2. We chose the first value of Nτ in a way that convergence is given. The
shape of the curve correlates with our expectations, and only the first correction
term looks different. As the calculations get really expensive for Nf = 2, we had
to choose quite big steps for κ and what we see here is the first value of κ we were
looking at. Therefore, the parameters we can choose are very restricted, so it might
not be advisable anyway to use the first correction at Nf = 2. At lower Nτ we can
choose κ bigger as at higher Nτ .

Looking at all the results, we can observe that the first correction term behaves
in a more problematic way than the second correction term. As we can see in figure
3.5, those differences only start at µ ' 1 where we have to be careful anyway, because
the baryon number density gets more and more influenced by lattice artefacts and
h1 reaches h1 = 1 which leads to problems with our expansions. Also, the second
correction term is calculated in a simpler way, so it might be preferable to use it
instead of the first correction term, but this definitely needs to be checked at higher
orders of κ.
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Figure 3.6: κ as a function of Nτ shown at V = 75. The left contribution is the error
for the low-Nτ -corrections with the first correction term in relation to the high-Nτ

baryon number density, the right contribution for the second correction term. From
top to bottom, we have for Nf = 1 an error of 20%, an error of 10%, and for Nf = 2
an error of 20%.



Chapter 4

Conclusion and Outlook

In this thesis, we derived the effective theory of lattice QCD in 1+1 dimensions and
treated it analytically with the linked cluster expansion. While doing this, we had
to take care of a newly arising correction term, as we did not neglect the terms of
subleading order in Nτ , as it was done in previous three dimensional calculations.
Furthermore, we investigated the behaviour of this correction term. We used two
different methods to calculate the correction term and compared them to each other.

This led to the finding that the contribution of these terms increases with in-
creasing Nτ . This behaviour is not desirable, as we leave out those terms when going
to the high-Nτ -limit. Therefore, we gave an estimate of the contribution of these
terms depending on κ and Nτ , so that it is possible to choose these parameters in a
way that the high-Nτ -limit does not break down.

This gets important when thinking about the continuum limit, as we need to
change κ and Nτ , our error increases when we go to smaller lattice spacings. As our
calculation took place in 1+1 dimensions, we could not test this hypothesis because
we could not obtain the continuum limit, since the established methods are designed
for 3+1 dimensional calculations. Therefore, it would be of great interest to repeat
the calculations of the subleading order terms in 3+1 dimensions in order to take a
look at the continuum limit.
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Appendix A

Additional Calculations

In this appendix, we will derive the colour determinant from chapter 2.2.1 in more
detail, as it was done in [7], and furthermore calculate the generating functional
for the Wn1m1n2m2 terms as in [5]. Also, we will give a short introduction to the
integration over Polyakov loops [7] and in the methods of moments and cumulants
[20], [21]. Lastly, we will show the calculations of the gauge corrections and the
masses.

A.1 Static determinant

In order to calculate the quark determinant, we need to prove equation 2.2.12. This
equation can be expressed as:

det[1 + h1W ] (A.1.1)

with W ∈ SU(N).
We rewrite the determinant with the trace log identity and expand the arising

logarithm:

det(1 + h1W ) =
N∑
n=0

∑
{ki}n

N∏
l=1

(−1)(l+1)kl

lklkl!
hlkl1 tr(W l)kl . (A.1.2)

with N the degree of SU(N). The indices {ki}n are bound by the two equations:

N∑
i=1

ki = n, and
N∑
i=1

iki ≤ N. (A.1.3)

We will use the Cayley-Hamilton equation

An + cn−1A
n−1 + · · ·+ c1A+ (−1)n det(A)In = 0, (A.1.4)

here depicted for SU(N).
The determinant corresponds to the coefficient c0. Also, the coefficients are given

in terms of complete exponential Bell polynomials which can be rewritten in terms
of traces of powers of A.

For SU(3), the Cayley-Hamilton equation, expressed in terms of powers of traces,
reads

det(A) =
1

6

(
(trA)3 − 3 tr(A2)(trA) + 2 tr(A3)

)
. (A.1.5)
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This fixes the highest power term of the logarithm because of the fact that
det(W ) = 1.

Therefore, we can rewrite the determinant as:

det(1 + h1W ) = 1 + h3
1 + h1 tr(W ) +

1

2
h2

1

(
tr(W )2 − tr(W 2)

)
. (A.1.6)

We make use of the relation tr(W 2) = tr(W )2 − 2 tr(W †) to reach the final result:

det(1 + h1W ) = 1 + h1 trW + h2
1 trW † + h3

1. (A.1.7)

A.2 Generating Function for Wnm Terms

To solve the integrals in 3.2.2, we have to rewrite the Wn1m1n2m2-terms

Wn1m1n2m2 = tr
( (h1W~x)

m1

(1 + h1W~x)n1

(h̄1W
†
~x)m2

(1 + h̄1W
†
~x)n2

)
(A.2.1)

into Polyakov loops, as it is not possible to integrate directly over the fraction and
the trace.

We will make use of a generating function that gives, depending on our evaluation
process, the usual formulation or the expression in terms of Polyakov loops. We need
three different generating functions, depending on the form of Wn1m1n2m2 .

The first one, for the terms of the form Wnm00, stems from [5]:

G(α, β) = log det[α + βh1W ]. (A.2.2)

The one for the quite similar term W00nm looks like:

G(α, β) = log det[α + βh̄1W
†] (A.2.3)

The last case is specifically constructed for W1010:

G(α, β) =
1

2(1− h1h̄1)

(
log

(
det
(

(α + βh1W )(α + βh̄1W
†)
))

− log

(
det
(

(β + αh1W )(β + αh̄1W
†)
)))

. (A.2.4)

For W1111, we can use the same generating function but multiplied by −h1h̄1.
Then, we receive all terms by taking derivatives with respect to α and β and

setting α = β = 1 afterwards:

Wnmnm =
(−1)n−1

(n− 1)!

∂n−m

∂αn−m
∂m

∂βm
G(α, β)

∣∣∣∣
α=β=1

. (A.2.5)

When setting n1 = n2 and m1 = m2, we can also use this formula for the last case
A.2.4.
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It is possible to check if the generating function returns the right Wn1m1n2m2 term
by using Jacobi’s formula when calculating the derivative

d

dt
log detA(t) = tr

(
A(t)−1 d

dt
A(t)

)
. (A.2.6)

In order to obtain the expressions in terms of Polyakov loops, we need to express the
generating function in terms of Polyakov loops first. For this task, we can use the
method from appendix A.1, which also works for the more complicated generating
function A.2.4. For example. the first generating function takes the form

G(α, β) = log[α3 + α2βh1L+ αβ2h2
1L
† + β3h3

1]. (A.2.7)

When we take the derivative now, we receive the expression for Wn1m1n2m2 in terms
of Polyakov loops, which finally enables us to perform the integration.

A.3 Integration over Polyakov Loops

At first, we have to change the measure of our integration from temporal links to
Polyakov loops. This process leads to a Jacobian in the form of an effective potential∫

[dW ] =

∫
[dL]eV . (A.3.1)

This potential is equivalent to the SU(3) Haar measure, calculated in [7]

V =
1

2
log(27− 18|L|2+8Re(L3)− |L|4) (A.3.2)

We can parametrise the Polyakov loops in terms of two angles, which brings them
into a diagonal form [22]:

L(θ, φ) = eiθ + eiφ + e−i(θ+φ), θ, φ ∈ [−π, π). (A.3.3)

We can rewrite the measure as∫
[dW ] =

∫
[dL]eV =

∫
[dθ][dφ]e2V . (A.3.4)

This introduces another Jacobian identical to the previous one A.3.2.
Now, we can easily solve the integrals, as they reduce to integrals over exponential

functions.

A.4 Moments and Cumulants

The method of moments and cumulants is an important part of the linked cluster
expansion [7] and is also used in other fields [20], [21].

The moment is a collection of symmetric functions that assigns a number 〈α, . . . , β〉
to each combination (α, . . . , β), with 〈φ〉 = 0 for the empty combination. The mo-
ment product

〈〉1 ⊗ 〈〉2 = 〈〉3 (A.4.1)
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is defined by a sum over all partitions P2 of (α, . . . , β) in two sets

〈α, . . . , β〉3 =
∑
P2

〈α, . . . , δ〉〈γ, . . . , ε〉2. (A.4.2)

One example for a set made out of three entries is:

〈α, β, γ〉3 =〈α〉1〈β, γ〉2 + 〈β〉1〈α, γ〉2 + 〈γ〉1〈α, β〉2
+ 〈α, β〉1〈γ〉2 + 〈β, γ〉1〈α〉2 + 〈α, γ〉1〈β〉2, (A.4.3)

〈α, α, α〉 = 3〈α〉〈α, α〉2 + 3〈α, α〉1〈α〉2. (A.4.4)

We define the cumulant making use of the exponential of the moment

exp⊗[] = 1 +
∞∑
n=1

1

n!
[]⊗n ≡ 1 + 〈〉. (A.4.5)

This makes it possible to define the moments and cumulants in terms of each other:

〈α1, . . . , αn〉 =
n∑
k=1

∑
Pk

[α1, . . . , αm]1 . . . [αi, . . . , αj]k (A.4.6)

[α1, . . . , αn] =
n∑
k=1

(−1)k−1(k − 1)!
∑
Pk

〈α1, . . . , αm〉1 . . . 〈αi, . . . , αj〉k (A.4.7)

Here, we can see some examples of these relations:

〈α〉 = [α],

〈α, β〉 = [α, β] + [α][β], (A.4.8)

〈α, β, γ〉 = [α, β, γ] + [α, β][γ] + [β, γ][α] + [α, γ][β] + [α][β][γ],

[α] = 〈α〉,
[α, β] = 〈α, β〉 − 〈α〉〈β〉, (A.4.9)

[α, β, γ] = 〈α, β, γ〉 − 〈α, β〉〈γ〉 − 〈α, γ〉〈β〉 − 〈β, γ〉〈α〉+ 2〈α〉〈β〉〈γ〉.

We define the generating functional of the moments as:

f〈〉({xα}) =
∞∑
n=1

∑
α1,...,αn

1

n!
〈α1, . . . , αn〉xα1 . . . xαn . (A.4.10)

The generating functional of the cumulants is defined in a similar way.
The main theorem of the methods of moments and cumulants states that

exp f[]({xα}) = 1 + f〈〉({xα}). (A.4.11)

This can be proved by induction.
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Furthermore, we can apply the formalism to a general polymer system. The
function I(Xi) describes the value we are left with after the integration over the
polymer Xi. We define a cluster moment

〈X1, . . . , Xn〉 =

{
1, if every pair Xi, Xj is disconnected

0, otherwise
(A.4.12)

so that the generating functional of the moment is the same as the partition function
of the polymer system

Z({I(X)}) = 1 +
∞∑
n=1

∑
X1,...,Xn

1

n!
〈X1, . . . , Xn〉I(X1) . . . I(Xn). (A.4.13)

Using the main theorem, we obtain the logarithm of the partition function:

logZ({I(X)}) =
∞∑
n=1

∑
X1,...,Xn

1

n!
[X1, . . . , Xn]I(X1) . . . I(Xn). (A.4.14)

It can be proved that the cumulants posses the opposite property of the moments:

[X1, . . . , Xn] = 0⇔ X1 ∪ . . . ∪Xnis connected. (A.4.15)

If we define the general polymer system as the effective action

e−Seff =

∫
[dU1] exp

(
−
∞∑
n=1

1

n
tr(P +M)n

)
(A.4.16)

and choose the variables Xi to represent a combination of tr(P +M)n factors, this
leads to the conclusion that the effective action can be exponentiated when only
connected polymers are considered. This only holds in the infinite volume limit, but
corrections could be calculated.

A.5 Calculation of Spatial Detours

This chapter contains a detailed calculation of the corrections to the coupling h1,
which was discussed in 2.4.1.

This detour adds 4 links and 1 plaquette , which gives a factor of κ4u. It can be
attached in Nτ locations and can point in 2 directions, which means upwards or
downwards in the one dimensional case. The trace gets adjusted to

tr [(1− γ0)Nτ (1− γ1)(1 + γ0)(1 + γ1)(1− γ0)] = −4 tr [(1− γ0)Nτ ] (A.5.1)

which leads to the overall contribution

ca = −8κ4uNτ . (A.5.2)
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The first of these detours can be placed at Nτ locations in 2 directions, the second
detour can be placed in 2 directions as well but only at Nτ − 3 locations. Each
detour gives a factor of κ2u, and we have to include a combinatorial factor of 1

2!
to

take care of the double counting. The trace

tr [(1− γ0)Nτ−3(1− γ1)(1− γ0)(1 + γ1)(1− γ0)(1− γ1)(1− γ0)(1 + γ1)]

= tr [(1− γ0)Nτ ] (A.5.3)

gives no additional factor, so the full contribution is

cb = 2κ4u2Nτ (Nτ − 3). (A.5.4)

Again, we can place this detour at Nτ locations. The lower part can be placed in 2
directions, and the upper part has to point in the same direction as the lower part.
The trace

tr [(1− γ0)Nτ−1(1− γ1)(1− γ1)(1− γ0)(1 + γ1)(1 + γ1)] = 4 tr [(1− γ0)Nτ ] (A.5.5)

gives a factor of 4, leading to the contribution

cc = 8κ4u2Nτ . (A.5.6)

There are Nτ locations to place the detour, 2 directions for the first detour and 1
for the first detour. The trace gives

tr [(1− γ0)Nτ−2(1− γ1)(1− γ0)(1 + γ1)(1 + γ1)(1− γ0)(1− γ1)]

=2 tr [(1− γ0)Nτ ] (A.5.7)

This leads to the contribution

cd = 4κ4u2Nτ . (A.5.8)

+
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Both detours come with a factor of Nτ for their location, a factor of 2 for the
direction and an additional factor of 2 because they can also point to the left. But,
the trace for both diagrams cancels, since the trace for the first diagram gives

tr [(1−γ0)Nτ (1−γ1)(1−γ1)(1−γ0)(1+γ1)(1+γ0)(1+γ1)] = 8 tr [(1−γ0)Nτ ] (A.5.9)

and the trace for the second diagram gives

tr [(1− γ0)Nτ (1− γ1)(1− γ0)(1− γ1)(1 + γ0)(1 + γ1)(1 + γ1)]

=− 8 tr [(1− γ0)Nτ ]. (A.5.10)

Therefore, we get

ce = 0. (A.5.11)

+

The detours in both diagrams can be placed at Nτ different locations, and they can
point in 2 directions. The trace for the first diagram has the value

tr [(1− γ0)Nτ−3(1− γ1)(1− γ0)(1 + γ1)(1 + γ1)(1− γ0)(1− γ0)(1 + γ1)]

=2 tr [(1− γ0)Nτ ] (A.5.12)

For the second diagram, the trace gives the same result:

tr [(1− γ0)Nτ−3(1− γ1)(1− γ0)(1− γ0)(1 + γ1)(1 + γ1)(1− γ0)(1 + γ1)]

=2 tr [(1− γ0)Nτ ] (A.5.13)

Adding up both diagrams results in the contribution

cf = 8κ4u3Nτ . (A.5.14)

The first detour can be placed at Nτ locations, the second detour at Nτ−4 locations.
Also, both detours can be placed in 2 directions. The trace gives no additional factor:

tr [(1− γ0)Nτ−4(1− γ1)(1− γ0)(1 + γ1)(1− γ0)(1− γ1)(1− γ0)(1− γ0)(1 + γ1)]

= tr [(1− γ0)Nτ ]. (A.5.15)

This leads to the contribution

cg = 4κ4u3Nτ (Nτ − 4). (A.5.16)
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+

Again, we have two diagrams that give the same contribution. The detours can be
placed at Nτ locations and can point in 2 directions. The trace for the first diagram
gives

tr [(1− γ0)Nτ (1− γ1)(1− γ0)(1− γ1)(1− γ0)(1 + γ1)(1 + γ1)]

=2 tr [(1− γ0)Nτ ] (A.5.17)

and the trace for the second diagram gives the same contribution:

tr [(1− γ0)Nτ (1− γ1)(1− γ1)(1− γ0)(1 + γ1)(1− γ0)(1 + γ1)]

=2 tr [(1− γ0)Nτ ]. (A.5.18)

Both diagrams together lead to the contribution

ch = 8κ4u3Nτ . (A.5.19)

A.6 Calculation of Hadron masses

In this section, we will go over the calculation of the Hadron masses, following [19],
and their corrections up to O(κnum) with n+m ≤ 7.

For the calculation of the mass, it is necessary to specify an operator. The
operator for the pions look like:

π+(x) ≡ d̄ac(x)(γ5)aβuβc(x)

π.(x) ≡ ūac(x)(γ5)aβdβc(x). (A.6.1)

For the proton and antiproton, we have the operators

p+
α (x) ≡ εcde(Cγ5)βγuac(x)[uβd(x)dγε(x)− dβd(x)uγε(x)]

p−δ (y) ≡ εfgh(Cγ5)εϕūδf (y)[d̄εg(y)ūϕh(y)− ūεg(y)d̄ϕh(y)] (A.6.2)

with

CγµC
−1 = −γTµ

−C = CT = C−1 = C†. (A.6.3)

We want to calculate the pion propagator

C(t) ≡
〈
π+(0, 0)[π+(0, t)]†

〉
S

=

〈
tr[γ5Pd(0, t)γ5Pu(t, 0)]

〉
Seff

, (A.6.4)

with the quark propagator

Pf [U ]yx = (1− κfM [U ])−1
yx =

∑
l=0

κlfM [U ]−yx. (A.6.5)
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Using
Pf (y, x) = γ5P

†
f (x, y)γ5, (A.6.6)

we can rewrite the pion correlator to

C(t) =

〈
tr[P †d (t, 0)Pu(t, 0)]

〉
Seff

. (A.6.7)

In general, the computation of such expectation values looks like

〈O〉 =
1

Z

∫
[dUdψ̄dψ]e−S[U,ψ̄,ψ]O[U, ψ̄, ψ]. (A.6.8)

With the hopping parameter expansion, we have to compute

C(t) =
1

Z

∫
[dU ] exp

[∑
f

∞∑
l=1

κlf
l

trM [U ]l
]

tr
[
P †d (t, 0)Pu(t, 0)

]
. (A.6.9)

As we are calculating the leading order, we can set Z and the effective action to 1,
which leads us to

C(t) = κtuκ
t
d

∫
[dU ] tr

[
(1 + γ0)2tU0(t→ 0)U †0(t→ 0)

]
. (A.6.10)

Using the relations

γ5(1− γµ)γ5 = (1 + γµ)

tr[(1 + γµ)N ] = tr[2N−1(1 + γµ)] = 2N (A.6.11)

we get the result

C(t) =
1

Nc

(2κu)
t(2κd)

t. (A.6.12)

We plug this into the following correlation function

m(A) = − lim
t→∞

1

t
log〈A(0)A†(t)〉 for mesons,

m(B) = − lim
t→∞

1

t
log〈B(0)B̄(t)〉 for baryons, (A.6.13)

which leads to a meson mass of

mM = − log(2κu)− log(2κd) (A.6.14)

or, in our case of degenerated flavours

mM = −2 log(2κ). (A.6.15)

When we perform this calculation for baryons, we receive the degenerate baryon
mass

mB = −3 log(2κ). (A.6.16)
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We calculate the gauge corrections of the masses at Nτ → ∞. This calculation is
along the lines of the calculation of the h1 corrections, but with an additional factor
taking care of the additional quark lines.

Again, we calculate the corrections up to O(κnum) with n + m ≤ 7 and we
receive graphs similar to the ones in appendix A.5. The only difference is that the
plaquettes sit on different quark lines. This leads to the contributions

cM = −8κ2 u

1− u
+ 32κ4u− 64κ4u2 − 80κ4u3

cB = −6κ2 u

1− u
+ 24κ4u− 54κ4u2 − 60κ4u3. (A.6.17)



Appendix B

Analytic Results

This appendix collects all expressions too lengthy for the main text.

B.1 Effective Action to Order κ4

This chapter contains the terms of the kinetic quark determinant to order κ4 in the

Wn1m1n2m2-notation. All sums are already evaluated. We set k1 = 2[(2κ)2Nτ−(2κ)2]
((2κ)2−1)(Nτ−1)

,
the couplings should be well known from chapter 2.2.3 and chapter 2.2.4. The sum
over i = ±1 includes forward and backward hops, therefore, the prefactors had to
be adjusted in regard to chapter 2.2.

Seff =−
∑
~x

log detQstat(~x) +
∑
~x

∑
i=±1

(
Nf

h2

2
W−

1111(~x)W−
1111(~x+ i)

+Nf
h31

2

{
W−

1111(~x− i) tr(4)W−
1111(~x+ i)

+W−
1111(~x− i)W+

2222(~x)W−
1111(~x+ i)

+ 2W−
1111(~x− i)W1111(~x)W−

1111(~x+ i)

− 4W−
1111(~x− i)W+

1111(~x)W−
1111(~x+ i)

}
−Nf

h32

2

{
W−

1111(~x− i)W+
2121(~x)W−

1111(~x+ i)

− k1W
−
1111(~x− i)W1010(~x)W−

1111(~x+ i)
}

+Nf
h31

4

N2
c

N2
c − 1

{(
W+

2222(~x)− 2W1111(~x)
)

[W−
1111(~x+ i)]2

+ [W−
1111(~x)]2

(
W+

2222(~x+ i)− 2W1111(~x+ i)
)}

−Nf
h31

4

Nc

N2
c − 1

{
[W−

1111(~x)]2[W−
1111(~x+ i)]2

+
(
W+

2222(~x)− 2W1111(~x)
)(
W+

2222(~x+ i)− 2W1111(~x+ i)
)}

−Nf
h32

4

{
[W−

1111(~x)]2
(
W+

2121(~x+ i) + k1W1010(~x+ i)
)

49
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(
W+

2121(~x) + k1W1010(~x)
)

[W−
1111(~x+ i)]2

}
−N2

f

h31

4

N2
c

N2
c − 1

{
[W−

1111(~x)]2[W−
1111(~x+ i)]2

+
(
W+

2222(~x)− 2W1111(~x)
)(
W+

2222(~x+ i)− 2W1111(~x+ i)
)}

+N2
f

h31

4

Nc

N2
c − 1

{(
W+

2222(~x)− 2W1111(~x)
)

[W−
1111(~x+ i)]2

+ [W−
1111(~x)]2

(
W+

2222(~x+ i)− 2W1111(~x+ i)
)}

−N2
f

h32

4

{
W+

2121(~x)W+
2121(~x+ i)

+ k1W
+
2121(~x)W1010(~x+ i) + k1W1010(~x)W+

2121(~x+ i)

+ 2
[
(2κ)2Nτ + (2κ)4Nτ−(2κ)4

((2κ)4−1)(Nτ−1)

]
W1010(~x)W1010(~x+ i)

+ [W−
1111(~x)]2[W−

1111(~x+ i)]2
})

−
∑
~x6=~y

∑
i=±1

N2
f

h2
2

4
W−

1111(~x)W−
1111(~x+ i)W−

1111(~y)W−
1111(~y + i) (B.1.1)

B.2 Two- and Three-Point Interactions

This chapter contains the two- and three-point interactions from chapter 3.2.1.

vij(~x, ~y) =δ(〈~x, ~y〉)
[
−Nfh2δi1δj1

+Nf
h31

2

(
Nf

N2
c

N2
c − 1

+
N2
c

N3
c −Nc

)
δi2δj2

+Nf2h31

(
Nf

N2
c

N2
c − 1

+
N2
c

N3
c −Nc

)
δi3δj3

+Nf
h31

2

(
Nf

N2
c

N2
c − 1

+
N2
c

N3
c −Nc

)
δi4δj4

+N2
f

h32

2
δi5δj5

+N2
fh32

[
(2κ)2Nτ + (2κ)4Nτ−(2κ)4

((2κ)4−1)(Nτ−1)

]
δi6δj6

−Nfh31

(
Nf

N2
c

N2
c − 1

+
N2
c

N3
c −Nc

)
(δi2δj3 + δi3δj2)

−Nf
h31

2

(
N2
c

N2
c − 1

+Nf
N2
c

N3
c −Nc

)
(δi2δj4 + δi4δj2)

+Nfh31

(
N2
c

N2
c − 1

+Nf
N2
c

N3
c −Nc

)
(δi3δj4 + δi4δj3)

+Nf
h32

2
(δi4δj5 + δi5δj4)
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+Nf
h32

2
k1(δi4δj6 + δi6δj4)

+N2
f

h32

2
k1(δi5δj6 + δi6δj5)

]
(B.2.1)

uijk(~x, ~y, ~z) =δ(〈~x, ~y〉)δ(〈~y, ~z〉)
[
−Nfh31δi1δj2δk1 −Nf2h31δi1δj3δk1

+Nfh32δi1δj5δk1 −Nfk1h32δi1δj6δk1

+Nf4h31δi1δj7δk1 −Nfh31 tr(4)δi1δj8δk1

]
+ δ(〈~x, ~z〉)δ(〈~y, ~z〉)

[
−Nfh31δi1δj1δk2 −Nf2h31δi1δj1δk3

+Nfh32δi1δj1δk5 −Nfk1h32δi1δj1δk6

+Nf4h31δi1δj1δk7 −Nfh31 tr(4)δi1δj1δk8

]
+ δ(〈~x, ~y〉)δ(〈~x, ~z〉)

[
−Nfh31δi2δj1δk1 −Nf2h31δi3δj1δk1

+Nfh32δi5δj1δk1 −Nfk1h32δi6δj1δk1

+Nf4h31δi7δj1δk1 −Nfh31 tr(4)δi8δj1δk1

]
(B.2.2)

B.3 Integrated LCE z-Functions

B.3.1 Nf = 1

Below are all z-functions evaluated with Nc = 3 and Nf = 1, needed in Chapter
3.2.2.

z0 =1 + 4h3
1 + h6

1 + 4h1h̄1 + 6h4
1h̄1 + 10h2

1h̄
2
1 + 6h5

1h̄
2
1

+ 20h3
1h̄

3
1 + 4h6

1h̄
3
1 + 4h̄3

1 + 6h1h̄
4
1 + 10h4

1h̄
4
1 + 6h2

1h̄
5
1

+ 4h5
1h̄

5
1 + h̄6

1 + 4h3
1h̄

6
1 + h6

1h̄
6
1 (B.3.1a)

z(1100) =6h3
1 + 3h6

1 + 2h1h̄1 + 12h4
1h̄1 + 10h2

1h̄
2
1 + 15h5

1h̄
2
1

+ 30h3
1h̄

3
1 + 12h6

1h̄
3
1 + 3h1h̄

4
1 + 20h4

1h̄
4
1 + 6h2

1h̄
5
1

+ 10h5
1h̄

5
1 + 6h3

1h̄
6
1 + 3h6

1h̄
6
1 (B.3.1b)

z(0011) =2h1h̄1 + 3h4
1h̄1 + 10h2

1h̄
2
1 + 6h5

1h̄
2
1 + 6h̄3

1 + 30h3
1h̄

3
1

+ 6h6
1h̄

3
1 + 12h1h̄

4
1 + 20h4

1h̄
4
1 + 15h2

1h̄
5
1 + 10h5

1h̄
5
1

+ 3h̄6
1 + 12h3

1h̄
6
1 + 3h6

1h̄
6
1 (B.3.1c)

z(1111) =3h1h̄1 + 6h4
1h̄1 + 11h2

1h̄
2
1 + 9h5

1h̄
2
1 + 21h3

1h̄
3
1 + 6h6

1h̄
3
1

+ 6h1h̄
4
1 + 21h4

1h̄
4
1 + 9h2

1h̄
5
1 + 11h5

1h̄
5
1 + 6h3

1h̄
6
1 + 3h6

1h̄
6
1 (B.3.1d)

z(2200) =− 4h3
1 + 3h6

1 + 4h4
1h̄1 − 2h2

1h̄
2
1 + 12h5

1h̄
2
1 − 12h3

1h̄
3
1

+ 12h6
1h̄

3
1 + 8h4

1h̄
4
1 − 2h2

1h̄
5
1 + 8h5

1h̄
5
1 − 4h3

1h̄
6
1 + 3h6

1h̄
6
1 (B.3.1e)

z(0022) =− 2h2
1h̄

2
1 − 2h5

1h̄
2
1 − 4h̄3

1 − 12h3
1h̄

3
1 − 4h6

1h̄
3
1 + 4h1h̄

4
1
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+ 8h4
1h̄

4
1 + 12h2

1h̄
5
1 + 8h5

1h̄
5
1 + 3h̄6

1 + 12h3
1h̄

6
1 + 3h6

1h̄
6
1 (B.3.1f)

z(2100) =10h3
1 + 2h1h̄1 + 8h4

1h̄1 + 12h2
1h̄

2
1 + 3h5

1h̄
2
1 + 42h3

1h̄
3
1

+ 3h1h̄
4
1 + 12h4

1h̄
4
1 + 8h2

1h̄
5
1 + 2h5

1h̄
5
1 + 10h3

1h̄
6
1 (B.3.1g)

z(0021) =2h1h̄1 + 3h4
1h̄1 + 12h2

1h̄
2
1 + 8h5

1h̄
2
1 + 10h̄3

1 + 42h3
1h̄

3
1

+ 10h6
1h̄

3
1 + 8h1h̄

4
1 + 12h4

1h̄
4
1 + 3h2

1h̄
5
1 + 2h5

1h̄
5
1 (B.3.1h)

z(1010) =3 + 6h3
1 + 11h1h̄1 + 9h4

1h̄1 + 21h2
1h̄

2
1 + 6h5

1h̄
2
1 + 6h̄3

1

+ 21h3
1h̄

3
1 + 9h1h̄

4
1 + 11h4

1h̄
4
1 + 6h2

1h̄
5
1 + 3h5

1h̄
5
1 (B.3.1i)

z(1100)2 =4h3
1 + 9h6

1 + 20h4
1h̄1 + 4h2

1h̄
2
1 + 36h5

1h̄
2
1 + 24h3

1h̄
3
1 + 36h6

1h̄
3
1

+ 34h4
1h̄

4
1 + 2h2

1h̄
5
1 + 24h5

1h̄
5
1 + 4h3

1h̄
6
1 + 9h6

1h̄
6
1 (B.3.1j)

z(0011)2 =4h2
1h̄

2
1 + 2h5

1h̄
2
1 + 4h̄3

1 + 24h3
1h̄

3
1 + 4h6

1h̄
3
1 + 20h1h̄

4
1

+ 34h4
1h̄

4
1 + 36h2

1h̄
5
1 + 24h5

1h̄
5
1 + 9h̄6

1 + 36h3
1h̄

6
1 + 9h6

1h̄
6
1 (B.3.1k)

z(1100)(0011) =h1h̄1 + 6h4
1h̄1 + 10h2

1h̄
2
1 + 15h5

1h̄
2
1 + 45h3

1h̄
3
1 + 18h6

1h̄
3
1

+ 6h1h̄
4
1 + 40h4

1h̄
4
1 + 15h2

1h̄
5
1 + 25h5

1h̄
5
1 + 18h3

1h̄
6
1 + 9h6

1h̄
6
1 (B.3.1l)

z(1111)− =6h3
1 + 3h6

1 + 9h4
1h̄1 + 9h5

1h̄
2
1 − 6h̄3

1 + 6h6
1h̄

3
1 − 9h1h̄

4
1

− 9h2
1h̄

5
1 − 3h̄6

1 − 6h3
1h̄

6
1 (B.3.1m)

z(2222)+ =− 4h3
1 + 4h4

1h̄1 − 4h2
1h̄

2
1 + 10h5

1h̄
2
1 − 4h̄3

1 − 24h3
1h̄

3
1

+ 8h6
1h̄

3
1 + 4h1h̄

4
1 + 3h6

1 + 16h4
1h̄

4
1 + 10h2

1h̄
5
1 + 16h5

1h̄
5
1

+ 3h̄6
1 + 8h3

1h̄
6
1 + 6h6

1h̄
6
1 (B.3.1n)

z((1111)−)2 =4h3
1 + 9h6

1 − 2h1h̄1 + 8h4
1h̄1 − 12h2

1h̄
2
1 + 8h5

1h̄
2
1 + 4h̄3

1

− 42h3
1h̄

3
1 + 4h6

1h̄
3
1 + 8h1h̄

4
1 − 12h4

1h̄
4
1 + 8h2

1h̄
5
1

− 2h5
1h̄

5
1 + 9h̄6

1 + 4h3
1h̄

6
1 (B.3.1o)

z(2121)+ =10h3
1 + 4h1h̄1 + 11h4

1h̄1 + 24h2
1h̄

2
1 + 11h5

1h̄
2
1 + 10h̄3

1

+ 84h3
1h̄

3
1 + 10h6

1h̄
3
1 + 11h1h̄

4
1 + 24h4

1h̄
4
1 + 11h2

1h̄
5
1

+ 4h5
1h̄

5
1 + 10h3

1h̄
6
1 (B.3.1p)

z(1111)+ =6h3
1 + 3h6

1 + 4h1h̄1 + 15h4
1h̄1 + 20h2

1h̄
2
1 + 21h5

1h̄
2
1

+ 6h̄3
1 + 60h3

1h̄
3
1 + 18h6

1h̄
3
1 + 15h1h̄

4
1 + 40h4

1h̄
4
1

+ 21h2
1h̄

5
1 + 20h5

1h̄
5
1 + 3h̄6

1 + 18h3
1h̄

6
1 + 6h6

1h̄
6
1 (B.3.1q)

B.3.2 Nf = 2

Below are all z-functions evaluated with Nc = 3 and Nf = 2, needed in Chapter
3.2.2.

z0 =1 + 20h3
1 + 50h6

1 + 20h9
1 + h12

1 + 16h1h̄1 + 180h4
1h̄1

+ 240h7
1h̄1 + 40h10

1 h̄1 + 136h2
1h̄

2
1 + 816h5

1h̄
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1 + 570h8
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2
1

+ 40h11
1 h̄
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1 (B.3.2b)
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1 (B.3.2c)
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+ 15h12
1 h̄

3
1 + 45h1h̄

4
1 + 1539h4

1h̄
4
1 + 3120h7

1h̄
4
1 + 600h10

1 h̄
4
1

+ 360h2
1h̄

5
1 + 4190h5

1h̄
5
1 + 4050h8

1h̄
5
1 + 315h11

1 h̄
5
1

+ 1380h3
1h̄

6
1 + 6846h6

1h̄
6
1 + 3120h9

1h̄
6
1 + 75h12

1 h̄
6
1 + 75h1h̄

7
1

+ 3120h4
1h̄

7
1 + 6846h7

1h̄
7
1 + 1380h10

1 h̄
7
1 + 315h2

1h̄
8
1

+ 4050h5
1h̄

8
1 + 4190h8

1h̄
8
1 + 360h11

1 h̄
8
1 + 600h3

1h̄
9
1 + 3120h6

1h̄
9
1

+ 1539h9
1h̄

9
1 + 45h12

1 h̄
9
1 + 15h1h̄

10
1 + 600h4

1h̄
10
1 + 1380h7

1h̄
10
1

+ 315h10
1 h̄

10
1 + 25h2

1h̄
11
1 + 315h5

1h̄
11
1 + 360h8

1h̄
11
1 + 43h11

1 h̄
11
1

+ 15h3
1h̄

12
1 + 75h6

1h̄
12
1 + 45h9

1h̄
12
1 + 3h12

1 h̄
12
1 (B.3.2d)

z(2200) =− 6h3
1 + 5h6

1 + 24h9
1 + 3h12

1 − 12h4
1h̄1 + 136h7

1h̄1 + 76h10
1 h̄1
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− 4h2
1h̄

2
1 + 112h5

1h̄
2
1 + 564h8

1h̄
2
1 + 100h11

1 h̄
2
1 − 72h3

1h̄
3
1

+ 776h6
1h̄

3
1 + 1120h9

1h̄
3
1 + 60h12

1 h̄
3
1 + 51h4

1h̄
4
1 + 2460h7

1h̄
4
1

+ 1115h10
1 h̄

4
1 − 24h2

1h̄
5
1 + 928h5

1h̄
5
1 + 3824h8

1h̄
5
1

+ 600h11
1 h̄

5
1 − 152h3

1h̄
6
1 + 2520h6

1h̄
6
1 + 3328h9

1h̄
6
1

+ 150h12
1 h̄

6
1 + 104h4

1h̄
7
1 + 3584h7

1h̄
7
1 + 1608h10

1 h̄
7
1 − 25h2

1h̄
8
1

+ 600h5
1h̄

8
1 + 2702h8

1h̄
8
1 + 450h11

1 h̄
8
1 − 80h3

1h̄
9
1 + 776h6

1h̄
9
1

+ 1152h9
1h̄

9
1 + 60h12

1 h̄
9
1 − 6h4

1h̄
10
1 + 520h7

1h̄
10
1 + 268h10

1 h̄
10
1

− 4h2
1h̄

11
1 + 16h5

1h̄
11
1 + 168h8

1h̄
11
1 + 40h11

1 h̄
11
1 − 6h3

1h̄
12
1

+ 5h6
1h̄

12
1 + 24h9

1h̄
12
1 + 3h12

1 h̄
12
1 (B.3.2e)

z(0022) =− 4h2
1h̄

2
1 − 24h5

1h̄
2
1 − 25h8

1h̄
2
1 − 4h11

1 h̄
2
1 − 6h̄3

1 − 72h3
1h̄

3
1

− 152h6
1h̄

3
1 − 80h9

1h̄
3
1 − 6h12

1 h̄
3
1 − 12h1h̄

4
1 + 51h4

1h̄
4
1

+ 104h7
1h̄

4
1 − 6h10

1 h̄
4
1 + 112h2

1h̄
5
1 + 928h5

1h̄
5
1 + 600h8

1h̄
5
1

+ 16h11
1 h̄

5
1 + 5h̄6

1 + 776h3
1h̄

6
1 + 2520h6

1h̄
6
1 + 776h9

1h̄
6
1

+ 5h12
1 h̄

6
1 + 136h1h̄

7
1 + 2460h4

1h̄
7
1 + 3584h7

1h̄
7
1 + 520h10

1 h̄
7
1

+ 564h2
1h̄

8
1 + 3824h5

1h̄
8
1 + 2702h8

1h̄
8
1 + 168h11

1 h̄
8
1 + 24h̄9

1

+ 1120h3
1h̄

9
1 + 3328h6

1h̄
9
1 + 1152h9

1h̄
9
1 + 24h12

1 h̄
9
1 + 76h1h̄

10
1

+ 1115h4
1h̄

10
1 + 1608h7

1h̄
10
1 + 268h10

1 h̄
10
1 + 100h2

1h̄
11
1

+ 600h5
1h̄

11
1 + 450h8

1h̄
11
1 + 40h11

1 h̄
11
1 + 3h̄12

1 + 60h3
1h̄

12
1

+ 150h6
1h̄

12
1 + 60h9

1h̄
12
1 + 3h12

1 h̄
12
1 (B.3.2f)

z(2100) =21h3
1 + 70h6

1 + 21h9
1 + 4h1h̄1 + 192h4

1h̄1 + 284h7
1h̄1

+ 24h10
1 h̄1 + 72h2

1h̄
2
1 + 908h5

1h̄
2
1 + 576h8

1h̄
2
1 + 10h11

1 h̄
2
1

+ 684h3
1h̄

3
1 + 2704h6

1h̄
3
1 + 680h9

1h̄
3
1 + 45h1h̄

4
1 + 2600h4

1h̄
4
1

+ 4050h7
1h̄

4
1 + 310h10

1 h̄
4
1 + 432h2

1h̄
5
1 + 5712h5

1h̄
5
1

+ 3616h8
1h̄

5
1 + 60h11

1 h̄
5
1 + 1892h3

1h̄
6
1 + 7728h6

1h̄
6
1

+ 1892h9
1h̄

6
1 + 60h1h̄

7
1 + 3616h4

1h̄
7
1 + 5712h7

1h̄
7
1 + 432h10

1 h̄
7
1

+ 310h2
1h̄

8
1 + 4050h5

1h̄
8
1 + 2600h8

1h̄
8
1 + 45h11

1 h̄
8
1 + 680h3

1h̄
9
1

+ 2704h6
1h̄

9
1 + 684h9

1h̄
9
1 + 10h1h̄

10
1 + 576h4

1h̄
10
1 + 908h7

1h̄
10
1

+ 72h10
1 h̄

10
1 + 24h2

1h̄
11
1 + 284h5

1h̄
11
1 + 192h8

1h̄
11
1 + 4h11

1 h̄
11
1

+ 21h3
1h̄

12
1 + 70h6

1h̄
12
1 + 21h9

1h̄
12
1 (B.3.2g)

z(0021) =4h1h̄1 + 45h4
1h̄1 + 60h7

1h̄1 + 10h10
1 h̄1 + 72h2

1h̄
2
1 + 432h5

1h̄
2
1

+ 310h8
1h̄

2
1 + 24h11

1 h̄
2
1 + 21h̄3

1 + 684h3
1h̄

3
1 + 1892h6

1h̄
3
1

+ 680h9
1h̄

3
1 + 21h12

1 h̄
3
1 + 192h1h̄

4
1 + 2600h4

1h̄
4
1

+ 3616h7
1h̄

4
1 + 576h10

1 h̄
4
1 + 908h2

1h̄
5
1 + 5712h5

1h̄
5
1

+ 4050h8
1h̄

5
1 + 284h11

1 h̄
5
1 + 70h̄6

1 + 2704h3
1h̄

6
1 + 7728h6

1h̄
6
1

+ 2704h9
1h̄

6
1 + 70h12

1 h̄
6
1 + 284h1h̄

7
1 + 4050h4

1h̄
7
1

+ 5712h7
1h̄

7
1 + 908h10

1 h̄
7
1 + 576h2

1h̄
8
1 + 3616h5

1h̄
8
1

+ 2600h8
1h̄

8
1 + 192h11

1 h̄
8
1 + 21h̄9

1 + 680h3
1h̄

9
1 + 1892h6

1h̄
9
1

+ 684h9
1h̄

9
1 + 21h12

1 h̄
9
1 + 24h1h̄

10
1 + 310h4

1h̄
10
1 + 432h7

1h̄
10
1
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+ 72h10
1 h̄

10
1 + 10h2

1h̄
11
1 + 60h5

1h̄
11
1 + 45h8

1h̄
11
1 + 4h11

1 h̄
11
1 (B.3.2h)

z(1010) =3 + 45h3
1 + 75h6

1 + 15h9
1 + 43h1h̄1 + 360h4

1h̄1 + 315h7
1h̄1

+ 25h10
1 h̄1 + 315h2

1h̄
2
1 + 1380h5

1h̄
2
1 + 600h8

1h̄
2
1 + 15h11

1 h̄
2
1

+ 45h̄3
1 + 1539h3

1h̄
3
1 + 3120h6

1h̄
3
1 + 600h9

1h̄
3
1 + 360h1h̄

4
1

+ 4190h4
1h̄

4
1 + 4050h7

1h̄
4
1 + 315h10

1 h̄
4
1 + 1380h2

1h̄
5
1

+ 6846h5
1h̄

5
1 + 3120h8

1h̄
5
1 + 75h11

1 h̄
5
1 + 75h̄6

1 + 3120h3
1h̄

6
1

+ 6846h6
1h̄

6
1 + 1380h9

1h̄
6
1 + 315h1h̄

7
1 + 4050h4

1h̄
7
1 + 4190h7

1h̄
7
1

+ 360h10
1 h̄

7
1 + 600h2

1h̄
8
1 + 3120h5

1h̄
8
1 + 1539h8

1h̄
8
1

+ 45h11
1 h̄

8
1 + 15h̄9

1 + 600h3
1h̄

9
1 + 1380h6

1h̄
9
1 + 315h9

1h̄
9
1

+ 25h1h̄
10
1 + 315h4

1h̄
10
1 + 360h7

1h̄
10
1 + 43h10

1 h̄
10
1 + 15h2

1h̄
11
1

+ 75h5
1h̄

11
1 + 45h8

1h̄
11
1 + 3h11

1 h̄
11
1 (B.3.2i)

z(1100)2 =6h3
1 + 95h6

1 + 96h9
1 + 9h12

1 + 132h4
1h̄1 + 664h7

1h̄1 + 244h10
1 h̄1

+ 16h2
1h̄

2
1 + 1048h5

1h̄
2
1 + 2136h8

1h̄
2
1 + 300h11

1 h̄
2
1 + 288h3

1h̄
3
1

+ 4544h6
1h̄

3
1 + 3880h9

1h̄
3
1 + 180h12

1 h̄
3
1 + 2001h4

1h̄
4
1

+ 10380h7
1h̄

4
1 + 3485h10

1 h̄
4
1 + 96h2

1h̄
5
1 + 6872h5

1h̄
5
1

+ 13976h8
1h̄

5
1 + 1800h11

1 h̄
5
1 + 832h3

1h̄
6
1 + 13440h6

1h̄
6
1

+ 11272h9
1h̄

6
1 + 450h12

1 h̄
6
1 + 2816h4

1h̄
7
1 + 14840h7

1h̄
7
1

+ 4992h10
1 h̄

7
1 + 65h2

1h̄
8
1 + 4800h5

1h̄
8
1 + 9954h8

1h̄
8
1

+ 1350h11
1 h̄

8
1 + 280h3

1h̄
9
1 + 4544h6

1h̄
9
1 + 3960h9

1h̄
9
1

+ 180h12
1 h̄

9
1 + 426h4

1h̄
10
1 + 2272h7

1h̄
10
1 + 832h10

1 h̄
10
1

+ 4h2
1h̄

11
1 + 304h5

1h̄
11
1 + 672h8

1h̄
11
1 + 120h11

1 h̄
11
1 + 6h3

1h̄
12
1

+ 95h6
1h̄

12
1 + 96h9

1h̄
12
1 + 9h12

1 h̄
12
1 (B.3.2j)

z(0011)2 =16h2
1h̄

2
1 + 96h5

1h̄
2
1 + 65h8

1h̄
2
1 + 4h11

1 h̄
2
1 + 6h̄3

1 + 288h3
1h̄

3
1

+ 832h6
1h̄

3
1 + 280h9

1h̄
3
1 + 6h12

1 h̄
3
1 + 132h1h̄

4
1 + 2001h4

1h̄
4
1

+ 2816h7
1h̄

4
1 + 426h10

1 h̄
4
1 + 1048h2

1h̄
5
1 + 6872h5

1h̄
5
1

+ 4800h8
1h̄

5
1 + 304h11

1 h̄
5
1 + 95h̄6

1 + 4544h3
1h̄

6
1 + 13440h6

1h̄
6
1

+ 4544h9
1h̄

6
1 + 95h12

1 h̄
6
1 + 664h1h̄

7
1 + 10380h4

1h̄
7
1

+ 14840h7
1h̄

7
1 + 2272h10

1 h̄
7
1 + 2136h2

1h̄
8
1 + 13976h5

1h̄
8
1

+ 9954h8
1h̄

8
1 + 672h11

1 h̄
8
1 + 96h̄9

1 + 3880h3
1h̄

9
1 + 11272h6

1h̄
9
1

+ 3960h9
1h̄

9
1 + 96h12

1 h̄
9
1 + 244h1h̄

10
1 + 3485h4

1h̄
10
1

+ 4992h7
1h̄

10
1 + 832h10

1 h̄
10
1 + 300h2

1h̄
11
1 + 1800h5

1h̄
11
1

+ 1350h8
1h̄

11
1 + 120h11

1 h̄
11
1 + 9h̄12

1 + 180h3
1h̄

12
1

+ 450h6
1h̄

12
1 + 180h9

1h̄
12
1 + 9h12

1 h̄
12
1 (B.3.2k)

z(1100)(0011) =h1h̄1 + 45h4
1h̄1 + 105h7

1h̄1 + 25h10
1 h̄1 + 34h2

1h̄
2
1 + 510h5

1h̄
2
1

+ 570h8
1h̄

2
1 + 55h11

1 h̄
2
1 + 459h3

1h̄
3
1 + 2610h6

1h̄
3
1 + 1350h9

1h̄
3
1

+ 45h12
1 h̄

3
1 + 45h1h̄

4
1 + 2651h4

1h̄
4
1 + 6510h7

1h̄
4
1 + 1425h10

1 h̄
4
1

+ 510h2
1h̄

5
1 + 8300h5

1h̄
5
1 + 9300h8

1h̄
5
1 + 825h11

1 h̄
5
1

+ 2610h3
1h̄

6
1 + 15372h6

1h̄
6
1 + 7830h9

1h̄
6
1 + 225h12

1 h̄
6
1
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+ 105h1h̄
7
1 + 6510h4

1h̄
7
1 + 16268h7

1h̄
7
1 + 3570h10

1 h̄
7
1

+ 570h2
1h̄

8
1 + 9300h5

1h̄
8
1 + 10604h8

1h̄
8
1 + 990h11

1 h̄
8
1

+ 1350h3
1h̄

9
1 + 7830h6

1h̄
9
1 + 4131h9

1h̄
9
1 + 135h12

1 h̄
9
1

+ 25h1h̄
10
1 + 1425h4

1h̄
10
1 + 3570h7

1h̄
10
1 + 850h10

1 h̄
10
1

+ 55h2
1h̄

11
1 + 825h5

1h̄
11
1 + 990h8

1h̄
11
1 + 121h11

1 h̄
11
1 + 45h3

1h̄
12
1

+ 225h6
1h̄

12
1 + 135h9

1h̄
12
1 + 9h12

1 h̄
12
1 (B.3.2l)

z(1111)− =15h3
1 + 75h6

1 + 45h9
1 + 3h12

1 + 135h4
1h̄1 + 360h7

1h̄1 + 90h10
1 h̄1

+ 612h5
1h̄

2
1 + 855h8

1h̄
2
1 + 90h11

1 h̄
2
1 − 15h̄3

1 + 1740h6
1h̄

3
1

+ 1200h9
1h̄

3
1 + 45h12

1 h̄
3
1 − 135h1h̄

4
1 + 2790h7

1h̄
4
1 + 855h10

1 h̄
4
1

− 612h2
1h̄

5
1 + 2790h8

1h̄
5
1 + 360h11

1 h̄
5
1 − 75h̄6

1 − 1740h3
1h̄

6
1

+ 1740h9
1h̄

6
1 + 75h12

1 h̄
6
1 − 360h1h̄

7
1 − 2790h4

1h̄
7
1 + 612h10

1 h̄
7
1

− 855h2
1h̄

8
1 − 2790h5

1h̄
8
1 + 135h11

1 h̄
8
1 − 45h̄9

1 − 1200h3
1h̄

9
1

− 1740h6
1h̄

9
1 + 15h12

1 h̄
9
1 − 90h1h̄

10
1 − 855h4

1h̄
10
1 − 612h7

1h̄
10
1

− 90h2
1h̄

11
1 − 360h5

1h̄
11
1 − 135h8

1h̄
11
1 − 3h̄12

1 − 45h3
1h̄

12
1

− 75h6
1h̄

12
1 − 15h9

1h̄
12
1 (B.3.2m)

z(2222)+ =− 6h3
1 + 5h6

1 + 24h9
1 + 3h12

1 − 12h4
1h̄1 + 136h7

1h̄1

+ 76h10
1 h̄1 − 8h2

1h̄
2
1 + 88h5

1h̄
2
1 + 539h8

1h̄
2
1 + 96h11

1 h̄
2
1 − 6h̄3

1

− 144h3
1h̄

3
1 + 624h6

1h̄
3
1 + 1040h9

1h̄
3
1 + 54h12

1 h̄
3
1 − 12h1h̄

4
1

+ 102h4
1h̄

4
1 + 2564h7

1h̄
4
1 + 1109h10

1 h̄
4
1 + 88h2

1h̄
5
1 + 1856h5

1h̄
5
1

+ 4424h8
1h̄

5
1 + 616h11

1 h̄
5
1 + 5h̄6

1 + 624h3
1h̄

6
1 + 5040h6

1h̄
6
1

+ 4104h9
1h̄

6
1 + 155h12

1 h̄
6
1 + 136h1h̄

7
1 + 2564h4

1h̄
7
1

+ 7168h7
1h̄

7
1 + 2128h10

1 h̄
7
1 + 539h2

1h̄
8
1 + 4424h5

1h̄
8
1

+ 5404h8
1h̄

8
1 + 618h11

1 h̄
8
1 + 24h̄9

1 + 1040h3
1h̄

9
1 + 4104h6

1h̄
9
1

+ 2304h9
1h̄

9
1 + 84h12

1 h̄
9
1 + 76h1h̄

10
1 + 1109h4

1h̄
10
1

+ 2128h7
1h̄

10
1 + 536h10

1 h̄
10
1 + 96h2

1h̄
11
1 + 616h5

1h̄
11
1

+ 618h8
1h̄

11
1 + 80h11

1 h̄
11
1 + 3h̄12

1 + 54h3
1h̄

12
1 + 155h6

1h̄
12
1

+ 84h9
1h̄

12
1 + 6h12

1 h̄
12
1 (B.3.2n)

z((1111)−)2 =6h3
1 + 95h6

1 + 96h9
1 + 9h12

1 − 2h1h̄1 + 42h4
1h̄1 + 454h7

1h̄1

+ 194h10
1 h̄1 − 36h2

1h̄
2
1 + 124h5

1h̄
2
1 + 1061h8

1h̄
2
1 + 194h11

1 h̄
2
1

+ 6h̄3
1 − 342h3

1h̄
3
1 + 156h6

1h̄
3
1 + 1460h9

1h̄
3
1 + 96h12

1 h̄
3
1

+ 42h1h̄
4
1 − 1300h4

1h̄
4
1 + 176h7

1h̄
4
1 + 1061h10

1 h̄
4
1 + 124h2

1h̄
5
1

− 2856h5
1h̄

5
1 + 176h8

1h̄
5
1 + 454h11

1 h̄
5
1 + 95h̄6

1 + 156h3
1h̄

6
1

− 3864h6
1h̄

6
1 + 156h9

1h̄
6
1 + 95h12

1 h̄
6
1 + 454h1h̄

7
1 + 176h4

1h̄
7
1

− 2856h7
1h̄

7
1 + 124h10

1 h̄
7
1 + 1061h2

1h̄
8
1 + 176h5

1h̄
8
1

− 1300h8
1h̄

8
1 + 42h11

1 h̄
8
1 + 96h̄9

1 + 1460h3
1h̄

9
1 + 156h6

1h̄
9
1

− 342h9
1h̄

9
1 + 6h12

1 h̄
9
1 + 194h1h̄

10
1 + 1061h4

1h̄
10
1

+ 124h7
1h̄

10
1 − 36h10

1 h̄
10
1 + 194h2

1h̄
11
1 + 454h5

1h̄
11
1 + 42h8

1h̄
11
1

− 2h11
1 h̄

11
1 + 9h̄12

1 + 96h3
1h̄

12
1 + 95h6

1h̄
12
1 + 6h9

1h̄
12
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z(2121)+ =21h3
1 + 70h6

1 + 21h9
1 + 8h1h̄1 + 237h4

1h̄1 + 344h7
1h̄1

+ 34h10
1 h̄1 + 144h2

1h̄
2
1 + 1340h5

1h̄
2
1 + 886h8

1h̄
2
1 + 34h11

1 h̄
2
1

+ 21h̄3
1 + 1368h3

1h̄
3
1 + 4596h6

1h̄
3
1 + 1360h9

1h̄
3
1 + 21h12

1 h̄
3
1

+ 237h1h̄
4
1 + 5200h4

1h̄
4
1 + 7666h7

1h̄
4
1 + 886h10

1 h̄
4
1

+ 1340h2
1h̄

5
1 + 11424h5

1h̄
5
1 + 7666h8

1h̄
5
1 + 344h11

1 h̄
5
1 + 70h̄6

1

+ 4596h3
1h̄

6
1 + 15456h6

1h̄
6
1 + 4596h9

1h̄
6
1 + 70h12

1 h̄
6
1

+ 344h1h̄
7
1 + 7666h4

1h̄
7
1 + 11424h7

1h̄
7
1 + 1340h10

1 h̄
7
1

+ 886h2
1h̄

8
1 + 7666h5

1h̄
8
1 + 5200h8

1h̄
8
1 + 237h11

1 h̄
8
1 + 21h̄9

1

+ 1360h3
1h̄

9
1 + 4596h6

1h̄
9
1 + 1368h9

1h̄
9
1 + 21h12

1 h̄
9
1 + 34h1h̄

10
1

+ 886h4
1h̄

10
1 + 1340h7

1h̄
10
1 + 144h10

1 h̄
10
1 + 34h2

1h̄
11
1 + 344h5

1h̄
11
1

+ 237h8
1h̄

11
1 + 8h11

1 h̄
11
1 + 21h3

1h̄
12
1 + 70h6

1h̄
12
1 + 21h9

1h̄
12
1 (B.3.2p)

z(1111)+ =15h3
1 + 75h6

1 + 45h9
1 + 3h12

1 + 8h1h̄1 + 225h4
1h̄1 + 480h7

1h̄1

+ 110h10
1 h̄1 + 136h2

1h̄
2
1 + 1428h5

1h̄
2
1 + 1425h8

1h̄
2
1 + 130h11

1 h̄
2
1

+ 15h̄3
1 + 1224h3

1h̄
3
1 + 5220h6

1h̄
3
1 + 2400h9

1h̄
3
1 + 75h12

1 h̄
3
1

+ 225h1h̄
4
1 + 5302h4

1h̄
4
1 + 10230h7

1h̄
4
1 + 1995h10

1 h̄
4
1

+ 1428h2
1h̄

5
1 + 13280h5

1h̄
5
1 + 12090h8

1h̄
5
1 + 960h11

1 h̄
5
1 + 75h̄6

1

+ 5220h3
1h̄

6
1 + 20496h6

1h̄
6
1 + 8700h9

1h̄
6
1 + 225h12

1 h̄
6
1 + 480h1h̄

7
1

+ 10230h4
1h̄

7
1 + 18592h7

1h̄
7
1 + 3468h10

1 h̄
7
1 + 1425h2

1h̄
8
1

+ 12090h5
1h̄

8
1 + 10604h8

1h̄
8
1 + 855h11

1 h̄
8
1 + 45h̄9

1 + 2400h3
1h̄

9
1

+ 8700h6
1h̄

9
1 + 3672h9

1h̄
9
1 + 105h12

1 h̄
9
1 + 110h1h̄

10
1

+ 1995h4
1h̄

10
1 + 3468h7

1h̄
10
1 + 680h10

1 h̄
10
1 + 130h2

1h̄
11
1

+ 960h5
1h̄

11
1 + 855h8

1h̄
11
1 + 88h11

1 h̄
11
1 + 3h̄12

1 + 75h3
1h̄

12
1

+ 225h6
1h̄

12
1 + 105h9

1h̄
12
1 + 6h12

1 h̄
12
1 (B.3.2q)

B.4 List of Integrals over Polyakov Loops

This chapter contains a list of integrals over Polyakov loops, used in chapter 3.2.2.
Appendix A.3 shows the process of their calculation.∫

dUL3 = 1∫
dUL6 = 5∫
dUL9 = 42∫
dU(L†)3 = 1∫
dU(L†)6 = 5∫
dU(L†)9 = 42
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∫
dUL(L†) = 1∫
dUL2(L†)2 = 2∫
dUL3(L†)3 = 6∫
dUL4(L†)4 = 23∫
dUL5(L†)5 = 103∫
dUL(L†)4 = 3∫
dUL(L†)7 = 21∫
dUL2(L†)5 = 11∫
dUL2(L†)8 = 98∫
dUL3(L†)6 = 47∫
dUL4(L†) = 3∫
dUL5(L†)2 = 11∫
dUL6(L†)3 = 47∫
dUL7(L†) = 21∫
dUL8(L†)2 = 98 (B.4.1)
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