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Abstract

In this Master’s Thesis, we study a three-dimensional effective theory for Lattice QCD in the
strong coupling and heavy quark regime with a Monte Carlo simulation. In the numerical
code, the effective action is implemented up to the order κ4 in the hopping parameter κ. This
simulation program is then used to measure the phase diagram of the effective theory at zero
chemical potential. In particular, we determine the phase boundary of the deconfinement
transition and the critical end point, where its type changes from first order to crossover. These
investigations are carried out for one and two degenerate quark flavours, and for two different
values of the temporal lattice extent (Nτ = 4 and 6). Additionally, a further approximation of
the effective theory in the limit of large Nτ and its range of validity at finite temperatures are
discussed. On the analytical side, we derive the O(κ6)-corrections to the nearest-neighbour
fermion interaction. Finally, a resummation scheme that is specific to the nearest-neighbour
interaction is constructed, which facilitates the evaluation of a certain kind of terms.
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1. Introduction

The elementary particles which make up the visible matter in our universe are described by the
Standard Model of particle physics: the fermionic quarks and leptons, and the bosonic exchange
particles. They can interact through four fundamental forces: the strong, weak, electromagnetic
and gravitational interactions. The theoretical formulation of the Standard Model is realised in
terms of Quantum Field Theories. Three of the four above-mentioned forces can be represented
in this way; only gravity is not yet included.

The theory of the strong interaction in the context of the Standard Model is Quantum
Chromodynamics (QCD). It contains fermions – the quarks – in six flavours (up, down, strange,
charm, bottom and top), which additionally come in three different colours (red, green and
blue). The colour charges of the quarks are assigned to the fundamental representation of
the gauge group of QCD, which is SU(3). The exchange particles mediating the strong force
are called gluons. They carry a colour charge in the adjoint representation of SU(3) and thus
appear in 32 − 1 = 8 species.

Two of the most prominent features of QCD are confinement and asymptotic freedom. These
are due to the self-interaction of the gluons. At large distances or low energies, the coupling of
QCD is large and it exhibits colour confinement: The only finite-energy asymptotic states of
the theory are those that are singlets of SU(3), or – in other words – colour neutral. This means
that colour charged particles, like the quarks, cannot be isolated and have to form composite
particles, the hadrons. Here, one distinguishes between baryons and mesons: The former ones
consist of three quarks, while the latter ones are built from one quark and one antiquark. The
situation is the opposite at small distances or high energies: The coupling of QCD weakens,
and the quarks and gluons are quasi-free. One refers to such behaviour as asymptotic freedom,
and the state of the particles is called quark-gluon plasma.

The existence of two so completely dissimilar states of strongly interacting matter suggests a
rich phase structure of QCD. The phase diagram in the temperature-chemical potential plane
is sketched in fig. 1.1. Despite decades of intense theoretical and experimental research, vast
parts of it are still driven by speculation. There is, however, widespread agreement that the
deconfinement transition, which delineates the boundary between the confined phase and the
quark-gluon plasma, is an analytic crossover at zero chemical potential and finite temperature.
At zero temperature and finite chemical potential, it is believed to be a first-order phase
transition. It is hence highly suggestive that a second-order critical end point exists at some
intermediary values of the parameters. The nuclear liquid-gas transition, which is also of
first order, is found at zero temperature and a baryon chemical potential around the mass of
the nucleon. At even larger chemical potentials, some models predict a (number of) colour
superconducting phase(s).

Owing to the large coupling constant, the low-energy (confinement) regime of QCD is inac-
cessible to perturbative methods. A very powerful tool to study the theory non-perturbatively
is Lattice QCD. Here, one replaces space-time by a four-dimensional Euclidean lattice. It
serves as a natural regulator for the quantum field theory, and allows for both analytical
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1. Introduction

Figure 1.1.: Sketch of the QCD phase diagram in the temperature and baryon chemical potential
plane [1]

understanding and computational research. However, the infamous sign problem seriously
hampers any numerical investigations at finite chemical potential, thus calling for effective
theories.

This thesis starts with a brief recapitulation of the essentials of continuum QCD and its
lattice discretisation in chapter 2. We will then demonstrate how one can construct an effective
theory for Lattice QCD in the limit of strong coupling and heavy quarks. Afterwards, two
additional details will be discussed: the resummation of the resulting effective action back
to an exponential form and the transformation of the degrees of freedom to Polyakov loops.
Chapter 3 deals with the implementation of a numerical Monte Carlo simulation of the effective
theory. This will be employed to explore the phase diagram of the effective theory at zero
chemical potential. In particular, we will locate the phase boundary of the deconfinement
transition and the critical end point, where its nature changes from first order to crossover,
in the parameter space of the couplings. Such measurements will be performed for one and
two degenerate quark flavours. Apart from this, a further approximation of the effective action
and its range of validity will be examined. Chapter 4 is dedicated to more analytical questions.
Here, we will derive higher-order corrections to certain parts of the effective action. Chapter 5
finally draws some conclusions and gives an outlook for possible further inquires.
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2. An effective theory for (Lattice) QCD

In the present chapter, we will review the basics of the lattice discretisation of QCD and explain
the general procedure for the derivation of the effective theory used in this thesis. Moreover,
the resulting action will be presented up to the order implemented in the numerical simulation
(cf. chapter 3).

2.1. QCD in the continuum

Most physicists agree that Quantum Chromodynamics (QCD) is the correct theoretical de-
scription of the strong nuclear force. It is a non-Abelian gauge theory with gauge group SU(3),
coupled to fermions (quarks) in the fundamental representation [2]. The Lagrangian therefore
consists of a fermionic part LF and a gauge part LG:

LQCD = LF + LG =
Nf∑
f=1

ψ̄f (x)
(
iγµDµ −mf

)
ψf (x)− 1

4F
a
µν(x)F aµν(x). (2.1)

Here, the sum in the first term runs over the individual flavours f = 1, . . . , Nf of the quarks,
which are described by Dirac 4-spinors ψf (x). The gluons are represented by the gauge fields
Aaµ(x), contained in the covariant derivative and the field strength tensor:

Dµ = ∂µ − igAaµ(x)T a, T a = λa

2 , (2.2)

F aµν(x) = ∂µA
a
ν(x)− ∂νAaµ(x) + gfabcAbµ(x)Acν(x). (2.3)

The quark and gluon fields also carry colour and Dirac indices, which have been suppressed
in favour of a matrix/vector notation. g is the coupling constant of QCD; fabc are the
structure constants of SU(3) and T a its generators, which satisfy the commutation relations
[T a, T b] = ifabcT c. The Dirac matrices obey the anticommutation relations {γµ, γν} = 2gµν ,
where the metric is gµν = ηµν in Minkowski space.

Using this Lagrangian, it is possible to express the transition amplitude between two field
configurations as a Feynman path integral:〈

φ1
∣∣∣ e−iH(t2−t1)

∣∣∣φ2
〉
∝
∫

[dψ̄][dψ][dA] exp
(
i

∫
dt

∫
d3xLQCD

)
, (2.4)

where H is the Hamiltonian and the quantity in the exponent on the right-hand side is called
the action. It is given by the space-time integral over the Lagrangian:

SQCD =
∫
dt

∫
d3xLQCD. (2.5)

It turns out that it is difficult to give a satisfactory mathematical meaning to the measure of
the path integral in eq. (2.4) [3]. This is due to the fact that the integral is complex and strongly
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2. An effective theory for (Lattice) QCD

Rex0

Rex4

Im x0

Figure 2.1.: Illustration of the Wick rotation, indicated by curved arrows (adapted from [3])

oscillating because of the complex weight eiS in the integrand. For a numerical treatment of
the theory this behaviour is also highly problematic. It is therefore common to switch to a
purely imaginary time coordinate

x0 = −ix4, x4 = τ ∈ R, (2.6)

by performing a so-called Wick rotation (cf. fig. 2.1). The space-time metric for the coordinates
x1, . . . , x4 is then a Euclidean one: gµν = δµν . Moreover, the time evolution operator exp(−iHt)
has to be replaced by exp(−Hτ), which is a well-defined positive operator [3]. The expression
for the Euclidean transition amplitude then looks like:〈

φ1
∣∣∣ e−H(τ2−τ1)

∣∣∣φ2
〉
∝
∫

[dψ̄][dψ][dA] exp
(
−
∫
d4xL(E)

QCD

)
. (2.7)

The weight factor is now given by the exponential of the Euclidean action S(E) = −iS. After an
appropriate transformation of the Dirac matrices and the gauge fields, the Euclidean Lagrangian
of QCD can be written as [4]

L(E)
QCD = L(E)

F + L(E)
G =

Nf∑
f=1

ψ̄f (x)(γµDµ +mf )ψf (x) + 1
4F

a
µν(x)F aµν(x). (2.8)

Another major advantage of the Euclidean formulation of Quantum Field Theories is that it
exhibits a structural equivalence with statistical mechanics [4]. The grand canonical partition
function of a quantum mechanical many-body system has the form

Z = tr
[
e−β(H−µNq)

]
, β = 1

T
. (2.9)

This has a striking similarity with the functional integral from eq. (2.7), if one makes the formal
identification βH ↔ S(E). As the Euclidean quark number operator is given by the spatial
volume integral over the temporal component of the conserved vector current ψ̄(x)γµψ(x),

Nq =
∫
d3x ψ̄(x)γ4ψ(x), (2.10)

one has to add such a term to the Dirac operator in eq. (2.8) in order to allow for finite chemical
potential. The partition function for Euclidean QCD at finite temperature and density then
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2.2. QCD on the lattice

takes the form of a path integral:

ZQCD =
∫

[dψ̄][dψ][dA] e−S
(E)
QCD =

∫
[dψ̄][dψ][dA] exp

(
−
∫ β

0
dτ

∫
R3
d3xL(E)

QCD

)
, (2.11)

L(E)
QCD =

Nf∑
f=1

ψ̄f (x)(γµDµ +mf − γ4µ
f )ψf (x) + 1

4F
a
µν(x)F aµν(x). (2.12)

2.2. QCD on the lattice

The Euclidean formulation of QCD cures the problem of having an imaginary exponent in the
integrand as long as the action S(E)

QCD is real. The path integral in eq. (2.11), however, is still
an infinite-dimensional integral. Therefore, one introduces a hypercubical lattice

Λ = { x = (x1, x2, x3, x4) | x1,2,3 = 0, 1, . . . , Ns − 1; x4 = 0, 1, . . . , Nτ − 1 } (2.13)

to replace space-time, where a is referred to as lattice constant. The spatial extent of the lattice
is given by Ns and the temporal extent by Nτ . Hence, the lattice consists of a total of N3

sNτ

points. As one can see from the upper bound of the τ -integral in eq. (2.11), the size of the
lattice in the temporal direction is related to the inverse temperature:

T = 1
aNτ

. (2.14)

The introduction of a finite lattice spacing a has two major advantages: On the one hand,
the number of dimensions becomes finite, making the path integral in eq. (2.11) mathematically
well-defined and numerically computable. On the other hand, the lattice provides a natural
regulator for the theory by introducing a momentum cut-off 2π/a [3]. In this context, it is useful
to distinguish two different limiting procedures: For the thermodynamic limit, one has to take
the infinite volume limit at fixed lattice spacing and temperature:

Ns →∞, Nτ fixed, a fixed ⇒ aNs →∞, T fixed. (2.15)

In this limit, the allowed momenta become continuous, but the cut-off remains intact. For the
continuum limit, one keeps physical volume and temperature fixed:

Ns →∞, Nτ →∞, a→ 0 ⇒ aNs fixed, T fixed, (2.16)

so that the momenta remain discrete, but the cut-off is removed. Another important point
concerns the correct boundary conditions. For bosonic fields, the appropriate boundary
conditions are periodic in all directions. Fermions by contrast obey the Pauli principle, which
implies that their boundary conditions have to be chosen antiperiodic in time and periodic in
space.

In order to apply the lattice method to QCD, one has to find a suitable discretisation of the
action. We will start the discussion with the gauge part, as this is relatively straightforward.
For the transcription of the concept of a gauge field to the case of a lattice regularisation of the
Euclidean continuum it is useful to view these fields as parallel transporters. On a lattice with
shortest distance a the elementary parallel transporters are those associated with the links (or
bonds) connecting nearest neighbouring points x and x+ aµ̂. The parallel transporter which
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2. An effective theory for (Lattice) QCD

x x+ µ̂

x+ µ̂+ ν̂x+ ν̂

Uµ(x)

Uν(x+ µ̂)

Uµ(x+ ν̂)

Uν(x)

Figure 2.2.: The four link variables which build up the plaquette Uµν(x). The circle indicates
the order that the links are run through in the plaquette [4]

corresponds to this bond is called link variable Uµ(x) and is related to the continuum gauge
field via [3]

Uµ(x) = eigaA
a
µ(x)Ta ∈ SU(3). (2.17)

Since the Lagrangian has to be gauge invariant, one has to find gauge invariant quantities built
from these link variables. The simplest one is a trace over a closed loop of link variables. For
the construction of the gauge action it is sufficient to use the shortest, non-trivial closed loop,
the so-called plaquette (cf. fig. 2.2)

Up = Uµν(x) = Uµ(x)Uν(x+ µ̂)U−µ(x+ µ̂+ ν̂)U−ν(x+ ν̂)
= Uµ(x)Uν(x+ µ̂)U †µ(x+ ν̂)U †ν (x). (2.18)

The action which has been proposed by Wilson for lattice gauge theory [5] is given by a sum
over all plaquettes, including every plaquette with only one orientation [4]:

SG[U ] = 2
g2

∑
p

Re tr(1− Up) = β

3
∑
x∈Λ

∑
µ<ν

Re tr(1− Uµν(x)). (2.19)

Here, the inverse lattice coupling β = 6/g2 (not to be confused with the inverse temperature
from eqs. (2.9) and (2.11)!) has been introduced. It is easy to proof that this action converges
to the Yang-Mills action in the (naive) continuum limit a→ 0 [4].

It turns out to be far more complicated to derive a discretised version of the fermionic part of
the QCD Lagrangian. The simplest way of constructing a gauge invariant Lagrangian with the
correct naive continuum limit exhibits a phenomenon called fermion doubling. The propagator
for free fermions, which is given by the inverse of the Dirac operator, has 24 = 16 poles, one at
each corner of the Brillouin zone [4]. This means that 15 unphysical poles arise, the doublers.
A possible solution to remove these in the continuum limit was suggested by Wilson [6]. He
added an extra term to the action which behaves like a second derivative. The full Wilson-Dirac
action then reads [4]:

SF,W [ψ, ψ̄, U ] =
Nf∑
f=1

a4 ∑
x,y∈Λ

ψ̄f (x)
[(
mf + 4

a

)
δx,y

− 1
2a

4∑
µ=1

[(1− γµ)Uµ(x)δx+µ̂,y + (1+ γµ)U−µ(x)δx,y+µ̂]

ψf (y). (2.20)
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2.3. General idea and purpose of the effective theory

Even in the limit of massless quarks, however, the Wilson term breaks chiral symmetry
explicitly. Introducing the hopping parameter κf = (2amf + 8)−1, one can use the freedom of
field normalisation and bring the lattice action to a particularly simple form by a2/

√
2aκfψf (x)→

ψf (x):

SF,W [ψ, ψ̄, U ] =
Nf∑
f=1

∑
x,y∈Λ

ψ̄f (x)Qf (x, y)ψf (x), Qf (x, y) = 1− κfH(x, y), (2.21)

H(x, y) =
4∑

µ=1
[(1− γµ)Uµ(x)δx+µ̂,y + (1 + γµ)U−µ(x)δx,y+µ̂], (2.22)

where Qf is the Dirac operator and H the hopping matrix.

While the link variables eq. (2.17) are SU(3)-matrices, the fermion fields are formulated in
terms of anticommuting numbers, so-called Grassmann numbers. In QCD, the path integral for
the fermions is Gaussian (cf. eqs. (2.11) and (2.21)), making it possible to integrate them out
analytically [3]: ∫

dη†1dη1 · · · dη†NdηN exp

−∑
i,j

η†jQjiηi

 = detQ. (2.23)

With this so-called fermion or quark determinant, one is left with a path integral just in terms
of integrals over gauge fields:

ZLQCD =
∫

[dU ]
Nf∏
f=1

det(Qf [U ])e−SG[U ], (2.24)

∫
[dU ] =

∏
x∈Λ

4∏
µ=1

dUµ(x). (2.25)

In these formulae, the individual measures for the integration over the link variables dUµ(x)
are taken to be the invariant group measure or Haar measure [4].

Implementing the chemical potential by simply adding a term µfγ4δx,y to the Dirac operator
Qf (x, y) as in eq. (2.12) leads to an energy density which is divergent in the continuum limit
[4]. One therefore replaces the hopping term in eq. (2.22) with

Hf (x, y) = eaµ
f (1− γ4)U4(x)δx+4̂,y + e−aµ

f (1 + γ4)U †4(x− 4̂)δx,y+4̂

+
3∑
i=1

[(1− γi)Ui(x)δx+î,y + (1 + γi)U †i (x− î)δx,y+î]. (2.26)

The introduction of the chemical potential comes with a serious technical drawback: For aµ 6= 0
the Dirac operator is no longer γ5-hermitian. Consequently, a non-vanishing real µ creates a
particle-antiparticle asymmetry, which renders the determinant of the Dirac operator complex
[4]. A straightforward application of importance sampling is hence impossible: the infamous
sign problem.

2.3. General idea and purpose of the effective theory

The purpose of the effective theory is to reproduce the main characteristics of Lattice QCD in
a relevant parameter region, whilst providing a simplification of the numerical and analytical
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2. An effective theory for (Lattice) QCD

properties. It still suffers from the aforementioned sign problem at finite chemical potential,
but this gets less severe in the sense that it can be treated, for example, by sign reweighting.
Moreover, the effective theory reduces the numerical effort, especially for the computation
of the fermion determinant, substantially and makes the theory also accessible to analytical
studies [7]. Besides, the effective theory can be improved systematically. As we will later see, it
converges at a finite order in the hopping parameter (cf. eq. (2.56)) and reduces the degrees of
freedom to Polyakov loops (cf. section 2.8).

The starting point for the derivation of the effective theory is full Wilson Lattice QCD in
3 + 1 dimensions, see eq. (2.24). It basically consists of two combined expansion: The first one is
a strong coupling expansion around the limit β → 0 for the gauge action (cf. section 2.4). The
fermion determinant is expanded around the limit κ→ 0 with a hopping parameter expansion
(cf. section 2.5). These steps allow us to perform the gauge integration over the spatial links
analytically. The effective action Seff then solely depends on the temporal links:

Zeff =
∫

[dU4] e−Seff , −Seff = ln
∫

[dUi]
Nf∏
f=1

det(Qf [U ])e−SG[U ]. (2.27)

This permits to change the integration measure to Polyakov loops, which are traces over closed
loops of link variables in temporal direction:

∫
[dU4]→

∫
[dL], Lx = trWx = tr

Nτ−1∏
τ=0

U4(x, τ). (2.28)

As with the plaquette, the Polyakov loop as a closed loop is a gauge invariant observable. The
final stage of the derivation is to evaluate the sum over the temporal positions, which stems
from the determinant over the temporal space in detQf . This leads to a dimensional reduction,
so that the resulting theory is only three-dimensional and has a significantly reduced number of
degrees of freedom: N3

s complex numbers Lx, compared to 4N3
sNτ SU(3)-matrices Uµ(x) in

full Lattice QCD.

2.4. The strong coupling expansion

We will start our discussion with the expansion of the pure gauge action. As this thesis does
not aim to provide any further improvements on the results in this part of the action, we will
only briefly review them. For a more detailed presentation of the derivation the reader may
refer to [7, 8].

By making use of the character expansion, the effective action of pure Yang-Mills theory can
be written as

−SGeff = ln
∫

[dUi]
∏
p

1 +
∑
r 6=0

drar(β)χr(Up)

 . (2.29)

Here, the sum runs over all non-trivial irreducible representations r of SU(3) with dimension dr
and character χr. The ar are the corresponding expansion coefficients. The coefficient of the
trivial character has been factored out and neglected, as it only gives a constant contribution to
the action. Terms which do not wind through the temporal boundary of the lattice will become
independent of the temporal link variables after the spatial link integration. Therefore, such
terms also give constant contributions and cancel when calculating expectation values.
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2.5. The hopping parameter expansion

The leading-order contribution then comes from chains of plaquettes looping through the
temporal boundary, if plaquettes which do not contain any temporal links are neglected. The
group integration over the spatial links enforces all plaquettes of a graph to belong to the same
representation:

−SGeff,NN = ln
∏
〈xy〉

1 +
∑
r 6=0

[ar(β)]Nτχr(Wx)χr(W †y)

 . (2.30)

One is hence left with an interaction between nearest neighbour sites 〈xy〉 on the spatial
lattice in all representations, including the corresponding conjugate representations, if they are
inequivalent [9].

The leading-order contribution is given by the fundamental and anti-fundamental representa-
tions with the expansion parameter af = u and the effective coupling λ1 = uNτ +O(uNτ+4):

−SGeff,1 =
∑
〈xy〉

ln[1 + λ1(L∗xLy + LxL
∗
y)]. (2.31)

Higher-order contributions to the strong coupling series for λ1 stem from the inclusion of
additional spatial plaquettes and are collected in appendix A.1.

The next contribution comes from the term in eq. (2.30) where r is the adjoint representation,
starting at order u2Nτ :

−SGeff,a =
∑
〈xy〉

ln[1 + λa(χa(Wx)χa(Wy))]. (2.32)

The adjoint representation is its own conjugate and has the character χa(U) = trU trU † − 1
[9], which implies for our case χa(Wx) = |Lx|2 − 1.

Other higher-order terms are obtained from the interaction between Polyakov loops at
distances larger than one. As the planar graph with Polyakov loops at distance 2a is cancelled
by the contribution of the nearest-neighbour graph squared [8], the leading non-zero contribution
comes from L-shaped graphs with diagonal distance

√
2a, abbreviated by [xy]:

−SGeff,2 =
∑
[xy]

ln[1 + λ2(LxL
∗
y + L∗xLy)], (2.33)

where λ2 = u2Nτ+2 +O(u2Nτ+4). The strong coupling series expansions for λa and λ2 including
contributions of spatial detours can again be found in appendix A.1.

2.5. The hopping parameter expansion

We will now proceed with the hopping parameter expansion of the quark determinant in the
strong coupling limit β = 0. Section 2.6 will then discuss the corrections that arise to the
fermionic action when one moves away from this limit by including mixing terms.

From eq. (2.26) it is clear that the hopping matrix can be separated into temporal and spatial
parts:

H(x, y) = T+
x,y + T−x,y︸ ︷︷ ︸

=Tx,y

+
3∑
i=1

(S+
x,y,i + S−x,y,i)︸ ︷︷ ︸

=Sx,y,i

. (2.34)

13



2. An effective theory for (Lattice) QCD

The respective hopping terms are

T+
x,y = eaµ(1− γ4)U4(x)δx+4̂,y, (2.35)

T−x,y = e−aµ(1 + γ4)U †4(x− 4̂)δx,y+4̂, (2.36)
S+
x,y,i = (1− γi)Ui(x)δx+î,y, (2.37)

S−x,y,i = (1 + γi)U †i (x− î)δx,y+î. (2.38)

From now on, we will only consider degenerate quarks in Nf flavours. Therefore, we can drop
the index f , since in this case ∏Nf

i=1 detQf = detQNf . Splitting the hopping matrix as in
eq. (2.34) then permits to divide the fermion determinant into temporal and spatial hopping
terms:

det
c,d,s,t

QNf = det
c,d,s,t

(1− κT − κS)Nf = det
c,d,s,t

(
1− κS(1− κT )−1

)Nf det
c,d,s,t

(1− κT )Nf . (2.39)

Here, indices c, d, s and t have been introduced to indicate that the determinant is over colour,
Dirac, spatial and temporal space. In the limit of static – that is infinitely heavy – quarks,
only temporal hops will contribute. Hence, the second determinant in eq. (2.39) is called static
determinant, while the corrections arising from spatial hops are contained in the first, kinetic
determinant.

2.5.1. The static quark determinant

The Dirac deltas in the definition of T imply that only closed quark lines give a non-vanishing
contribution. In the static limit, the only possibility to form such a closed quark line is by
looping around the lattice through the temporal boundary. This is equivalent to a temporal
Wilson line or untraced Polyakov loop (cf. eq. (2.28)). It also shows that in the static limit,
which corresponds to κ→ 0, the system prefers a situation where the smallest possible power
of κ appears. Calculating the Dirac, spatial and temporal determinants, one ends up with [7]

det
c,d,s,t

(1− κT ) =
∏
x

det
c

[
1 + (2κeaµ)NτWx

]2
det
c

[
1+ (2κe−aµ)NτW †x

]2
. (2.40)

By defining the effective couplings for static quarks and antiquarks,

h1 = (2κeaµ)Nτ = exp[Nτ (aµ+ ln(2κ))], (2.41)
h̄1 = (2κe−aµ)Nτ = exp[Nτ (−aµ+ ln(2κ))], (2.42)

and using the relation (A.32) for the determinant involving an SU(3)-matrix, one arrives at the
final expression for the static quark determinant:

det
c,d,s,t

(1− κT ) =
∏
x

(1 + h1Lx + h2
1L
†
x + h3

1)2(1 + h̄1L
†
x + h̄2

1Lx + h̄3
1)2. (2.43)

The integration over the spatial links is trivial for the static determinant, as those have been
neglected.
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2.5. The hopping parameter expansion

2.5.2. The kinetic quark determinant: general approach

The static determinant corresponds to the leading term in the spatial hopping expansion of the
full fermion determinant. Continuing the calculation in eq. (2.39), employing the well-known
identity [4]

det eA = etrA, (2.44)
which holds for any complex square matrix A ∈ Cn×n, n ∈ N, and expanding the logarithm,
one obtains:

det
c,d,s,t

QNf = exp
[
−Nf

∞∑
k=1

κk

k
trc,d,s,t

((
S(1− κT )−1

)k)]
det
c,d,s,t

(1− κT )Nf . (2.45)

The static propagator

Before proceeding with the expansion of the kinetic quark determinant, the static propagator
(1− κT )−1 has to be computed. Since (1+ γµ)(1− γµ) = 0, graphs involving backtracking, i. e.
180° turns, give no contribution. Hence, hops in forward and backward time direction do not
mix:

(1− κTx,y)−1 = (1− κT+
x,y)−1 + (1− κT−x,y)−1 − 1. (2.46)

The static propagator describes quarks moving only in temporal direction; no spatial propagation
is involved. For this reason, one may fix x = y. The static propagator can furthermore be split
up in spin space according to

(1− κTx,y)−1 = A+
x,y + γ4B

+
x,y +A−x,y − γ4B

−
x,y. (2.47)

The respective terms read [10]:

A+
x,y = 1

2

[
1− h1Wx

1 + h1Wx

]
δx,y + 1

2h
τy−τx
Nτ

1
Wx(τx, τy)
1 + h1Wx

[Θ(τy − τx)− h1Θ(τx − τy)] δx,y,

B+
x,y = −1

2
h1Wx

1 + h1Wx
δx,y + 1

2h
τy−τx
Nτ

1
Wx(τx, τy)
1 + h1Wx

[Θ(τy − τx)− h1Θ(τx − τy)] δx,y,

A−x,y = 1
2

[
1− h̄1W

†
x

1 + h̄1W
†
x

]
δx,y + 1

2 h̄
τx−τy
Nτ

1
W †x(τx, τy)
1+ h̄1W

†
x

[
Θ(τx − τy)− h̄1Θ(τy − τx)

]
δx,y,

B−x,y = −1
2

h̄1W
†
x

1 + h̄1W
†
x
δx,y + 1

2 h̄
τx−τy
Nτ

1
W †x(τx, τy)
1 + h̄1W

†
x

[
Θ(τx − τy)− h̄1Θ(τy − τx)

]
δx,y. (2.48)

Here, Wx(τx, τy) denotes a temporal Wilson line going from τx to τy in positive temporal
direction (cf. fig. 2.3):

Wx(τx, τy) =


∏τy−1
τ=τx U4(x, τ), τx < τy∏Nτ−1
τ=τx U4(x, τ) ·∏τy−1

τ=0 U4(x, τ), τx > τy∏Nτ−1
τ=0 U4(x, τ) = Wx, τx = τy

. (2.49)

W †x(τx, τy) by contrast connects the time slices τx and τy in negative temporal direction:

W †x(τx, τy) =



(∏Nτ−1
τ=τy U4(x, τ) ·∏τx−1

τ=0 U4(x, τ)
)†
, τx < τy(∏τx−1

τ=τy U4(x, τ)
)†
, τx > τy(∏Nτ−1

τ=0 U4(x, τ)
)†

= W †x, τx = τy

. (2.50)

For the Heaviside step function, the convention Θ(0) = 0 is used.

15



2. An effective theory for (Lattice) QCD

0

τx

τy

Nτ − 1

Wx(τx, τy) W †x(τx, τy)

(a) τx < τy

0

τy

τx

Nτ − 1

Wx(τx, τy) W †x(τx, τy)

(b) τx > τy

Figure 2.3.: Illustration of the fractional Wilson lines eqs. (2.49) and (2.50) which appear in
the static propagator. Wx always describes propagation in positive time direction,
W †x in negative time direction. Earlier time slices can be reached by crossing the
antiperiodic boundaries of the lattice

The loop matrices

As already mentioned, only closed quark lines give a non-vanishing contribution to the fermion
determinant. Therefore, it is possible to write eq. (2.45) in terms of a product of smaller
determinants of loop matrices M̃Cs0

. Here, Cs0 describes a closed spatial path of length s0.
The loop matrices M̃Cs0

are given by the ordered product of the matrices S(1− κT )−1 along
that path [11]:

M̃Cs0
=

s0−1∏
i=0

xi∈Cs0

Sxi,x(i+1) mod s0
(1− κT )−1

x(i+1) mod s0
. (2.51)

In this expression, colour, Dirac and time indices have been suppressed to shorten the notation.
Likewise, the second spatial index on the static propagator has been omitted, because it is
diagonal in space. Graphically, a particular matrix element of M̃Cs0

with time indices τs and τe
corresponds to the sum over all possible ways to draw a quark world-line connecting (x0, τs)
and (x0, τe) by winding exactly once around the spatial loop Cs0 . This process is built up of
alternating spatial hops S and temporal (static) propagations (1− κT )−1.

As one such loop matrix M̃Cs0
already corresponds to s0 powers of S(1−κT )−1, one may set

k = s0n in eq. (2.45). An additional prefactor of s0 arises from the fact that tr
((
S(1− κT )−1)k)
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2.5. The hopping parameter expansion

contains tr
(
M̃n
Cs0

)
s0 times (once for each base point of the spatial loop):

det
c,d,s,t

QNf = exp

−Nf

∑
s0

∑
{Cs0}

∞∑
n=1

(κs0)n

n
trc,d,t

(
M̃n
Cs0

) det
c,d,s,t

(1− κT )Nf

= exp

Nf

∑
s0

∑
{Cs0}

trc,d,t
(
ln
(
1− κs0M̃Cs0

)) det
c,d,s,t

(1− κT )Nf

=

∏
s0

∏
{Cs0}

det
c,d,t

(
1− κs0M̃Cs0

)Nf det
c,d,s,t

(1− κT )Nf . (2.52)

With this so-called spatial loop expansion one has an expansion of the kinetic quark determ-
inant in terms of the interaction range. By restricting the product over s0 in eq. (2.52) to a
finite number of factors, one still gets the full interactions between the involved sites. This is in
contrast to a direct spatial hopping expansion in powers of κ as in [7], where each term contains
only an approximated version of different interactions which contribute up to the specified order.
Nevertheless, the derivation of the effective theory is equally complicated in both formalisms.

Expansion in terms of traces

To obtain explicit expressions for the different interaction terms, it is also in our approach
necessary to expand the corresponding determinants from eq. (2.52) in terms of traces. This is
due to the fact that the group integrals over the spatial links cannot be carried out if those
links are in the exponent. One possible method is to use again the relation (2.44) and carry
out a trace-log expansion:

det
c,d,t

(
1− κs0M̃Cs0

)Nf = exp
[
Nf trc,d,t

(
ln
(
1− κs0M̃Cs0

))]
= exp

[
−Nf

∞∑
k=1

(κs0)k

k
trc,d,t

(
M̃k
Cs0

)]

=
∞∏
k=1

exp
[
−Nf

(κs0)k

k
trc,d,t

(
M̃k
Cs0

)]

=
∞∏
k=1

∞∑
nk=0

Nnk
f

nk!

[
−(κs0)k

k
trc,d,t

(
M̃k
Cs0

)]nk
. (2.53)

From here, one has to figure out which combinations of k and nk contribute up to the desired
order in κ, calculate the corresponding prefactors and collect the terms by their power of κ.

An alternative approach may be pursued in order to obtain all the relevant trace terms and
their prefactors in a more systematic fashion. To that end, one can express the determinant on
the left-hand side of eq. (2.53) in terms of the characteristic polynomial of M̃Cs0

.

The characteristic polynomial of a square matrix A ∈ Cn×n, n ∈ N is defined as

χA(λ) = det(1λ−A) =
n∑
k=0

λkck(A). (2.54)

It is a polynomial in λ whose degree is given by the dimension of the matrix A. Its coefficients
ck(A) are all polynomial expressions in the entries of the matrix and can be obtained from the
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2. An effective theory for (Lattice) QCD

recursive LeVerrier-Fadeev algorithm. For this purpose, one starts with a matrix B0(A) = 0
and the constant cn(A) = 1 and then determines the remaining coefficients from the top down
[11]:

Bk(A) = ABk−1(A) + cn−k+1(A)1, cn−k(A) = −1
k

tr(ABk(A)), k = 1, . . . , n. (2.55)

Since the loop matrices M̃Cs0
are matrices in colour, Dirac and temporal space, their dimension

is dim
(
M̃Cs0

)
= NcNdNτ = 12Nτ , and the application of the method explained above yields

det
c,d,t

(
1− κs0M̃Cs0

)
= κ12s0Nτ det

c,d,t

(
1κ−s0 − M̃Cs0

)
= κ12s0NτχM̃Cs0

(
κ−s0

)
= κ12s0Nτ

12Nτ∑
k=0

κ−s0kck
(
M̃Cs0

)
=

12Nτ∑
k=0

κs0(12Nτ−k)ck
(
M̃Cs0

)

=
12Nτ∑
k=0

κs0kc12Nτ−k
(
M̃Cs0

)
. (2.56)

For multiple flavours, this whole expression has to be taken to the power of Nf , so that the
series terminates at O(κ12s0NτNf ) for the fermion interaction at distance s0. This is one of the
major advantages of writing the determinant in terms of the characteristic polynomial instead
of performing a trace-log expansion: It is apparent that the series only has a finite number of
terms. The flavour dependence, on the other hand, is more obvious in the form (2.53): Up to
O(κn) with n ≤ 12s0Nτ it can be included by multiplying each term by N#tr

f , where #tr is
the number of traces appearing in the corresponding term. From the perspective of eq. (2.56),
this follows from expanding the Nf -th power of the sum by using the multinomial theorem,
collecting the terms by their power of κ and plugging in the coefficients of the characteristic
polynomial.

The Dirac trace

By means of one of these expansions, the kinetic quark determinant for a specific interaction
range s0 can be expressed in terms of powers of traces over powers of the corresponding loop
matrix, i. e.

[
tr
(
M̃k
Cs0

)]nk . Here, the necessary values of k and nk are determined by the order
in κ sought. According to eq. (2.51), the ingredients for these expressions are the spatial hopping
matrices S from eqs. (2.37) and (2.38) and the static quark propagator from eq. (2.47). From
these relations, the Dirac structure of the terms is evident, so that the calculation of the Dirac
trace becomes an easy task. Alternatively, by implementing the basic relations obeyed by the
Dirac matrices, the computation can be automated. This has been realised with Mathematica
in the context of the thesis at hand. The result then consists of traces over colour and temporal
space of products of spatial links Ui and As and Bs from eq. (2.48).

Integration over spatial links

The next step of the programme outlined in section 2.3 is the integration over the spatial links.
The procedure from the previous steps leaves integrals over products of entries UIJ of group
elements U in the fundamental representation,∫

SU(Nc)
dU

a∏
α=1

UIα,Jα

b∏
β=1

U †Kβ ,Lβ , (2.57)

18



2.5. The hopping parameter expansion

as the most general form of gauge integrals which have to be evaluated. This type of integral
is non-zero if and only if a = b mod Nc [12]. As the spatial links Ui(x, x4) appearing in our
equations are in general situated at different spatial and temporal positions (x, x4) and point
into different directions i, this gives a strong constraint on their allowed combinations.

The geometry of the terms is determined by the spatial positions x and directions i of these
links. Therefore, it is natural to sort the terms by these two indices and aim to fulfil the
restriction imposed by the gauge integration with the temporal indices. To do so, one splits
the temporal sums into all combinations of mutually equal temporal coordinates which yield a
non-vanishing contribution after gauge integration. Physically, this can be interpreted as quarks
hopping to and fro the different (spatial) lattice sites involved. Because the Haar measure
projects out the contribution of the integrand to the trivial representation of the group [4], only
colour-neutral combinations are permitted for these particle configurations, i. e. mesons and
baryons.

The general procedure for computing the integrals eq. (2.57), as well as the results for
the gauge group SU(3) and a, b ≤ 3, can be found in appendix A.2. Qualitatively, mesonic
contributions yield Kronecker δs, which will give traces of A and B after contraction of the
colour indices, whereas baryonic contributions yield Levi-Civita εs, which will give determinants
of A and B. Hence, after the gauge integration, the kinetic determinant can be expressed in
terms of traces and determinants of A and B.

For the calculation of the effective action, all the resulting expressions have to be summed
over the spatial position x (in eq. (2.52), this is contained in the product over all spatial loops,∏
{Cs0}

). This induces some further simplifications: All terms that transform into each other
under the interchange of two lattice sites, for example x↔ x + î, give the same result.

Evaluation of the temporal sums

The final step of the derivation is to evaluate the sum over the temporal positions explicitly.
This leaves a sum only over the spatial positions, making the action three-dimensional. Equa-
tion (2.48) reveals that A and B have a part which is diagonal in temporal space as well as an
off-diagonal part. While the diagonal part is independent of the temporal coordinate, there
is such a dependence for the off-diagonal part, that additionally differs depending on which
of the two temporal indices is the greater one. Consequently, one has to split the sum into
all possible arrangements of the temporal coordinates. For the O(κ4)-correction, for example,
the spatial link integration leaves maximally two unequal temporal coordinates, so that the
sum has to be split according to ∑τ1 6=τ2 = ∑

τ1<τ2 +∑τ1>τ2 . It turns out that the outcome of
the summation only depends on the number of descents in the permutation (τ1, τ2, . . . , τk, τ1),
not on the precise arrangement (cf. section 4.4). For the example above this means that the
result will be the same for both cases, since there is always exactly one descent. Therefore, the
splitting of the temporal sums induces no further multiplication of terms here.

From this point, one has to plug in the corresponding parts of A and B from eq. (2.48),
expand the occurring powers and figure out the products of the fractional Wilson lines. In the
end, only whole Wilson lines will be left, ensuring gauge invariance. The remaining degrees of
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2. An effective theory for (Lattice) QCD

freedom are then trace over Wilson line constructs of the form

Wn1m1n2m2(x) = trc
(

(h1Wx)m1

(1 + h1Wx)n1

(h̄1W
†
x)m2

(1 + h̄1W
†
x)n2

)
, (2.58)

W±n1m1n2m2(x) = Wn1m100(x)±W00n2m2(x), (2.59)

where the shortened notation from [13] has been introduced.

2.5.3. The kinetic quark determinant: results for the leading and next-to-leading
order

Now that the general strategy for the derivation of the kinetic quark determinant is known, it
can be applied to obtain concrete results for the leading and next-to-leading order. To O(κ2),
the only contribution comes from s0 = 2, which corresponds to a two-point (nearest-neighbour)
interaction. To O(κ4), also s0 = 4 has to be included, which describes three- and four-point
interactions. Moreover, two separate spatial loops M̃C2 can be considered, yielding additional,
disconnected three- and four-point interactions, depending on whether the loops share one
spatial point or none at all. The expansion in terms of traces (cf. eqs. (2.53) and (2.56)) gives:

det
c,d,t

(
1− κ2M̃C2

)Nf = 1−Nfκ
2 trc,d,t

(
M̃C2

)
+ κ4

2
(
N2
f tr2

c,d,t

(
M̃C2

)
−Nf trc,d,t

(
M̃2
C2

))
+O(κ6), (2.60)

det
c,d,t

(
1− κ4M̃C4

)Nf = 1−Nfκ
4 trc,d,t

(
M̃C4

)
+O(κ8). (2.61)

As the relevant features of the general procedure have been explained in section 2.5.2 and
the corrections up to O(κ4) are already known from the literature [7, 10], no more detailed
calculations will be shown here. Instead, the final results for all possible geometries are collected
in appendix A.4.

2.6. Gauge corrections

So far, the strong coupling and hopping parameter expansions have been discussed in isolation.
Moving away from the strong coupling limit, however, also introduces mixing terms. These are
diagrams which contain gauge plaquettes as well as quark lines. Many of these new contributions
reduce to graphs already present in the strong coupling limit after the spatial link integration.
They can thus be absorbed into the respective coupling constants, which then also become
power series in u. Such corrections have been calculated in [7], and since the present work
does not expand on these results, they are only reported in appendix A.1. An entirely new
contribution arises from the term tr

(
M̃C4

)
when the spatial loop C4 forms a square [7]. This

graph has only singly occupied spatial links and therefore vanishes in the strong coupling limit
as a result of the gauge integration. For finite values of β, by contrast, it becomes non-zero if
one inserts a gauge plaquette inside the square. The result for this term is presented alongside
the rest of the fermionic O(κ4)-action in appendix A.4.
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2.7. Resummation of the effective action

The fermion action we started with in eq. (2.45) was written in the exponential. The expansion
of this exponential became necessary in order to be able to carry out the group integrals over
the spatial links. For numerical as well as analytical studies of the effective theory, however, it
is much more convenient to work with an action in the exponential. To this end, the effective
fermion action derived so far needs to be resummed.

Taking a closer look at the O(κ2)-term in eq. (A.33), one indeed finds suitable terms of O(κ4)
which enable a resummation:

1− 2Nf
κ2Nτ

Nc

∑
x,i
W−1111(x)W−1111(x + î)

+ 2N2
f

κ4N2
τ

N2
c

∑
x,y,i,j

W−1111(x)W−1111(x + î)W−1111(y)W−1111(y + ĵ) +O(κ6)

= exp

−2Nf
κ2Nτ

Nc

∑
x,i
W−1111(x)W−1111(x + î) +O(κ6)

 . (2.62)

This opportunity is due to the fact that above O(κ4)-terms are disconnected in the sense
that the two loops share no spatial links, and the gauge integrals factorise. Therefore, up
to O(κ4), all the results of eqs. (2.60) and (2.61) can be written in the exponential, if the
term 2N2

f
κ4N2

τ/N2
c

∑
x,y,i,jW

−
1111(x)W−1111(x + î)W−1111(y)W−1111(y + ĵ) is left out. Similar to the

approach in appendix A.4, this can be separated into its contributions to the different interaction
ranges. For the three- and four-point interactions, eq. (A.38) and its counterpart will not be
present any more after the resummation. For the two-point interaction, the situation is a little
bit more complicated: The term from the exponential is ∝ N2

τ , whereas the corresponding term
in the unresummed O(κ4)-action is ∝ Nτ (Nτ − 1) (cf. eq. (A.35)). Consequently, a counterterm
has to be introduced in the exponential:

1− 2Nf
κ2Nτ

Nc

∑
x,i
W−1111(x)W−1111(x + î)

+ 2N2
f

κ4N2
τ

N2
c

∑
x,y,i,j

W−1111(x)W−1111(x + î)W−1111(y)W−1111(y + ĵ)

− 2N2
f

κ4Nτ

N2
c

∑
x,i

(
W−1111(x)

)2 (
W−1111(x + î)

)2
+O(κ6)

= exp

−2Nf
κ2Nτ

Nc

∑
x,i
W−1111(x)W−1111(x + î)

−2N2
f

κ4Nτ

N2
c

∑
x,i

(
W−1111(x)

)2 (
W−1111(x + î)

)2
+O(κ6)


(2.63)

This resummation also improves the convergence of the effective theory, since it includes an
infinite number of higher-order graphs [7]. Another resummation scheme, which is particular to
the nearest-neighbour interaction, will be discussed in section 4.4.
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2. An effective theory for (Lattice) QCD

2.8. Transformation to Polyakov loops

With the methods explained so far it is possible to derive the kinetic quark determinant in
terms of trace over Wilson line constructs Wn1m1n2m2 . For further studying the effective theory,
however, it is highly advantageous to express these quantities also in terms of Polyakov loops
eq. (2.28), as it has already been shown for the effective gauge action (cf. eqs. (2.31) to (2.33))
and the static quark determinant eq. (2.43).

The first step in doing so is to bring the denominators inside the trace in eq. (2.58) to the
numerator. For this purpose, observe that for a square matrix A ∈ Cn×n, n ∈ N, it follows
from the Cayley-Hamilton theorem [14] that

χA(A) =
n∑
k=0

ck(A)Ak = c0(A)1 +
n∑
k=1

ck(A)Ak = c0(A)1 +ABn(A) = 0 (2.64)

⇒ ABn(A) = −c0(A)1 = (−1)n−1 det(A)1, (2.65)

where Bn(A) = ∑n
k=1 ck(A)Ak−1 is the n-th auxiliary matrix from the LeVerrier-Fadeev

algorithm (cf. eq. (2.55)). With the definition of the adjugate matrix [14],

A adj(A) = det(A)1 = adj(A)A, (2.66)

this implies that

adj(A) = (−1)n−1Bn(A) = (−1)n−1
n∑
k=1

ck(A)Ak−1. (2.67)

Therefore, the inverses appearing in eq. (2.58) can be written as

(1 + h1W )−1 = 1
detc(1+ h1W ) adj(1+ h1W )

= 1
detc(1+ h1W )(−1)Nc−1

Nc−1∑
i=0

ci+1(1 + h1W ) · (1 + h1W )i

= 1
detc(1+ h1W )(−1)Nc−1

Nc−1∑
i=0

ci+1(1 + h1W )
i∑

k=0

(
i

k

)
(h1W )k

= 1
detc(1+ h1W )(−1)Nc−1

Nc−1∑
k=0

(
Nc−1∑
i=k

ci+1(1 + h1W )
(
i

k

))
(h1W )k. (2.68)

Now, the coefficients of the characteristic polynomial of 1+ h1W must be transformed to the
ones of the characteristic polynomial of W . The two polynomials are related by

χ1+h1W (λ) =
Nc∑
i=0

ci(1 + h1W )λi = det
c

(λ1− 1− h1W ) = det
c

((λ− 1)1− h1W )

= hNc1 det
c

(
λ− 1
h1

1−W
)

= hNc1 χW

(
λ− 1
h1

)
= hNc1

Nc∑
i=0

ci(W )h−i1 (λ− 1)i

=
Nc∑
i=0

ci(W )hNc−i1

i∑
k=0

(
i

k

)
(−1)i−kλk =

Nc∑
k=0

Nc∑
i=k

(
i

k

)
(−1)i−khNc−i1 ci(W )λk. (2.69)
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The relation between the corresponding coefficients is hence

ck(1 + h1W ) =
Nc∑
i=k

(
i

k

)
(−1)i−khNc−i1 ci(W ). (2.70)

Plugging this into eq. (2.68) and switching sums once again yields

(1 + h1W )−1 = 1
· · ·

(−1)Nc−1
Nc−1∑
k=0

Nc−1∑
i=k

(
i

k

)
Nc∑

j=i+1

(
j

i+ 1

)
(−1)j−i−1hNc−j1 cj(W )

 (h1W )k

= 1
· · ·

(−1)Nc−1
Nc−1∑
k=0

 Nc∑
j=k+1

j−1∑
i=k

(−1)j−i−1
(
i

k

)(
j

i+ 1

)hNc−j1 cj(W )

 (h1W )k

= 1
detc(1 + h1W )(−1)Nc−1

Nc−1∑
k=0

 Nc∑
j=k+1

(−1)1+j−khNc−j1 cj(W )

 (h1W )k.

(2.71)

Specifically for Nc = 3, the determinant is given by eq. (A.32) and the coefficients of the
characteristic polynomial by eqs. (A.25) and (A.27). The final result for the inverse sought-after
is thus

(1 + h1W )−1 = 1
1 + h1L+ h2

1L
† + h3

1
(1 + h1L− h1W + h2

1W
†), (2.72)

where L = trcW . By renaming h1 → h̄1 and W →W †, it follows analogously that

(1 + h̄1W
†)−1 = 1

1 + h̄1L† + h̄2
1L+ h̄3

1
(1 + h̄1L

† − h̄1W
† + h̄2

1W ). (2.73)

With these relations at hand, the trace over Wilson line constructs eq. (2.58) can be written
as

Wn1m1n2m2 = 1
(1 + h1L+ h2

1L
† + h3

1)n1(1 + h̄1L† + h̄2
1L+ h̄3

1)n2

trc
[
(h1W )m1(1 + h1L− h1W + h2

1W
†)n1(h̄1W

†)m2

(1 + h̄1L
† − h̄1W

† + h̄2
1W )n2

] (2.74)

In this expression, no more inverses occur in the trace. Therefore, the Cayley-Hamilton theorem
eq. (2.64) can be applied to reduce higher powers of W and W † to lower ones. To this end,
one plugs eq. (A.28) for W 2, eq. (A.29) for (W †)2 and WW † = 1 recursively into eq. (2.74)
until only solitary first powers of W and W † remain. Due to the trace in front of the whole
numerator, the final outcome then only depends on the Polyakov loop L and its complex
conjugate L†. This procedure has been automated with Mathematica in the context of the
thesis at hand. In that way, the Wn1m1n2m2s can be expressed in terms of Polyakov loops for
arbitrary values of n1, m1, n2 and m2 without any further effort, and also the last ingredient of
the effective action has been transformed to Polyakov loops.

This completes our discussion of the effective theory in general, and equips us with all the
tools and results required to implement it in a numerical simulation up to O(κ4).
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3. Numerical results

In this chapter, we will present the results obtained from a numerical Monte Carlo simulation
of the effective theory which we constructed in chapter 2. Additionally, a further approximation
of the theory in the limit of large Nτ and its range of validity in the case of finite-temperature
studies will be discussed.

3.1. The integration measure

In section 2.8 it was shown how the degrees of freedom of the effective action can be transformed
to Polyakov loops. For this reason, it is possible to change also the integration measure from
temporal links to Polyakov loops, cf. eq. (2.28). This has the great advantage that one does
not need to sample SU(3)-matrices U4, but only complex numbers L. The transformation
introduces a Jacobian which can be written in the form of an effective potential:

Zeff =
∫

[dU4] e−Seff =
∫

[dL] e−SeffeV . (3.1)

For the gauge group SU(3), this potential is given by [7]

V =
∑

x
Vx = 1

2
∑

x
ln
(
27− 18|Lx|2 + 8 Re(L3

x)− |Lx|4
)
. (3.2)

The potential restricts the Polyakov loops to the domain allowed for traces of SU(3)-matrices
as shown in fig. 3.1.

In order to sample this region correctly in the framework of a numerical simulation, it is
convenient to adopt the gauge – frequently referred to as Polyakov gauge – where the temporal
links U4(x, τ) are independent of τ and diagonal [15]:

U4(x, τ) = diag
(
eiθ1(x)/Nτ , eiθ2(x)/Nτ , eiθ3(x)/Nτ

)
. (3.3)

Here, the angles obey the SU(3) constraint θ1(x) + θ2(x) + θ3(x) = 0 and are limited to the
interval [−π, π] [16]. In this gauge, the Polyakov loop takes the form

Lx = eiθ1(x) + eiθ2(x) + e−i(θ1(x)+θ2(x)). (3.4)

It turns out that changing the integration measure to the angles θ1,2 introduces another Jacobian
which is identical to the one in eq. (3.1) [7], so that

Zeff =
∫

[dU4] e−Seff =
∫

[dL] e−SeffeV =
∫

[dθ1][dθ2] e−Seffe2V . (3.5)

The effective theory can therefore be formulated completely in terms of 2N3
s real degrees of

freedom given by the angles θ1,2(x). These are the variables that need to be sampled in the
numerical simulation.
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Figure 3.1.: The Polyakov loop potential for SU(3) Vx induced by the change of the integration
measure (cf. eq. (3.2))

3.2. The Monte Carlo method and the Metropolis algorithm

The expectation value of an observable in the effective theory is formally given by the path
integral

〈O〉 = 1
Zeff

∫
[dθ1][dθ2] e−Seff [θ]e2V [θ]O[θ], (3.6)

with Zeff as in eq. (3.5). Even for a moderately large lattice with Ns = 16, this is a 8192-
dimensional integral. The only way to evaluate such an expression is by Monte Carlo integration.
Here, one replaces the integral by an average of the observable evaluated on N sample configur-
ations [4],

〈O〉 ≈ Ô = 1
N

N∑
n=1

O[θn], (3.7)

which is an estimator for the true mean value. Already for more than three dimensions, this
method becomes more efficient than the usual numerical quadrature algorithms.

However, one does not need to generate the configurations [θn] completely randomly. For
large lattice volumes the integrand of the path integral in eq. (3.6) is sharply peaked at some
specific configurations, namely the ones which minimise the action [3]. Due to this, importance
sampling may be applied: The huge sum in eq. (3.7) is reduced to a comparatively small sum
over a subset of configurations sampled according to the probability distribution

dP [θ] = 1
Zeff

e−Seff [θ]e2V [θ][dθ1][dθ2]. (3.8)

In this way it is ensured that no computation time is wasted on configurations which have only
a negligible contribution.

The remaining problem consists of finding configurations [θn] which follow this probability
distribution. The idea is to start from some arbitrary configuration and then to construct a
stochastic sequence of configurations that eventually follows the desired equilibrium distribution
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3. Numerical results

[4]. This is done with a Markov process, where the transition [θ]→ [θ′] happens with a given
transition probability T ([θ′] ← [θ]). It has to fulfil certain normalisation conditions, global
balance and strong ergodicity. The latter means that every configuration can be reached with
a finite probability from every other one, T ([θ′] ← [θ]) > 0. Global balance implies that the
equilibrium distribution is a fixed point of the Markov process [4].

A common choice for the transition probability is the Metropolis algorithm, which actually
not only fulfils global balance, but also detailed balance [4]. It consists of the following two
steps:

1. Choose a candidate configuration [θ′] according to some a priori selection probability
T0([θ′]← [θ]).

2. Accept the candidate configuration [θ′] as the next configuration with the acceptance
probability

TA([θ′]← [θ]) = min
(

1, T0([θ]← [θ′])P [θ′]
T0([θ′]← [θ])P [θ]

)
. (3.9)

If a suggested update is rejected, the unchanged configuration [θ] is used again in the
Markov chain.

For the purpose of simulating the effective theory, only local changes are considered. In other
words, the variables θ1,2(x) are not modified at all lattice sites at once, but only at one (randomly
selected) site x0. Ergodicity is then reached by performing (at least) N3

s of such local updates,
which is referred to as a sweep.

The candidate configuration is chosen as

θ′1,2(x0) = θ1,2(x0) + εr1,2, (3.10)

where r1,2 are two random numbers with r1,2 ∈ [−π, π) and ε < 1 is a constant called stepsize.
Since the Polyakov loop is periodic in θ1,2 with period 2π (cf. eq. (3.4)), one does not need to
take care of the angles leaving the interval [−π, π). If the random numbers r1,2 are generated
uniformly in this interval, eq. (3.10) obviously describes a symmetric selection probability in
the sense that T0([θ′]← [θ]) = T0([θ]← [θ′]). In this case the acceptance probability eq. (3.9)
simplifies to

TA([θ′]← [θ]) = min
(

1, P [θ′]
P [θ]

)
= min

(
1, e−∆S

)
, (3.11)

where ∆S = (Seff [θ′]− 2V [θ′])− (Seff [θ]− 2V [θ]).

The stepsize is determined by fine-tuning the acceptance rate Racc: If the stepsize is too large,
the acceptance rate will be very low, which causes the Markov chain to frequently be stuck at
a single configuration, thus wasting computation time. On the other hand, if the stepsize is
too small and the acceptance rate very high, successive configurations are closely correlated.
For the effective theory and the relevant lattice sizes, the optimal acceptance rate is located
close to but above 50 %1. In order to find the corresponding stepsize, one starts with an initial
guess ε0. The resulting acceptance rate is measured in the course of 10 sweeps. Afterwards, the
stepsize is appropriately adapted. This procedure is repeated until the acceptance rate lies in a
tolerable interval, which is chosen to be (48 %, 60 %). The formula employed for calculating the
adapted stepsize is a double-step function,

ε′ = 1
2[ε erf(6(Racc − 0.25)) + (1− ε) erf(6(Racc − 0.75)) + 1]. (3.12)

1[4] and Jangho Kim, private communication, 2020.
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Figure 3.2.: The adaptive stepsize function eq. (3.12) for an old stepsize of ε = 0.2. The orange
area indicates the tolerable interval for the acceptance rate

Figure 3.2 shows a plot of this function for ε = 0.2, which turned out to be a good initial
guess. The value of ε′ is restricted to the interval (0, 1). If Racc is close to 50 %, the function
is relatively flat around ε′ ∼ 0.2, allowing for fine-tuning. Farther away from the desired
50 %-level, the function becomes steeper, so that ε is changed substantially within one step.

3.3. Implementation of the effective action and parallelisation

For the purpose of the C++ Monte Carlo simulation code, the effective action has been imple-
mented including the λ1, λa and λ2 gauge terms from eqs. (2.31) to (2.33), the static quark
determinant eq. (2.43) and the kinetic quark determinant up to O(κ4) (cf. appendix A.4) with
the modifications due to the resummation, as detailed in section 2.7. For the effective couplings,
the expressions in appendix A.1 have been used.

The change of the action ∆S in eq. (3.11) can be computed from the field values in the local
neighbourhood alone, because only local updates are considered. In other words, the sum over
the whole lattice ∑x does not have to be evaluated for each update, but only such terms need
to be considered which change if the values of θ1,2 are altered at one site x0. This implies a
great saving in terms of computation time.

In the following, we will go through all parts of the implemented action and explain which
terms need to be included for the computation of ∆S. The effective potential eq. (3.2) and the
static quark determinant eq. (2.43) are local quantities, so that only the term x = x0 needs to
be considered. For the two-point interactions (eqs. (2.31) and (2.32) for the gauge part and
eqs. (A.33) to (A.35) for the fermionic part), the spatial sum can also be restricted to x = x0,
if in turn the sum over the directions i is extended to include negative directions on the spatial
lattice as well, that is i = ±(1, 2, 3). The linear three-point interaction eq. (A.36) likewise has
only one direction i of the hops, which needs to be extended to include negative directions.
However, this still only accounts for those graphs which have their left or right end point at x0.
Those graphs which are centred at x0 need to be summed up separately, but here using positive
directions i only. For the corner-like three-point interaction eq. (A.37), basically the same
problem occurs, but with the additional complication that here two spatial directions i and j
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core 0 core 1

core 2 core 3

Figure 3.3.: Sub-lattices and associated CPU cores in two dimensions with Ns = 8. The sites
which are updated simultaneously for one possible update are marked in red

need to be summed over. Both have to be extended to include negative directions, with the
cases where i and j point in the same (or opposite) direction omitted. For the terms centred at
x0, an additional prefactor of 1/2 becomes necessary because aforementioned sum double-counts
the graphs with i and j interchanged. For the square-like four-point interaction eq. (A.39),
the summation over i and j has to be done in the same way as for the corner-like graphs.
Here, this suffices to be able to constrain the spatial sum to x = x0; no extra terms as for the
three-point interactions arise. In the gauge interaction at distance

√
2a (cf. eq. (2.33)), only

the end points of the diagonals are relevant, which is in contrast to the fermionic corner-like
graphs. After rewriting ∑[xy] = ∑

x,i<j , one arrives at a spatial sum which one wants to restrict
to x = x0. For this purpose, in the summation over the two directions i and j (which is, in
the first instance, treated as above) terms with i and j interchanged are indistinguishable and
hence only to be counted once.

Apart from saving a large amount of computational cost for the updates, the fact that the
variables θ1,2 are only changed locally allows a parallelisation of the simulation algorithm. To
that end, the ‘global’ lattice is divided into several equally large ‘local’ sub-lattices. The spatial
extent of these sub-lattices does not need to be the same for all directions, but it has to be equal
to or greater 4 for all of them. Each CPU core then performs the calculations on one sub-lattice.
A two-dimensional example of this is shown in fig. 3.3. For each update, one site of the local
lattices is selected at random, and updated according to eqs. (3.10) and (3.11) on every core.
The corresponding sites of the global lattice for a possible update of this kind are highlighted
in red in fig. 3.3. Since two sites of the global lattice which are updated simultaneously are
separated by a distance of (at least) four lattice units, but the maximal interaction distance in
the implemented action is two lattice units, the local updates on the sub-lattices are independent
of each other. This means that they can be carried out in parallel. As part of the thesis at
hand, such a parallel version of the Metropolis algorithm for the effective theory has been
implemented using MPI.
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3.4. The Polyakov loop as an observable for the deconfinement
transition

The simplest observable in the effective theory is the expectation value of the Polyakov loop.
We will discuss its significance in the context of Lattice QCD first in the case of pure gauge
theory and then address the modifications due to fermions.

For pure gauge theory, the expectation value of the Polyakov loop can be interpreted as the
probability to observe a single static colour charge, as it is related to the free energy Fq of such
a charge [4]:

|〈L〉| ∝ e−Fq/T . (3.13)

In the absence of dynamical quarks, a single colour charge cannot be screened in the confined
phase. Therefore, Fq → ∞ and the expectation value of the Polyakov loop is zero. In the
deconfined phase, Fq is finite and 〈L〉 6= 0.

Another interpretation of the deconfinement transition is in terms of the centre symmetry of
the gluonic action eq. (2.19). A centre transformation consists of multiplying all temporal links
in a given time slice τ0 with the same element z of the centre group Z3 of the gauge group
SU(3) [4]:

U4(x, τ0)→ zU4(x, τ0). (3.14)

The reason for this symmetry is that the gauge action eq. (2.19) is constructed from loops
which are closed in a topologically trivial way. This means that they cross the τ0-plane the
same number of times in the positive as in the negative direction. Because the elements of Z3
commute with every U ∈ SU(3), such loops are left invariant under the transformation (3.14).
The Polyakov loop, however, is not closed in a topologically trivial way, but winds around the
torus in the time direction, and hence transforms as L→ zL [4]. Since the action is symmetric
under centre transformations and the Polyakov loop is not, its expectation value has to vanish
in the restored phase. Comparing to the discussion below eq. (3.13), this corresponds to the
confined phase. In the deconfined phase, the Polyakov loop acquires a finite expectation value,
which breaks the centre symmetry spontaneously. To sum up, 〈L〉 is an order parameter for
the deconfinement transition in pure gauge theory.

In a finite volume the symmetry cannot be broken in a strict sense [4], which is why there is
no true phase transition. The results for the Polyakov loop will populate the different centre
sectors with equivalent probability in the broken phase, so that 〈L〉 always vanishes. Instead
of |〈L〉| as in eq. (3.13) one therefore analyses 〈|L|〉, as both agree in the infinite volume limit
[4]. This still leaves two different observables to consider, depending on whether one takes the
absolute value before or after summing over the lattice:

Q1 = 1
N3
s

∣∣∣∣∣∑x Lx

∣∣∣∣∣ , Q2 = 1
N3
s

∑
x
|Lx|. (3.15)

For the purpose of identifying the transition point, it is convenient to study higher moments of
these observables. One defines the susceptibility χO, which corresponds to the variance of the
distribution,

χO = N3
s µ2,O = N3

s 〈(O − 〈O〉)2〉 = N3
s (〈O2〉 − 〈O〉2), (3.16)

the skewness µ3,O, which corresponds to the third moment of the distribution,

µ3,O = 〈(O − 〈O〉)3〉 = 〈O3〉 − 3〈O2〉〈O〉+ 2〈O〉3, (3.17)
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(a) The (T,m)-plane for the Nf = 2 sub-manifold (upper
axis of fig. 3.4b) [4]

(b) The Columbia plot: type of the transition
for two degenerate flavours (mass mu,d)
and another third flavour (ms) [17]

Figure 3.4.: The phase structure of Lattice QCD at zero chemical potential

and the kurtosis B4,O, which corresponds to the fourth standardised moment of the distribution,

B4,O = µ4,O
µ2

2,O
= 〈(O − 〈O〉)4〉
〈(O − 〈O〉)2〉2

= 〈O
4〉 − 4〈O3〉〈O〉+ 6〈O2〉〈O〉2 − 3〈O〉4

(〈O2〉 − 〈O〉2)2 . (3.18)

Here, we follow the nomenclature of [4] for the susceptibility and of [17] for the remaining
moments.

So far, we were only concerned with pure gauge theory. Including dynamical fermions breaks
the centre symmetry explicitly. This is due to the hopping terms ∝ κ in eq. (2.21), which contain
all possible loops on the spatial lattice, including the ones which are closed in a topologically
non-trivial way. Indeed, already the static determinant eq. (2.43) is formulated in terms of
Polyakov loops, which are not invariant under centre transformations, as discussed above.
The intuitive picture is that the dynamically generated quarks (vacuum loops) can screen the
external colour charge, and the free energy Fq from eq. (3.13) is always finite [3]. This implies
that 〈L〉 is not a true order parameter any more, as it is never exactly zero. Nevertheless, if
the ‘symmetry breaking field’ κ is sufficiently small, the expectation value of the Polyakov loop
shows a rapid change around the deconfinement transition. Under these circumstances, it may
still be used to locate the transition point.

Accordingly, the first-order phase transition in Lattice QCD for κ = 0 weakens when
decreasing the quark mass towards finite values. Eventually, the latent heat vanishes, and
the first-order transition line ends with a critical end point, where the phase transition is
of second order. For still lighter quarks, the transition is a crossover: The confinement and
deconfinement domains are analytically connected [4]. In fig. 3.4a, this situation is illustrated
in the (T,m)-plane for two degenerate quark flavours. When adding another flavour with a
potentially different mass, the picture changes as shown in fig. 3.4b. This so-called Columbia
plot visualises the type of the transition which the system undergoes for each point in the
(mu,d,ms)-space. The order of the transition in the two-flavour massless limit is still unclear.
Therefore, the structure on the left part of the plot remains ambiguous and is blurred out [17].
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3.5. Data analysis

After running the Monte Carlo simulation and measuring the observables, the next task is
to analyse the obtained data. Because successive configurations are the result of a stochastic
sequence, the Markov chain, there is a high chance that the observables have lots of similarities.
To make a quantitative statement about this, one defines the autocorrelation function

CO(On, On+t) = 〈(On − 〈On〉)(On+t − 〈On+t〉)〉 = 〈OnOn+t〉 − 〈On〉〈On+t〉. (3.19)

Here, n numbers the so-called computer time, which labels the consecutive configurations. For a
Markov chain in equilibrium, which is reached for n→∞, the autocorrelation function depends
only on the computer time separation t [4]:

CO(t) = CO(On, On+t). (3.20)

The normalised autocorrelation function is then defined as

ΓO(t) = CO(t)
CO(0) . (3.21)

For correlated random variables On the variance of the estimator of the mean value eq. (3.7)
is [4]

σ2
Ô

=
〈

(Ô − 〈O〉)2
〉

=
〈(

1
N

N∑
n=1

(On − 〈O〉)
)2〉

= 1
N2

〈
N∑

n,m=1
(On − 〈O〉)(Om − 〈O〉)

〉

= 1
N2

N∑
n,m=1

CO(|n−m|) = 1
N2

N∑
t=−N

(N − |t|)CO(|t|) = CO(0)
N

N∑
t=−N

ΓO(|t|)
(

1− |t|
N

)

≈ σ2
O

N
2
(

1
2 +

N∑
t=1

ΓO(t)
)

= σ2
O

N
2τO,int(N), (3.22)

where the integrated autocorrelation time

τO,int(N) = 1
2 +

N∑
t=1

ΓO(t) = 1
2

N∑
t=−N

ΓO(|t|) (3.23)

has been introduced. From the second to the last line in eq. (3.22), the factor 1− |t|/N has been
neglected. This is justified for N →∞, as ΓO(t) is exponentially suppressed for large t [4]. For
the practical determination of the autocorrelation time this implies that one may truncate the
sum in eq. (3.23) at relatively small values of t. Comparing the results for different truncations
then allows an accurate measurement of the autocorrelation time.

In figs. 3.5 and 3.6 two examples of this method are shown2, one close to and one far away
from the phase transition. In both cases, the integrated autocorrelation time plateaus at some
value of tmax. Afterwards, the estimate for Γ(t) becomes unreliable, and τint starts to fluctuate.
One therefore usually regards the first plateau in these plots as the best estimate for the
integrated autocorrelation time.

2For the calculation of the integrated autocorrelation time, the ‘Monte Carlo C++ analysis tools’ developed by
Dr. Alessandro Sciarra were used.
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Figure 3.5.: Integrated autocorrelation time eq. (3.23) for the observable Q2 (cf. eq. (3.15))
measured every 150 sweeps close to the phase transition

When comparing the two results, it stands out that τint is more than ten times larger
for the simulation close to the phase transition than for the remote one, 2τint ≈ 1600 in
contrast to 2τint ≈ 120, respectively. This is a well-known feature of Lattice Quantum Field
Theories in general, which is referred to as critical slowing down. One expects that the
integrated autocorrelation time obeys the dynamical scaling law τO,int ∝ (ξO)z(O), where ξO is
the correlation length for the observable O and z(O) > 0 the dynamical critical exponent [3].
In the vicinity of critical points, which is where the parameters chosen in fig. 3.5 are located,
the correlation length diverges. On finite size lattices, however, one has ξ ≤ Ns and thus
τO,int ∝ N z(O)

s [4]. This shows that measurements are much more correlated when simulating
close to phase transitions, especially second-order ones.

A comparison of eq. (3.22) with the result for uncorrelated observables, σ2
Ô

= 1/Nσ2
O [4], reveals

the significance of the integrated autocorrelation time: The effective number of independent
measurements is N/2τO,int. If the numerical measurement of O takes a substantial amount of
CPU time, it is hence better to skip about 2τO,int configurations between the measurements.
For most of the simulations performed in the context of the thesis at hand, 150 sweeps over the
lattice volume were carried out between successive measurements. As one can see from figs. 3.5
and 3.6, a considerable amount of autocorrelation remains nevertheless.

To handle varying and unpredictable autocorrelation times, the technique of binning can
be applied. One divides the data into sub-blocks of a specified size and averages the primary
quantities first in these bins. The obtained bin averages themselves can then be considered
as results of single measurements. If the bin size is large enough, these bin averages can be
treated as uncorrelated [3].

In practice, however, the number of data is often too small to extract reliable error estimates
in this way. An additional obstacle are secondary quantities, which are functions of the averages
(the primary quantities). Here, dividing the whole data set into smaller parts means considering
sub-samples, because secondary quantities are defined on samples. The usual bins are in most
cases too small for this purpose. Moreover, the effects of error propagation may be difficult to
determine.
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Figure 3.6.: Integrated autocorrelation time eq. (3.23) for the observable Q2 (cf. eq. (3.15))
measured every 150 sweeps far away from the phase transition

For these reasons, a Jackknife analysis is used in this thesis for the computation of averages
and error estimates. One starts with a data set of length N for a primary quantity O, whose
average Ô is given by eq. (3.7). Now, one constructs N subsets by removing the s-th entry of
the original set (s = 1, . . . , N) [3]:

O(J)
s = 1

N − 1
∑
r 6=s

Or. (3.24)

The best estimator for a secondary quantity is ŷ = y(Ô), not ŷ(O) [3]. The corresponding
Jackknife estimators are y(J)

s = y
(
O

(J)
s

)
, with an average

ŷ(J) = 1
N

N∑
s=1

y(J)
s = 1

N

N∑
s=1

y
(
O(J)
s

)
. (3.25)

The variance of the Jackknife estimators is then [4]:

(
σ

(J)
ŷ

)2
= N − 1

N

N∑
s=1

(
y(J)
s − ŷ

)2
. (3.26)

Apart from the calculation of a more reliable error estimate, performing a Jackknife analysis
allows a bias correction of the average. The unbiased estimator is given by [4]

ŷunbiased = ŷ − (N − 1)
(
ŷ(J) − ŷ

)
= Nŷ − (N − 1)ŷ(J). (3.27)

For the practical implementation the Jackknife analysis is combined with binning by organising
the data in bins and constructing subsets by removing entire bins instead of only single values.

To establish the correct binsize, such an analysis is carried out for several values of the
binsize. Once the bins are large enough, they are practically uncorrelated and the obtained error
estimates remain constant if the bins are further increased. Two examples of this procedure
can be seen in figs. 3.7 and 3.8. They belong to the same simulations as the illustrations of the
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Figure 3.7.: Error analysis by binning and Jackknife for the skewness of Q2 with measurements
every 150 sweeps close to the phase transition

autocorrelation in figs. 3.5 and 3.6. Again, the resulting ideal binsizes differ by a factor of at
least ten. For the simulation far away from the phase transition, a binsize of 400 already gives a
reliable error estimate, whereas close to the phase transition a binsize of about 4000 is optimal.
For even larger binsizes, the error estimate starts to fluctuate. This is because the number
of very large bins is too small, so that the error of the error estimate becomes large [3]. The
outcomes of this combined binning and Jackknife analysis may be compared with the direct
computation of the integrated autocorrelation time. One finds that the former yields a quite
conservative estimate of the number of configurations that needs to be skipped (or binned) for
the data to decorrelate. It is therefore sufficient to create plots like figs. 3.7 and 3.8 in order to
determine the correct binsize. The calculation of the integrated autocorrelation time, which is
much more expensive and involved, can be avoided.

3.6. The deconfinement transition at zero chemical potential

The effective theory contains with the hopping parameter expansion an expansion around heavy
quarks and is hence located in the upper right corner of the Columbia plot fig. 3.4b. It inherits
the phase structure of Lattice QCD in this region [18]. For given Nf , Nτ and µ = 0, the theory
has two free parameters β and κ, which can alternatively be specified by the two effective
couplings λ ≡ λ1 and h ≡ h1 = h̄1. As for full Lattice QCD, the first-order phase transition of
pure gauge theory (h = 0) weakens for increasing h, until the transition vanishes at a critical
end point. A sketch of the corresponding phase diagram for the effective theory in terms of the
effective couplings λ and h is shown in fig. 3.9.

The present section aims to measure this phase diagram, and in particular the coordinates
(λc, hc)↔ (βc, κc) of the critical end point.
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Figure 3.8.: Error analysis by binning and Jackknife for the skewness of Q2 with measurements
every 150 sweeps far away from the phase transition

Figure 3.9.: Sketch of the phase diagram for the effective theory at µ = 0 and given Nf , Nτ [18]

3.6.1. The analysis using the example of static quarks

For this purpose, a two-step procedure analogous to the one used in [18] is pursued. In the first
step, one scans the phase diagram at constant values of h in the λ-direction and looks out for
the phase boundary. After having established this pseudo-critical line λpc(h), the order of the
transition along that line is determined. In this way, the point where the type of the transition
changes from first order to crossover can be found. We will go through both steps in detail
using only the λ1-action eq. (2.31) for the gauge part and the static determinant eq. (2.43) for
the fermionic part of the one-flavour theory. This allows us to check our implementation of the
thus reduced action and of the algorithm against the results obtained in [18].

Determination of the phase boundary

The phase transition leaves different characteristic traces in the moments of the observable Q2.
The expectation value itself shows a rather steep rise due to the remnants of the spontaneous
breaking of the centre symmetry in a finite volume, as discussed in section 3.4. An example
of this at h = 0.0006 is shown in fig. A.1. The susceptibility eq. (3.16) corresponds to the
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variance of the distribution of Q2. Deeply in one of the phases, the probability distribution is
a single Gaussian peak around its mean value. Near the transition, a second peak develops,
which increases in height until it contains most of the data points and the first peak eventually
vanishes. Therefore, the distribution is the broadest right at the transition point, so that χQ2

has a maximum there (cf. fig. A.2). The skewness eq. (3.17) describes how much the distribution
is slanted to one side, that is how asymmetric it is. For the single Gaussian peak in one of the
phases, the distribution is not askew at all, µ3,Q2 = 0. When closing in on the phase transition,
the absolute value of µ3,Q2 grows as a consequence of the evolution of a second, smaller peak.
The sign of µ3,Q2 depends on whether the transition is approached from the left or the right.
Exactly at the transition point both peaks are equal in height and the distribution is symmetric,
µ3,Q2 = 0 (cf. fig. A.3). The kurtosis eq. (3.18) finally quantifies the contribution of the tail of
the distribution. It has a minimum at the phase transition [17] and gets larger when moving
away from it (cf. fig. A.4). This is because the ansatz of two displaced Gaussians underestimates
the actual distribution in its wings [19]. The maximum of the susceptibility is usually relatively
broad, so that the most precise estimate of the pseudo-critical coupling λpc(h) can be obtained
from the zero-crossing of the skewness or the minimum of the kurtosis.

This analysis is repeated for several different values of h. At h = 0, 80 000 sweeps over the
volume were performed for each λ. For finite h it were 100 000 sweeps per combination of the
couplings and the system size at Ns = 14 and 16, and at least 200 000 at Ns = 18, 20 and 22.
An exception is h = 0.002, where only 50 000 sweeps were carried out for all volumes. The
result for the pseudo-critical line of the largest Ns = 22 is displayed in fig. 3.10. It is well
described by a linear fit. This is due to the smallness of h and the fact that along the first-order
transition line the free energy densities of the confined and deconfined phases are equal, that is
fc(λpc(h), h) = fd(λpc(h), h). Close to the point (λ0, 0) the free energy density of the confined
phase is given by

fc(λ, h) = fc(λ0, 0) +
(
∂fc
∂λ

)
(λ0,0)

(λ− λ0), (3.28)

because (∂fc/∂h)(λ0,0) = 0 in the confined phase [20]. For the deconfined phase this is not the
case, so that

fd(λ, h) = fd(λ0, 0) +
(
∂fd
∂λ

)
(λ0,0)

(λ− λ0) +
(
∂fd
∂h

)
(λ0,0)

h. (3.29)

Setting eqs. (3.28) and (3.29) equal along the pseudo-critical line and using the condition
fc(λ0, 0) = fd(λ0, 0) for the first-order transition at h = 0, one arrives at

λpc(h) = λ0 − a1h, a1 = −
∂fd/∂h

∂(fc−fd)/∂λ

∣∣∣∣
(λ0,0)

, (3.30)

the asserted linear dependence. A fit with χ2/d. o. f. ≈ 0.44 to the data illustrated in fig. 3.10
yields

λ0 = 0.18804(23), a1 = 1.83(33), (3.31)

which is in good agreement with the results obtained in [18].

Localisation of the critical point

The next task is to find the location of the critical end point on the phase boundary, which is
accomplished by means of a finite size scaling analysis. In the vicinity of the critical point, the
behaviour of the system is dictated by its universality class, which is in turn determined by the
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Figure 3.10.: The pseudo-critical line for static quarks with one flavour and Ns = 22. A linear
fit according to eqs. (3.30) and (3.31) and the critical point eq. (3.34) are also
shown

symmetry that is being broken. In the case of the effective theory this is a global Z3-symmetry
(cf. section 3.4). It has been found that such models belong to the same universality class as
the three-dimensional Ising model [20]. The underlying reason is that the critical point is the
end point of a first-order transition line, like in a liquid-gas transition. Consequently, close to
the critical point the kurtosis should scale according to

B4 = f0 + f1(h− hc)N1/ν
s + . . . , (3.32)

with the universal values of f0 = 1.604 and ν = 0.630 [18].

The approach is now the following: The minimum values of B4,Q2 , that is the ones on the
pseudo-critical line, are plotted as a function of h for several volumes (cf. fig. 3.11). Then, a fit
as per eq. (3.32) is performed, where ν = 0.630 is kept fixed, and hc, f0 and f1 are varied3. A
fit with χ2/d. o. f. ≈ 1.12 yields

hc = 0.00065(12), f0 = 1.71(9), f1 = 7.7(1.0). (3.33)

Considering the error, the result for f0 is almost compatible with its universal value. The
coordinates of the critical point are calculated by plugging the result for hc into eq. (3.31):

λc = 0.18685(66), hc = 0.00065(12). (3.34)

This perfectly coincides with the findings in [18], if the uncertainty ranges are taken into account.
We conclude that our implementation of the effective potential, the λ1 gauge action, the static
quark determinant and the Metropolis algorithm, as well as the data analysis procedure, seem
to be correct.

3.6.2. Effect of larger-distance interactions in the gauge action

The next thing one can check is the effect of including larger-distance interactions, in our case
the λ2-action eq. (2.33), in the gauge action. For the purpose of comparing with [21], one can

3For these fits, the ‘Python Fitting GUI’ developed by Reinhold Kaiser was used.
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Figure 3.11.: Kurtosis B4,Q2 as a function of h on the pseudo-critical line λpc(h) for static
quarks with one flavour on various volumes

choose the two couplings λ1 and λ2 independent of each other. The effective theory may then
be regarded as an academic spin model, since the connection to QCD (or Yang-Mills theory)
can only be made for the specific interrelationship of λ1 and λ2 implied by eqs. (A.4) and (A.5).

In order to assess the influence of a finite value of λ2 on the location of the phase transition,
pure gauge theory (h = 0) is simulated at a fixed, positive value of λ2. Similar to above,
one scans this system in λ1 and looks out for the typical signatures of the phase transition.
Because the main interest of the thesis at hand is still in the effective theory as a model for
QCD, a value of λ2 close to the transition point of full Yang-Mills theory at Nτ = 4 has been
selected, λ2 = 0.0288. For each combination of λ1 and Ns, 50 000 sweeps over the volume were
performed. A plot of the skewness of Q2 as a function of λ1 can be seen in fig. 3.12. The phase
transition obviously occurs at λ1,pc ≈ 0.102, which is consistent with the phase boundary of
the two-coupling theory as per [21]. When comparing this with the result for the one-coupling
theory, λ1,pc ≈ 0.188 (cf. eq. (3.31)), one recognises the expected behaviour: The inclusion of
such a larger-distance interaction in the gauge action lowers the pseudo-critical value of λ1
significantly.

3.6.3. The critical point of the one-flavour theory to O(κ4)

In the following, the ‘full’ version of the implemented action (cf. section 3.3) shall be investigated.
As mentioned in section 3.6.2, the connection of the effective theory to QCD can only be made
if the couplings are interrelated as detailed in appendix A.1. Because the effective theory has
now more than two such parameters, the choice of Nτ matters. This is in contrast to the case of
static quarks with only the λ1 gauge action, which has been examined in section 3.6.1. There,
the effective theory had only two free parameters λ and h, which could be converted to the
QCD parameters β and κ for any Nτ .

We will study first the one-flavour theory for two different values of Nτ in order to be able to
compare the results with the ones obtained in section 3.6.1. In the next subsection, we will
then turn to the physically more interesting case of the two-flavour theory.
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Figure 3.12.: Skewness of Q2 for pure gauge theory with two couplings and fixed λ2 = 0.0288
on various volumes

Results for Nτ = 4

The same analysis that has been demonstrated using the example of static quarks can also be
applied to the effective theory with more corrections. The simulations were again conducted
at several constant values of h1, while varying λ1, because h1 is the relevant coupling of the
effective theory which governs the physical behaviour of the system. Besides, this facilitates the
comparison with section 3.6.1. For the runs at Nτ = 4, 200 000 sweeps over the volume were
performed for each combination of the couplings and the system size at Ns = 18, 20 and 22, at
least 400 000 at Ns = 24, and at least 3 · 106 at Ns = 32. Moreover, the complete analysis has
been carried out for both observables Q1 and Q2 from eq. (3.15). From now on, all relevant
plots will be collected in appendix A.6. The pseudo-critical lines that have been obtained for
the largest Ns = 32, for example, can be found in fig. A.5. Both curves have been fitted to
eq. (3.30). For Q1, a fit with χ2/d. o. f. ≈ 0.65 yields

λ0 = 0.167356(48), a1 = 1.242(24), (3.35)

and for Q2
λ0 = 0.167310(32), a1 = 1.206(18), (3.36)

where χ2/d. o. f. ≈ 0.40. As the two results agree within errors, it may be inferred that either
observable is qualified to identify the phase transition. When comparing above number for
λ0 with the one for static quarks (cf. eq. (3.31)), one might jump to the conclusion that
incorporating higher-order corrections in the fermionic action diminishes the value of λ1 at the
phase transition. However, a large reduction is already due to the inclusion of the λ2-action, as
has been discussed in section 3.6.2. Hence, and because a1 is smaller than in the static case as
well, the fermionic corrections actually enlarge λ1,pc. Since the pseudo-critical line is always
going down with growing h1, the impact of fermions in general is to decrease λ1,pc, suggesting
that the O(κ4)-corrections weaken this effect.

In order to establish the coordinates of the critical point, an analysis of the kurtosis identical
to the one applied in section 3.6.1 is performed. The corresponding plots are displayed in
fig. A.6 using the observable Q1 and in fig. A.7 using Q2. In both cases, the data point at
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Figure 3.13.: Histograms of Q2 for two different simulations with one flavour, Nτ = 4 and
Ns = 24 in the minimum of B4,Q2

h1 = 0.0004 and Ns = 24 has been excluded for the purpose of the final fit. The reason for this
is that it has a very small error in spite of being a definite outlier. To investigate this further,
one may take a look at the histogram of Q2 for this point (cf. fig. 3.13a) and compare it with
a histogram in the minimum of B4,Q2 for, say, h1 = 0.0008 (cf. fig. 3.13b). Here, a striking
discrepancy can be observed: The histogram at h1 = 0.0004 has only one peak, whereas the
other one has two. This means that the Markov chain at the point in question has only visited
the deconfined phase, and no tunnelling between the two phases has occurred. Consequently,
only one part of the probability distribution of Q2 has been measured, merely feigning a high
precision. The resulting B4,Q2 ≈ 3 is the expected one for a single Gaussian distribution, lacks
any physical meaning, and thus has to be excluded from the analysis.

Fitting the data illustrated in figs. A.6 and A.7 according to eq. (3.32) yields

h1,c = 0.00171(13), f0 = 1.59(9), f1 = 4.59(25) (3.37)

for Q1, where χ2/d. o. f. ≈ 0.96, and

h1,c = 0.00194(17), f0 = 1.84(11), f1 = 4.05(28) (3.38)

for Q2, where χ2/d. o. f. ≈ 0.56. By plugging the numbers for h1,c into eqs. (3.35) and (3.36),
respectively, the coordinates of the critical point are calculated as

λ1,c = 0.16523(25), h1,c = 0.00171(13) (Q1), (3.39)
λ1,c = 0.16497(27), h1,c = 0.00194(17) (Q2). (3.40)

Here, the differences between the two observables are larger than for the determination of
the pseudo-critical line. Nonetheless, the results are consistent with each other within their
error ranges. Judging by the value of f0 and the quality of the fit, the analysis with Q1 is
probably the more trustworthy one. In principle, however, both should coincide in the limit of
infinite statistics, which is compatible with above findings. It is conspicuous that the result
for h1,c is considerably larger than the one calculated for static quarks (cf. eq. (3.34)). This
is in accordance with aforementioned inference that the O(κ4)-corrections weaken the overall
effect of fermions: When including those corrections, the value of κ and therefore h1 has to be
higher to achieve the same physical effect as in the static case. Still, the shift is small enough
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3.6. The deconfinement transition at zero chemical potential

to justify the expansions made in the derivation of the effective theory and the omission of even
higher-order corrections.

The critical couplings eqs. (3.39) and (3.40) can now be converted to the QCD parameters β
and κ by numerically inverting the relations (A.4) and (A.7) at fixed Nτ = 4. One finds

βc = 6.04140(69), κc = 0.0976(17) (Q1), (3.41)
βc = 6.04068(74), κc = 0.1005(20) (Q2). (3.42)

The results for the two observables again agree with each other within their error ranges, as
expected.

Another interesting quantity to compute from these values is the physical temperature
eq. (2.14) at the critical point. For this purpose, the lattice spacing a has to be calculated, that
is, a scale has to be set. In principle, the lattice spacing depends on both β and κ: a = a(β, κ).
Since the critical point of the effective theory is located in the heavy-quark regime (κ � 1),
one can exploit the fact that heavy quarks have only a small influence on the running coupling
[7]. Therefore, one approximates a = a(β) and uses the interpolation function for pure gauge
theory [7]

a(β) = r0 exp[−1.6804− 1.7331(β − 6) + 0.7849(β − 6)2 − 0.4428(β − 6)3], (3.43)

which is valid for 5.7 < β < 6.92. Here, r0 = 0.5 fm is the so-called Sommer parameter. A
numerical inversion of this function yields for the lattice spacing and the physical temperature
at the critical point:

ac ≈ 0.086814 fm ⇒ Tc ≈ 568.24 MeV (Q1), (3.44)
ac ≈ 0.086919 fm ⇒ Tc ≈ 567.56 MeV (Q2). (3.45)

This is in perfect concordance with the result for pure gauge theory at Nτ = 4 obtained in
[18] using only the static determinant and the λ1 gauge action, and thus demonstrates once
again that the physics is not strongly dependent on higher fermionic corrections to the effective
theory.

Results for Nτ = 6

For the one-flavour theory with Nτ = 6, the same calculations were made as for Nτ = 4. In
the corresponding simulations, at least 3 · 106 sweeps over the volume were performed for each
combination of the couplings and the system size. For reasons of clarity and to simplify the
comparison between the different parameter sets, the results of the analysis are collected in
table 3.1 together with all the previously reported ones. The associated plots can be found in
appendix A.6.2.

Similar to the data for Nτ = 4, there are some discrepancies between the quantities computed
from the two observables Q1 and Q2. They are, however, still consistent with each other within
their error ranges. Here, the analysis using Q2 seems to be the more trustworthy one, if one
considers the result for f0 and the quality of the fit. When comparing the numbers for Nτ = 6
to those for Nτ = 4, one notes that in the former case λ1 at the phase transition and hence
also at the critical point is larger; the same holds for βc. This larger value of the (inverse)
gauge coupling leads to a smaller lattice spacing according to eq. (3.43). Since the physical
temperature is given by T = (aNτ )−1, this smaller lattice spacing compensates for the growing
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Table 3.1.: Numerical results for the pseudo-critical line eq. (3.30), the finite-size scaling of the
kurtosis eq. (3.32) and the critical point. The fits to the pseudo-critical line all have
0.04 . χ2/d. o. f. . 0.65, the ones to the kurtosis 0.29 . χ2/d. o. f. . 1.48

Action λ1 + static det. λ1 + λa + λ2 + static det. + κ2 + κ4

Nf 1 1 1 2 2
Nτ – 4 6 4 6

λ0
Q1 0.18822(11) 0.167356(48) 0.186139(31) 0.167381(15) 0.186147(67)
Q2 0.18804(23) 0.167310(32) 0.186163(32) 0.167329(33) 0.186126(41)

a1
Q1 2.17(17) 1.242(24) 1.560(28) 2.476(16) 3.21(14)
Q2 1.83(33) 1.206(18) 1.554(32) 2.410(32) 3.089(85)

f0
Q1 1.24(9) 1.59(9) 1.46(8) 1.47(6) 1.44(6)
Q2 1.71(9) 1.84(11) 1.69(7) 1.59(7) 1.74(4)

f1
Q1 7.8(8) 4.59(25) 5.2(5) 8.4(5) 11.1(9)
Q2 7.7(1.0) 4.05(28) 5.1(5) 8.1(5) 10.8(7)

h1,c
Q1 0.00035(12) 0.00171(13) 0.00084(9) 0.00081(5) 0.00040(4)
Q2 0.00065(12) 0.00194(17) 0.00100(8) 0.00084(6) 0.000488(27)

λ1,c
Q1 0.18746(43) 0.16523(25) 0.18483(19) 0.16538(15) 0.18486(25)
Q2 0.18685(66) 0.16497(27) 0.18461(19) 0.16530(20) 0.18462(17)

κc
Q1 0.0976(17) 0.1400(21) 0.0819(12) 0.1258(18)
Q2 0.1005(20) 0.1435(16) 0.0827(14) 0.1295(10)

βc
Q1 6.04140(69) 6.32203(26) 6.04181(41) 6.32207(35)
Q2 6.04068(74) 6.32172(27) 6.04159(55) 6.32174(24)

ac
Q1 0.086814 fm 0.056980 fm 0.086755 fm 0.056977 fm
Q2 0.086919 fm 0.057005 fm 0.086787 fm 0.057003 fm

Tc
Q1 568.24 MeV 577.18 MeV 568.63 MeV 577.21 MeV
Q2

–

567.56 MeV 576.93 MeV 568.42 MeV 576.95 MeV

temporal extent of the lattice, so that the numbers in physical units stay (roughly) constant.
Indeed, the temperatures at the critical point computed in this way are very comparable for
Nτ = 4 and Nτ = 6. On the way to the continuum, one would expect the critical temperature
to decrease: The literature value for pure gauge theory there is around 270 MeV [4], and shrinks
even more when switching on fermions. This is in contrast to the observations made in this
thesis, with Tc rising slightly from Nτ = 4 to Nτ = 6. On the other hand, the increase is so
small that it might well be explained by statistical uncertainties. Moreover, both numbers are
entirely compatible with the pure gauge results obtained in [18] using just the static determinant
and the λ1 gauge action. These suggest that a noticeable drop in Tc only sets in for even larger
Nτ & 8.

Another possibility to examine the trend in the critical temperature is to compare the values
of κc. One finds κc(Nτ=6)/κc(Nτ=4) = 1.434(47) for Q1 and 1.428(44) for Q2, respectively. In
the limit amq � 1, the critical hopping parameter is approximately proportional to κc ∼
(acmq)−1 = NτTc/mq. Consequently, if the physical parameters are constant, one anticipates
above ratio being exactly 3/2 [22], which is almost covered by the errors. Besides, the results for
the critical hopping parameter κc both at Nτ = 4 and Nτ = 6 are well below the chiral critical
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3.6. The deconfinement transition at zero chemical potential

hopping parameter at the corresponding critical gauge coupling κch(uc) estimated in [18]. This
is required by self-consistency, because κch is defined by the vanishing of the (renormalised)
quark mass [3], but the effective theory is expanding around heavy quarks.

3.6.4. The critical point of the two-flavour theory to O(κ4)

Even more interesting than the case of one flavour, which has been studied in the previous
subsection, is the effective theory with two degenerate quark flavours: It can be related to
QCD with degenerate up- and down-quarks. This particular model shall be investigated in the
following. Again, two different values of Nτ are taken into consideration.

Results for Nτ = 4

In the simulations at Nτ = 4, at least 3 · 106 sweeps over the volume were performed for each
combination of the couplings and the system size. The results of the analysis can again be
found in table 3.1 and the corresponding plots in appendix A.6.3. Like for the one-flavour
theory, the numbers deduced from the two different observables all fit with each other. Judging
by the value of f0 and the quality of the fit, the analysis based on Q2 is here apparently the
more dependable one.

A comparison of the results for the critical point in the two-flavour theory with those for
one flavour reveals that h1,c and accordingly κc are lowered by the inclusion of another flavour.
This can be understood as follows: A larger number of flavours means that there are more
fields which break the centre symmetry explicitly (cf. section 3.4). Therefore, if the number
of flavours rises, the hopping parameter for each flavour can be somewhat smaller to achieve
the same physical effect for the total system. In the gauge couplings at the critical point, by
contrast, no significant difference between one and two flavours can be seen, since the gauge
sector has been left unchanged. Also the physical temperatures at the critical point are very
comparable. Because Nτ is the same for both simulations, this necessarily holds for the lattice
spacings as well.

The critical point of two-flavour QCD has been examined with a very similar effective theory
in [22]. There, the exact gauge action was employed in a four-dimensional simulation, and for the
fermionic part the leading-order and next-to-leading-order terms of the hopping expansion were
taken into account. Their result for κc is with 0.0640(10) of the same order of magnitude as the
one obtained in this thesis. In the precise numbers, however, there is a substantial disagreement,
with our value being larger. This can be explained by the impact of the O(κ4)-corrections,
which we have found to weaken the overall influence of fermions. Consequently, a larger hopping
parameter is needed in comparison with [22] for the same physical effect.

Results for Nτ = 6

In the simulations at Nτ = 6, at least 3 · 106 sweeps over the volume were performed for each
combination of the couplings and the system size at Ns = 16 and 24, and at least 6 · 106 at
Ns = 32. The results of the analysis are collected in table 3.1, as before, and the associated
plots in appendix A.6.4. The quantities calculated from the two observables Q1 and Q2 are
again roughly consistent with each other. Like for the majority of the studies discussed so far,
Q2 presumably yields the more reliable results here, if one judges by the value of f0 and the
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quality of the fit. This seems to be a general tendency, as the only exception observed in this
thesis is the one-flavour theory with Nτ = 4, where Q1 gave the better estimates.

Similar to the case of Nτ = 4, h1,c and κc are diminished significantly by the introduction
of another flavour also at Nτ = 6. The critical gauge couplings and the quantities deduced
from them (the lattice spacing and the temperature), on the other hand, are almost identical
to the ones in the one-flavour theory. If one compares the result for κc with the one obtained
in [22] using a next-to-leading-order expansion of the quark determinant, 0.1202(19), one
notices a considerable difference. Yet, the fact that our numbers are again the larger ones is in
concordance with the resolution given above in terms of the O(κ4)-corrections.

As was done in the one-flavour theory, one can now assess the trend in the critical temperature
from the evolution of κc with Nτ . Here, one finds κc(Nτ=6)/κc(Nτ=4) = 1.536(44) for Q1 and
1.566(39) for Q2, respectively. This is compatible with the theoretical value of 3/2, indicating
that the temperature at the critical point is independent of Nτ . Hence, the findings in the
effective theory with two degenerate quark flavours are in qualitative agreement with those at
Nf = 1.

Finally, the critical point of the effective theory can be compared with recent results from full
Lattice QCD at Nf = 2 and Nτ = 6 [23]. There, the critical gauge coupling is with βc = 5.8821
around 8 % smaller than in the thesis at hand. Such a deviation in the gauge sector has already
been observed by earlier studies of the effective theory [8]. As a consequence, the lattice spacings
in full Lattice QCD are substantially larger and the respective temperatures lower than the
ones computed in table 3.1.

For the critical hopping parameter, [23] reports κc = 0.0877(9), so that the value obtained
from the effective theory with the O(κ4)-corrections is off by about 48 %. Even more troublesome
is the fact that the O(κ4)-corrections were found to increase κc, although it was already larger
than in full Lattice QCD at lower orders in the hopping expansion, and sank from the leading
to the next-to-leading order [22]. Excluding for the moment that there could be – in spite
of extensive cross-checks of the analytical derivation as well as the numerical implementation
– still a problem with the code, there only appear to be two plausible explanations for this
unexpected development: Either the results of the hopping expansion will improve at higher
orders. This would mean that the sequence of the partial sums of the hopping series is not
monotonous. However, such a behaviour is not anticipated, since the hopping expansion consists
of the expansion of a logarithm and an exponential (cf. eqs. (2.45), (2.52) and (2.53)). For
κ > 0, both of them have a monotonous sequence of partial sums. Or the hopping expansion
will continue to deteriorate at higher orders. In this case, it may converge to a wrong limit, or
not be convergent at all. The most probable reason for this to occur would be that the values
for κc in table 3.1 already lie outside the radius of convergence of the series. In order to judge
the radius of convergence of the O(κ4)-action, the O(κ6)-action is needed, an effort towards
the derivation of which is made in chapter 4. Because the method used in the present thesis to
localise the critical point does not include an extrapolation to the thermodynamic limit, finite
size effects – which usually enlarge κc [22] – may also play a role. Still, they should not alter
the overall direction of the shift introduced by the O(κ4)-terms. In any event, one can conclude
that the effective theory truncated at O(κ4) is not suited to accurately determine the critical
point of QCD with two degenerate quark flavours.
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3.7. Range of validity of the large-Nτ approximation

The kinetic quark determinant derived and implemented so far is quite complicated, although
it is truncated at O(κ4). A considerable simplification of the action has been observed in [7,
24] in the limit of large Nτ . In [24], even the complete O(κ6)- and O(κ8)-corrections to the
effective action have been derived taking this limit and h̄1 → 0. The resulting expressions
were found to be still shorter than the non-approximated O(κ4)-action listed in appendix A.4.
This remarkable simplification happens when one splits the temporal sums into the different
combinations of mutually equal temporal coordinates prior to the integration over the spatial
links. In the limit of large Nτ , one neglects all particle configurations except for those where
only one quark and one antiquark, that is one single meson, hop simultaneously. For a fixed
order in κ, this corresponds to dismissing all terms which are of subleading order in Nτ . Only
those terms which have the maximal number of unequal temporal coordinates which is allowed
by the gauge integration are taken into account.

In [7, 24], this approximation was justified by studying the low-temperature regime. Evidently,
it would be highly advantageous if the action shortened in such a way could be applied
independent of the temperature under consideration. In principle, Nτ →∞ is also reached by
taking the continuum limit eq. (2.16), which constitutes the physically relevant limit. Yet, a
large amount of care is required if one wants to determine the correct continuum limit of a
theory. Specifically, it has to be established which quantities are supposed to be kept constant
while sending Nτ →∞ so as not to change the physics. Here, the temperature and the pion
(or the baryon) mass have to be fixed [7]. This however implies that the quark and antiquark
couplings h1 and h̄1 appearing in the Wn1m1n2m2s (cf. eq. (2.58)), which are the building blocks
of the kinetic quark determinant, are not necessarily constant. On the contrary, they also
depend on Nτ , and that in a quite non-obvious way. This could well jeopardise the validity of
the aforementioned approximation for finite T in the continuum limit. The objective of the
present section is therefore to find out which of the terms that are of subleading order in Nτ

can really be dropped in above limit, and how large Nτ has to be in order to justify this.

To that end, all O(κ4)-terms of the resummed action have been implemented in Python,
without the transformation to Polyakov loops from section 2.8. Instead, only the summand for
one specific x is examined for each term, and the SU(3)-matrices W at all spatial lattice sites
which are involved in the respective interaction are chosen randomly. After creating 1000 such
random configurations, the maximal relative contribution of each part of the term is computed.
The whole process is repeated for several different values of Nτ . In this way, one can make a
statement about how the relative importance of the different parts evolves with growing Nτ .
Taking the maximal value instead of the mean ensures that the results are valid independent of
the W s, and not only on average.

For the generation of random SU(3)-matrices, the representation presented in [4] is adopted.
First, two complex 3-vectors u and v are selected according to a uniform random distribution.
After orthonormalising them via

ũ = u
|u| , ṽ = v− ũ(ũ · v)

|v− ũ(ũ · v)| , (3.46)

a matrix W ∈ SU(3) can be obtained as [4]

W =

 ũ
ṽ

ũ∗ × ṽ∗

 . (3.47)
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Figure 3.14.: Chemical potential in lattice units as a function of Nτ for constant baryon chemical
potential µB = mB = 0.1T = 57 MeV

Here, u · v = ∑3
i=1 u

∗
i vi is the inner product of the complex vectors u and v, and (u× v)i =∑3

j,k=1 εijkujvk their cross product.

As discussed above, the temperature and the baryon mass have to be fixed in order to
study the continuum limit. The temperature is chosen as 570 MeV, which is near the critical
temperature observed in table 3.1. For each value of Nτ under consideration, the corresponding
lattice spacing is calculated as a = 197.3269804593024659 MeV fm/TNτ . A numerical inversion of
eq. (3.43) then yields β. The baryon mass in lattice units is given by [7]

amB = ln
[

(2κ)−3 ((2κ)−3 − 2
)

(2κ)−3 − 5/4

]
− 18κ2 u

1− u. (3.48)

If one sets mB/T = amBNτ/197.3269804593024659 MeV fm = 0.1 and numerically inverts eq. (3.48),
one can thus compute κ. Here, mB/T has again been taken close to its value at the critical
point (cf. table 3.1). For zero chemical potential, one has h1 = h̄1, which induces some further
simplifications: The real parts of some of the expressions vanish in this case. However, only the
real parts are taken into account here, since they are the relevant ones for the updates eq. (3.11)
in the Metropolis algorithm. In order not to falsely attribute the vanishing of such terms to the
limit Nτ →∞, when it is really due to µ = 0, a finite chemical potential should be adopted
for the following investigations. Because of the silver blaze property, the physical quantities
are independent of the chemical potential before the onset. This happens at µB < mB as a
consequence of the existence of a finite binding energy [7]. Hence, µB = mB is the smallest
option which still guarantees a significant impact of the chemical potential. As can be seen
from fig. 3.14, this choice of parameters corresponds to a chemical potential in lattice units
which is smaller than 1 for Nτ ≥ 7. For the majority of the Nτ -values under consideration,
the physics is therefore not strongly influenced by lattice saturation. Regarding the number of
flavours, no particular care is required; Nf = 1 suffices to demonstrate the behaviour of the
different terms with Nτ .

The plots resulting from the analysis described above can be found in appendix A.7. In
fig. A.17 the different parts of eq. (A.34) are shown. Here, term 1 refers to the summand
which is proportional to h31 and thus to Nτ (Nτ − 1). Term 2 and term 3 are the second and
third summand in eq. (A.34), respectively, which are both proportional to h32 and thus to Nτ .
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These two terms become insignificant in the limit Nτ →∞, and the asymptotically relevant
contribution comes only from term 1. Additionally plotted is term 1 again with Nτ (Nτ − 1)
replaced by N2

τ , or, more precisely, h31 → h2
2. This is always a valid approximation for large Nτ ,

because the rest of the term is the same for both of the two factors N2
τ and Nτ . Consequently,

the component proportional to Nτ can safely be neglected, independent of the behaviour of the
remaining factors. The corresponding curve in fig. A.17 confirms this, as it converges towards
the curve for the ‘full’ term 1.

The different pieces of the resummed version of eq. (A.35) are presented in fig. A.18. Here,
term 1 is the counterterm from the resummation (cf. eq. (2.63)), which is ∝ h31/Nτ−1 ∝ Nτ .
Term 2 denotes the rest of the part which is proportional to h31 . This is expected to be the
leading contribution for large Nτ , since it is proportional to Nτ (Nτ − 1). Term 3 and term 4
name the two summands in eq. (A.35) which are proportional to h32 and hence to Nτ . Also
here, the aforementioned assumption is fulfilled, and terms 1, 3 and 4 become negligible for
growing Nτ . Likewise, the legitimacy of the approximation h31 → h2

2 for the leading term 2 is
corroborated by the data in fig. A.18.

The two summands of the linear three-point interaction eq. (A.36) are plotted in fig. A.19. In
contrast to the two two-point interactions discussed above, here term 2, the prefactor of which
is of subleading order in Nτ , cannot be neglected for any Nτ . Conversely, for large Nτ the ratio
of the two terms becomes constant, with term 1 contributing about 17.5 % and term 2 about
82.5 %. Taking a closer look at eq. (A.36), this can be understood in the following way: The
factor W−1111(x)W−1111(x + 2̂i) appears in both terms and therefore cancels in their fractions of
the total real part. The remaining factors differ, but their behaviour strongly depends on the
one of h1 and h̄1 for increasing Nτ . As can be seen from the left side of fig. 3.15, κ converges
to a finite value smaller than 1/2 for Nτ → ∞. Because h1 ∝ exp[Nτ ln(2κ)], this makes h1
approach zero exponentially for large Nτ ; the same holds for h̄1. Consequently, all parts of
the remaining factors in eq. (A.36) which are proportional to h1 or h̄1 will give a vanishing
contribution to aforementioned fractions for Nτ → ∞. Both term 1 and term 2 have one
summand for which this is not the case, W1010(x + î) and 4Nc, respectively, and the two of
them come with a prefactor of Nτ . This explains the constant ratio of term 1 and term 2 for
large Nτ . Furthermore, the right side of fig. 3.15 displays both the leading-order approximation
eq. (2.41) for h1 and the relation including some gauge corrections eq. (A.7). These gauge
corrections weaken the exponential decay of h1, but since only a finite number of them are
taken into account, the exponential ultimately gains the upper hand. For this reason, above
observations might just be due to insufficient gauge corrections in h1. This can however not be
judged within the framework of the thesis at hand, which relies on the expressions collated in
appendix A.1.

The corner-like three-point interaction eq. (A.37) shows a similar yet distinct trend (cf.
fig. A.20). Here, term 1, which would naively be supposed to be the dominant one, actually
becomes irrelevant for large Nτ , whereas term 2, which is of parametrically lower order in Nτ ,
prevails. Once again, the common factor W−1111( )W−1111( ) drops out of the fractions of the
total real part. Contrary to the linear three-point interaction, term 1 has here no contribution
which survives when h1 tends to zero exponentially. Term 2, on the other hand, still has the
summand 4Nc in its remaining factor and is thus the predominant one in this limit. A closer
examination of the derivation of the kinetic quark determinant reveals that the constant 4Nc

in term 2 stems from a trace of A. It is due to the identity matrix, which is contained in the
diagonal part of A, but not of B (cf. eq. (2.48)). For the two-point interaction, the Dirac trace
only leaves Bs, as will be proved in section 4.1. This clarifies why the terms with a prefactor of
subleading order in Nτ eventually become unimportant in the two-point interactions, but not
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Figure 3.15.: The fermionic couplings κ and h1 as a function of Nτ for constant temperature
T = 570 MeV and baryon mass mB = 0.1T at µB = mB

in the other ones. Nevertheless, the validity of the approximation h31 → h2
2 for term 1 can be

confirmed for both three-point interactions.

The four-point interaction eq. (A.39) has an overall prefactor of h34 ∝ Nτ . It is therefore not
instructive to contrast the relative contributions of different pieces of it. In spite of this, it is
interesting to see whether the Nτ -dependence of the rest of the term is such that eq. (A.39)
becomes negligible in comparison with terms proportional to N2

τ . Accordingly, eq. (A.39) has
been divided by κ4N2

τ/N2
c , and the result evaluated on 1000 random configurations, as explained

above. The maximum of the absolute real part of this is plotted in fig. A.21. The fact that
this curve tends to zero as 1/Nτ permits the conclusion that the four-point interaction is indeed
irrelevant for large Nτ .

In summary, it can be stated that not all O(κ4)-terms which are of parametrically subleading
order in Nτ can be dropped in the continuum limit. The reason for this is that h1 and h̄1
are not fixed, but vanishing exponentially for Nτ → ∞. Even for those terms which finally
become insignificant, the approximation is justified only for Nτ & 30 to 50. This is roughly in
concordance with the findings in [7], which indicate that the low-temperature approximation
gives a result better than 2 % for Nτ ≥ 50. Consequently, the anticipated simplification of the
action is not applicable for the Nτ -values used in this thesis (4 and 6). There are, however,
some reservations about these statements. On the one hand, as has already been considered,
the gauge corrections soften the exponential decay of h1. It is not clear how the inclusion of
even higher corrections in h1 would change the results of the analysis. On the other hand, the
function (3.43) employed to compute β from the lattice spacing is only valid for β < 6.92, but
yields already β ≈ 6.96 at Nτ = 14, and β ≈ 7.84 at Nτ = 100. As alternatives to eq. (3.43)
are not easy to be found, also the influence of this systematic error remains uncertain.
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4. Higher-order corrections to the
nearest-neighbour fermion interaction

The aim of this chapter is to derive higher orders of the hopping parameter expansion of the
quark determinant. As the corrections up to O(κ4) are already known, we will proceed with the
calculation of the O(κ6)-contribution. Here, only the interaction between nearest-neighbouring
sites on the spatial lattice shall be studied. This corresponds to the factor with s0 = 2 in the
spatial loop expansion eq. (2.52).

To start with, the determinant in this formula has to be expressed in terms of traces. Applying
either a trace-log expansion according to eq. (2.53) or using the LeVerrier-Fadeev algorithm to
compute the coefficients in eq. (2.56) yields up to the desired order:

det
c,d,t

(
1− κ2M̃C2

)Nf = 1−Nfκ
2 trc,d,t

(
M̃C2

)
+ κ4

2
(
N2
f tr2

c,d,t

(
M̃C2

)
−Nf trc,d,t

(
M̃2
C2

))
− κ6

6
(
N3
f tr3

c,d,t

(
M̃C2

)
− 3N2

f trc,d,t
(
M̃C2

)
trc,d,t

(
M̃2
C2

)
+ 2Nf trc,d,t

(
M̃3
C2

))
+O(κ8). (4.1)

The task is now to explicitly perform the remaining steps outlined in section 2.5.2 for every one
of these terms.

4.1. The Dirac trace

The first issue one needs to address is the Dirac trace. For this purpose, a more specific form of
above traces is required. All the powers of M̃C2 appearing in eq. (4.1) can be written in terms
of S± and (1− κT )−1: The definition of the loop matrices eq. (2.51) implies that

M̃C2 = S+
x,x+î(1− κT )−1

x+îS
−
x+î,x(1− κT )−1

x (4.2)

for the path C2 which connects x and x+ î. This equation can be plugged into the relevant traces
of powers of M̃C2 . The Dirac structure of the resulting expressions is dictated by eqs. (2.37),
(2.38) and (2.47), that is

S±i ∝ 1∓ γi, (1− κT )−1 ∝ 1A+ γ4B, (4.3)

where A and B are no longer matrices in spin space. It turns out that solely by means of these
relations and the properties of the Euclidean Dirac matrices, the Dirac traces for the nearest-
neighbour interaction can be evaluated in general. Suppressing the colour and space-time
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indices for the moment, one has

trd
(
M̃k
C2

)
∼ trd

{
[(1− γi)(1A1 + γ4B1)(1 + γi)(1A2 + γ4B2)]k

}
= trd

{
[(1A1 − γiA1 + γ4B1 − γiγ4B1)(1A2 + γiA2 + γ4B2 + γiγ4B2)]k

}
= trd {[1A1A2 + γ4A1B2 − γiγiA1A2 − γiγiγ4A1B2 + γ4B1A2 + γ4γiB1A2

+ γ4γ4B1B2 + γ4γiγ4B1B2 − γiγ4B1A2 − γiγ4γiB1A2 − γiγ4γ4B1B2

− γiγ4γiγ4B1B2]k
}

(4.4)

Here, the index i specifies the spatial orientation of the loop C2, and is never summed over.
By employing the anticommutator of the Euclidean Dirac matrices, {γ4, γi} = γ4γi + γiγ4 = 0
and γ2

µ = 1/2{γµ, γµ} = 1, one realises that many of the terms in eq. (4.4) are actually identical.
Hence, the result simplifies to

trd
(
M̃k
C2

)
∼ trd

{
[2(1B1B2 − γiB1B2 + γ4γiB1A2 + γ4B1A2)]k

}
= 2k trd

{
[(1− γi)B1B2 + γ4(1 + γi)B1A2]k

}
. (4.5)

After expanding the k-th power inside the trace, the second term (the one which is proportional
to γ4(1 + γi)) can finally be found

• alone. This vanishes because trd(γ4(1 + γi)) = 0.

• multiplied with itself (one or more times). This vanishes because γ4(1 + γi)γ4(1 + γi) =
(1− γi)(1 + γi) = 0.

• multiplied with (1− γi) from the right. This vanishes because γ4(1 + γi)(1− γi) = 0.

• multiplied with (1− γi) from the left. Since (1− γi)γ4(1 + γi) = γ4(1 + γi)(1 + γi) =
2γ4(1+ γi), this case simply reproduces the second term from eq. (4.5) with an additional
prefactor of 2. This eventually also vanishes by induction and the other three cases.

Consequently, the second term in eq. (4.5) never contributes anything after evaluating the Dirac
trace. Regarding the first term, one notes that (1− γi)k = 2k−1(1− γi) and trd γi = 0, so that
the ultimate result is

trd
(
M̃k
C2

)
∼ 2k trd

{
[(1− γi)B1B2]k

}
= 22k−1Nd(B1B2)k = 22k+1(B1B2)k. (4.6)

It has thus been proved that the Dirac trace only leaves Bs for the nearest-neighbour interaction.

In order to write down the complete expressions for the traces of powers of M̃C2 , one needs to
adopt the full definitions of the spatial hopping terms and the Bs, including all colour, spatial
and temporal indices. The last summand of the O(κ6)-contribution in eq. (4.1), for instance,
reads after the evaluation of the Dirac trace

trc,d,t
(
M̃3
C2

)
= 27 ∑

x4,y4,z4,a4,b4,c4

Ui(x, x4)I,J B(x+î,x4),(x+î,a4);J,KU
†
i (x, a4)K,LB(x,a4),(x,y4);L,M

Ui(x, y4)M,NB(x+î,y4),(x+î,b4);N,OU
†
i (x, b4)O,P B(x,b4),(x,z4);P,Q

Ui(x, z4)Q,R B(x+î,z4),(x+î,c4);R,S U
†
i (x, c4)S,T B(x,c4),(x,x4);T,I .

(4.7)

Here, x4, y4, z4, a4, b4 and c4 are the temporal indices and the capital letters denote the colour
indices, for which the Einstein summation convention applies. The remaining O(κ6)-terms in
eq. (4.1) look similar, but have a different index structure in colour and temporal space.
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4.2. Integration over spatial links

τ

x

(a) 3 mesons (or baryon
& antibaryon) at the
same time

τ

x

(b) 2 mesons + 1 meson

τ

x

(c) 3× 1 meson

τ

x

(d) Baryon + antibaryon
at different times

Figure 4.1.: Illustration of the physically distinct particle configurations for the O(κ6)-
contribution to the nearest-neighbour interaction

4.2. Integration over spatial links

The next stage of the procedure described in section 2.5.2 is the integration over the spatial
links. Before plugging in the results for the gauge integrals, the temporal sums in expressions
like eq. (4.7) need to be split into all combinations of mutually equal temporal coordinates
which yield a non-vanishing contribution after gauge integration. In this way, one can figure
out which of the links actually lie on top of each other and are hence part of the same integral.
Physically, this can be understood as particles hopping between the two lattice sites x and
x + î. Figure 4.1 gives an overview over the possible arrangements for the O(κ6)-contribution:
Either all hops happen at the same time, which corresponds to three mesons or one baryon
and one antibaryon being interchanged simultaneously (cf. fig. 4.1a). Or one quark- and one
antiquark-hop happen at a different time, so that two mesons are exchanged at one time and
one meson at a later (or earlier) time (cf. fig. 4.1b). Another option is that all three mesons are
interchanged at unequal times (cf. fig. 4.1c). Finally, also three quarks and three antiquarks can
be grouped together, which is interpreted as one baryon and one antibaryon being exchanged
separately (cf. fig. 4.1d). One has to keep in mind that these are only the four physically
distinct cases. For the mathematics, by contrast, all possible permutations of these have to be
taken into account, since the individual gauge links possess different colour indices as well.
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4. Higher-order corrections to the nearest-neighbour fermion interaction

For the example from eq. (4.7) this means that

∫
[dUi] trc,d,t

(
M̃3
C2

)
= 27

∫
[dUi]


∑
x4

(· · · )x4=a4=y4=b4=z4=c4

+
∑
x4 6=y4

[
(· · · ) x4=a4

y4=b4=z4=c4
+ (· · · ) x4=b4

y4=a4=z4=c4

+ (· · · ) x4=c4
y4=a4=b4=z4

+ (· · · )x4=a4=b4=z4
y4=c4

+ (· · · )x4=a4=c4=z4
y4=b4

+ (· · · )x4=b4=c4=z4
y4=a4

]
+
∑
x4 6=z4

[
(· · · ) z4=a4

x4=y4=b4=c4
+ (· · · ) z4=b4

x4=a4=y4=c4

+ (· · · ) z4=c4
x4=a4=y4=b4

]

+
∑

x4 6=y4 6=z4

 (· · · )x4=a4
y4=b4
z4=c4

+ (· · · )x4=a4
y4=c4
z4=b4

+ (· · · )x4=b4
y4=c4
z4=a4

+ (· · · )x4=b4
y4=a4
z4=c4

+ (· · · )x4=c4
y4=a4
z4=b4

+ (· · · )x4=c4
y4=b4
z4=a4


+

∑
x4 6=a4

(· · · )x4=y4=z4
a4=b4=c4

 . (4.8)

One can now plug the corresponding results of the gauge integrals over the spatial links from
appendix A.2 into each of these terms. Due to the multitude and the length of the expressions,
explicit calculations will not be shown for all cases, but only for two typical instances. The
term highlighted in yellow is one of the six possible permutations of the exchange of three
individual mesons (cf. fig. 4.1c). Therefore, the most simple integral eq. (A.18) appears three
times, and the result (without the prefactor 27) is

∑
x4 6=y4 6=z4

(∫
SU(3)

dU UI,JU
†
K,L

)
B(x+î,x4),(x+î,x4);J,KB(x,x4),(x,y4);L,M

(∫
SU(3)

dU UM,NU
†
O,P

)

B(x+î,y4),(x+î,y4);N,OB(x,y4),(x,z4);P,Q

(∫
SU(3)

dU UQ,RU
†
S,T

)
B(x+î,z4),(x+î,z4);R,S

B(x,z4),(x,x4);T,I

=
∑

x4 6=y4 6=z4

1
27δI,LδJ,KδM,P δN,OδQ,T δR,S

(
B(x+î,x4),(x+î,x4);J,KB(x,x4),(x,y4);L,M

B(x+î,y4),(x+î,y4);N,OB(x,y4),(x,z4);P,QB(x+î,z4),(x+î,z4);R,SB(x,z4),(x,x4);T,I
)

=
∑

x4 6=y4 6=z4

1
27 trc(B(x + î, x4, x4)) trc(B(x + î, y4, y4)) trc(B(x + î, z4, z4))

trc(B(x, x4, y4)B(x, y4, z4)B(x, z4, x4))
(4.9)

where the shortened notation B(x, x4, y4) = B(x,x4),(x,y4) has been introduced. This demon-
strates that the gauge integrals describing an exchange of mesons yield Kronecker δs, which in
turn give traces of B after the contraction of the colour indices. The term highlighted in blue
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4.2. Integration over spatial links

encodes the separate exchange of a baryon and an antibaryon depicted in fig. 4.1d. Here, the
integrals from eqs. (A.20) and (A.21) arise, leading to

∑
x4 6=a4

(∫
SU(3)

dU UI,JUM,NUQ,R

)(∫
SU(3)

dU U †K,LU
†
O,PU

†
S,T

)
B(x+î,x4),(x+î,a4);J,K

B(x,a4),(x,x4);L,MB(x+î,x4),(x+î,a4);N,OB(x,a4),(x,x4);P,QB(x+î,x4),(x+î,a4);R,S

B(x,a4),(x,x4);T,I

=
∑
x4 6=a4

1
36εI,M,QεJ,N,RεK,O,SεL,P,T

(
B(x+î,x4),(x+î,a4);J,KB(x,a4),(x,x4);L,MB(x+î,x4),(x+î,a4);N,O

B(x,a4),(x,x4);P,QB(x+î,x4),(x+î,a4);R,SB(x,a4),(x,x4);T,I
)

=
∑
x4 6=a4

det
c

(B(x + î, x4, a4)) det
c

(B(x, a4, x4)). (4.10)

It has thus been illustrated that the gauge integrals belonging to an exchange of (anti)baryons
yield Levi-Civita εs, which in turn give determinants of B after the contraction of the colour
indices.

Proceeding like this for all the other summands in eq. (4.8), and repeating the same steps
for the remaining O(κ6)-terms in eq. (4.1), all gauge integrals over the spatial links can be
evaluated. In this way, the O(κ6)-contribution of the nearest-neighbour interaction to the
kinetic quark determinant may be expressed in terms of traces and determinants of powers
of B. Above derivation scheme has been automated with Mathematica in the context of the
present thesis. The basic approach is very similar to the one employed for the calculation by
hand: To begin with, the different traces of powers of M̃C2 which are needed according to
eq. (4.1) are written out in terms of Bs, generating the suitable temporal and colour index
structure. These are immediately equipped with the correct prefactors from eqs. (4.1) and (4.6)
to account for the Dirac trace. In the next step, the particle configurations which are allowed
by the gauge integration and their permutations are determined. This can be done purely based
on the overall set of temporal indices, as each temporal index can be uniquely identified with
a spatial gauge link (cf. eq. (4.7)). After having split the temporal sums in this manner, the
gauge integrations have to be carried out1. For each part of the sum, first the resulting colour
δs and εs are contracted with the indices of the Bs. Then, their temporal indices are contracted
as dictated by the particle configuration. Afterwards, the computer program analyses the
final colour index structure of the terms in order to convert the index notation to traces and
determinants. Since the contraction of the temporal coordinates does not necessarily leave
the ones with the lowest indices, they need to be renamed appropriately. This additionally
permits the recognition of some terms that are actually identical, which would not be possible
otherwise.

Ultimately, one can exploit further simplifications which are due to the summation over the
spatial position x. Namely, terms that transform into each other under the interchange of x
and x + î give the same contribution. An example of this is∑

x

∑
τ1 6=τ2

trc(B(x + î, τ1, τ1)) trc(B(x + î, τ1, τ2)B(x + î, τ2, τ1))
trc(B(x, τ1, τ1)B(x, τ1, τ2)B(x, τ2, τ1))

=
∑

x

∑
τ1 6=τ2

trc(B(x, τ1, τ1)) trc(B(x, τ1, τ2)B(x, τ2, τ1))
trc(B(x + î, τ1, τ1)B(x + î, τ1, τ2)B(x + î, τ2, τ1))

(4.11)

1For this purpose, a Mathematica worksheet provided by Jonas Scheunert is used.
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4. Higher-order corrections to the nearest-neighbour fermion interaction

With the exception of terms that are already symmetric under x↔ x + î, this spares one from
writing half of the expressions. The identification of such opportunities to shorten the final
result has been automated as well.

The implementation in Mathematica has been tested for the O(κ2)- and O(κ4)-contributions,
and was found to agree with the results known from [10]. Apart from this, many minor checks
were performed for all the intermediary stages of the derivation. After having convinced oneself
in this way that the program is indeed working properly, it has been applied to compute the
complete O(κ6)-correction to the nearest-neighbour fermion interaction before the temporal
summation. The outcome is shown in appendix A.8 because of the length of the expressions.

4.3. Evaluation of the temporal sums

What remains to be done is the explicit evaluation of the sums over the temporal positions. A
full automation of this has not yet been accomplished, so that at least the elementary steps
have to be worked out by hand. In the following, we will go through these in detail both for
traces and for determinants2 of B, and explain how the last step of the summation can still be
included in the Mathematica implementation.

4.3.1. Traces

As already mentioned in section 2.5.2, the diagonal part of B is independent of the temporal
coordinate. Traces which are only made up of such diagonal parts can therefore be pulled in
front of the sums and replaced by the appropriate expressions in terms of the Wn1m1n2m2s. The
most simple case is

tr(B(x, τ, τ)) = −1
2W

−
1111(x). (4.12)

Higher powers of B need to be expanded owing to the sum in B = B+ −B− (cf. eq. (2.47)),
which results in

tr(B(x, τ, τ)B(x, τ, τ)) = 1
4
(
W+

2222(x)− 2W1111(x)
)
, (4.13)

tr(B(x, τ, τ)B(x, τ, τ)B(x, τ, τ)) = 1
8
(
−W−3333(x) + 3W2211(x)− 3W1122(x)

)
. (4.14)

If a term also contains off-diagonal parts of B, one has to split the temporal sums into
all possible arrangements of the temporal coordinates, as was reasoned in section 2.5.2. The
easiest case here is the one of tr(B(x, τ1, τ2)B(x, τ2, τ1)), if all other traces are time-independent.
Splitting the sum, plugging in the formula for the off-diagonal part of B (cf. eq. (2.48)),
expanding the powers and combining the products of the fractional Wilson lines to whole
Wilson lines yields∑

τ1 6=τ2
tr(B(x, τ1, τ2)B(x, τ2, τ1))

= −1
4

{ ∑
τ1<τ2

[
W+

2121(x) +
(
(2κ)2(τ2−τ1) + (2κ)2(Nτ−(τ2−τ1))

)
W1010(x)

]
+
∑
τ1>τ2

[
W+

2121(x) +
(
(2κ)2(Nτ−(τ1−τ2)) + (2κ)2(τ1−τ2)

)
W1010(x)

]}
(4.15)

2All traces and determinants in this section are taken over colour space.
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4.3. Evaluation of the temporal sums

This shows that the result is the same for both parts of the sum, if in the second part τ1 is
renamed to τ2 and vice versa. For this reason, it is sufficient to consider the first part, where
the sum reads ∑τ1<τ2 = ∑Nτ−1

τ1=0
∑Nτ−1
τ2=τ1+1.

The most involved computation is the one for the prefactor of W1010(x), which solely depends
on the difference τ = τ2 − τ1 ∈ [1, Nτ − 1]. Each of these differences occurs Nτ − τ times. For
instance, there are Nτ − 1 possibilities to pick two coordinates τ1 and τ2 with a distance of 1,
Nτ − 2 possibilities for a distance of 2, and so on, until only one option remains for a distance
of Nτ − 1. The summation can hence be written in terms of this difference, if a prefactor of
Nτ − τ is introduced in the summand:

Nτ−1∑
τ1=0

Nτ−1∑
τ2=τ1+1

[
(2κ)2(τ2−τ1) + (2κ)2(Nτ−(τ2−τ1))

]
=

Nτ−1∑
τ=1

[
(Nτ − τ)(2κ)2τ + (Nτ − τ)(2κ)2(Nτ−τ)

]

=
Nτ−1∑
τ=1

(Nτ − τ)(2κ)2τ +
Nτ−1∑
τ̃=1

τ̃(2κ)2τ̃

= Nτ

Nτ−1∑
τ=1

(2κ)2τ . (4.16)

Here, in the second summand Nτ − τ = τ̃ has been substituted. The final result for the term in
eq. (4.15) is thus

∑
τ1 6=τ2

tr(B(x, τ1, τ2)B(x, τ2, τ1)) = −Nτ (Nτ − 1)
4

(
W+

2121(x) + 2
Nτ − 1

Nτ−1∑
τ=1

(2κ)2τW1010(x)
)
.

(4.17)

The steps leading from eq. (4.15) to eq. (4.17) can be automated if the approach is slightly
adapted. For this purpose, one loops over all permutations P of the temporal indices involved
into the whole term in order to mimic their arrangements. Subsequently, one works on
the level of individual traces and handles them independently. An expression of the type
tr(B(x, τ1, τ2)B(x, τ2, τ1)) is then replaced by

−1
4
[
W+

2121(x) +
(
(2κ)2(τP(2)−τP(1)) + (2κ)2(Nτ−(τP(2)−τP(1)))

)
W1010(x)

]
. (4.18)

Traces over diagonal parts of B are written in terms of the Wn1m1n2m2s by means of eqs. (4.12)
to (4.14). After multiplying all trace factors, the actual temporal summation is performed,
depending on the number of temporal indices contained in the entire term. If only one coordinate
is involved, the term merely needs to be multiplied by an overall factor of Nτ . This is because
only diagonal parts of B can occur under this condition. For two distinct coordinates, one
replaces the difference τP(2) − τP(1) → τ and then sums over it according to ∑Nτ−1

τ=1 (Nτ − τ).
This includes the correcting prefactor from eq. (4.16). In the end, one has to sum over all
permutations P of the temporal indices.

For the example discussed above, where tr(B(x, τ1, τ2)B(x, τ2, τ1)) is only multiplied by
time-independent traces, this process yields

−1
2

Nτ−1∑
τ=1

(Nτ − τ)
[
W+

2121(x) +
(
(2κ)2τ + (2κ)2(Nτ−τ)

)
W1010(x)

]
, (4.19)

since the contributions from both permutations are equal (cf. eq. (4.15)). Upon comparison of
eqs. (4.16) and (4.17) with eq. (4.19), it becomes apparent that both methods are equivalent.
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4. Higher-order corrections to the nearest-neighbour fermion interaction

This statement holds for higher powers of eq. (4.18) as well. As a consequence, it suffices to
expand the powers of B and figure out the products of the fractional Wilson lines for each trace
by hand. This corresponds to the derivation of eq. (4.15) in the case of tr(B(x, τ1, τ2)B(x, τ2, τ1)).
The multiplication of different trace factors and the final temporal summation can be carried
out by the computer.

Another term incorporating two temporal indices which appears in the O(κ6)-contribution
is tr(B(x, τ1, τ1)B(x, τ1, τ2)B(x, τ2, τ1)). Compared to the term studied above, one only needs
to multiply another diagonal part of B inside the trace. In the approach employed for the
automation, such a term is hence replaced by

1
8
[
W−3232(x) +W1121(x)−W2111(x)

+
(
(2κ)2(τP(2)−τP(1)) + (2κ)2(Nτ−(τP(2)−τP(1)))

)
(W2110(x)−W1021(x))

] (4.20)

If there are three distinct temporal indices, the sum has to be split into six parts, corresponding
to all possible arrangements:∑

τ1 6=τ2 6=τ3
=

∑
τ1<τ2<τ3

+
∑

τ1<τ3<τ2

+
∑

τ2<τ3<τ1

+
∑

τ2<τ1<τ3

+
∑

τ3<τ1<τ2

+
∑

τ3<τ2<τ1

. (4.21)

Here, the number of descents in (τ1, τ2, τ3, τ1) can be either one or two, depending on the sign of
the permutation. This leads to two distinguishable results for a trace containing three temporal
indices. For a positive permutation of {τ1, τ2, τ3}, one has for example∑

τ1<τ2<τ3

tr(B(x, τ1, τ2)B(x, τ2, τ3)B(x, τ3, τ1))

= −1
8

∑
τ1<τ2<τ3

[
W3100(x) +W0032(x)

+
(
(2κ)2(τ3−τ1) + (2κ)2(Nτ−(τ3−τ2)) + (2κ)2(Nτ−(τ2−τ1))

)
W2010(x)

+
(
(2κ)2(Nτ−(τ3−τ1)) + (2κ)2(τ2−τ1) + (2κ)2(τ3−τ2)

)
W1021(x)

]
(4.22)

and for a negative permutation∑
τ1<τ3<τ2

tr(B(x, τ1, τ2)B(x, τ2, τ3)B(x, τ3, τ1))

= 1
8

∑
τ1<τ3<τ2

[
W3200(x) +W0031(x)

+
(
(2κ)2(Nτ−(τ3−τ1)) + (2κ)2(τ2−τ1) + (2κ)2(Nτ−(τ2−τ3))

)
W1020(x)

+
(
(2κ)2(τ3−τ1) + (2κ)2(τ2−τ3) + (2κ)2(Nτ−(τ2−τ1))

)
W2110(x)

]
(4.23)

For the remaining permutations from eq. (4.21) these relations also apply, with the temporal
coordinates renamed appropriately.

The most difficult computations are again the ones for the prefactors consisting of powers of
2κ. For the purpose of writing the sums in terms of the differences τ = τ2 − τ1 and τ ′ = τ3 − τ2
(for τ1 < τ2 < τ3), one needs to introduce a prefactor of Nτ − τ − τ ′ in the summand. It
accounts for the different number of possibilities to choose three temporal indices with the
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4.3. Evaluation of the temporal sums

specified distances. The prefactor of W2010(x) in eq. (4.22) then becomes

Nτ−2∑
τ=1

Nτ−τ−1∑
τ ′=1

(Nτ − τ − τ ′)
(
(2κ)2(τ+τ ′) + (2κ)2(Nτ−τ ′) + (2κ)2(Nτ−τ)

)

=
Nτ−2∑
τ=1

Nτ−τ−1∑
τ̃=1

τ̃(2κ)2(Nτ−τ̃) +
Nτ−2∑
τ=1

Nτ−τ−1∑
τ ′=1

(Nτ − τ − τ ′)(2κ)2(Nτ−τ ′)

+
Nτ−2∑
τ=1

Nτ−τ−1∑
τ ′=1

(Nτ − τ − τ ′)(2κ)2(Nτ−τ)

=
Nτ−2∑
τ=1

Nτ−τ−1∑
τ ′=1

(Nτ − τ)(2κ)2(Nτ−τ ′) +
Nτ−2∑
τ=1

Nτ−τ−1∑
τ ′=1

(Nτ − τ − τ ′)(2κ)2(Nτ−τ)

=
Nτ−2∑
τ=1

Nτ−1∑
τ̃=τ+1

(Nτ − τ)(2κ)2τ̃ +
Nτ−1∑
τ̃=2

τ̃−1∑
τ ′=1

(τ̃ − τ ′)(2κ)2τ̃

=
Nτ−1∑
τ̃=2

τ̃−1∑
τ=1

(Nτ − τ)(2κ)2τ̃ +
Nτ−1∑
τ̃=2

τ̃−1∑
τ ′=1

(τ̃ − τ ′)(2κ)2τ̃ = Nτ

Nτ−1∑
τ=2

(τ − 1)(2κ)2τ . (4.24)

From the first to the second line, τ̃ = Nτ − τ − τ ′ has been substituted in the first summand.
From the third to the fourth line, τ̃ = Nτ − τ ′ has been substituted in the term at the front, and
τ̃ = Nτ − τ in the term at the back. A similar calculation can be performed for the prefactor of
W1021(x) in eq. (4.22):

Nτ−2∑
τ=1

Nτ−τ−1∑
τ ′=1

(Nτ − τ − τ ′)
(
(2κ)2(Nτ−τ−τ ′) + (2κ)2τ + (2κ)2τ ′

)

=
Nτ−2∑
τ=1

Nτ−τ−1∑
τ̃=1

τ̃(2κ)2τ̃ +
Nτ−2∑
τ=1

Nτ−τ−1∑
τ ′=1

(Nτ − τ − τ ′)(2κ)2τ

+
Nτ−2∑
τ=1

Nτ−τ−1∑
τ ′=1

(Nτ − τ − τ ′)(2κ)2τ ′

=
Nτ−2∑
τ=1

Nτ−τ−1∑
τ ′=1

(Nτ − τ − τ ′)(2κ)2τ +
Nτ−2∑
τ=1

Nτ−τ−1∑
τ ′=1

(Nτ − τ)(2κ)2τ ′

=
Nτ−2∑
τ=1

Nτ−τ−1∑
τ ′=1

(Nτ − τ − τ ′)(2κ)2τ +
Nτ−2∑
τ ′=1

Nτ−τ ′−1∑
τ=1

(Nτ − τ)(2κ)2τ ′

= Nτ

Nτ−2∑
τ=1

(Nτ − τ − 1)(2κ)2τ . (4.25)

Here, the same substitution as above has been employed from the first to the second line,
namely τ̃ = Nτ − τ − τ ′ in the summand at the front. For the negative permutations of the
temporal indices (cf. eq. (4.23)), identical prefactors emerge, if the temporal distances τ and τ ′
are aptly defined. The final result for tr(B(x, τ1, τ2)B(x, τ2, τ3)B(x, τ3, τ1)) is thus, if it is only
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4. Higher-order corrections to the nearest-neighbour fermion interaction

multiplied by time-independent traces,∑
τ1 6=τ2 6=τ3

tr(B(x, τ1, τ2)B(x, τ2, τ3)B(x, τ3, τ1))

= −Nτ (Nτ − 1)(Nτ − 2)
16

{
W−3131(x)−W−3232(x)

+ 6
(Nτ − 1)(Nτ − 2)

[
Nτ−1∑
τ=2

(τ − 1)(2κ)2τ (W2010(x)−W1020(x))

+
Nτ−2∑
τ=1

(Nτ − τ − 1)(2κ)2τ (W1021(x)−W2110(x))
]}

(4.26)

The summation over three temporal coordinates can be incorporated in the Mathematica
implementation in a similar way to the one over two indices. To that end, expressions of the
form tr(B(x, τ1, τ2)B(x, τ2, τ3)B(x, τ3, τ1)) are replaced by

−1
8
[
W3100(x) +W0032(x)

+
(
(2κ)2(τP(3)−τP(1)) + (2κ)2(Nτ−(τP(3)−τP(2))) + (2κ)2(Nτ−(τP(2)−τP(1)))

)
W2010(x)

+
(
(2κ)2(Nτ−(τP(3)−τP(1))) + (2κ)2(τP(2)−τP(1)) + (2κ)2(τP(3)−τP(2))

)
W1021(x)

]
, (4.27)

if the permutation sign of (τP(1), τP(2), τP(3)) is positive, and by

1
8
[
W3200(x) +W0031(x)

+
(
(2κ)2(Nτ−(τP(2)−τP(1))) + (2κ)2(τP(3)−τP(1)) + (2κ)2(Nτ−(τP(3)−τP(2)))

)
W1020(x)

+
(
(2κ)2(τP(2)−τP(1)) + (2κ)2(τP(3)−τP(2)) + (2κ)2(Nτ−(τP(3)−τP(1)))

)
W2110(x)

]
, (4.28)

if the permutation sign of (τP(1), τP(2), τP(3)) is negative. Note that in the latter case, τP(3)
plays the role of τ2 and τP(2) the role of τ3 in comparison with eq. (4.23). This is due to the
fact that the order of τ2 and τ3 has already been interchanged there, which is achieved by
the permutation P in the automated version. After the multiplication of all trace factors, the
temporal summation has to be carried out. For terms including three distinct temporal indices,
the distances are replaced according to τP(2) − τP(1) → τ and τP(3) − τP(2) → τ ′, and then
summed over by ∑Nτ−2

τ=1
∑Nτ−τ−1
τ ′=1 (Nτ − τ − τ ′). This contains the prefactor which accounts for

the transformation of the temporal sums to the differences τ and τ ′.

With this automation at our disposal, we can hence evaluate the temporal sums over all
terms comprising exclusively traces which are relevant up to O(κ6). It suffices to derive the
elementary traces by hand, as attained with eqs. (4.12) to (4.14), (4.18), (4.20), (4.27) and (4.28).
The multiplication of these factors and the final temporal summation are dealt with by the
computer.

4.3.2. Determinants

The last topic that needs to be discussed are terms involving determinants of B. Because of
the multiplicativity of the determinant, it is sufficient to distinguish two cases here: one for the
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4.3. Evaluation of the temporal sums

part of B which is diagonal in temporal space, and one for the off-diagonal part. Determinants
of more intricate products of these can always be written as products of determinants of one
single B-matrix.

Diagonal part of B

The determinant of the diagonal part of B can be formulated in terms of traces over Wilson
lines W by adopting the relation (A.31) for the determinant of a 3× 3-matrix. Prior to that,
one has to factor out the first summand, which stems from B+:

det(B(x, τ, τ)) = det
(
−1

2
h1Wx

1 + h1Wx
+ 1

2
h̄1W

†
x

1 + h̄1W
†
x

)

= det
(
−1

2
h1Wx

1 + h1Wx

)
det

(
1− h̄1W

†
x

h1Wx

1 + h1Wx

1 + h̄1W
†
x

)

= −1
8

h3
1

1 + h1Lx + h2
1L
†
x + h3

1
det

(
1− e−2Nτaµ(W †x)21 + h1Wx

1 + h̄1W
†
x

)
. (4.29)

Here, eq. (A.32) has been employed to express the determinant of 1+h1Wx in terms of Polyakov
loops. Moreover, it has been exploited that Wx ∈ SU(3) and therefore possesses determinant 1
and inverse W †x. Applying now eq. (A.31) to the determinant in the last line of eq. (4.29) and
using that the adjugate of an invertible square matrix A is given by adj(A) = A−1 det(A) (cf.
eq. (2.66)) leads to

det
(
1− e−2Nτaµ(W †x)21 + h1Wx

1 + h̄1W
†
x

)

= 1− e−2Nτaµ tr
(

(W †x)21 + h1Wx

1 + h̄1W
†
x

)

+ e−4Nτaµ tr
(
1 + h̄1W

†
x

1 + h1Wx
(Wx)2

)
det

(
(W †x)21 + h1Wx

1 + h̄1W
†
x

)

− e−6Nτaµ det
(

(W †x)21 + h1Wx

1 + h̄1W
†
x

)
= 1− (2κ)−2Nτ (W0012(x) +W0112(x))

+ e−6Nτaµ
[
(2κ)−2Nτ (W1200(x) +W1201(x))− 1

] 1 + h1Lx + h2
1L
†
x + h3

1

1 + h̄1L
†
x + h̄2

1Lx + h̄3
1

(4.30)

Accordingly, the final result for the determinant of the part of B which is diagonal in temporal
space is

det(B(x, τ, τ)) = −h
3
1

8

[
1− (2κ)−2Nτ (W0012(x) +W0112(x))

1 + h1Lx + h2
1L
†
x + h3

1

+ e−6Nτaµ (2κ)−2Nτ (W1200(x) +W1201(x))− 1
1 + h̄1L

†
x + h̄2

1Lx + h̄3
1

]
. (4.31)

This is independent of the temporal coordinate, rendering the summation over it trivial.
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4. Higher-order corrections to the nearest-neighbour fermion interaction

Off-diagonal part of B

For the off-diagonal part of B, one needs to further discriminate between the two possible
arrangements of its temporal indices. In order to facilitate the evaluation of the temporal sums,
the determinant is converted to traces in a similar fashion to above:

det(B(x, τ1, τ2))|τ1<τ2 = det
(

1
2h

τ2−τ1
Nτ

1
Wx(τ1, τ2)
1 + h1Wx

+ 1
2 h̄

1+ τ1−τ2
Nτ

1
W †x(τ1, τ2)
1+ h̄1W

†
x

)

= 1
8

h
3 τ2−τ1

Nτ
1

1 + h1Lx + h2
1L
†
x + h3

1
det

(
1 + (2κ)2(τ1−τ2)(1 + h1Wx) h̄1W

†
x

1 + h̄1W
†
x

)

= h
3 τ2−τ1

Nτ
1

8

[
1 + (2κ)2(τ1−τ2) (W0011(x) +W0111(x))

1 + h1Lx + h2
1L
†
x + h3

1

+ h̄3
1(2κ)4(τ1−τ2) (2κ)−2Nτ (W1100(x) +W1101(x)) + (2κ)2(τ1−τ2)

1 + h̄1L
†
x + h̄2

1Lx + h̄3
1

]
(4.32)

and

det(B(x, τ1, τ2))|τ1>τ2 = det
(
−1

2h
1+ τ2−τ1

Nτ
1

Wx(τ1, τ2)
1 + h1Wx

− 1
2 h̄

τ1−τ2
Nτ

1
W †x(τ1, τ2)
1 + h̄1W

†
x

)

= −1
8

h
3
(
1+ τ2−τ1

Nτ

)
1

1 + h1Lx + h2
1L
†
x + h3

1

det
(
1+ (2κ)2(τ1−τ2−Nτ )(1 + h1Wx) h̄1W

†
x

1 + h̄1W
†
x

)

= −h
3
(
1+ τ2−τ1

Nτ

)
1

8

[
1 + (2κ)2(τ1−τ2−Nτ ) (W0011(x) +W0111(x))

1 + h1Lx + h2
1L
†
x + h3

1

+ h̄3
1(2κ)4(τ1−τ2−Nτ )

(2κ)−2Nτ (W1100(x) +W1101(x)) + (2κ)2(τ1−τ2−Nτ )

1 + h̄1L
†
x + h̄2

1Lx + h̄3
1

] (4.33)

This proves that also the determinants are gauge invariant under all circumstances: Owing to
the fact that detWx(τ1, τ2) = 1, only whole Wilson lines remain, which form closed loops in
temporal direction.

These results can be integrated into the Mathematica implementation in the following way:
Terms of the type det(B(x, τ1, τ2)) are replaced by eq. (4.32) if τP(1) < τP(2), that is if the
permutation sign of (τP(1), τP(2)) is positive. If it is negative, which means τP(1) > τP(2), such
terms are replaced by eq. (4.33). It is worth emphasising that here, in contrast to the traces,
one has to use τ1 and τ2 in the inserted expressions, not τP(1) and τP(2). The reason for this is
that in the case of the traces, multiple arrangements of the temporal coordinates are treated at
once by means of the permutation P. This does not work out correctly for the determinants,
which is why the two arrangements have to be handled individually. The permutation P merely
serves to differentiate between them.

The automation again spares us from calculating products of eqs. (4.32) and (4.33), as well
as from carrying out the actual temporal sums by hand. These tasks are accomplished by
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4.4. Ladder resummation

the computer. Since the final results become extremely lengthy and cumbersome, they are
not displayed within this thesis. On the same grounds, and because only the contribution to
the nearest-neighbour interaction has been obtained so far, the O(κ6)-corrections were not
implemented in the numerical simulation of chapter 3. On the other hand, the derivation
scheme worked out in the present chapter smooths the path for the computation of even
higher corrections ordered by the interaction range. In addition, it enables further analytical
investigations of the effective theory.

4.4. Ladder resummation

As an example of the application of analytical techniques, a resummation scheme which is specific
to the nearest-neighbour interaction shall be discussed. This so-called ladder resummation
was introduced in [24]. The underlying idea is to study a particular subset of all terms in
the nearest-neighbour interaction eq. (4.1), namely the single-trace terms trc,d,t

(
M̃k
C2

)
. These

still contain a wide variety of graphs, which necessitate the calculation of more and more
complicated gauge integrals. Thus, the subset of terms under consideration is further shrunk to
those where always consecutive hops are paired with each other for the gauge integration. This
is one possible permutation of the particle configuration where individual mesons are exchanged
between the two spatial lattice sites (cf. fig. 4.1c). As a consequence, only the most simple
gauge integral eq. (A.18) is required.

In order to simplify the analysis, we will restrict ourselves to the dense regime, where the
thermodynamics is dominated by quarks, not antiquarks. We will hence neglect all terms
involving antiquarks, which are mathematically encoded by h̄1. In [24] it has been proved that
the gauge integration for aforementioned terms leads in this case to

Ak = 1
k

(
2κ2

Nc

)k ∑
τ1 6=τ2 6=... 6=τk

trc(B(x, τ1, τ2)B(x, τ2, τ3) · · ·B(x, τk, τ1))
(1

2W1100(x + î)
)k
(4.34)

for the embedding of the ladder which describes the interaction between two adjacent spatial
lattice sites. Here, the sum over the temporal indices has to be restricted to the subset where
none of them are equal3. This guarantees that the meson hops all happen at distinct times,
so that the gauge integrals factorise. For k = 3, for instance, the term which enters into the
ladder resummation is given by eq. (4.9) (where the prefactor (2κ2)3/3 is omitted).

The remaining task is to evaluate the colour trace in eq. (4.34) for all possible arrangements
of the temporal coordinates. From the structure of B in temporal space it is clear that
the result can only depend on the ordering of τ1, . . . , τk, not on their precise values. This
becomes particularly conspicuous if one adopts the temporal gauge. On the lattice, this
corresponds to setting all temporal gauge links to 1 [4]. Because our lattice does not have
infinite temporal extent, the gauge fixing is only allowed for all temporal links but one. Here,
the links U4(x, Nτ − 1), that is the ones which cross the temporal boundary of the lattice, are

3Many thanks to Jonas Scheunert for pointing this out.
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4. Higher-order corrections to the nearest-neighbour fermion interaction

kept at a non-trivial value Wx. The temporal structure of B then looks like

Bx = 1
2



−h1Wx h
1
Nτ
1 1 h

2
Nτ
1 1 h

3
Nτ
1 1 · · ·

−h
Nτ−1
Nτ

1 Wx −h1Wx h
1
Nτ
1 1 h

2
Nτ
1 1

−h
Nτ−2
Nτ

1 Wx −h
Nτ−1
Nτ

1 Wx −h1Wx h
1
Nτ
1 1

−h
Nτ−3
Nτ

1 Wx −h
Nτ−2
Nτ

1 Wx −h
Nτ−1
Nτ

1 Wx −h1Wx
... . . .


(1 + h1Wx)−1. (4.35)

For each crossing of the antiperiodic boundary one obtains a factor of −Wx. Note that
consequently Wx is the value of the Wilson line in temporal gauge, which can be used to
generalise the outcomes of the computation to an arbitrary gauge.

In the colour trace from eq. (4.34), such a crossing of the temporal boundary occurs once for
each descent in the permutation (τ1, τ2, . . . , τk, τ1). At least one descent arises from returning
to the starting point; the maximal number of descents is k− 1. Owing to the cyclic property of
the construction, each cyclic permutation of {τ1, . . . , τk} yields the same number of descents in
(τ1, . . . , τk, τ1). This introduces an overall prefactor of k. Apart from that, it implies that it is
sufficient to consider such permutations of {τ1, . . . , τk} where τk → τ1 is a descent: It is always
possible to rotate (τ1, . . . , τk) in such a way that this is the case. Accordingly, the number of
permutations of {τ1, . . . , τk} with l descents in (τ1, . . . , τk, τ1) is k multiplied by the number of
not cyclically identical permutations of {τ1, . . . , τk} with l − 1 descents.

The not cyclically identical permutations of k indices are most easily determined by switching
to the cycle notation. It describes the effect of repeatedly applying a permutation on the
elements of the set. The permutations sought-after are then those where a specified element is
kept fixed. Without loss of generality, this can be selected to be the first one. Besides, this
choice ensures that τk → τ1 is a descent, as required. The descents inside (τ1, τ2, . . . , τk) all
take place in (τ2, . . . , τk), since the first – and thus smallest – element has been kept fixed. The
not cyclically identical permutations of k indices can hence be mapped onto all permutations
of k − 1 indices by removing the cycle (1) and reducing each number which appears in the
other cycles by 1. Following the above argumentation, this leaves the number of descents in the
corresponding list notations unchanged. For example, the not cyclically identical permutations
of three indices are (1, 2, 3) and (1, 3, 2), having zero and one descents and cycle notations
(1)(2)(3) and (1)(23), respectively. Implementing aforementioned procedure leads to (1)(2)
and (12), which represent all possible permutations of two indices and also have zero and one
descents, respectively.

Therefore, the number of not cyclically identical permutations of k indices with l− 1 descents
is the same as the number of all permutations of k − 1 indices with l − 1 descents. This is
known as Eulerian number

〈
k−1
l−1

〉
[25] 4.

Putting it all together, the colour trace from eq. (4.34) consists of expressions of the type
(−h1Wx)l, where l runs from 1 to k − 1. Due to the trace, the prefactors of h1 from eq. (4.35)
combine in such a way that the final power of h1 matches the one ofWx. In addition to that, the
trace renders the result gauge invariant, so that Wx can be identified with the temporal Wilson
line. The degeneracy factor for each l is k

〈
k−1
l−1

〉
, as derived above. Performing the temporal

summation gives a factor of 1/k! · (Nτ )k for each permutation of the temporal coordinates,

4To identify this with the notation in [25], one has to set An,s = 〈 n
s−1 〉.
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because the rest of the term is time-independent. Here, (Nτ )k = Nτ (Nτ − 1) · · · (Nτ − (k − 1))
is the falling factorial of Nτ . In total, one arrives at∑

τ1 6=τ2 6=... 6=τk

trc(B(x, τ1, τ2)B(x, τ2, τ3) · · ·B(x, τk, τ1))

= 1
2k

(Nτ )k
(k − 1)!

k−1∑
l=1

〈
k − 1
l − 1

〉
trc
(
(−h1Wx)l(1 + h1Wx)−k

)

= 1
2k

(Nτ )k
(k − 1)!

k−1∑
l=1

(−1)l
〈
k − 1
l − 1

〉
Wkl00(x)

= 1
2k

(Nτ )k
(k − 1)! trc

(
k−1∑
l=1

〈
k − 1
l − 1

〉
(−h1Wx)l(1 + h1Wx)−k

)

= 1
2k

(Nτ )k
(k − 1)! trc(Li1−k(−h1Wx)), (4.36)

where in the last line the sum over l has been written in terms of a mathematically well-known
function, the polylogarithm [26]. For the term in eq. (4.34) this means that

Ak = 1
2k

(
κ2

Nc

)k (Nτ )k
k! trc(Li1−k(−h1Wx))(W1100(x + î))k

= 1
2k

(
κ2

Nc

)k (
Nτ

k

)
trc(Li1−k(−h1Wx))(W1100(x + î))k. (4.37)

The conjecture made in [24] that the prefactor of Wkl00(x) in Ak might be independent of k
or inversely proportional to k has hence been disproved. The more involved k-dependence,
however, comes at the price that no closed expression for ∑kAk could be found.

To give some examples, the colour trace for k = 3 yields

∑
τ1 6=τ2 6=τ3

trc(B(x, τ1, τ2)B(x, τ2, τ3)B(x, τ3, τ1)) = −(Nτ )3
16 (W3100(x)−W3200(x)), (4.38)

which agrees with the full expression from eq. (4.26) if one sets h̄1 = 0 there. The complete
contribution of k = 3 to the ladder is thus

A3 = − 1
48

(
κ2

Nc

)3

(Nτ )3(W3100(x)−W3200(x))(W1100(x + î))3, (4.39)

and k = 4 results in

A4 = − 1
384

(
κ2

Nc

)4

(Nτ )4(W4100(x)− 4W4200(x) +W4300(x))(W1100(x + î))4. (4.40)

This demonstrates how certain kinds of terms can be evaluated relatively easily and for a
general order in κ if some further approximations are applied.
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5. Conclusions and outlook

In this thesis, the effective theory for Lattice QCD in the strong coupling and heavy quark
regime was studied with a numerical Monte Carlo simulation. Accordingly, we developed a
Metropolis algorithm with adaptive stepsize in C++. The effective action was implemented
up to O(κ4), where all terms which contribute to the change of the action induced by a local
update were taken into account. In addition, a parallel version of the simulation code was
designed with MPI. This computer program was then used to measure the phase diagram of the
effective theory at zero chemical potential. In particular, we determined the phase boundary
of the deconfinement transition from the expectation value of the Polyakov loop. Likewise,
we located the critical end point, where the type of the transition changes from first order
to crossover. To that end, a finite size scaling analysis of the kurtosis was employed. The
results for static quarks could be checked successfully against the ones from the literature, thus
verifying our implementation of this part of the action, as well as the algorithm and the data
analysis procedure.

The investigation of the ‘full’O(κ4)-action with one flavour revealed that theO(κ4)-corrections
weaken the influence of fermions, as λ1,pc and h1,c increased compared to the static case.
Nevertheless, the shift was small enough to justify the approximations made in the derivation
of the effective theory. The temperature at the critical end point turned out to be in the same
range as the deconfinement temperature of pure gauge theory at the respective values of Nτ .
This corroborates above statement that the physics is not strongly dependent on the inclusion
of fermionic terms or higher corrections to them. The underlying reason is that the effective
theory expands around heavy quarks. The comparison of the results for Nτ = 4 and Nτ = 6
showed that λ1,pc is larger in the latter case, leading to a smaller lattice spacing. This allows
the physical temperature to be (roughly) the same for both values of Nτ , which is consistent
with the literature. Similarly, we found that κc(Nτ=6)/κc(Nτ=4) ≈ 1.43, which indicates as well
that the temperature at the critical end point is approximately constant.

In the physically more interesting case of two degenerate quark flavours, the fermionic
couplings at the critical end point (h1,c and κc) were lower than for one flavour. This could
be explained by the existence of an additional symmetry breaking field. The critical gauge
couplings (λ1,c and βc) and the critical temperature Tc, on the other hand, were very close to
their one-flavour values. Moreover, the analysis of two degenerate quark flavours permitted
us to compare our results to the ones obtained from a similar effective theory in [22]. The
arising disagreement could be accounted for by the effect of the O(κ4)-corrections, which are
not included in the expansion in [22]. A comparison with the critical point of full Lattice QCD,
however, disclosed that κc should actually decrease with growing order in the hopping expansion.
Consequently, the effective theory truncated at O(κ4) does not seem to be sufficient to establish
the critical point of QCD with two degenerate quark flavours. As for the one-flavour theory,
the ratio of the critical hopping parameters at the two different choices of Nτ was compatible
with 3/2. This suggests that also for the effective theory with two degenerate quark flavours the
temperature at the critical end point is almost unchanged between Nτ = 4 and Nτ = 6.
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Besides, the range of validity of the large-Nτ approximation at constant temperature, baryon
mass and baryon chemical potential was assessed. For this purpose, the maximal contributions
of the various parts of the O(κ4)-terms in the effective action were weighed against each
other. The corresponding expressions were evaluated for 1000 randomly selected SU(3)-matrices
W . It turned out that not all terms which are of parametrically subleading order in Nτ

become irrelevant in the continuum limit. The reason for this is that h1 and h̄1 tend to zero
exponentially as Nτ → ∞ if the temperature and the baryon mass are kept fixed. Only the
two-point interactions behave in the naively expected way, because the Dirac trace only leaves
Bs there. The problematic terms of subleading order in Nτ , by contrast, were demonstrated to
stem from As. Nevertheless, the negligence of such contributions was shown to be justified only
for Nτ & 30 to 50, so certainly not for the Nτ -values used for the simulations in this thesis. We
identified two main limitations to these statements: First of all, the impact of additional gauge
corrections to the formula for h1 remains unclear, but they are supposed to further soften the
exponential decay with Nτ . A second point is that the function employed to compute β from
the lattice spacing is not valid for Nτ ≥ 14 at the chosen temperature, and substitutes are
difficult to obtain.

After completing the numerical studies, we turned to the derivation of the O(κ6)-corrections to
the nearest-neighbour fermion interaction. The Dirac trace could be evaluated in general for the
nearest-neighbour interaction; the spatial link integration was automated with Mathematica
for the contributions up to O(κ6). No full automation could be attained so far for the
temporal summation. Therefore, the splitting of the sums, the expansion of the powers and
the combination of the products of the fractional Wilson lines were carried out by hand for all
terms which are relevant up to O(κ6). The multiplication of different traces or determinants
and the final temporal summation were integrated into aforementioned Mathematica program.
Additionally, we expressed the appearing determinants in terms of traces in order to prove their
gauge invariance and to facilitate the temporal summation.

Furthermore, a resummation scheme which is specific to the nearest-neighbour interaction,
the so-called ladder resummation, was investigated. Notably, we performed the temporal sums
with the correct restriction, namely that the temporal indices are all distinct. In this way,
we illustrated how one can calculate single-trace terms with paired consecutive hops in the
dense limit to an arbitrary order in κ. This is a perfect example of the progress that can be
achieved in the derivation by the application of analytical techniques like resummation and
certain approximations.

In the future, it will be of great interest to extend the exploration of the phase diagram of
the effective theory with the O(κ4)-corrections to finite chemical potential. As the sign problem
inhibits a direct access to the region with finite real µ, one will need to rely on methods such as
sign reweighting to circumvent this complication in a Monte Carlo simulation. On the analytical
side, possible research perspectives lie in the derivation of the full O(κ6)-contribution to the
effective action and its numerical implementation. To avoid the huge expressions originating
from the temporal summation, one could include this step in the simulation code. However, one
would then forfeit the dimensional reduction of the theory, making the runtime Nτ -dependent.
In any case, a simulation with the O(κ6)-corrections would allow a determination of the radius
of convergence of the O(κ4)-action and a clarification of the trend in κc. Due to that, it might
be sensible to continue investigations in this direction.
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A. Appendix

A.1. Series expansions for the effective couplings

Here, we collect the series expansions for the effective couplings as they are used for the
numerical implementation in chapter 3.

For SU(3), the expansion coefficient of the fundamental character in the character expansion
eq. (2.29) cannot be expressed in a simple way in terms of special functions. There exists,
however, the following series representation [3]:

u = af (β) = 1
3
c3(β)
c1(β) , (A.1)

c3(β) = 1
6β + 1

72β
2 + 1

216β
3 + 5

10 368β
4 + 13

186 624β
5 + 77

11 197 440β
6 + 139

201 553 920β
7

+ 19
322 486 272β

8 + 23
4 837 294 080β

9 + 319
914 248 581 120β

10 + 2629
109 709 829 734 400β

11

+ 16 133
10 532 143 654 502 400β

12 + 17 449
189 578 585 781 043 200β

13

+ 35 531
6 824 829 088 117 555 200β

14 +O(β15), (A.2)

c1(β) = 1 + 1
36β

2 + 1
648β

3 + 1
2592β

4 + 1
31 104β

5 + 13
3 359 232β

6 + 11
33 592 320β

7

+ 139
4 837 294 080β

8 + 19
8 707 129 344β

9 + 23
145 118 822 400β

10 + 29
2 742 745 743 360β

11

+ 2629
3 949 553 870 438 400β

12 + 1241
31 596 430 963 507 200β

13

+ 17 449
7 962 300 602 803 814 400β

14 +O(β15). (A.3)

The effective couplings of the gauge interactions can be expanded in a strong coupling series in
u. For the nearest-neighbour coupling in the fundamental representation, the result is [8]

λ1(u) = uNτ ·


exp

[
2
(
4u4 + 12u5 − 18u6 − 36u7 + 219

2 u8 + 1791
10 u9 + 830 517

5120 u10
)]
, Nτ = 2

exp
[
4
(
4u4 + 12u5 − 14u6 − 36u7 + 295

2 u8 + 1851
10 u9 + 1 035 317

5120 u10
)]
, Nτ = 4

exp
[
Nτ

(
4u4 + 12u5 − 14u6 − 36u7 + 295

2 u8 + 1851
10 u9 + 1 055 797

5120 u10
)]
, Nτ ≥ 6

(A.4)
and for the next-to-nearest neighbour coupling

λ2(u) = u2Nτ ·


2u2 + 6u4 + 31u6, Nτ = 2
12u2 + 26u4 + 364u6, Nτ = 4
30u2 + 66u4, Nτ = 6
Nτ (Nτ − 1)u2, Nτ ≥ 8

. (A.5)
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The first terms of the strong coupling series for the nearest-neighbour coupling in the adjoint
representation are (for Nτ ≥ 2)

λa(u) = vNτ−1
(
v +Nτ

3
2u

6 + . . .

)
, v = 9

8u
2 − 9

8u
3 + 81

32u
4 + . . . (A.6)

The effective couplings of the fermion interactions receive gauge corrections when moving
away from the limit β = 0, as explained in section 2.6. These can also be expanded in series in
u [7]. For the quark coupling h1 from eq. (2.41), the first terms are (for Nτ ≥ 3)

h1(κ, u) = exp[Nτ (aµ+ ln(2κ))] exp
[
6Nτκ

2u

(
1− uNτ−1

1− u + 4u4 − 12κ2 + 9κ2u+ 4κ2u2

−4κ4
)]

. (A.7)

The antiquark coupling h̄1 from eq. (2.42) receives the same corrections. For the coupling of
the O(κ2)-action, the result is

h2(κ, u) = κ2Nτ

Nc

(
1 + 2u− u

Nτ

1− u + 8u5 + 16κ3u4
)
. (A.8)

For the O(κ4)-terms, one has to distinguish between four couplings with different gauge
corrections:

h31(κ, u) = Nτ (Nτ − 1)κ4

N2
c

·



1, Nτ = 2
1 + 8

3
(
u+ u2 + 4u5 + 8κ3u4) , Nτ = 4

1 + 2
5
(
8u+ 12u2 + 12u3 + 8u4 + 32u5 + 64κ3u4) , Nτ = 6

1 + 8
7
(
3u+ 5u2 + 6u3 + 6u4 + 17u5 + 24κ3u4) , Nτ = 8

1 + 4u(2−Nτ+Nτu)
(Nτ−1)(u−1)3 + 20(Nτ−6)

Nτ−1 u5 + 40(Nτ−6)
Nτ−1 κ3u4, Nτ > 8

,

(A.9)

h32(κ, u) = κ4Nτ

N2
c

(
1 + 4u− u

Nτ

1− u + 16u5 + 32κ3u4
)
, (A.10)

h33(κ, u) = κ4N2
τ

N2
c

(
1 + 4(1− uNτ )(u− uNτ )

(1− u)2 + 16u5 + 32κ3u4
)
, (A.11)

h34(κ, u) = 1
2
κ4uNτ

N3
c

(
1 + 4u4 + 16u3κ3

)
, (A.12)

where the relations for h32,3,4 are valid for Nτ ≥ 2.

A.2. Gauge integrals

For the integration over the spatial gauge links, integrals of the type (2.57) need to be solved.
In the literature, various methods for doing so have been proposed and successfully applied
[12, 27–30]. The one which probably yields the easiest results to interpret and employ in the
context of the effective theory is based on a generating function. Here, one first solves group
integrals of the form

ZG(m,m†) =
∫
G
dg etr(gm†+g†m) (A.13)
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over the group G. The integral of interest can then be obtained by deriving Z with respect to
the sources m and m†:

∫
SU(Nc)

dU
a∏

α=1
UIα,Jα

b∏
β=1

U †Kβ ,Lβ =
a∏

α=1

∂

∂m†Jα,Iα

b∏
β=1

∂

∂mLβ ,Kβ

ZSU(Nc)(m,m†)

∣∣∣∣∣∣
m=m†=0

.

(A.14)

The generating function for the group SU(3) has been calculated in [28] 1:

ZSU(3)(m,m†) = 2
∞∑

j,k,l,n=0

1
(j + 2k + 3l + n+ 2)! (k + 2l + n+ 1)!

Xj

j!
Y k

k!
Z l

l!
∆n

n! , (A.15)

where

X = tr(mm†),

Y = 1
2 tr2(mm†)− 1

2 tr
(
(mm†)2

)
,

Z = det(mm†),
∆ = det(m) + det(m†). (A.16)

Here, the occurring determinants may be expressed as

det(m) = 1
Nc!

εK1,...,KNc εL1,...,LNc

Nc∏
i=1

mKi,Li . (A.17)

With these relations at hand, the calculation of the gauge integrals for arbitrary values of a
and b can be automated2. Besides, the constraint cited below eq. (2.57) now becomes evident:
For eq. (A.14) not to vanish, all ms and m†s in eq. (A.15) must be matched by a derivative.
The only term which can introduce an imbalance between ms and m†s is ∆. It consists of
determinants, which bring, according to eq. (A.17), elements of the source matrix always in
groups of Nc = 3. All other terms in eq. (A.15) come with equal numbers of ms and m†s.
Accordingly, the integral in eq. (A.14) can only be non-zero if a = b mod Nc.

The results used in the present thesis are the ones with a, b ≤ 3, which are listed subsequently.∫
SU(3)

dU UI,JU
†
K,L = 1

3δI,LδJ,K (A.18)∫
SU(3)

dU UI1,J1UI2,J2U
†
K1,L1

U †K2,L2
= 1

8(δI1,L1δI2,L2δJ1,K1δJ2,K2 + δI1,L2δI2,L1δJ1,K2δJ2,K1)

− 1
24(δI1,L2δI2,L1δJ1,K1δJ2,K2 + δI1,L1δI2,L2δJ1,K2δJ2,K1)

(A.19)∫
SU(3)

dU UI1,J1UI2,J2UI3,J3 = 1
6εI1,I2,I3εJ1,J2,J3 (A.20)∫

SU(3)
dU U †K1,L1

U †K2,L2
U †K3,L3

= 1
6εK1,K2,K3εL1,L2,L3 (A.21)

1The missing factor of 1/2 in front of the second trace in Y has been amended.
2Many thanks to Jonas Scheunert for providing his Mathematica worksheet on this.
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∫
SU(3)

dU UI1,J1UI2,J2UI3,J3U
†
K1,L1

U †K2,L2
U †K3,L3

= 1
24(δI1,L1δI2,L2δI3,L3δJ1,K1δJ2,K2δJ3,K3 + δI1,L2δI2,L1δI3,L3δJ1,K2δJ2,K1δJ3,K3

+ δI1,L3δI2,L2δI3,L1δJ1,K3δJ2,K2δJ3,K1 + δI1,L1δI2,L3δI3,L2δJ1,K1δJ2,K3δJ3,K2

+ δI1,L2δI2,L3δI3,L1δJ1,K2δJ2,K3δJ3,K1 + δI1,L3δI2,L1δI3,L2δJ1,K3δJ2,K1δJ3,K2)

− 1
120(δI1,L1δI2,L2δI3,L3δJ1,K2δJ2,K1δJ3,K3 + δI1,L3δI2,L1δI3,L2δJ1,K3δJ2,K2δJ3,K1

+ δI1,L2δI2,L3δI3,L1δJ1,K1δJ2,K3δJ3,K2 + δI1,L2δI2,L1δI3,L3δJ1,K1δJ2,K2δJ3,K3

+ δI1,L3δI2,L2δI3,L1δJ1,K3δJ2,K1δJ3,K2 + δI1,L1δI2,L3δI3,L2δJ1,K2δJ2,K3δJ3,K1

+ δI1,L1δI2,L2δI3,L3δJ1,K3δJ2,K2δJ3,K1 + δI1,L2δI2,L3δI3,L1δJ1,K2δJ2,K1δJ3,K3

+ δI1,L3δI2,L1δI3,L2δJ1,K1δJ2,K3δJ3,K2 + δI1,L1δI2,L3δI3,L2δJ1,K3δJ2,K1δJ3,K2

+ δI1,L3δI2,L2δI3,L1δJ1,K1δJ2,K2δJ3,K3 + δI1,L2δI2,L1δI3,L3δJ1,K2δJ2,K3δJ3,K1

+ δI1,L1δI2,L2δI3,L3δJ1,K1δJ2,K3δJ3,K2 + δI1,L2δI2,L3δI3,L1δJ1,K3δJ2,K2δJ3,K1

+ δI1,L3δI2,L1δI3,L2δJ1,K2δJ2,K1δJ3,K3 + δI1,L1δI2,L3δI3,L2δJ1,K1δJ2,K2δJ3,K3

+ δI1,L3δI2,L2δI3,L1δJ1,K2δJ2,K3δJ3,K1 + δI1,L2δI2,L1δI3,L3δJ1,K3δJ2,K1δJ3,K2)

+ 1
60εI1,I2,I3εJ1,J2,J3εK1,K2,K3εL1,L2,L3 (A.22)

All other combinations vanish due to the constraint explained above.

A.3. Additional analytical calculations for SU(3)-matrices

In this appendix, some analytical results for SU(3)-matrices which were used in the main part
of the thesis are derived.

A.3.1. Application of the Cayley-Hamilton theorem for SU(3)-matrices

The Cayley-Hamilton theorem eq. (2.64) reads for the special case of a matrix W ∈ SU(3):

−1+ c1(W )W + c2(W )W 2 +W 3 = 0. (A.23)

Multiplying this by the inverse W−1 = W †, one can relate W 2 to the coefficients c1,2(W ), the
matrix W and its inverse:

−W † + c1(W )1 + c2(W )W +W 2 = 0 ⇒ W 2 = −c1(W )1− c2(W )W +W †. (A.24)

The coefficients of the characteristic polynomial can be obtained from the LeVerrier-Fadeev
algorithm eq. (2.55):

c2(W ) = − tr(W ), c1(W ) = 1
2
(
tr2(W )− tr(W 2)

)
. (A.25)

Plugging this into the relation for W 2 from eq. (A.24) and taking the trace yields

tr(W 2) = −3
2
(
tr2(W )− tr(W 2)

)
+ tr2(W ) + tr(W †) (A.26)
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and hence

tr(W 2) = tr2(W )− 2 tr(W †) ⇒ c1(W ) = tr(W †). (A.27)

With eq. (A.24), one can then reduce W 2 to W and W †:

W 2 = − tr(W †)1 + tr(W )W +W †. (A.28)

By multiplying eq. (A.24) once again with W †, one arrives at a similar reduction formula for
the square of the inverse:

(W †)2 = c2(W )1 +W + c1(W )W † = − tr(W )1 +W + tr(W †)W †. (A.29)

This is the same as eq. (A.28) with W and W † interchanged, as required by self-consistency.

A.3.2. Determinants of 3× 3-matrices

For a general three-dimensional square matrix A ∈ C3×3 and α ∈ C, the following determinant
can be expressed in terms of the characteristic polynomial of A:

det(1 + αA) = −α3 det(−α−11−A) = −α3χA(−α−1)
= −α3(c0(A)− α−1c1(A) + α−2c2(A)− α−3). (A.30)

Here, c0(A) = −det(A) (cf. eq. (2.65)) and the other two coefficients c1,2(A) are given by
eq. (A.25). With eq. (2.67), the first coefficient may also be written in terms of the adjugate of
A, c1(A) = tr(B3(A)) = tr(adj(A)). The determinant from eq. (A.30) thus reads:

det(1 + αA) = 1 + α tr(A) + α2 tr(adj(A)) + α3 det(A). (A.31)

In the special case that A ∈ SU(3), det(A) = 1 and the adjugate is identical to the inverse (or,
equivalently, adjoint) matrix (cf. eq. (2.66)). As a consequence, the identity (A.31) simplifies to

det(1 + αA) = 1 + α tr(A) + α2 tr(A†) + α3 (A ∈ SU(3)). (A.32)

A.4. Results for the kinetic quark determinant up to O(κ4)

This appendix lists the results for the kinetic quark determinant in the effective theory up to
O(κ4) as they have been obtained in [7, 10] 3. They are ordered by their interaction range.

A.4.1. Two-point interaction

The leading-order contribution to the two-point interaction is of O(κ2):

−Nfκ
2 ∑
{C2}

∫
[dUi] trc,d,t

(
M̃C2

)
= −Nfκ

2∑
x,i

∫
[dUi] trc,d,t

[
S+

x,x+î(1− κT )−1
x+îS

−
x+î,x(1− κT )−1

x

]
= −2Nfh2

∑
x,i
W−1111(x)W−1111(x + î). (A.33)

3Some typos in the final results have been corrected.
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For the O(κ4)-correction, there are two distinct contributions. The first one has a square inside
the trace over the loop matrix:

−Nf

2 κ4 ∑
{C2}

∫
[dUi] trc,d,t

(
M̃2
C2

)
= −Nf

2 κ4∑
x,i

∫
[dUi] trc,d,t

[
S+

x,x+î(1− κT )−1
x+îS

−
x+î,x(1− κT )−1

x S+
x,x+î(1− κT )−1

x+î

S−x+î,x(1− κT )−1
x

]
= Nfh31

∑
x,i

[(
W+

2121(x) + 2 1
Nτ − 1

Nτ−1∑
τ=1

(2κ)2τW1010(x)
)(

W−1111(x + î)
)2

+
(
W−1111(x)

)2
(
W+

2121(x + î) + 2 1
Nτ − 1

Nτ−1∑
τ=1

(2κ)2τW1010(x + î)
)]

−Nfh32
N2
c

N2
c − 1

∑
x,i

[(
W+

2222(x)− 2W1111(x)
) (
W−1111(x + î)

)2

+
(
W−1111(x)

)2 (
W+

2222(x + î)− 2W1111(x + î)
)]

+Nfh32
Nc

N2
c − 1

∑
x,i

[(
W+

2222(x)− 2W1111(x)
) (
W+

2222(x + î)− 2W1111(x + î)
)

+
(
W−1111(x)

)2 (
W−1111(x + î)

)2
] (A.34)

The second one comes from tr2
c,d,t

(
M̃C2

)
in the case that both spatial loops are identical:

N2
f

2 κ4∑
x,i

∫
[dUi] trc,d,t

[
S+

x,x+î(1− κT )−1
x+îS

−
x+î,x(1− κT )−1

x

]
trc,d,t

[
S+

x,x+î(1− κT )−1
x+îS

−
x+î,x(1− κT )−1

x

]
= 2N2

fh31

∑
x,i

[(
W−1111(x)

)2 (
W−1111(x + î)

)2
+W+

2121(x)W+
2121(x + î)

+ 2W+
2121(x) 1

Nτ − 1

Nτ−1∑
τ=1

(2κ)2τW1010(x + î)

+ 2 1
Nτ − 1

Nτ−1∑
τ=1

(2κ)2τW1010(x)W+
2121(x + î)

+ 2 1
Nτ − 1

Nτ−1∑
τ=1

(2κ)4τW1010(x)W1010(x + î)

+ 2(2κ)2NτW1010(x)W1010(x + î)
]

+2N2
fh32

N2
c

N2
c − 1

∑
x,i

[(
W−1111(x)

)2 (
W−1111(x + î)

)2

+
(
W+

2222(x)− 2W1111(x)
) (
W+

2222(x + î)− 2W1111(x + î)
)]

−2N2
fh32

Nc

N2
c − 1

∑
x,i

[(
W+

2222(x)− 2W1111(x)
) (
W−1111(x + î)

)2

+
(
W−1111(x)

)2 (
W+

2222(x + î)− 2W1111(x + î)
)] (A.35)
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A.4.2. Three-point interaction

The main part of the three-point interaction stems from eq. (2.61) and thus starts at O(κ4).
Here, two fundamentally different geometries have to be distinguished for the further derivation.
In the first case, both hops occur in the same direction i and the graph forms a straight line:

−Nfκ
4∑

x,i

∫
[dUi] trc,d,t

[
S+

x,x+î(1− κT )−1
x+îS

+
x+î,x+2̂i(1− κT )−1

x+2̂i

S−x+2̂i,x+î(1− κT )−1
x+îS

−
x+î,x(1− κT )−1

x

]
= 2Nfh33

Nτ − 1
Nτ

∑
x,i
W−1111(x)

(
W+

2121(x + î)− 2 1
Nτ − 1

Nτ−1∑
τ=1

(2κ)2τW1010(x + î)
)

W−1111(x + 2̂i)

−2Nfh33
1
Nτ

∑
x,i
W−1111(x)

(
4Nc +W+

2222(x + î)− 4W+
1111(x + î) + 2W1111(x + î)

)
W−1111(x + 2̂i)

(A.36)

In the second case, the directions i and j of the two hops are different. The graph then forms a
corner on the spatial lattice. We introduce the notation ,•, to refer to the two end points
x , and the midpoint x• which make up this corner. For the calculation of the effective action,
one has to sum over all such corners on the spatial lattice, including every distinguishable
corner only once, which is indicated by ∑{ }:

−Nfκ
4∑
{ }

∫
[dUi] trc,d,t

[
S , •(1− κT )−1

•
S •, (1− κT )−1S , •(1− κT )−1

•

S •, (1− κT )−1
]

= 2Nfh33
Nτ − 1
Nτ

∑
{ }

W−1111( )W+
2121( •)W−1111( )

−Nfh33
1
Nτ

∑
{ }

W−1111( )
(
4Nc + 2W+

2222( •)− 4W+
1111( •)

)
W−1111( ). (A.37)

An additional contribution to the three-point interaction arises from tr2
c,d,t

(
M̃C2

)
in the case

that the two loops share exactly one spatial point. This is also of O(κ4):

N2
f

2 κ4
′∑

x,y,i,j

∫
[dUi] trc,d,t

[
S+

x,x+î(1− κT )−1
x+îS

−
x+î,x(1− κT )−1

x

]
trc,d,t

[
S+

y,y+ĵ(1− κT )−1
y+ĵS

−
y+ĵ,y(1− κT )−1

y

]
= 2N2

fh33

′∑
x,y,i,j

W−1111(x)W−1111(x + î)W−1111(y)W−1111(y + ĵ), (A.38)

where the prime on the sum indicates that it is restricted to terms where {x,x+ î} and {y,y+ ĵ}
share exactly one point, i. e. ∑′x,y,i,j = ∑

x,y,i,j [δx,y(1− δi,j) + δx+î,y].

A.4.3. Four-point interaction

There are only two four-point interactions to O(κ4): The first one stems from eq. (2.61) when
the spatial loop C4 forms a square. It vanishes in the strong-coupling limit and only acquires a
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non-zero value if a gauge plaquette is inserted into the square, making it proportional to κ4u:

NfNcκ
4u

∑
x,i 6=j

∫
[dUi] trc,t

[
U †j (x + î)U †i (x)Uj(x)Ui(x + ĵ)

]
trc,d,t

[
S+

x,x+î(1− κT )−1
x+îS

+
x+î,x+î+ĵ(1− κT )−1

x+î+ĵ

S−x+î+ĵ,x+ĵ(1− κT )−1
x+ĵS

−
x+ĵ,x(1− κT )−1

x

]
= Nfh34

∑
x,i 6=j

[(
2Nc −W+

1111(x)
) (

2Nc −W+
1111(x + î)

) (
2Nc −W+

1111(x + î+ ĵ)
)

(
2Nc −W+

1111(x + ĵ)
)

−W−1111(x)W−1111(x + î)
(
2Nc −W+

1111(x + î+ ĵ)
) (

2Nc −W+
1111(x + ĵ)

)
−W−1111(x)

(
2Nc −W+

1111(x + î)
)
W−1111(x + î+ ĵ)

(
2Nc −W+

1111(x + ĵ)
)

−
(
2Nc −W+

1111(x)
)
W−1111(x + î)W−1111(x + î+ ĵ)

(
2Nc −W+

1111(x + ĵ)
)

−W−1111(x)
(
2Nc −W+

1111(x + î)
) (

2Nc −W+
1111(x + î+ ĵ)

)
W−1111(x + ĵ)

−
(
2Nc −W+

1111(x)
)
W−1111(x + î)

(
2Nc −W+

1111(x + î+ ĵ)
)
W−1111(x + ĵ)

−
(
2Nc −W+

1111(x)
) (

2Nc −W+
1111(x + î)

)
W−1111(x + î+ ĵ)W−1111(x + ĵ)

+W−1111(x)W−1111(x + î)W−1111(x + î+ ĵ)W−1111(x + ĵ)
]

(A.39)

The second contribution comes from tr2
c,d,t

(
M̃C2

)
in the case that the two spatial loops share

no point at all. This yields the same result as eq. (A.38), but now with a different restriction on
the sum: Only such terms where {x,x + î} and {y,y + ĵ} share no point are to be considered,
so that here ∑′x,y,i,j = ∑

x,i,j
∑

y/∈{x,x+î}.

A.5. Additional plots for static quarks
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Figure A.1.: Expectation value of Q2 for static quarks with one flavour and h1 = h̄1 = 0.0006
on various volumes
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A.5. Additional plots for static quarks
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Figure A.2.: Susceptibility of Q2 for static quarks with one flavour and h1 = h̄1 = 0.0006 on
various volumes
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Figure A.3.: Skewness of Q2 for static quarks with one flavour and h1 = h̄1 = 0.0006 on various
volumes
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Figure A.4.: Kurtosis of Q2 for static quarks with one flavour and h1 = h̄1 = 0.0006 on various
volumes

A.6. Plots using the ‘full’ implemented action

A.6.1. One-flavour theory with Nτ = 4
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(a) As obtained from Q1
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(b) As obtained from Q2

Figure A.5.: The pseudo-critical line for one flavour, Nτ = 4 and Ns = 32. Linear fits according
to eqs. (3.30), (3.35) and (3.36) and the critical point eqs. (3.39) and (3.40) are
also shown
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Figure A.6.: Kurtosis B4,Q1 as a function of h1 on the pseudo-critical line λ1,pc(h1) for one
flavour and Nτ = 4 on various volumes
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Figure A.7.: Kurtosis B4,Q2 as a function of h1 on the pseudo-critical line λ1,pc(h1) for one
flavour and Nτ = 4 on various volumes
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A.6.2. One-flavour theory with Nτ = 6

�������

������

�������

������

�������

������

�� ������� ������� ������� �������

�
�

��

�����������������

���������
���������

��������������

(a) As obtained from Q1
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(b) As obtained from Q2

Figure A.8.: The pseudo-critical line for one flavour, Nτ = 6 and Ns = 32. Linear fits according
to eq. (3.30) and the critical point are also shown
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Figure A.9.: Kurtosis B4,Q1 as a function of h1 on the pseudo-critical line λ1,pc(h1) for one
flavour and Nτ = 6 on various volumes
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Figure A.10.: Kurtosis B4,Q2 as a function of h1 on the pseudo-critical line λ1,pc(h1) for one
flavour and Nτ = 6 on various volumes

A.6.3. Two-flavour theory with Nτ = 4
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(b) As obtained from Q2

Figure A.11.: The pseudo-critical line for two flavours, Nτ = 4 and Ns = 32. Linear fits
according to eq. (3.30) and the critical point are also shown
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Figure A.12.: Kurtosis B4,Q1 as a function of h1 on the pseudo-critical line λ1,pc(h1) for two
flavours and Nτ = 4 on various volumes

0.0006 0.0008 0.0010 0.0012 0.0014 0.0016
h1

1.0

1.5

2.0

2.5

3.0

ku
rt

os
is
B

4,
Q

2
(h

1
,N

s
,λ

1,
p

c(
h

1
))

Ns = 16

Ns = 24

Ns = 32

Figure A.13.: Kurtosis B4,Q2 as a function of h1 on the pseudo-critical line λ1,pc(h1) for two
flavours and Nτ = 4 on various volumes

80
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A.6.4. Two-flavour theory with Nτ = 6
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(b) As obtained from Q2

Figure A.14.: The pseudo-critical line for two flavours, Nτ = 6 and Ns = 32. Linear fits
according to eq. (3.30) and the critical point are also shown
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Figure A.15.: Kurtosis B4,Q1 as a function of h1 on the pseudo-critical line λ1,pc(h1) for two
flavours and Nτ = 6 on various volumes
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Figure A.16.: Kurtosis B4,Q2 as a function of h1 on the pseudo-critical line λ1,pc(h1) for two
flavours and Nτ = 6 on various volumes

A.7. Plots for the study of the large-Nτ approximation
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Figure A.17.: Maximal relative contributions of the different parts of eq. (A.34) to its total real
part for 1000 random samples as a function of Nτ
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A.7. Plots for the study of the large-Nτ approximation

�����
���

�����
���

�����
��

��

�� ��� ��� ��� ��� ��� ��� ��� ��� ��� ����

�
�
�
��
�
��
�
�
�
�
��
��

�
��
�
�
���
�

�
�
��
��
��
��
��
�
��
�
�
��

��

���������������������������������������������������������

������
������

�����������������������
�

������
������

Figure A.18.: Maximal relative contributions of the different parts of eq. (A.35) (with the
modifications due to the resummation) to its total real part for 1000 random
samples as a function of Nτ
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Figure A.19.: Maximal relative contributions of the different parts of eq. (A.36) to its total real
part for 1000 random samples as a function of Nτ
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Figure A.20.: Maximal relative contributions of the different parts of eq. (A.37) to its total real
part for 1000 random samples as a function of Nτ
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Figure A.21.: Maximum of the absolute real part of eq. (A.39), divided by κ4N2
τ/N2

c , for 1000
random samples as a function of Nτ

A.8. Result for the O(κ6)-contribution to the nearest-neighbour
fermion interaction

In this appendix, theO(κ6)-contribution of the nearest-neighbour interaction to the kinetic quark
determinant is shown. This corresponds to the O(κ6)-terms in ∏{C2} detc,d,t

(
1− κ2M̃C2

)Nf
as they are given in eq. (4.1). All terms are understood to be summed over the spatial position
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A.8. Result for the O(κ6)-contribution to the nearest-neighbour fermion interaction

x and the direction i = (1, 2, 3), as well as over the temporal coordinates τj . Here, differently
named indices are intended to be unequal. A term that contains τ1 and τ2, for instance, is
summed over τ1 6= τ2. The traces and determinants are taken over colour space.

− 128
5 Nf

(
2N2

f + 3Nf + 1
)

det(B(x, τ1, τ1)) det(B(x + î, τ1, τ1))

− 128
3 Nf

(
2N2

f + 3Nf + 1
)

det(B(x, τ2, τ1)) det(B(x + î, τ1, τ2))

+ tr(B(x + î, τ1, τ1))
(

tr(B(x, τ2, τ2))
(
−64

9 Nf (Nf + 1) tr(B(x, τ1, τ1)B(x, τ1, τ1))

tr(B(x + î, τ1, τ2)B(x + î, τ2, τ1))

− 32
9 Nf tr(B(x, τ1, τ2)B(x, τ2, τ1)) tr(B(x + î, τ2, τ2)B(x + î, τ2, τ2))

)
− 256

81 Nf tr(B(x, τ3, τ3)) tr(B(x, τ1, τ2)B(x, τ2, τ1)) tr(B(x + î, τ2, τ3)B(x + î, τ3, τ2))
)

+ 512
27 N

2
f tr(B(x, τ1, τ3)B(x, τ3, τ2)B(x, τ2, τ1)) tr(B(x + î, τ3, τ3))

tr(B(x + î, τ1, τ2)B(x + î, τ2, τ1))

− 16
45Nf

(
20N2

f + 12Nf + 5
)

tr(B(x, τ1, τ1)B(x, τ1, τ1)B(x, τ1, τ1))
tr(B(x + î, τ1, τ1)B(x + î, τ1, τ1)B(x + î, τ1, τ1))

+ tr3(B(x, τ1, τ1))
(
−16

45N
2
f (10Nf + 3) tr3(B(x + î, τ1, τ1))

+ 32
15Nf

(
2N2

f + 5Nf + 1
)

tr(B(x + î, τ1, τ1)B(x + î, τ1, τ1)) tr(B(x + î, τ1, τ1))

− 32
45Nf (6Nf + 5) tr(B(x + î, τ1, τ1)B(x + î, τ1, τ1)B(x + î, τ1, τ1))

)
− 32

9 Nf

(
4N2

f +Nf + 1
)

tr(B(x, τ1, τ1)B(x, τ1, τ2)B(x, τ2, τ1))
tr(B(x + î, τ1, τ1)B(x + î, τ1, τ2)B(x + î, τ2, τ1))

+ tr2(B(x, τ1, τ1))
(
−64

9 N
3
f tr(B(x, τ2, τ2)) tr2(B(x + î, τ1, τ1)) tr(B(x + î, τ2, τ2))

+ tr(B(x, τ2, τ2))
(128

27 N
3
f tr(B(x + î, τ2, τ2)) tr(B(x + î, τ1, τ1)B(x + î, τ1, τ1))

− 64
9 Nf (Nf + 1) tr(B(x + î, τ1, τ1)B(x + î, τ1, τ2)B(x + î, τ2, τ1))

)
+ 64

27Nf (9Nf + 1) tr(B(x, τ2, τ2)) tr(B(x + î, τ1, τ1)) tr(B(x + î, τ1, τ2)B(x + î, τ2, τ1))
)

− 16
9 Nf

(
4N2

f + 2Nf + 1
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85



A. Appendix

+ tr(B(x, τ2, τ2))
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27Nf tr(B(x, τ2, τ2)B(x, τ2, τ2)) tr(B(x + î, τ1, τ2)B(x + î, τ2, τ2)B(x + î, τ2, τ1))

)
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