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Abstract

For finite baryon chemical potential, conventional lattice descriptions of quantum chromodynam-
ics (QCD) have a sign problem which prevents straightforward simulations based on importance
sampling. In this thesis we investigate heavy dense QCD by representing lattice QCD with Wilson
fermions at finite temperature and density in terms of Polyakov loops. We discuss the derivation
of 3-dimensional effective Polyakov loop theories from lattice QCD based on a combined strong
coupling and hopping parameter expansion, which is valid for heavy quarks. The finite density sign
problem is milder in these theories and they are also amenable to analytic evaluations.
The analytic evaluation of Polyakov loop theories via series expansion techniques is illustrated

by using them to evaluate the SU(3) spin model. We compute the free energy density to 14th order
in the nearest neighbor coupling and find that predictions for the equation of state agree with
simulations to O(1%) in the phase were the (approximate) Z(3) center symmetry is intact. The
critical end point is also determined but with less accuracy and our results agree with numerical
results to O(10%). While the accuracy for the endpoint is limited for the current length of the
series, analytic tools provide valuable insight and are more flexible. Furthermore they can be
generalized to Polyakov-loop-theories with n-point interactions.
We also take a detailed look at the hopping expansion for the derivation of the effective theory.

The exponentiation of the action is discussed by using a polymer expansion and we also explain how
to obtain logarithmic resummations for all contributions, which will be achieved by employing the
finite cluster method know from condensed matter physics. The finite cluster method can also be
used to evaluate the effective theory and comparisons of the evaluation of the effective action and a
direction evaluation of the partition function are made. We observe that terms in the evaluation of
the effective theory correspond to partial contractions in the application of Wick’s theorem for the
evaluation of Grassmann-valued integrals. Potential problems arising from this fact are explored.
Next to next to leading order results from the hopping expansion are used to analyze and compare

the onset transition both for baryon and isospin chemical potential. Lattice QCD with an isospin
chemical potential does not have a sign problem and can serve as a valuable cross-check. Since we
are restricted by the relatively short length of our series, we content ourselves with observing some
qualitative phenomenological properties arising in the effective theory which are relevant for the
onset transition.
Finally, we generalize our results to arbitrary number of colors Nc. We investigate the transition

from a hadron gas to baryon condensation and find that for any finite lattice spacing the transition
becomes stronger when Nc is increased and to be first order in the limit of infinite Nc. Beyond
the onset, the pressure is shown to scale as p ∼ Nc through all available orders in the hopping
expansion, which is characteristic for a phase termed quarkyonic matter in the literature. Some
care has to be taken when approaching the continuum, as we find that the continuum limit has to
be taken before the large Nc limit. Although we currently are unable to take the limits in this order,
our results are stable in the controlled range of lattice spacings when the limits are approached in
this order.
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Deutsche Zusammenfassung

Die Quantenchromodynamik (QCD) ist die etablierte Theorie zur Beschreibung der starken

Wechselwirkung und bildet neben der Theorie der elektroschwachen Wechselwirkung (welche

in dieser Arbeit vernachlässigt wird) einen Grundpfeiler des Standardmodells der Teilchen-

physik. Die laufende Kopplung der QCD hat die Eigenschaft, dass sie der Größenordnung

eins ist für Prozesse deren Energieskala kleiner als ΛQCD ≈ 150 MeV ist. Aus diesem Grund

können derartige Prozesse nicht mit denen in der Quantenfeldtheorie häufig benutzten Me-

thoden der Störungsentwicklung um den Grenzfall der verschwindenden Kopplung behandelt

werden. Ein erfolgreicher Ansatz mit diesem Problem umzugehen, ist die Theorie auf einem

diskretem Gitter zu behandeln anstelle der kontinuierlichen Raumzeit. Die daraus resultie-

rende Gitter-QCD kann benutzt werden, nicht-perturbative Phänomene der QCD ab-initio

mithilfe von Computersimulationen zu untersuchen. Durch die Diskretisierung wird zwar

aus dem Feynman’schen Pfadintegral ein wohldefiniertes gewöhnliches Integral, eine direkte

numerische Auswertung dieses Integrals ist allerdings nicht möglich, da die Dimension des

Integrals sehr groß ist. Aus diesem Grund werden für die Simulationen stochastische Mont-

Carlo-Simulationen benutzt, bei denen nur die Feldkonfigurationen betrachtet werden, die

den wichtigsten Beitrag zum Endergebnis liefern.

Ein wichtiger Aspekt der QCD ist das Phasendiagramm bei endlicher Temperatur und

Dichte. Führt man allerdings baryochemisches Potential in die Gitter-QCD ein, tritt ein

schwerwiegendes technisches Problem auf. Die Teilchen-Antiteilchen Asymmetrie, die durch

das baryochemische Potential verursacht wird, führt dazu, dass die Fermionen-Determinante

komplex wird und die Verteilung der Feldkonfigurationen nicht einer positiv definiten Boltz-

mannverteilung entspricht. Dieses Vorzeichenproblem der QCD bei endlicher Dichte verhin-

dert eine direkte Anwendung von Monte-Carlo-Methoden in Simulationen. Es gibt verschie-

dene Ansätze dieses Vorzeichenproblem zu umgehen, bisher ist es jedoch nicht gelungen die

QCD bei großen Dichten und niedrigen Temperaturen verlässlich zu behandeln. In dieser
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Deutsche Zusammenfassung

Arbeit untersuchen wir QCD bei endlichen Dichte und niedriger Temperatur mithilfe einer

Darstellung der Gitter-QCD mit Wilson-Fermionen durch eine Polyakov-loop-Theorie verrin-

gerter Dimension.

In Kapitel 2 führen wir Polyakov-loop-Theorien ein und diskutieren zunächst, warum

sie bei der Lösung des Vorzeichenproblems helfen. Die Polyakov-loop-Theorien erben zwar

das Vorzeichenproblem der zugrundeliegenden Gitter-QCD, es gibt jedoch mehrere Ansätze

Polyakov-loop-Theorien dennoch erfolgreich auszuwerten. Dazu gehören die direkte Simu-

lation mithilfe von Reweighting oder mittels der Complex-Langevin-Methode, Dualisierung

durch Überführung in eine “flux”-Darstellung, analytische Auswertung durch Reihenentwick-

lung und die Molekularfeldmethode, welche für Polyakov-loop-Theorien mit weitreichenden

Wechselwirkungen sehr gute Resultate liefert. Überzeugt davon, dass Polyakov-loop-Theorien

bei der Lösung des Vorzeichenproblems helfen, erklären wir, wie diese aus der Gitter-QCD ge-

wonnen werden können. Im Prinzip gibt es zugehörig zu einer Gitterdiskretisierung der QCD

bei endlicher Temperatur genau eine Polyakov-loop-Theorie. Sie ist die Theorie, die man er-

hält, wenn alle Felder bis auf die zeitlichen Eichtransporter aus der Zustandssumme integriert

werden. Dies ist nicht ohne Weiteres möglich und man muss Approximationen einführen oder

gewisse Ansätze für die resultierende Theorie machen. Aus diesem Grund sprechen wir oft von

Theorien. Zur Herleitung wird in dieser Dissertation eine kombinierte Starkkopplungsentwick-

lung und Hopping-Parameter-Entwicklung um schwere Quarkmassen benutzt. Dieser Ansatz

erlaubt die analytische Auswertung der notwendigen Integrale. Die Entwicklungen wurden

in vorherigen Arbeiten benutzt und wir fassen die notwendigen mathematischen Grundlagen

zu den Entwicklungen und der Auswertung der Integral zusammen. Außerdem diskutieren

wir Resultate für das Phasendiagramm schwerer Quarks, die bisher anhand der auf diese

Art gewonnenen Polyakov-loop-Theorien erhalten wurden. Zuletzt werden dann in Kapitel 2

noch sogenannte Polymer-Entwicklungen eingeführt. In ihrer abstrakten Formulierung stel-

len diese einen Zusammenhang zwischen einer großen Klasse von Zustandssummen und deren

Logarithmus her. Da die effektive Theorie als Logarithmus der QCD-Zustandssumme abzüg-

lich der Integration zeitlicher Eichtransporter definiert ist, sind Polymer-Entwicklungen ein

wichtiges Werkzeug für die Herleitung der Theorie. Wir werden insbesondere genau erklären

wie die Entwicklung des Logarithmus zu einer Entwicklung führt, die im Sinne von zusam-
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menhängender Graphen dargestellt werden kann.

Polymer-Entwicklungen können auch für die analytische Auswertung effektiver Polyakov-

loop-Theorien durch Reihenentwicklung benutzt werden. Dies wird in Kapitel 3 anhand des

sogenannten SU(3)-Spin-Modells untersucht. Das SU(3)-Spin-Modell ist die Polyakov-loop-

Theorie, die man erhält wenn man für beide oben erwähnten Entwicklungen, die zur Her-

leitung der effektiven Theorie benutzt werden, jeweils nur die Terme führender Ordnung

benutzt. Somit stellt sie eine krude Approximation der Gitter-QCD dar, enthält aber bereits

dennoch wichtige Eigenschaften der Wirkung der QCD wie die Z(3)-Zentrumssymmetrie bei

unendlicher Quarkmasse und die Roberge-Weiss-Symmetrie für komplexes chemisches Po-

tential. Da das Modell auch ein Vorzeichenproblem bei endlicher Dichte hat und bereits er-

folgreich mit verschiedenen Methoden ausgewertet wurde, stellt es ein optimalen Testfall für

die Anwendung neuer Strategien zur Lösung von Polyakov-loop-Theorien dar. Dazu stellen

wir zunächst zwei mögliche Arten der Reihenentwicklung des Spin-Modells vor, die soge-

nannte Weak-Graph-Entwicklung und die Free-Graph-Entwicklung. Bei beiden Entwicklun-

gen leitet man die Dichte der freie Energie im thermodynamischen Limes als Entwicklung in

der Nächsten-Nachbar-Kopplung her und stellt die Koeffizienten der Entwicklung als zusam-

menhängende Graphen dar. In beiden Fällen muss man abzählen auf wie viele verschiedene

Arten die Graphen auf das der Theorie zugrundeliegende Gitter eingebettet werden kön-

nen, um gewisse kombinatorische Vorfaktoren der Koeffizienten korrekt zu bestimmen. Dabei

hat man bei der Free-Graph-Entwicklung den Vorteil, dass bei der Einbettung nur darauf

zu achten ist, dass benachbarte Vetices eines Graphs auf nächste Nachbarn des Gitters ge-

setzt werden. Bei der Weak-Graph-Entwicklung unterliegt man zusätzlich der Einschränkung,

dass verschiedene Vertices eines Graphen nicht auf den selben Gitterpunkt gesetzt werden

dürfen. Da die Free-Graph-Entwicklung im Fall des Spin-Modells somit einfacher durchzu-

führen ist untersuchen wir diese genauer und die Weak-Graph-Entwicklung sollte lediglich

als Einführung in die kompliziertere Entwicklung in Kapitel 4 betrachtet werden. Ein wei-

terer Vorteil der Free-Graph-Entwicklung ist, dass durch die geringen Einschränkungen an

die Einbettungen sogenannte Renormierungsprozeduren durchgeführt werden können, welche

allerdings nicht mit denen aus der Quantenfeldtheorie bekannten Renormierungen zur Ent-

fernung von Ultraviolett-Divergenzen zu verwechseln sind. Wir zeigen wie eine sogenannte
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Vertex-Renormierung beim Spin-Modell durchgeführt werden kann, mithilfe derer man die

graphentheoretische Komplexität der Entwicklung verringer kann. Dies führt dazu, dass man

bei der Entwicklung nur solche zusammenhängende Graphen betrachten muss, die nicht aus-

einander fallen, wenn ein Vertex und alle Kanten, die diesen Vertex berühren, entfernt werden.

Mithilfe dieser Renormierung ermitteln wir die Dichte der freie Energie zur 14ten Ordnung in

der Nächsten-Nachbar-Kopplung. Mit verschiedenen Methoden untersuchen wir die ermittelte

Reihe dann und die resultierende Zustandsgleichung stimmt in der Phase, in der die Zentrums-

symmetrie nicht spontan gebrochen ist, zu ungefähr 1% mit dem Endergebnis numerischer

Simulationen überein. Die Bestimmung des Phasenübergangs ist schwieriger und für Fälle in

denen ein Übergang erste Ordnung vorliegt kann nur eine obere Grenze gegeben werden. Das

Spin-Modell hat einen Phasenübergang erster Ordnung der in einem kritischen Punkt zweiter

Ordnung endet. Dieser Endpunkt kann gut mithilfe von Padé-Approximanten beschrieben

werden und durch die Ermittlung von Schnittpunkten verschiedener Padé-Approximanten

verschiedener Observablen gelingt die Bestimmung des Endpunkts mit einer Genauigkeit

der Größenordnung O(10%). Die analytische Vorgehensweise kann somit nicht immer mit

der Genauigkeit numerischer Simulationen mithalten, ist jedoch flexibler und kann auch auf

Polyakov-loop-Theorien mit n-Punktkopplungen angewendet werden.

In Kapitel 4 untersuchen wir die Hopping-Parameter-Entwicklung zur Herleitung der ef-

fektiven Theorie genauer. Im Gegenteil zu vorherigen Arbeiten wählen wir einen Ansatz, bei

denen die räumlichen Eichfelder vor den Graßmann-wertigen Fermionenfeldern ausintegriert

werden. Wir erklären wie die in anderen Arbeiten vernachlässigten Nτ -Korrekturen syste-

matisch berechnet werden können und wie die effective Wirkung als Exponent geschrieben

werden kann mithilfe einer Polymer-Entwicklung. Der graphische Methode die sich daraus

zur Herleitung der effektiven Theorie ergibt erleichtert die Diskussion von logarithmischen

Resummationen. Wir argumentieren, dass diese logarithmischen Resummationen wichtig sind

um Verletzungen der Einschränkungen, die durch die Nilpotenz der Graßmannzahlen gege-

ben sind, zu vermeiden. Ein systematische Herleitung aller logarithmischer Resummationen

kann auf natürliche Weise mithilfe der Finite-Cluster-Methode erzielt werden, welche aus

der Festkörperphysik bekannt ist. Als Abschluss des Kapitels zeigen wir wie die effektive

Theorie mithilfe der Finite-Cluster-Methode auch ausgewertet werden kann und vergleichen
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die direkte Auswertung der Zustandssumme der QCD mit der Auswertung der effektiven

Theorie. Hierbei stellt sich heraus, dass die effektive Theorie zu Termen führen kann, die

einer teilweisen Anwendungen des Wick’schen Theorems zur Auswertung von Graßmann-

Integralen entsprechen. Mögliche Probleme die sich anhand dieser Tatsache ergeben werden

diskutiert. Als Nebenprodukt dieses Kapitels wir die effektive Theorie bis zur vierten Ord-

nung im Hopping-Parameter hergeleitet und ausgewertet. Diese Entwicklung wird dann in

den darauf folgenden Kapiteln ausgewertet.

In Kapitel 5 wird zunächst die Onset-Transition, die bei niedriger Temperatur auftritt,

untersucht. Hierbei werden sowohl der Fall mit baryochemischem Potential als auch der Fall

mit Isospin-chemischem Potential untersucht. Neutronensterne sind typische Systeme bei de-

nen eine Isospin-Asymmetrie vorliegt. Wir beschränken uns allerdings auf die Untersuchung

von Systemen in denen entweder nur baryochemisches Potential oder nur Isospin-chemisches

Potential vorliegen. Letztere treten zwar in der Natur nicht auf, sind aber theoretisch gut

verstanden, da sie kein Vorzeichenproblem haben und liefern somit gute Möglichkeit die

Ergebnisse der effektiven Theorie zu überprüfen. In der Tat kann der Onset bei verschwin-

dender Temperatur in beiden Fällen anhand relativ einfacher phänomenologischer Tatsachen

und statistischer Argumente verstanden werden. Da wir mit der relativ kurzen Reihenent-

wicklung die uns zu diesem Zeitpunkt zur Verfügung steht keine Verlässliche Aussagen zu

Phasenübergängen machen können, begnügen wir uns damit zu überprüfen ob wir phänome-

nologischen Tatsachen, die für die charakteristischen Eigenschaften des Onsets verantwortlich

sind, qualitativ reproduzieren können. Wir finden Hinweise darauf, dass die effektive Theo-

rie korrekt das Auftreten von attraktiven Nukleonen beziehungsweise repulsiven Pionen als

effektive Freiheitsgrade der QCD vorhersagt.

Anschließend verallgemeinern wir in Kapitel 6 unsere Resultate auf eine beliebige Anzahl

an Farben Nc. Wir sehen, dass in diesem Fall der Onset von der Hadronen-Gas-Phase zur

kondensierten nuklearen Materie für alle untersuchten Gitterabstände stärker wird wenn Nc

erhöht wird und im Limes Nc →∞ stets erster Ordnung ist. Darüber hinaus stellen wir fest,

dass in der Phase mit kondensierten Baryonen der Druck gemäß p ∼ Nc skaliert in allen Ord-

nungen der Hopping-Parameter-Entwicklung die uns zur Verfügung stehen. Dieses Verhalten

des Drucks führt zur Vorhersage dass es sich hierbei um eine sogenannte quarkyonische Phase
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handelt, die sowohl baryonische als auch Quark-artige Eigenschaften hat. Sie unterschiedet

sich von der Hadronen-Gas-Phase, deren Druck mit N0
c skaliert, und dem Quark-Gluonen-

Plasma, bei dem p ∼ N2
c . Da den Ergebnissen eine diskreten Raumzeit unterliegt sind diese

durch die Ausbildung eines Kristalls saturierter Quarkmaterie aufgrund des Pauli-Prinzips

verfälscht. Zwar ist das Bild der quarkyonischen Materie verträglich mit der Ausbildung ei-

nes solchen Kristalls, für Kontinuumsphysik sollte allerdings der Kontinuumslimes betrachtet

werden und wir sehen dass dieser vor dem Limes Nc → ∞ genommen werden muss. Dies

ist anhand der Reihenentwicklung die uns im Moment zur Verfügung steht nicht möglich,

im Bereich der Gitterabstände die unter Kontrolle sind scheinen unsere Ergebnisse allerdings

mit der korrekten Reihenfolge der Grenzwerte verträglich.

Abschließend geben wir in Kapitel 7 eine Fazit unserer Ergebnisse und einen Ausblick

auf mögliche Projekte, die auf den Resultaten der Dissertation aufbauen und diese erweitern

könnten. Hierbei sei insbesondere auf die Möglichkeit hingewiesen, die Finite-Cluster-Methode

in einer numerischen Bestimmung der effektiven Kopplungen der Polyakov-loop-Theorie zu

benutzen.

In einem Appendix werden unter anderem im Haupttext benötigte graphentheoretische

Begriffe zusammengetragen und ein erzeugendes Funktional für SU(N)-Integrale hergeleitet.

Außerdem werden einige Notationen die im Text eingeführt wurden aufgeführt.

xii



1 Introduction
With the discovery of the Higgs boson [1, 2], the last missing piece in the description of the
Standard Model of particle physics has been found. Although it is often said in popular scientific
articles that the Higgs particle is the particle “that gives you mass”, the main contribution to the
mass of everyday objects is actually dynamically generated according to the Standard Model. This
dynamical mass generation is due to the strong interactions, of which quantum chromodynamics
(QCD) is the established theory. Besides the electroweak interactions (which we will neglect in this
thesis), QCD is one pillar of the Standard Model. It describes not only the main contribution of
the interactions between nucleons and other hadrons, but also the structure and the dynamically
generated masses of these particles, which are built out of the fundamental degrees of freedoms of
QCD, quarks and gluons. In the language of quantum field theory, QCD is an SU(3) Yang-Mills
gauge theory and the gauge fields are coupled to Nf = 6 fermion fields. The elementary excitations
of the gauge fields correspond to the massless spin-1 gluons, while the fermion fields correspond to
the massive quarks with spin 1/2. Despite describing a large range of physical phenomenon, the six
masses of the quarks and the strong-interaction coupling constant g are the only free parameters
of the theory.
The renormalization procedures necessary to do calculations in the theory introduce a dependence

of the coupling on the energy scale of the process that one is describing, a phenomenon called
running coupling. For asymptotically large energies the coupling goes to zero (asymptotic freedom),
while at the characteristic energy scale of QCD ΛQCD ≈ 150 MeV it becomes of order one (infrared
slavery), necessitating a non-perturbative description. This infrared slavery is often said to be
the reason for the observation that the bound hadrons which are the asymptotic particle states
of QCD are singlets under transformations of the SU(3) “color” group, the phenomenon of color
confinement. However, the asymptotic particles of a gauge-Higgs theory are also color singlets and
the dynamics of such a theory is similar to that of the weak interactions. Indeed, the question on
how to best define confinement such that it characterizes the situation in QCD best is actually not
completely clear and for an overview of the subtleties involved we refer to [3].
Independent of the subtleties surrounding confinement, perturbative methods based on the ex-

pansion in the strong coupling constant g are certainly not valid at low energies and one needs
alternative methods that can describe non-perturbative phenomenon like dynamical mass genera-
tion. One such approach, enabling ab-initio calculation of non-perturbative phenomena in QCD,
is the lattice formulation of QCD. Originally proposed by Kenneth Wilson [4], it replaces the
continuous space-time by a discrete lattice with a minimal length scale. In this way a cut-off is
implemented and the Feynman path integrals of the theory are well-defined. This discretization
is implemented in a way such that important properties of the continuum theory are preserved,
namely gauge invariance and the positivity of the metric of the Hilbert space of physical states
[5]. For fermions, some care has to be taken such that chiral symmetry can be recovered in the
continuum without introducing spurious fermion flavors [6–8]. With the help of Monte-Carlo im-
portance sampling and sufficient computing power one can obtain numerical values for observables
in the non-perturbative regime which can be related to physical units via scale setting [9, 10] and,
given small enough lattices, be extrapolated to give results for the continuum theory. Building on
improvements of the formulation, algorithmic developments and Moore’s law, impressive results
concerning the physics of QCD have been achieved, for example the determination of light hadron
masses [11] in agreement with results from experiments.
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1 Introduction

Despite the success of lattice QCD, there are still open problems. One important question is that
of the phase structure of QCD in the (T, µB)-plane of finite temperature and finite baryon chemical
potential. This phase diagram is not only of theoretical interest for the general understanding
of QCD, but also plays an important role in cosmology and astrophysics, as it is relevant for
the state of the entire universe shortly after the Big Bang and also for neutron stars and their
mergers in today’s universe. Furthermore, there are several experiments that attempt to recreate
similar environments by colliding heavy ions in order to probe the thermodynamic properties of
strong interacting matter. The Large Hadron Collider (LHC) at Cern in Genf explores the phase
diagram at low densities and high temperatures, while the Relativistic Heavy Ion Collider at the
Brookhaven national lab in New York can access somewhat larger densities. There are several
upcoming facilities that will give data at lower temperatures and even higher baryon densities.
These include the Nuclotron-based Ion Collider fAcility (NICA) at the Joint Institute for Nuclear
Research (JINR) in Dubna, the Compressed Baryonic Matter Experiment (CBM) at the Facility
for Antiproton and Ion Research in Europe (FAIR) at Darmstadt and the J-PARC heavy ion
project (J-PARC-HI) at the Japan Proton Accelerator Research Complex (J-PARC) in Tōkai. An
understanding of the phase diagram is important to predict or correctly interpret the results of
these experiments.
From the theory side, the case µB = 0 is well understood from conventional lattice QCD with

importance sampling. For low temperatures the quarks and gluons are confined into hadrons
and the chiral symmetry of QCD is spontaneously broken by a non-vanishing quark condensate.
Increasing the temperature, there is a chiral and deconfinement crossover transition [12] at a pseudo-
critical temperature of Tpc ≈ 155 MeV [13, 14] to a phase commonly termed the quark-gluon plasma
(QGP). Recent studies suggest that for temperatures right above the crossover the relevant degrees
of freedom are actually chirally symmetric quarks bound by strings of the chromoelectric field
[15, 16] and it is suggested to term this regime a “stringy fluid” instead of a plasma. Only for
temperatures ' 1 GeV quasi-free behavior of the quarks and a full restoration of chiral symmetry
are observed.
Using lattice QCD, one can also investigate the situation with unphysical quark masses and one

observes that depending on the quark masses the crossover can turn into a true phase transition
of 1st or 2nd order. Investigating this question for different combinations of the up-, down- and
strange-quark masses leads to the so-called Columbia plot, for an overview of recent results see [17].
While this may seem like an academic exercise, it can nevertheless give interesting insights in the
structure of QCD and can give ideas for the phase structure for regimes which cannot be reached
currently.
For µB > 0, a severe technical problem occurs when one attempts simulations based on lattice

QCD. One observes that the particle-antiparticle asymmetry due to the baryon chemical potential
destroys the reality of the fermion determinant. Consequently, it is not possible to obtain a real and
positive definite Boltzmann weight that is necessary for the application of Monte-Carlo importance
sampling. This is known as the finite density sign problem. Several methods have been developed
in an attempt to deal with this sign problem [18, 19]. Of those, reweighting techniques [20–24],
analytic continuation from imaginary chemical potential (where no sign problem occurs) [25–28]
and the Taylor expansion method [29–34] are limited to rather small chemical potentials or high
temperatures µB/T / 3. Attempts to study larger chemical potentials and lower temperatures have
been made using the complex Langevin approach [35–37], the Lefschetz thimble method [38–42], the
density of states method [43–45], a canonical approach [46–48] and by finding dual representations
of QCD [49–55]. All these methods have advantages and shortcomings and so far none of them can
be used to study QCD at high densities and low temperatures for physical parameters close to the
continuum.
In the parameter region µB/T / 3, where reliable predictions can be made, there are so far no
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signs that the chiral transition turns critical [17, 56]. Recently, predictions of a critical point have
been made in the range µB/T ≈ 4–6 using Dyson-Schwinger equations [57], the functional renor-
malization group [58] and a combination of these methods [59], but the systematic uncertainties
are not yet under control.
In this thesis we are especially interested in the cold and dense region µB/T � 1. It is expected

that there is a nuclear onset transition when going along the chemical potential axis for low tem-
peratures. Beyond that onset there are interesting conjectures about exotic phases, for example
quarkyonic matter (which we will discuss in chapter 6) and color superconducting phases [60]. In
this thesis, we study cold and dense QCD by considering a dimensional reduced representation of
QCD in terms of Polyakov loops. More precisely, we will study 3-dimensional effective Polyakov
loop theories of (3 + 1)-dimensional lattice QCD at finite temperature and density.

In chapter 2 we will introduce these theories and discuss some basic aspects concerning their
derivation and evaluation. In that chapter, we will also discuss Polymer expansions, as they are a
useful tool for deriving and evaluating these theories. After that, in chapter 3, we take a closer look
at the analytic evaluation of these theories via series expansion methods by means of a simple model.
We will discuss the combinatorial and graph theoretic problems related to the expansion and give a
short overview over the results obtained from the series expansion. Chapter 4 is then concerned with
an alternative approach to the hopping parameter expansion. The hopping parameter expansion
is an expansion around the heavy quark limit that we use for the derivation of the effective theory.
Using this approach, we will take a closer look at some of the structural aspects of the hopping
expansion. As a side effect, we will derive and evaluate the effective theory to 4th order in the
hopping parameter. Based on these results, we will discuss the onset transition both for baryon
and isospin chemical potential in chapter 5. Isospin chemical potential is relevant for physical
systems like neutron stars. Furthermore, systems with pure isospin chemical potential have no
sign problem and are therefore relatively well understood theoretically. Therefore they can serve
as a valuable cross-check. Being constrained to relatively low orders in our expansion, we will be
mainly concerned with the discussion of qualitative properties. In chapter 6, we will discuss the
generalization of our results to arbitrary number of colors Nc. Based on this, we will investigate the
scaling properties of heavy dense QCD in the limit Nc →∞ and check if our results are consistent
with the conjectures that lead to the prediction of quarkyonic matter. Finally, we will give our
conclusions and discuss possible avenues for future research in chapter 7. We note that in the
appendix we collect some notations which are introduced in the main text but might be missed if
only certain sections of the text are of interest.
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2 Basics

2.1 Effective Polyakov loop theories of lattice QCD
As mentioned in the introduction, our tool to deal with the sign problem in lattice QCD are 3-
dimensional Polyakov loop effective theories of (3+1)-dimensional lattice QCD. Since the underlying
lattice gauge theory has a sign problem, it is not surprising, that this is also the case for the resulting
Polyakov loop action. In what sense then do these theories help when dealing with the sign problem?

2.1.1 Evaluation of Polyakov loop theories with a sign problem

Although the effective theories also have a sign problem at finite baryon chemical potential, there
have been several successful efforts to deal with this sign problem:

• Reweighting has been applied with fully controlled average sign up to µ/T / 3 to a nearest
neighbor Polyakov loop action [61].

• Furthermore, stochastic quantization using complex Langevin was employed [62–64], also
beyond nearest neighbor interactions [65, 66].

• Some nearest neighbor actions have also been shown to be solvable by converting the action
to a dual “flux” representation [61, 67–70].

• Beyond that the theories are amenable to analytic methods. The mean field approach can be
used [63, 71, 72]. A comparison of mean field and complex Langevin results in effective theories
with long range interactions have shown nearly perfect agreement between the methods and
when they fail to do so, it was found to be due to the branch cut crossing problem in the
complex Langevin evolution [66].

• Finally, the analytic evaluation can also be done by series expansion methods leading to a
linked cluster expansion. This will be discussed in chapter 3 for a nearest neighbor action to
high orders and has been extended to n-point interactions in [73, 74].

Therefore it seems, that the sign problem is more tractable for Polyakov loop effective theories.
The Polyakov loop being the order parameter for the spontaneous breaking of the Z(Nc) center
symmetry of pure gauge theory, these theories are not only of practical relevance for the sign
problem, but also of theoretical interest. For example, they are the basis of the Svetitsky-Yaffe
conjecture concerning the critical behavior of the finite temperature deconfinement transition in
gauge theories [75].
Naturally, the next question is how to obtain sensible Polyakov loop actions.

2.1.2 Derivation of the effective actions

Dimensionally reduced effective Polyakov loop theories can be derived from full lattice QCD by
integrating out all fields except of the temporal gauge transporters. This in itself is of course a
challenging task similar to solving full QCD, so some approximations and truncations have to be
employed. Therefore, although there is in principle the unique and exact Polyakov loop theory of
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2 Basics

an underlying lattice theory, in practice it makes sense to speak of theories. The earliest work on
deriving effective Polyakov loop theories from thermal pure gauge theory based on strong coupling
expansion can be found in [76]. Later on, fermions were included by a leading order (heavy quark)
hopping expansion [71, 77, 78], resulting in a nearest neighbor action of the form (the notation will
become clear in the next sections)

Seff = −
∑

n∈Λs

(
τ

3∑
k=1

[L(n)L∗(n + ek) + L∗(n)L(n + ek)] + κeµL(n) + κe−µL∗(n)
)
, (2.1)

where µ is the chemical potential and κ and τ are effective couplings depending on gauge coupling,
quark mass and temperature.
Of course it is important to understand what happens when one moves away from the strong

coupling and heavy quark limit. To this end, the authors of [79] considered higher order corrections
in a resummed strong coupling expansion, observing much better results than in direct strong cou-
pling calculations of thermodynamic observables [80, 81]. In the same vein, higher order corrections
to the hopping expansion were included in [61, 65, 73]. Alternatively, non-perturbative approaches
to extract the effective action have been investigated. Early studies employed renormalization-
group inspired bond moving procedures [82] and microcanonical methods [83]. More recent efforts
have been the inverse Monte Carlo method [84, 85], the relative weights method [86–91] and the
expectation value matching procedure in [92].
In this thesis, we will focus on the strong coupling and hopping expansion. Note that the non-

perturbative approaches usually need some ansatz for the effective action. Since the strong coupling
and hopping expansions give general insights about the structure of the Polyakov loop theories,
they are also relevant for the non-perturbative determinations.
After defining the Polyakov loop effective theory, we will briefly introduce how the expansions are

used to perform the necessary integrations along the lines of [65, 79]. In anticipation of chapter 6,
we will formulate everything in terms of arbitrary number of colors Nc as we did in [93], and
therefore will also include results from [94], where the derivation of the effective theory using the
expansions has also been discussed for general Nc.
Our starting point is lattice QCD with standard Wilson fermions and the usual Wilson gauge

action.

Lattice QCD at finite temperature and density with Wilson fermions

Finite temperature is implemented by a compact euclidean time dimension with Nτ = 1/aT slices
and (anti-) periodic boundary conditions for (fermions) bosons. Finite chemical potential µ is
introduced by a factor of exp((−)aµ) in front of temporal (anti-) quark hops.
Let us be a bit more specific and also introduce some notation (which largely corresponds to that

in [95]). The fundamental quantity we are interested in is the grand-canonical partition function

Z =
∫

d[U ]d
[
Ψ, Ψ̄

]
e−Sg [U ]−Sf [U,Ψ,Ψ̄] (2.2)

defined on a 4-dimensional lattice

Λ =
{
n = (τ, n1, n2, n3) | 0 ≤ τ < Nτ , 0 ≤ ni < 3

√
Ns

}
. (2.3)

The partition function contains a path integral over SU(Nc)-valued gauge transporters, which can
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2.1 Effective Polyakov loop theories of lattice QCD

be written as a product of SU(Nc) Haar integrals

d[U ] =
∏
n∈Λ

3∏
µ=0

dUµ(n) . (2.4)

The path integral over the Grassmann-valued quark fields reads

d
[
Ψ, Ψ̄

]
=
∏
n∈Λ

∏
f,α,c

dΨ(n)fα,c dΨ̄(n)fα,c , (2.5)

where f , α and c refer to flavor-, Dirac- and color indices, respectively.
The Wilson gauge action is defined to be

Sg[U ] = − β

2Nc

∑
n∈Λ

∑
µ<ν

[
tr(Uµν(n)) + tr

(
Uµν(n)†

)]
, (2.6)

with the so-called plaquette variable Uµν

Uµν(n) = Uµ(n)Uν(n+ eµ)U−µ(n+ eµ + eν)U−ν(n+ eν) (2.7)

and β = 2Nc/g2 denotes the lattice gauge coupling. Writing PΛ for the set of all positively oriented
plaquettes of the lattice this action can be written in the form

Sg[U ] =
∑
p∈PΛ

Sg,P (Up) (2.8)

with
Sg,P (U) = − β

2Nc

[
tr(U) + tr

(
U †
)]
. (2.9)

The fields occurring in the gauge action are periodic in all directions of the lattice

Uµ(n) = Uµ(n+Nτe0), (2.10)
Uµ(n) = Uµ(n+ 3

√
Nsei), ∀i ∈ {1, 2, 3}. (2.11)

The fermion part of the action reads

Sf [U,Ψ, Ψ̄] =
∑
n∈Λ

{
Ψ̄(n)Ψ(n)

−
[
Ψ̄(n)Keaµ(1− γ0)U0(n)Ψ(n+ e0)

+ Ψ̄(n+ e0)Ke−aµ(1 + γ0)U0(n)†Ψ(n)
]

−
3∑
i=1

[
Ψ̄(n)K(1− γi)Ui(n)Ψ(n+ ei)

+ Ψ̄(n+ ei)K(1 + γi)Ui(n)†Ψ(n)
]}
.

(2.12)

Here, we used matrix-vector notation in flavor, Dirac and color space. The hopping parameter
matrix K is related to the bare quark masses of the different flavors via

K = diag(κ(1), . . . , κ(Nf )) (2.13)
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= diag(1/2am(1)
b

+8, . . . , 1/2am
(Nf )
b

+8) (2.14)

and µ is simply the diagonal matrix containing the chemical potentials of the different flavors

µ = diag(µ(1), . . . , µ(Nf )). (2.15)

Finally the fermions fields are periodic in spatial directions and anti-periodic in temporal direc-
tion:

Ψ(n) = −Ψ(n+Nτe0), (2.16)
Ψ(n) = Ψ(n+ 3

√
Nsei), ∀i ∈ {1, 2, 3}. (2.17)

Definition of the effective theory

As mentioned above, the effective theory is obtained from full lattice QCD by integrating out the
Grassmann fields and the spatial gauge links:

Z =
∫

d[U ]d
[
Ψ, Ψ̄

]
e−Sg [U ]−Sf [U,Ψ,Ψ̄] (2.18)

=:
∫

d[U0] e−Seff [U0], (2.19)

=⇒ Seff [U0] = − log
(∫

d[Us]d
[
Ψ, Ψ̄

]
e−Sg [U ]−Sf [U,Ψ,Ψ̄]

)
. (2.20)

Here,d[U0] and d[Us] denote the integration over the temporal/spatial links

d[U0] =
∏
n∈Λ

dU0(n) , (2.21)

d[Us] =
∏
n∈Λ

3∏
µ=1

dUµ(n) . (2.22)

The measure in equation (2.21) for the integration over the temporal links in equation (2.19) still
contains a sum over all lattice points, so why is the effective theory 3-dimensional? It is especially
easy to see this by exploiting gauge invariance. To this end, we pick a gauge where all temporal
links are equal to 1 except of those with τ = Nτ − 1.1 This means that the link U0(Nτ − 1,n) will
correspond to the whole Wilson line closing through the periodic boundary

W (n) =
Nτ−1∏
τ=0

U0(τ,n), (2.23)

and the effective theory only depends on these Wilson lines.
In order to show that it is possible to choose such a gauge, we explicitly give the corresponding

gauge transformation following the maximal tree procedure outlined in, for example, [95]. To this
end, we write the lattice as a product of spatial lattices obtained from equal time slices Λ = Λτ×Λs,
which means,

Λτ = {τ | 0 ≤ τ ≤ Nτ}, (2.24)

Λs =
{

n = (n1, n2, n3) | 0 ≤ ni ≤ 3
√
Ns

}
. (2.25)

1In principle one can of course choose the τ for the link that will not be equal to 1 arbitrarily, for example in [72]
τ = 0 is used. However, the choice τ = Nτ − 1 gives the static propagator the simplest form, see equation (4.16).
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2.1 Effective Polyakov loop theories of lattice QCD

Then, it is enough to construct the transformation for some n ∈ Λs and repeat the process for all
other elements of Λs.

Gauge invariance of Sg and Sf implies that they are unchanged if we make the local replacement

U0(τ,n)→ Ω(τ,n)U0(τ,n)Ω(τ + 1,n)†, (2.26)

for all τ ∈ Λτ , where all Ω are arbitrary SU(Nc)-matrices. Specifically, if we choose Ω(0,n) = 1

and Ω(1,n) = U(0,n), U(0,n) will be transformed to unity:

U0(0,n)→ 1U0(0,n)U0(0,n)† = 1. (2.27)

This choice determines Ω(2,n), if we demand that U(1,n) is also transformed to unity:

U0(1,n)→ Ω(1,n)U0(1,n)Ω(2,n)† != 1, (2.28)
=⇒ Ω(2,n) = U0(0,n)U0(1,n). (2.29)

Continuing this way, all U0(τ,n) can be transformed to unity except of U0(Nt − 1,n), where
no additional choices for Ω can be made due to the periodic boundary conditions, which imply
Ω(Nτ ,n) = Ω(0,n). In total, one has:2

Ω(τ,n) =
τ−1∏
τ ′=0

U0(τ ′,n), (2.30)

U0(τ,n)→
{
1, if τ < Nτ − 1,∏Nτ−1
τ=0 U0(τ,n) if τ = Nτ − 1.

(2.31)

Due to the left-invariance of the Haar measure, we can make the additional replacement

U0(Nτ − 1)→
Nτ−2∏
τ=0

U0(τ,n)†U0(Nτ − 1), (2.32)

without changing the value for Z, resulting in the overall transformation

U0(τ,n)→
{
1, if τ < Nτ − 1,
U0(Nτ − 1,n) if τ = Nτ − 1.

(2.33)

Now the integration of U0(τ,n) is trivial for τ < Nτ−1 using the normalization of the Haar measure∫
SU(Nc)

dU 1 = 1. (2.34)

The only remaining temporal link variables are U0(Nτ − 1,n), which we rename to W (n). Conse-
quently, the path integral of the effective theory reduces to

d[U0] =
∏

n∈Λs
dW (n) =:d[W ], (2.35)

which is obviously the measure of a 3-dimensional theory. Unless otherwise mentioned, we will
assume that this gauge fixing procedure has been implemented in the following discussions.
Even after integration of the spatial links and gauge fixing there is a residual gauge invariance,

2For products of non-commutative objects we have the convention
∏N

i=1 Ai = δ(i ≤ N)
(∏N−1

i=1 Ai
)
AN +δ(i > N)1.

Following [96] we use the notation that for any logical statement S, δ(S) is 1 if S is true and 0 if S is false.
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which is inherited by the effective theory and implies that it is invariant under the local transfor-
mations

W (n) = Ω(n)W (n)Ω(n)†, (2.36)

where the Ω are again SU(Nc)-matrices. This means that the effective theory only depends on
W (n) in terms of local traces and determinants of powers of W (n). Determinants can be expressed
in terms of traces of powers of a matrix. Furthermore, due to the Cayley-Hamilton theorem (see
section 4.6.3 for details), for W ∈ SU(2) the trace tr(Wn) can be expressed in terms of tr(W ) for
all3 n ∈ N and for W ∈ SU(3) it can be expressed in terms of tr(W ) and the complex conjugate
tr(W )∗. Therefore, SU(2) and SU(3) are special in the sense that the effective theories will depend
on the Wilson line only in terms of Polyakov loops

L(n) := tr(W (n)). (2.37)

This is not true for Nc > 3 and in these cases traces of higher powers of W (n) (or alternatively
representations of larger dimension) must occur.

Strong coupling and hopping expansion

Both the strong coupling and the hopping expansion are convergent series with a finite radius of
convergence4, for an introduction to them we refer to [95, 97, 98]. The strong coupling expansion
is an expansion of the exponential containing the gauge part of the action around vanishing lattice
coupling β. Instead of directly using the Taylor expansion of the exponential, a resummation of
higher orders can be achieved by exploiting the fact that Sg,P in the gauge part of the action
equation (2.8) is a SU(Nc)-valued class function:

Sg[U ] =
∑
p∈PΛ

Sg,P (Up) =
∑
p∈PΛ

Sg,P (V −1UpV ), (2.38)

where V ∈ SU(Nc). The Peter-Weyl theorem then tells us that one can apply non-abelian Fourier
analysis to the exponential and expand it in terms of the character χr of the irreducible represen-
tations r of SU(Nc) at every plaquette:

e−Sg [U ] =
∏
p∈PΛ

e−Sg,P (Up) (2.39)

= c
|PΛ|
0

∏
p∈PΛ

1 +
∑
r 6=0

drar(β)χr(Up)

. (2.40)

In this formula, the sum goes over all irreducible representation except of the trivial one, whose
expansion coefficient c0 has been pulled out of the product and the character of the trivial rep-
resentation is simply 1. |PΛ| denotes the number of positively oriented plaquettes of the lattice
and in general for any finite set M , we write |M | for the number of elements in this set. Further-
more, dr corresponds to the dimension of the representation r and ar(β) is the character expansion
coefficient divided by c0:

ar(β) = cr(β)
c0(β) . (2.41)

The expansion coefficients can be computed by utilizing the orthogonality relation of the char-

3We denote by N all natural numbers including 0. For N \ {0} we use the notation N∗.
4This is in contrast to the Feynman graph expansion around vanishing coupling in the continuum, which is an
asymptotic expansion. For a discussion contrasting asymptotic and convergent expansions, see [99].
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2.1 Effective Polyakov loop theories of lattice QCD

acters
cr(β) =

∫
SU(Nc)

dU χr(U)∗e−Sg,P (Up) (2.42)

and the evaluation of the integral results in [97]

cr(β) =
∞∑

n=−∞
det

1≤i,j≤Nc

(
Iαj+i−j+n(β/Nc)

)
. (2.43)

Here, Iαj+i−j+n is a modified Bessel function of the first kind. Furthermore, the representation r
has been labeled by Nc − 1 natural numbers r = (α1, α2, . . . , αNc = 0) with α1 ≥ α2 ≥ · · · ≥ αNc .
This labeling can be illustrated by the use of Young tableaux.
Truncating this expansion, the integration of the spatial links can be achieved (for pure gauge

theory, to include fermions we need to combine it with the hopping expansion). For those cases,
where not more than two representations share a common link, one can use the formulas∫

SU(Nc)
dU χr(UV )χs(WU−1) = δrs

1
dr
χr(VW ), (2.44)∫

SU(Nc)
dU χr(UV U−1W ) = 1

dr
χr(V )χr(W ). (2.45)

Note that these formulas imply that all cases, where a single non-trivial irreducible representation
is at one link, vanish after integration. Using mainly these formulas, the effective theory was
computed for SU(3) in [79] to rather high orders in the coefficient of the fundamental coefficient
u(β) := af (β)/df = af (β)/Nc and the analogous computations for large Nc can be found in [94] (which,
considering the integration rules above, mainly consist of replacing dr and ar by their appropriate
generalizations to Nc). The coefficients of the higher representations can be reexpressed in terms
of the fundamental character coefficient, which is always smaller than one for finite β-values, and
consequently the expansion can be organized according to powers of the fundamental character.
The relation between the coefficients of higher representations and the fundamental one takes a

simple form in the large Nc limit [97], which is best show by introducing double Young diagrams,
which correspond to a decomposition of a representation into complex conjugate contributions.
This decomposition also allows one to express a character χr(U) in its most compact form in terms
of tr(Up) and tr

(
U †q

)
[100]. Using this expression, one can handle also those integrations, where

more than two non-trivial representations share a link, since they are reduced to the integral∫
SU(Nc)

dU Ui1,j1 · · ·Uip,jpU
†
k1,l1
· · ·U †kq ,lq . (2.46)

This integral has been discussed extensively in the literature [55, 101–103] and in appendix C we
give a generating function for it.
Alternatively, the cases with more than two non-trivial representations can be handled by writing

the characters in terms of the representation matrices and reducing the resulting tensor product into
irreducible representations. In the resulting Clebsch-Gordan series, contributions from non-trivial
representations vanish after integration. This obviously also gives a selection rule for the integrals
that have to be considered, which are of course reflected in the special cases equations (2.44)
and (2.45). The necessary integrals for the character expansion of SU(2) Yang-Mills theory in 3
dimensions have been computed using this method in [50].
Previously [65, 73, 74], the hopping expansion was done by expanding the fermion determinant

that arises after the integration of the fermion fields around κ(f) = 0, i. e. the heavy quark limit.
More precisely, since the combination of κ(f) and e±aµ(f) in equation (2.12) can become large even
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for small κ(f), one formally distinguishes those κ(f) which are multiplied by e±aµ
(f) from those

which are not, and only expands with respect to those κ(f), which are not multiplied by e±aµ(f) .
To this end, it is useful to split the quark matrix Q that occurs in equation (2.12) in the form
Sf [U,Ψ, Ψ̄] = −Ψ̄QΨ into temporal and spatial hopping matrices, where the temporal hopping
matrix T contains the dependence on chemical potential.

Q = −1 + T + S, (2.47)

det(Q) = det(−1 + T ) det
(
−1 + (−1 + T )−1S

)
(2.48)

= det(Qstat) det(Qkin). (2.49)

The determinant and the inverse of Qstat are explicitly known. Therefore, when the hopping
expansion is then done for the determinant of Qkin using the formal identity

det(Qkin) = exp(tr(log(Qkin))), (2.50)

one obtains an expansion in spatial hops, where every spatial hop is proportional to the hopping
parameter κ(f), but also contains a resummation of all temporal windings, which contain κ(f)e±aµ

(f) .
In this way, the complete dependence on chemical potential in each order of the hopping expansion
is included. As we will introduce an alternative method to organize the hopping expansion, we
refer the interested reader to the above-mentioned references for further details.
The effective action obtained in this way has the following general structure

Seff = Ss[W ]
({
λi(β, κ(f), Nτ )

}
1≤i<∞

)
+ Sa[W ]

(
h1(β, κ(f), µ(f), Nτ ), h̄1(β, κ(f), µ(f), Nτ ),

{
hi(β, κ(f), Nτ )

}
2≤i<∞

)
.

(2.51)

In this equation, we indicated sets of effective couplings which depend on the parameters of the
original theory. Of these couplings, the λi are the effective couplings of the Z(Nc)-symmetric part
of the action Ss, that is invariant under the global transformation

L(n)→ zL(n) for all n ∈ Λs and z ∈ Z(Nc) =
{
ei
nπ
Nc | n ∈ N and 0 ≤ n < Nc − 1

}
, (2.52)

whereas the hi multiply the symmetry breaking terms in Sa. Note that the symmetry breaking
terms are due to the fermion determinant, but the λi also depend on κ, as the fermion determinant
also contains center symmetric contributions. Of the couplings for the asymmetric terms, h(f)

1 /h̄(f)
1

multiply every quark/antiquark temporal winding and encode the dependence on chemical potential
of the effective theory. In this notation, the resummation of temporal windings that we mentioned
above corresponds to a resummation in h(f)

1 /h̄(f)
1 .

Except of these couplings, all other couplings are small in the range of validity of the expansions,
which justifies the application of series expansion methods for the evaluation of the effective theory.
As the integrations can be done exactly in the case of series expansions, they naturally circumvent
the sign problem. The application of series expansion methods are also attractive from another
point of view: since we use series expansion methods to derive the effective theory, successfully
applying these methods to evaluate the effective theory (which can also be evaluated by numerical
methods, serving as a crosscheck) also gives justification for the derivation of the effective theory.
Furthermore, some diagrammatic methods that are used for the evaluation of the effective theory
can also teach useful lessons for the derivation of the theory and vice versa (see for example
section 4.6). In this way a useful synergy between the derivation and evaluation of the theory can
be achieved. Additionally, the numerical methods for determining the effective theory in [92] also

12
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Figure 2.1: Taken from [73]. The phase diagram of QCD with very heavy quarks.

employ series expansion methods. Before we take a closer look at the evaluation of the effective
theory using series expansion methods, we will mention some results obtained from the effective
theory.

2.1.3 Results from the effective theory

In this section will only consider the cases Nc = 2 and Nc = 3, the changes that occur when large
Nc is considered will be discussed in chapter 6. In figure 2.1 a schematic version of the phase
diagram of QCD with heavy quarks in the temperature-baryon chemical potential (T, µB) plane
is shown. Infinite quark mass is equivalent to pure gauge theory (the upper right corner of the
Columbia plot), which has has a first-order deconfinement transition for Nc = 3, signaled by a
spontaneous breakdown of the center symmetry. Finite quark masses introduce terms ∝ κ ∝ 1/mq

which explicitly break center symmetry. Consequently, for sufficiently heavy quarks the transition
is still first order, but gets weaker for decreasing masses until it ends at a critical second-order point
for some critical mass mq,c which is of the universality class Z(2).
In the effective theory, this symmetry breaking pattern is correctly reproduced. Using the meth-

ods mentioned in section 2.1.1, one can obtain a set of critical couplings λi,c = λi(βc, κ(f)
c , Nτ ),

hi,c = hi(βc, κc, Nτ ) (µ = 0 means h1 = h̄1). Inverting these relations results in predictions for
βc(Nτ ) and κc(Nτ ), which in turn can be compared to full QCD. For SU(2) and SU(3) pure gauge
theory, the simplest (logarithmic-resummed) effective theory with only the first nearest neighbor
coupling correctly predicts the order of the transition and the associated βc(Nτ ) are within 10%
of the values from simulations of full Yang-Mills theory on lattices with Nτ = 2, . . . , 16 [79]. Fur-
thermore, including heavy quarks up to the κ2 corrections, a second-order endpoint is observed for
Nc = 3 and the corresponding κc is within 10% of the value predicted by full QCD simulations with
Nτ = 4 [61]. As we stressed already, the sign problem can be dealt with in the effective theory and
it can be simulated at finite density. Therefore, the critical endpoint can be determined both as a
function of chemical potential and quark mass [61], and the qualitative behavior when increasing
the chemical potential is that of figure 2.1. This qualitative behavior agrees with predictions from
continuum studies employing a Polyakov loop model [104] or the functional renormalization group
approach [105].

13
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Going parallel to the baryon chemical potential axis at low temperature there is the onset tran-
sition to condensed baryon matter. From simple statistical physics arguments combined with
phenomenology (see section section 5.1), it is clear that at T = 0 the nuclear liquid gas transition
is of first order. Increasing the temperature, this transition also ends in a second-order endpoint.
The endpoint moves to lower temperatures when the quark mass is increased. This can be under-
stood from the fact that the binding energy per baryon, which sets the scale of the scale for the
critical endpoint, is reduced (exponentially) according to nuclear physics Yukawa potentials with
meson exchange. The phenomenological properties leading to the critical properties of the liquid
gas transition can be observed in rather simple calculations using the effective theory at strong
coupling [65] and we will review those critically in chapter 5. In simulations of the effective theory
including κ4 corrections, a first-order transition ending at some finite temperature is explicitly seen
[65]. Including gauge corrections and sufficiently high orders, the lattice spacing can be varied and
the continuum approach can be studied. Using corrections up to u5κ8, continuum-like behavior was
obtained immediately after the onset transition. This was possible for rather heavy quarks only,
and a stable continuum extrapolation for quarks with sufficiently light masses such that a critical
line for the onset is observed is currently out of reach.
Before we finally discuss the linked cluster expansion of the simplest Polyakov loop theory, we

introduce a technical device that is useful both for the derivation and evaluation of the effective
theory.

2.2 Polymer expansions

Polymer expansions in their abstract formulation are the underlying principle of many series ex-
pansions in physics, the high temperature (weak graph) expansion of the Ising model being only
one example. They also have been used in the derivation of the effective theory [79]. Depending
on the context of their application and also the form of their formulation, they are also called
cluster expansions [106] or method of moments and cumulants [98, 107, 108]. Some of the earliest
forms and applications of these expansions can be found in [109–112]. They have been studied
rigorously in mathematical physics, see [113] and references therein and [114] for an overview of the
developments since then. As can be seen from the above mentioned references, these expansions
have a long and rich history and are still the subject of current publications, so our account of the
literature is far from exhaustive.
Given the partition function Z of a system, the polymer expansion formula gives an algebraic

identity for log(Z). Here, we will only be concerned with algebraic properties of this identity, so
both Z and log(Z) can be considered formal power series. Concerning convergence properties we
refer the interested reader to the literature. In general we will always be more concerned with
the generation of series coefficients and will only determine the convergence using more heuristic
methods like the ratio test or Padé approximants.
The motivation for this section is two-fold: one is to introduce some useful notations and defini-

tions. The other is that we want to highlight the fact that some aspects of the polymer expansions
can be simplified by noting that they are actually Taylor expansions of the logarithm of the parti-
tion function. This was already pointed out in [115], but it was Dobrushin [116] who made full use
of this fact, replacing combinatorial definitions by analytical ones, and this was further explored in,
for example, [117]. Our notation is inspired by [99], but we show a slightly more general form of the
expansion formula first, which is necessary to apply it to the free graph expansion of section 3.2.
In this form the theorem corresponds to the version in, for example, [107, 108], but we will avoid,
as mentioned above, dealing with the combinatorics of the moment-cumulant relations.
The general principle of polymer expansions can be formulated without reference to a specific

physical system, explaining the wide range of applicability. As a preparatory step we derive a useful

14
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formula concerning sums over sets.

2.2.1 Sums over disjoint subsets

Let M be a countable set and M1 and M2 a partition of M , which means that M1 and M2 are
disjoint and their union is M . Furthermore we assume that there is a function

f : Mn → C (2.53)

with n ∈ N∗.
Consider the following sum

S =
∑

γ1,...,γn∈M
f(γ1, . . . , γn) =

∑
γ1,...,γn∈M1∪M2

f(γ1, . . . , γn). (2.54)

We want to rewrite this into a sum where the elements of M1 and M2 are indicated separately. A
first try could be ∑

k+l=n

∑
γ1,...,γk∈M1

∑
γk+1,...,γk+l∈M2

f(γ1, . . . , γk, γk+1, . . . , γk+l), (2.55)

where we assume the convention that ∑
γ1,...,γk

= 1 if k = 0. (2.56)

Obviously, this does not work because in the original sum the arguments of f are not arranged
in a way that the elements of M1 appear before the elements of M2. To repair this, we introduce
additional permutations∑

k+l=n

∑
γ1,...,γk∈M1

∑
γk+1,...,γk+l∈M2

∑
σ∈Sn

f(γσ(1), . . . , γσ(k), γσ(k+1), . . . , γσ(k+l)), (2.57)

where Sn denotes the symmetric group of order n. In this formula however, the permutations which
only permute the elements of M1 and M2 separately lead to an overcounting and the correction of
this overcounting finally gives

S =
∑

k+l=n

∑
γ1,...,γk∈M1

∑
γk+1,...,γk+l∈M2

∑
σ∈Sn

f(γσ(1), . . . , γσ(k), γσ(k+1), . . . , γσ(k+l))
k!l! . (2.58)

While this representation of S seems more cumbersome, it will proof useful later. We are now ready
to derive the polymer expansion formula.

2.2.2 The polymer expansion formula

To state the content of this formula, we need to make some definitions. We start by introducing
a countable set P whose elements are called polymers. Furthermore it is assumed that there is a
sequence of symmetric functions

mn : Pn → C (2.59)

which we call polymer moments. We simply write m instead of mn, when n can be inferred from
the number of arguments. Next, we assign weights ϕ to each polymer, where ϕ is a mapping from
P to C.
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Using these definitions, the partition function Z(P ) associated with the polymer set P is defined
to be a power series in the weights

Z(P ) = 1 +
∞∑
n=1

∑
γ1,...,γn∈P

1
n!m(γ1, . . . , γn)ϕ(γ1) · · ·ϕ(γn) (2.60)

=
∞∑
n=0

∑
γ1,...,γn∈P

1
n!m(γ1, . . . , γn)ϕ(γ1) · · ·ϕ(γn). (2.61)

The polymer expansion formula now states that

log(Z(P )) =
∞∑
n=1

∑
γ1,...,γn∈P

1
n!c(γ1, . . . , γn)ϕ(γ1) · · ·ϕ(γn), (2.62)

where c(γ1, . . . , γn) is a rational coefficient with the property that it vanishes, if its arguments
can be partitioned into two groups α1, . . . , αk and β1, . . . , βl such that m factorizes over these two
groups: m(γ1, . . . , γñ) = m(α1, . . . , αk̃, β1, . . . , βl̃) = m(α1, . . . , αk̃)m(β1, . . . , βl̃) for any ñ ≤ n (and
analogously for l and k). We remind the reader that m is defined to be symmetric. The c are called
polymer cumulants.
What makes the polymer expansion useful is that the vanishing of the coefficient for certain

combinations of the elements of P usually simplifies the combinatorics of the expansion at hand.
Considering the Taylor expansion of log(Z(P )) in terms of the polymer weights, one obtains

log(Z(P )) =
|P |∑
n=1

∑
{γ1,...,γn}∈Sn(P )

∑
k1,...,kn∈N∗

C(γ1, . . . , γ1︸ ︷︷ ︸
k1−times

, . . . , γn, . . . , γn︸ ︷︷ ︸
kn−times

)ϕ(γ1)k1 · · ·ϕ(γn)kn , (2.63)

where Sn(P ) denotes the set of subsets of P with n elements and the coefficient of the expansion
reads

C(γ1, . . . , γ1︸ ︷︷ ︸
k1−times

, . . . , γn, . . . , γn︸ ︷︷ ︸
kn−times

) = 1
k1! · · · kn!

∂k1+···+kn log(Z(P))
∂ϕ(γ1)k1 . . . ∂ϕ(γn)kn

∣∣∣∣∣
ϕ(γi)=0

=: C(γ1,k1),...,(γn,kn).

(2.64)
(2.65)

To get to equation (2.62), one replaces the sum over the subsets SN (P ) and multiplicities k1, . . . , kn
by independent sums over P . This leads to an overcounting, which is corrected by dividing by the
number of unique permutations of (γ1, . . . , γ1︸ ︷︷ ︸

k1−times

, . . . , γn, . . . , γn︸ ︷︷ ︸
kn−times

), of which there are

(k1 + · · ·+ kn)!
k1! · · · kn! . (2.66)

This means that the coefficient c in equation (2.62) reads

c(γ1, . . . , γn) = ∂n log(Z(P ))
∂ϕ(γ1) · · · ∂ϕ(γn)

∣∣∣∣
ϕ(γi)=0

. (2.67)

The only thing that remains to be shown is that c(γ1, . . . , γn) vanishes if its arguments can be
partitioned in the aforementioned way. Consider the set S consisting of the γ1, . . . , γn (without
multiplicities). S ⊂ P itself is a set of polymers and to compute c(γ1, . . . , γn), it is enough to
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consider only Z(S) in equation (2.67). Furthermore, S can be partitioned into two non-empty and
disjoint sets S1 and S2 such that

m(α1, . . . , αk, β1, . . . , βl) = m(α1, . . . , αk)m(β1, . . . , βl) (2.68)

if α1, . . . , αk ∈ S1 and β1, . . . , βl ∈ S2. With the help of equation (2.58) and the symmetry of m
this implies that not only m, but also Z(S) factorizes:

Z(S) = Z(S1 ∪ S2) (2.69)

=
∞∑
n=0

∑
γ1,...,γn∈S1∪S2

1
n!m(γ1, . . . , γn)ϕ(γ1) · · ·ϕ(γn) (2.70)

(2.58)=
∞∑
n=0

∑
k+l=n

∑
γ1,...,γk∈S1

∑
γk+1,...,γk+l∈S2

∑
σ∈Sn

1
n!k!l!m(γσ(1), . . . , γσ(k), γσ(k+1), . . . , γσ(k+l))

× ϕ(γσ(1)) · · ·ϕ(γσ(n))
(2.71)

=
∞∑
n=0

∑
k+l=n

∑
γ1,...,γk∈S1

∑
γk+1,...,γk+l∈S2

1
k!l!m(γ1, . . . , γk, γk+1, . . . , γk+l)ϕ(γ1) · · ·ϕ(γn) (2.72)

=
∞∑
n=0

∑
k+l=n

∑
γ1,...,γk∈S1

∑
γk+1,...,γk+l∈S2

1
k!l!m(γ1, . . . , γk)m(γk+1, . . . , γk+l)

× ϕ(γ1) · · ·ϕ(γk)ϕ(γk+1) · · ·ϕ(γn)
(2.73)

=

 ∞∑
k=0

∑
γ1,...,γk∈S1

1
k!m(γ1, . . . , γk)ϕ(γ1) · · ·ϕ(γk)


×

 ∞∑
l=0

∑
γ1,...,γl∈S2

1
l!m(γ1, . . . , γl)ϕ(γ1) · · ·ϕ(γl)

 (2.74)

= Z(S1)Z(S2). (2.75)

Consequently
log(Z(S)) = log(Z(S1)) + log(Z(S2)) (2.76)

and since neither log(Z(S1)) nor log(Z(S2)) depend on all of the ϕ(γ1), . . . , ϕ(γn) the coefficient
c(γ1, . . . , γn) vanishes according to equation (2.67), as was claimed.

If there is a binary symmetric relation, which decides if two polymers are to be regarded linked or
disjoint, a useful corollary can be obtained. We introduce the notation γi ∩ γj 6= ∅ if the polymers
are linked and γi ∩ γj = ∅ when they are disjoint. It is always assumed that γi ∩ γi 6= ∅. The
meaning of ∩ here is not necessarily that of an intersection of sets and the meaning of being linked
or disjoint depends on the details of the application of the polymer expansion. For now it is enough
that such a relation between the polymers exists. Additionally, the sets Dn(P ) are introduced,
which consist of all subsets of P with n elements and pairwise disjoint polymers. The union of
these sets is denoted by D(P ) = ∪nDn(P ).

Suppose now that the partition function reads

Z(P ) = 1 +
|P |∑
n=1

∑
{γ1,...,γn}∈Dn(P )

ϕ(γ1) · · ·ϕ(γn). (2.77)

One might wonder why Z(P ) is defined here without a factor 1/n! in contrast to before and also
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in contrast to, for example [99]. Due to this, we stress that we defined Dk to consist of subsets of
P and not of tuples of elements of P .
If we define

m(γ1, . . . , γn) =
{

1, if the arguments are pairwise disjoint,
0, otherwise,

(2.78)

then Z(P ) can be rewritten to

Z(P ) = 1 +
|P |∑
n=1

∑
{γ1,...,γn}∈Dn(P )

m(γ1, . . . , γn)ϕ(γ1) · · ·ϕ(γn) (2.79)

= 1 +
∞∑
n=1

∑
γ1,...,γn∈P

1
n!m(γ1, . . . , γn)ϕ(γ1) · · ·ϕ(γn). (2.80)

m factorizes over disjoint polymers, so applying the polymer expansion formula results in

log(Z(P )) =
|P |∑
n=1

∑
{γ1,...,γn}∈Ck(P )

∑
(k1,...,kn)∈(N∗)n

C(γ1,k1),...,(γn,kn)ϕ(γ1)k1 · · ·ϕ(γn)kn , (2.81)

where C(γ1,k1),...,(γn,kn) is the coefficient

C(γ1,k1),...,(γn,kn) = 1
k1! · · · kn!

∂k1+···+kn log(Z(P))
∂ϕ(γ1)k1 · · · ∂ϕ(γn)kn

∣∣∣∣∣
ϕ(γi)=0

(2.82)

and Cn(P ) is the set of subsets C ⊂ P which have n elements and the property that for any pair
γ1, γ2 ∈ C there is always a sequence of polymers γk1 , . . . , γkm in C that fulfills γk1 = γ1, γkm = γ2
and γki ∩ γki+1 6= ∅. In other words, if we assign to every subset M of P the graph with vertices
consisting of the polymers in M and edges chosen such that linked polymers are adjacent, then
only connected graphs with n edges are assigned to the elements of Cn(P ).

The result can be roughly summarized by saying that the expansion of the logarithm leads to
clusters of linked polymers. Applied to physical models, the resulting expansions are therefore
sometimes called linked cluster expansions. Confusingly, since the polymer expansion formula
is quite general and enters different expansion schemes in varied ways, the name linked cluster
expansion is attributed to rather different expansion schemes.
We will illustrate the difference of two expansion schemes by applying both methods to the SU(3)

spin model.
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The SU(3) spin model is a 3-dimensional effective Polyakov loop action which has the grand-
canonical partition function

Z(τ, κ, µ) =
∫

d[W ] e−S[W ], (3.1)

where the action S[W ] is that of equation (2.1), which we reproduce here for the convenience of
the reader

Seff = −
∑

n∈Λs

(
τ

3∑
k=1

[L(n)L∗(n + ek) + L∗(n)L(n + ek)] + κeµL(n) + κe−µL∗(n)
)
. (3.2)

We also define
η = κeµ, η̄ = κeµ, (3.3)

and in this way emphasize the analogy to spin models like the Ising model, but in our case we deal
with spin variables L(n) which are continuous and complex valued. In this analogy, 〈L〉 then plays
the role of magnetization and η and η̄ correspond to the symmetry breaking external fields

As this model is obtained from the leading orders of both the expansions outlined in section 2.1.2
and neither includes the resummation of temporal hoppings explained in that section, nor the
logarithmic resummations which have proven important in studies of the effective theory [118], it
certainly is a rather crude approximation to QCD. Nevertheless, it shares important symmetries
with QCD. For κ = 0, the action has the center symmetry of Yang-Mills theory and the influence
of the symmetry breaking terms is just like in section 2.1.3. Also, the Roberge-Weiss symmetry of
QCD [119] for complex chemical potential is easily recognized in the spin model on the basis of the
invariance of the Haar measure:

Z(τ, κ, iµi) = Z(τ, κ, i(µi + 2πn/3)) for n ∈ N and µi ∈ R. (3.4)

Furthermore, the spin model is the simplest Polyakov loop effective theory with a sign problem
for finite chemical potential and has been successfully evaluated with the methods mentioned in
section 2.1.1. Consequently, its phase diagram is known and we show a schematic version in
figure 3.1. Therefore, it is a natural candidate to test any new methods for evaluating effective
Polyakov loop methods, which we will do here for the case of series expansion methods.

As mentioned in section 2.2, we will contrast two expansion methods. Both methods are a
systematic way to derive the Taylor expansion of the free energy density in the thermodynamic
limit

f = − lim
Ns→∞

log(Z)
Ns

. (3.5)

The expansion can be expressed in terms of connected graphs for both cases, but the rules asso-
ciated with the graphs are quite different. The necessary graph-theoretic notions are collected in
appendix B, and we will make use of them from now on without further explanations.
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Figure 3.1: Schematic phase diagram of the SU(3) spin model. A surface of first-order transitions
is bounded by a Z(2)-critical line beyond which the transitions are analytic crossovers.

3.1 Weak graph expansion of the spin model

The version of the weak graph expansion of the spin model we derive here is a relatively straight-
forward application of the polymer expansion corollary equation (2.81). A typical example of
the application of the weak graph expansion is the spin-1/2 Ising model, for an introduction see
[120–122]. This form of the weak expansion is a bit unnatural for the spin-model and the free
graph expansion of the next section is more convenient. Nevertheless, the weak graph expansion
is worthwhile to explore it here. First, a modification of the scheme explored here will be applied
in chapter 4. As the model here is much simpler, it can serve as an introduction to the more
complicated calculations in chapter 4. Moreover, it is natural to apply this approach to effective
Polyakov loop actions which have been logarithmically resummed and we will discuss these actions
in section 4.4. Still, if the reader is interested only in the free graph expansion of the spin model,
he can skip this section.

The first step is to bring the partition function of the spin model to the form of equation (2.60).
To this end, we use the multiplicative property of the exponential function to rewrite the partition
function

Z =
∫

d[W ] exp

∑
n∈Λs

(
τ

3∑
k=1

[L(n)L∗(n + ek) + L∗(n)L(n + ek)] + ηL(n) + η̄L∗(n)
) (3.6)

=
∫

d[W ]
∏

n∈Λs

3∏
k=1

exp{τ [L(n)L∗(n + ek) + L∗(n)L(n + ek)]}
∏

n∈Λs
exp{ηL(n) + η̄L∗(n))} (3.7)

=
∫

d[W ]
∏

n∈Λs

3∏
k=1

[1 + f(τ, L(n), L(n + ei))]
∏

n∈Λs
exp{ηL(n) + η̄L∗(n))}, (3.8)
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where f is determined from the series expansion of exp:

f(τ, L(n), L(n + ek)) =
∞∑
n=1

τn

n! [L(n)L∗(n + ek) + L∗(n)L(n + ek)]n. (3.9)

In order to be able to reduce the path integral to single site integrals one has to expand the
product ∏

n∈Λs

3∏
k=1

[1 + f(τ, L(n), L(n + ek))]. (3.10)

This expansion can be represented in terms of graphs in the following way: the lattice Λs can
be interpreted as an undirected graph GΛs by taking all elements of Λs as vertices and the edges
connect the nearest neighbors More precisely, the graph GΛs has the vertices

VGΛs
= Λs, (3.11)

edges
EGΛs

= {(n, k) | n ∈ Λs, k ∈ {1, 2, 3}}, (3.12)

and the edge-to-endpoint function

σGΛs
((n, k)) = {n, (n + ek) mod L}, (3.13)

where we introduced the notation L = ( 3√Ns,
3√Ns,

3√Ns). Now,

∏
n∈Λs

3∏
k=1

[1 + f(τ, L(n), L(n + ek))]

=
∏

(n,k)∈EGΛs

[1 + f(τ, L(n), L(n + ek))]
(3.14)

= 1 +
∑

(n,k)∈EGΛs

f(τ, L(n), L(n + ek))

+
∑

(n1,k1)∈EGΛs

∑
(n1,k2)∈EGΛs

\(n1,k1)
f(τ, L(n1), L(n1 + ek1))f(τ, L(n2), L(n2 + ek2))

+ . . .

(3.15)

= 1 +

∣∣EGΛs

∣∣∑
n=1

∑
{(n1,k1),...,(nn,kn)}∈Sn(EGΛs

)

n∏
l=1

f(τ, L(nl), L(nl + ekl)) (3.16)

= 1 +
∑

G∈G(GΛs )

∏
(n,k)∈EG

f(τ, L(n), L(n + ei)), (3.17)

where we introduced the notation that for a graph G, G(G) is the set of all subgraphs of G, with
those subgraphs excluded which contain an isolated vertex. Note that for now, we do not identify
isomorphic graphs and disconnected graphs are not excluded from G(G).

Next, we define the weight ϕ of a graph G ∈ G(GΛs) appropriately:

ϕ(G) = 1
zNs0

∫
d[W ]

∏
n∈Λs

exp{ηL(n) + η̄L∗(n))}
∏

(n,k)∈EG

f(τ, L(n), L(n + ei)) (3.18)
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3 Series expansion of the SU(3) spin model

= 1
z
|VG|
0

∫ ∏
n∈V (G)

dW exp{ηL(n) + η̄L∗(n))}
∏

(n,k)∈EG

f(τ, L(n), L(n + ei)), (3.19)

where z0 is the single site integral of the partition function for τ = 0:

Z

∣∣∣∣
τ=0

=
(∫

SU(3)
dW exp{ηL+ η̄L∗)}

)Ns
(3.20)

:= (z0)Ns . (3.21)

In other words, if we denote by 〈〉0 expectation values in the τ = 0 ensemble, the graph weight
reads

ϕ(G) =
〈 ∏

(n,k)∈EG

f(τ, L(n), L(n + ei))
〉

0

. (3.22)

Combining the expansion of the product and the definition of the graph weights one obtains

Z = zNs0

1 +
∑

G∈G(GΛs )
ϕ(G)

. (3.23)

It is quite cumbersome to deal with the set G(GΛs). Note, however, that from equation (3.18) it
is clear that ϕ for a graph G factorizes over its connected components, i. e. if G1, . . . , Gn are the
connected components of G then:

ϕ(G) = ϕ

(
n⋃
i=1

Gi

)
=

n∏
i=1

ϕ(Gi). (3.24)

Therefore, if we consider connected graphs to be polymers, define two connected graphs to be
linked when their graph union is itself also a connected graph, denote by Gc(G) the subset of G(G),
which contains only connected graphs, and define Dn(Gc(GΛs)) just like in section 2.2 the partition
function reads

Z = Z(Gc(GΛs)) (3.25)

= zNs0

1 +
∞∑
n=1

∑
{G1,...,Gn}∈Dn(Gc(GΛs ))

ϕ(G1) · · ·ϕ(Gn)

. (3.26)

Now the polymer expansion formula can be readily applied, leading to

log(Z) = Ns log(z0) +
∞∑
n=1

∑
{G1,...,Gn}∈Cn(Gc(GΛs ))

∑
(k1,...,kn)∈(N∗)n

C(G1,k1),...,(Gn,kn)ϕ(G1)k1 · · ·ϕ(Gn)kn .

(3.27)
As the union of the graphs in an element of Cn(Gc(GΛs)) is itself a connected subgraph of GΛs one
can rewrite the logarithm to

log(Z) = Ns log(z0) +
∑

G∈Gc(GΛs )
ξ(G), (3.28)
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3.1 Weak graph expansion of the spin model

where ξ(G) contains all contributions of linked clusters covering G:

ξ(G) =
|Gc(G)|∑
n=1

∑
{g1,...,gn}∈Cn(Gc(G))

∑
(k1,...,kn)∈(N∗)n

δ

(
n⋃
i=1

gi = G

)
C(g1,k1),...,(gn,kn)ϕ(g1)k1 · · ·ϕ(gn)kn .

(3.29)
In section 4.4.3 we will explain how to fully determine ξ without having to deal with the infinite
sums in the above formula, for now we want to focus on another aspect however.
Inspecting equation (3.18) closer, one sees that the weight of a graph reduces to single site

integrals at its vertices and these single site integrals are determined by the degrees of the vertices
and which vertices are connected. This means that isomorphic graphs have the same weight and
consequently ξ evaluates to the same result for isomorphic graphs. To make use of that, we define a
weak embedding of an undirected graph g in another undirected graph G as mappings wV : Vg → VG
and wE : Eg → EG with the property that

• they are injective and

• wV (σg(e)) = σG(wE(e)).

Note that w is a graph isomorphism between g and a subgraph of G. So, denoting by W(g;G) the
set of all weak embeddings of g in G, equation (3.28) reduces to a summation over the quotient set
Gc(GΛs)/ ∼, where ∼ is the equivalence relation indicating isomorphic graphs:

log(Z) = Ns log(z0) +
∑

G∈Gc(GΛs )/∼

|W(G;GΛs)|
S(G) ξ(G). (3.30)

The symmetry factor S(G) of the graph has to be included because composing a weak embedding
with a graph automorphism leads to the same subgraph of GΛs . Due to the cyclic boundary
conditions and since we only consider connected graphs, the size of |W(G;GΛs)| is proportional to
Ns if G cannot loop the torus. Consequently, it makes sense to define the number of embeddings
per site

(G;GΛs)w = |W(G;GΛs)|
Ns

, (3.31)

which we will call the weak embedding number. The thermodynamic limit of this quantity is clearly
well defined and defines the weak embedding number of a graph on Z3, (G;Z3)w. Therefore, the
free energy density in the thermodynamic limit reads

f = − lim
Ns→∞

log(Z)
Ns

(3.32)

= − log(z0)−
∑

G∈Gc,s

(G;Z3)w
S(G) ξ(G), (3.33)

where Gc,s is the set of all connected simple graphs with more than one vertex and isomorphic
graphs identified.

To count the weak embeddings per site of a graph G in GΛs (for the case where GΛs is large
enough such that that the graph to embed will not loop the torus), one can choose an arbitrary
vertex and count the number of embeddings which map this vertex to (0, 0, 0). A more efficient
procedure to compute the weak embedding number is given in [123]
In general the main problem when computing the weak embedding number is the constraint

that weak embeddings have to be injective, so no vertex can be placed at the same lattice site.
Therefore, when iteratively placing vertices, one has to keep track of the vertices which have been
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3 Series expansion of the SU(3) spin model

placed so far, complicating the matter. The aforementioned constraint is removed in the case of
the free graph expansion, simplifying matters and enabling so called renormalization schemes1. We
will not further explore the weak graph expansion for the spin model here, because the free graph
expansion can also be applied to it, as we will see in the next section.

3.2 Free graph expansion of the spin model

The weak graph expansion of the previous section was basically a direct application of the version
of the polymer expansion, where the polymer moments are only used to indicate if the polymers are
disjoint and the polymer weights contained the expectation values in the τ = 0 ensemble. When
deriving the free graph expansion, the polymer moments will contain the expectation values. The
application of the polymer expansion will then also lead to a weak graph expansion, which can,
however, be rearranged to a free graph expansion. For introductions to the free graph expansions
see [124, 125]. It is the latter reference where the phrase ‘free graph expansion’ is suggested to
be used instead of, as it is often done, ‘linked cluster expansion’, a term whose ambiguity we
already mentioned in section 2.2. A well known application of the free graph expansion is to the
φ4 theory [126], where it was used to prove its triviality [127–129]. Extensions of the work on the
φ4 theory to higher orders, non-trivial vacuums and finite volume can be found in [130–132]. As
mentioned before, the free graph expansion enables renormalization schemes, and we will apply
the so-called ‘vertex-renormalization’. It is possible to carry the renormalization procedure even
further by an additional ‘bond-renormalization’. An impressive example for the application of both
renormalizations is [133], where the two-point Green’s functions for a generalized 3-dimensional
Ising model are obtained to 25th order on the bcc lattice and to 23rd order on the sc lattice. What
the renormalizations procedures have in common is that they reduce the number of graphs one has
to consider, however at the price of increased algebraic complexity. To discuss these procedures
in detail, we first must explain how to obtain the basic unrenormalized expansion. We previously
outlined the free graph expansion of the spin model in [134], the following discussion includes some
more details.

3.2.1 Unrenormalized expansion

The first difference in the derivation of the free graph expansion in comparison to the the previous
section is that one directly expands the exponential containing the nearest neighbor interaction
without turning the nearest neighbor sum into a product.

Z =
∫

d[W ] exp

∑
n∈Λs

(
τ

3∑
k=1

[L(n)L∗(n + ek) + L∗(n)L(n + ek)] + ηL(n) + η̄L∗(n)
) (3.34)

=
∫

d[W ] exp

τ
∑

(n,k)∈EGΛs

[L(n)L∗(n + ek) + L∗(n)L(n + ek)]

 exp

∑
n∈Λs

ηL(n) + η̄L∗(n)


(3.35)

1Which should not be confused with the renormalization procedure to remove ultraviolet divergences in quantum
field theories.
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3.2 Free graph expansion of the spin model

=
∞∑
n=0

τn

n!
∑

(n1,k1),...,(nn,kn)∈EGΛs

∫
d[W ]

(
n∏
l=1

[L(nl)L∗(nl + ekl) + L∗(nl)L(nl + ekl)]

× exp

∑
n∈Λs

ηL(n) + η̄L∗(n)


) (3.36)

= zNs0

∞∑
n=0

τn

n!
∑

(n1,k1),...,(nn,kn)∈EGΛs

〈
n∏
l=1

[L(nl)L∗(nl + ekl) + L∗(nl)L(nl + ekl)]
〉

0

. (3.37)

The expectation value can be rewritten by expanding the product inside it. Introducing the notation

L1 = L, (3.38)
L2 = L∗, (3.39)

the expanded version can be written as

∑
σ1,...,σn∈S2

〈
n∏
l=1

Lσl(1)(nl)Lσl(2)(nl + ekl)
〉

0

. (3.40)

Therefore

Z = zNs0

∞∑
n=0

τn

n!
∑

((n1,k1),σ1),...,((nn,kn),σn)∈EGΛs
×S2

〈
n∏
l=1

Lσl(1)(nl)Lσl(2)(nl + ekl)
〉

0

. (3.41)

To apply the polymer expansion formula, we now declare the elements of EGΛs
×S2 (which can be

thought of as directed edges) to be the polymers. The weights are

ϕ(((n, k), σ)) = τ (3.42)

and the polymer moments are the expectation values of products of nearest neighbor pairs

m(((n1, k1), σ1), . . . , ((nn, kn), σn)) =
〈

n∏
l=1

Lσl(1)(nl)Lσl(2)(nl + ekl)
〉

0

. (3.43)

Using equation (2.62) we obtain

log(Z(P )) = Ns log(z0)

+
∞∑
n=1

∑
((n1,k1),σ1),...,((nn,kn),σn)∈EGΛs

×S2

1
n!c(((n1, k1), σ1), . . . , ((nn, kn), σn))τn. (3.44)

In this case, m factorizes over edges which do not share a vertex. Therefore a necessary condition
for c(((n1, k1), σ1), . . . , ((nn, kn), σl)) not to vanish is that the graph assembled from the edges in
the arguments of c is connected. Note that this graph is not necessarily simple, as the same edge can
occur several times, which we will interpret as multiple edges connecting the same vertices. This
suggests to write log(Z) again as an expansion in terms of connected graphs (which are directed
multigraphs in this case), where the graph weights are given by c. In this way we are lead to a
weak graph expansion again.

It is however possible to rearrange the expansion to eliminate the excluded volume restrictions
of the weak graph expansion [135]. To this end, note that the factorization of m is due to the
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3 Series expansion of the SU(3) spin model

factorization of 〈〉0 over single sites. This factorization of 〈〉0 is however not completely exploited
in m (and consequently c), since we are considering nearest neighbor pairs. If we consider 〈〉0 as
the moments with the polymers being the L(∗) at the lattice sites, then these moments factorize
over single lattice sites and correspondingly the associated cumulants, which we will denote by []0,
vanish when they contain L(∗) from different lattice sites. Single site expectation values are easily
obtained by differentiation of z0:

〈L(n)nL∗(n)m〉0 = 1
z0

∂n

∂ηn
∂n

∂η̄n
z0 (3.45)

and consequently
[L(n)nL∗(n)m]0 = ∂n

∂ηn
∂n

∂η̄n
log(z0). (3.46)

Note that the result is independent of n, so whenever it is not relevant, we will denote the L(∗)

without arguments. What happens now, if we replace the “edge cumulants” c in equation (3.44)
by the τ = 0 single site expectation value cumulants []0, which we will call, following [124], bare
semi-invariants2?

Consider, for example, n = 2, with n2 = n1 + ek1 and σ1 = id and σ2 = (1, 2), where we
used cycle notation for σ2. We also conveniently define n3 = n2 + ek2 , e1 = ((n1, k1), σ1) and
e2 = ((n2, k2), σ2). Then

c(e1, e2) = m(e1, e2)−m(e1)m(e2) (3.47)
= 〈L(n1)L∗(n2)L∗(n2)L(n3)〉0
− 〈L(n1)L∗(n2)〉0 〈L

∗(n2)L(n3)〉0
(3.48)

= 〈L(n1)〉0
〈
L∗(n2)2

〉
0
〈L(n3)〉0

− 〈L(n1)〉0 〈L
∗(n2)〉20 〈L(n3)〉0

(3.49)

= [L(n1)]0
[
L∗(n2)2

]
0
[L(n1)]0 (3.50)

If we now also consider the case where e2 = ((n1, k1), σ2) we see that

c(e1, e2) = [L(n1)L∗(n1)]0[L(n2)L∗(n2)]0
+ [L(n1)L∗(n1)]0[L(n2)]0[L∗(n2)]0 + [L(n1)]0[L∗(n1)]0[L(n2)L∗(n2)]0.

(3.51)

These equations can be represented graphically:

c( ) = [L]0 [(L∗)2]0
[L]0 , (3.52)

c( ) = [LL∗]0 [LL∗]0 + [LL∗]0
[L∗]0
[L]0

+ [LL∗]0
[L∗]0
[L]0

. (3.53)

This suggests that if we replace the graph weight of a graph given by c by an expression in terms
of []0, this corresponds to a sum over new weights of connected graphs that can be embedded freely
in the original graph. The new weights here are defined to be

W 0 =
∏

v∈V (G)

[
Lnout(v)(L∗(v))nin

]
0
, (3.54)

2The authors of [125] call these quantities bare vertex functions and in [126] they are named cumulant moments.
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3.2 Free graph expansion of the spin model

and by freely we mean that when embedding g in the graph G, distinct vertices of g can occupy
the same vertex of G, as it is the case for the last two terms in the last equation.
We infer the general rule here from two suggestive examples and refer to [135] for a more detailed

investigation.
To formulate the consequences of the replacements for equation (3.44) we define free embeddings

of a directed graph g in an undirected graph G to be two mappings fV : Vg → VG and fE : Eg → EG
with the property that

fV (ig(e), tg(e)) = σG(fE(e))for alle ∈ Eg. (3.55)

We stress that in contrast to weak embeddings, fV and fE do not have to be injective. In other
words the only thing one has to take care of when embedding a graph freely is that vertices
connected by an edge are placed on vertices which are also connected by an edge. The embeddings
per site (G;GΛs)f can be defined just like in the weak case and equation (3.44) can be rewritten to

log(Z) = Ns log(z0) +
∑

G∈Gc,d

τ |E(G)| (G;GΛs)f
S(G) W 0(G), (3.56)

where Gc,d is the set of all connected and directed (multi-)graphs, up to isomorphisms, with at
least one edge. Note that associating the graph with only one vertex and no edges with log(z0) is
consistent with equation (3.46). Of course one cannot actually sum all graphs, and one truncates
the expansion at a certain order in τ . Therefore it is useful to introduce the notation G(i)

c,d for the
subset of Gc,d which contains graphs with i edges. We finally obtain for the free energy density in
the thermodynamic limit

−f = lim
Ns→∞

log(Z)
Ns

(3.57)

=
∞∑
i=0

τ i
∑
G(i)
c,d

(G,Z3)W 0(G)
S(G) (3.58)

To compute the free energy density using this formula to a certain order, one has to list all graphs
relevant to this order and compute their symmetry numbers, free embedding numbers and weights.
Of course, to go to higher orders, it is necessary to automate this task using a computer. For the
generation of the graphs, it is important to avoid generating isomorphic graphs or to remove them
as early as possible. This is best be done in a representation of the graphs which allows for fast
isomorphism checking. To this end one introduces the concept of a canonical labeling of a graph,
which is an enumeration of the vertices of a graph such that two isomorphic graphs have the same
adjacency matrix. This is a well known problem in mathematics and specialized software for this
problem exists [136, 137], in our investigations we used McKay’s nauty. As a useful side effects,
the computation of canonical labelings can also give the automorphism group and its order (i. e.
the symmetry number) of a graph. For the free embedding number, a procedure to compute it is
explained in [126], which was implemented during this thesis in Mathematica.
Finally the weights necessitate the computation of the bare semi-invariants according to equa-

tion (3.46). This is especially easy when log(z0) is known as an expansion in terms of η and η̄. In
order to obtain this expansion, consider

z0(α, η, η̄) =
∫

SU(3)
dW exp[α(ηL+ η̄L∗)]. (3.59)

The series expansion of log(z0(α, η, η̄)) to O(αn) corresponds to an expansion to O(ηn1ηn2) with
n1 + n2 = n. To compute this expansion, we need to know the derivatives of log(z0(α, η, η̄)). Faà
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3 Series expansion of the SU(3) spin model

di Bruno’s formula states that the n’th derivative of the composition f ◦ g reads [138]

dn
dxn f(g(x)) =

n∑
k=1

f (k)(g(k)) Bn,k
(

dg
dx, . . . ,

dn−k+1g

dxn−k+1

)
. (3.60)

where Bn,k denotes the partial Bell polynomial

Bn,k =
∑

j∈Nn−k+1

δ

(
n−k+1∑
i=1

ji = k

)
δ

(
n−k+1∑
i=1

iji = n

)
n!

n−k+1∏
i=1

1
ji

(
xi
i!

)ji
. (3.61)

The derivatives of log(1 + x) are of course well known and therefore

log(z0(α, η, η̄)) =
∞∑
n=1

n∑
k=1

(−1)k+1 (k − 1)!
n! Bn,k

(
∂z

∂a

∣∣∣∣
α=0

, . . . ,
∂n−k+1z

∂αn−k+1

∣∣∣∣∣
α=0

)
αn. (3.62)

Using the binomial theorem the derivatives of z0 evaluate to

∂pz

∂αp

∣∣∣∣
α=0

= ∂p

∂αp

∣∣∣∣
α=0

∫
SU(3)

dW exp[α(ηL+ η̄L∗)] (3.63)

=
∫

SU(3)
dW (ηL+ η̄L∗)p (3.64)

=
p∑
q=0

(
p

q

)
Iq,p−qη

qη̄p−q (3.65)

where we defined the SU(3)-integral

Iq,p−q =
∫

SU(3)
dW LqL∗(p−q). (3.66)

An explicit formula for the evaluation of this integral is given in [67].
We now have all ingredients to obtain arbitrary orders in the series expansion of the free energy

density of the spin model around τ = 0, the only limit being available computing time. One of
the main bottlenecks for this computation is, that the number of graphs one has to consider when
increasing the orders grows very fast. This problem can be alleviated using the renormalization
procedures mentioned before.

3.2.2 Vertex-renormalized expansion

The observation underlying the vertex renormalization is that when a graph has an articulation
point, then the free embedding number of that graph is the product of the free embedding num-
bers of the two graphs that are obtained by splitting the original graph at its articulation point.
Graphically (clearly the direction of the edges does not matter for the free embeddings):(

;G
)
f

=
(

;G
)
f

×
(

;G
)
f

. (3.67)

Of course for G = Zn the last embedding number vanishes but this equation is only for illustrative
purpose. Using this, an expansion in 1-irreducible graphs, i. e. graphs with no articulation points,
can be assembled to give the full expansion. The details on why this procedure works are given in
[124], and to see how it is related to a Legendre transformation, see [139].
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3.2 Free graph expansion of the spin model

We just show how the application to the spin-model works. First we collect all connected graphs
that can occur after splitting a graph at an articulation point in the so-called self fields. The
vertex that was the articulation point of the original graph gets a special treatment and is therefore
considered to be and external vertex. Consequently the connected graphs that occur in the self
fields are one insertions and we define I(i)

n,m to be the set of all one-insertions with i edges and
where the external vertex has out-degree n and in-degree m. The contribution of the vertex that
was the articulation point to the weight of a graph has to be considered separately, as it depends
on all of the graphs that occur after splitting a graph at an articulation point. Due to this fact, we
generalize the weight of a graph from equation (3.54) to graphs with an external vertex to be

W 0 =
∏
v∈IG

[
Lnout(v)(L∗(v))nin

]
0
. (3.68)

Eventually, we define the self-fields

Gn,m =
∞∑

i=n+m
τ i

∑
G∈I(i)

(n,m)

(G,Z3)fW 0(G)
S(G) . (3.69)

When joining one-insertions at their external vertex one obtains a new graph, this graph has
an articulation point at the vertex where the one-insertions were joined. The contribution of this
articulation point to the weights of all graphs which are obtained by joining one-insertions in this
way is contained in the renormalized semi-invariants, which read

[Ln(L∗)m]ren = [Ln(L∗)m]0

+
∞∑
p=1

1
p!

∑
(l1,k1),...,(lk,kp)∈N2\(0,0)

 p∏
j=1

Glj ,kj

[Ln+l1+···+lp(L∗)m+k1+···+kp
]

0

(3.70)

= exp

 ∑
(l,k)∈N2\(0,0)

Gl,k

(
∂

∂η

)l ( ∂

∂η̄

)k log(z0) (3.71)

One can then show that the renormalized semi-invariants correspond to the single site cumulant
expectation values for the full theory (i. e. for τ 6= 0) so one could expect that [1]ren = −f . This,
however, is not true. Instead, one at first has to define renormalized graph weights W (G)

W (G) =
∏

v∈I(G)

[
Lnout(v)(L∗(v))nin

]
ren
. (3.72)

Then, the so-called Φ-functional can be obtained via

Φ =
∞∑
i=1

τ i
∑

G∈Gi(1)

(G;Z3)fW (G)
S(G) , (3.73)

where G(i)
1 is the subset of G(i)

c,d that contains only 1-irreducible graphs. Finally, the free energy
density in the renormalized scheme reads

− f = [1]ren + Φ−
∑

l,k∈N∗
Gl,kMl,k. (3.74)

While the sets G(i)
1 , that occur in Φ, are much smaller than the sets Gc,d, to obtain the free en-
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3 Series expansion of the SU(3) spin model

ergy density one also has to compute the self fields, as we have seen, and those contain a sum over
all 1-insertion, including those which are not 1-irreducible, according to equation (3.69). There-
fore, for practical calculations, no reduction in graph complexity has been achieved at this point.
One can show however, that if one replaces the bare semi-invariants in the weights occurring in
equation (3.69) by their renormalized counterparts, the sums can be restricted to 1-irreducible
1-insertions I(i)

1,(n,m)

Gn,m =
∞∑

i=n+m
τ i

∑
G∈I(i)

1,(n,m)

(G,Z3)fW 0(G)
S(G) . (3.75)

While now all relevant equations to obtain the free energy density only contain sums over 1-
irreducible graphs, equation (3.75) and equation (3.70) are coupled equations and this coupling
needs to be resolved in calculations. To this end, an iterative strategy is used that determines the
self fields and renormalized semi-invariants up to the ordered that is necessary for the expansion. If
the aim is to determine the free energy density to O(τnmax) then one has to obtain the renormalized
semi-invariant [Ln(L∗)m]ren to order nmax − n−m. Since the lowest order contribution of the self-
field Gn,m is O(τn+m) all self-fields Gn,m with n + m ≤ nmax have to be calculated to nmax. For
the same reason, the leading order in equation (3.70) simply reads

[Ln(L∗)m]ren = [Ln(L∗)m]0 +O(τ). (3.76)

This can be used to determine G1,0 and G0,1 to O(τ) using equation (3.75). This result can in
turn be used to attain the renormalized semi-invariants to order 1 in τ . Generically, once the
renormalized semi-invariants [Ln(L∗)m] are available to order p with (n + m) ≤ p, one can use
equation (3.75) to get the self fields Gn,m to order p + 1, which then can be used to determine
the renormalized semi-invariant to order p + 1. This can be repeated until the desired order in
τ is achieved. When implementing this procedure on the computer, one can use the previously
mentioned tools for graph canonicalization. An additional problem arises then as these tools can-
not directly compute the canonical labeling for a directed multigraph with external vertices. We
circumvent this problem in the following way: a canonical labeling is a special enumeration of the
vertices. To distinguish an external vertex in the adjacency matrix arising from an enumeration we
add a loop to the vertex. We then consider all canonical labelings of the underlying simple graph
and they can be computed using the above mentioned tools. Then a canonical labeling is obtained
by selecting the enumeration which minimizes the adjacency matrix.
To illustrate the general equations, we calculate the free energy density both in the unrenormal-

ized and renormalized scheme.

3.2.3 Example: Deriving the free energy density to O(τ 2)

To compute the free energy density in the unrenormalized scheme, we need to list all connected
and directed graphs with no external vertices and up to two edges, see table 3.1. In the table, we
also included the free embedding numbers, graph weights and symmetry numbers, as demanded by
equation (3.58). This equation can now be evaluated to O(τ2) using the table resulting in

−f = log(z0) + τ(6[L]0[L∗]0)

+ τ2
(

3[L2]0
[
(L∗)2

]
0

+ 3[L(L∗)]20 + 36[L]0[LL∗]0[L∗]0+

18[L]20
[
(L∗)2

]
0

+ 18[L∗]20[L2]0
)
.

(3.77)
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3.2 Free graph expansion of the spin model

Graph S M W 0

1 1 log(z0)
1 2d [L]0[L∗]0

2 2d [L2]0
[
(L∗)2]

0

2 2d [L(L∗)]20

1 (2d)2 [L]0[LL∗]0[L∗]0

2 (2d)2 [L]20
[
(L∗)2]

0

2 (2d)2 [L∗]20[L2]0

Table 3.1: Taken from [134]. Graphs considered for the free energy density up to O(τ2) with their
symmetry numbers S, embedding numbers M on a d-dimensional square lattice and
weights.

Graph S M W

1 2d [L∗]ren

1 2d [L]ren

2 2d [(L∗)2]ren

2 2d [L2]ren

1 2d [L]ren[L∗]ren

Table 3.2: Taken from [134]. Graphs considered for the self fields up to O(τ2) in the vertex-
renormalized scheme. External vertices are depicted as unfilled circles.

The bare semi-invariants can then be determined to arbitrary precision using equation (3.46) and
equation (3.62). This is best left to a computer and doing this calculation here would not make
this example any more elucidating.
Next, we want to see how the same calculation works in the renormalized scheme. The first step

is to determine the renormalized semi-invariants and the self-fields to O(τ2). We already know that
the self-field Gn,m vanishes for orders below n+m, so to O(τ2) equation (3.70) reads

[Ln(L∗)m]ren = [Ln(L∗)m]0
+G0,1[Ln(L∗)m+1]0 +G1,0[Ln+1(L∗)m]0
+G0,2[Ln(L∗)m+2]0 +G2,0[Ln+2(L∗)m]0
+ (G1,1 +G0,1G1,0)[Ln+1(L∗)m+1]0

+ 1
2G

2
0,1[Ln(L∗)m+2]0 + 1

2G
2
1,0[Ln+2(L∗)m]0

+O(τ3).

(3.78)

Table 3.2 lists all 1-irreducible 1-insertions with less than three edges. Using equation (3.75)
therefore gives

G1,0 = 6τ [L∗]ren, (3.79)
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3 Series expansion of the SU(3) spin model

G1,1 = 6τ2[LL∗]ren +O(τ3), (3.80)
G2,0 = 3τ2[(L∗)2]ren +O(τ3). (3.81)

We note that I(i)
1,(1,0) = I(i)

(0,1) = ∅ for i > 1 and therefore equation (3.79) is exact. Furthermore one
can get Gm,n from Gn,m by making the exchange [Ln(L∗)m] ↔ [Lm(L∗)n], which is equivalent to
η ↔ η̄. Therefore, it is enough to list only the self fields Gn,m for n ≥ m, as we did. Next, we have
to use the iterative procedure explained in the previous section to decouple equation (3.78) from
equations (3.79) to (3.81).
We know that to leading order [Ln(L∗)m]ren = [Ln(L∗)m]0 and therefore equation (3.79) reads

to leading order
G1,0 = 6τ [L∗]ren +O(τ2), (3.82)

which implies
G0,1 = 6τ [L]ren +O(τ2). (3.83)

Inserting this into equation (3.78) we get to first order in τ

[1]ren = log(z0) + 12τ [L∗]0[L]0 +O(τ2), (3.84)
[L]ren = [L]0 + 6τ [L∗]0[L2]0 + 6τ [L]0[LL∗]0 +O(τ2). (3.85)

Using this we can determine the next order in the self-fields with the help of equations (3.79)
to (3.81):

G1,0 = 6τ [L∗]0 + 36τ2[L∗]0[LL∗]0 + 36τ2[L]0[(L∗)2]0 +O(τ3), (3.86)
G1,1 = 6τ2[LL∗]0 +O(τ3), (3.87)
G2,0 = 3τ2[(L∗)2]0 +O(τ3). (3.88)

Of the renormalized semi-invariants, we only need [1]ren to O(τ2). Using equation (3.78) once more
one gets (this equation is wrong in [134])

[1]ren = log(z0) + 12τ [L∗]0[L]0
+ 6τ2

(
[L2]0[(L∗)2]0 + [LL∗]20 + 9[L]20[(L∗)2]0 + 9[L2]0[L∗]20 + 18[L]0[L∗]0[LL∗]20

)
.

(3.89)

In the next step we determine the free energy density in terms of the renormalized semi-invariants
and the self fields. To this end, we use equation (3.73) to obtain the Φ-functional. equation (3.73)
contains a sum over connected 1-irreducible graphs without external vertices. Since we go to O(τ2),
we only need G(1)

1 and G(2)
1 . The graphs in these sets are all contained in table 3.1. More precisely,

graph 2 is the only member of G(1)
1 and graphs 3 and 4 constitute G(2)

1 . When using these graphs
for the Φ-functional, one has to, of course, replace their weights by the renormalized version and
equation (3.73) gives

Φ = 6τM0,1M1,0 + 3τ2
(
M0,2M2,0 +M2

1,1

)
. (3.90)

Inserting this into equation (3.74), the free energy density reads

−f = [1]ren + 6τM0,1M1,0 + 3τ2
(
M0,2M2,0 +M2

1,1

)
−
(
G1,0[L]ren +G0,1[L∗]ren +G1,1[LL∗]ren +G2,0[L2]ren +G0,2[(L∗)2]ren

)
.

(3.91)

All that is left to do is to insert the expressions for the renormalized semi-invariants and the self-
fields we just derived into the last equation to obtain exactly the same result as equation (3.77).
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3.3 Results from the series expansion

As one can see, the reduced number of graphs one has to consider leads to a greater algebraic
complexity. For this example it might even seem that the renormalization procedure leads to more
work to achieve the same order. We remark however that for higher orders the reduction in the
number of graphs is much more significant. For example, there are 322737 undirected connected
graphs with 13 edges, but only 3518 of those are 1-irreducible and in addition there are 24530
undirected 1-irreducible 1-insertions with 13 edges. Therefore, the number of graphs one has to
consider in the renormalized scheme in this case is one order of magnitude smaller than the number
of graphs for the unrenormalized scheme.

3.3 Results from the series expansion
Using the vertex-renormalized scheme we derived the the free energy density in the thermodynamic
limit up to O(τ14) and to keep the size of the expressions under control, we also expanded all
expressions containing the bare semi-invariants up to O(κ60). To get an idea of the necessary
compute, see [134], where we also summarized all necessary steps for the computation of the free
energy density in the renormalized scheme. In the same paper, the obtained series was analyzed
using different approaches. As the main contribution of the author of this thesis was the series
expansion itself, we will only summarize the results of the analysis and refer to [134] for details.
Having obtained the free energy density, all other thermodynamic quantities can be derived from

it. Monte-Carlo simulations cannot evaluate the free energy density directly, so to compare the
series results to simulations we also consider the combination of first derivatives

∆S = −∂f
∂t
− ∂f

∂η
, (3.92)

which in QCD is called interaction measure, as it is connected to the trace of the energy momentum
tensor. For the investigation of phase transitions, we use connected correlation functions summed
over the lattice

χ = −∂f
∂η
− ∂f

∂η̄
− ∂2f

∂η∂η̄
, (3.93)

C = −∂
2f

∂τ2 , (3.94)

which correspond to the magnetic susceptibility and the specific heat in the spin model analogy.
In figure 3.2, we show the three highest order of the series for the interaction measure. The figure

shows good convergence of the series up to the neighborhood of the transition to the phase where
the (approximate) center symmetry is spontaneously broken. Likewise, for µ = 0 good agreement
with Monte-Carlo data is found up to the same region. Furthermore, we observe sensible results for
µ 6= 0, where standard Mont-Carlo simulations are not possible. The agreement with Monte-Carlos
data can be extended up to the phase transition by employing Padé approximants with respect
to the expansion parameter τ . Padé approximants are rational functions whose Taylor expansions
agree with the original series, for an introduction we refer to [140, 141]. Being rational functions,
they can have singularities and are consequently better suited for the description of the behavior
close to a phase transition (clearly they are best suited for the description of second-order behavior).
To study the location and order of the phase transition, we also employed Padé approximants, as

well as the ratio test, in order to determine the radius of convergence of the series. As a reference
we again point to [140, 141]. In this case, it is more useful to use the Padé approximants for the
logarithmic derivative of the observable (called DLog Padé), as this quantity has a simple pole in
case of a second-order transition and can therefore be faithfully reproduced by Padé approximants.
Furthermore, the residue of the Padé approximant at the singularity gives an estimate for the
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Figure 3.2: Taken from [134]. The interaction measure from the three highest order of the expan-
sion. For vanishing chemical potential (left), comparisons to Monte-Carlo data can be
made. We can also adjust the chemical potential to large values (right), where standard
Monte-Carlo suffers from the sign problem. In both cases, we indicated the critical τ
based on simulations of the dual flux representation in [68].
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Figure 3.3: Taken from [134]. Radius of convergence at µ = 0 from the ratio test (left) and Padé
approximants (right). Both methods are compared to the numerically determined phase
diagram, with the critical endpoint taken from [68].

critical exponent. Both the ratio test and Padé approximants can only be applied to single variable
functions3, so we fix both κ and µ before applying them, and then repeat this procedure for different
values of κ and µ to obtain estimates for the radius of convergence over a range of parameters.
First, the two methods are applied to χ for µ = 0. From simulations, we know what to expect:

a first order transition at κ = 0, that continues to some critical κc, forming a first order line
ending at a second-order endpoint, after which the transitions are crossovers. The results of the
series analysis is shown in figure 3.3. One can observe two problems: First, the critical coupling
is systematically over-estimated in the first order region. This can be explained from the fact
that the series expansion has information from one phase only and actually determines the end
of the metastability region of that phase. In this way, one fails to determine the true critical
coupling which needs information from both phases. This phenomenon can be seen in other series
expansions too, for example in Potts models [143] with first order transitions and in a Polyakov
quark-meson model used for the study of Taylor expansions in µ for finite density QCD [144]. The

3We also tested a method which has been developed for multiple variables, namely partial differential approximants
in the form used in [142], but did not obtain better results than in the simple approach outlined above.
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Figure 3.4: Taken from [134]. Estimate for the location of the critical endpoint (τc, κc) at µ = 0
(left) and (τc, µc) at κ = 0.005 (right). The results are compared to the results from
the numerical simulations in [68].

second problem is that while the critical τ is correctly reproduced at the endpoint, the methods also
indicate a finite radius of convergence in the crossover region, where χ has no singular behavior
for real τ . A finite radius of convergence in the crossover region is due to singularities in the
complex plane. In principle, real singularities can be detected from the fact that all coefficients of
the expansion are positive starting from some order, however, we do not have enough coefficients
to estimate the endpoint from this fact. Alternatively it could happen that we do not have enough
orders to detect that the radius of convergence actually is infinite. In any case, we cannot directly
distinguish crossover behavior from singular behavior of a true phase transition.

Nevertheless we cann locate the critical endpoint by including the specific heat in the analysis.
At the critical endpoint, both observables should have a true singularity that can be reproduced
faithfully by DLog Padé approximants. Therefore, we use those τ and κ (or µ if κ is fixed) where
the poles of DLog Padé approximants of the two observables agree as estimates for the critical
endpoint. There can be of course several intersections. Including diagonal Padé approximants
from several orders the average of all intersections gives one estimate of the critical endpoint with
an error estimate obtained from the scatter. As mentioned above, the residue at the singularity
can be used to estimate the critical exponent. As the exponent is expected to be the same for both
observables, we judge the quality of an estimate obtained from an intersection by demanding that
the corresponding exponents agree within 20%. Excluding the “bad” intersections, we determined
the two critical endpoints known from [68], and the results are shown in figure 3.4. Within the error
bars, the results agree with those from the flux representation. The series expansion results have
roughly 10% relative error in τc and a 20% relative error in κc and µc. The larger relative error is
probably due to the flatness of the phase diagram in the latter variables, which makes it harder to
resolve changes in that direction. Furthermore, the method also delivers an estimate for the critical
exponent, that agrees with the true value expected from the universality class of the 3-dimensional
Ising model within ≈ 15%. Finally, we remark that the method was also applied successfully to
imaginary chemical potential and gives results which are consistent with the tricritical scaling of
the Z(3) transition at imaginary µi = iπ3 that is also seen in QCD [145].

Having discussed a tool for the evaluation of effective Polyakov loop theories, we will elucidate
some aspects for their derivation next.
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4 The hopping expansion as a polymer
expansion, logarithmic resummations

In this chapter we will discuss some aspects of the hopping expansion of the fermionic part of QCD
that is used in the derivation of the effective theory. Some justification may be necessary what we
add in contrast to the previously mentioned references [65, 73, 74].
We clarify how to systematically derive the exponentiated version of the effective theory obtained

from the hopping expansion, as discussed in section 4.5 of [146], including corrections which are
considered subleading in Nτ in that section. The natural framework to do this is that of polymer
expansions, which we introduced in section 2.2. Structurally our approach in doing so is similar to
that in [147, 148]. To facilitate the discussion, we set β = 0, i. e. we work in the strong coupling limit,
where the link integration factorizes, a fact that was previously exploited for treatment of staggered
fermions in the strong coupling limit [49, 51]. In contrast to previous publications1, we find it more
convenient to integrate the spatial gauge fields before integrating the Grassmann-valued fields. This
enables us to derive a formula for the effective theory that enables its systematic derivation based
on graph rules. In this way we also extend the work of [73, 74], where, order by order, only those
contributions were derived which have couplings with leading Nτ -behavior. Additionally, the graph
rules we will derive enable a simpler discussion of resummations, a fact which we will use to discuss
how to implement a logarithmic resummation for all contributions. This naturally leads us to
the finite cluster method known from condensed matter physics. The finite cluster method should
prove a useful tool for the derivation of the effective theory, independent of the specific approach we
choose here. For example it should be possible to apply it also when the Grassmann-valued fields
are integrated first. Similar to [118], we will contrast the direct evaluation of the partition function
against the evaluation of the effective theory, stressing the importance of log-resummations and
showing potential new problems when evaluating the effective theory.

4.1 Deriving the general expression

As it was explained in section 2.1.2, we split equation (2.12) into temporal and spatial parts in
order to achieve a resummation in temporal hoppings. Furthermore, we rewrite the spatial part in
order to exploit the fact that the link integration factorizes at strong coupling

−Seff [W ] = log
[∫

d
[
Ψ, Ψ̄

]
eΨ̄Qstat[W ]Ψ

×
∏
n∈Λ

3∏
i=1

∫
dUi(n) etr

(
Ri(n)Ui(n)+U†i (n)Li(n)

)]
.

(4.1)

1Except of [149], where parts of the following derivation where covered.

37



4 The hopping expansion as a polymer expansion, logarithmic resummations

Here, Qstat = −1 + T , and T is the N × N temporal hopping matrix, where N = 4NτNsNfNc,
acting on N -dimensional Grassmann valued vectors in the following way2

Ψ̄(−1 + T )Ψ :=
∑
n∈Λ

{
−Ψ̄(n)Ψ(n)

+
[
Ψ̄(n)Keaµ(1− γ0)U0(n)Ψ(n+ e0)

+ Ψ̄(n+ e0)Ke−aµ(1 + γ0)U0(n)†Ψ(n)
]}
,

(4.2)

implying3

T (n,m) = Keaµ(1− γ0)U0(n)δ−,Nτn0+1,m0δn,m

+Ke−aµ(1 + γ0)U0(m)†δ−,Nτn0,m0+1δn,m.
(4.3)

Since Qstat is diagonal with respect to spatial arguments, we also introduce the notation

Qstat(n,m) =: Qstat(n0,m0,n)δn,m. (4.4)

Furthermore R and L encode the spatial hops

tr(Ri(n)Ui(n)) := Ψ̄(n)K(1− γi)Ui(n)Ψ(n+ ei), (4.5)

tr
(
Ui(n)†Li(n)

)
:= Ψ̄(n+ ei)K(1 + γi)Ui(n)†Ψ(n), (4.6)

which means

Ri(n)ab = Ψ̄(n)bK(1− γi)Ψ(n+ ei)a, (4.7)
Li(n)ab = Ψ̄(n+ ei)bK(1 + γi)Ψ(n)a. (4.8)

In the last two equations, we used matrix-vector notation in flavor and Dirac space, while the color
and spatio-temporal indices were indicated explicitly.
The way things are set up now, we can readily apply equation (C.14) to equation (4.1). For

now, we don’t need the explicit result of this formula, just the fact that the result of the dUi(n)-
integration is some multinomial in Ψ(n), Ψ(n + ei), Ψ̄(n) and Ψ̄(n + ei), which we will write
as 1 + Mi(n). Since the Ψs are Grassmann-valued, this multinomial is finite. Furthermore, the
multinomial has the property, that Ψ and Ψ̄ come in combinations (as is obvious from the definition
of J and K) and therefore Mi(n) commutes with Mj(m) for all {i, j} ⊂ {1, 2, 3} and {n,m} ⊂ Λ.
Consequently, equation (4.1) can be rewritten to

− Seff [W ] = log
[∫

d
[
Ψ, Ψ̄

]
eΨ̄QstatΨ

∏
n∈Λ

3∏
i=1

(1 +Mi(n))
]
. (4.9)

After expanding the product, the integrals over the Grassmann numbers can be done using Wick’s
theorem, which we will use for the N ×N -matrix Q in the following form:

∫ N∏
k=1

dΨk dΨ̄k

n∏
k=1

Ψ̄jkΨik exp
(
Ψ̄QΨ

)
= det(Q)

∑
σ∈Sn

sign(σ)
n∏
k=1

(Q−1)ikjσ(k) . (4.10)

2Due to gauge fixing U0(n) = U0(n0,n) = δ(n0 = Nτ − 1)W (n) + δ(n0 6= Nτ − 1)1.
3δ±,Nn,m = (±1)bn/Nc+bm/Ncδn mod N,m mod N
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4.1 Deriving the general expression

To apply Wick’s theorem to equation (4.9), we need the inverse and determinant of Qstat. They
are called called the static propagator and the static determinant, have been derived before, see for
example [65], and contain the resummations of the temporal hops. The static determinant reads

det(Qstat) =
∏

n∈Λs
det(qstat(W (n))) (4.11)

=
∏

n∈Λs
det(1 +H1W (n))2 det

(
1 + H̄1W (n)†

)2
(4.12)

=
∏

n∈Λs

Nf∏
f=1

det
(
1 + h

(f)
1 W (n)

)2
det
(
1 + h̄

(f)
1 W (n)†

)2
, (4.13)

where

H1 = diag(h(1)
1 , . . . , h

(Nf )
1 ) = 2Keaµ, (4.14)

H̄1 = diag(h̄(1)
1 , . . . , h̄

(Nf )
1 ) = 2Ke−aµ. (4.15)

In the gauge we chose the static propagator takes a simpler form and reads

Q−1
stat(n,m) = δn,mQ

−1
stat(n0,m0,n) (4.16)

= δn,m

(
−δn0,m0 + 1− γ0

2 B↑(n0,m0,n) + 1 + γ0
2 B↓(n0,m0,n)

)
(4.17)

= δn,m

(
−δn0,m0 + 1

2B
+(n0,m0,n) + γ0

2 B
−(n0,m0,n)

)
, (4.18)

with

B↑(τ1, τ2,n) = δ(τ1 ≥ τ2)H
1− τ1−τ2

Nτ
1 W (n)
1 +H1W (n) − δ(τ2 > τ1) H

τ2−τ1
Nτ

1
1 +H1W (n) , (4.19)

B↓(τ1, τ2,n) = δ(τ1 ≤ τ2)H̄
1− τ2−τ1

Nτ
1 W (n)†

1 + H̄1W (n)†
− δ(τ2 < τ1) H̄

τ1−τ2
Nτ

1
1 + H̄1W (n)†

, (4.20)

B+(τ1, τ2,n) = B↑(τ1, τ2,n) +B↓(τ1, τ2,n), (4.21)
B−(τ1, τ2,n) = −B↑(τ1, τ2,n) +B↓(τ1, τ2,n). (4.22)

Note that here the potential ambiguity when writing matrices in fractions is no problem, since the
numerator commutes with the denominator in all cases. Furthermore, this formula assumes the
existence of the inverse of 1 + H1W (n). There are cases where this is not the case, for example
when H1 = 1 (Nf = 1) and W (n) = diag(1,−1,−1) (Nc = 3). One can argue that since the left
hand side of equation (4.10) is simply a polynomial in the entries of Q, one can always shift H1
by ε and the limit ε → 0 must be well defined. However, to organize the expansion properly, we
will have to divide by det(Qstat) in equation (4.34), and aspects of this problem are discussed in
section 4.6.4.

Similar to equation (3.17) from the weak graph expansion of the spin model, the expansion of the
product in equation (4.9) can be represented in terms of graphs. We again interpret the lattice Λ
as a undirected graph GΛ by taking all elements of Λ as vertices and the edges connect the nearest
neighbors: The graph GΛ has the vertices

VGΛ = Λ, (4.23)
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4 The hopping expansion as a polymer expansion, logarithmic resummations

edges
EGΛ = {(n, µ) | n ∈ Λ, µ ∈ {0, 1, 2, 3}}, (4.24)

and the edge-to-endpoint function

σGΛ((n, µ)) = {n, (n+ eµ) mod (Nτ ,L)}, (4.25)

where just like before L = ( 3√Ns,
3√Ns,

3√Ns). An important difference to the weak graph expansion
of the spin model is that the inner product in ∏3

i=1 equation (4.9) does not go over all nearest
neighbors in positive direction, but only those which are connected by an edge of the form (n, i)
with i ∈ {1, 2, 3}. Consequently, the expansion of the product reads

∏
n∈Λ

3∏
i=1

(1 +Mi(n)) = 1 +
∑

G∈G(GΛ)\0

∏
(n,i)∈EG

Mi(n), (4.26)

where G\0(GΛ) is the set of all subgraphs of GΛ, with those subgraphs excluded which contain an
edge of the form (n, 0) or which contain an isolated vertex. We stress again that we do not identify
isomorphic graphs and disconnected graphs are not excluded from G\0(GΛ).
We now want to define graph weights, such that we can apply the polymer expansion formula in

a way where connected graphs are the polymers. A first attempt could be

ϕ(G) =
∫

d
[
Ψ, Ψ̄

]
eΨ̄QstatΨ∏

(n,i)∈E(G)Mi(n)
det(Qstat)

. (4.27)

Note however, that the static propagator in general does not vanish if its temporal arguments are
distinct. Consider the disconnected graph Gd ∈ G\0(GΛ) that has connected components G1 and
G2 with the property that there are v1 ∈ V (G1) and v2 ∈ V (G2) with v1 = (τ1,n) and v2 = (τ2,n),
i. e. v1 and v2 can be made equal by translating one of them in temporal direction. Then the weight
as defined above does not factorize over the connected components of Gd:

ϕ(Gd) 6= ϕ(G1)ϕ(G2). (4.28)

Physically speaking, the weight does not factorize because static quarks can hop in temporal di-
rection.
Therefore, if we would apply the polymer expansion formula now, the polymers would not be

connected graphs and the notion of being linked would not coincide with the graph theoretic notion
of connectedness. Furthermore, it is quite inconvenient that we have to deal with G\0(GΛ) instead
of G(GΛ).
As a remedy for these problems, we organize the expansion slightly different. We again write Λ

as a product of time slices of spatial lattices Λ = Λτ × Λs. Λs can be understood as a graph in a
completely analogous way to Λ. We then rewrite the product in the following way:

∏
n∈Λ

3∏
i=1

(1 +Mi(n)) =
∏

n∈Λs

3∏
i=1

∏
τ∈Λτ

(1 +Mi(n)) (4.29)

=
∏

n∈Λs

3∏
i=1

Nτ−1∏
τ=0

(1 +Mi(n)) (4.30)

=
∏

n∈Λs

3∏
i=1

1 +
Nτ∑
k=1

∑
0≤τ1<···<τk<Nτ

k∏
l=1

Mi(τl,n)

 (4.31)

40



4.1 Deriving the general expression

= 1 +
∑

G∈GΛs

∏
(n,i)∈E(G)

 Nτ∑
k=1

∑
0≤τ1<···<τk<Nτ

k∏
l=1

Mi(τl,n)

 (4.32)

=: 1 +
∑

G∈GΛs

∏
(n,i)∈E(G)

Ms,i(n), (4.33)

where we remind the reader that in section 3.1 we introduced the notation that G(G) is the set
of all subgraphs of G with no isolated vertices and the last step simply defines Ms,i. Defining the
weight of a graph G ∈ G(GΛs) as

ϕ(G) =
∫

d
[
Ψ, Ψ̄

]
eΨ̄QstatΨ∏

(n,i)∈E(G)Ms,i(n)
det(Qstat)

, (4.34)

we can rewrite this expression using the fact that Qstat is diagonal with respect to spatial arguments.
To facilitate this, we introduce some notation. First, Ψ(n) is the 4NτNfNc-component vector with

Ψ(n)(τ)fα,c = Ψ(τ,n)fα,c, (4.35)

similarly Qstat(n) is a matrix acting on these vectors and has entries

Qstat(n)(τ1, τ2) = Qstat(τ1, τ2,n) (4.36)

and finally we define a path integral measure fixed to one spatial point

d
[
Ψ(n), Ψ̄(n)

]
=
∏
τ∈Λs

∏
f,α,c

dΨ(τ,n)fα,c, Ψ̄(τ,n)fα,c . (4.37)

Then

ϕ(G) = 1
det(Qstat)

∫
d
[
Ψ, Ψ̄

] ∏
n∈Λs

e
∑

τ1,τ2∈Λτ
Ψ̄(τ1,n)Qstat(τ1,τ2,n)Ψ(τ2,n) ∏

(n,i)∈E(G)
Ms,i(n) (4.38)

= 1
det(Qstat)

 ∏
n∈Λs\V (G)

∫
d
[
Ψ(n), Ψ̄(n)

]
eΨ̄(n)Qstat(n)Ψ(n)


×
∫ ∏

n∈V (G)
d
[
Ψ(n), Ψ̄(n)

]
eΨ(n)Qstat(n)Ψ̄(n) ∏

(n,i)∈E(G)
Ms,i(n)

(4.39)

= 1∏
n∈V (G) det(qstat(W (n)))

∫ ∏
n∈V (G)

d
[
Ψ(n), Ψ̄(n)

]
eΨ(n)Qstat(n)Ψ̄(n) ∏

(n,i)∈E(G)
Ms,i(n).

(4.40)

From this it is clear now that for a disconnected graph G ∈ G(GΛs), its weight factorizes over the
connected components, i. e. if G1, . . . , Gn are the connected components of G, then:

ϕ(G) = ϕ

(
n⋃
i=1

Gi

)
=

n∏
i=1

ϕ(Gi). (4.41)

The rest now works in analogy to section 3.1. Gc(G) denotes the subset of G(G) with connected
graphs only. We consider the elements of Gc(G) to be polymers and two polymers to be linked if
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4 The hopping expansion as a polymer expansion, logarithmic resummations

their graph union is a connected graph. Starting from equation (4.9) we get

−Seff [U0] =
∫

d
[
Ψ, Ψ̄

]
eΨ̄ det(Qstat)Ψ

∏
n∈Λ

3∏
i=1

(1 +Mi(n))) (4.42)

= log

∫ d
[
Ψ, Ψ̄

]
eΨ̄ det(Qstat)Ψ

1 +
∑

G∈G(GΛs )

∏
(n,i)∈E(G)

Ms,i(n)

 (4.43)

= log

det(Qstat)

1 +
∑

G∈G(GΛs )
ϕ(G)

 (4.44)

= log(det(Qstat)) + log

1 +
|Gc(GΛs )|∑
n=1

∑
{G1,...,Gn}∈Dn(Gc(GΛs ))

ϕ(G1) · · ·ϕ(Gn)

. (4.45)

The cluster expansion formula then gives

−Seff [W ] = log(det(Qstat))

+
|Gc(GΛs )|∑
n=1

∑
{G1,...,Gn}∈Cn(Gc(GΛs ))

∑
(k1,...,kn)∈(N∗)n

C(G1,k1),...,(Gn,kn)ϕ(G1)k1 · · ·ϕ(Gn)kn ,

(4.46)

with the expansion coefficients

C(G1,k1),...,(Gn,kn) = 1
k1! · · · kn!

∂k1+···+kn log(Peff(Gc(GΛs)))
∂ϕ(G1)k1 · · · ∂ϕ(Gn)kn

∣∣∣∣∣
ϕ(Gi)=0

, (4.47)

where

Peff(Gc(GΛs)) := 1 +
|Gc(GΛs )|∑
n=1

∑
{G1,...,Gn}∈Dn(Gc(GΛs ))

ϕ(G1) · · ·ϕ(Gn). (4.48)

Although equation (4.46) is exact in the strong coupling limit, in practice one introduces trun-
cations to the infinite sum by including only contributions up to a certain power in

κ = max
f∈{1,...,Nf}

(κ(f)). (4.49)

For practical reasons, it is also important to understand in which cases the application of ϕ to
two different graph yields the same result, or at least when the contribution of one graph can be
easily obtained from the other. This will be discussed in the next section.

4.2 Equivalent graph weights

In many expansion schemes, isomorphic graphs usually have the same weight. However, in our case
the graph weights depend on the temporal gauge transporters W . Specifically, the weight ϕ(G)
of the graph G has a dependence on the W at the vertices VG of G. When it is useful, we will
highlight this fact in our notation by writing ϕ(G)[VG]. Due to this dependence, isomorphic graphs
in general do not have the same weight. However, one might still hope that given an isomorphism
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4.2 Equivalent graph weights

(λ, τ) between the two graphs G and G′ one can obtain the weight of G′ from that of G via

ϕ(G′) = ϕ(G)[λ(VG)], (4.50)

i. e. the weight of G′ is just the weight of G but with W (n) replaced by W (λ(n)) for all n ∈ VG.
If the weight of a graph can be obtained from another graph by simply changing the arguments
of the occurring W we say that the graphs have equivalent graph weights. In general this is not
the case for graph isomorphisms, as we will see explicitly in the next section. The reason is that
the calculation of graph weights contains an evaluation of a trace of γ-matrices. These γ-matrices
lead to a dependence of the graph weights on the relative directions of their edges. These relative
directions are in general not respected by graph isomorphisms. They are however respected by
translations and symmetry transformations of the graphs which correspond to the isometry group
of the cube.
We describe these transformations in more detail. Λs itself can be understood as a group where

the group operation is addition modulo the lattice sizes, i. e. this group is isomorphic to (Z/ 3√NsZ)3.
The natural way to define a group action . of Λs on itself is that

v1 . v2 = v1 + v2 mod L. (4.51)

For the group Oh of isometries of a cube, we define a group action on Λs using its usual matrix
representation (which we will denote by ρ) on R3 such that for T ∈ Oh

T . v = ρ(T )(v) mod L. (4.52)

In order not to overburden the notation we use the symbol . for different group actions.
Every group action on Λs now induces a group action on the graphs GΛs by defining that for

some element S of a group with a group action on Λs the graph g′ = S . g has the vertices

Vg′ = S . Vg (4.53)

and edges
Eg′ = σ−1

GΛ
({{S . v1, S . v2} | {v1,v2} ∈ σg(Eg)}). (4.54)

Just like in the case of the Poincaré group, the two groups Λs and Oh can be combined into a
group via a semidirect product and the group action of this combined group can simply be defined
to be

(T,v) .w = v . (T .w). (4.55)

for (T,v) ∈ OhoΛs and w ∈ Λs. For graph weights one now has that for g ∈ GΛs and g′ = (T,v).g
with (T,v) ∈ Oh o Λs

ϕ(g′) = ϕ(g)[Vg′ ]. (4.56)

When systematically listing graphs up to equivalent weights it is useful to have a method that
enables a fast identification of graphs with equivalent weights. To this end one defines a labeling of
the vertices that has the property that two graphs with equivalent weights have the same labeling.
In order to achieve this, note at first that the vertices of a graph in Gc are a subset of Λs, but can
also be taken as a subset of R3. The group actions we just discussed can be defined on subsets of
R3 completely analogous just without taking modulo. Next one assigns the same mass to every
vertex and translate the graph such that its barycenter is at (0, 0, 0). After that, one applies all
symmetry operations of Oh and picks the result which minimizes the resulting vertex sets with
respect to lexicographical order.
As this discussion was rather abstract, we illustrate it by deriving the effective action to O(κ4).
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4 The hopping expansion as a polymer expansion, logarithmic resummations

4.3 Example: Deriving the κ4-action
The first step is to determine Mi(n) to order κ4. As every J and K gives one power of κ, equa-
tion (C.14) to O(κ4) determines Mi(n) to be (we will assume that Nc ≥ 3 from now on, for
discussions of the effective theory with Nc = 2 see [150])

Mi(n) = tr(Ri(n)Li(n))
Nc

+ tr(Ri(n)Li(n))2

2(N2
c − 1) − tr

(
[Ri(n)Li(n)]2

)
2Nc(N2

c − 1)

+ δ(Nc ≥ 3)det(Ri(n)) + det(Li(n))
Nc!

+O(κ5).
(4.57)

Since every Ψ(τ1,n) has to be paired with a Ψ̄(τ2,n) for the Grassmann integration not to vanish,
the term containing the determinants only contributes at O(κ6) and we will neglect it from now
on. From Mi(n) one can obtain Ms,i(n):

Ms,i(n) =
Nτ∑
k=1

∑
0≤τ1<···<τk<Nτ

k∏
l=1

Mi(τl,n) (4.58)

=
Nτ−1∑
τ1=0

Mi(τ1,n) +
∑

0≤τ1<τ2<Nt
Mi(τ1,n)Mi(τ2,n) +O(κ6) (4.59)

=
Nτ−1∑
τ1=0

(
tr(Ri(τ1,n)Li(τ1,n))

Nc
+ tr(Ri(τ1,n)Li(τ1,n))2

2(N2
c − 1) − tr

(
[Ri(τ1,n)Li(τ1,n)]2

)
2Nc(N2

c − 1)

)

+
∑

0≤τ1<τ2<Nt

tr(Ri(τ1,n)Li(τ1,n)) tr(Ri(τ2,n)Li(τ2,n))
N2
c

+O(κ5)

(4.60)

From this it is clear, that for a graph G ∈ Gc its contribution is at least of order κ2|EG|. Therefore,
the relevant subgraphs of GΛs up to O(κ4) are those with up to two edges. To list them, we at first
define:

n1 = (0, 0, 0), (4.61)
n2 = (1, 0, 0), (4.62)
n3 = (2, 0, 0), (4.63)
n4 = (1, 1, 0). (4.64)

Then, the relevant graphs up to equivalent weights are:

• G1 with vertices
VG1 = {n1,n2} (4.65)

and edges
EG1 = {(n1, 1)}. (4.66)

For all graphs we list here, the edge-to-endpoint function is simply the edge-to-endpoint
function of GΛs , restricted to the edges of the subgraph. G1 can be visualized in the following
way:

G1 = n1 n2 . (4.67)

• G2 with vertices
VG2 = {n1,n2,n3}, (4.68)
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4.3 Example: Deriving the κ4-action

edges
EG2 = {(n1, 1), (n2, 1)} (4.69)

and visual representation
G2 = n1 n2

n3 . (4.70)

• G3 with vertices
VG3 = {n1,n2,n4}, (4.71)

edges
EG3 = {(n1, 1), (n2, 2)} (4.72)

and visual representation

G3 = n1 n2

n4
. (4.73)

Next, we have to compute the weights of these graphs. Applying equation (4.34) to the graphs
gives

ϕ(G1) =
∫

d
[
Ψ, Ψ̄

]
eΨ̄QstatΨ∏

(n,i)∈E(G1)Ms,i(n)
det(Qstat)

(4.74)

=
∫

d
[
Ψ, Ψ̄

]
eΨ̄QstatΨMs,1(n1)

det(Qstat)
(4.75)

= 1
det(Qstat)

{
I1
Nc

+ I2
2(N2

c − 1) −
I3

2Nc(N2
c − 1) + I4

N2
c

+O(κ5)
}

(4.76)

ϕ(G2) =
∫

d
[
Ψ, Ψ̄

]
eΨ̄QstatΨMs,1(n1)Ms,1(n2)

det(Qstat)
(4.77)

= 1
det(Qstat)

(
I5
N2
c

+O(κ5)
)

(4.78)

ϕ(G3) =
∫

d
[
Ψ, Ψ̄

]
eΨ̄QstatΨMs,1(n1)Ms,2(n2)

det(Qstat)
(4.79)

= 1
det(Qstat)

(
I6
N2
c

+O(κ5)
)
, (4.80)

with the integrals,

I1 =
Nτ−1∑
τ1=0

∫
d
[
Ψ, Ψ̄

]
eΨ̄QstatΨ tr(R1(τ1,n1)L1(τ1,n1)), (4.81)

I2 =
Nτ−1∑
τ1=0

∫
d
[
Ψ, Ψ̄

]
eΨ̄QstatΨ tr(R1(τ1,n1)L1(τ1,n1))2, (4.82)

I3 =
Nτ−1∑
τ1=0

∫
d
[
Ψ, Ψ̄

]
eΨ̄QstatΨ tr

(
[R1(τ1,n1)L1(τ1,n1)]2

)
, (4.83)

I4 =
∑

0≤τ1<τ2<Nτ

∫
d
[
Ψ, Ψ̄

]
eΨ̄QstatΨ tr(R1(τ1,n1)L1(τ1,n1)) tr(R1(τ2,n1)L1(τ2,n1)), (4.84)

45



4 The hopping expansion as a polymer expansion, logarithmic resummations

I5 =
Nτ−1∑
τ1=0

Nτ−1∑
τ2=0

∫
d
[
Ψ, Ψ̄

]
eΨ̄QstatΨ tr(R1(τ1,n1)L1(τ1,n1)) tr(R1(τ2,n2)L1(τ2,n2)), (4.85)

I6 =
Nτ−1∑
τ1=0

Nτ−1∑
τ2=0

∫
d
[
Ψ, Ψ̄

]
eΨ̄QstatΨ tr(R1(τ1,n1)L1(τ1,n1)) tr(R2(τ2,n2)L2(τ2,n2)). (4.86)

The integrals are calculated using Wick’s theorem. After that one can rewrite the expression in
terms of color and Dirac traces, of which the latter can be evaluated to a real number. As the
procedure is roughly the same for all integrals and has been implemented on the computer during
this thesis, we only show it for the first integral. Note that the fact that G2 and G3 do not have
equivalent graph weights proves the claim made in section 4.2, that isomorphic graphs in general
do not have equivalent graph contributions.

At first, an “unsummed” version of I1, I1 =: ∑Nτ−1
τ1=0 I1(τ1), is computed. We start by inserting

the expressions for R and L from equation (4.7) and equation (4.8)

I1(τ1) =
∫

d
[
Ψ, Ψ̄

]
eΨ̄QstatΨ tr(R1(τ1,n1)L1(τ1,n1)) (4.87)

=
∫

d
[
Ψ, Ψ̄

]
eΨ̄QstatΨR1(τ1,n1)c1c2L1(τ1,n1)c2c1 (4.88)

= Kf1f2Kf3f4(1− γ1)α1α2(1 + γ1)α3α4

×
∫

d
[
Ψ, Ψ̄

]
eΨ̄QstatΨΨ̄(τ1,n1)f1

α1c2Ψ(τ1,n2)f2
α2c1Ψ̄(τ1,n2)f3

α3c1Ψ(τ1,n1)f4
α4c2

(4.89)

= −Kf1f2Kf3f4(1− γ1)α1α2(1 + γ1)α3α4

×
∫

d
[
Ψ, Ψ̄

]
eΨ̄QstatΨΨ̄(τ1,n1)f1

α1c2Ψ(τ1,n1)f4
α4c2Ψ̄(τ1,n2)f3

α3c1Ψ(τ1,n2)f2
α2c1

(4.90)

In the next step, Wick’s theorem is applied. We remind the reader that only those contractions,
where both Ψ and Ψ̄ have the same spatial argument, do not vanish.

I1(τ1) = −det(Qstat)Kf1f2Kf3f4(1− γ1)α1α2(1 + γ1)α3α4

×Q−1
stat(τ1, τ1,n1)f4f1

α4α1,c2c2Q
−1
stat(τ1, τ1,n2)f2f3

α2α3,c1c1

(4.91)

= −det(Qstat)Kf1f2Kf3f4(1− γ1)α1α2(1 + γ1)α3α4

×
(
Ncδf4f1δα4α1 + 1

2δα4α1B
+(τ1, τ1,n1)f4f1

c2,c2 + 1
2(γ0)α4α1B

−(τ1, τ1,n1)f4f1
c2,c2

)
×
(
Ncδf2f3δα2α3 + 1

2δα2α3B
+(τ1, τ1,n2)f2f3

c1,c1 + 1
2(γ0)α2α3B

−(τ1, τ1,n2)f2f3
c1,c1

) (4.92)

= −1
4 det(Qstat)Kf1f2Kf3f4 tr((1− γ1)γ0(1 + γ1)γ0)

×B−(τ1, τ1,n1)f4f1
c2,c2B

−(τ1, τ1,n2)f2f3
c1,c1

(4.93)

= −2 det(Qstat)
Nf∑
f=1

(κ(f))2
(
W

(f)
1100(n1)−W (f)

0011(n1)
)(
W

(f)
1100(n2)−W (f)

0011(n2)
)
. (4.94)

In the last step we introduced the notation

W (f)
n1m1n2m2(n) := tr


(
h

(f)
1 W (n)

)m1(
1 + h

(f)
1 W (n)

)n1

(
h̄

(f)
1 W (n)†

)m2(
1 + h̄

(f)
1 W (n)†

)n2

. (4.95)
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As the temporal dependence has dropped out, performing the temporal sum is trivial and gives

I1 = −2 det(Qstat)Nτ

Nf∑
f=1

(κ(f))2
(
W

(f)
1100(n1)−W (f)

0011(n1)
)(
W

(f)
1100(n2)−W (f)

0011(n2)
)
. (4.96)

After having obtained all necessary graph weights, the final step is to put everything together
according to equation (4.46). To respect all graphs that have equivalent weights to G1, G2 and G3
we take into account the orbits of these graphs under the group action of Oh oΛs. Furthermore it
is useful to define two more graphs which have equivalent weights to G1:

• G′1 with vertices
VG′1 = {n2,n3} (4.97)

and edges
EG′1 = {(n2, 1)}. (4.98)

• G′′1 with vertices
VG′′1 = {n2,n4} (4.99)

and edges
EG′′1 = {(n2, 2)}. (4.100)

To O(κ4) one then obtains

−Seff [W ] = log(det(Qstat))

+
∑

G̃1∈(OhoΛs.G1)

(
C(G1,1)ϕ(G̃1) + C(G1,2)ϕ(G̃1)2

)
+ C(G1,1),(G′1,1)

∑
(G̃1,G̃′1)∈(OhoΛs.(G1,G′1))

ϕ(G̃1)ϕ(G̃′1)

+ C(G1,1),(G′′1 ,1)
∑

(G̃1,G̃′′1)∈(OhoΛs.(G1,G′′1 ))
ϕ(G̃1)ϕ(G̃′′1)

+ C(G2,1)
∑

G̃2∈(OhoΛs.G2)

ϕ(G̃2) + C(G3,1)
∑

G̃3∈(OhoΛs.G3)

ϕ(G̃3),

(4.101)

where the Taylor expansion coefficients are determined to be

C(G1,1) = C(G2,1) = C(G3,1) (4.102)

= d
dα log(1 + 〈G1〉α)

∣∣∣∣
α=0

(4.103)

= d
dα log(1 + α)

∣∣∣∣
α=0

(4.104)

= 1, (4.105)

C(G1,2) = 1
2!

d2

dα2 log(1 + α)
∣∣∣∣∣
α=0

(4.106)

= − 1
2! , (4.107)

C(G1,1),(G′1,1) = C(G1,1),(G′′1 ,1) (4.108)
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= ∂2

∂α∂β
log
(
1 +

〈
G′1
〉
α+ 〈G1〉β + 〈G1, G2〉αβ

)∣∣∣∣∣
α=β=0

(4.109)

= ∂2

∂α∂β
log(1 + α+ β)

∣∣∣∣∣
α=β=0

(4.110)

= −1. (4.111)

A bit more loosely, the result can be represented in the following way:

−Seff [W ] = log(det(Qstat))

+
∑

n1,n2

(
ϕ
(

n1 n2
)
− 1

2ϕ
(

n1 n2
)2
)

−
∑

n1,n2,n3

ϕ
(

n1 n2
)
ϕ
(

n2 n3
)
−

∑
n1,n2,n4

ϕ
(

n1 n2
)
ϕ


n2

n4


+
∑

n1,n2,n3

ϕ

(
n1 n2

n3
)

+
∑

n1,n2,n4

ϕ

 n1 n2

n4
,

(4.112)

where the summations are understood to respect the relative positions of the ni and not to cause
overcounting of graphs. This finishes the derivation of the effective action to O(κ4). Note that in
contrast to [65, 146] we allow for arbitrary number of flavors and the quark masses and chemical
potentials can be varied independently. As we will show in the next section, this action can be
systematically improved using a logarithmic resummation. We will also argue why it may be
preferable to avoid using the action in its current form.

4.4 Logarithmic resummations

With the expansion coefficients C coming from a multivariate Taylor expansion of a logarithm, it
is not surprising that certain contributions (in fact all) in equation (4.46) can be resummed into
a logarithm. One might interject that originally the action was already in a logarithmic form,
equation (4.45), but that would miss the point. First of all, in that case we would have to deal with
disconnected graphs, and, more importantly, this action is trivial in the sense that when it is used
to compute some observable, no higher order terms than the ones obtained inside the logarithm
are obtained for this observable. Notably this action is not able to resolve long range interactions
necessary for a phase transition and the Polyakov loop correlator is zero for distances that are
longer than the truncation. The point here is to obtain logarithms inside the sums over the graphs.
To get started we discuss how to resum the repetition of a single graph weight.

4.4.1 Resummation of a single graph weight

The case n = 1 in the sum on the right side of equation (4.46) reads

∑
G∈Gc(GΛs )

∞∑
k=1

C(G,k)ϕ(G)k =
∑

G∈Gc(GΛs )

∞∑
k=1

1
k!

dk
dαk log(1 + α)

∣∣∣∣∣
α=0

ϕ(G)k (4.113)

=
∑

G∈Gc(GΛs )
log(1 + ϕ(G)). (4.114)
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4.4 Logarithmic resummations

The last step was simply an application of Taylor’s formula. While it is possible to identify loga-
rithms for n > 2 in this way, it becomes cumbersome and error-prone relatively quickly. We will
discuss a better method in section 4.4.3.

4.4.2 On the importance of the logarithmic resummation when evaluating the
effective theory

The importance of the logarithmic resummations for the effective theory of Yang-Mills theory was
already stressed in [118]. Similar observations can be made in our case.
First, we want to make some general remarks. There are both numerical as well as analytic ways

to evaluate the effective theory. Independently of how it is evaluated, the point of the effective
theory is that, when it is evaluated, it generates higher order terms in the expansion it is based
on, and in that sense it corresponds to a partial resummation of certain terms. Naturally, the
effective theory cannot generate all higher order terms but of the higher order terms it generates,
they should occur in a direct evaluation of the original theory. This however might not be the case,
if the higher order terms would be canceled if one would have included higher order terms in the
effective theory before evaluating it. This is exactly what happens if the logarithmic resummation
is not included as we will illustrate for a simple example.
Specifically, we consider the O(κ2) effective action for Nf = 1 with partition function (we assume

that ϕ(G) is truncated to O(κ2) for all G ∈ Gc)

Z =
∫

d[W ] det(Qstat) exp

 ∑
G̃1∈(OhoΛs.G1)

ϕ(G̃1)

 (4.115)

=
∫

d[W ] det(Qstat) exp

2κ
2Nτ

Nc

∑
〈n,m〉

(W1100(n)−W0011(n))(W1100(m)−W0011(m))


(4.116)

and compare it to its log-resummed version

Z =
∫

d[W ] det(Qstat) exp

 ∑
G̃1∈(OhoΛs.G1)

log
(
1 + ϕ(G̃1)

) (4.117)

=
∫

d[W ] det(Qstat)
∏
〈n,m〉

(
1 + 2κ

2Nτ

Nc
(W1100(n)−W0011(n))(W1100(n)−W0011(n))

)
. (4.118)

Now, when evaluating Z perturbatively, it is clear that for the the first version one will have to
obtain the integral

κ2k
∫

SU(Nc)
dW det(1 + h1W )2 det

(
1 + h̄1W

†
)2

tr
(

h1W

1 + h1W

)k
(4.119)

for ever higher values of k ∈ N when increasing the order of κ In contrast to this, the highest
k that is necessary for all orders in κ is 2d = 6 for the log-resummed version. This means that
higher order corrections in the effective theory lead to the cancellation of certain contributions in
the evaluation of the effective theory and these cancellations are missed when the log-resummation
is not included.
Furthermore, consider full lattice QCD. When evaluating the partition function in a finite volume,

one will always obtain only finite orders in κ, since the fermion determinant is simply a finite
polynomial in a finite volume or, from another viewpoint, there are only a finite number Grassmann

49



4 The hopping expansion as a polymer expansion, logarithmic resummations

variables and they are nilpotent. This constraint on the powers of κ is however not respected by
the effective theory when the logarithmic resummation is not employed. Even in the infinite
volume limit, infinite orders of κ do not result from a single lattice site (as can happen for the
effective theory, see equation (4.119)), but from long range interactions. Using an action without
the logarithmic resummations will therefore necessarily lead to violations of the constraint that the
square of Grassmann-valued fields vanishes.

4.4.3 Logarithmic resummation of all graph combinations

Now that the importance of the logarithmic resummation is clear we discuss how to apply this
resummation to all contributions of the effective theory. The method we apply here is basically the
finite cluster method, which has been known already a long time and has been applied to other
series expansions. For the early works, see [151–153], and for more recent applications we refer to
[154, 155]. In our case there is the additional twist that the graph weights depend on field variables
(the W ). The mathematical basis of the finite cluster method is that of Moebius inversion [120].
The idea of the finite cluster method can be applied to our case in the following way: In analogy

to section 3.1 one can rewrite equation (4.46)

− Seff [U0] = log(det(−1 + T [U0])) +
∑
G∈Gc

ξ(G), (4.120)

where ξ(G) contains the logarithmic resummation of G and of all connected clusters of subgraphs
of G. But how can we obtain ξ(G)?
Getting rid of the contribution from the static determinant using equation (4.48) on writes

log(Peff ◦ G(GΛs)) =
∑

G∈Gc(GΛs )
ξ(G). (4.121)

The important point now is, that this equation is in no way limited to be used for the whole
spatial lattice graph GΛs only, as the whole derivation would have worked the same if one would
have chosen another underlying graph than GΛs . In particular, ϕ(G), only depends on the graph
topology of G, but not on that of GΛs , as it is clear from equation (4.40). So, to obtain ξ for some
graph G ∈ Gc(GΛs) we can use

log(Peff ◦ G(G)) =
∑

g∈Gc(G)
ξ(g) (4.122)

and rewrite this to
ξ(G) = log(Peff ◦ G(G))−

∑
g∈(Gc(G)\G)

ξ(g). (4.123)

This formula can then be used recursively until one reaches the graphs with equivalent weight to
G1 as defined in section 4.3. For G1 one then has Gc(G1) = {G1}, which is the base case and ends
the recursion. Of course, the remarks made about equivalency of graph weights ϕ applies to ξ.
The procedure necessitates the computation of Peff ◦ G(G) for the involved graphs (which are

the finite clusters that give the method its name) using equation (4.48). This involves dealing with
disconnected graphs which is, however, not a real problem when dealing with graphs that are not
as big as GΛs . We again illustrate the procedure by log-resumming the κ4-action equation (4.101).
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4.4 Logarithmic resummations

4.4.4 Resummation of the κ4-action

Including the log-resummations, the κ4-action reads in terms of the ξ (we use the more loose
notation for readability and the precise expressions should be clear)

−Seff [W ] = log(det(Qstat))

+
∑

n1,n2

ξ
(

n1 n2
)

+
∑

n1,n2,n3

ξ

(
n1 n2

n3
)

+
∑

n1,n2,n4

ξ

 n1 n2

n4
.

(4.124)

Next we compute the necessary ξ (in the more loose notation, the G inside the Peff is omitted in
the notation but implied):

ξ
(

n1 n2
)

= log
(
Peff

(
n1 n2

))
(4.125)

ξ

(
n1 n2

n3
)

= log
(
Peff

(
n1 n2

n3
))

− ξ
(

n1 n2
)
− ξ

(
n2 n3

) (4.126)

= log
(
Peff

(
n1 n2

n3
))

− log
(
Peff

(
n1 n2

))
− log

(
Peff

(
n2 n3

)) (4.127)

ξ

 n1 n2

n4
 = log

Peff

 n1 n2

n4


− ξ
(

n1 n2
)
− ξ


n2

n4
 (4.128)

= log

Peff

 n1 n2

n4


− log
(
Peff

(
n1 n2

))
− log

Peff


n2

n4
 (4.129)

Subsequently, Peff of the graphs is computed to be

Peff
(

n1 n2
)

= 1 + ϕ
(

n1 n2
)

(4.130)

Peff

(
n1 n2

n3
)

= 1 + ϕ
(

n1 n2
)

+ ϕ
(

n2 n3
)

+ ϕ

(
n1 n2

n3
)

(4.131)

Peff

 n1 n2

n4
 = 1 + ϕ

(
n1 n2

)
+ ϕ


n2

n4
+ ϕ

 n1 n2

n4
. (4.132)

Before we put everything together we remark that although the logarithmic identity

log(xy) = log(x) + log(y) (4.133)

only holds modulo 2πi for complex number we do not have to worry about those extra factors here
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4 The hopping expansion as a polymer expansion, logarithmic resummations

as they will, in the end, always occur inside the exponential function. Keeping this in mind the
effective action can be written as

−Seff [W ] = log(det(Qstat))

+
∑

n1,n2

log
(
1 + ϕ

(
n1 n2

))

+
∑

n1,n2,n3

log

1 + ϕ
(

n1 n2
)

+ ϕ
(

n2 n3
)

+ ϕ

(
n1 n2

n3
)

(
1 + ϕ

(
n1 n2

))(
1 + ϕ

(
n2 n3

))


+
∑

n1,n2,n4

log


1 + ϕ

(
n1 n2

)
+ ϕ


n2

n4
+ ϕ

 n1 n2

n4


(
1 + ϕ

(
n1 n2

))1 + ϕ


n2

n4


.

(4.134)

To avoid violations of the Grassmann constraint it may be necessary to expand the fractions
occurring in the logarithms. We note that even if one is not interested in the logarithmic resummed
result, the finite cluster method is easier to deal with than with the sums over linked polymers Cn
as they occur in equation (4.46). So, instead of using equation (4.46), one should employ the finite
cluster method to derive a logarithmic resummed version, and then Taylor expand this result to
obtain the answer that would be obtained by using equation (4.46).
According to [156], there are renormalization procedures similar to those of section 3.2.2 for the

finite cluster method, but we currently do not understand if they can be applied to our situation.
In section 4.4.2 we already saw that it is useful to contrast the evaluation of the effective theory to
the direct evaluation of the partition function, and we will explore this in more detail in section 4.6.
Before this comparison, we want to discuss another kind of resummation.

4.5 Ladder resummation

In this section we investigate how certain contributions to ϕ(G1) can be resummed. As all graphs
are “build up” by G1 or those graphs with equivalent weights to it, these resummations concern
all other graphs, too. Since all Ψ and Ψ̄ that are used for the computation of the weight of G1
have either n1 or its nearest neighbor n2 as their spatial arguments, but have the whole range of
temporal arguments, these resummations are subsumed under the term ladder resummation, where
the metaphorical ladder goes “up” in temporal direction. For simplicity we will assume that Nf = 1
in this section, but the generalization to more flavors should be straightforward.
The main motivation of this section is to make a connection from the logarithmic resummation

as explained here to the one given in section 4.7.2 of [74] and to show that the results leading to
this connection can be systematically improved.
As the whole ladder resummation itself is too complicated we content ourselves with using the

following truncated version of Mi(n) (this truncation means that for the integrals over the spatial
gauge transporters only the integrals with one U and one U † are considered):

Mi(n) = tr(Ri(n)Li(n))
Nc

, (4.135)
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4.5 Ladder resummation

leading to a truncated version of Ms,i(n):

Ms,i(n) =
Nτ∑
k=1

1
Nk
c

∑
0≤τ1<···<τk<Nτ

k∏
l=1

tr(Ri(τl,n)Li(τl,n)). (4.136)

Consequently, in this truncation scheme the weight for G1 reads:

ϕ(G1) =
∫

d
[
Ψ, Ψ̄

]
eΨ̄QstatΨMs,1(n1)

det(Qstat)
(4.137)

= 1
det(Qstat)

Nτ∑
k=1

1
Nk
c

∑
0≤τ1<···<τk<Nτ

∫
d
[
Ψ, Ψ̄

]
eΨ̄QstatΨ

k∏
l=1

tr(Ri(τl,n1)Li(τl,n1)). (4.138)

We focus on the integral:

I(τ1, . . . , τk) := 1
det(Qstat)

∫
d
[
Ψ, Ψ̄

]
eΨ̄QstatΨ

k∏
l=1

tr(Ri(τl,n1)Li(τl,n1)) (4.139)

= (−κ2)k
det(Qstat)

k∏
l=1

(1− γ1)αlβl(1 + γ1)δlεl

×
∫

d
[
Ψ, Ψ̄

]
eΨ̄QstatΨ

k∏
l=1

Ψ̄(τl,n1)αldlΨ(τl,n1)εldlΨ̄(τl,n2)δlclΨ(τl,n2)βlcl

(4.140)

= (−κ2)k
k∏
l=1

(1− γ1)αlβl(1 + γ1)δlεl

×
∑

σ,ρ∈Sk

sign(σ ◦ ρ)
k∏
l=1

Q−1
stat(τl, τσ(l),n1)εlασ(l),dldσ(l)Q

−1
stat(τl, τρ(l),n2)βlδρ(l),clcρ(l) .

(4.141)

Since (1−γ1)(1+γ1) = 0, only the part of Q−1
stat which contains the γ0 in Dirac space contributes,

leading to

I(τ1, . . . , τk) =
(
−κ

2

4

)k ∑
σ,ρ∈Sk

sign(σ ◦ ρ)
k∏
l=1

(1− γ1)αlβl(1 + γ1)δlεl(γ0)εlασ(l)(γ0)βlδρ(l)

×B−(τl, τσ(l),n1)dldσ(l)B
−(τl, τρ(l),n2)clcρ(l) .

(4.142)

The γ-matrices can be rewritten to

k∏
l=1

(1− γ1)αlβl(1 + γ1)δlεl(γ0)εlασ(l)(γ0)βlδρ(l) (4.143)

=
k∏
l=1

(1 + γ1)δlεl(γ0)εlασ(l)(1− γ1)ασ(l)βσ(l)(γ0)βσ(l)δσ◦ρ(l) (4.144)

=
k∏
l=1

[(1 + γ1)(γ0)(1− γ1)(γ0)]δlδσ◦ρ(l) (4.145)

= 2k
k∏
l=1

(1 + γ1)δlδσ◦ρ(l) . (4.146)
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4 The hopping expansion as a polymer expansion, logarithmic resummations

Every permutation can be decomposed into disjoint cycles. Therefore, if we define Cl(σ) to be the
number of cycles with length l in the permutation σ, one obtains:

2k
k∏
l=1

(1 + γ1)δlδσ◦ρ(l) = 2k
k∏
l=1

tr
(
(1 + γ1)Cl(σ◦ρ)

)
(4.147)

= 2k
k∏
l=1

2Cl(σ◦ρ)+1 (4.148)

= 22k+C(σ◦ρ), (4.149)

where C(σ) = ∑k
l=1Ck(σ) is simply the total number of disjoint cycles in σ. Putting this result

back into equation (4.142) one obtains

I(τ1, . . . , τk) = (−κ2)k
∑

σ,ρ∈Sk

sign(σ ◦ ρ)2C(σ◦ρ)
k∏
l=1

B−(τl, τσ(l),n1)dldσ(l)B
−(τl, τρ(l),n2)clcρ(l) .

(4.150)

We are not aware how the summation over all permutations can be brought to a closed form
without further truncations, so we content ourselves with analyzing the contributions of certain
permutations only. Specifically, we consider the following cases, which covers all permutations up
to k < 3:

• σ = ρ = id ∈ Sk, then:
sign(σ ◦ ρ) = 1, (4.151)

2C(σ◦ρ) = 2C(id) = 2k (4.152)

and
k∏
l=1

B−(τl, τσ(l),n1)dldσ(l)B
−(τl, τρ(l),n2)clcρ(l) =

(W0011(n1)−W1100(n1))k(W0011(n2)−W1100(n2))k.
(4.153)

• σ = id ∈ Sk and ρ = (12)(3) . . . (k) in cycle notation, in this case one has:

sign(σ ◦ ρ) = −1, (4.154)

2C(σ◦ρ) = 2C((12)(3)...(k)) = 2k−1 (4.155)

and, using the fact that τ1 < τ2,

k∏
l=1

B−(τl, τσ(l),n1)dldσ(l)B
−(τl, τρ(l),n2)clcρ(l)

= −(W0011(n1)−W1100(n1))k(W0011(n2)−W1100(n2))k−2

×
(
W2100(n2) +W0021(n2) +W1010(n2)(2κ)2(τ2−τ1) +W1111(n2)(2κ)2(τ1−τ2)

)
(4.156)
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4.5 Ladder resummation

= −(W0011(n1)−W1100(n1))k(W0011(n2)−W1100(n2))k−2(W2100(n2) +W0021(n2))
− (2κ)2(τ2−τ1)(W0011(n1)−W1100(n1))k(W0011(n2)−W1100(n2))k−2W1010(n2)
− (2κ)2(τ1−τ2)(W0011(n1)−W1100(n1))k(W0011(n2)−W1100(n2))k−2W1111(n2).

(4.157)

• ρ = id ∈ Sk and σ = (12)(3) . . . (k), this gives the same result as the previous case, but with
n1 ↔ n2.

• σ = ρ = (12)(3) . . . (k), now one has σ ◦ ρ = id so the only difference to the first case is

k∏
l=1

B−(τl, τσ(l),n1)dldσ(l)B
−(τl, τρ(l),n2)clcρ(l)

=
2∏
i=1

(W0011(ni)−W1100(ni))k−2

×
(
W2100(ni) +W0021(ni) +W1010(ni)(2κ)2(τ2−τ1) +W1111(ni)(2κ)2(τ1−τ2)

)
(4.158)

=
2∏
i=1

(W0011(ni)−W1100(ni))k−2(W2100(ni) +W0021(ni))

+W1010(n1)
( 2∏
i=1

(W0011(ni)−W1100(ni))k−2
)
W1111(n2)

+W1111(n1)
( 2∏
i=1

(W0011(ni)−W1100(ni))k−2
)
W1010(n2)

+ (2κ)2(τ2−τ1)W1010(n1)
( 2∏
i=1

(W0011(ni)−W1100(ni))k−2
)

(W2100(n2) +W0021(n2))

+ (2κ)2(τ2−τ1)(W2100(n1) +W0021(n1))
( 2∏
i=1

(W0011(ni)−W1100(ni))k−2
)
W1010(n2)

+ (2κ)2(τ1−τ2)W1111(n1)
( 2∏
i=1

(W0011(ni)−W1100(ni))k−2
)

(W2100(n2) +W0021(n2))

+ (2κ)2(τ1−τ2)(W2100(n1) +W0021(n1))
( 2∏
i=1

(W0011(ni)−W1100(ni))k−2
)
W1111(n2)

+ (2κ)4(τ2−τ1)W1010(n1)
( 2∏
i=1

(W0011(ni)−W1100(ni))k−2
)
W1010(n2)

+ (2κ)4(τ1−τ2)W1111(n1)
( 2∏
i=1

(W0011(ni)−W1100(ni))k−2
)
W1111(n2).

(4.159)

Including the explicit form of the first case (σ = ρ = id) in the evaluation of ϕ(G1), one can easily
evaluate the temporal sums for k = 1, as the temporal dependence drops out for this contribution
and a simple combinatorial argument shows

∑
0≤τ1<···<τk<Nτ

=
(
Nτ

k

)
. (4.160)
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This results in the resummation that establishes the connection to the logarithmic resummation in
[74]

ϕ(G1) =
Nτ∑
k=1

(
− κ

2

Nc

)k ∑
0≤τ1<···<τk<Nτ

∑
σ,ρ∈Sk

sign(σ ◦ ρ)2C(σ◦ρ)

×
k∏
l=1

B−(τl, τσ(l),n1)dldσ(l)B
−(τl, τρ(l),n2)clcρ(l)

(4.161)

=
Nτ∑
k=1

(
Nτ

k

)(
−2κ2

Nc

)k
(W0011(n1)−W1100(n1))k(W0011(n2)−W1100(n2))k

+
Nτ∑
k=2

(
− κ

2

Nc

)k ∑
0≤τ1<···<τk<Nτ

∑
σ,ρ∈Sk\{id}

sign(σ ◦ ρ)2C(σ◦ρ)

×
k∏
l=1

B−(τl, τσ(l),n1)dldσ(l)B
−(τl, τρ(l),n2)clcρ(l)

(4.162)

= −1 +
(

1− 2κ2

Nc
(W0011(n1)−W1100(n1))(W0011(n2)−W1100(n2))

)Nτ

+
Nτ∑
k=1

(
− κ

2

Nc

)k ∑
0≤τ1<···<τk<Nτ

∑
σ,ρ∈Sk\{id}

sign(σ ◦ ρ)2C(σ◦ρ)

×
k∏
l=1

B−(τl, τσ(l),n1)dldσ(l)B
−(τl, τρ(l),n2)clcρ(l) .

(4.163)

Including the other cases results in rather lengthy expressions, so we only explain how to obtain
them. Generically, the temporal sums and that over k can be written as

S =
Nτ∑
k=2

 ∑
0≤τ1<···<τk<Nτ

ατ2−τ1

βk (4.164)

for these cases. For the inner sum, the summand does not depend on τ3, . . . , τk. Therefore the
summation over these variables simply counts how many values τ3, . . . , τk can take under the
constraint that τ2 < τ3 < · · · < τk < Nτ , which is simply

(Nτ−τ2−1
k−2

)
. So, the inner sum can be

rewritten to  ∑
0≤τ1<···<τk<Nτ

ατ2−τ1

 =
∑

0≤<τ1<τ2<Nτ−k−2

(
Nτ − τ2 − 1

k − 2

)
ατ2−τ1 (4.165)

=
Nτ−k+1∑
τ2=1

τ2−1∑
τ1=0

(
Nτ − τ2 − 1

k − 2

)
ατ2
( 1
α

)τ1
(4.166)

= α

α− 1

Nτ−k+1∑
τ2=1

(
Nτ − τ2 − 1

k − 2

)
(ατ2 − 1), (4.167)

where we used the well know formula for geometric sums to evaluate the summation over τ1. In
principle, this sum can now be expressed in terms of Hypergeometric functions, but it is more
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convenient to notice that
Nτ−k+1∑
τ2=1

(
Nτ − τ2 − 1

k − 2

)
(ατ2 − 1)

=
(
Nτ − 2
k − 2

)
(α− 1) +

(
Nτ − 3
k − 2

)
(α2 − 1) + · · ·+

(
k − 2
k − 2

)
(αNτ−k+1 − 1)

(4.168)

=
Nτ−2∑
τ2=k−2

(
τ2

k − 2

)
(αNτ−1−τ2 − 1) (4.169)

=
Nτ−2∑
τ2=0

(
τ2

k − 2

)
(αNτ−1−τ2 − 1). (4.170)

In the last step we used that
(N
k

)
= 0 for N ≥ 0 and N < k. Now the summation over τ2 and k

can be interchanged and using the binomial theorem one obtains

S = α

α− 1

Nτ−2∑
τ2=0

Nτ∑
k=2

(
τ2

k − 2

)
(αNτ−1−τ2 − 1)βk (4.171)

= αβ2

α− 1

Nτ−2∑
τ2=0

(1 + β)τ2(αNτ−1−τ2 − 1). (4.172)

The rest is then again just an application of the formula for geometric sums and in total we have

S = βα

α− 1

1− (1 + β)Nτ−1 +
β
(
αNτ − α(1 + β)Nτ−1

)
α− β − 1

, (4.173)

which completes our discussion of the ladder resummation.

4.6 Direct evaluation vs evaluation of the effective theory

The scheme for the derivation of the effective theory we investigated so far can also be used for a
perturbative evaluation of log(Z) around κs = 0. As we mentioned above, it is useful to compare
this direct evaluation to the evaluation of the effective theory. It is clear that when the truncation
order for the derivation of the effective theory agrees with the truncation order for the evaluation
of the effective theory, both approaches should lead to the same result.

4.6.1 Direct evaluation of log(Z)

To obtain log(Z) instead of Seff , one has to include the integration over the temporal gauge trans-
porters in the right hand side of equation (2.20):

log(Z) = log
(∫

d[W ]d[Us]d
[
Ψ, Ψ̄

]
e−Sg [U ]−Sf [U,Ψ,Ψ̄]

)
. (4.174)

Repeating the same steps that lead to equation (4.45) one obtains

log(Z) = log

∫ d[W ] det(Qstat)

1 +
|Gc|∑
n=1

∑
{G1,...,Gn}∈Dn(Gc(GΛs ))

ϕ(G1) · · ·ϕ(Gn)

 (4.175)
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= log

∫ d[W ] det(Qstat) +
|Gc|∑
n=1

∑
{G1,...,Gn}∈Dn(Gc(GΛs ))

∫
d[W ] det(Qstat)ϕ(G1) · · ·ϕ(Gn)


(4.176)

Note that due to the definition of Dn, the ϕ(Gi) of one summand do not share any vertices. From
equation (4.40) we know that ϕ(Gi) only depends on those W whose argument is a vertex of Gi
and consequently∫

d[W ] det(Qstat)ϕ(G1) · · ·ϕ(Gn)

=
∫

d[W ]
∏

n∈Λs\V (G1)∪···∪V (Gn)
det(qstat(W (n)))

×
∏

n1∈VG1

det(qstat(W (n1)))ϕ(G1) · · ·
∏

nn∈VGn

det(qstat(W (nn)))ϕ(Gn)

(4.177)

=
(∫

dW det(qstat(W ))
)Ns−∑n

i=1 |VGi |

×
n∏
i=1

∫ ∏
n∈VGi

dW (n) det(qstat(W (n)))ϕ(Gi)
(4.178)

= zNs0

n∏
i=1

( 1
z0

)|VGi | ∫ ∏
n∈VGi

dW (n) det(qstat(W (n)))ϕ(Gi), (4.179)

where we made the definition
z0 :=

∫
SU(Nc)

dW det(qstat(W )) (4.180)

in the last step. Therefore, if we assign to the subgraphs of Gc the weight

Φ(G) =
( 1
z0

)|VG| ∫ ∏
n∈VG

dW (n) det(qstat(W (n)))ϕ(G), (4.181)

it again factorizes over the connected components of disconnected graphs and log(Z) can be written
as

log(Z) = Ns log(z0) + log

1 +
|Gc|∑
n=1

∑
{G1,...,Gn}∈Dn(Gc(GΛs ))

Φ(G1) · · ·Φ(Gn)

. (4.182)

The expansion of the logarithm can then be done in the same way as before using the polymer
expansion formula, with the additional simplification that graphs, which had equivalent weights
in the derivation of the effective theory, now have the same weight. The result of the sum over
the graph orbits just gives the number of elements in this orbit and is then similar to the weak
embedding number from section 3.1, with the additional constraint that the embeddings are iso-
morphisms between a graph g and and subgraph of GΛs which has an equivalent weight to g. For
the graphs of the expansion to O(κ4) the sums over the orbits give (we assume that Ns is large
enough so that no graph loops the torus):∑

G̃1∈(OhoΛs.G1)

= dNs = 3Ns, (4.183)
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∑
G̃2∈(OhoΛs.G2)

= dNs = 3Ns, (4.184)

∑
G̃3∈(OhoΛs.G2)

= 2d(d− 1)Ns = 12Ns. (4.185)

Consequently, the logarithmically resummed partition function to O(κ4) reads

log(Z) = Ns log(z0)

+ 3Ns log
(
1 + Φ

(
n1 n2

))

+ 3Ns log

1 + 2Φ
(

n1 n2
)

+ Φ
(

n1 n2
n3
)

(
1 + Φ

(
n1 n2

))2



+ 12Ns log


1 + 2Φ

(
n1 n2

)
+ Φ

 n1 n2

n4


(
1 + Φ

(
n1 n2

))2

.

(4.186)

Undoing the logarithmic resummation by expanding the partition function to O(κ4) one obtains,
just as expected from equation (4.101):

log(Z) = Ns log(z0)

+ 3Ns

(
Φ
(

n1 n2
)
− 1

2Φ
(

n1 n2
)2
)

− 3NsΦ
(

n1 n2
)
Φ
(

n2 n3
)
− 12NsΦ

(
n1 n2

)
Φ


n2

n4


+ 3NsΦ
(

n1 n2
n3
)

+ 12NsΦ

 n1 n2

n4
,

(4.187)

To obtain the weights Φ one has to evaluate SU(Nc) integrals over the temporal gauge trans-
porters. This will be discussed in section 4.6.3 and section 6.1.2, we at first want to compare the
evaluation of the effective theory to the direct evaluation.

4.6.2 Analytic evaluation of the effective theory

Since the temporal gauge integrals factorize over the same graphs as the Grassmann integration,
it is clear that the effective theory itself can be evaluated using the finite cluster method. For
this, one simply4 has to enlist for every finite cluster the ways the graphs contained in the effective
theory can be embedded into it. As a consistency check, we evaluate the resummed κ4 action.

4It is simple in the sense that it is easy to see how this procedure arises from the finite cluster method. However,
the practical graph theoretical problem itself is in general an algorithmically hard problem. Unsurprisingly, to κ4

everything is still rather simple to evaluate.
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4 The hopping expansion as a polymer expansion, logarithmic resummations

Evaluation of the resummed κ4-action

This should yield the same result as equation (4.186). The logarithm of the normed partition
function of the effective theory to κ4 can be expressed as

log
(
Z/zNs0

)
= Nsd Ξκ4

(
n1 n2

)
+Nsd Ξκ4

(
n1 n2

n3
)

+Ns2d(d− 1) Ξκ4

 n1 n2

n4
, (4.188)

where the Ξκ4 are calculated following the strategy explained in section 4.4.3. Therefore, we
have to evaluate the partition function of the effective theory on the finite clusters defined by the
graphs in the previous equation. The partition function on the whole lattice (or any graph that
can contain all the graphs of the effective action) reads

Z =
∫

d[W ]
∏
n

det(qstat(n))

×
∏

n1,n2

(
1 + ϕ

(
n1 n2

))

×
∏

n1,n2,n3

1 + ϕ
(

n1 n2
)

+ ϕ
(

n2 n3
)

+ ϕ

(
n1 n2

n3
)

(
1 + ϕ

(
n1 n2

))(
1 + ϕ

(
n2 n3

))


×
∏

n1,n2,n4


1 + ϕ

(
n1 n2

)
+ ϕ


n2

n4
+ ϕ

 n1 n2

n4


(
1 + ϕ

(
n1 n2

))1 + ϕ


n2

n4


.

(4.189)

From this, we can conclude that on the first finite cluster the partition function reads

1
zNs0

Z
(

n1 n2
)

= 1
z2

0

∫
d[W ] det(qstat(W (n1))) det(qstat(W (n2)))

(
1 + ϕ

(
n1 n2

)) (4.190)

= 1 + 1
z2

0

∫
d[W ] det(qstat(W (n1))) det(qstat(W (n2)))ϕ

(
n1 n2

)
(4.191)

= 1 + Φ
(

n1 n2
)

(4.192)

where we inserted the definition of Φ according to equation (4.181). The next case is more inter-
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esting

1
zNs0

Z

(
n1 n2

n3
)

= 1
z3

0

∫
d[W ] det(qstat(W (n1))) det(qstat(W (n2))) det(qstat(W (n3)))

×
(
1 + ϕ

(
n1 n2

))(
1 + ϕ

(
n2 n3

))

×

1 + ϕ
(

n1 n2
)

+ ϕ
(

n2 n3
)

+ ϕ

(
n1 n2

n3
)

(
1 + ϕ

(
n1 n2

))(
1 + ϕ

(
n2 n3

))
.

(4.193)

We note now, that the contributions of the two-point coupling cancel against the denominator of
the contribution from the three-point coupling and therefore

1
zNs0

Z

(
n1 n2

n3
)

= 1
z3

0

∫
d[W ] det(qstat(W (n1))) det(qstat(W (n2))) det(qstat(W (n3)))

×
(

1 + ϕ
(

n1 n2
)

+ ϕ
(

n2 n3
)

+ ϕ

(
n1 n2

n3
)) (4.194)

=
(

1 + Φ
(

n1 n2
)

+ Φ
(

n2 n3
)

+ Φ
(

n1 n2
n3
))

. (4.195)

=
(

1 + 2Φ
(

n1 n2
)

+ Φ
(

n1 n2
n3
))

. (4.196)

Analogously

Z

zNs0
Z

(
n1 n2

n3
)

=
(

1 + 2Φ
(

n1 n2
)

+ Φ
(

n1 n2
n3
))

.

(4.197)

Since Ξκ4 and the normed partition function on finite clusters have the same relation as ξ and
Peff in section 4.4.4 we obtain

Ξκ4

(
n1 n2

)
= log

(
1 + Φ

(
n1 n2

))
, (4.198)

Ξκ4

(
n1 n2

n3
)

= log

1 + 2Φ
(

n1 n2
)

+ Φ
(

n1 n2
n3
)

(
1 + Φ

(
n1 n2

))2

, (4.199)

Ξκ4

 n1 n2

n4
 = log


1 + 2Φ

(
n1 n2

)
+ Φ

 n1 n2

n4


(
1 + Φ

(
n1 n2

))2

. (4.200)

Inserting these equations in equation (4.188) leads to equation (4.186), just like expected.

The cancellations that are necessary to obtain the correct result cannot occur when only the κ2
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4 The hopping expansion as a polymer expansion, logarithmic resummations

action is used. Do we run into a similar problem as the one explained in section 4.4.2?

Evaluation of the resummed κ2-action

Just like for the κ4 the logarithm of the normed partition function has the generic form

log
(
Z/zNs0

)
= Nsd Ξκ2

(
n1 n2

)
+Nsd Ξκ2

(
n1 n2

n3
)

+Nsd Ξκ2

 n1 n2

n4
. (4.201)

The specific form of the partition function is different however

Z =
∫

d[W ]
∏
n

det(qstat(n))
∏

n1,n2

(
1 + ϕ

(
n1 n2

))
. (4.202)

Evaluating the partition function on the finite cluster gives the same result as in the κ4 case.
For the next cluster one obtains

1
zNs0

Z

(
n1 n2

n3
)

= 1
z3

0

∫
d[W ] det(qstat(W (n1))) det(qstat(W (n2))) det(qstat(W (n3)))

×
(
1 + ϕ

(
n1 n2

))(
1 + ϕ

(
n2 n3

))
.

(4.203)

= 1 + 2Φ
(

n1 n2
)

+ 1
z3

0

∫
d[W ]

( 3∏
i=1

det(qstat(W (ni)))
)
ϕ
(

n1 n2
)
ϕ
(

n2 n3
)
.

(4.204)

What do we have now? In contrast to the fully consistent calculation to κ4, we are missing the
contribution

Φ
(

n1 n2
n3
)
, (4.205)

which is acceptable, however we also generate a contribution which seemingly does not come up in
the full calculation, namely

1
z3

0

∫
d[W ]

( 3∏
i=1

det(qstat(W (ni)))
)
ϕ
(

n1 n2
)
ϕ
(

n2 n3
)
, (4.206)

which would be problematic.
Then again, the ϕ and Φ are quite complicated objects and a closer look reveals the follow-

ing: To the orders relevant here, using equations (4.76) and (4.78) with I1 and I5 inserted from
equations (4.81) and (4.85) one obtains

ϕ
(

n1 n2
)

= 1
Nc det(Qstat)

Nτ−1∑
τ1=0

∫
d
[
Ψ, Ψ̄

]
eΨ̄QstatΨ tr(R1(τ1,n1)L1(τ1,n1)),

(4.207)
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ϕ

(
n1 n2

n3
)

= 1
N2
c det(Qstat)

Nτ−1∑
τ1=0

Nτ−1∑
τ2=0

∫
d
[
Ψ, Ψ̄

]
eΨ̄QstatΨ tr(R1(τ1,n1)L1(τ1,n1)) tr(R1(τ2,n2)L1(τ2,n2)).

(4.208)

Applying Wick’s theorem to evaluate the second integral, one obtains contractions, which mix the
Grassmann numbers of the two traces and contractions, that don’t. The latter lead to the first
integral and a translated variant of it, or, in other words

ϕ

(
n1 n2

n3
)

= ϕ
(

n1 n2
)
ϕ
(

n1 n2
)

+ mixing contractions (4.209)

Therefore equation (4.206) corresponds to parts of equation (4.205) and the κ2 action correctly
predicts certain κ4 contributions of the full calculation and produces no κ4-contributions which do
not come up in the full calculation. Similar observation can certainly be made at higher orders,
but we mention that there is still one more caveat, which we will discuss at the end of the next
section.

4.6.3 Evaluation of the temporal gauge integrals for the case Nc = 3

After sorting out the combinatorics of the expansion, the problem of determining the partition
function reduces to (both in the direct evaluation and the evaluation of the effective theory) solving
single site SU(Nc) integrals. In the real world, one has Nc = 3, so we will describe how to solve
the integrals for this case here, generalizations to arbitrary number of colors will be discussed
in section 6.1.2. The integrands are the static determinant at a single site det(qstat(W )) and
furthermore, inspecting the static propagator, one also has products of traces of the form

tr

 Wm∏Nf
i=1

(
1 + h

(fi)
1 W

)n1,i(1 + h̄
(fi)
1 W †

)n2,i

. (4.210)

One possibility to solve these integrals is to convert all involved quantities to Polyakov loops
L = tr(W ) and their complex conjugate and then use the formula provided in [67] for integrals of
the type ∫

SU(3)

dW Ln(L∗)m. (4.211)

The formula for the conversion of the static determinant is given, for example, in [65]. For the
conversion of the traces, previously generating functionals were used [73], for our more general case
these generating functionals do not work. It may be possible to derive more general generating
functionals, there is another way however.
The characteristic polynomial p(λ) = det(λ−A) of a general 3× 3 matrix A reads (this can be

shown by using the formal identity det(A) = exp(tr(log(A))))

p(λ) = λ3 − λ2 tr(A) + λ
1
2
(
tr(A)2 − tr

(
A2
))
− det(A). (4.212)

According to the Cayley-Hamilton theorem this means that

A3 −A2 tr(A) +A
1
2
(
tr(A)2 − tr

(
A2
))
− det(A) = 0, (4.213)
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from which one can conclude that for non-singular A

A−1 = 1
det(A)

(
A2 −A tr(A) + 1

2
(
tr(A)2 − tr

(
A2
)))

. (4.214)

Furthermore, for W ∈ SU(3) specifically one has

tr
(
W−1

)
= tr

(
W †

)
= tr(W )∗ = 1

2
(
tr(W )2 − tr

(
W 2

))
(4.215)

and
tr
(
Wn+1

)
= tr(Wn) tr(W )− tr

(
Wn−1

)
tr(W )∗ + tr

(
Wn−2

)
, (4.216)

which gives a recursion relation to convert traces of powers of W into Polyakov loops and their
complex conjugate. Solving this recursion relation (which is a standard problem in mathematics)
leads to Lucas Polynomials [157]. Putting everything together the inverse matrices which occur in
equation (4.210) can be reexpressed as

1
1 + h1W

= 1 + h1(L−W ) + h2
1(L∗ −WL+W 2)

1 + h1L+ h2
1L
∗ + h3

1
, (4.217)

1
1 + h̄1W †

=
1 + h̄1(L∗ −W †) + h̄2

1

(
L−W †L∗ +

(
W †

)2
)

1 + h̄1L∗ + h̄2
1L+ h̄3

1
. (4.218)

Therefore the trace corresponds to ratio of multinomials in L and L∗. For the complete integrand,
the denominators partially cancel against the static determinant and the residual expression can
be expanded in h(f)

1 and h̄(f)
1 .

For the direct evaluation, this expansion terminates at finite powers of h(f)
1 and h̄(f)

1 . To see that
this is the case, we insert equation (4.40) into equation (4.181) to obtain

Φ(G) =
( 1
z0

)|VG| ∫ ∏
n∈VG

dW (n)

∫ ∏
n∈V (G)

d
[
Ψ(n), Ψ̄(n)

]
eΨ(n)Qstat(n)Ψ̄(n) ∏

(n,i)∈E(G)
Ms,i(n)

.
(4.219)

Due to the nilpotency of the Grassmann numbers, the integrand for the gauge integration can
at most contain finite powers of κ, and therefore h(f)

1 and h̄
(f)
1 . More precisely, for every flavor

the maximal power one spatial point n ∈ V (G) can contribute at most
(
h

(f)
1

)2Nc and
(
h̄

(f)
1

)2Nc ,
corresponding to the degrees of freedom of one quark and antiquark for Wilson fermions.
If we want to apply the same arguments to the evaluation of the effective theory, we have to face

the caveat mentioned at the end of the evaluation of the κ2-action.

4.6.4 Partial contractions

As we have seen during the evaluation of the κ2-action, evaluating the effective theory can corre-
spond to neglecting some contractions when applying Wick’s theorem to evaluate the Grassmann
integrals in equation (4.219). That this can lead to problems can be illustrated in a simple example.
Consider the 2× 2-matrix

Q =
(

1 + h 1
1 1 + h

)
. (4.220)
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Its inverse reads
Q−1 = 1

2h+ h2

(
1 + h −1
−1 1 + h

)
. (4.221)

Now we solve a Grassmann integral involving this matrix using Wick’s theorem:∫
dΨ1 dΨ̄1 dΨ2 dΨ̄2 Ψ̄1Ψ1Ψ̄2Ψ2 exp

(
Ψ̄QΨ

)
= det(Q)

(
Q−1

11 Q
−1
22 −Q

−1
21 Q

−1
12

)
(4.222)

= det(Q) det
(
Q−1

)
(4.223)

= 1. (4.224)

Clearly, the result involves only finite powers of h. If one, however, considers only one half of the
contractions, the result is

− det(Q)Q−1
21 Q

−1
12 = − 1

2h+ h2 . (4.225)

Obviously, this expression contains singularities which do not occur in the full result and a series
expansion around h = 0 will contain arbitrary powers of h. Those will only cancel when the other
half of the contractions is included.
Another manifestation of this problem is that when equation (4.40) is used to rewrite equa-

tion (4.206), the result is( 1
z0

)3 ∫ ∏
n∈{n1,n2,n3}

dW (n) 1
det(qstat(W (n2)))

×
∫ ∏

n∈{n1,n2}
d
[
Ψ(n), Ψ̄(n)

]
eΨ(n)Qstat(n)Ψ̄(n)Ms,1(n1)

×
∫ ∏

n∈{n2,n3}
d
[
Ψ(n), Ψ̄(n)

]
eΨ(n)Qstat(n)Ψ̄(n)Ms,1(n2)

, (4.226)

so in contrast to equation (4.219), the inverses of det(qstat(W (n))) do not cancel here explicitly.
Now, to the orders considered here, all expressions are still well behaved, as one can show by doing
the complete calculation. However, at higher orders the problem may get relevant. Certainly, con-
sidering the integral (4.119) and the discussion around it, the probability that invalid singularities
and infinite powers of h(f)

1 are generated is higher when the logarithmic resummation is not used.
For analytic calculations, one can of course simply throw away higher orders in the final result, for
simulations of the effective theory this is, however, not possible. Further investigations and higher
order calculations are necessary to decide if the consequences of the problem can always be avoided.
For this, it is useful to solve the occurring integrals without resorting to expansions in h

(f)
1 , this

can be achieved by using the angle parametrization that will be explained in section 6.1.1 and the
residue theorem.
Next, we use the results obtained in this chapter (and which are free of the problem we just

explained) to analyze some properties of the effective theory.
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5 The onset transition for baryon and isospin
chemical potential

As a first test for our results for Nc = 3, we will investigate for Nf = 2 the onset transition for
both baryon chemical potential

µB = 3
2µ

(1) + 3
2µ

(2) (5.1)

= 3
2µu + 3

2µd (5.2)

(5.3)

and isospin chemical potential
µI = µu − µd. (5.4)

The precise prefactors in front of the chemical potentials for up- and down-quarks are different
depending on conventions, and the important part is the sign in front of them. For example the
authors in [158] define

µI = µu − µd
2 . (5.5)

In our convention the transition to the pion condensed phase for T = 0 happens when µI = mπ.
The relations between these chemical potentials can be inverted to give

µu = µB
3 + µI

2 , (5.6)

µd = µB
3 −

µI
2 . (5.7)

(5.8)

We will assume the up- and down-quarks to be degenerate and since Nf = 2 neglect all heavier
quarks. The degeneracy of the quark masses implies that κu = κd = κ. Chemical potential enters
the effective theory via hu = h

(1)
1 , h̄u, hd = h

(1)
1 and h̄d. We consider the flavors separately here, in

order to treat isospin and baryon chemical potential in a unified fashion.
While the baryon density indicates the overall surplus of strongly interacting matter, isospin

density indicates the asymmetry between up and down quarks or, expressed in the effective degrees
of freedom at lower energies, between protons and neutrons or positively charged pions over neg-
atively charged pions. Typical systems with strong isospin asymmetry are non-central heavy-ion
collision, where the initial state has around twice as many neutrons as protons, and cold neutron
stars, where the contribution of protons is even lower [159]. Although nonzero µI therefore occurs
in nature, systems which at the same time have µB = 0 do not occur and are, as noted in [160],
unstable if one takes into account weak decays, which do not conserve isospin. Nevertheless, if
one is mainly interested in QCD dynamics it is still interesting to study such a system. A big
advantage when doing so is that it is in a nontrivial regime of QCD which has a positive and real
fermion determinant [161]. Consequently, simulations using standard lattice Monte Carlo methods
are possible. The pioneering works concerning these simulations were done in [162, 163] and for
recent results we refer to [158, 164]. Furthermore, the system is analytically tractable in several
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interesting limits, as the positivity of the fermion determinant allows for the derivation of QCD
inequalities and one can use chiral perturbation theory for small µI . This was first studied in [160,
165] and for more recent works we refer to [166]. Note that in these papers the authors work with
negative µI , which is, considering the systems mentioned above, more realistic. However, all our
results are completely symmetric and we will work with µI > 0.
Although the sign problem for baryon chemical potential makes matters much more complicated

for systems with µB 6= 0, the onset transition at low temperatures can be understood in the
continuum for both systems with pure baryon or isospin chemical potential, using simple statistical
and phenomenological arguments. We will recount them here shortly, following roughly [167].

5.1 Expectations
First, we consider µI = 0 and µB ≥ 0 for T = 0. Writing the grand-canonical partition function as
a sum over all quantum states, which we denote by α, one has

Z =
∑
α

exp
(
−Eα − µBNB,α

T

)
, (5.9)

where Eα denotes the energy of the state α and NB,α its baryon charge. In the limit T → 0, the
state which minimizes Eα−µBNB,α dominates the partition function exponentially. For µ = 0 this
state is simply the vacuum with (renormalized) energy E0 = 0 and NB,0 = 0. When µ is increased,
this does not change until it is possible to find a state with

Eα − µNα ≤ 0⇔ µ ≥ Eα
Nα

. (5.10)

In other words, if we define
µ0 = min

α

(
Eα
Nα

)
(5.11)

the only relevant state contributing to the partition function for µ < µ0 is still the vacuum. This
means that at zero temperature the baryon number density has the property

nB(µ) = 0 for µ < µ0. (5.12)

This phenomenon, that the thermodynamic functions stay independent of the chemical potential
up to some threshold is called silver blaze phenomenon and has been demonstrated for isospin
chemical potential explicitly from path integral considerations of QCD [168]. So far the whole
argument here works completely analogously for the isospin case, the differences start when we
want to find out the value for µ0.

If the Baryons were non-interacting, we would simply have that µ0 is the mass mN of the lightest
nucleon of the system, i. e. the proton or neutron mass mN = mp = mn. Being fermions, these
particles can occupy every state only once and for increasing µ would gradually fill up states up to
the at that point reachable Fermi energy. The number density would be continuous at µ = µ0 and
increase proportional to the volume of the Fermi sphere. Of course, in reality these nucleons are
attractive and since binding energy corresponds to a negative energy contribution, µ0 is shift to
the left of mN and it is energetically favorable to directly create several baryons at the threshold.
More precisely, the energy per baryon E/N can be equivalently written as mN − (NmN − E)/N .
Consequently, the state which minimizes E/N as demanded by equation (5.11) is that which
maximizes the binding energy per nucleon εb = (Nmn −E)/N . In pure QCD without electroweak
interaction, the binding energy per nucleon in a nucleus increases with the number of nucleons and
saturates at ≈ 16 MeV [169]. Correspondingly, the baryon density jumps at µ0 ≈ mN − 16 MeV

68



5.2 Observables

to the value of the density of nuclear matter, nB,0 ≈ 0.16 fm−3 and forms a macroscopically large
sample of nuclear matter as defined by Fetter and Walecka [169] that is stabilized by Pauli repulsion.
Therefore, one has a first-order phase transition characterized by a discontinuity in the function
nB(µB).
In contrast if we consider isospin chemical potential, the lightest particles are pions, which

are bosons. In the non-interacting case, Bose-Einstein condensation would lead to a diverging
isospin density at µ0 = mπ. In QCD, the repulsive interaction of pions stabilizes the Bose-Einstein
condensate. Although the repulsive interaction is a positive energy contribution, µ0 is not shift
to the right in this case, as a single pion has nothing to interact with, and the energetically most
favorable state at µ0 = mπ is exactly that state. Consequently, the isospin number density is
continuous at µ = µ0 and according to chiral perturbation theory it goes like [160]

nI = f2
πµI(1−

m4
π

µ4
I

). (5.13)

Chiral perturbation theory also predicts that the transition is of second order with the universality
class O(2).

When the temperature is increased, the densities are non-zero for any µ > 0 and therefore
cannot be used to predict phase transitions as for T = 0. Nevertheless, on grounds of continuity,
the transition in the case for Baryon chemical potential should stay first-order for sufficiently small
T . Therefore, a line of first-order transitions emerges from µ0, as indicated in figure 2.1 (the slope
of the line can be inferred from the Clausius-Clapeyron relations). Since there is no symmetry
breaking order parameter there is no reason why the phases cannot be connected by a crossover. It
is natural to expect that the first-order phase-transition line terminates in a second-order endpoint
with the critical exponents of the 3-dimensional Ising model, as in a typical liquid-gas transition.
As the binding energy is responsible for the transition being first order, it can be used to estimate
the temperature of the endpoint to be of O(10 MeV).

In the isospin case, the pion condensate is a true order parameter indicating the pion condensed
phase. Lattice calculations [158] show that the second order line µI,c(T ) extends steeply to the
zero-density deconfinement transition nearly parallel to the temperature axis, where it flattens out.
Certainly, we cannot reproduce these lattice results here with our calculation in the strong

coupling limit to order O(κ4). As we are dealing with a series expansion, we especially cannot
reproduce phase transitions correctly. Consequently, we will content ourselves with a somewhat
more modest approach, in which we will try to see if we are able to qualitatively reproduce the
phenomenological properties that shape the transitions as we just described it. Promising results
in this directions were obtain for baryon chemical potential in [65] to order κ2. We will review
these results here critically by extending them to κ4 and isospin chemical potential.

To start off, we introduce how the observables we want to investigate can be obtained from our
series of log(Z). In the following we work with Nc = 3.

5.2 Observables

From equation (4.186) we obtain the free energy density in the thermodynamic limit

− f = lim
Ns→∞

log(Z)
Ns

. (5.14)

All thermodynamic observables can be obtained by deriving this quantity. The hopping parameter
κ enters f in two different ways: the first way is implicitly through the h1 and h̄1 of the different
flavors, corresponding to temporal hops, which are resummed. The second is explicitly through
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5 The onset transition for baryon and isospin chemical potential

the spatial hops, and in this way is the parameter we expand around. In equation (2.51), this
dependence is also implicit and is caught in all the effective couplings independent of chemical
potential. Aiming for simplicity in our formulas we consider f to depend explicitely on κ due to
spatial hops and an implicit dependence on κ only occurs for temporal hops.
The pressure is obtained from

a4p = − f

Nτ
. (5.15)

The quark number density for a specific flavor q can be calculated using

a3nq = a3 T

V

∂ log(Z)
∂µq

(5.16)

= − ∂f

∂hq
hq + ∂f

∂h̄q
h̄q. (5.17)

The following observation is rather trivial but relevant when discussing the binding energy of the
particles in the system: The quark number density does not correspond to the actual number of
quarks per unit volume in the system, but to the difference of the number of quarks and anti-
quarks of that flavor (which is the conserved charge associated with the U(1)-flavor symmetry of
the QCD-Lagrangian). To distinguish this in our notation we will write

nq = ñq − ñq̄. (5.18)

In similar fashion, the baryon number and isospin densities are computed from

a3nB = a3 T

V

∂ log(Z)
∂µB

(5.19)

= −1
3

(
∂f

∂hu
hu −

∂f

∂h̄u
h̄u + ∂f

∂hd
hd −

∂f

∂h̄d
h̄d

)
(5.20)

= a3 (nu + nd)
3 , (5.21)

a3nI = a3 T

V

∂ log(Z)
∂µI

(5.22)

= −1
2

(
∂f

∂hu
hu −

∂f

∂h̄u
h̄u −

∂f

∂hd
hd + ∂f

∂h̄d
h̄d

)
(5.23)

= a3 (nu − nd)
2 . (5.24)

The energy density is obtain by a derivative with respect to the inverse temperature at fixed
fugacity. Using the fact that f is volume independent, we turn this into a derivative with respect
to the lattice spacing

a3e = −a3 1
V

∂ log(Z)
∂(1/T )

∣∣∣∣
z

, (5.25)

= 1
Nτ

(
∂f

∂hu

∂hu
∂a

∣∣∣∣
z

+ ∂f

∂h̄u

∂h̄u
∂a

∣∣∣∣∣
z

+ ∂f

∂hd

∂hd
∂a

∣∣∣∣
z

+ ∂f

∂h̄d

∂h̄d
∂a

∣∣∣∣∣
z

+ ∂f

∂κ

∂κ

∂a

)
(5.26)

= 1
κ

∂κ

∂a

(
∂f

∂hu
hu + ∂f

∂h̄u
Nτ h̄u + ∂f

∂hd
Nτhd + ∂f

∂h̄d
Nτ h̄d + ∂f

∂κ

κ

Nτ

)
(5.27)

= −1
κ

∂κ

∂a

(
ñu + ñū + ñd + ñd̄ −

∂f

∂κ

κ

Nτ

)
. (5.28)
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To compute the derivative of κ with respect to the lattice distance we use the expression for the
pion mass in the strong coupling limit from [170] and, to be consistent in our expansion, expand it
up to O(κ4)

mπ = 1
a

(2m− 6κ2 − 54κ4 +O(κ6)), (5.29)

where am = − log(2κ) corresponds to the constituent quark mass to leading order. Demanding
that the pion mass stays constant when a is adjusted implicitly defines κ as a function of a and its
derivative can be computed from

0 = dmπ

da = ∂mπ

∂a
+ ∂mπ

∂κ

∂κ

∂a
, (5.30)

which implies

a
∂κ

∂a
= −a

∂mπ
∂a
∂mπ
∂κ

(5.31)

= κ
log(2κ) + 3κ2 + 27κ4 +O(κ6)

1 + 6κ2 + 108κ4 +O(κ6) (5.32)

= −κ
(
am− (3 + 2m)κ2 − (9 + 8m)κ4 +O(κ6)

)
. (5.33)

It will be useful to get an estimate for the binding energy between the particles in the system. In
previous studies [65] with baryon chemical potential only, the following quantity was used at low
temperatures, where thermal fluctuation are assumed to be suppressed:

ε = e− nBmB

nBmB
, (5.34)

where mB is the baryon mass, which we also take from [170] to O(κ4)

mB = 1
a

(3m− 6κ3 +O(κ3)). (5.35)

In [74] the situation was analyzed in more detail: in the cold and dense case with baryon chemical
potential one can make the approximation h̄(u)

1 = h̄
(d)
1 = 0 and then the energy density reads

a3e = −1
κ

∂κ

∂a

(
3nB −

∂f

∂κ

κ

Nτ

)
. (5.36)

To leading order one has −∂κ
∂a/κ = m, suggesting the definition

meff = −1
κ

∂κ

∂a
. (5.37)

It was concluded that the part of the energy density containing the baryon number density is related
to the rest energy and the quantity estimating the binding energy was defined to be:1

ε = e− 3meffnB
3meffnB

. (5.38)

Now, if we want to discuss baryon and isospin chemical potential on equal footing, we should also
discuss what happens when the the h̄1 are not neglected. In general we note that in the baryon and

1In [65], to compute this derivative of κ it was argued that at leading order ∂κ
∂a

= −κmB
3 , making the approaches

compatible: in both cases the part of e that contains the baryon number density is subtracted
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5 The onset transition for baryon and isospin chemical potential

isospin density equations (5.20) and (5.23) the quark and antiquark contributions have opposite
sign, while they both have a positive contribution in the energy density equation (5.28), which of
course makes intuitive sense. Therefore, we estimate the binding energy using the quantity

ε = e−meff(ñu + ñū + ñd + ñd̄)
meff(ñu + ñū + ñd + ñd̄)

. (5.39)

5.3 Static case

The leading order expression in the free energy density due to log(z0) contains contributions from
temporal quark hops only and therefore is called the static case. The partition function corresponds
to the Ns-fold product of the partition function z0 for 0 + 1 dimensional QCD, which means it
represents a non-interacting system. This case has been discussed in [65] already, but it will be
useful to recount the observations made there and add some additional remarks.
The expressions for z0 for the general Nf = 2 case already has 801 terms, so it would be

very cumbersome to discuss. Some simplifications occur however when one considers very small
temperatures (large Nτ ) and either exclusively baryon chemical potential or only isospin chemical
potential. In the first case one can set h̄u/d = 0 and in the second case h̄u = hd = 0. The partition
function for the first case then reads

Z = (z0)Ns , (5.40)

with

z0 = 1 + 4h3
d + h6

d + 6h2
dhu + 4h5

dhu + 6hdh2
u + 10h4

dh
2
u + 4h3

u + 20h3
dh

3
u + 4h6

dh
3
u + 10h2

dh
4
u

+ 6h5
dh

4
u + 4hdh5

u + 6h4
dh

5
u + h6

u + 4h3
dh

6
u + h6

dh
6
u,

(5.41)

while for the second case one has

z0 = 1 + 4h̄3
d + h̄6

d + 4h̄dhu + 6h̄4
dhu + 10h̄2

dh
2
u + 6h̄5

dh
2
u + 4h3

u + 20h̄3
dh

3
u + 4h̄6

dh
3
u + 6h̄dh4

u

+ 10h̄4
dh

4
u + 6h̄2

dh
5
u + 4h̄5

dh
5
u + h6

u + 4h̄3
dh

6
u + h̄6

dh
6
u.

(5.42)

The sums of the exponents in hnuh
m
d in the case with baryon chemical potential are multiples

of three, n + m = 0 mod 3. The partition function has the form of a free baryon gas [171] and
the prefactors give the degeneracy of the spin multiplets, for example h3

d corresponds to the ∆−
quadruplet. All in all, equation (5.41) contains all baryonic spin-flavor multiplets that are consistent
with the Pauli principle, the fact that quarks are spin 1/2 fermions, the number of flavors in
the system and the gauge group. The isospin case equation (5.42) follows the same logic, only
now one also has anti-baryons and mesons. In both cases, the quark chemical potentials can be
characterized by a single chemical potential and we define in the case with only baryon chemical
potential µ := µu = µd = µB/3 and in the isospin case µ := µu = −µd = µI/2. If we now consider
the limit T → 0 (Nτ →∞) and use that h1 for the flavor q can be written as hq = exp((µq −m)/T )
one has for both cases that

lim
T→0

a4p =
{

0 if µ < m,

2NfNc(aµ− am) if µ > m,
(5.43)

lim
T→0

a3n =
{

0 if µ < m,

2NfNc if µ > m,
(5.44)

where n = 3nB in the first case and n = 2nI in the second case. The isospin density is zero in
the first case and the same is true for nB in the second case. We note that the thermodynamic

72
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Figure 5.1: Comparison of baryon and isospin chemical potential and their associated densities in
the static approximation. On the y-axis, n = 3nB in the case where µI = 0 (yellow
line) and n = 2nI for the case µB = 0 (green line)

functions stay zero (and therefore independent of the chemical potential) in both cases up until
the chemical potential for the quarks is larger than the constituent quark mass. Therefore we
observe here the silver blaze property. Furthermore, since all states in the system have masses
which are simply multiples of the same constituent quark mass, which means, for example that
mN/3 = mπ/2, it is in the T → 0 limit energetically most convenient for the system to produce
those particles which have the largest number of constituents, as soon as µ > m. In both cases this
is a bosonic state, h6

uh
6
d in the first case and h6

uh̄
6
d in the second, which can condense according to

Bose-Einstein statistics. This state however is a composite state of fermionic particles, so as soon
as all possible quark states per lattice site are occupied, the number density reaches saturation at
2NfNc due to the Pauli principle of the constituent quarks. Therefore, the saturation density is
not that of nuclear matter, but instead it is determined by the degrees of freedom of the quarks.
The resulting step function is smeared out as soon as T > 0 is considered, which is illustrated in

figure 5.1. In this figure we also note that the densities for both cases are very similar. Taking a
closer look around the region where the densities are starting to rise, one notices that the density
for the case of isospin chemical potential starts to rise for lower µ. This is due to the fact that
although mN/3 = mπ/2 one has of course mN > mπ and the latter inequality is relevant when
considering the creation of particles due to thermal excitations. In other words, while for T = 0
the constituent quark mass alone decides the position of the onset, for T > 0 the total mass (i. e.
the sum of the constituent quark masses) is also relevant. It is important to note this, otherwise
one can confuse thermal effects with mass corrections which arise when corrections to the static
case are considered.

5.4 Spatial κ-corrections

Going beyond the static approximation we add κ2-corrections from spatial hoppings and start to
resolve interactions between the baryons and mesons. Being perturbative in nature, one is not able
to obtain a true phase transition of the 3+1 dimensional theory as described in section 5.1 and
in the limit Nτ → ∞ the density reduces to equation (5.44), i. e. the static result, to the orders
considered here (up to O(κ4), but we do not expect this to change when including higher orders,
except of cases where additional resummations have been obtained). Furthermore, considering our
experiences from the spin model, we certainly do not have enough orders to consider estimates of
convergence via, for example, the ratio method or Padé approximants.
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Figure 5.2: Comparison of baryon and isospin chemical potential and the κ2 contribution of their
associated densities. The meaning of the y-axis is the same as in figure 5.1. Note that
the chemical potential is still normalized by the leading order constituent quark mass.

Therefore, as we mention above already, we content ourselves with an investigation of qualitative
properties which lead to the picture outlined in section 5.1 In [65] κ2-corrections were considered
in the case Nf = 1 and it was shown that to these orders the quantity ε is negative, leading to
the conclusion that one “can unambiguously identify this transition as baryon condensation”. The
same observation should be true (and has been made in [74]) for Nf = 2 when baryon chemical
potential is used exclusively. Indeed, neglecting h̄u/d as in the previous section and introducing
h = hu = hd since µu = µd in the case of baryon chemical potential, one obtains

ε = − 4h
(
3h11 + 45h8 + 75h5 + 15h2)2

(6h11 + 90h8 + 150h5 + 30h2)(h12 + 20h9 + 50h6 + 20h3 + 1)κ
2. (5.45)

This quantity is always negative and its modulus gets smaller when κ decreases, implying weaker
binding energy between the baryons for heavier quarks. As a result, the first order region for the
liquid gas transition gets pushed to lower temperatures when the quark mass is increased, just like
it was concluded for Nf = 1 in [65].

Considering the case with isospin chemical potential makes it clear that the situation is a bit
more complicated. Neglecting h̄u and hd and writing h = hu = h̄d one obtains

ε = −4h
(
3h11 + 10h9 + 18h8 + 20h7 + 21h6 + 33h5 + 15h4 + 10h3 + 6h2 + 2h

)2
(6h11 + 20h9 + 36h8 + 40h7 + 42h6 + 66h5 + 30h4 + 20h3 + 12h2 + 4h)

× 1
(h12 + 4h10 + 8h9 + 10h8 + 12h7 + 22h6 + 12h5 + 10h4 + 8h3 + 4h2 + 1)κ

2.

(5.46)

Notably, ε is also always negative, just like in the case with baryon chemical potential. This goes
against the expectation of repulsive pions condensing in the system. Another indication that we
cannot observe some important differences between nucleons and pions can be noted by looking at
the κ2-corrections to the densities. Note that to be within a reasonable range of convergence for
our expansion (which only goes to κ4), the corrections to the static determinant should not change
the results from the static case significantly. Therefore, to get a clear look at these corrections we
will sometimes plot them alone and not the result to that order. The κ2-correction to the density
is shown in figure 5.2. Clearly, the gap between the densities when they are starting to rise does
not significantly change when κ2 corrections are considered, going against the expectation that in
reality mN/3 > mπ/2. Of course binding energy has to be taken into account for the densities and
if indeed the pions were repulsive and the nucleons attractive, then the baryon onset gets shifted
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Figure 5.3: Same as figure 5.2, but for the κ4-corrections.
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Figure 5.4: Comparison of ε for baryon and isospin chemical potential to O(κ2) (left) and O(κ4)
(right).

left due to the binding energy and could potentially cancel the occurring difference due to the
masses. But as we have seen, this cannot be the case here.

The situation improves when the κ4-corrections are considered. Since the terms become rather
complicated and consist of several terms with differing signs in this case, it is more convenient to
look at plots of the situation. First, figure 5.3 shows the densities at that order, where a wider
gap between the isospin and baryon densities becomes visible. Concerning the binding energy,
figure 5.4 compares the results for ε to O(κ2) and O(κ4). The O(κ2) results are to be expected
from equations (5.45) and (5.46). For the next order, two interesting observations can be made:
first, both for baryon and isospin chemical potential, ε diverges when small chemical potential
is approached. This has to do with the fact that the definition of ε in equation (5.39) consists
of a denominator that goes to zero for vanishing densities. Therefore, ε becomes very sensitive
to thermal fluctuations for smaller densities. The second interesting observation is that roughly
for 0.982 / µu/m / 0.992, ε drops to zero for baryon chemical potential, while this is not the
case for isospin chemical potential, a possible indication for repulsive pions. Since the vanishing
denominator in ε makes it hard to judge this effect, we also plot the numerator of ε in figure 5.5.
In this case there is a clear positive contribution at O(κ4), that may be attributed to repulsive
pions. The fact that this quantity becomes negative for larger isospin chemical potential can be
understood from the fact that isospin chemical potential can be also used to create baryons like the
neutron, which furthermore have very similar constituent quark masses compared to the pions for
the orders we consider here. In any case, the positive “hump” observed in the numerator of ε can
only be considered as an indicator for a trend, as it only occur at the highest order we considered
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Figure 5.5: Comparison of the denominator of ε for baryon and isospin chemical potential to O(κ2)
(left) and O(κ4) (right).

and it is therefore an effect which is outside of convergence and not under control.
The κ4-action (including gauge corrections) has also been simulated [65], and in this case it

was possible to observe a wider gap between baryon and isospin chemical potential, for larger κ
than we can consider here due to a lack of convergence. This is a good illustration of the fact
that the evaluation of the effective theory leads to a partial resummation of some contributions in
comparison to a direct evaluation, although it might be interesting to investigate these simulations
closer with the insights of section 4.4 in mind. Also in simulations, it is possible to observe phase
transitions of the effective theory and a first order liquid gas transition with a critical endpoint has
been observed for the case with baryon chemical potential. It would be interesting to see if a second
order line can be observed in the effective theory with isospin chemical potential. Additionally, this
question can also be investigated using mean field methods, which have been applied to the Nf = 1
case (without logarithmic resummations) in [172].
All in all, it is hard to make conclusive statements at the low orders we considered here, but we can

extract more information from the coefficients for the thermodynamic observables we obtained so
far by generalizing them to arbitrary Nc. This is because then some general conjectures concerning
the scaling of all coefficients with respect to Nc can be made.
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6 Large Nc behavior of the effective theory,
quarkyonic matter

Except of the discussion in section 4.6.3 and chapter 5, our approach was generic for Nc ≥ 3. In
contrast to the previous chapter, we will now set µI = 0 and consider baryon chemical for general
Nc ≥ 3

µB = Ncµ, (6.1)

where µ now denotes the quark chemical potential (we will assume that all flavors are degenerate).
We will show how to generalize the relevant temporal gauge integrals for baryon chemical potential
up to κ4 in the next section. Being able to vary Nc freely, it is interesting to see what happens,
when Nc is made large. Specifically, we want to investigate the large Nc considerations that lead
to the prediction of quarkyonic matter in [173].
The large Nc limit, when defined appropriately, has many interesting simplifications for contin-

uum QCD. This can give ideas for intuitive explanations of many properties of real word QCD. We
will not be able to give an exhaustive list of all the relevant work that has appeared in the more
than four decades after the limit had been introduced by ’t Hooft [174]. For a nice introduction
including discussions of lattice calculations we refer to [175]. Lattice calculations are mainly con-
cerned with vacuum properties or finite T with µB = 0 (for obvious reasons), for an overview of
recent works see [176] and references therein, but we want to discuss what happens when baryon
chemical potential µB is considered.
We note that in the continuum, baryon matter has been treated in the combined heavy quark and

large Nc limits by a mean field analysis [177, 178], but our approach here, based on heavy but finite
quark masses, series expansion and not only large but also general Nc, is quite different. The mean
field approach has also been applied to the large Nc limit of the spin-model of chapter 3, where it
is believed to be exact [179]. This work has recently been critically examined in [180], where the
difference between U(Nc) and SU(Nc) was stressed (just like we will do below and already did in
[93]), and it was suggested that the analysis should be repeated for the SU(Nc) model. When this
is achieved, it should be interesting to see if the approach can be applied to the resummed Polyakov
loop actions we are using.
Let us describe shortly the main features of QCD in the limit. In his pioneering work, ’t Hooft

noticed that the limit Nc →∞ is well-defined provided that at the same time the coupling g → 0
such that λH := g2Nc is kept fixed. In doing so, the number of flavors Nf is also kept fixed.
There is and alternative approach to take Nc →∞ where Nf/Nc is kept fixed [181], but we will not
discuss it here. In the ’t Hoof limit, it turns out that non-planar Feynman diagrams are suppressed
by N−2

c and quark loops in Feynman diagrams are suppressed by N−1
c . This leads to a selection

rule for Feynman diagrams for Nc → ∞. Although the initial hope of being able to sum all the
non-negligible diagrams in the limit is far from being achieved so far, interesting insights into the
structure of QCD in this limit can be gained. Assuming that QCD is confining in the ’t Hoof limit,
it is concluded that the lightest physical states in the spectrum are glueballs and mesons with
masses ∼ ΛQCD. Furthermore, they are stable and non-interacting with interactions suppressed at
least by N−1/2

c .
Baryons are harder to treat diagrammatically. Consisting of Nc valence quarks even their op-

erator structure depends explicitly on Nc. Using Hamiltonian and path integral methods, Witten
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6 Large Nc behavior of the effective theory, quarkyonic matter

Figure 6.1: Taken from [185]. Left: conjectured phase diagram in the limit of large Nc according
to [173]. Right: momentum space illustration of quarkyonic matter, with quark matter
(Q) inside the Fermi sea, surrounded by a Baryon shell (B) of width ∼ ΛQCD

[182] showed that the baryon masses are ∼ NcΛQCD and baryons are strongly interacting with
interactions ∼ Nc.

In [173], the (T, µ)-phase diagram was explored in the large Nc limit. We give a short summary
of some of the ideas of that paper. For pedagogical introductions to the ideas presented in that
paper, see [183, 184].
Note that although one has baryon chemical potential, the quark chemical potential µ is the

finite quantity. The phase diagram is divided into three phases, that are characterized by the Nc

scaling of the pressure, see figure 6.1
The hadronic phase, which can be well described by a hadron resonance gas [186, 187], consists

of non-interacting mesons and gluestates and is distinguished by vanishing baryon number, which
is suppressed exponentially as Nc →∞ since the baryons are so massive in this limit. Consequently
the pressure in this phase has the scaling behavior p ∼ N0

c .
As quark loops are suppressed, the deconfinement transition is determined by gluon loops alone

and becomes equivalent to the pure Yang-Mills transition and independent of chemical potential
in the large Nc limit. Yang-Mills theory is known to have a first order transition at Nc = 3 and
lattice simulations [188, 189] indicate that the first order transition persists at large Nc with latent
heat growing as N2

c . Consequently, the deconfinement transition forms a first-order line parallel to
the chemical potential axis. In the perturbative regime, the pressure is dominated by gluon degrees
of freedom and since the gluons are in the adjoint representation of the gauge group it goes like
p ∼ N2

c .
When µB > mB (strictly speaking this happens earlier due to the binding energy, see section 5.1),

the baryon number is non-vanishing also for temperatures below the deconfinement transition. For
dense baryons, since the interactions between any number of baryons are ∼ Nc, all baryon interac-
tions contribute equally to give a pressure p ∼ Nc. On the other hand, when µ � ΛQCD (but not
necessarily µ/ΛQCD as large as some power of Nc) the pressure can be reliably determined using
perturbation theory and one also predicts p ∼ Nc. To understand how this scaling can consistently
arise from strongly interacting baryons as well as perturbative calculations where quark-like exci-
tations give the main contribution, one examines the case µ� ΛQCD closer. In momentum space,
deep inside the (highly non-ideal) Fermi sea, the quarks interact at short distances and can be
described perturbatively. However, even at large quark chemical potential, one has to consider the
scattering of particles within ∼ ΛQCD of the Fermi surface separately (even though their contri-
bution might be numerically small to the pressure). These particles interact by exchanging gluons
with momenta ∼ ΛQCD, and since quark loops are suppressed at large Nc, they cannot screen these

78



6.1 Evaluation of the effective theory for arbitrary Nc

gluon no matter how large the chemical potential is (unless the quark chemical potential itself
scales like some power of Nc). Therefore these particles are strongly interacting and the scattering
should be considered as that of baryons. This leads to the suggestion that this phase is described
by “quarkyonic” matter, which in momentum space can be described as a quark sea with a baryonic
Fermi surface, see figure 6.1. The width of this surface is ΛQCD and this picture can also describe
the situation where one only has dense baryons: for µ ∼ ΛQCD the baryon surface is the whole
sea. As µ increases one interpolates smoothly between a quarkyonic phase with a baryon surface
that is wide (relative to µ) to one where the baryon surface is narrow in relation to µ. There
are speculations of signatures of quarkyonic physics in heavy-ion collisions [190] and neutron stars
[191].
We will check now the effective theory for the scaling properties that lead to the prediction of

quarkyonic matter by direct calculation. The results we obtain in this way have been published in
[185] and we will give here some more details for the calculations and correct some minor errors,
which do not change the overall results.

6.1 Evaluation of the effective theory for arbitrary Nc

We employ our results from chapter 4 which contain an evaluation of the effective theory in the
strong coupling limit to order κ4 in spatial hoppings. As we want to clearly separate the effects of
different orders, we do not use the logarithmic resummation in the evaluation of the free energy.
We also neglect terms containing h̄1, since they are suppressed exponentially at low temperatures.
Despite these approximations one can already observe important aspects of baryon dynamics and
we will discuss the modifications due to the neglected couplings later. Expanding equation (4.186)
to O(κ4) and setting all κ(i) = κ and µ(i) = µ results in the free energy density (this fixes errors
occurring in equation (3.6) in [93]):

−f = log(z0) + 3Φ
(

n1 n2
)

+ 3Φ
(

n1 n2
n3
)

+ 12Φ

 n1 n2

n4


− 33
2 Φ

(
n1 n2

)2
(6.2)
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2Nτ
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where we have introduced the notation

z0 =
∫

SU(Nc)
dW det(1 + h1W )2Nf , (6.4)

z(a1b1)...(akbk) =
∫

SU(Nc)
dW det(1 + h1W )2Nf

k∏
i=1

tr
(

(h1W )bi
(1 + h1W )ai

)
. (6.5)

We now need to evaluate the occurring integrals for general Nc. Note that when applying
equation (C.14) to the derivation of the effective theory (see equation (4.57) for the contribution
to O(κ4)) the determinants which arise are at least of order κNc and therefore are pushed to ever
higher order when the large Nc limit is considered. When these contributions are neglected, the
integral reduces to the U(N) case, meaning that for the derivation of the effective theory order by
order in spatial hoppings, one can use the result of the one link integral for U(N). When evaluating
the effective theory, one has to integrate temporal gauge integrals. The temporal quark hoppings
in positive direction are boosted by a factor of eaµ and therefore the same simplifications do not
apply when evaluating these integrals.
Nevertheless, the task is simplified by the fact that the integrands are all class functions of

SU(Nc), meaning they are functions
f : SU(Nc)→ C (6.6)

with the property that they are invariant under a change of basis in color space

f(U) = f(V UV −1). (6.7)

We will first discuss some general rules for integrating class functions before focusing on the
specific integrals we have to solve here.

6.1.1 Integration of class functions

As this chapter only deals with mathematical properties of the integration over class functions we
will drop the index c from Nc. SU(N) arises from U(N) via the restriction that the determinants
of its elements evaluate to one. It is useful to first study the case without this restrictions, i. e.
class functions on U(N). The strategy we use here is similar to [192], we just derive a slightly
more general result needed for the integrals which occur in our case. Similar results have also
been obtained using the method of orthonormal polynomials [193–195]. We also mention that it
may be interesting to explore an alternative approach based on [196–198], especially considering
section 6.3.2. See [199], for an application of this approach to integrals which are similar to the
ones we are considering.

A class function f on U(N) has the property that one can find a function f̃

f̃ : (S1)N ⊂ Cn → C (6.8)

which, given the eigenvalues ε1, . . . , εN of the U(N)-matrix U , fulfills

f̃(ε1, . . . , εN ) = f(U) (6.9)

and is symmetric under the permutation of its arguments:

f̃(ε1, . . . , εN ) = f̃(εσ(1), . . . , εσ(N)) ∀σ ∈ SN . (6.10)

For such functions, the integral over U(N) can be written as an integral over angles parametrizing
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the eigenvalues [200]∫
U(N)

dU f(U) = 1
N !(2π)N

∫ 2π

0
dφ1· · ·

∫ 2π

0
dφN

∏
1≤k<l≤N

∣∣∣eiφl − eiφk ∣∣∣2f̃(eiφ1 , . . . , eiφN ). (6.11)

Introducing the Vandermonde determinant

∆(ε1, . . . , εN ) := det(V (ε1, . . . , εN )) (6.12)

:= det
1≤i,j≤N

(
εj−1
i

)
(6.13)

=
∏

1≤k<l≤N
(εl − εk), (6.14)

the measure for the integration of the angles can be expressed in the following way:∏
1≤k<l≤N

∣∣∣eiφl − eiφk ∣∣∣2 = ∆(ε1, . . . , εN )∆(ε1, . . . , εN )∗. (6.15)

Now, since ε∗i = 1/εi, one has (
V †V

)
ij

=
N∑
k=1

εj−ik . (6.16)

Therefore, by exploiting the multilinearity of determinants and the fact that determinants vanish
when two rows or columns are linear dependent, one obtains

∏
1≤l<q≤N

∣∣∣eiφq − eiφl ∣∣∣2 = det
1≤i,j≤N

(
N∑
k=1

εj−ik

)
(6.17)

=
N∑

k1,...,kN=1
det

1≤i,j≤N

(
εj−iki

)
(6.18)

=
∑
σ∈Sn

det
1≤i,j≤N

(
εj−iσ(i)

)
(6.19)

Appropriate renaming of the integration variables and the symmetry of f then give∫
U(N)

dU f(U) = 1
N !(2π)N

∫ 2π

0
dφ1· · ·

∫ 2π

0
dφN

∑
σ∈Sn

det
1≤i,j≤N

(
εj−iσ(i)

)
f̃(ε1, . . . , εN ) (6.20)

= 1
N !(2π)N

∫ 2π

0
dφ1· · ·

∫ 2π

0
dφN

∑
σ∈Sn

det
1≤i,j≤N

(
εj−ii

)
f̃(εσ(1), . . . , εσ(N)) (6.21)

= 1
(2π)N

∫ 2π

0
dφ1· · ·

∫ 2π

0
dφN det

1≤i,j≤N

(
εj−ii

)
f̃(ε1, . . . , εN ). (6.22)

For the evaluation of the effective theory it is furthermore enough to consider only those f whose
f̃ factorizes in the following way

f̃(ε1, . . . , εN ) =
Nc∑
µ=1

f̃1,µ(ε1) · · · f̃N,µ(εN ). (6.23)
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6 Large Nc behavior of the effective theory, quarkyonic matter

In that case, the multilinearity of the determinant can be invoked once more to obtain

∫
U(N)

dU f(U) = 1
(2π)N

Nc∑
µ=1

∫ 2π

0
dφ1· · ·

∫ 2π

0
dφN det

1≤i,j≤N

(
f̃i,µ(εi)εj−ii

)
. (6.24)

Note that every row of the determinant in the last equation depends on a different φi, so one can
pull the integration into the determinant (this can easily be seen by Laplace expansion for example):

∫
U(N)

dU f(U) = 1
(2π)N

Nc∑
µ=1

det
1≤i,j≤N

(∫ 2π

0
dφi f̃i,µ(εi)εj−ii

)
. (6.25)

Finally, we are interested in integrals over SU(N). It is possible to rewrite an SU(N) integral as
a modified U(N) integral by making use of the group isomorphism U(N) ∼= U(1) × SU(N)/Z(N)
[201]. To obtain the integral for the SU(N) case, one simply has to insert a 2π-periodic delta
function into the the angular integrations

δp

(
N∑
i=1

φi

)
=

∞∑
k=−∞

δ

(
N∑
i=1

φi − 2πk
)

= 1
2π

∞∑
q=−∞

eiq
∑N

i=1 φi , (6.26)

which takes care of the constraint det(U) = 1 and can be expanded in a Fourier series. Including
this constraint in equation (6.24) then leads to

∫
SU(N)

dU f(U) = 1
(2π)N

N∑
µ=1

∞∑
q=−∞

det
1≤i,j≤N

(∫ 2π

0
dφi f̃i,µ(εi)εj−i+qi

)
. (6.27)

6.1.2 Evaluation of the temporal gauge integrals to O(κ4)

Equation (6.27) gives us the tool to solve the SU(Nc) integrals that come in equation (6.3). Before
we employ it, it is useful to note that for a non-singular matrix A(t) depending on a real parameter
one has

d
dt det(A(t)) = det(A(t)) tr

(
A(t)−1 dA(t)

dt

)
, (6.28)

d
dtA(t)−1 = −A(t)−1 dA(t)

dt A(t)−1, (6.29)

d
dt tr(A(t)) = tr

(dA(t)
dt

)
(6.30)

and therefore the integrals in equation (6.3) are related in the following way

z(11) = h1
2Nf

∂

∂h1
z0, (6.31)

z(21) = z(11) − z(22), (6.32)

z(11)2 = h1
2Nf

∂

∂h1
z(11) −

1
2Nf

z(21). (6.33)

Consequently it is enough to only solve the integrals z0 and z(21), which we will do now.
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Determination of z0

Written in terms of its eigenvalues the integrand in z0 reads

det(1 + h1W )2Nf =
Nc∏
i=1

(1 + h1εi)2Nf (6.34)

=
Nc∏
i=1

∑
k

(
2Nf

k

)
hk1ε

k
i . (6.35)

We intentionally put no restrictions on the sum over k [96] as they are automatically implemented
by the usual generalization of the binomial coefficient, where

(2Nf
k

)
= 0 if k > 2Nf or k < 0.

Applying equation (6.27) then gives

z0 = 1
(2π)Nc

∞∑
q=−∞

det
1≤i,j≤N

(∫ 2π

0
dφi

∑
k

(
2Nf

k

)
hk1ε

j−i+q+k
i

)
. (6.36)

For the integration over φi not to vanish, one needs

0 = j − i+ q + k, (6.37)

which allows us to get rid of the summation inside of the determinant

z0 =
∞∑

q=−∞
det

1≤i,j≤Nc

((
2Nf

i− j − q

)
hi−j−q1

)
. (6.38)

Let’s focus on the determinant alone, multilinearity and the Leibniz formula enable us to remove
h1-factors inside the determinant

det
1≤i,j≤Nc

((
2Nf

i− j − q

)
hi−j−q1

)
= det

1≤i,j≤Nc

((
2Nf

i− j − q

)
hi−j1

)
h−Nq1 (6.39)

=
∑

σ∈SNc

Nc∏
i=1

(
2Nf

i− σ(i)− q

)
h

∑Nc
i=1 i−

∑Nc
i=1 σ(i)

1 h−Ncq1 (6.40)

= det
1≤i,j≤Nc

((
2Nf

i− j − q

))
h−Ncq1 . (6.41)

This determinant vanishes for q > 0 or q < −2Nf , which can be seen by inspecting the determinant,
but it is also clear from the discussion in section 4.6.3. Therefore we make the variable change
p = −q in the summation and observe that under the identifications A = 2Nf and Li = i + p the
determinant can be evaluated using equation (D.17)

det
1≤i,j≤N

((
2Nf

i− j + p

))
=

Nc∏
i=1

(2Nf +Nc − i)p

(i+ p− 1)!
∏

1≤i<j≤N
(j − i). (6.42)

The last product can be rewritten to

∏
1≤i<j≤Nc

(j − i) =
Nc∏
j=2

j−1∏
i=1

(j − i) (6.43)
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=
Nc∏
j=2

(j − 1)! (6.44)

=
Nc∏
i=1

(i− 1)!, (6.45)

resulting in

det
1≤i,j≤Nc

((
2Nf

i− j + p

))
=

Nc∏
i=1

(2Nf +Nc − i)p

(p+ i− 1)! (i− 1)! (6.46)

=
Nc∏
i=1

(2Nf +Nc − i)p

(p+ i− 1)p (6.47)

=
Nc∏
i=1

(2Nf + i− 1)p

(p+ i− 1)p . (6.48)

When Nc is large, it is useful to rewrite this result in a way such that no products or sums which
have their limit at Nc occur. This can be achieved by using the product analog of telescoping sums

N∏
i=1

ai
ai−1

= aN
a0

(6.49)

which leads to
Nc∏
i=1

(2Nf + i− 1)p

(p+ i− 1)p =
Nc∏
i=1

p∏
j=1

2Nf + i− j
p+ i− j

(6.50)

=
Nc∏
i=1

p∏
j=1

(2Nf − p) + p+ i− j
p+ i− j

(6.51)

=
Nc∏
i=1

p∏
j=1

2Nf−p∏
k=1

p+ i− j + k

p+ i− j + k − 1 (6.52)

=
Nc∏
i=1

p∏
j=1

2Nf−p∏
k=1

i+ j + k − 1
i+ j + k − 2 (6.53)

=
p∏
j=1

2Nf−p∏
k=1

Nc + j + k − 1
j + k − 1 (6.54)

=
p∏
j=1

(Nc + j)2Nf−p

j2Nf−p
. (6.55)

Therefore, our final result reads

z0 =
2Nf∑
p=0

 p∏
j=1

(Nc + j)2Nf−p

j2Nf−p

hpNc1 (6.56)

To illustrate the result consider the free energy density in the static limit for the case Nf = 1:

−fLO = log
(
1 + (Nc + 1)hNc1 + h2Nc

1

)
. (6.57)
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Note that just like in the static case for Nf = 2 and Nc = 3 discussed in section section 5.3, the
prefactors multiplying the powers of hNc1 can be understood from spin degeneracy. For example, a
color neural state consisting of Nc fermions can only be antisymmetric in color space under particle
exchange. To get an antisymmetric state, it therefore has to be completely symmetric in spin
space, which means for Nc spin 1/2 particles that the spin quantum number of the composite state
is s = Nc/2. There are Nc + 1 degenerate states with this spin quantum number, namely those
with Nc/2 ≤ sz ≤ Nc/2, which explains the Nc + 1 prefactor multiplying hNc1 .

Determination of z(21)

For the determination of z(21) we have to compute

z(21) =
∫

SU(N)

dW det(1 + h1W )2Nf tr
(

h1W

(1 + h1W )2

)
. (6.58)

The straightforward way to treat this integral is to write the integrand in its diagonal form in
the following way

det(1 + h1W )2Nf tr
(

h1W

(1 + h1W )2

)
=

Nc∏
i=1

(1 + h1εi)2Nf
Nc∑
µ=1

h1εµ
(1 + h1εµ)2 (6.59)

=
Nc∑
µ=1

∏
i 6=µ

(1 + h1εi)2Nf

(1 + h1εµ)2Nf−2h1εµ. (6.60)

However, when we apply equation (6.27), the result then is

z(21) =
2Nf∑
p=0

Nc∑
µ=0

det
1≤i,j≤Nc


( 2Nf−2
i−j−q−1

)
if i = µ( 2Nf

i−j−q
)

else

hNcp1 . (6.61)

We do not know how to evaluate this determinant directly, notably equation (D.17) cannot be
applied.
We circumvent this problem by expanding tr

(
h1W (1 + h1W )−2) around h1 = 0. In general for

n,m ∈ N∗ one has in terms of eigenvalues

det(1 + h1W )2Nf tr
( (h1W )m

(1 + h1W )n
)

=
(
Nc∏
i=1

(1 + h1εi)2Nf

)
Nc∑
µ=1

(h1εµ)m
(1 + h1εµ)n (6.62)

=
Nc∑
µ=1

∞∑
r=0

(−1)r
(
n+ r − 1

r

)
(h1zµ)m+r

(
Nc∏
i=1

(1 + h1εi)2Nf

)
.

(6.63)

Consequently, equation (6.27) gives

z(nm) =
∞∑
p=0

Nc∑
µ=1

∞∑
r=0

(−1)r
(
r + n− 1

r

)
det

1≤i,j≤Nc


( 2Nf
i−j+p−m−r

)
if i = µ( 2Nf

i−j+p
)

else

hNcp1 (6.64)

and the determinant occurring in the last equation can be evaluated using equation (D.17) under
the identification A = 2Nf and Li = δ(i = µ)(i + p −m − r) + δ(i 6= µ)(i + p). Tedious algebra
then shows that in the case n = 2,m = 1 the summations over r and µ decouple (in general this is
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not the case):

z(21) =
2Nf∑
p=0

hNcp1 det
1≤i,j≤Nc

((
2Nf

i− j + p

))

×
Nc∑
µ=1

(µ+ p− 1)µ

(Nc − µ)!(µ− 1)!(2Nf − p+Nc)µ

×
p−1∑
r=0

(r +Nc)Nc(p− 1)r
(2Nf − p+Nc + r)r .

(6.65)

There are algorithms to find closed form expressions for sums like the ones over µ and r in the
last equation [202]. Luckily they have been implemented in computer algebra systems, asking
Mathematica for advice, we learn that

Nc∑
µ=1

(µ+ p− 1)µ

(Nc − µ)!(µ− 1)!(2Nf − p+Nc)µ
= p(Nc + 2Nf )!(2Nf − p)!

(Nc − 1)!(2Nf + 1)!(Nc + 2Nf − p)!
, (6.66)

p−1∑
r=0

(r +Nc)Nc(p− 1)r
(2Nf − p+Nc + r)r = Nc!(2− 2Nf )p−1

(−Nc − 2Nf + 1)p−1
. (6.67)

The product of these sums then simplifies neatly leading to the end result

z(21) =
2Nf∑
p=0

hNcp1 det
1≤i,j≤Nc

((
2Nf

i− j + p

))
pNc

2Nf

(2Nf +Nc)(2Nf − p)
(2Nf + 1)(2Nf − 1) . (6.68)

We now have computed all integrals necessary for the free energy density to O(κ4) for arbitrary
Nc ≥ 3, and following section 5.2 the same is true for all thermodynamic functions. In contrast to
section 5.2, we have here µB = Ncµ and the baryon masses are to leading order

amLO
B = Ncam = −Nc log(2κ). (6.69)

The derivative of κ with respect to a is computed at constant baryon mass, which leads to

a
∂κ

∂a
= κ ln(2κ). (6.70)

6.2 The onset transition in the large Nc limit

We can now begin to investigate properties of the theory. Figure 6.2 shows the onset transition
based on the calculations so far. One can clearly observe that the transition steepens when Nc is
increased, which extrapolates to a step function for asymptotically large values of Nc, corresponding
to a first order transition. This asymptotic behavior is explicitly shown in the next section. For
lower values of Nτ , which means higher temperatures, the curve is flattened for each value of Nc

in comparison to larger values of Nτ . However for asymptotically large Nc this curve will always
become a step function, making the transition always first order independent of temperature. Note
that we use the leading order expression for the baryon mass to express our results as we do not
know the baryon mass in the hopping expansion for general Nc. For this reason the onset happens
exactly at µB = mLO

B in the strong coupling limit. We remark that for higher temperature one
should also discuss the inclusion h̄1 and gauge corrections, which we have neglected so far. This
is done in section 6.3.2. Furthermore an important point is that similar to the large Nτ limit in
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Figure 6.2: Adapted from [93]. Onset transition for different values of Nc and Nτ in the strong
coupling regime.

the static strong coupling limit for finite Nc, the transition we observe here for infinite Nc is from
vacuum to a saturated lattice, which is a discretization artifact. Approaching the continuum, the
saturation density is moved to larger physical values and we will investigate this in more detail in
section 6.3.4.

6.3 Thermodynamic observables for large Nc

In the previous sections we have obtained the free energy density for general Nc. Naturally, the
same is true for all thermodynamic observables derived from it. From this, we can easily obtain their
asymptotic behavior in the limit Nc → ∞. We already noted that the lattice saturation heavily
influences the results for large Nc. We know that the unphysical lattice saturation is contained in
the static limit, while the corrections in κ modify how the curves enter the high and low density
asymptotes. The latter effects influence how the continuum is approached in the theory and are
therefore physically significant. Therefore, to be able to distinguish these effects clearly, we study
the different orders in the hopping expansion separately.
Before discussing our results forNf = 2, we describe the general strategy to obtain the asymptotic

behavior. An example which illustrates the general procedure is the κ2 correction to the pressure:

a4p1 = −6κ2 (1
2Nc(Nc + 1)hNc1 +Nch

2Nc
1 )2

Nc(1 + hNc1 (1 +Nc) + h2Nc
1 )2

. (6.71)

When h1 < 1 the term hNc1 vanishes faster than any power of Nc that can occur as a prefactor
and to obtain the asymptotic behavior in this case we can therefore consider the Taylor expansion
around hNc1 = 0:

a4p1 = −3
2κ

2Nc(Nc + 1)2h2Nc
1 +O(h3Nc

1 ) (6.72)

∼ −3
2κ

2N3
c h

2Nc
1 for Nc →∞. (6.73)

For h1 > 1 we extend the fraction by h4Nc
1 to obtain

a4p1 = −6κ2
(1

2Nc(Nc + 1) 1
hNc1

+Nc)2

Nc( 1
h2Nc

1
+ 1

hNc1
(1 +Nc) + 1)2 . (6.74)
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Order hopping expansion κ0 κ2 κ4

h1 < 1

a4p ∼ 1
6NτN

3
c h

Nc
1 ∼ − 1

48N
7
c h

2Nc
1 ∼ Nτ

240N
8
c h

2Nc
1

a3nB ∼ 1
6N

3
c h

Nc
1 ∼ −Nτ

24 N
7
c h

2Nc
1 ∼ N2

τ
120N

8
c h

2Nc
1

a4e ∼ − ln(2κ)
6 N4

c h
Nc
1 ∼ Nτ ln(2κ)

48 N8
c h

2Nc
1

ε 0 ∼ −1
4N

3
c h

Nc
1

h1 > 1

a4p ∼ 4 ln(h1)
Nτ

Nc ∼ −12Nc ∼ 78Nc

a3nB ∼ 4 ∼ −Nτ
N4
c

hNc1
∼ −3N2

τ
N5
c

hNc1

a4e ∼ −4 ln(2κ)Nc ∼ 24 ln(2κ)Nc

ε 0 ∼ −6

Table 6.1: Adapted from [93], differences are due to the errors fixed in equation (6.3). Large Nc

behavior of the thermodynamic functions and the interaction energy per baryon, order
by order in the hopping expansion, on both sides of the onset transition for Nf = 2.

Now, 1/hNc1 is a good expansion parameter and expanding around 1/hNc1 = 0 gives

a4p1 = −6κ2Nc +O(1/hNc1 ) (6.75)
∼ −6κ2Nc for Nc →∞. (6.76)

We remark that in contrast to the κ2 contribution, there are several κ4 terms in equation (6.3).
Applying the above strategy term by term one does obtain results that scale, for example, like ∼ N2

c

and it is only when the whole expression at κ4 is considered, that the scaling ∼ Nc for h1 > 1 is
obtained. Furthermore, when neglecting terms that go like Nτκ

4, one also does not get the correct
scaling.
We summarized the results of the procedure for Nf = 2 in table 6.1. For h1 < 1 all observables

go like ∼ Nk
c h

Nc
1 , which means they are exponentially suppressed for increasing Nc up to the onset.

Therefore an amplification of the silver blaze property is observed when Nc is increased.
More interestingly, for h1 > 1, all contributions to the pressure scale like p ∼ Nc, as we have

seen above already. This scaling characterizes quarkyonic matter. While for the leading order the
scaling trivially follows from lattice saturation, we already explained that the corrections do not
contribute to saturation, and one can also see this explicitly in the table. The fact that the scaling
holds for both corrections we calculated suggests that this may hold to all orders in κ, and therefore
to be a genuine feature of strongly coupled QCD for all current quark masses. Note that at κ2

there is a finite interaction energy per baryon relative to the baryon mass in the limit of infinite Nc,
which is consistent with the predictions in [173]. From our investigations in section 5.4 we assume
that this also holds for the κ4-corrections in the case of baryon chemical potential.

6.3.1 The transition region

So far we only investigated what happens when Nc →∞ with h1 fixed, i. e. with the quark chemical
potential fixed. By adjusting the chemical potential such that µ−m ∼ 1/Nc we can consider also
hNc1 ∼ 1, which is just around the onset. In this case, the asymptotic behavior is determined
by the prefactors in front of the powers of hNc1 which are polynomials in Nc as can be seen from
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equations (6.56) and (6.68). For the pressure one then obtains the following asymptotic behavior

a4p ∼ 4
Nτ

log(Nc)− 3κ2Nc + Nτκ
4

10 N2
c +O(κ6). (6.77)

This is an indication that the hopping expansion does not converge in this regime for large Nc.
First signs of this behavior can be seen for Nc = 9 in figure 6.2, where uncontrolled wiggles form
around the onset. Therefore, we do not have control over this parameter region in our expansion
and cannot make predictions about it. On the other hand, the width of this region goes to zero
for large Nc and thus, does not affect our previous observations. Likewise, we cannot judge if this
behavior is related to a percolation-type phase transition for some critical Nc, as predicted in [203,
204].

6.3.2 Inclusion of h̄1-corrections

As mentioned before, at higher temperatures, i. e. lower Nτ , we also need to consider the inclusion
of h̄1. Clearly, for h1 > 1 the behavior is unchanged, as in that case the large Nc behavior is
determined by the largest powers of hNc1 . For h1 < 1 on the other hand, one has to consider
µ-independent terms with equal powers of h1 and h̄1. They are not necessarily exponentiated
by powers of Nc, and therefore not suppressed when Nc → ∞. Then again, these are mesonic
contributions which are expected to scale as ∼ N0

c .
To show this explicitly, at least for the leading order contribution, we have to modify our calcu-

lation of z0. The integral we have to solve in this case reads

z0 =
∫
Nc

dW det(1 + h1W )2Nf det
(
1 + h̄1W

†
)2Nf

. (6.78)

In terms of its eigenvalues, the integrand reads

Nc∏
i=1

(1 + h1εi)2Nf (1 + h̄1ε
∗
i )2Nf =

Nc∏
i=1

[∑
n

(
2Nf

n

)
hn1 ε

n
i

∑
m

(
2Nf

m

)
h̄m1 (ε∗i )m

]
(6.79)

=
Nc∏
i=1

[∑
n

(
2Nf

n

)
hn1 ε

n
i

∑
m

(
2Nf

m

)
h̄m1 (ε∗i )m

]
(6.80)

=
Nc∏
i=1

[∑
n,m

(
2Nf

n

)(
2Nf

m

)
hn1 h̄

m
1 ε

n−m
i

]
. (6.81)

Again, we can now apply equation (6.27) to obtain

z0 =
∞∑

q=−∞
h̄Ncq1 det

1≤i,j≤Nc

(∑
n

(
2Nf

n

)(
2Nf

n+ q + i− j

)
hn1 h̄

n
1

)
(6.82)

=
∞∑

q=−∞
h̄Ncq1

∑
n1,...,nNc

det
1≤i,j≤Nc

((
2Nf

ni

)(
2Nf

ni + q + i− j

)
hni1 h̄

ni
1

)
(6.83)

=
∞∑

q=−∞
h̄Ncq1

∑
n1,...,nNc

Nc∏
l=1

[(
2Nf

ni

)
hni1 h̄

ni
1

]
det

1≤i,j≤Nc

((
2Nf

ni + q + i− j

))
, (6.84)

where we, once more, used the multilinearity of the determinant in the last two steps. The deter-
minant can be evaluated using equation (D.17) by setting Li = ni + p+ i and A = 2Nf , resulting
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in

z0 =
∞∑

q=−∞
h̄Ncq1

∑
n1,...,nNc

Nc∏
l=1

[(
2Nf

ni

)
hni1 h̄

ni
1

]
Nc∏
i=1

(2Nf +Nc − i)ni+p

(ni + q + i− 1)!
∏

1≤i,j≤Nc
(nj+j−ni−i). (6.85)

Unfortunately, we currently do not know how to simplify this result any further.
At least for Nf = 1 the result is known [157] and leads to the pressure

a4ph1,h̄1
= log

( 2Nc∑
k=0

T (k)(2κ)2kNτ

+
Nc∑
k=0

P (k)(2κ)(2k+Nc)Nτ 2 cosh(Ncµ/T ) + (2κ)2NcNτ 2 cosh(2Ncµ/T )
)
,

(6.86)

with T (k) =
(min(k,2Nc−k)+3

3
)
and P (k) = (Nc + 1 − k)(k + 1). We are interested here in h1 < 1,

which means µ < a log(2κ). From using the representation of cosh in terms of exp it is clear
that in this case the µ-dependent terms are exponentially suppressed in the large Nc limit. The
µ-independent terms are more interesting. To compute their contribution, we note that

2Nc∑
k=0

(
min(k, 2Nc − k) + 3

3

)
(2κ)2kNτ (6.87)

=
Nc∑
k=0

(
k + 3

3

)
(2κ)2kNτ +

2Nc∑
k=Nc+1

(
2Nc − k + 3

3

)
(2κ)2kNτ (6.88)

=
Nc∑
k=0

(
k + 3

3

)
(2κ)2kNτ +

Nc−1∑
k=0

(
k + 3

3

)
(2κ)2(2Nc−k)Nτ (6.89)

=
Nc∑
k=0

(
k + 3

3

)
(2κ)2kNτ + (2κ)4NcNτ

Nc−1∑
k=0

(
k + 3

3

)( 1
2κ

)2kNτ
. (6.90)

Both sums can be obtained by considering derivatives of the geometric sum (we remark that the
geometric series cannot be applied to the latter sum) and in the limit we get

lim
Nc→∞

2Nc∑
k=0

(
min(k, 2Nc − k) + 3

3

)
(2κ)2kNτ = 1

(1− (2κ)2Nτ )4 . (6.91)

For the pressure this then implies

a4ph1,h̄1
∼ − 4

Nτ
log
(
1− (2κ2N )

)
for Nc →∞ (6.92)

∼ N0
c , (6.93)

as claimed.

6.3.3 Gauge corrections and ’t Hooft scaling

In the strong coupling limit we have β = 0. To have a well defined ’t Hooft coupling λH = 2N2
c /β

and consequently a well defined ’t Hooft limit, we have to consider what happens when β > 0.
Therefore we have to discuss the inclusion of gauge corrections. We will argue, that the qualitative
properties of our observations will not change.
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As the inclusion of the leading corrections in [65] only makes use of equation (2.44) which is
generic for Nc, we can use their results here. Replacing the character expansion coefficients by
their correct generalization according to equation (2.43) the free energy density to O(κ2) now reads

− f = log(z0(h1))− 3κ
2Nτ

Nc

[
1 + 2u− u

Nt

1− u

]2Nfz
2
(11)

z2
0

, (6.94)

where h1 is now corrected by gauge contributions in the following way:

h1 = (2κ)Nτ eaµNτ exp
[
6Nτκ

2u− uNτ
1− u

]
. (6.95)

For λH > 1, the ’t Hooft then gives
u(β) = 1

λH
. (6.96)

Therefore, our results concerning the asymptotic behavior of the thermodynamic functions is only
modified by a constant ∼ N0

c .
For higher temperatures it is also relevant to consider leading order contributions from the pure

gauge sector, which read [79]

∏
n∈Λs

3∏
k=1

[1 + λ1(L(n)L∗(n + ek) + L∗(n)L(n + ek))] (6.97)

with the effective coupling λ1 that to first order in the character expansion has the expression

λ1 = uNτ . (6.98)

To leading order, this term changes −f in equation (6.3) due to a mixing term with the static
determinant, which reads

− fλ1,h1 = 6λ1
z(01)z(0 −1)

z2
0

. (6.99)

To obtain z(01) and z(0−1) one can again apply equation (6.27) and equation (D.17), no new chal-
lenges occur in comparison to the previous calculations. The result is

z(01) =
2Nf∑
p=0

det
1≤i,j≤Nc

((
2Nf

i− j + p

))
pNc

Nc + 2Nf − p
hpNc1 (6.100)

z(0−1) =
2Nf∑
p=0

det
1≤i,j≤Nc

((
2Nf

i− j + p

))
(2Nf − p)Nc

Nc + p
hpNc1 . (6.101)

From equation (6.96) we conclude that λ1 = 1
λNτH

, which means that we can use the same strategy
as in section 6.3 to obtain

a4pλ1,h1 ∼
4

Nτλ
Nτ
H

N3
c

h
Nc
1 , if h1 < 1,
1
hNc1

, if h1 > 1, for Nc →∞. (6.102)

For h1 > 1 the asymptotic behavior of this term is subleading to those in table 6.1 and for h1 < 1
the results in the table are only modified by a constant ∼ N0

c .
Corrections which are exclusively due to the gauge part of the action become relevant at O(λ4

1).
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Figure 6.3: Adapted from [93]. Behavior of the Baryon density for growing Nc after gauge correc-
tions have been included. The gauge couplings are related by the ’t Hooft coupling,
which is kept fixed.

When taking the large Nc limit order by order, only the following type of integrals∫
SU(Nc)

dW tr(W )n tr
(
W †

)n
= n! for n ≤ Nc (6.103)

occur. Their contribution to the pressure is therefore µ-independent and scales as ∼ λk1 ∼ N0
c .

So far we only considered the leading order expression of λ1, whose Nc-dependence is solely
determined by u. The last statement would however be wrong if additional corrections to λ1 intro-
duce dependencies in λ1 which do not correspond to character expansion coefficients. Corrections
to λ1 up to O(u8) were obtained in [94]. One can observe that although some corrections indeed
introduce additional Nc-dependencies, these additional factors cancel when the total contribution
of these corrections is taken into account. Including characters of higher representations, similar
observations have been made in [171], where the strong coupling expansion of pure gauge theory
was explored without using an effective theory.
Figure 6.3 shows how figure 6.2 is modified when gauge corrections are included, for two different

choices of the ’t Hooft coupling. Clearly, only quantitatively small changes can be observed and the
qualitative observations about the asymptotic behavior stay the same. Naturally, when including
higher orders, more complicated contributions and interactions in the effective theory can arise,
with non-trivial Nc scaling. However, having Nc in the exponent, the powers of hNc1 should always
be the dominant aspect for the large Nc scaling behavior of baryons, as it was observed in the
leading order contributions here.

6.3.4 Towards the continuum

If we look again, for example, at the argumentation around equation (6.103), we note that it was
assumed so far that the large Nc limit can be interchanged with the strong coupling expansion.
Otherwise, one can imagine situations where contributions become relevant with n > Nc in that
integral. Indeed, this was observed in the case of QCD in 1+1 dimensions1 by Gross and Witten
[205] and is also the reason why equation (6.96) is restricted to the case λH > 1. They concluded
that the interchange of the large Nc limit and the strong coupling expansion should be deemed
“highly suspicious”. Furthermore, the fact that in our case the density immediately jumps to the
value of the saturated lattice also suggests that the limits should be taken in the opposite order,
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Figure 6.4: Adapted from [93]. Continuum approach for the baryon density. Steepening of the
onset transition for growing Nc is also observed if continuum limit is taken first.

to get results relevant for continuum physics.
While we are certainly not able to sum all contributions before taking the limit Nc → ∞, we

can still investigate how the baryon density behaves towards the continuum. First, we set a scale
at SU(3), following the strategy in [65]. This means we use the non-perturbative beta-function of
pure gauge theory to relate βSU(3) to a/r0, where r0 is the Sommer parameter [206]. Although we
do have quarks in our system, they are very heavy and therefore their influence on the running of
the coupling should be relatively small. The value r0 = 0.5 fm then relates the lattice parameters to
a physical scale, whereby the temperature is determined via T = 1/(aNτ ). To get the appropriate
value for β for other values of Nc, we demand that the ’t Hooft coupling is kept fixed when adjusting
Nc, meaning that βSU(Nc) is determined by solving for it in the equation

2N2
c

βSU(Nc)
= 18
βSU(3)

. (6.104)

Lastly, to keep the Baryon mass constant when varying a, we adjust κ according to the leading
order expression equation (6.69). In this way we should get a rough estimate of the parameter
space.
Figure 6.4 shows results of this strategy for the baryon density. As we can see, a continuum

extrapolation should lead to a finite value. For h1 < 1, this value should be smaller when Nc is

1For more recent investigations of the 1+1 dimensional case including chemical potential see [180].
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Figure 6.5: Adapted from [93]. The pressure at two different lattice spacings and Nc values in the
interval [3, 9]. Its scaling is consistent with p ∼ Nc(1 + const.N−1

c ).

increased, and the situation reverses for h1 > 1. In other words, the transition still seems to steepen
with increasing Nc, even when the continuum is approached first.
Furthermore, in figure 6.5 we explored how the pressure behaves for different Nc in the interval

[3, 9] at values of the chemical potential where one has roughly half filling. At this value, observables
should not yet be dominated by saturation. Still, the pressure to the calculated orders follows the
scaling ∼ Nc. As the Nc values are still far away from the limit of infinite Nc, this is shown in
the figure by the observation that the first subleading correction goes like ∼ N0

c . Furthermore, the
figure also illustrates that these observations seem to be stable when the lattice distance is reduced.
As an aside, we note that down to Nc ≈ 5 the pressure is still very good approximated by the first
subleading correction. In contrast to [65, 73], we are note able to explicitly take the continuum
limit here. First, we have less orders available and furthermore the orders necessary to get stable
results grows exponentially due to the difficulty in the transition region described in section 6.3.1.
Consequently we cannot explicitly show the scaling of the pressure to be p ∼ Nc for Nc →∞ in the
continuum and transition to be always first order. In any case, first order behavior is very difficult
to describe using series expansion methods, which we used.

6.3.5 The phase diagram for growing and large Nc

Although we are not able to explicitly demonstrate that the onset transition to baryon matter at
any temperature is first order for Nc →∞ in the continuum, we can nevertheless argue for it based
on the qualitative features we observed, similar to section 5.1. As noted in that section, the scale
for the critical endpoint can be estimated from the binding energy per baryon. In table 6.1, we
observed that the interaction energy per baryon relative to the baryon mass scales as ε ∼ const.
Therefore, as expected in [173], the binding energy per baryon scales as ∼ Nc in units that are
Nc-independent and the critical endpoint moves to ever higher temperatures when Nc is increased.
In contrast, in the large Nc limit, the deconfinement temperature Td is independent of chemical
potential and corresponds to that of Yang-Mills theory, for which lattice calculations indicate that
for large Nc the transition is within ∼ N−2

c of the value at Nc = 3 [189]. Consequently, in the limit
Nc →∞, temperatures within 0 < T < Td are below the scale of the binding energy and the onset
transition is always first order.
For Nc = 3 and heavy quarks, the deconfinement transition is first order for µ = 0 and has a

critical endpoint, see figure 2.1. In this case, one can think of the first order line parallel to the
chemical potential axis in the largeNc limit to appear gradually by straightening out theNc = 3 line
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Figure 6.6: Take from [93]. Arrows indicate the gradual change of the phase transition lines with
growing Nc.

and moving the endpoint to ever higher chemical potentials, as the quark loops have decreasing
influence. Similarly, the endpoint for the onset transition moves up to higher temperatures, as
explained above, until it hits another discontinuity. In this way, one observes how the rectangular
phase diagram in figure 6.1 arises gradually from figure 2.1 by increasing Nc, as indicated in
figure 6.6.

6.3.6 Quarkyonic matter and lattice saturation
After the onset, our scaling results are compatible with quarkyonic matter. Some care had to be
taken to avoid artifacts due to lattice saturation. On the other hand, the situation with lattice
saturation can be considered to be consistent with quarkyonic matter in the following way: As
we explained in section 5.3, the relevant degrees of freedom for the lattice saturation density are
those of quarks. At the same time, the onset transitions is related to the condensation of hadrons.
We saw indications of the phenomenological properties leading to that conclusion in the effective
theory in section 5.4, and simulations of the effective theory also support this conclusion as we
discussed in the same section. Therefore, in a lattice filling up with baryon number one observes a
rapid and smooth transition from baryon matter to matter whose thermodynamics is determined
by quark degrees of freedom, just like it is the case with quarkyonic matter. When the lattice is
made finer, the lattice saturation level increases when expressed in physical units, as well as the
chemical potential that is necessary to saturate the lattice. In the continuum, one will then have a
physical saturation effect at the level of the density of nuclear matter as explained in section 5.1.
For the quarkyonic phase that smoothly introduces quark-like features for increasing density, the
baryonic surface persists up to arbitrary finite quark chemical potential in the case of infinite Nc.
For Nc = 3, the interactions near the Fermi surface can be screened by quark loops for sufficiently
large chemical potential and one has a transition to a regime which is completely perturbative
in quarks and gluons. It is assumed that this transition is smooth, unless there is a deconfining
transition that extends down to T = 0 [173]. This question is very hard to approach using strong
coupling methods. Likewise, whether there is also a chiral transition at larger chemical potential,
possibly split from the deconfinement transition, cannot be decided within the current framework
and should be investigated in an effective theory including chiral symmetry, such as [51].
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7 Conclusions and Research perspectives
In this thesis we discussed both the derivation and evaluation of effective Polyakov theories of QCD
at finite temperature and density.
The vertex-renormalized free graph expansion was applied to the SU(3) spin model to derive the

free energy density to order 14 in the energy-like coupling and to order 60 in the magnetization-like
coupling. In comparison to numerical results based on a flux representation, the series results to
the current order are competitive for the equation of state up to a region relatively close to the
phase transition but less precise for the critical couplings. Nevertheless, series methods have the
advantage of being more flexible, as one can plot observables over a large range of values, once the
series has been obtained. Furthermore, the evaluation of Polyakov loop theories via series expansion
methods provides additional insights into the derivation of these theories, as we explained at the end
of section 2.1.2. Additionally, in contrast to the flux representation, the free graph expansion has
been generalized to n-point couplings [73]. One possible avenue of future research is to implement
this generalization in our automatized generation of expansion coefficients. We remark however
that in the case of logarithmic-resummed actions the free graph expansion is rather cumbersome or
cannot be applied at all. It seems that the finite cluster method is the more sensible method in this
case and we already showed in section 4.6.2 how to evaluate the logarithmic-resummed effective
theory for n-point couplings using the finite cluster method. Therefore the automation of the finite
cluster method in order to evaluate the effective theory seems more promising. A first step in
this direction has been already made and we have implemented the finite cluster method for the
effective theory that is used in [207], but the results have not yet been completely analyzed.
The finite cluster method can also be used for the derivation of the effective theory and naturally

includes logarithmic resummations, as we showed in chapter 4. Large parts for the derivation of the
effective theory following the strategy of that chapter have already been automated by computer
implementations. Finishing these implementations would make it rather easy to obtain higher
orders in the expansion. These higher order can be used to investigate some open questions from
the main text. First, the possibility of invalid singularities in h1, due to the occurrence of terms in
the evaluation of the effective theory which correspond to partial contractions in the application of
Wick’s theoremshould be investigated.
In section 5.4 we saw that κ2-results for the binding energy alone are not enough to distinguish

the isospin and baryon case and only at κ4 there hints of the correct behavior. Therefore higher
order calculations are certainly of interest in that case, too. These should be complemented by
simulations of the effective theory, where a first order transition has been seen for finite baryon
density, to see if a second order transition line can be shown to exist for the effective theory with
isospin chemical potential. Alternatively, the orders of the transitions can be studied using mean
field methods, which is currently in progress.
Mean field methods are also attractive in the large Nc limit, where they are believed to be exact.

Redoing the calculations of [179], which concern the spin model for large Nc, while keeping the
difference between U(Nc) and SU(Nc) in mind as suggested by [180] should be a valuable first step
into the application of mean field theory for large Nc to the actions we are using.

Concerning the large Nc results in this thesis, we have shown that the pressure scales as p ∼ Nc

beyond the onset transition for all available orders (up to including κ4) in the hopping expansion
and that the onset transition becomes first-order for large Nc when the lattice spacing is kept fixed.
Furthermore this behavior was observed to be stable under the inclusion of the leading gauge
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7 Conclusions and Research perspectives

corrections. However, we also observed that the continuum limit should be taken before the large
Nc limit, which complicates matters. So far we have been unable to reach unambiguous results for
continuum physics, but have at least been able to show that our findings are stable in the correct
order of the limits in the range of lattice spacings and Nc-values that are under control. In this
way our results are consistent with the prediction of quarkyonic matter and the large Nc phase
diagram from [173]. If our results indeed generalize to all orders in the hopping expansion and are
stable under the correct order of the limits, then they would be genuine features of QCD also for
physical quark masses. For the case Nc = 3 there will be no phase transition to a quarkyonic phase
and the onset transition which ends at a temperature of O(10 MeV) marks the condensation of
baryons. Nevertheless, this is consistent with the shell picture of quarkyonic matter in momentum
space, in which the formation of an inner sphere of quark matter in the Fermi sea for increasing
density would allow for a smooth transition to matter which has mainly quark-like properties, up
to the point where it can be described exclusively in terms of perturbative quarks and gluons. This
is possible for Nc = 3 as screening due to quark loops is not suppressed. If this is marked by an
deconfinement transition or whether there is in addition a chiral transition cannot be decided based
on our results.

In this thesis we did not discuss the combinatorics on how the gauge corrections to our results
are obtained and simply used previous results. It would be interesting to study how to include
and derive gauge corrections in the best way in the framework of the finite cluster method. As the
fundamental geometry of the lattice for the gauge part of the action is the plaquette, it might be
advisable to use the finite lattice method which is closely related to the finite cluster method, see
[208] for an introduction and application to strong coupling expansions. As a notable achievement
of the finite lattice method, stressing the power of this method, we mention the derivation of the
high-temperature series expansion of the free energy density of the simple cubic Ising model to 50th
order in the inverse temperature [209].
Certainly, at some point the combinatorial complexity in all methods will grow beyond what

can be managed even with automated methods. Besides finding further analytic resummations,
higher order contributions can also be incorporated using the non-perturbative methods mentioned
in section 2.1.2 Most interestingly from the standpoint of this thesis, the finite cluster or lattice
methods can be used to modify the strategy applied in [92]. There, the authors used two possible
forms of the effective action. One form has couplings which are easily determined numerically by
the computation of expectation values of n-point functions of Polyakov loops in the full theory.
This form has the downside that its truncated version only includes interactions at short ranges.
The second form of the effective theory used in [92] includes long range interactions, however the
couplings cannot be directly determined using numerical methods. Therefore, one perturbatively
determines the same expectation values that were used to determine the couplings of the first form
using the second form of the effective action and in this way relates the two sets of couplings.
Inverting these relations then determines the couplings in the second, more interesting form, that
can also resolve phase transitions. Note, however, that the perturbative determination introduces
additional systematic errors and becomes cumbersome very fast, when multiple couplings are used.
This is where the finite cluster (and lattice) methods may introduce and interesting alternative:
due to the form the finite cluster contributions enter the action, see section 4.4.4, one can use the
first form of the effective theory to determine couplings on finite clusters by simulations on these
clusters and the resulting action, which contains a translation of the finite clusters over the whole
lattice, still resolves long range interactions.
So far, the methods in [92] have only been applied to pure gauge theory. Extending this approach

to the fermionic sector is a further interesting prospect. It should be possible to avoid the sign
problem in doing so, similar to [90], as we know how chemical potential enters the effective theory:
by multiplying h

(f)
1 by a factor of eaµ(f) and h̄

(f)
1 by a factor of e−µ(f) . Therefore, simulations
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at µ = 0 should suffice in this case. Potential ambiguities arising from the fact that traces of
higher powers of SU(3)-matrices can be reexpressed in the way explained in section 4.6.3 should be
resolvable by employing simulations at imaginary chemical potential (which are also free of a sign
problem) [72, 89]. Simulations at imaginary chemical potential can also increase the precision of
the approach.

All in all, there are several interesting possibilities for future investigations.
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A Notations

We collect here some notations which have been defined when they were used the first time in this
thesis, but may be useful whenever the thesis is not read from start to finish.

• We denote by N all natural numbers including 0. For N \ {0} we use the notation N∗.

• For a finite set M , |M | denotes the number of elements in that set.

• If S is a logical statement, then δ(S) is 1 if S is true and 0 otherwise, the inspiration for doing
so is [96, 210]. This means the usual Kronecker delta can be written as δij = δ(i = j), but
we employ the usual notation in this case.

• Sk(M) is the set of all subsets of M with k elements.

• If M is a set of polymers endowed with a binary symmetric relation which decides if two
polymers are to be regarded linked or disjoint, then γi ∩ γj 6= ∅ denotes that the polymers
are linked and γi ∩ γj = ∅ when they are disjoint.

• For the same set of polymers M , Dk(M) is Sk(M) with only those subsets of M that have
pairwise disjoint polymers.

• For the same set of polymers M , Ck(M) is Sk(M) with only those subsets C ⊂M which have
the property that for any pair γ1, γ2 ∈ C there is always a sequence of polymers γk1 , . . . , γkm
in C that fulfills γk1 = γ1, γkm = γ2 and γki ∩ γki+1 6= ∅.
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B Graphs

We introduce some useful graph-theoretic notions used in the main text. Our notation and defini-
tions are based on a combination of those introduced in [124, 126, 133, 211–213]. A graph consists
of two finite sets VG of vertices and EG of edges together with an edge-to-endpoint function σG.
The edge-to-endpoint function has the domain EG. For an undirected graph, the edge-to-endpoint
function is a mapping

σG : EG → VG ∪ S2(VG) (B.1)

and for a directed graph it is a mapping

σG : EG → VG × VG (B.2)

For a directed graph, one can define two further mappings

iG : EG → VG, (B.3)
tG : EG → VG, (B.4)

such that σG(e) = (iG(e), tG(e)) for all e ∈ EG. In a pictorial representation of graphs, the vertices
are points which are linked by edges and the edge-to-endpoint function assigns to edges the vertices
they are linking. Two vertices which are connected by an edge are called adjacent. For directed
graphs, the edges are illustrated as arrows with their tail at i(e) and head at t(e).

A graph has a loop if it has an edge that links a vertex with itself, i. e. there is an e ∈ EG
such that σG(e) ∈ VG for an undirected graph or σG(e) ∈ (v, v), v ∈ VG for a directed graph. An
undirected graph without loops and where every pair of vertices is at most linked by one edge is
called simple graph. If we want to stress that a pair of vertices can be connected by multiple edges
we sometimes say that the graph is a multigraph. Unless explicitly said, we assume a graph to be
free of loops.
An enumeration of the vertices of a graph G with n vertices corresponds to an invertible map

π : {1, 2, . . . , n} → VG. Given an enumeration, one can define the adjacency matrix of an undirected
graph as the matrix A = (ai,j)n×n with entries

ai,j =


∣∣∣σ−1
G ({{π(i), π(j)}})

∣∣∣, if i 6= j∣∣∣σ−1
G ({π(i)})

∣∣∣, if i = j,
(B.5)

and for a directed graph the entries read

ai,j =
∣∣∣σ−1
G ({(π(i), π(j))})

∣∣∣. (B.6)

In other words, after labeling the vertices of the graph with the numbers 1 to n, the entry aij of
the adjacency matrix indicates the number of times the vertex labeled by i is linked to the vertex
labeled by j in case of an undirected graph. For directed graphs, the entry counts the number of
directed edges with tail at i and head at j.

A subgraph g of another graph G is defined to be a graph whose vertices and edges are a subsets
of the vertices and edges of G and the edge-to-endpoint function of g is the restriction of σG to Eg.
The union1 G1∪G2 of two graphs G1 and G2 is the graph with vertices VG1 ∪VG2 , edges EG1 ∪EG2
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B Graphs

and edge-to-endpoint function σG1∪G2(e) = σG1/2(e) if e ∈ EG1/2 . We note that we assume that
the two graphs are assumed to have consistent edge-to-endpoint functions on EG1 ∩ EG2 .
The degree n(v) of a vertex v of a graph G is the number of edges e with the property that

v ∈ σG(e) for an undirected graph or v ∈ {iG(e), tG(e)} for a directed graph. In the case of
a directed graph we can furthermore define the in-degree nin(v) by the number of edges e with
t(b) = v and the out-degree nout(v) is defined analogously. Of course, n(v) = nin(v) + nout(v). A
vertex with n(v) = 0 is called an isolated vertex.
In some cases one assigns a subset of the vertices to be rooted/external vertices RG, which are

distinguished from the internal vertices IG, VG = RG∪IG. Whenever it is not explicitly mentioned,
we assume a graph to consist of internal vertices only. The external vertices are special in the
way they enter the definition of a graph isomorphism. We say that two graphs G1 and G2 are
isomorphic if there are two mappings

ϕ : VG1 → VG2 , (B.7)
λ : EG1 → EG2 (B.8)

with the properties that

(a) they are both bijective,

(b) ϕ|RG = id |RG ,

(c) ϕ(σG1(e)) = σG2(λ(e)) for an undirected graph and (ϕ ◦ iG1(e), ϕ ◦ tG1(e)) = (iG2 ◦λ(e), tG2 ◦
λ(e)) for a directed graph for all e ∈ E(G).

Counting the number of elements in the automorphism group of a graph G gives the symmetry
number S(G) of a graph.

Two vertices v1 and v2 are defined to be connected if there is a sequence of vertices w1, . . . , wn
with the property that wk is adjacent to wk+1 for k < n and w1 = v1 and wn = v2. A graph is said
to be a connected graph if its vertices are pairwise connected.
G \ v denotes the graph that is obtained by deleting the vertex v, which means removing v from

VG, all edges e from EG that fulfill v ∈ σG(e) for an undirected graph or v ∈ {iG(e), tG(e)} for
a directed graph and restricting the edge-to-endpoint function appropriately. If G is a connected
graph, but G \ v is not, then v is said to be an articulation point of G. Graphs with no articulation
point are called 1-irreducible graphs.

Lastly, a 1-insertion is a graph with one external vertex which has the property that deleting the
external vertex leaves the graph connected.

1In the literature, graph unions are often defined as disjoint unions, this is not the way we define graph unions, as
our definition is more convenient in our case.
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C The SU(N) one link integral

In [214], the integral ∫
U(N)

dU eλ tr(JU+U†K), (C.1)

with J andK elements of the general linear group GL(N), was determined in terms of the characters
of GL(N). We will use the same strategy to determine the integral for SU(N). For SU(3), the
integral was computed in [102] and the SU(N) case is also treated inter alia in [55, 103]. From
section 6.1.1 we already know how the integrals over SU(N) are related to integrals over U(N) in
terms of eigenvalues of the matrices. For general integrals this implies∫

SU(N)
dU f(U) =

∞∑
q=−∞

∫
U(N)

dU det(U)qf(U), (C.2)

where f : U(N)→ C is not necessarily a class function.
This suggests to study the integral

Iq =
∫

U(N)
dU det(U)qeλ tr(JU+U†K). (C.3)

First, we will investigate the case q ≥ 0. Making use of the multiplicative property of the determi-
nant we obtain in this case

Iq =
∫

U(N)
dU det(U)qeλ tr(JU+U†K) (C.4)

= det(K)q
∫

U(N)
dU 1

det(U †K)q e
λ tr(JU+U†K) (C.5)

The integrand can be written as the product of two class functions of GL(N) (see section 6.1.1
for a definition of class functions), which means they have an expansion in terms of the characters
χr of GL(N):

eλ tr(JU) =
∑
r

ar(λ)χr(JU), (C.6)

1
det(U †K)e

λ tr(U†K) =
∑
r

br,q(λ)χr(JU), (C.7)

where the sums go over all irreducible representations of GL(N).
Then, we can make use of the orthogonality of the characters∫

U(N)
dU χr(JU)χr′(U †K) = δrr′

χr(JK)
dr

, (C.8)

where dr denotes the dimension of the representation. The orthogonality holds here despite the
fact that we integrate over U(N), but the characters are those of GL(N). This is due to the fact
that the characters are polynomials of the components aij of the group element A ∈ GL(N) and
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C The SU(N) one link integral

the algebraic irrelevance of the unitary restriction [200]. Consequently, we obtain

Iq = det(K)q
∑
r

ar(λ)br(λ)χr(JK)
dr

. (C.9)

Next, we need to determine ar and br.
Again, due to the algebraic irrelevance of the unitary restriction, the character expansion coeffi-

cients are the same for U(N) and GL(N) and ar(λ) can be computed using

ar(λ) =
∫

U(N)
dU χr(U †)eλ tr(U). (C.10)

The representation r of U(N) can be labeled by N integers r = (n1, n2, . . . , nN ), with n1 ≥ n2 ≥
· · · ≥ nN . The corresponding ar has been obtained in [215] and reads

a(n1,...,nN )(λ) = λ
∑N

l=1 nl∏N
i=1 ni!

∏
1≤i<j≤N

(
1− nj

ni + j − i

)
. (C.11)

Using the same procedure (or alternatively the approach suggested in [216]) for br(λ) one gets

b(n1,...,nN ),q(λ) = λqN+
∑N

l=1 nl∏N
i=1(ni + k)!

∏
1≤i<j≤N

(
1− nj + k

ni + k + j − i

)
. (C.12)

In the case q < 0 we define p = −q > 0 and write

Iq = det(J)p
∫

U(N)
det(U) 1

det(JU)p e
λ tr(JU+UK). (C.13)

This integral can be evaluated in the same way as the previous case and in total we obtain∫
SU(N)

dU eλ tr(JU+U†K) =
∞∑
q=0

(
1− 1

2δk0

)
(det(J)q + det(K)q)

∑
r

ar(λ)br,q(λ)χr(JK)
dr

. (C.14)

The dimension of the representations can be computed using

dn1,...,nN =
∏

1≤i<j≤N

(
1 + ni − nj

j − i

)
(C.15)

and the characters are expressed in terms of traces in the following way [217]:

χ(n1,...,nN ) = det
1≤i,j≤N

(
χnj+i−j

)
. (C.16)

here χn = 0 for n ≤ 0 and otherwise for a matrix H ∈ GL(N)

χn(H) =
∑

k1,...,kN∈N

δ(∑N
l=1 lkl = N)∏N
l=1 kl!

N∏
l=1

(tr(H)
l

)kl
. (C.17)

Finally, using these equations we give the characters necessary for the O(κ4) calculation together
with their dimension for N ≥ 2

χ(1,0,...,0)(H) = tr(H), (C.18)
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d(1,0,...,0) = N, (C.19)

χ(2,0,...,0)(H) = 1
2
[
tr(H)2 + tr

(
H2
)]
, (C.20)

d(2,0,...,0) = N(N + 1)
2 , (C.21)

χ(1,1,0,...,0)(H) = 1
2
[
tr(H)2 − tr

(
H2
)]
, (C.22)

d(1,1,0,...,0) = N(N − 1)
2 . (C.23)
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D A determinant evaluation

In this chapter we derive a formula for a determinant that is used in the main text. Employing
techniques described in [218], we will obtain an expression for

det
1≤i,j≤N

((
A

Li − j

))
. (D.1)

Note that we are a bit lax concerning possibly vanishing denominators here, the calculations can
in principle be made more rigorous by using generalizations of binomial coefficients and factorials
to real values and introducing appropriate limits.

The general strategy we use here is to bring the determinant to a form where lemma 3 in [218]
can be used, which states that

det
1≤i,j≤N

 N∏
k=j+1

(Xi +Ak)
j∏

k=2
(Xi +Bk)

 =
∏

1≤i<j≤N
(Xi −Xj)

∏
2≤i≤j≤n

(Bi −Aj). (D.2)

To apply this lemma, we have to get rid of the denominator inside the determinant. To this end,
we note that in the matrix element(

A

Li − j

)
= A!

(Li − j)!(A− Li + j)! , (D.3)

the first factor in the denominator can be at most Li − 1 in the ith row and the second cannot
exceed A− Li +N . Pulling these factors and the numerator out, one obtains(

A

Li − j

)
= A!

(Li − 1)!(A− Li +N)!
(Li − 1)!(A− Li +N)!
(Li − j)!(A− Li + j)! (D.4)

= A!
(Li − 1)!(A− Li +N)! (Li − 1)(Li − 2) · · · (Li − j + 1)

× (A− Li +N)(A− Li + (N − 1)) · · · (A− Li + j + 1)
(D.5)

= (−1)N−j A!
(Li − 1)!(A− Li +N)!

j∏
k=2

(Li − k + 1)
N∏

k=j+1
(Li − k −A). (D.6)

Using the multilinearity of the determinant then results in

det
1≤i,j≤N

((
A

Li − j

))
= (−1)

∑N

j=1(N−j)
N∏
i=1

A!
(Li − 1)!(A− Li +N)!

× det
1≤i,j≤N

 N∏
k=j+1

(Li − k −A)
j∏

k=2
(Li − k + 1)

., (D.7)
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where one can use
N∑
j=1

(N − j) = N(N − 1)
2 =

(
N

2

)
(D.8)

for the prefactor.

To apply equation (D.2), we make the identifications Xi = Li, Ak = −k − A and Bk = −k + 1
to obtain

det
1≤i,j≤N

((
A

Li − j

))
= (−1)(

N
2 )

N∏
i=1

A!
(Li − 1)!(A− Li +N)!

×
∏

1≤i<j≤N
(Li − Lj)

∏
2≤i≤j≤N

(A+ 1 + j − i).
(D.9)

The last product can be rewritten:

∏
2≤i≤j≤N

(A+ 1 + j − i) =
N∏
j=2

j∏
i=2

(A+ 1 + j − i) (D.10)

=
N∏
j=2

(A+ j − 1) · (A+ j − 2) · · · (A+ 1) (D.11)

=
N∏
j=2

(A+ j − 1)!
A! (D.12)

=
N∏
i=1

(A+ i− 1)!
A! (D.13)

=
N∏
i=1

(A+N − i)!
A! . (D.14)

We furthermore note that there are
(N

2
)
possibilities for i and j to fulfill the condition 1 ≤ i < j ≤ N

and therefore
(−1)(

N
2 ) ∏

1≤i<j≤N
(Li − Lj) =

∏
1≤i<j≤N

(Lj − Li). (D.15)

Putting this together, we obtain

det
1≤i,j≤N

((
A

Li − j

))
=

N∏
i=1

(A+N − i)!
(Li − 1)!(A+N − Li)!

∏
1≤i<j≤N

(Lj − Li) (D.16)

=
N∏
i=1

(A+N − i)Li−i
(Li − 1)!

∏
1≤i<j≤N

(Lj − Li), (D.17)

where we have introduced underline notation for the falling factorials k > 0

nk = n · (n− 1) · · · (n− k + 1) (D.18)

= n!
(n− k)! . (D.19)

Note that the last equation also makes sense for k ≤ 0 and taking the Γ-function as the general-
ization of the factorial it is also is consistent with the previous to last equation for the cases k > n
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and n < 0 in a sense where appropriate limits have been taken. For k > 0 we therefore also have

n−k = 1
(n+ 1)k

, (D.20)

introducing overline notation for rising factorials

nk = n · (n+ 1) · · · (n+ k − 1). (D.21)

Up to a relative sign, equation (D.17) is a special case of equation (3.13) in [218] which has been
proven in [219]. Indeed, equation (3.13) from [218] can be used to evaluate the determinant in (6.41),
however, equation (D.17) can be applied to the calculation of determinants which come up when
going beyond the static determinant.
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