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Abstract

We discuss aspects of the phase structure of a three-dimensional effective lattice theory of
Polyakov loops derived from QCD by strong coupling and hopping parameter expansions. The
theory is valid for the thermodynamics of heavy quarks where it shows all qualitative features
of nuclear physics emerging from QCD. In particular, the SUp3q pure gauge effective theory
also exhibits a first-order thermal deconfinement transition due to spontaneous breaking of its
global Z3 center symmetry. The presence of heavy dynamical quarks breaks this symmetry
explicitly and consequently, the transition weakens with decreasing quark mass until it disap-
pears at a critical endpoint. At non-zero baryon density, the effective theory can be evaluated
either analytically by the so-called high-temperature expansion which does not suffer from the
sign problem, or numerically by standard Monte-Carlo methods due to its mild sign problem.
The first part of this work devotes to a systematic derivation of the effective theory up to the
6th order in the hopping parameter κ. This method combined with the SUp3q link update
algorithm provides a way to simulate the Opκ6q effective theory. The second part involves
a study of the deconfinement transition of the pure gauge effective theory, with and without
static quarks, at all chemical potentials with help of the high-temperature expansion. Our
estimate of the deconfinement transition and its critical endpoint as a function of quark mass
and all chemical potentials agrees well with recent Monte-Carlo simulations. In the third part,
we investigate the Nf P t1, 2u effective theory with zero chemical potential up to Opκ4q. We
determine the location of the critical hopping parameter at which the first-order deconfinement
phase transition terminates and changes to a crossover. Our results for the critical endpoint of
the Opκ2q effective theory are in excellent agreement with the determinations from simulations
of four-dimensional QCD with a hopping expanded determinant by the WHOT-QCD collab-
oration. For the Opκ4q effective theory, our estimate suggests that the critical quark mass
increases as the order of κ-contributions increases. We also compare with full lattice QCD
with Nf “ 2 degenerate standard Wilson fermions and thus obtain a measure for the validity
of both the strong coupling and the hopping expansion in this regime.
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Deutsche Zusammenfassung

The effort to understand the universe is one of the very few

things which lifts human life a little above the level of farce

and gives it some of the grace of tragedy.

Steven Weinberg

Es ist allgemein anerkannt, dass Quantenchromodynamik (QCD) die richtige Theorie zur
Beschreibung der starken Wechselwirkung zwischen Quarks und Gluonen ist. Diese Theo-
rie ist ein wichtiger Bestandteil einer größeren Theorie namens Standardmodell (SM) der
Teilchenphysik. Diese Theorie fasst die wesentlichen Erkenntnisse der Teilchenphysik nach
aktuellem Stand zusammen und vereint drei der vier bekannten Grundkräfte im Universum:
die elektromagnetische Wechselwirkung, die schwache Wechselwirkung und die starke Wech-
selwirkung, während die vergleichsweise sehr schwache Gravitation vernachlässigt wird. Die
Elementarteilchen der QCD - Quarks und Gluonen unterscheiden sich deutlich von z.B. Elek-
tronen und Photonen der Quantenelektrodynamik (QED). Es gibt keinen Zweifel, dass Quarks
und Gluonen existieren, weil sie mit einem Großteil der erfolgreichen Phänomenologie der
starken Wechselwirkungen konsistent zu sein scheinen, andererseits können sie jedoch in der
Natur nicht direkt beobachtet werden. Dies deutet darauf hin, dass Quarks nicht als getrennte
Teilchen in einem Endzustand erscheinen, sondern nur als Bestandteile von Hadronen wie dem
Proton oder dem Neutron auftreten können. Ein wichtiger Effekt der QCD ist die sogenannte
asymptotische Freiheit, die in den frühen Siebzigern von D. Politzer, F. Wilczek und D. Gross
gefunden wurde (Nobelpreis 2004). Dies bedeutet, dass bei hohen Energien E „ 100 GeV oder
kurzen Entfernungsskalen r „ 10´2 fm die Stärke der Wechselwirkung, die durch eine Kop-
plungskonstante charakterisiert wird, im Wesentlichen verschwindet, d.h. Quarks können aus
dem Confinement befreit werden. Andererseits scheint diese Kopplungskonstante unendlich
groß zu werden, wenn die Entfernungsskala etwa eine Energieskala von E „ 100 MeV oder
r „ 1 fm erreicht. Für sehr kleine Distanzen können wir Berechnungen im Rahmen von Meth-
oden der Störungsentwicklung durchführen. Bei großen Distanzen wird die Theorie wegen
der unkontrollierbaren Feynman-Diagramme allerdings sehr anspruchsvoll. Der Unterschied
zwischen Regionen, in denen die Berechnungen kontrollierbar und in denen sie anspruchsvoll
sind, wird in Bezug auf eine Energieskala, die als QCD-Skala ΛQCD „ 200 MeV bekannt ist,
charakterisiert. Für die anspruchsvollen Regionen ist es erforderlich, die Dynamik von Quarks
mit einem nicht-perturbativen Ansatz zu untersuchen.

In der zweiten Hälfte des 20. Jahrhunderts wurde die Gittereichtheorie nach diesem Be-
darf konstruiert, die auf mathematischen Konzepten basiert und die Untersuchung der nicht-
perturbativen Phänomene durch numerische Simulationen ermöglicht. Obwohl die numerische
Gitter-QCD im Laufe der Jahre viele wichtige Innovationen erfahren hat, befindet sie sich auf-
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grund einiger großer Herausforderungen bei den Berechnungen derzeit noch in gewissem Maße
in einer Entwicklungsphase. Die Grundidee dieses Ansatzes besteht darin, die vierdimensionale
Raumzeit in ein vierdimensionales Gitter zu diskretisieren und die Felder der QCD Lagrange-
Funktion auf die Punkte dieses Gitters zu beschränken. Diese Theorie ist der einzige nicht-
perturbative, systematisch einstellbare Ansatz für QCD, und im Grunde genommen, durch die
Gittereichtheorie können Informationen über Quarks und Gluonen ausschließlich unter Verwen-
dung von ersten Prinzipien - die Lagrange-Funktion der QCD - extrahiert werden. Außerdem,
die Schwierigkeiten der unendlichen Freiheitsgrade von der Quantenfeldtheorie werden durch
die Gitterfeldtheorie vereinfacht, weil die Quantenfeldtheorie durch eine andere Theorie er-
setzt wird, die eine endliche, wenn auch sehr große Zahl von Freiheitsgraden hat. Trotz der
Vereinfachung hat das Zustandsintegral immer noch eine sehr große Dimension, was übliche
numerische Integrationstechniken ausschließt. Solche Integrale können normalerweise nur mit
stochastische Monte-Carlo (MC)-Methoden, die auf Stichprobenentnahme nach Wichtigkeit
und den Eigenschaften der Ergodizität basieren, berechnet werden.

Da wir nun eine etablierte Theorie der starken Wechselwirkung besitzen, ist es naheliegend,
die Eigenschaften hadronischer Materie in ungewöhnlichen Umgebungen zu erforschen, ins-
besondere bei endlichen Temperaturen oder endlichen Baryonendichten. Die Erforschung dieses
Bereichs ist von großer Bedeutung, da für das Verständnis einiger Phänomene die Kenntnis
über die Zustandsgleichung und die Natur der Phasen hadronischer Materie essentiell ist. Zum
Beispiel: das Innere von Neutronensternen, wo die Dichte deutlich größer ist als die nukleare
Dichte; die Kollisionen schwerer Ionen mit sehr hoher Energie pro Nukleon, bei denen sich
ein Materieklumpen wie ein thermalisiertes System verhält, gekennzeichnet durch eine Tem-
peratur und ein chemisches Potential. Dieses System wird verwendet, um eine Trajektorie
auf dem Phasendiagramm zu verfolgen. Solche Kollisionen werden derzeit im Large Hadron
Collider (LHC) am CERN, im Relativistic Heavy Ion Collider (RHIC) des Brookhaven Na-
tional Laboratory oder bei der Facility for Antiproton and Ion Research (FAIR) in Darmstadt
durchgeführt; oder die Zustände des frühen Universums, als seine Temperatur viel höher war
als die QCD-Skala ΛQCD.

Ein wichtiger Aspekt der Erforschung der Phasenübergänge sind kritische Punkte, die End-
punkte der Linie erster Ordnung, an denen die Grenze zwischen Phasen verschwindet. Sie
spielen eine zentrale Rolle bei der Untersuchung von Phasenübergängen in der Materie, be-
ginnend mit der Beobachtung des kritischen Punktes im Wasser im 19. Jahrhundert. Eine
wichtige Frage im Zusammenhang mit der Erforschung stark-wechselwirkender Materie ist, ob
im Phasendiagramm ein kritischer Punkt existiert. Das Phasendiagramm der QCD ist durch
die Temperatur T und das chemische Potential µ charakterisiert. Das chemische Potential
bezieht sich direkt auf die Nettoquarkdichte, die als die Differenz der Dichte von Quarks und
Antiquarks definiert ist. Leider leiden bei endlicher Dichte µ{T ą 1 alle Monte-Carlo Algorith-
men unter dem sogenannten Fermion-Vorzeichenproblem, das auftaucht, wenn man baryon-
chemisches Potential in die Gitter-QCD einführt. Die Fermion-Determinante wird dann kom-
plex und kann nicht mehr als die Verteilung der Feldkonfigurationen verwendet werden. Es ex-
istiert eine Reihe verschiedener Ansätze wie die Reweighting-Technik, die komplexe Langevin-
Methode, die Taylor-Expansion-Methode oder die Methode des rein imaginären chemischen Po-
tentials um indirekt Einblicke auf das tatsächliche QCD Phasendiagramm zu gewinnen. Diese
Ansätze basieren normalerweise auf Techniken der analytischen Fortsetzung. Es gibt bisher
jedoch keine zuverlässigen Informationen über die QCD-Phasenstruktur bei hohen Dichten und
niedrigen Temperaturen. In dieser Arbeit untersuchen wir die QCD der schweren Quarks bei
endlicher Dichte und endlicher Temperatur mithilfe der Gittereichtheorie der Wilson-Fermionen
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durch eine effektive dreidimensionale Gittertheorie, die nur von den Polyakov-Loops abhängt.

Das zentrale Thema dieser Arbeit ist die effektive Gittertheorie von Polyakov-Loops. Diese
Theorie erlaubt es, das Phasendiagramm der QCD mit schweren Quarks in vollem Param-
eterraum pmq, T, µq zu untersuchen. Sie ist erhalten, indem alle räumliche Linkvariablen
aus der Zustandssumme heraus integriert werden. Dadurch wird der Beitrag zum Fermion-
Vorzeichenproblem in der effektiven Theorie stark reduziert. Des Weiteren basiert die Her-
leitung der effektive Gittertheorie auf einer Kombination aus Starkkopplungsentwicklung und
Hopping-Parameter-Entwicklung um schwere Quarkmassen. Das milde Vorzeichenproblem
der effektiven Gittertheorie ermöglicht mehrere Ansätze, z.B. die direkte Monte-Carlo Sim-
ulation mit der Reweighting-Technik, die komplexe Langevin-Methode oder die Reihenen-
twicklungsmethoden, die verwendet werden können, um die Theorie bei endlicher Dichte
auszuwerten. Die Entwicklungen wurden in vorherigen Arbeiten angewendet und wir fassen
die notwendigen mathematischen Grundlagen zu den Entwicklungen zusammen. Schließlich
präsentieren wir eine frühe Arbeit zur systematischen Ableitung der effektiven Gittertheorie
durch die Ordnung Opκ6q im Hopping-Expansion-Parameter, die auf einer Graphendarstel-
lung basiert. Durch diese Methode werden komplizierte Ausdrücke von räumlichen Sprüngen
und zeitlichen Propagatoren in der kinetischen Determinante in Form von Graphen dargestellt,
welche dann auf einem Computer erzeugt werden können. Diese Graphendarstellungen können
bei Bedarf leicht in die analytischen Ausdrücke zurückkonvertiert werden. Mit Hilfe von Com-
putern kann diese Methode genutzt werden, um die effektive Theorie um höhere Ordnungen
zu erweitern.

Zur Simulation der SUp3q effektiven Gittertheorie gibt es eine Standardparametrisierung
des Polyakov-Loops, bei der eine SUp3q-Matrix unter der Wirkung der Spur zu einer diag-
onalen Form transformiert werden kann. Der Vorteil dieser Parametrisierung besteht darin,
dass die Freiheitsgrade für die Durchführung von Monte-Carlo-Methoden reduziert werden,
jedoch zu ihrer Verwendung muss das Integrationsmaß zunächst transformiert werden. Diese
Transformation führt ein zusätzliches effektives Potenzial ein. Außerdem, der Ansatz leidet an
einem kombinatorischen Problem, das auftritt, wenn Terme der kinetischen Determinante in
Polyakov-Loops neu ausgedrückt werden. Diese große Anzahl von Termen verlangsamt erhe-
blich den Simulationsprozess bereits bei der Opκ4q effektiven Gittertheorie. In dieser Arbeit
wird eine alternative Parametrisierung des Polyakov-Loops eingeführt, bei der die Technik
des SUp3q Linkvariable-Updates verwendet wird. Diese neue Parametrisierung wird dieselben
Ergebnisse wie die Standardparametrierung reproduzieren und dazu dienen, Ausdrücke der
effektiven Theorie nicht zu groß zu halten. Dies wiederum wird die Effizienz der Simulatio-
nen erhöhen und kann die Simulationen der Opκ6q effektiven Gittertheorie ermöglichen, wo es
deutlich mehr Terme als die Opκ4q effektive Gittertheorie gibt.

In dieser Arbeit konzentrieren wir uns auf die Untersuchung der deconfinement Phasenüber-
gänge und ihres kritischen Endpunkts im Rahmen von der effektiven Gittertheorie. Die Be-
wertung umfasst zwei Teile: analytische Berechnungen und numerische Simulationen. Wir
verwenden den analytischen Ansatz basierend auf Reihenentwicklungsmethoden für die ef-
fektive Theorie von reinen Eichfeldern und statischen Quarks bei allen chemischen Bary-
onenpotentialen. Obwohl diese Theorie nur eine Approximation der Gitter-QCD, enthält
sie bereits wichtige Eigenschaften der QCD. Dazu gehören die Z3-Zentrumssymmetrie des
reinen Eichsektors, die Symmetriebrechung durch Quarks mit endlichen Massen, sowie die
Roberge-Weiss-Symmetrie für komplexes chemisches Potential. Es gibt mehrere Reihenexpan-
sionsmethoden wie zum Beispiel die Linked-Cluster-Expansion, die Hochtemperaturexpansion
oder die molekulare Feldexpansion. Aufgrund der Natur der logarithmischen Wirkung der
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effektiven Gittertheorie ist jedoch die Hochtemperaturexpansion das einzig geeignete Schema.
Diese Reihenentwicklungsmethode basiert hauptsächlich auf den Techniken der Graphenthe-
orie. Die Hochtemperaturexpansion kann als Summe von Termen geschrieben werden, wobei
jeder Term durch einen Graphen in der Ebene dargestellt wird, der aus Knoten (vertices)
und Kanten (bonds) besteht. Auch hier wird die Berechnung der Zustandssumme oder der
Suszeptibilität des Polyakov-Loops von Hand nach einigen führenden Ordnungen mühsam,
dann treten die kombinatorischen Probleme auf. Glücklicherweise lassen sich mit Hilfe von
Computern und dem sogenannten ’Pegs in Holes’ (PIH) Algorithmus Graphengenerierungen
und Graphenzählungen systematisch archivieren.

Wir haben die effektive Zustandssumme Zeffpλ1, h1, h̄1q und die Suszeptibilität der Polyakov-
Loop χLpλ1, h1, h̄1q zur 13. Ordnung in der effektiven Nächsten-Nachbar-Eichkopplung λ1 sowie
in den Kopplungen h1 und h̄1 berechnet. Daraus lässt sich leicht die Zustandsgleichung durch
die logarithmische Funktion der effektiven Zustandssumme berechnen, jedoch interessieren wir
uns eher die kritischen Punkte der Theorie, deshalb werden wir uns auf die Auswertung der
Suszeptibilität χL konzentrieren, um Informationen über die Kritikalität unseres Systems zu
extrahieren. Für Systeme mit einer Variablen bzw. einer Kopplung, wie die effektive reine
Eichtheorie, funktioniert der Padé-Approximant sehr gut, andererseits für multivariate Sys-
teme wie die effektive reine Eichtheorie mit statischen Quarks, kann der Padé-Approximant
jedoch immer noch die Phasengrenze anzeigen, nicht den kritischen Endpunkt. Aus diesem
Grund müssen wir den Padé-Approximant mit einer anderen Methode namens Canterbury-
Approximant - eine natürliche Generalisierung vom Padé-Approximant für multivariate Serien
- kombinieren. Dies sind zwei verschiedene Methoden, aber sie funktionieren am besten für
die Endpunkte zweiter Ordnung, daher können wir aus den Schnittpunkten ihrer Approxi-
manten den kritischen Endpunkt schätzen. Unsere analytische Ergebnisse bei allen chemis-
chen Baryonenpotentialen stimmen mit denen aus Simulationen überein, wo das Fermion-
Vorzeichenproblem durch die Flux-Darstellung der Zustandssumme gelöst wurde. Dies beweist
auch die Konsistenz unseres analytischen Ansatzes.

Trotz konsistenter Ergebnisse der Hochtemperaturexpansion für die effektive reine Eichthe-
orie mit den statischen Quarks ist es schwierig, die Reihenentwicklungsmethode auf die effek-
tive Gittertheorie bei höheren Ordnungen als Opκ2q in der Hopping-Parameter anzuwenden.
Aus diesem Grund ist die Monte-Carlo-Methode besser geeignet, es sei denn, es gibt eine
Möglichkeit, alle Ordnungen des Hopping-Parameters ähnlich der Charakter-Expansion für die
reine Eichtheorie zu reorganisieren. Ein prominenter Ansatz dafür wäre die Verwendung der
Finite-Cluster-Methode in einer numerischen Bestimmung der effektiven Kopplungen der ef-
fektiven Theorie. In dieser Arbeit wenden wir die Monte-Carlo-Methode auf die Nf P t1, 2u
effektive Theorie ohne chemisches Potential bis zu Opκ4q im Hopping-Parameter bei Nt P t4, 6u
an, um die deconfinement Phasenübergänge zu untersuchen, sowie die kritische Quarkmasse
zu bestimmen.

Wir haben den Metropolis-Algorithmus in Verbindung mit dem Verfahren des Linkvariable-
Updates auf die effektive Gittertheorie angewendet, da ihre Wirkung nur eine Funktion von
SUp3q-Linkvariablen ist. Wir vergleichen unsere Ergebnisse ebenfalls mit vollständigen QCD-
Simulationen und beobachten, dass die Phasenstruktur der vierdimensionalen QCD durch die
effektive Gittertheorie auf einer halbquantitativen Ebene reproduziert wird, so dass ihre An-
wendung dem kalten und dichten Regime vertraut werden kann. Hinsichtlich der quantita-
tiven Genauigkeit erlaubt der Vergleich entweder mit Hopping-Expansion oder voller QCD
detaillierte und getrennte Rückschlüsse auf die Starkkopplungsentwicklung und die Hopping-
Parameter-Entwicklung: Die dreidimensionale effektive Gittertheorie stimmt fast quantitativ
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überein mit der vierdimensionalen QCD mit einer erweiterten Hopping-Determinante, während
beide mit voller QCD größere Unterschiede aufweisen wenn Nt wächst. Das bedeutet, dass die
Charakter-Expansion ein gutes Konvergenzverhalten zeigt und für thermodynamische Anwen-
dungen bis Nt “ 6 ausreichend ist, während Korrekturen höherer Ordnung in der Hopping-
Expansion bereits bei Nt “ 6 erforderlich sind.

Abschließend geben wir eine Fazit unserer Ergebnisse, einen Ausblick auf mögliche Pro-
jekte, die auf den Resultaten der Dissertation aufbauen und diese erweitern könnten. Hierbei
sei insbesondere auf die Möglichkeit hingewiesen, die Graphendarstellung für die Herleitung
der effektiven Polyakov-Loop-Theorie von höheren Ordnungen in einer Kombination mit dem
Linkvariable-Update zu verwenden. Wir verlagern einige technische Details unserer Berech-
nungen in dieser Dissertation in die Appendizes.
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Chapter 1

Introduction

We are driven to the conclusion that the Hamiltonian method

for strong interaction is dead and must be buried, although

of course with deserved honor.

From a memorial volume to Wolfgang Pauli

by Lev Landau

Particle physics plays a remarkable role in our understanding of the laws of nature. It
is concerned with the constituents of the universe at fundamental levels such as how the
elementary particles form bound states and how they interact with each other. The Standard
Model of particle physics covers a big part of our current understanding, it serves as a unified
picture of the strong, weak, and electromagnetic interactions. The strong interaction influences
nuclear binding and the interactions of the constituents of nuclei, the weak force is responsible
for the nuclear β-decays of certain radioactive isotopes, and the electromagnetic interaction,
which is described by the well-known quantum electrodynamics (QED), coupled weakly to all
charged quarks and leptons. Amazingly, the Standard Model stands today under precision
tests in numerous colliding experiments including, for instance, those at the Large Hadron
Collider at CERN and in the Fermi National Accelerator Laboratory in the USA.

By now there is no doubt that the theory of hadronic physics is the SUp3q gauge theory
of quarks and gluons called quantum chromodynamics (QCD). This theory describes a wide
range of phenomena, including the notion of confinement of color, dynamical mass generation,
and chiral symmetry breaking. Although we have the correct theory for the strong interaction,
which was proposed independently a long time ago by Gell-Mann and Zweig in 1963 [1, 2],
there are many features of the theory that are still poorly understood, in particular from
aspects of quantitative calculations. For example, it is very challenging to obtain a reliable
computation for the baryon spectrum, because the signal-to-noise ratio of the associated two-
point functions decreases exponentially at large distance [3], or the study of strongly interacting
matter under extreme conditions in particular at finite chemical potential where standard
Monte-Carlo methods suffer from the fermion sign problem. The study of QCD under extreme
conditions is relevant to several experimental windows, for example, the physics of the early
universe, heavy-ion collisions, or compact star interiors.

1
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Figure 1.1: A schematic, conjectured QCD phase diagram as a function of chemical potential
µ and temperature T .

1.1 The phase diagram of QCD

A very common critical phenomenon in condensed matter physics is the endpoint of a first-
order line is a critical point of the second-order where the boundary between phases disappears.
For example, water possesses a critical point, when the line of the water boiling transition
terminates at temperature Tc “ 374˝C and pressure pc “ 218 atm. At present, due to its unique
properties, finding critical points and studying phase transitions of QCD at finite temperature
and density becomes one of the major challenges of modern physics.

The phase diagram of QCD is characterized by the temperature T and the chemical po-
tential µ, see fig. 1.1. The chemical potential is associated directly with the net density of
quarks1. At a fixed temperature the net quark density becomes larger when the chemical
potential increases. Consider the case of the early universe, when the number of quarks and
antiquarks were roughly the same, so µ “ 0, it was at the state of a very high temperature.
This temperature was much higher than the QCD scale (ΛQCD „ 200 MeV). Asymptotic free-
dom indicates that quarks interact weakly with each other when approaching such high energy
scales. In other words, at such high temperatures of the Early universe quarks are free from
confinement, they together with gluons form a new state of matter called plasma state or
quark-gluon plasma (QGP). For further discussions of the quark-gluon plasma, see [4, 5].

Confinement is restored, i.e. there exists a transition from QGP to hadronic matter, as the
universe’s temperature decreases to about the confinement scale „ 1 fm, where the interaction
becomes strong. According to lattice QCD calculations, this transition is likely to be an analytic
crossover [6], which implies that the confinement transition from low- to high-temperature
phases of QCD need not proceed through a singularity. Similar transitions occur in later states
in the evolution of the universe, like the electroweak transition associated with the spontaneous
breaking of the electroweak symmetry in the Standard Model [7,8] or the transition of electrons

1The difference of the density of quarks by the density of antiquarks.



1.1. The phase diagram of QCD 3

N f
=
3

Z
(2)

Z(2)

physical point
??

Nf = 2

N
f
=

1

O(4)

mu,d

ms ms

mu,d

crossover

1st

1st

0

∞

Figure 1.2: The Columbia plot: showing the order of the QCD phase transition as function of
quark masses (mu,d,ms) at zero chemical potential.

and protons into hydrogen in the recombination era [9].

By compressing hadronic matter, i.e. along the line, where the temperature is kept fixed
at T “ 0 and the quark chemical potential increases2, there is a jump from vacuum to nuclear
matter - the matter that is responsible for forming atomic nuclei. There is very little reliable
information about the value of µ at which this phase transition occurs, but one can determine
that this transition is of first-order [10, 11]. At higher temperatures, this first-order phase
transition will continue and terminate when a critical endpoint is reached. We know far less
about what happens at higher densities and small temperatures, but it was predicted in [12]
that the QCD phase diagram processes a color-flavor-locking (CFL) or color superconductivity
phase in this regime. This region is also of particular theoretical interest because thanks to
asymptotic freedom and new insights from the theory of superconductivity analytical control-
lable calculations are possible. The recent developments for this regime of the phase diagram
can be found in [4, 12,13].

The temperatures and densities, which are relevant for QCD, can only be probed by rel-
ativistic heavy-ion collisions experiments. For small densities, the heavy-ion collisions ex-
periments are performed at the Large Hadron Collider (LHC) or the Relativistic Heavy Ion
Collider (RHIC), while the Facility for Antiproton and Ion Research (FAIR) currently runs
experiments aiming for larger densities. The region of the QCD phase diagram, which can
be archived through such experiments, is the temperature roughly of the QCD scale T „ 100
MeV, and a small to medium chemical potential µ „ 0 ´ 600 MeV [14]. In order to build
next generation experiments, it is crucial to have a better understanding of the QCD phase
diagram.

2At low temperature, it is believed that a very rich spectrum of possibilities of ordering exists.
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The qualitative picture for the order of the three-flavor QCD phase transition at zero baryon
density as a function of the quark masses is shown in fig. 1.2. Due to its rich structures and
the gradual improvements in the field, it is useful to give a short overview of the so-called
Columbia plot. Starting with the lower-left and upper-right corners, moving along the Nf “ 3
line, when the three quarks are massless or infinite, one can define order parameters associated
with the symmetry breaking, i.e. there will be true phase transitions. Backed by lattice
computations, these transitions are first-order. At intermediate quark masses, an analytic
crossover appears, implying that there must be a second-order line that bounds the region
of first-order transition at each corner. The lower-left corner is called chiral region, and the
upper-right corner is called the deconfinement region according to the chiral transitions and
the deconfinement transitions, respectively. From [15,16], the line bounding the chiral region is
located to the left of the physical point. In the case of two light quarks, in the upper-left-hand
side of the Columbia plot, the transition is of second-order and in the universality class of
three-dimensional Op4q spin models. Currently, there is no evidence for this universality but
one can expect a confirmation in the near future. If the transition is indeed second-order, then
there must be a tricritical strange quark mass mtric

s , which separates the region of first-order
transitions from the line of second-order transitions. A detailed overview of the Columbia plot
can be found in [17,18].

At present, despite a lot of effort that has been invested in studying the phase diagram
of strongly interacting matter under extreme conditions, the QCD phase diagram at finite
quark chemical potential remains unknown, because all Monte-Carlo methods suffer from the
fermion sign problem. This problem can be partially controlled if the chemical potential is not
too large µ “ µB{3 » T [19,20], where it is unlikely that the critical point would locate within
this region [15]. Some attempts have been considered, for example: the complex Langevin
simulations which are based on stochastic quantization methods, and do not suffer a sign
problem, but for complex actions the correct results are not guaranteed [21,22]; the reweighting
technique which faces the overlap problem for µ{T ą 1 [15]; or Taylor expansion [23–25] or
simulations at imaginary chemical potential [26] followed by analytic continuation all give
additional systematic errors and require µ{T ă 1 to be valid.

This motivates the development of alternative formulations and algorithms to remedy this
problem. The formulation of effective theories, which are derived directly from first principles
by integrating out some degrees of freedom, shows great potential in dealing with the fermion
sign problem, at least in the regime of heavy quarks [27–29]. On one hand, with part of the
degrees of freedom integrated out, the sign problem of the effective theory becomes milder.
Thus, it is possible to simulate with standard Monte-Carlo methods or complex Langevin al-
gorithms. On the other hand, one can use series expansion methods to carry out analytic
computations [30–32], for which the sign problem is irrelevant. Although the Polyakov loop
effective theory is just an approximation of lattice QCD, it exhibits similar behavior to QCD,
for example in the SUp3q pure gauge theory, the deconfinement transition spontaneously breaks
the global Z3 center symmetry, and is of first-order. The presence of dynamical quarks breaks
the center symmetry explicitly and leads to a weakening of the deconfinement transition with
decreasing quark mass until it vanishes at a critical point in the three-dimensional Ising uni-
versality class. For still lighter quark masses, the transition becomes an analytic crossover.
Furthermore, at large the Nc limit the existence of quarkyonic matter is supported by calcula-
tions from effective theories [33].

Because of the complexity of phenomena which QCD or the effective theory describes, we
cannot even dream of solving them exactly. In the absence of exact solutions, there is a set
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of quantitative approaches which can be used such as series expansion methods, Monte-Carlo
simulations, or renormalization methods. Each of these has its strengths and weaknesses for
different problems. In this work, we will employ the series expansion method and the Monte-
Carlo method for different regimes of the effective theory. Of course, the series expansion
techniques are not new and have long been used in statistical mechanics, and more recently,
also in quantum field theory [34], for reviews of series expansion methods see [35, 36]. These
techniques are usually based on graph representations, and proved to be highly systematic and
mechanical since graphs can be generated and evaluated fully by computer.

This work aims at exploring lattice QCD of heavy quarks at zero and finite chemical
potential by means of using effective lattice theories. We have tested the consistency of our
methodology by applying a series expansion method called the linked cluster expansion to the
SUp3q spin model at finite chemical potential [31]. In this work, we investigate an improved
effective theory, which contains the SUp3q pure gauge effective theory and the static quark
determinant. This effective theory has better convergence and possesses features closer to QCD
in comparison with the SUp3q spin model. It is necessary to point out that the linked cluster
expansion is not suitable for the improved effective theory due to the logarithmic function in the
action. Thus, we will apply a different expansion scheme called high-temperature expansion
instead3, whose generated graphs are different from those generated by the linked cluster
expansion.

The standard Monte-Carlo methods - the most important numerical methods used for
solving statistical physics problems - are also applied to the effective theory with zero chemical
potential at higher orders of the hopping parameter κ. For the SUp3q effective theory, there
exists a standard parametrization of the Polyakov loop, by which we write the trace of a SUp3q
matrix by rotating it to its diagonal form. The advantage of this parametrization is that
the degrees of freedom for performing Monte-Carlo methods are reduced, however, to use it
one first needs to transform the integration measure which introduces an additional effective
potential, and then re-express the effective action fully in terms of Polyakov loops, which will
make the expression of the effective theory very large at higher κ-corrections4. In this thesis,
an alternative parametrization of the Polyakov loop is introduced, as we will see, this new
parametrization will reproduce the same results as the standard one, and will serve to keep
expressions of the effective theory not too large. This in turn will increase the efficiency of the
simulations.

1.2 Outline

The contents of this thesis are as follows. We begin with a brief review of the general concepts
in chapter 2, including the definition of QCD action in the continuum, and how QCD can be
formulated via the lattice discretization approach. As a preparation for the next chapter, we
show how temperature and chemical potential are defined on the lattice. Center symmetry,
which plays an important role for confinement, is discussed. In section 2.5 the thermodynamic
properties of quantum field theory and lattice gauge theory are discussed in more details. The
challenges that arise at large chemical potential from the aspect of lattice simulation, will be

3The name ‘high-temperature expansion’ is taken from statistical mechanics literature, where the expansion
parameter is defined as the inverse of temperature, i.e. at high temperature the parameter is supposed to
be sufficiently small for performing series expansion. Here in the context of the effective theory, the effective
couplings play a role as an expansion parameter.

4The coupling κ is related directly to the quark mass mq.
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described.
After having discussed some of the basic elements of lattice QCD, we turn to present the

detailed derivation of the effective theory in chapter 3. Three main expansion schemes; strong
coupling expansion, character expansion, and hopping expansion, are introduced. We then
present a graph representation method for deriving the effective theory at Opκ6q, which can
be generalized to the effective theory at higher orders in κ, where graphs of the kinetic quark
determinant will be generated and evaluated by computer. This method combined with the
link-variable update provides a way to simulate the effective theory at higher orders, i.e. it
can be used to deal with combinatorial problems that appear when converting all terms of the
action into a function of Polyakov loops.

The next topic concerns an expansion scheme called the high-temperature expansion. We
start the discussion by recalling the basic notions of graph theory relevant for the high-
temperature expansion. Similar to Feynman diagrams, the high-temperature expansion can be
written as a sum of terms, where each term is represented by a graph in the plane consisting
of vertices and edges joining them. In this way, complicated expressions from the partition
function or some observable are converted to the form of simple graphs. For the lattice effec-
tive theory of QCD with heavy quarks, where we obtain a log-action after the resummation
of higher-order terms, the high-temperature expansion is the only suitable expansion scheme,
because it reproduces the correct leading-order results of the effective theory. We also discuss
two series analysis methods: Padé and Canterbury approximant, which are used to extract
information about the criticality of asymptotic series.

Chapter 5 is devoted to general concepts of the Monte-Carlo method, where it is explained
how Markov chains and the concept of importance sampling can simulate the effective theory.
In particular, the Metropolis algorithm for SUp3q link variables is discussed in some detail.
The estimation of the statistical errors in numerical lattice QCD is discussed. A resampling
technique called the jackknife method, which allows the errors of the calculated observables to
be estimated, is described.

Finally, in chapter 6 we discuss our results from analytic and numerical calculations. Our
results obtained from the high-temperature expansion are presented along with a discussion of
the checks and comparisons with numerical simulations. The validity of our method is shown
by a good agreement with simulation results. This method is not affected by the fermion sign
problem and is applied to determine the phase transition and its critical endpoint of the effective
theory that contains pure gauge action and static quarks. It is important to point out that it is
impossible to publish all expansions coefficients on paper since there are several thousands of
them. We therefore only print some special cases and make the full listing available somewhere
else. Furthermore, we apply the Monte-Carlo method to the Nf P t1, 2u effective theory with
zero chemical potential up to Opκ4q to determine the critical hopping parameter, at which
the first-order deconfinement phase transition terminates. The critical endpoint obtained from
the effective theory to order Opκ2q is in excellent agreement with those by the WHOT-QCD
collaboration, where the endpoint is determined by studying the quenched QCD simulations
combined with the hopping-expanded determinant for Nf P t1, 2, 3u on Nt P t4, 6, 8u. We also
compare with full QCD simulations with the temporal extent Nt “ 6 for Nf “ 2 and thus
obtain a measure for the validity of both the strong coupling and the hopping expansion in
this regime. We relegate some technical details of our calculations throughout this thesis to
appendices.



Chapter 2

Lattice gauge theory

... the difficulty is only that the exact application of these

laws leads to equations much too complicated to be soluble.

by P.A.M. Dirac

2.1 QCD and strong interactions

Without doubt, the strong interactions can be described by QCD. It is one of the biggest
triumphs of the quantum field theory. The breakthrough which provided much of the support
for QCD, was the discovery of the property of asymptotic freedom of non-Abelian gauge theory
[37–39]. This feature of the theory offers an explanation of Bjorken scaling which has been
observed in the deep inelastic scattering of leptons off hadrons and can be used to make many
quantitative predictions of scaling deviations at high energy [40, 41]. In addition, according
to the crucial property of asymptotic freedom that the effective coupling constant tends to be
small for large momentum scale, many predictions of perturbative QCD at short distances were
confirmed, e.g., quark and gluon jets or charm-anticharm bound states as a narrow resonance in
e`e´ annihilation [42,43]. The success of these predictions and many more recent quantitative
results from lattice calculations have greatly increased our confidence in the theory.

QCD is a renormalizable, non-Abelian quantum field theory describing the strong interac-
tions. It was shown that among the known class of four-dimensional quantum field theories
only the non-Abelian gauge theory exhibited the property of asymptotic freedom [39]. The
fundamental building blocks of QCD are spin 1{2 fermions called quarks which carry a frac-
tional electric charge and non-Abelian spin 1 gauge fields called gluons. On one hand, similar
to QED gluons play a role as a mediating particle that transmits the interaction between
color-charged quarks, on the other hand, gluons also have an additional property that they
can interact among themselves due to self-interaction terms in the QCD Lagrangian, and thus
possess a color quantum number.

To begin our description of this theory, we introduce the fermion and antifermion fields ψ
and ψ̄ known as ”quarks” and ”antiquarks”. These fields are Dirac spinor fields that transform
in the fundamental representation of the gauge (color) group SUp3q. The main idea of QCD is
to make the SUp3q symmetry a local symmetry1, and to explore this local symmetry one must

1Note that QCD also has a global symmetry which gives us N2
c ´ 1 conserved currents, but in contrast to

QED these currents and the corresponding charges are not physical because they are not gauge invariant. In

7
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take into account the gauge field Aµ. Analogous to QED, the dynamics of the gauge field is
governed by the field strength tensor Fµν which is defined as a commutator of two covariant
derivatives

Fµν “ ´irDµ, Dνs “ BµAν ´ BνAµ ` irAµ, Aνs, (2.1)

where the covariant derivative2 is Dµ “ Bµ ` iAµ. To avoid a complex probability distribution
in numerical studies, we use the Euclidean path integral as the standard tool for quantizing
fields and performing calculations on the lattice. Finally, in Euclidean space3 the Lagrangian
density of QCD for Nf number of quark flavors is

L “
1

2g2
tr pFµνF

µν
q `

Nf
ÿ

f“1

ψ̄f pγ
µDµ `mf qψf . (2.2)

Here we can regard the gauge field Aµ as a matrix and expand over a basis of the Lie algebra
sup3q. In contrast to the Standard Model where we cannot explain the various coupling con-
stants, the parameters that characterize QCD are the gauge coupling g and six quark masses
mf corresponding to six flavors of quarks; up, down, strange, charm, top and bottom. However,
in many calculations, one can neglect the contributions of heavy quarks at the non-perturbative
scale of Tc „ 200 MeV and include only the lightest two to four flavors of quarks [44].

It is simple to show that the QCD action is invariant under SUp3q transformations, where
the quark fields ψ transforms in the fundamental representation and the gauge field Aµ trans-
forms in the adjoint representation of the gauge group SUp3q respectively as

ψpnq Ñ ψ1pnq “ Ωpnqψpnq, ψ̄pnq Ñ ψ̄1pnq “ ψ̄pnqΩ:pnq, (2.3)

Aµpnq Ñ A1pnq “ ΩpnqAµpnqΩ
:
pnq ` iBµΩpnqΩ:pnq. (2.4)

Here Ω is an arbitrary element of the SUp3q group, i.e. it fulfills unitary Ω: “ Ω´1 and
detrΩs “ 1 at each space-time position n. We notice that with Aµ transforming as in (2.4),
the transformation property for the covariant derivative and the field strength tensor are

Dµpnq Ñ D1µpnq “ Bµ ` iA
1
µpnq “ ΩpnqDµpnqΩ

:
pnq, (2.5)

Fµνpnq Ñ F 1µνpnq “ ΩpnqFµνpnqΩ
:
pnq. (2.6)

This transformation of the covariant derivative and the field strength tensor ensures that Dµψ
and ψ transform in the same way, which also implies the invariance of the kinetic term in the
Lagrangian.

Before we proceed with the discretization of the QCD action, let us finish this section by
writing down explicitly all indices that the quark fields and the gauge fields carry. First, the
quark fields carry several indices and arguments: the space-time position denoted by n, Dirac
index α “ 1, 2, 3, 4 according to their spinor property, the flavor index f “ 1, . . . , Nf and the
color index denoted by c “ 1, 2, 3. The gauge fields on the other hand are vector fields on
space-time which can be expanded over a basis T a “ λa{2 of the Lie algebra sup3q, which
are constructed from the so-called Gell-Mann matrices4 λa where the index a “ 1, . . . , 8. All

particular, they cannot be used to give a notion of an electric charge.
2An alternative convention can be obtained by rescaling the gauge field as Aµ{g Ñ Aµ, this way the coupling

g is moved to the covariant derivative.
3In the following we will only work with the Euclidean signature.
4We restrict ourselves to the fundamental representation (a non-trivial representation of the smallest di-
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together the explicit expression of the fields in QCD reads

ψcαf pnq, ψ̄cαf pnq, Aµpnq “
8
ÿ

a“1

AaµpnqT
a.

In the following those indices will often be suppressed for simplicity.

2.2 Quantum field theory on the lattice

Despite the fact that quantum field theory provides an amazingly accurate theoretical frame-
work for describing the behavior of subatomic particles and forces, understanding the strong
coupling dynamics of QCD remains one of the daunting challenges of theoretical particle
physics. This is because at large separation, forces between quarks become strong and this
precludes the usage of perturbation theory. Fortunately, there exists a formalism called lattice
gauge theory which was originally introduced by Wilson in 1974 [45]. This theory opens a
new window for studying QCD non-perturbatively, and the early work of application of the
Monte-Carlo method to lattice gauge theory [46, 47] in connection with our current computer
power gives us a very practical reason for studying lattice gauge theory. It is instructive to
review briefly a lattice gauge theory with the so-called Wilson fermions which will be a central
object throughout this thesis. A full and detailed formal introduction can be found in, for
example [48–50].

2.2.1 Gauge fields on the lattice

It is convenient to start with the concepts of lattice gauge theory in the SUp3q Yang-Mills
theory or SUp3q pure gauge theory. As we will see later, the pure gauge theory on the lattice
is much easier concerning numerical simulations, and its effective theory derived by using a
strong and a character expansion can be evaluated analytically by means of series expansion
methods. While the presence of fermion fields increases complexity for both analytic and
numerical calculations drastically. We emphasize that even though pure gauge theory is much
simpler to deal with, this theory shows already most of the relevant phenomena in lattice gauge
theory.

The first step in the lattice formulation is the introduction of the four-dimensional lattice
Λ with lattice spacing a and four basis vectors µ̂ each of unit length where µ “ 0, 1, 2, 3

Λ “ tn “
3
ÿ

µ“0

anµµ̂|n1, n2, n3 “ 0, 1, . . . , Ns ´ 1, n0 “ 0, 1, . . . , Nt ´ 1u. (2.7)

Here Ns is the spatial extent and Nt is the temporal extent of the lattice. The lattice spacing
plays the role of the inverse ultra-violet cut-off in our theory

a “
1

ΛUV

. (2.8)

The lattice becomes a good approximation only if a is much smaller than other physical length
scales in the system.

mension) of the sup3q Lie algebra.
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To derive the formalism of pure gauge theory on the lattice, it is instructive to understand
the naive discretization of free fermions before trying to involve interactions. The Lagrangian
for a free fermion in Euclidean spacetime is given by

L pψ, ψ̄q “ ψ̄pnqpγµBµ `mqψpnq. (2.9)

To formulate the corresponding action on the lattice one needs to discretize both the integral
over space-time and the partial derivative. The integral and the partial derivative are replaced
by a sum over Λ and the Opaq-improved derivative, i.e. lattice artifacts are of Opaq, respectively

Bµψpxq Ñ
1

2a
pψpn` µ̂q ´ ψpn´ µ̂qq . (2.10)

To ensure the discretized action invariant under gauge transformations, gauge fields Uµpnq -
elements of the gauge group SUp3q - must be introduced. These matrix-valued variables are
oriented and should be attached to the links connecting the sites n and n ` µ̂ rather than on
the sites themselves, thus they are often called link variables. In the continuum, the so-called
gauge transporter is defined as

Gpn,mq “ P exp

ˆ

i

ż

Cnm
A ¨ ds

˙

, (2.11)

where Gpn,mq is the path-ordered exponential integral of the gauge field Aµ along some curve
Cnm connecting two points n and m and transforms under a gauge transformation (2.4) as

Gpn,mq Ñ ΩpnqGpn,mqΩpmq. (2.12)

The link variables Uµpnq with a path where n and n` µ̂ are endpoints of this path, share the
same transformation properties with parallel transporters in the continuum. In the presence
of matter field, the link variable Uµpnq parallel transports a matter field from the site n to
n ` µ̂ on the SUp3q gauge manifold. Thus, one can associate the link variables Uµpnq to the
Aµ gauge fields as follows

Uµpnq “ expp´iaAµpnqq P SUp3q. (2.13)

It is easy to see that the SUp3q properties of the link variables are preserved because the Aµ
gauge fields are elements of the sup3q Lie algebra. The definition of the link variables in (2.13)
also implies that to obtain a link variable that point in negative µ direction we can take its
Hermitian conjugate at n´ µ̂

U´µpnq “ U :µpn´ µ̂q. (2.14)

The discretized partial derivative in (2.10) can be combined with the link variables and leads
to the improved covariant derivative

Dµψpnq “
1

2a
pUµpnqψpn` µ̂q ´ U´µpnqψpn´ µ̂qq . (2.15)

The Lagrangian including the lattice covariant derivative is invariant under gauge transforma-
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tions, i.e. the fermion fields and the links transform respectively as

ψ1pnq “ Ωpnqψpnq, (2.16)

U 1µpnq “ ΩpnqUµpnqΩ
:
pn` µ̂q. (2.17)

Let us make some comments on the native continuum limit of the fermion action. The La-
grangian from (2.9) including the lattice covariant derivative indeed reproduces the continuum
action up to artifacts of Opa2q when taking aÑ 0, but this naive discretization has a problem
called fermion doubling, i.e. there are 16 times too many fermions as we take the continuum
limit. These doublers are unphysical poles of the lattice Dirac operator in momentum space
within the Brillouin zone ´π{a ă p ď π{a. As mentioned in the introduction, throughout this
thesis we mainly focus on the Wilson fermion action, which removes the doubles by adding a
new term to the action. Unfortunately, there is a drawback that this new term cannot preserve
the chiral symmetry of QCD action even for the m Ñ 0 limit. This is a consequence of the
Nielsen-Ninomiya theorem [51] which states that on the lattice chiral symmetry through the
relation

tD, γ5u “ Dγ5 ` γ5D “ 0 (2.18)

and a doubles-free theory cannot be implemented at the same time. This theorem held the
development of lattice QCD for many years before the discovery of the Ginsparg-Wilson equa-
tion [52]. More details of the Nielsen-Ninomiya theorem and chiral symmetry on the lattice
can be found in e.g. [48].

With the introduced link variables Uµpnq we can write down an action that satisfies the
following demands; gauge invariance, locality, and isotropy. We can achieve this by first con-
sidering the simplest gauge invariant combination of gauge fields on the lattice that can be
constructed by multiplying together a string of four neighboring link variables and then tak-
ing the trace. This shortest, nontrivial closed loop on the lattice is called the plaquette. The
plaquette variable Uµνpnq is given by

UP “ Uµνpnq “ UµpnqUνpn` µ̂qU
:
µpn` ν̂qU

:
νpnq, (2.19)

which is the smallest loop of size a ˆ a on the lattice. Based on the plaquettes the Wilson
gauge action can be constructed by summing over all plaquettes as follows

SGrU s “ β
ÿ

n,µăν

„

1´
1

3
Re trUµνpnq



, (2.20)

which takes the simplest real and gauge invariant expression. Here each plaquette is counted
with only one orientation. The sum runs over all lattice points n as well as over the Lorentz
indices where µ ă ν. β is called the lattice coupling and for SUp3q group it is related to
the bare coupling g as β “ 6{g2. It is possible to show that the action of (2.20) approaches
the continuum gauge action up to terms of Opa2q. It is important to point out that the
lattice artifacts of Opa2q can be eliminated by applying the so-called Symanzik improvement
program [53,54], which leads to an improved action that includes additional larger loops which
cancel precisely the terms of higher order in a.
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2.2.2 Fermion fields on the lattice

The naive discretization of the free fermion fails to give the correct continuum limit due to
the problem of fermion doubling. In this section, we consider the fermion contribution with
the correct statistics and the correct continuum limit to obtain the full action of lattice QCD.
From the naive discretization combined with the Wilson term which is a discretization of a
second derivative ´a{2BµBν

5, the pre-factor a implies that the Wilson term vanishes as the
action approaches the continuum limit aÑ 0 [45]. This term helps decouple the physical from
the double sector. The total QCD Lagrangian is given by

SrU, ψ, ψ̄s “ SGrU s ` SF rU, ψ, ψ̄s, (2.21)

where the Wilson gauge action SG is given in (2.20), and the fermion term SF is quadratic in
fermions which takes the following form

SF rU, ψ, ψ̄s “ a4

Nf
ÿ

f“1

ÿ

n,m

ψ̄f pnqDpn|mqψf pmq. (2.22)

Here Dpn|mq is called the Wilson-Dirac operator. According to the indices of the Lagrangian;
the number of lattice site n “ 1, . . . , N , the number of colors c “ 1, 2, 3 and the Dirac index
α “ 1, . . . , 4, this matrix has the size of 12Nˆ12N . The Wilson-Dirac operator can be written
in the following form

Dpn|mq “ ´
1

2a

4
ÿ

µ“1

rpr ´ γµqUµpnqδn,m´µ̂ ` pr ` γµqU´µpnqδn,m`µ̂s `

ˆ

mf `
4r

a
δn,m

˙

, (2.23)

where we have defined

γ´µ “ ´γµ, µ “ 0, 1, 2, 3. (2.24)

With this representation for the Wilson-Dirac operator one can easily show that it satisfies the
condition of γ5-hermiticity

γ5Dγ5 “ D:. (2.25)

Here we note that physical quantities cannot depend on the coefficient r since the Wilson
term is a lattice artifact that vanishes in the continuum, therefore it can be chosen freely.
From now on, for our convenience we set r “ 1. Furthermore, for r ‰ 0 this action breaks
chiral symmetry even for zero quark masses at finite lattice spacing. This is evident from the
additional 4{a term which is added to the bare quark mass in (2.23). The quark mass and
the chiral condensate xψ̄ψy obtain an additive renormalization. For Wilson fermions, the bare
quark mass is consequently given by the following quark mass

mb “ m´mc, mc “ mcpβq ‰ 0 for finite β (2.26)

Within the scope of numerical simulations, it is important to properly renormalize the mass
before approaching the continuum limit. This step can be done by choosing a fixed renormalized

5There exists another method to overcome the doubling problem called the Kogut-Susskind or staggered
discretization, but this method is out of the scope of this thesis.



2.2. Quantum field theory on the lattice 13

quark mass when reaching the continuum.
The Wilson term has a lattice artifact of Opaq, while the naive discretization has the lattice

artifact of Opa2q, indicating that we have introduced a term that slows down the approach
to the continuum. We emphasize again that this problem can be solved by the usage of
the Symanzik improvement program. This program leads to additional terms in the action
when it is applied to remove the artifacts of Opaq [55]. The final result is known as Opaq-
improved Wilson fermions, which are normally used in large scale simulation projects rather
than unimproved ones.

For completeness, we also want to point out the discrete symmetries of the Wilson action.
The Wilson-Dirac operator is invariant under parity P , charge conjugation C, and time reversal
T . These discrete symmetries ensure the consistency of the Wilson action.

2.2.3 Hopping parameter representation

There is another convenient form for the fermion action called the hopping parameter rep-
resentation. This representation later will become important for deriving an effective theory
from lattice QCD. The hopping parameter

κ “
1

2pamb ` 4q
(2.27)

is a real number and related to the bare quark mass mb. The hopping parameter κ is propor-
tional to the inverse of the quark mass, thus it becomes small for large quark mass. As the
hopping parameter κ is introduced, the Wilson-Dirac operator in (2.23) can be reformulated
as

D “ Cp1´ κHq. (2.28)

Here H is called the hopping operator, and the pre-factor C is irrelevant, since it can be
absorbed in a rescaled fermion fields as follows

ψ Ñ
?
Cψ, ψ̄ Ñ

?
Cψ̄. (2.29)

These fermion fields are integrated out later to avoid direct simulations of fields that take
values in a Grassmann algebra. We then obtain a new form of the Wilson-Dirac operator

D “ 1´ κH, (2.30)

which allows us to perform the so-called hopping expansion in the limit of large quark mass.
The hopping parameter expansion provides an analytic way of studying the effects of dynamical
fermions on physical observables.

2.2.4 The path integral for lattice gauge theory

Since the thermodynamic aspect of the theory is what we are interested in, in this section we
consider the formal lattice formalism of statistical QCD. The finite-temperature behavior of
any theory is specified by the canonical partition function

ZpT q “ trpe´βH
q, (2.31)
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where H is the Hamiltonian of the theory, and the quantum mechanical trace is a sum over
all energy eigenstates of the Hamiltonian. For a system with Nq quarks, it must be treated in
the grand canonical ensemble, which allows us to study the case where there is an exchange
of particles with the reservoir. This ensemble gives the same description as the canonical
ensemble for physical observables in the thermodynamic limit. The grand canonical partition
function of the theory reads

Zgpµ, T q “ tr e´βpH ´µNqq, (2.32)

where µ is the chemical potential. The thermal expectations of physical observables in the
canonical and grand canonical ensemble are given by

xOy “ 1

Z
tr
`

e´βH O
˘

or xOgy “
1

Zg
tr
`

e´βpH ´µNqqOg

˘

. (2.33)

Here with the natural unit kB “ 1, the coupling β “ 1{T is the inverse temperature.

Based on [56], the path integral representation for gauge theories [57,58] has been developed.
For lattice gauge theory, the ground-state expectation value of physical observables as functions
of the link variables U , and the fermion fields, is given by

xOrU, ψ, ψ̄sy “ 1

Z

ż

DUDψDψ̄ exp
`

´SrU, ψ, ψ̄s
˘

OrU, ψ, ψ̄s. (2.34)

Here Z is the partition function

Z “

ż

DUDψDψ̄ exp
`

´SrU, ψ, ψ̄s
˘

, (2.35)

and the integration measure for a generic field φ takes the simple product form over all lattice
sites and its indices as

Dφ “
ź

n,α

dφαpnq, (2.36)

where for φ “ U , dUpnq is the Haar measure on the continuous compact group G. Explicitly,
for the link variables and the fermion fields the path integral measure is defined by

DU “
ź

n,µ

dUµpnq, Dψ “
ź

n,c,α

dψcαpnq. (2.37)

The Haar measure is chosen based on the gauge invariance of the path integral. The group
measure should fill the group volume uniformly so that it is not changed by a gauge transfor-
mation, thus it makes sense to demand

dU “ dpUV q “ dpV Uq, (2.38)

for an arbitrary group element V P G, and we also impose a normalization condition so that

ż

dU “ 1. (2.39)

A more detailed discussion of the Haar measure can be found in, for example [48].
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From quantum field theory, we know that the fermion fields satisfy a so-called Grassmann
algebra6, and in the QCD functional integral the integration over fermions can be performed
analytically and leads to the fermion determinant detrDs. This step is necessary for lattice
gauge theory because so far, there is no practical method that would allow performing numerical
simulations on Grassmann-valued fields directly. The path integral of Nf flavor lattice QCD
with mass-degenerate Wilson quarks can be written as

Z “

ż

DU pdet rDrU ssqNf e´SGrUs. (2.40)

We focus on the properties of the expectation values of observables O under a gauge transfor-
mation. Under a gauge transformation of the form U Ñ ΩUΩ:, where Ω represents the gauge
transformation for a full configuration of link variables7, the expectation value reads

xOy “ 1

Z

ż

DpΩUΩ:qOrΩUΩ:s
`

det
“

DrΩUΩ:s
‰˘Nf e´SGrΩUΩ:s. (2.41)

The action and the measure of the path integral are invariant under gauge transformations.
Thus,

xOy “ 1

Z

ż

DUOrΩUΩ:s pdet rDrU ssqNf e´SGrUs. (2.42)

Physical observables are gauge invariant so the above equation implies that physical observables
correspond to gauge invariant operators on the lattice. By integrating over all possible gauge
fields one obtains that the expectation value of any non-gauge invariant functional is equal to
the expectation of its average over the gauge group. This implies that we may integrate over
all possible gauge fields Ω without changing the expectation value

xOy “ 1

Z

ż

DUDΩ pdet rDrU ssqNf e´SGrUsOrΩUΩ:s “

ż

DΩxOrΩUΩ:sy. (2.43)

The consequence of (2.43) is that for operators which include both gauge invariant and gauge
variant contributions, only the gauge invariant remains after performing the path integral.
Furthermore, due to the demand of gauge invariance all observable which only include gauge
degrees of freedom are necessarily made of closed loops of link variables. If fermionic degrees
of freedom are absent, then a closed loop is the only possibility to maintain gauge invariance.
In addition, gauge invariance can be ensured by either taking the trace or the determinant for
each closed loop.

2.3 The continuum limit

To obtain physical results from lattice calculations, which are independent of the underlying
lattice structure, one must take the continuum limit. In a naive sense, this step is related to
the procedure of sending the lattice spacing aÑ 0. However, the lattice spacing a is not a free
parameter rather it is generated dynamically in the simulations. In this section, we will explain

6Recall that the Grassmann algebra for a fermion field ψ is an anti-commutation relation that yields
tψpxq, ψpyqu “ 0.

7For our convenience, we consider only the link variables here, and the value of Ω can be chosen arbitrarily.
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Figure 2.1: Structure with an intrinsic physical length scale ` by decreasing the lattice spacing
with a factor of two. Figure taken from [59].

briefly how the simulation parameters can be tuned such that one approaches the continuum.

So far, we have regularized the QCD action on the lattice and showed that our regularization
is correct by carrying out the naive aÑ 0 limit. However, the discretization procedure is not
unique, in fact, there are infinitely many ways to discretize our theory that give the same
continuum limit. When trying to remove the lattice cutoff, physical observables should not
depend on a and agree with the corresponding experimental values. This implies that the bare
parameters have a nontrivial dependence on the cutoff a. It should be pointed out that to show
that a discrete action approaches the correct continuous one in the naive limit is not sufficient
to ensure that the discrete theory coincides with continuum QCD.

Asymptotically free theories. For an asymptotically free theory like QCD, decreasing the
lattice spacing corresponds to a consideration of the theory at smaller distances. Furthermore,
asymptotic freedom demands that the theory becomes free as it approaches the continuum
limit and in this case the bare coupling g Ñ 0. We already know from renormalization theory,
that this does not mean that the theory in the continuum is free, approaching the continuum is
instead a similar step by which the lattice structure as a regulator is removed in the process of
renormalization. The relevant coupling is the renormalized coupling gr at scale µE associated
with the process of interest.
The continuum limit as a second-order phase. The distinction between the bare and
renormalized coupling can be explained as follows, consider a physical quantity such as a meson
with an intrinsic length scale `, see fig. 2.1. The fields inside this meson are correlated at a
length scale proportional to ` „ ξ where ξ is the correlation length of the system. The quantity
` is a physical constant, irrespective of how it can be measured on the lattice. On the other
hand, when we express ` in terms of the lattice spacing a as ` “ aξ. It is clearly that for ` to
remain constant as aÑ 0, the corresponding correlation length has to diverge: ξ Ñ 8. In the
language of statistical mechanics, this characterizes a second-order phase transition. In other
words, a lattice theory with a well-defined continuum limit needs to approach a second-order
phase transition in this limit8.
The renormalization group equation for g. From QCD renormalization, a given energy

8In the strong coupling limit, the required second-order phase does not occur because the correlation length
goes to zero as β becomes small. Thus, to approach the continuum limit we must look at the region of
intermediate and small coupling
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scale µE provides a relevant scale for the renormalized coupling gr
9. Furthermore, the cutoff

Λ „ 1{a is the relevant scale for the bare coupling. By using the renormalization group equation
for gr including the fact that the renormalization constant only depends on the dimensionless
ratio Λ{µE, the relation between the bare coupling g and the lattice spacing a is determined
up to an integration constant through the Callan-Szymanzik lattice β-function [60,61]

βlatpgq “ ´a
Bg

Ba
“ ´β0g

3
´ β1g

5
`Opg7

q. (2.44)

Here βlat has the same leading-order perturbative series as βr. For SUpNcq groups, the first
two leading terms in the β-function do not depend on the regularization and thus are universal
for all lattice discretization of QCD as well as equivalent to the ones from perturbation theory.
However, we note that at higher orders the β function is in general dependent on the details
of regularization. The leading order term for βlat is positive for Nc ě 2, which implies that g
has to decrease as a Ñ 0, so an ultra-violet fix-point for g Ñ 0 is ensured, as needed for the
existence of a continuum limit. A detailed discussion of the renormalization group and the
running coupling can be found in [59,62,63].
Scaling and perturbative scaling. The fixpoint locates at vanishing coupling, therefore
physical quantities will be scaled consistently with the scaling predicted from lattice pertur-
bation theory [62]. We use the term perturbative scaling. Note that at leading order the
perturbative running is universal. However, simulations with control over systematic effects
such as finite size effects are too expensive by setting in perturbative scaling.
In practice, we do not rely on perturbative scaling, rather we consider a dimensionless ob-
servable or a dimensionless ratio of physical observables, and simulate in the region where the
expectation values scaling with aq at the leading order. This procedure provides a big advan-
tage over a setting for perturbative scaling, since the scaling region sets in much earlier, so
that a controlled continuum extrapolation can be done with lattice spacings in reach for the
simulations.
The thermodynamics and continuum limit. We consider the infinite volume limit which
is typically called the thermodynamic limit

Ns Ñ 8, Nt Ñ 8.

This limit has a peculiar interference with the continuum limit because on one hand, the
continuum limit corresponds to a second-order phase transition i.e. the correlation length ξ
diverges. On the other hand, if we consider only a finite lattice, ξ is bounded from above by
the length Nµ of the smallest lattice direction. Thus ξ can only diverge in the infinite volume
limit. Consequently, the infinite volume limit has to be taken before the continuum limit.
However, this is not possible in practice since the infinite volume limit for each lattice spacing
becomes expensive. Instead, the continuum limit is performed in a fixed physical volume, i.e.
Nµ Ñ 8 for aÑ 0 while keeping Lµ “ a ¨Nµ fixed. When the volume is large enough, the finite
size effects are negligible. In principle, one still needs to check whether in this case neglecting
finite size effects is consistent by performing a similar continuum limit for different volumes.
MC autocorrelation times and the continuum limit. By approaching the continuum
limit that is characterized by the second-order point, fluctuations are strongly suppressed.
The same phenomenon happens to changes in the Markov chain, so that the autocorrelations
increase. The autocorrelation length scales usually like ξ „ a´z where z is a dynamical critical

9We concentrate on the pure gauge theory for simplicity.



18 Chapter 2. Lattice gauge theory

exponent which depends on the theory of interest. A measure of the autocorrelations in MC
time τauto is called autocorrelation length, and it should scale similar to ξ in the approach to
the continuum limit.

2.4 Temperature and chemical potential

In this section, we discuss how temperature and chemical potential, the main quantities that
characterize the QCD phase diagram, can be introduced on the lattice and how they can be
varied.

2.4.1 Introduction of temperature

Quantum field theory in Minkowski space-time has one distinguished direction, the temporal
direction t, and three spatial dimensions. Upon analytic continuation, it becomes a four-
dimensional theory where time plays no special role anymore. On the other hand, in the
language of equilibrium statistical mechanics, there is no time, or in other words, everything
is frozen, but there is a temperature T which can be considered as the fourth dimension
of equilibrium statistical mechanics. Considerations above point out the very deep relation
between quantum field theory and statistical mechanics. Euclidean quantum field theory in
four dimensions is equivalent to statistical mechanics in three dimensions: the fourth dimension
of quantum field theory, the time t, is mapped to the inverse temperature of a statistical model:
t „ 1{T . Generally, one usually refers to this fact as an equivalence between Euclidean quantum
field theory in pd` 1q-dimensional space-time and statistical mechanics in d dimensions.

Again, for a quantum mechanics system the partition function can be expressed as

ZpT q “ tr
“

e´βH
‰

. (2.45)

Here β “ 1{kBT , where T is temperature and kB is the Boltzmann constant10. To connect
our field theory to a statistical mechanics system, due to the trace in (2.45) it is necessary to
restrict our fields to be periodic (bosons) and anti-periodic (fermions) in time and the temporal
extent to be finite. With these restrictions, the partition function for a generic field φ is given
by

ZpT q “

ż

Dφe´SErφs. (2.46)

Here the field φ is periodic or anti-periodic in the finite time direction, and the Euclidean
action SE now is

SErφs “

ż β

0

dt

ż

d3xL rφ, Bµφs. (2.47)

The measure Dφ and the action SE are discretized on the lattice in the standard procedure.
So far, at zero temperature we were interested in results in the infinite space-time limit. The
space-time scale in this case is much larger than the largest correlation length in the system.
Now the time extent is restricted to β. For a finite lattice the spatial extent is aNs and the

10It is easy to get confused by the notation of β in this section with the inverse gauge coupling. Unless stated
otherwise, we use β here as the inverse temperature
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temporal extent is aNt, the inverse temperature β is related to Nt by

β “ aNt “
1

T
, (2.48)

where we can obtain the zero temperature limit by sending β to infinity. If Ns is kept fixed,
then this can be interpreted as a system with finite spatial volume and fixed temperature T . To
approach the continuum limit for this system, the lattice spacing a goes to zero while keeping
aNs and aNt fixed. The effects of finite volume in numerical simulations can be controlled if
the spatial extent Ns is kept as large as possible so that Ns " Nt. The reader may find a
foundation for quantum field theory at finite temperature in [64], and for thermodynamics of
lattice QCD in [48,50,65].

2.4.2 Introduction of the chemical potential

As already mentioned above, besides the temperature the QCD phase diagram is also char-
acterized by the so-called chemical potential associated with the vertical axis in fig. 1.1. In
contrast to the vacuum, the net number of baryons is finite. The effect of finite quark number
becomes strong in extreme situations such as heavy-ion collisions, or ultra-dense matter in neu-
tron stars. To describe these systems the partition function of the grand canonical ensemble
must be modified by including the chemical potential coupled to the quark number operator
Nq as follows

ZpT, µq “ tr
“

e´pH ´µNqq
‰

. (2.49)

Note that there is another convention using the baryon number operator NB “ Nq{3 and the
baryon chemical potential µB “ 3µ. The quark number operator Nq takes integer values, so
the grand canonical partition function ZpT, µq can be expanded in power series of the fugacity
variable

z “ eµ{T . (2.50)

Then the partition function can be re-expressed as a sum over canonical partition functions
ZnpT q for a fixed quark number n P Z

ZpT, µq “
ÿ

n

znZnpT q. (2.51)

Here the negative values of n represent a net surplus of anti-quarks. The sum over the quark
number n is bounded by |n| ď nmax on a finite lattice.

From the grand canonical partition function (2.49), one can compute new observables, for
instance the quark number density

nq “
1

V
xNqy “

T

V

B logZpT, µq

Bµ
. (2.52)

The phase structure and the location and properties of the finite temperature phase transition
are now affected by the quark number density. An investigation of the phase diagram of a
physical system at finite chemical potential will become increasingly complicated with the
additional parameter µ.
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Let us now introduce the quark number density in the lattice action. In the Euclidean
formulation, the quark number operatorNq is equivalent to the integral of the fourth component
j4 “ ψ̄γ4ψ of the conserved vector current ψ̄γµψ over the spatial volume. This current is
conserved due to the charge conjugation transformation or the axial Up1q symmetry. The
naive way of introducing chemical potential on the lattice by adding the term µj4 in the
action (even for free fermions) leads to quadratic divergences in the energy density „ pµ{aq2

as approaching the continuum limit [66].

A possible solution for this problem is also provided in [66], where the chemical potential
µ on the lattice is introduced by replacing the temporal hopping term in (2.23) with

´
1

2a

´

eaµp1´ γ0qU0pnqδn`0̂,m ` e
´aµ
p1` γ0qU

:

0pn´ 0̂qδn´0̂,m

¯

. (2.53)

The choice of forward and backward factor e˘aµ is natural since at µ “ 0 we can obtain back
the original action. Furthermore, a hopping expansion method for the Wilson action allows
the fermion determinant to be written as a sum over closed loops. In such a loop the forward
hopping factors eaµ and the backward hopping factors e´aµ cancel out precisely unless the loop
winds around the compact Euclidean time direction.

Given w P Z the number of windings for a loop, then its total contribution of the chemical
potential is given by pe˘aµqwNt . Note that to implement the chemical potential on the lattice,
instead of changing all link terms in the time direction one might modify all forward time-
directed hopping terms on a single time slice, then the total contribution can be cast in the
form

eaµNt “ eµ{T , (2.54)

and the backward time-directed terms with the inverse factor. The introduction of the chemical
potential rises a big challenge in numerical simulations. This problem is called sign problem,
and we will discuss it in more details in section 5.2. The reader is referred to [48] for more
details of the chemical potential on the lattice.

2.5 QCD thermodynamics on the lattice

After a brief introduction to the lattice formalism on QCD, in this section, we show how to
connect the concept of lattice gauge theory to thermodynamic systems. We will consider the
observables and their corresponding symmetries which contribute the main part for character-
izing the thermodynamic properties of the system.

2.5.1 Equation of state

The study of the equation of state is of central importance for the understanding of the thermal
properties of any thermodynamic system. The equation of state can be established using ob-
servables derived directly from the QCD partition function. The definition of these observables
will be present in this section.

In addition to the quark number density given in the formula (2.52), the free energy density
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is related to the logarithm of the partition function Z and is of the form

f “ ´
T

V
logZ. (2.55)

The pressure is computed by

p “
BpT logZq

BV
. (2.56)

For a large and homogeneous system, the derivative to the volume V is equivalent to dividing
by the volume. Thus, the pressure of such systems is given by

p “ ´ lim
VÑ8

f (2.57)

One needs to check the validity of these definitions on the lattice formalism. The check can be
done employing series expansion methods as one can see in [32], or of simulations [44,67]. Since
we have the pressure as a function of temperature T then all other thermodynamic observables
can also be derived. The interaction measure11 δS is obtained from the normalized pressure
as follows

δSpT q “ ε´ 3p “ T 5 B

BT

ppT q

T 5
. (2.58)

This quantity measures the deviation from the equation of state of an ideal gas limit ε “ 3p.
Furthermore, the inverse of this equation can be derived simply as

ppT q

T 4
“

ż T

0

dT 1
δSpT 1q

T 15
. (2.59)

Based on the pressure p and the interaction measure δS, one can readily compute the energy
ε, the entropy density s, and the speed of sound cs

ε “ δS ` 3p, s “
ε` p

T
, c2

s “
Bp

Bε

ˇ

ˇ

ˇ

ˇ

s

. (2.60)

We note that the definitions that were introduced above, are functions of one variable T , and
they must be modified if the chemical potential involves, for more details see [68]. There are
other observables such as the chiral condensate, or the chiral susceptibility associated with an
UpNf qL ˆ UpNf qR chiral symmetry in the limit mq Ñ 0. These quantities are relevant for
studying phase transitions related to chiral symmetry breaking like the lower-left corner of the
Columbia plot in fig. 1.2, however, this topic is out of the scope for this thesis. A more detailed
discussion of the chiral quantities can be found in [48].

We note that all presented observables above are based on the free energy density. However,
these quantities have been proven to be ultraviolet divergent, thus for these observables to get
finite results a renormalization scheme must be introduced. It turns out that by subtracting
the T “ 0 contribution from the free energy density one can get rid of the additive divergences

frpα, T q “ fpα, T q ´ fpα, T “ 0q. (2.61)

11The interaction measure is also often called the trace anomaly.
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Figure 2.2: Scatters plot of Polyakov loop in the complex plane from SUp3q pure gauge theory.
Left: In the confined phase. Right: In the deconfined phase. Figure taken from [71].

Here α is a general bare parameter of the theory, and fr is the renormalized free energy density.
Moreover, the free energy density cannot be directly accessible in Monte-Carlo calculations,
on the other hand, expectation values can be calculated easily. Thus, we should compute the
difference of the free energy density at two different temperatures

f

T 4

ˇ

ˇ

ˇ

ˇ

T

T0

“ ´
1

V

ż T

T0

dx
Bx´3 logZpx, V q

Bx
. (2.62)

For detailed reviews of the equation of state in lattice QCD see [44,69,70].

2.5.2 Polyakov loop and the center symmetry

In lattice simulations, the partition function itself is difficult to treat, and observables measured
on the lattice are results of the partial derivative of logZ. These observables are sensitive to the
transitions of the QCD phase diagram depending on the regions where we want to investigate.
The observables are often referred to as approximate order parameters since in the presence
of fermion fields there is no true order parameter that has been found yet. As mentioned
before, here we discuss only an observable called the Polyakov loop, and the center symmetry
associated with the deconfinement transition. Discussion on observables associated with the
chiral symmetry can be found in [48].

Polyakov loops. First, we consider a system of gluons only, without any real or virtual quarks.
Since gluons can interact directly, they can form bound states (“glueballs” or gluonium states)
and undergo a transition from a gluonium gas to one of deconfined gluons. This simplified
world is therefore far from trivial – in contrast to the corresponding system in QED, a gas
of photons, which in the absence of electrons cannot interact. As we shall see later on, pure
gauge field thermodynamics provides a particularly transparent illustration of deconfinement
physics [72]. In the absence of fermion fields, the so-called Polyakov loop is a true order
parameter.
We start with the description of the Polyakov loop or the thermal Wilson loop. The Polyakov
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loop is of the form

L “
1

V

ÿ

~n

tr
Nt´1
ź

n0“0

U0pnq. (2.63)

Here we use a convention that the Polyakov is averaged over the spatial volume since a change
of a local Polyakov loop will not have much effect on the average if the averaging procedure is
performed over enough spacial sites. The expectation value of the Polyakov loop L is connected
to the free energy Fq of a single color charge

|xLy| „ e´Fq{T . (2.64)

Here Fq is correspondent to the free energy of a static quark-antiquark pair12 when their dis-
tance is taken to infinity, i.e. Fqq̄pr Ñ 8q. At low temperature in pure gauge theory, Fqq̄prq
diverges as r Ñ 8, implying xLy “ 0. This is the well-known phenomenon of confinement
where to separate a quark and an anti-quark we need infinite large energy. At high temper-
atures, quarks are no longer confined, and Fqq̄pr Ñ 8q is finite, which leads to a nonzero
expectation value for the Polyakov loop. A nonzero expectation value means that (2.63) is no
longer invariant under center transformations and signals the spontaneous breaking of center
symmetry13. This makes the Polyakov loop a true order parameter of center symmetry in pure
gauge theory, meaning that the center symmetry is preserved at low temperatures, and it is
spontaneously broken at high temperatures. This can be seen in fig. 2.2. We can now conclude
the temperature dependence of the Polyakov loop expectation value

|xLy|

#

“ 0 for T ď Tc - confinement

‰ 0 for T ą Tc - deconfinement
(2.65)

where Tc is the critical deconfinement temperature.
In full QCD, dynamical fermions break the center symmetry explicitly because the QCD action
is no longer invariant under the center transformation. This affects the Polyakov loop as
well, however, it can be used as an approximate order parameter because the transition from
hadronic matter to the QGP is still captured by the Polyakov loop. The susceptibility of the
Polyakov loop, which is defined as

χL “ V
`

xL2
y ´ xLy2

˘

, (2.66)

will be often used throughout this thesis. This quantity peaks at the transition, and the value
and position of the peak obey finite size scaling laws which help extrapolate to the infinite
volume from finite volume measurements.
The center symmetry. We close this chapter by discussing center symmetry which plays
a central role in our study. A true phase transition is related to the effective breaking, or
restoration of a symmetry. In the pure gauge theory, the symmetry associated with the de-
confinement phase transition is called center symmetry. This symmetry is preserved under a
topological non-trivial gauge transformation with the boundary conditions

Ωp~n, n0 `Ntq “ hΩp~n, n0q. (2.67)

12Fqq̄ can be considered as the quark-antiquark potential.
13An intuitive picture to explain the phenomenon of confinement is to attach to each quark a string
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Here h is a constant matrix and an element in the SUpNcq group. Let us consider a plaquette
in the pµ, 0q-plane starting at t “ Nt ´ 1, under the center symmetry the temporal plaquette
transform according to

Uµ0p~n,Nt ´ 1q ÑΩp~n,Nt ´ 1qUµp~n,Nt ´ 1q

U0p~n` µ̂, Nt ´ 1qΩ´1
p~n` µ̂, 0qh´1

Ωp~n` µ̂, 0qU :µp~n, 0qΩ
´1
p~n, 0qhΩ´1

p~n, 0q

U :0p~n,Nt ´ 1qΩ´1
p~n,Nt ´ 1q. (2.68)

According to (2.67), the factor h only appears when the link crosses the boundary. Under such
a gauge transformation the plaquette action is invariant if the constant matrix h commutes
with all elements of SUpNcq, i.e.

rU, hs “ 0, for all U P SUpNcq. (2.69)

This is precisely the definition of the center ZNc of SUpNcq
14, whose elements are

h “ e2πin{Nc1, n P t0, 1, . . . , Nc ´ 1u. (2.70)

A gauge transformation associated with the boundary conditions (2.67) where h P ZNc is
called center transformation. While the action is invariant under center transformations, the
Polyakov does not close in a topologically trivial way but instead winds once around the
compact temporal direction, which does not hold the invariance of the Polyakov loop under
center transformations. The Polyakov loop transform as

LÑ hL. (2.71)

A phase transition is associated with the corresponding symmetry breaking. For xLy “ 0, it
follows that center symmetry is restored within the theory, and as soon as the Polyakov loop
acquires a non-zero expectation value, or in other words, it is in the deconfined phase, the
center symmetry is spontaneously broken. Thus, the finite temperature transition of QCD
in the quenched limit possesses a spontaneous breaking of the center symmetry [73]. The
Polyakov loop is an order parameter for distinguishing between a confinement phase, where
free charges cannot be found, and a deconfinement phase, where single charges are screened
and may be observed.
In the case of broken center symmetry and a finite volume the results for the Polyakov loop
will populate the different center sectors with equivalent probability so that both the real and
the imaginary parts will vanish in the ensemble average [59]. Consequently, the eqn. (2.65) is
no longer valid in a strict sense, since it implies that |xLy| “ 0. This is related to a so-called
finite volume effect, where the spontaneous breaking of a true symmetry of the action cannot
be observed in a finite volume. On the other hand, the tunneling between center sectors is
forbidden at infinite volume, meaning the expectation value of an observable is computed within
one particular center sector. In the thermodynamic limit, the measurement of a local quantity
on a single configuration already provides a reasonably good estimate for the expectation
value of the observable. We note that xLy vanishes for sufficiently long simulations, and in
the infinite volume, we have |xLy| “ x|L|y. Thus, x|L|y is usually used instead of |xLy|, which

14The center ZpGq of a group G is defined as ZpGq “ th P G | @g P G, h ¨ g “ g ¨ hu.
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indeed can serve as an estimator for the order parameter in a finite volume. However, series
expansion methods are performed on an arbitrary large volume corresponding to an infinite
volume, where the standard expectation value of the Polyakov loop xLy can still be employed.
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Chapter 3

An effective theory for lattice QCD

The results were very accurate and completely confirmed my

hypothesis that the local couplings of the shortest range were

the most important.

K. G. Wilson, Nobel Lecture

In this chapter, we introduce an effective theory for lattice QCD which will be shown to
be a prominent way to handle some difficulties of the sign problem of QCD at finite chemical
potential, at least for heavy quarks. Furthermore, the effective theory can reproduce the full
theory in a relevant parameter region. The first advantage of the effective theory is that
although the sign problem still occurs in simulations at finite chemical potential, it got milder
after integrating out some degrees of freedom of the theory. This enables the standard Monte-
Carlo methods with reweighting techniques to circumvent the sign problem and access the
region of desired chemical potentials. In addition, we can treat the effective theory using
analytic approaches which are completely unaffected by the sign problem.

The starting point is the strong coupling expansion and some of its important results. We
then consider the character expansion which helps to reorder the coupling β into an effective
coupling upβq. The effective coupling has a better convergence and plays a role as an expansion
parameter in the pure gauge sector. The last expansion scheme is called the hopping parameter
expansion, which is used to expand the Wilson-Dirac determinant around heavy fermions. The
resulting series is in powers of the hopping parameter κ. We describe a graph representation
method that provides a way to derive higher orders of the effective theory.

3.1 Effective Polyakov loop theory

The core idea of the effective theory is to integrate out spatial link variables so that it has fewer
degrees of freedom left. This means that the effective theory is easier to solve numerically than
full lattice QCD. If the chemical potential is present, then the sign problem becomes milder
in the effective theory, allowing the standard Monte-Carlo methods to be used. The effective
theory is defined by integrating out the spatial link variables

Z “

ż

DUµ detrDse´SGrUs “

ż

DU0e
´Seff , (3.1)

27
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under which

Seff “ ´ log

ż

DUi detrDse´SGrUs. (3.2)

While the action (3.2) is unique and exact, an analytic evaluation without some sort of ap-
proximations and truncations is not possible. Thus, we will introduce two expansion schemes:
the character expansion and the hopping parameter expansion, which will then enable us to
evaluate the action (3.2).

It is useful to separate the ZNc center symmetric from a part with symmetry breaking terms

SeffpW q “ S1pW q ` S2pW q, (3.3)

where the resulting effective theory only depends on W the temporal Wilson lines

W~n “

Nt´1
ź

t“0

U0p~n, tq (3.4)

Here S1 contains all contributions from the pure gauge action, and it can be determined
requiring the character expansion. On the other hand, the fermion determinant contains the
winding fermion loops with gauge corrections and can be determined by using the hopping
parameter expansion.

3.2 Character expansion

It is instructive to start this chapter with a strong coupling expansion. This is an expansion in
powers of 1{g2 and has an important property that it has a finite radius of convergence [74]. The
strong coupling expansion provides a method of computation similarly to the high-temperature
expansion or hopping expansion for scalar field theories [75]. Even though the strong coupling
expansion cannot exhibit the continuum limit, it still gives insight into the qualitative behavior
of lattice gauge theory such as confinement and the particle spectrum. In this section we give
basic ideas of the strong coupling expansion, and how the character expansion can help order
the couplings β in a systematic way. A detailed review for strong coupling expansion can be
found in [50,76].

Consider the pure gauge action, we note that up to a constant which can be absorbed into
the normalized factor of the path integral, the pure gauge action (2.20) can be rewritten as
follows

SG “ ´
β

2Nc

ÿ

P

ptrUP ` trU˚P q “ ´β
ÿ

P

SP . (3.5)

Here UP is the elementary plaquette defined in (2.19). At large couplings or small β, it is
convenient to expand the Boltzmann weight in powers of β

e´SG “
ź

P

eβSP “
ź

P

“

1` βSP ` β
2S2

P ` . . .
‰

, (3.6)

and to integrate order by order over the link variables. Notice that, in (3.6) a given plaquette
can appear an arbitrary number of times due to the power of SP . In practice, there is a
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convenient way to sum part of this expansion such that a given plaquette appears at most
once. There is a sophisticated method for organizing the strong coupling expansion called the
character expansion. This expansion scheme is used in higher-order calculations to reduce the
number of contributions to a given order in the expansion. The character expansion is similar
to a Fourier transformation method. Consider the weight of the pure gauge theory in terms of
(3.5)

e´SG “
ź

P

eβSP . (3.7)

Here SP is constructed from UP , and it is a gauge-invariant function i.e.

SP pV UPV
:
q “ SP pUP q, (3.8)

where V is an element of SUp3q. SP is a function of only the eigenvalues of UP , and is called
class function since it depends only on the conjugacy class of UP . Any class function can be
expanded in characters [77]

eSP “ u0pβq

«

1`
ÿ

r‰0

drurpβqχrpUP q

ff

. (3.9)

Here χr is the character, it is the trace of the irreducible representation of the group with matrix
elements Dij

r . The characters form a complete orthogonal basis for gauge-invariant functions.
dr is the dimension of the representation. u0pβq is factored out, because it is irrelevant and
can be normalized by performing calculations with the partition function. Finally, we use
urpβq as an expansion parameter. Due to the Schur lemma, the matrix elements Dij

r of the
representation yields

ż

dUχ˚r pUqχspUq “ δrs. (3.10)

Moreover, we have

ż

dUχrpV UqχspWU´1
q “

1

dr
δrsχrpVW q, (3.11)

which has a simple graphic representation

ż

dU V WU “
1

dr
V W . (3.12)

It is straightforward to see that the lowest order character expansion coefficient associates
to the fundamental representation, and given by upβq “ uf pβq “ β{18 ` . . . . It should be
mentioned that unlike the case of SUp3q, for the Up1q and SUp2q pure gauge theory one can
compute the coefficients of the character expansion in a closed-form by the usage of Bessel
functions [78]. In practice, the character coefficients shall be smaller than 1, and for that
reason, it is convenient to use them as expansion parameters.

We can start our derivation for the effective theory of pure gauge theory with the character
expansion at hand1. The main idea of constructing an effective theory from first principles

1We consider here the pure gauge contribution only, while the fermion contributions will be introduced into
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is integrating out some degrees of freedom of the system, and here they are the spatial link
variables. The effective action is defined as

e´SG,eff “

ż

DUi
ź

P

˜

1`
ÿ

r‰0

drurpβqχrpUP q

¸

. (3.13)

Here DUi denotes the spatial links configurations. Since the leading contribution is obtained
by neglecting spatial plaquettes, i.e. there is no contribution of temporal links. Thus, there are
only chains of plaquettes looping through the temporal boundary at the leading order. After
integrating out spatial links we obtain two disconnected loops located at the nearest neighbor
of spatial lattice sites

e´SG,eff “ 1`
ÿ

x~n1,~n2y

uNt
`

L~n1L
˚
~n2
` L˚~n1

L~n2

˘

`OpuNt`4
q. (3.14)

Here L~n is a local Polyakop loop

L~n “ trW~n “ tr
Nt´1
ź

t“0

U0p~n, tq.

It turns out that including several types of higher-order graphs such as larger number of
loops, Polyakov loops at distances larger than one and Polyakov loops in higher dimensional
representations, we end up with the logarithm expression of the effective theory which improves
over the old one [27]. We note in particular that the derivation of the improved effective pure
gauge theory for the SUp2q and SUp3q gauge group are analogous, however, since the SUp3q
gauge group also involves an anti-fundamental representation, which leads to an inclusion of a
complex conjugate Polyakov loop L˚ to keep the effective pure gauge action real.

We will work on the effective theory of one-coupling - the nearest-neighbor effective coupling
λ1. Based on Svetitsky and Yaffe conjecture [79], this effective theory describes the short-
range Polyakov interactions which are the dominant contributions and the relevant terms for
the phase transition. The case of effective couplings at larger distances as well as of higher
representations are discussed in [27,80]. The one-coupling partition function reads

ZG,eff “

ż

DW
ź

x~n1,~n2y

“

1` λ1pu,NtqpL~n1L
˚
~n2
` L˚~n1

L~n2q
‰

, (3.15)

where the improved effective gauge action is given by

SG,eff “ ´
ÿ

x~n1,~n2y

log
“

1` λ1pu,NtqpL~n1L
˚
~n2
` L˚~n1

L~n2q
‰

. (3.16)

Here we replaced the integration over all temporal links with an integration over the Wilson
line variables W

DW “
ź

~n

dW~n “
ź

~n

Nt´1
ź

t“0

dU0p~n, tq. (3.17)

our effective theory later.
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The effective coupling λ1 with corrections of attached plaquettes decorations is obtained for
Nt ě 4 as

λ1p4, uq “ u4 exp

«

4

˜

4u4
` 12u5

´ 14u6
´ 36u7

`
295

2
u8
`

1851

10
u9
`

1035317

5120
u10

¸ff

,

λ1pNt ě 6, uq “ uNt exp

«

Nt

˜

4u4
` 12u5

´ 14u6
´ 36u7

`
295

2
u8
`

1851

10
u9
`

1055797

5120
u10

¸ff

. (3.18)

3.3 The hopping parameter expansion

In general, it is expensive to evaluate the fermion determinant even at zero chemical potential.
The inefficiency lies in the step of computing inversion of the Wilson-Dirac operator. For heavy
quarks, there is an expansion scheme that makes use of the simplification of the Wilson-Dirac
operator, i.e. the operator takes a close to block diagonal form. In this section, we dive into the
derivation of an effective theory for heavy quarks by using the so-called hopping expansion [29].

We have introduced the hopping parameter in section 2.2.3. For the sake of simplicity,
let us first consider the case of one flavor only, the introduction of multiple fermion flavors is
straightforward and will be shown later. The Wilson-Dirac operator for Nf “ 1 in the hopping
parameter representation is refactored to be

Dnm “ δnm ´ κHnm, κ “
1

2am` 8
. (3.19)

Again, κ is called the hopping parameter2 and H denotes the hopping matrix. The hopping
matrix for Wilson fermions is

Hnm “

3
ÿ

ν“0

“

eaµδν0p1` γνqUνpnqδn,m´ν̂ ` e
´aµδν0p1´ γνqU´νpnqδn,m`ν̂

‰

, (3.20)

where we can write U´νpnq “ U :νpn ´ ν̂q. The crucial point of the hopping expansion is that
for large quark mass κ becomes small, and it enables us to perform calculations in terms of
series expansions. The fermion propagator can be expanded with the geometric series

D´1
“ p1´ κHq´1

“

8
ÿ

i“0

κiH i. (3.21)

The series converges for κ||H|| ă 1. The norm of the hopping term obeys ||H|| ď 8, which
means that the series converges if κ ă 1{8.

2From now on, we drop the index b of the bare quark mass, but the reader should keep in mind that κ is
related to the bare quark mass as given in the formula (2.27).
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3.3.1 Static quark determinant

Now we turn to the derivation of the static quark determinant. This determinant describes
static quarks - infinite heavy quarks and can be computed exactly. All corrections to this limit
are given in the so-called kinetic determinant. It is convenient to split the quark matrix into
temporal and spatial hops with positive and negative directions, this way we can keep the
complete dependence on chemical potential. The Wilson-Dirac matrix can be rewritten as

D “ 1´ T ´ S “ 1´ T` ´ T´ ´ S` ´ S´. (3.22)

The static determinant is obtained by neglecting the spatial contributions,

detrDstats “ detr1´ T s “ detr1´ T` ´ T´s, (3.23)

where T` and T´ are explicitly given by

T` “ κeaµp1` γ0qU0pn1qδn1,n2´0̂, (3.24)

T´ “ κe´aµp1´ γ0qU
:

0pn1 ´ 0̂qδn1,n2´0̂. (3.25)

Here the static quark propagator D´1
stat propagates only along the temporal direction. There is

no mixed T`T´ terms due the no-backtracking constraint p1 ´ γµqp1 ` γµq “ 0, therefore we
can factorize further the static quark determinant into two separated parts

detrDstats “ detr1´ T`s detr1´ T´s. (3.26)

Evaluating the space and spin determinant, and taking into account all windings of Wilson
lines around the temporal direction and thus the full fugacity dependence leads to the final
expression for the static determinant [28,81]

detrDstats “
ź

~n

r1` h1L~n ` h
2
1L
˚
~n ` h

3
1s

2
r1` h̄1L

˚
~n ` h̄

2
1L~n ` h̄

3
1s

2. (3.27)

To leading order in the combined expansions, the coefficients are the heavy quark fugacities,

h1pµq “ p2κe
aµ
q
Nt “ e

µ´m
T “ h̄1p´µq. (3.28)

In the strong coupling limit β “ 0, the constituent quark mass is given by am “ ´ logp2κq [82].
Let us define a leading order term of the effective fermion action associated with the static
quark determinant

S0 “ ´ log detrDstats. (3.29)

It is necessary to define the respective terms of the effective action now because we will explicitly
evaluate the effective theory for different orders to observe its improvement.

3.3.2 Static quark propagator

The static quark propagator is computed using either the Cayley-Hamilton theorem for cal-
culating the inverse of a matrix directly or expansion in κ and then resume it to all orders.
Our goal is to compute the kinetic quark determinant, and a necessary intermediate step is to
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compute the static quark propagator. The detailed calculation can be found in [81, 83]. The
full static propagator takes the form

pD´1
statqn1n2 “ δ~n1~n2 4tn1 tn2

p ~n1q “ δ~n1~n2

´

δtn1 tn2
` Γ0

`B
`
tn1 tn2

` Γ0
´B

´
tn1 tn2

¯

, (3.30)

where we use the following conventions for the gamma matrices

Γ0
˘ “

1

2
p1˘ γ0

q, Γi˘ “ 1˘ γi, (3.31)

and the components B` and B´ read

B`tn1 tn2
“

h1W

1` h1W
δtn1 tn2

` p2eaµκqtn1´tn2
U0ptn1 Ñ tn2q

1` h1W
pθtn1 tn2

´ h1Wθtn2 tn1
q, (3.32)

B´tn1 tn2
“

h̄1W
:

1` h̄1W :
δtn1 tn2

` p2e´aµκqtn2´tn1
U0ptn1 Ñ tn2q

1` h̄1W :
pθtn1 tn2

´ h̄1W
:θtn2 tn1

q. (3.33)

Here θ is the Heaviside step function, and U0ptn1 Ñ tn2q is called the gauge transporter which
is defined to be

U0ptn Ñ tmq “

#

śtn2´1
t“tn1

U0ptq : tn1 ă tn2
śtn1´1

t“tn2
U0ptq : tn1 ě tn2

(3.34)

3.3.3 Kinetic quark determinant

With the static quark propagator we can proceed with the derivation of the kinetic quark
determinant. First we perform a factorization for the determinant of (3.22) as

detrDs “ detp1´ T ´ Sq “ detp1´ T q detp1´
S

1´ T
q

“ detp1´ T q detp1´ P ´Mq, (3.35)

where P and M are given in the form

P “
3
ÿ

i“1

Pi “
κ

1´ T

3
ÿ

i“1

S`i , (3.36)

M “

3
ÿ

i“1

Mi “
κ

1´ T

3
ÿ

i“1

S´i . (3.37)

The P and M are called the forward and backward hopping operators representing a single
lattice hop in positive and negative spatial directions, respectively, while allowing arbitrary
movement in the temporal direction, including all windings. Substituting the eqn. (3.30) into
P and M gives their explicit form

Pn1n2 “ κ
ÿ

i

Pin1n2 “ κ4tn1 tn2
p~n1q

ÿ

i

Γi`Uiptn2 , ~n1qδ~n1 ˆ̀i~n2
, (3.38)

Mn1n2 “ κ
ÿ

j

Mjn1n2 “ κ4tn1 tn2
p~n1q

ÿ

j

Γj´U
:

j ptn2 , ~n1 ´ ĵqδ~n1´ĵ~n2
. (3.39)
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The derivation can be simplified by using an approach of graph representations. Let us rep-
resent the building blocks contributed to kinetic diagrams, where the temporal, forward and
backward spatial hoppings are represented by lines encoded with colors as follows

4tn1 tn2
p ~n1q

(3.40)

Γi`Uiptn2 , ~n1qδ~n1 ˆ̀i~n2 (3.41)

Γi´U
:

i ptn2 , ~n1 ´ îqδ~n1 ˆ́i~n2 (3.42)

From (3.35) we can see that the factorization step is useful, since we can expand further the
kinetic quark determinant

detrDkins “ detp1´ P ´Mq “ exp

˜

´

8
ÿ

n“1

trpP `Mqn

¸

. (3.43)

It is clear that only closed loops have non-vanishing contributions, so we need an equal number
of positive and negative hops (neglecting finite size corrections). The expansion up to order
n “ 6 reads

detrDkins “ exp

#

´

«

trPM ` trPPMM `
1

2
trPMPM ` trPPPMMM (3.44)

` trPPMPMM ` trPPMMPM `
1

3
trPMPMPM `Opκ8

q

ff+

.

Here it is convenient to work with the effective theory associated with the order in the hopping
parameter κ. We denote Zi for i P t2, 4, 6u to be the effective theory of orders 2, 4 and 6 in
the hopping parameter κ, respectively. Let us demonstrate how to derive the Opκ2q effective
theory Z2 in full detail, and its graph representation is also provided. For the effective theory
of higher orders Z4 and Z6, their detailed expression after the complete evaluation is simply too
long to be printed here, therefore we will present only a few particular terms of these orders,
while the rest is given in terms of graph representations. We prefer the reader to [29, 81] for
more details of how to perform the conversion of the Opκ4q effective action into expressions
that depend solely on the Polyakov loops.

As shown in (3.2), the effective theory is given by integration over the spatial links, therefore
for the calculation of the spatial gauge integrals to be possible it is required to expand the
exponential. The expanded kinetic determinant detrDkins reads

detrDkins “ 1´ trPM ´

˜

trPPMM `
1

2
trPMPM ´

1

2
trPM trPM

¸

(3.45)

´

˜

trPPPMMM ` trPPMPMM ` trPPMMPM `
1

3
trPMPMPM

´ trPM trPPMM ´
1

2
trPM trPMPM `

1

6
trPM trPM trPM

¸

.
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t

î

~n + 2î~n + î~n

tn1

tn2

Figure 3.1: Contribution from the lowest order spatial hopping expansion K2 in terms of a
graph representation.

Let us focus on the evaluation of Z2. The leading order of the kinetic determinant is defined
to be

ż

DUµ detrDstatse
´ trPM

“

ż

DUµ detrDstatsp1´ trPM `Opκ4
qq. (3.46)

The static quark determinant detrDstats only depends on the temporal link variables, which
can be factored out from the spatial integral. Substituting (3.38) and (3.39) into (3.46) gives
the following integral

Z2 “

ż

DUi trPM “ κ2

ż

DUi
ÿ

n1,n2

ÿ

k,l

tr rPkn1n2Mln2n1s ,

“ κ2

ż

DUi
ÿ

k,l,~n

tr

«

4tn1 tn2
p~nqΓk`Ukptn2 , ~nq

4tn2 tn1
p~n` k̂qΓl´U

:

l ptn1 , ~n` k̂ ´ l̂qδ~n,~n`k̂´l̂

ff

. (3.47)

This integral is non-vanishing only if the two links overlap due to the gauge integral selection
rule, i.e. k “ l and tn1 “ tn2 . Thus, we can rewrite the integral (3.47) as

ż

DUi trPM “ κ2

ż

DUi
ÿ

k,tn,~n

tr
”

4tntnp~nqΓ
k
`Ukptn, ~nq4tntn p~n` k̂qΓ

k
´U

:

kptn, ~nq
ı

. (3.48)

We emphasize that the expression (3.48) can be represented graphically. Its corresponding
graph-representation is simply given in fig. 3.1. Next, the evaluation of the trace can be
divided into its three remaining indices; spin, color and temporal. First, the components B˘

of the static propagator given in (3.32) and (3.33) take a very simple form for tn1 “ tn2

B`tntnp~nq “
h1W~n

1` h1W~n

, B´tntnp~nq “
h̄1W

:

~n

1` h̄1W
:

~n

. (3.49)
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They are simply picked out from the diagonal pieces of B˘. The spin indices are unrelated to
the group integral and can be evaluated immediately. Inserting the expression for D´1

stat and
computing gamma matrices we get

`

1` Γ0
`B

`
~n ` Γ0

´B
´
~n

˘

Γk`

´

1` Γ0
`B

`

~n`k̂
` Γ0

´B
´

~n`k̂

¯

Γk´

“ 2pB`~n ´B
´
~n qpB

`

~n`k̂
´B´

~n`k̂
q. (3.50)

Substituting (3.50) back into eqn. (3.48) we obtain

ż

DUi trPM “ 2κ2Nt tr
ÿ

~n,k

pB`~n ´B
´
~n qabpB

`

~n`k̂
´B´

~n`k̂
qcd

ż

dUUbcU
:

da. (3.51)

Summing over the time-slice gives us a factor Nt. Furthermore, note that we sum over the
color indices, carry out the unoccupied link integrals and rename the spatial links to U . We
now can use the result of the group integral given in (A.1)

ż

DUi trPM “
2κ2Nt

Nc

tr
ÿ

~n,k

pB`~n ´B
´
~n qabpB

`

~n`k̂
´B´

~n`k̂
qdaδbaδcd,

“
2κ2Nt

Nc

ÿ

~n,k

trpB`~n ´B
´
~n q trpB`

~n`k̂
´B´

~n`k̂
q. (3.52)

Inserting (3.49) into (3.52) we obtain the final expression for the kinetic determinant to leading
order

ż

DUi trPM “ 2
κ2Nt

Nc

ÿ

x~n1,~n2y

tr

˜

h1W~n1

1` h1W~n1

´
h̄1W

:

~n1

1` h̄1W
:

~n1

¸

tr

˜

h1W~n2

1` h1W~n2

´
h̄1W

:

~n2

1` h̄1W
:

~n2

¸

(3.53)

Analyzing this expression we see that since there is no color mixing between sites, the lowest
order contribution to the spatial hopping expansion of the kinetic determinant is simply a
nearest-neighbor interaction between Polyakov loop-dependent objects. We will see later that
it is useful to introduce the shorthand notation

Wnmp~nq “ tr
ph1W~nq

m

p1` h1W~nq
n
, W̄nmp~nq “ tr

ph̄1W
:

~nq
m

p1` h̄1W
:

~nq
n
. (3.54)

Finally the lowest order spatial hopping contribution to the effective action can be written as

eS2,eff “ 1´
κ2Nt

Nc

ÿ

x~n,~my

`

W11p~nq ´ W̄11p~nq
˘ `

W11p~mq ´ W̄11p~mq
˘

`Opκ4
q. (3.55)

New terms both in the nearest-neighbor contribution as well as non-local terms spanning
further on the lattice will appear in the next-to-leading order in κ.

Since the Opκ4q effective lattice theory has been computed many times before, for example
see [29, 30, 81], so we will not cover its detailed computation, and only give the corresponding
graph representations instead. Starting with the expanded kinetic determinant (3.45), we
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tn1

tn2
~n + î + ĵ
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Figure 3.2: The graphic contributions associated with the term trPPMM .

denote the κ4-contributions as follows

Z4 “ Z1
4 ` Z

2
4 ` Z

3
4 “

ż

DUi

ˆ

trPPMM `
1

2
trPMPM ´

1

2
trPM trPM

˙

. (3.56)

The graphs associated with Z1
4 are given in fig. 3.2. Let us briefly describe those graphs: The

blue point is an arbitrary point on the lattice and serves as our starting point at which the
static propagator does not move, corresponding to a static propagator of the form 4tn1 tn1

. The

red line represents a spatial hop in a lattice unit, for example, from ~n to ~n` î, while the green
line represents a temporal hop from tn1 to tn2 . In particular, the graph on the right involves
hoppings in two different spatial directions i, j where i ‰ j. It should be pointed out that to
ensure a non-vanishing contribution these graphs need to form a closed loop, which they do as
one can see in fig. 3.2 where the last spatial hop ends at the blue point.

3.4 The Opκ6q effective action

We now turn to the derivation of the Opκ6q effective action. We demonstrate only one term in
the κ6-contribution of the effective action due to the fact that the total expression is too long
to write down. Similar to the κ4-contributions, we can define the κ6-contributions from (3.45)
as follows

Z6 “ Z1
6 ` Z

2
6 ` Z

3
6 `

1

3
Z4

6 ´ Z
5
6 ´

1

2
Z6

6 `
1

6
Z7

6 . (3.57)

Each term Zi
6 contains several sub-terms which correspond to their different spatial and tempo-

ral occupations. Thus, we present only an explicit derivation for the Z1
6 term, and will provide

the full expressions in Appendix D. The computations of Z1
6 can be carried out as follows

Z1
6 “

ż

DUi trPPPMMM

“

ż

DUi
ÿ

i1...j3

ÿ

n1...n6

trPi1n1n2Pi2n2n3Pi3n3n4Mj1n4n5Mj2n5n6Mj3n6n1 .
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We then substitute the spatial forward and backward hopping operators defined in (3.38) and
(3.39), and obtain

Z1
6 “

ż

DUi
ÿ

i1...j3

ÿ

~n

tr

«

4tn1 tn2
p~nqΓi1`Ui1ptn2 , ~nq

4tn2 tn3
p~n` î1qΓ

i2
`Ui2ptn3 , ~n` î1q

4tn3 tn4
p~n` î1 ` î2qΓ

i3
`Ui3ptn4 , ~n` î1 ` î2q

4tn4 tn5
p~n` î1 ` î2 ` î3qΓ

j1
´U

:

j1
ptn5 , ~n` î1 ` î2 ` î3 ´ ĵ1q

4tn5 tn6
p~n` î1 ` î2 ` î3 ´ ĵ1qΓ

j2
´U

:

j2
ptn6 , ~n` î1 ` î2 ` î3 ´ ĵ1 ´ ĵ2q

4tn6 tn1
p~n` î1 ` î2 ` î3 ´ ĵ1 ´ ĵ2qΓ

j3
´U

:

j3
ptn1 , ~nq

ff

δ0i1`i2`i3´j1´j2´j3

For the delta function δ0i1`i2`i3´j1´j2´j3 to be non-zero, we have 16 combinations of the indices
i’s and j’s

i1i2i3j1j2j3 i1i2i3j1j2j3 i1i2i3j1j2j3 i1i2i3j1j2j3

i1i2i3j1j2j3 i1i2i3j1j2j3 i1i2i3j1j2j3 i1i2i3j1j2j3

i1i2i3j1j2j3 i1i2i3j1j2j3 i1i2i3j1j2j3 i1i2i3j1j2j3

i1i2i3j1j2j3 i1i2i3j1j2j3 i1i2i3j1j2j3 i1i2i3j1j2j3

Due to the constraints of group integrals on spatial links Uipt, ~nq, for example the second
combination i1 “ i2 “ j1 “ j2 ‰ i3 “ j3 is not allowed, because for i3 “ j3 “ j the spatial
integral performed on Ujp~n` 2̂iqU :j p~nq vanishes due to the difference of their spatial position.
Thus, only 5 contractions are non-vanishing

a. i1 “ i2 “ i3 “ j1 “ j2 “ j3,

b. i1 “ i2 “ j2 “ j3 ‰ i3 “ j1,

c. i1 “ i3 “ j1 “ j3 ‰ i2 “ j2,

d. i1 “ j3 ‰ i2 “ i3 “ j1 “ j2,

e. i1 “ j3 ‰ i2 “ j2 ‰ i3 “ j3.

The first non-vanishing term corresponding to the case i “ i1 “ i2 “ i3 “ j1 “ j2 “ j3 which
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is denoted as Z1a
6 , and can be computed as follows

Z1a
6 “

ż

DUi
ÿ

i,tn,~n

tr

«

4tn1 tn2
p~nqΓi`Uiptn2 , ~nq ¨4tn2 tn3

p~n` îqΓi`Uiptn3 , ~n` îq

4tn3 tn4
p~n` 2̂iqΓi`Uiptn4 , ~n` 2̂iq ¨4tn4 tn5

p~n` 3̂iqΓi´U
:

i ptn5 , ~n` 2̂iq

4tn5 tn6
p~n` 2̂iqΓi´U

:

i ptn6 , ~n` îq ¨4tn6 tn1
p~n` îqΓi´U

:

i ptn1 , ~nq

ff

. (3.58)

Again, for this integral to be non-vanishing, based on constraints of the group integral we
obtain further conditions on the temporal extent

δtn1 tn2
, δtn3 tn6

, δtn4 tn5
. (3.59)

After redefining tn, then K1a
6 takes the form

Z1a
6 “

ż

DUi
ÿ

i,tn,~n

tr

«

4tn1 tn1
p~nqΓi`Uiptn1 , ~nq ¨4tn1 tn2

p~n` îqΓi`Uiptn2 , ~n` îq

4tn2 tn3
p~n` 2̂iqΓi`Uiptn3 , ~n` 2̂iq ¨4tn3 tn3

p~n` 3̂iqΓi´U
:

i ptn3 , ~n` 2̂iq

4tn3 tn2
p~n` 2̂iqΓi´U

:

i ptn2 , ~n` îq ¨4tn2 tn1
p~n` îqΓi´U

:

i ptn1 , ~nq

ff

. (3.60)

It is the same for the effective theory at order Opκ6q, that each non-vanishing term has to
form a closed loop, which one can observe in eqn. (3.60). This is basically done because the
spin indices are unrelated to the group integral and can be evaluated immediately by using
(3.31). While we have three pairs of spatial link integrals as in eqn. (A.1). We note that at
this stage if we re-express terms of κ6-contributions in terms of eqn. (3.54), then implementing
the effective theory will be very challenging, even if one considers only the nearest-neighbor
interaction terms of the Opκ6q effective theory. The readers will see that the efficiency of our
code decreases exponentially with the number of terms in the effective theory already at order
Opκ4q. Fortunately, with the direct SUp3q link update we can just use the original expression
of the static quark propagator (3.30) without re-expressing everything in terms of the Polyakov
loop, and then take the trace afterward. We will get back to this point later in chapter 6.2.

The rest of this section dedicates to the graph representations of K1
6 on the lattice, while

the graph representation of K2
6 , . . . , K

7
6 is again partly given in appendix D. With graph repre-

sentation, one can easily convert it back to the analytic expression. Another advantage of the
graph representation is that given a set of constraints higher orders of the effective theory can
be achieved with the use of a computer, and the software that computes the effective theory
in the limit of cold QCD [84] might serve as a starting point. In fig. 3.3, one can easily see
how the eqn. (3.60) corresponds to this graph. The red bonds represent the spatial hopping
in positive and negative directions, and the green ones represent the temporal hoppings. The
graph starts at ptn1 , ~nq, propagate to ptn3 , ~n ` 3̂iq and finally travels back to ptn1 , ~nq, which
forms a closed loop.



40 Chapter 3. An effective theory for lattice QCD
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Figure 3.3: The graph representation of K1a
6 .

Let us briefly describe the interpretation of particles hopping between the lattice sites in
terms of the kinetic quark determinant. The incoming and outgoing arrows at each lattice site
simply represent composite states that locate at these sites. For example, in fig. 3.3 there is
an incoming and an outgoing arrow at ptn1 , ~nq, meaning that at this site we have a meson -
a composite particle of an equal number of quarks and antiquarks. If there are two incoming
and two outgoing lines at a lattice site, then we have two mesons. Finally, for Opκ6q there
is the case where a point possesses three incoming and three outgoing lines, indicating two
possibilities of having three mesons or one baryon and one anti-baryon. Back to fig. 3.3, here
we simply have three mesons exchange at ~n, its nearest-neighbor and next-to-nearest-neighbor,
as well as at different time slices. Later in Appendix D, one can see many combinations of
particle exchanges that have to be considered, since we also have the trace with respect to
color indices in the kinetic determinant.

3.5 Corrections

Until now, we have separated the pure gauge contributions from the fermion contributions, and
there is no mix between the two. This is only possible in the limit of strong coupling. Outside
this region, one needs to take into account mixed contributions that arise when we carry out
the character and hopping parameter expansion simultaneously. A detailed computation of
the corrections was also done in [29, 81], since this work does not expand on these results, so
only the results which will be used in our simulations later, are listed.

3.5.1 Gauge corrections

The first corrections to consider are modifications to the static determinant, which are asso-
ciated with the coupling h1. They are constructed by attaching plaquettes to the Wilson line
and then exponentiated by summing over multiple attached, disconnected plaquettes at dif-
ferent locations. The corrections of h1 have been calculated to higher orders in the expansion
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Figure 3.4: Diagrams associated with corrections to the effective coupling. Figure taken from
[30].

parameters, κ, u [28, 85]

h1pu, κ,Ntq “ p2κe
aµ
q
Nt exp

«

6Ntκ
2u

˜

1´ uNt´1

1´ u
` 4u4

´ 12κ2

` 9κ2u` 4κ2u2
´ 4κ4

¸ff

. (3.61)

Analogously, the nearest-neighbor coupling strength has a similar correction scheme where we
shift spatial hoops and fill them with plaquettes. The diagrams are shown in fig. 3.4 and they
give the following corrections to the effective coupling h2 of the nearest neighbor interactions
S2,eff [29]

h2pu, κ,Ntq “
κ2Nt

Nc

ˆ

1` 2
u´ uNt

1´ u
` 8u5

` 16κ2u4
`Opκ4u3

q

˙

. (3.62)

For the κ4-contributions, the effective couplings including corrections for Nt ě 4 are

h1
3pu, κ,Ntq “

NtpNt ´ 1qκ4

N2
c

„

1`
8

3
pu` u2

` 4u5
` 8κ3u4

q



, for Nt “ 4, (3.63)

h2
3pu, κ,Ntq “

κ4Nt

N2
c

„

1` 4
u´ uNt

1´ u
` 16u5

` 32κ3u4



, (3.64)

h3
3pu, κ,Ntq “

κ4N2
t

N2
c

„

1` 4
p1´ uNtqpu´ uNtq

p1´ uq2
` 16u5

` 32κ3u4



, (3.65)

h4
3pu, κ,Ntq “

κ4uNt

2N3
c

“

1` 4u4
` 16κ3u4

‰

, (3.66)

where h1
3, ¨ ¨ ¨ , h

4
3 are effective couplings of S4 coupled to κ4-graphs with different gauge correc-

tions. For more detail of how these couplings with corrections couple to their corresponding
terms in S4 as well as the study of their convergence, we refer the reader to [81].
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3.5.2 Fermionic corrections

A different type of correction is fermion correction. The simplest fermion correction is one that
comes from the possibility to replace any gauge plaquette with four quark hoppings. This can
be done for every plaquette and results in a contribution that is then absorbed into a shift in
the coupling β

β Ñ β ` 48Nfκ
4
f . (3.67)

The next order contribution comes from replacing a pair of adjacent plaquettes by six fermion
hops, we then obtain

λpu, κq “ uNt `
16NfNtκ

6

9u2
. (3.68)

Only adjacent plaquettes are considered, therefore this contribution cannot be absorbed into
β. Higher-order corrections can be constructed analogously. It was shown in [81] that for
Nt “ 4, Nf “ 3 the fermionic corrections to λ is suppressed at κ ă 0.1 which is compatible to
the region of our interest. Thus, the fermionic corrections can be neglected safely in our study.

3.6 Resummation and multiple flavors

Deriving the effective action requires an expansion on the exponential of the spatial hopping
operator as in (3.46). However, it is advantageous for numerical and analytical studies to work
with the exponential form, and the convergence of the effective action is also improved. To
obtain the exponential form we perform a process of re-summing an infinite series of terms into
a closed analytic expression. The resummation of the effective theory has been discussed quite
often in previous works, for example see [29, 81, 83]. Here we present only the final resummed
expression for the Opκ2q effective theory, while the effective theory of higher orders are treated
similarly,

S2,eff “
κ2Nt

Nc

ÿ

x~n1,~n2y

`

W11p~n1q ´ W̄11p~n1q
˘ `

W11p~n2q ´ W̄11p~n2q
˘

. (3.69)

If we consider more than one fermion flavor, then changing the partition function is straight-
forward, since the different flavors decouple from each other due to the fact that there is no
flavor changing process. The effective theory for Nf fermion flavors is

Z “

ż

DUµ

Nf
ź

f“1

detrDf,stats exp

˜

´

Nf
ÿ

f“1

8
ÿ

n“1

1

n
trpPf `Mf q

n

¸

. (3.70)

The distinction between different flavors depends on their masses, and chemical potentials, i.e
the flavor dependence enters through the parameter κf and µf . For degenerate flavors Nf is
just a simple number

Z “

ż

DUµrdetrDstatss
Nf exp

˜

´Nf

Nf
ÿ

f“1

8
ÿ

n“1

1

n
trpP `Mqn

¸

. (3.71)
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It is easy to see that the Nf factor does not increase the complexity in our computation, and
the correct pre-factors are determined simply by the number of fermion traces from which the
term originates.
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Chapter 4

Series expansion methods

Most important part of doing physics is the knowledge of

approximation.

by Lev Landau

Series expansion methods have a long history and have passed many tests from experiments
as well as soluble systems. These are sophisticated tools used to provide quantitative calcula-
tions in statistical mechanics. We devote this section to describing an analytic method called
the high-temperature expansion which is then applied to evaluate the effective lattice theory
of heavy quarks. The development of the high-temperature expansion for our effective theory
is motivated by the fact that analytic calculations do not suffer from a fermion sign problem
if we include finite baryon densities.

Classifying the contributions of higher-order terms is normally led to a description in terms
of linear graphs. Thus, the starting point is to give a short introduction to graph theory. We
shall then explain the high-temperature expansion and their characters in great detail1. This
expansion itself and its realization on the computer with the usage of a powerful enumeration
algorithm called the ’Pegs in Holes’ is described. An important part of the analytic treatment
is series analysis tools. They are needed to extract criticality for the asymptotic series obtained
from expansion methods. In this work, two approximants used to estimate the critical endpoint
on the phase boundary in the parameter space are Padé and Canterbury approximant.

4.1 Graph terminology

In this section, we discuss briefly the notion of graphs relevant for the high-temperature ex-
pansion and present examples and some results to reinforce the meaning of these concepts. A
full and detailed introduction can be found in e.g. [35,86,87].

A linear graph G is a collection of p vertices which constitute the vertex set V together
with edge set E of l edges between certain pairs of vertices. The graph is the abstract concept
represented by two sets V and E. The degree of a vertex is the number of edges having a
given vertex as an endpoint. For example, the graph in (4.1) is an undirected linear graph that
has seven vertices, five edges, and three connected components. In this graph, there are four

1The definition of an alternative method called the linked cluster expansion and how it was successfully
applied to the SUp3q spin model at real and imaginary chemical potential can be found in [31].

45
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vertices of degree two, two of degree one, and one of degree zero.

(4.1)

Two graphs G and G1 which can be put into 1 ´ 1 correspondence so that the points and
connections correspond are termed isomorphic [35]. For example, see (4.2).

and (4.2)

Graphs formed with p vertices and l edges can be classified into groups. The first two important
groups are

1. Separated graphs which consist of graphs which have more than one component.
2. Connected graphs which consist of at least one edge between any two vertices and can

be sub-divided further into
• Stars S - multiply-connected graphs which are graphs with no articulation point or

cut-point - a point where the graph could be cut into two or more separated graphs
by cutting all lines going to this point, see (4.3).

• Trees - graphs which are not multiply-connected, see (4.4).

(4.3)

(4.4)

The tree graphs may be further sub-classified into

• Cayley trees - which are connected graphs of p vertices and l “ p´1 edges with no closed
circuits, see (4.5).

• Husimi trees - which are built up out of simple polygons attached by articulation points,
see (4.6) left. It is pure if only one type of polygon occurs see (4.6) right.

• Star trees - which are the remaining graphs constructed of stars attached by articulation
point, see (4.7).

(4.5)

(4.6)

(4.7)

Given a graph G and A a vertex of degree 2, then the suppression of the vertex A is defined as
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the deletion of A from the vertex set V of G and the identification of two edges incident on A.
Reservedly, replacing an edge BC by two edges AB and AC by the creating of a new vertex
A is called the insertion of a second-order vertex incident on the edge BC.

Two graphs G and G1 are said to be homeomorphic if G1 is a graph derived from G by the
insertion or suppression of any number of vertices of degree 2. For example, see (4.8).

Ñ or Ñ (4.8)

Homeomorphs have the same basic topology and the concept of homeomorphism plays an
important role in many physical applications. For example, the number of self-avoiding walks
on a lattice may be expressed in terms of all the homeomorphs of the four topological types [88].

It is important to point out that the notion of a graph defined above refers only to a
topological concept, and not to a particular geometric lattice. However, it is normally possible
to embed a given graph G in a d-dimensional hypercubic lattice, and for d “ 3 it is called a
simple cubic lattice. This will be discuss in section 4.2.

Our goal is to compute the expectation value of the Polyakov loop or its susceptibility with
respect to the effective action, but in general, the evaluation is very difficult if one goes beyond
the order three or four of the effective coupling λ. With help of the so-called high-temperature
configurations, the complicated integral can be replaced by a sum of smaller terms dictated
by certain configurations. The basic problem is then to count the number of ways in which
one can embed particular types of configuration on a given lattice (simple cubic lattice in our
case). This means that we replace the evaluation of complicated integrals with a combinatorial
problem. However, this combinatorial problem can be solved systematically by computer.

4.2 Lattice constants or embeddings

4.2.1 Notation and terminology

In this section, we give a set of definitions related to those in the last section. It is convenient to
assign reference symbols to the various types of linear graphs to arrange them systematically.
We use gi to denote a graph and order the subscripts i as follows. The number of vertices and
lines in gi are denoted by vi, li

2, respectively. Furthermore, if vi ă vj, then the subscripts are
ordered so that gi occurs before gj; in case vi “ vj then if li ă lj. The resulting sequence reads

g1 g2 g3 g4 g5 g6 g7

(4.9)

There exists a case of vi “ vj and li “ lj, and the first pair we obtain is

and (4.10)

suppose that the suffixes have been arbitrarily assigned.
Furthermore, the symbols ci, si to the various types of connected and star graphs respec-

tively can be abbreviated from vpciq, lpciq, vpsiq, lpsiq as long as the meaning of which graph
dictionary is being used is clear. Similarly, for a general arbitrary graph G we abbreviate

2These are an abbreviation of vpgiq and lpgiq.
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vpGq, lpGq to vG, lG.

The number of connected components in gi are denoted by npgiq or ni. We have already
defined the connected component number cpgiq by

ci “ li ´ vi ` ni, (4.11)

which is invariant under the suppression or insertion of vertices of degree 2. We have also
defined homeopmorphic graphs which turn out to have the same connected component number.

If gr and gs are any two graphs of (4.9), then gr Y gs (union of gr and gs) denotes the
disconnected graph made up of gr and gs. For example, g5 “ g1 Y g3 and g4 “ g1 Y g2 “

g1 Y g1 Y g1.

When all vertices and edges of a graph H are vertices and edges of G, then H is called a
subgraph of G. If A is a subset of the vertices of G, the section-graph GpAq is defined as the
subgraph of G consisting of the vertices A and all the adges in G which connect two vertices
of A. A partial graph P of G is a subgraph of G having the same vertices as G [89].

Two subgraphs have no vertices and no edges in common, then they are called vertex-
disjoint and edge-disjoint, respectively. If H1 and H2 are two subgraphs of G we define their
sum graph H “ H1 `H2 to be the subgraph formed from all the vertices and edges of H1 and
H2 or both.

Any subgraph G1 of a graph G which is isomorphic with a graph g is said to represent an
embedding of g in G in the weak sense (weak embedding). Any section graph G˚ of G which is
isomorphic with g is said to represent an embedding of g in the strong sense (strong embedding).
Evidently, a strong embedding is always a weak embedding but the converse statement is not
necessarily true. Any weak embedding of g in G defines a subset V 1 of the vertices of G. We
call the section graph with vertices V 1 the associated section graph of the embedding [86].

The lattice constant of a graph g on a graph G is defined as follows:

• Weak (or high temperature) pg;Gq “ Number of subgraphs of G isomorphic with g.
• Strong (or low temperature) pg;Gq “ Nuber of section graphs of G isomorphic with g.

The graph G can be a lattice L of N sites with a periodic boundary condition. All lattice
constant which does not loop the torus contains a factor N due to the symmetry. It is therefore
convenient to consider the lattice constants per site so as to eliminate the factor N . It is
sometimes convenient for conciseness to revert to the older defined terminology [35], and we
then have

pg;Lq “ plx, rg;Ls “ Plx, (4.12)

where l is the number of lines of g.

For any graph G with v vertices and l lines we have two sets of lattice constants:

• The weak set pgi;Gq for all gi with vi ď v and li ď l.
• The strong set rgi;Gs for all gi with vi ď v and li ď l.

The set of lattice constants is thus a finite set. For example, the lattice constants of the triangle
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g7 are

pg1; g7q “ 3, rg1; g7s “ 3,

pg2; g7q “ 3, rg2; g7s “ 0,

pg3; g7q “ 3, rg3; g7s “ 3,

pg4; g7q “ 1, rg4; g7s “ 0, (4.13)

pg5; g7q “ 3, rg5; g7s “ 0,

pg6; g7q “ 3, rg6; g7s “ 0,

pg7; g7q “ 1, rg7; g7s “ 1.

It will be noted that many more of the strong lattice constants are zero than of the weak lattice
constants, and this is found to be an important characteristic difference.

4.2.2 Reduction of lattice constants

Following [86], we consider the reduction of disconnected lattice constants to connected lattice
constants, and of articulated lattice constants to star lattice constants. Given a graph G
which consists of two or more of its subgraphs, for example of the three subgraphs H1, H2, H3

isomorphic with some gi, gj, gk of the high temperature series expansion. Then

G “ H1 `H2 `H3. (4.14)

Now H1, H2, H3 are weak embeddings of gi, gj, gk in G, and (4.14) is called an overlap partition
of G into gi, gj, gk. In general there will be more than one possible choice of embeddings of
gi, gj, gk in G having G as its sum graph, and we define the total number of such choices as
the number of overlap partitions of G into gi, gj, gk and write this number

tgi ` gj ` gk “ Gu. (4.15)

For example, there are three overlap partitions of the triangle g7 into g3 and g6, and three into
g6 and g6

tg3 ` g6 “ g7u “ 3,

tg6 ` g6 “ g7u “ 3. (4.16)

Overlap partitions represent the overlapping of the component graphs and have their edges
and vertices in common.

Let us write down a theorem that shows that the lattice constant of any disconnected graph
on a graph G can be calculated from the connected lattice constants on G. The proof of this
theorem can be found in [86].

Theorem 1 If gi and gj are two graphs gi ‰ gj and G any graph, then

pgi Y gj;Gq “ pgi;Gqpgj;Gq ´
ÿ

k

tgi ` gj “ g
pvq
k upg

pvq
k ;Gq

where the summation is taken over all g
pvq
k with v ă vi ` vj.

The usage of this theorem will be illustrated by an example, where we calculate the lattice
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constant in the simple cubic lattice corresponding to two separated graphs: a square and a
line.

Although the above reduction procedure is straightforward in principle, it rapidly becomes
tedious for higher-order terms. Thus, nowadays lattice constants of articulated graphs are
usually evaluated directly on a computer by using sophisticated counting programs. Such
programs were developed initially by J. L. Martin in Chapter 2 of [35]. However, in this thesis,
we will follow a more modern approach given in [36]3.

4.2.3 Graph generation and computation of lattice constants

After introducing the graph terminology relevant for the high-temperature expansion, in this
section, we describe briefly the procedure of how graphs and lattice constants can be generated
and computed directly on a computer, respectively. The reader is invited to read [36], where
this procedure is explained very clearly.

As mentioned above, the computation of lattice constants and the generation of graphs
become tedious and cumbersome for higher-order terms, indicating a combinatorial problem in
our computation. This led us to the point where these procedures are needed to be automated
efficiently. We start with the first issue of how to identify or label a graph such that a designed
algorithm can perform a count meaning an enumeration of all possible ways in which a given
class of graphs may be embedded in the lattice. This can be done using a so-called adjacency
matrix defined as follows

mij “

#

1 if vertices i, j are connected by a bond

0 otherwise
(4.17)

For convenience, the diagonal elements can be set to zero or the order of each vertex. Let us,
for example, consider the following graph and its corresponding adjacency matrix

2

3

1

4

5
m “

¨

˚

˚

˚

˚

˝

3 1 0 1 1
1 2 1 0 0
0 1 2 1 0
1 0 1 2 0
1 0 0 0 1

˛

‹

‹

‹

‹

‚

(4.18)

One can generate a complete set of graphs with up to n vertices and l edges in an efficient
way by picking up n isolated points first, then replacing edges on all possible pairs of points
in all possible ways. This powerful enumeration algorithm is called the ’Pegs in Holes’ (PIH)
algorithm, and many combinatorial computer programs related to the enumeration of graphs
are based on this algorithm. Here the ’pegs’ are the l bonds and the ’holes’ are the npn´ 1q{2
possible links between pairs of vertices. For more detail, see Appendix 2 of [36].

It is important to avoid duplicates (same bare graphs) at as soon as possible in the gen-
erating program. This can be achieved using the concept of a canonical labelling and the

associated graph key. For example, see fig. 4.1, for the bare graph , without the concept

of the canonical labelling four labellings shown in fig. 4.1 are generated. Each of these has
its own unique adjacency matrix. If we take the off-diagonal elements (0 or 1) in the order

3To increase the efficiency of the computing process, a new and parallelized code in C++ was developed by
our group.
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345

¨

˚

˚

˚

˚

˝

3 1 0 1 1
1 2 1 0 0
0 1 2 1 0
1 0 1 2 0
1 0 0 0 1

˛

‹

‹

‹

‹

‚

¨

˚

˚

˚

˚

˝

2 1 0 1 0
1 3 1 0 1
0 1 2 1 0
1 0 1 2 0
0 1 0 0 1

˛

‹

‹

‹

‹

‚

¨

˚

˚

˚

˚

˝

2 1 0 1 0
1 2 1 0 0
0 1 3 1 1
1 0 1 2 0
0 0 1 0 1

˛

‹

‹

‹

‹

‚

¨

˚

˚

˚

˚

˝

2 1 0 1 0
1 2 1 0 0
0 1 2 1 0
1 0 1 3 1
0 0 0 1 1

˛

‹

‹

‹

‹

‚

(1,0,1,1,1,0,0,1,0,0) (1,0,1,0,1,0,1,1,0,0) (1,0,1,0,1,0,0,1,1,0) (1,0,1,0,1,0,0,1,0,1)

= 740 = 684 = 678 = 677

Figure 4.1: Four equivalents of a bare graph with their corresponding adjacency matrices and
keys.

m12,m13,m23, ¨ ¨ ¨ ,mn1,n as the binary bits of an integer, which plays a role as a unique iden-
tifier or key for each labelled graph. The labelling which maximizes the key is considered as
canonical, and the corresponding key is then a unique identifier for the bare graph.

The second step of computing series expansions for lattice models is the determination of
lattice constants. We describe a systematic way to compute the lattice constants for connected

and disconnected graphs. As an example, we will use again the bare graph , and embed

it into a square lattice. The counting algorithm uses again the PIH procedure, where the pegs
are vertices of the graph and holes represent the sites of the lattice. First, the lattice sites
could be specified by a pair or triple of coordinates but it is more convenient to map these
onto a line, see fig. 4.2.

It is convenient to fix the graph vertices 1 and 2 at lattice sites 0 and 1 while the other
vertices yield two constraints:

• no lattice site can be occupied by more than one graph vertex
• all graph edges must correspond to nearest-neighbor links on the lattice.

According to these constraints, the example graph satisfies the embeddings shown in fig. 4.3.
There are 4 successful counts for this graph, which is then multiplied by the coordinate number
q “ 4 that is represented by the number of ways to replace the fixed bond p1, 2q in any of the
q positions and divided by the symmetry number of the graph which is 2 in this case, to gives
a lattice constant 4ˆ 4{2 “ 8. There are some remarks on the performance of the used codes.
The method described above is essentially ’brute force’. The CPU time needed is proportional
to the lattice constant which limits the length of the series which can be computed. The chain
and polygon are most expensive to count.

However, there is a very fast algebraic procedure for all tree graphs as described next. The
idea of this procedure is to compute the lattice constants of tree graphs, including chains, in
terms of computed lattice constants of graphs with fewer vertices. For example, consider the
following chain with the root vertex ,

” ı

(4.19)

then there are pq ´ 1q possible ways to add a bond to this root vertex (in general, there are
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Figure 4.2: The vertices are mapped onto a segment of a line on the square lattice. Two basic
vectors p~e1, ~e2q are represented by p1, Nq. Every lattice site has a unique index referenced to
an origin 0. N must be large enough to prevent wrap-around effects, here N “ 10.

pq ´ oq possibilities where o is the order of the root vertex). And the result is illustrated as
follows

pq ´ 1q
” ı

“

” ı

`

„ 

(4.20)

We finally rearrange eqn. (4.20) with consideration of the additional symmetry factors which
arise when rooted graphs are replaced by bare graphs.

2
” ı

“ 2pq ´ 1q
” ı

´ 2
” ı

(4.21)

We can check this for the simple square lattice, and the result is

” ı

“
1

2
p6 ¨ 50N ´ 2 ¨ 8Nq “ 142N,

which coincides with the result of the direct computation. Here N denotes the number of
lattice sites.

While the Ising model and the pure gauge effective theory can be computed using only
connected and closed graphs, to employ high-temperature expansion for the effective theory
including fermions, disconnected graphs must also be taken into account. Generation of dis-
connected graphs is done from a starting list of connected graphs. Computing the lattice
constants of disconnected graphs can be cumbersome, however, a similar procedure to that for
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Figure 4.3: Embedding of the example graph on the simple square lattice.

tree graphs can be employed. For example, we want to compute the lattice constant for two
disconnected squares

” ı

(4.22)

First, we multiply two sets of all embeddings of a single square to generate the list of sets as
follows

” ı

¨

” ı

“

” ı

` 2
” ı

` 2

»

–

fi

fl` 2
” ı

. (4.23)

Then it is straightforward to obtain a symbolic equation for the lattice constant of two discon-
nected squares

” ı

“
1

2

” ı

¨

” ı

´
1

2

” ı

´

” ı

´

»

–

fi

fl (4.24)

Suppose that we already know the lattice constants of the set of the connected graphs on the
simple square lattice, in this case

” ı

“ N,
” ı

“ 2N,

»

–

fi

fl “ 2N. (4.25)

Substituting (4.25) into (4.24), we obtain the final result for the lattice constant of two dis-
connected square

” ı

“
1

2
N2
´

1

2
N ´ 2N ´ 2N “

1

2
N2
´

5

2
N. (4.26)

In general, lattice constants of disconnected graphs can be computed recursively from graphs
with fewer vertices and fewer components, by isolating one component and enumerating all
possible overlaps with the graph formed from the remaining components [36].

4.3 High-temperature susceptibility

Based on the method of computing the lattice constants described previously, we are now able
to compute a 13th power series for the susceptibility of the pure gauge effective theory including
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static quarks on the simple cubic lattice. The pure effective theory can be easily obtained by
sending the coupling h1 Ñ 0. The expansion scheme employed is called high-temperature
expansion, which would have been near state-of-the-art 40 years ago before the Monte-Carlo
method, and is still a reasonable long series, far longer than could be achieved by hand.

We emphasize again that the advantage of the high-temperature expansion is an analytic
method and does not suffer from the fermion sign problem. General concepts of the high-
temperature expansion applied to Ising models can be found, for instance, in [35, 36]. This
method is particularly simple for Ising models without an external field because their spins
can only take two values `1 or ´1 and the set of graphs involved is sufficiently small, however,
on the other hand for the effective theory it gets much more complicated since our ”spins” are
Polyakov loops and the presence of fermions in the effective theory enlarges the set of graphs
significantly.

Throughout this chapter, the main action evaluated by the high-temperature expansion
contains the pure gauge effective action with the static quark determinant given in eqn. (3.15)
and (3.27), respectively. Instead of λ1, in the following it is convenient to drop the index and
use pλ, h1q as our expansion parameters. To illustrate the calculation more comprehensively,
let us write down again the desired Nf “ 1 three-dimensional effective action

Z “

ż

DU0e
´Seff “

ż

DU0 detrDstats
ź

x~n1,~n2y

r1` λpL~n1L
˚
~n2
` L˚~n1

L~n2qs, (4.27)

detrDstats “
ź

~n

r1` h1L~n ` h
2
1L
˚
~n ` h

3
1s

2
r1` h̄1L

˚
~n ` h̄

2
1L~n ` h̄

3
1s

2. (4.28)

Our main goal is to extract information about phase transitions from the series, which can be
achieved by using the Polyakov loop susceptibility χL which peaks at the phase transition and
is defined to be

χL “
1

V

B2

BJ2
logZrJs

ˇ

ˇ

ˇ

ˇ

J“0

“ V
`

xL2
y ´ xLy2

˘

, (4.29)

where ZrJs is the partition function coupled to an external source J as follows

ZrJs “

ż

DU0 exp

«

´Seff ` J
ÿ

~n

pL~n ` L
˚
~nq

ff

. (4.30)

Before we show an example of how to perform the series expansion on the partition function, it
is advantageous to combine the measure DU0, the static quark determinant detrDstats and the
external source part together since they are just product over the spatial space. The combined
measure is of the form

dM~nrJs ” dW~nr1` h1L~n ` h
2
1L
˚
~n ` h

3
1s

2
r1` h̄1L

˚
~n ` h̄

2
1L~n ` h̄

3
1s

2eJpL~n`L
˚
~n
q. (4.31)

Then the partition function is simplified into

ZrJs “

ż

ź

~n

dM~nrJs
ź

x~n1,~n2y

“

1` λpL~n1L
˚
~n2
` L˚~n1

L~n2q
‰

. (4.32)
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Then we can expand the partition function in a power series in λ as

ZrJs “

ż

ź

~n

dM~nrJs ` λ

ż

ź

~n

dM~nrJs
ÿ

x~n1,~n2y

2 RepL~n1L
˚
~n2
q

` λ2

ż

ź

~n

dM~nrJs
ÿ

x~n1,~n2y

ÿ

x~n3,~n4y

4 RepL~n1L
˚
~n2
qRepL~n3L

˚
~n4
q (4.33)

` λ3

ż

ź

~n

dM~nrJs
ÿ

x~n1,~n2y

ÿ

x~n3,~n4y

ÿ

x~n5,~n6y

8 RepL~n1L
˚
~n2
qRepL~n3L

˚
~n4
qRepL~n5L

˚
~n6
q `Opλ4

q.

It is straightforward to see that this series becomes very messy for higher orders of λ. How-
ever, we can rearrange the partition function through a graph representation which has been
described previously. The graph representation of eqn. (4.33) takes the form

ZrJs “ ` λ ` λ2
´

`

¯

` λ3

ˆ

` ` `

˙

`Opλ4
q. (4.34)

Here the transformation rules are quite simple: for each graph, the order of λ corresponds to
the number of edges, and the number of edges coupled to a vertex gives a count for the number
of Polyakov loops at this vertex. To calculate eqn. (4.34) systematically, there are two main
steps:

• Graph counting. This means computing the lattice constant of each graph, which gives the
number of ways a graph can be embedded on the lattice. This step is discussed in the
previous section, and a table of up to four bond graphs and their lattice constants on a
simple cubic lattice can be found in Tab. 4.1, where N “ N3

s is the number of lattice sites.
Since the series expansion method allows a lattice of arbitrary large volumes, meaning that
our calculations can be approximately considered as in the thermodynamic limit, and no
infinite volume extrapolation is needed.

• Graph evaluation. This step can be illustrated by the following example of explicit calculation
for the first order graph in ZrJs,

“

ż

ź

~n

dM~nrJs
ÿ

x~n1,~n2y

`

L~n1L
˚
~n2
` L˚~n1

L~n2

˘

“ 3N

ˆ
ż

dM~nrJs

˙N´2

2

ˆ
ż

dM~nrJsL~n

˙ˆ
ż

dM~nrJsL
˚
~n

˙

“ 6NzN´2
0 z1z

˚
1 . (4.35)

Here the nearest neighbor sum gives 3N integrals of the same kind, i.e. our computations
are reduced to single site integrals as shown in eqn. (4.36). The single site group integrals

Ipn,mq “

ż

SUp3q

dWLnL˚m, (4.36)

can be evaluated using an explicit formula derived by using the technique of generating
functions [90]. We should point out the triality constraint of (4.36) that for Ipn,mq to be
non-vanishing pn´mq mod 3 “ 0 must be satisfied. This constraint will make a big impact
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Figure 4.4: Comparison of the Polyakov loop susceptibility between order 13 and 60 in the
hopping parameter. Here h1 “ p2κq

Nteµ{T ” heµ{T . Left: µ{T “ 0. Right: µ{T “ 0.1.

on the selection of non-vanishing graphs. To proceed with our computation we have to
expand down exprJpL~n ` L˚~nqs to the wanted order. Our code is capable to calculate up to
Oph60

1 , h̄
60
1 q, but a truncation to the order Oph13

1 , h̄
13
1 q is checked to be good enough as one

can see in fig. 4.4. Finally, the Polyakov loop susceptibility χL is obtained by taking the
derivative of logZrJs two times with respect to the external source J as in eqn. (4.29) and
sending J Ñ 0 afterward. At Opλ1q, the complete calculation of ZrJs is already too long to
be printed, however, for simplicity, we can just show the first order of the partition function
without an external source4 by letting J Ñ 0. Three single site integrals in (4.36) simply
become

z0 “p1` 4h3
1 ` h

6
1q ` p4h1 ` 6h4

1qh̄1 ` p10h2
` 6h5

qh̄2
1 ` p4` 20h3

1 ` 4h6
1qh̄

3
1

` p6h1 ` 10h4
1qh̄

4
1 ` p6h

2
1 ` 4h5

1qh̄
5
1 ` p1` 4h3

1 ` h
6
1qh̄

6
1, (4.37)

z1 “p3h
2
1 ` 2h5

1q ` 2p1` 6h3
1 ` h

6
1qh̄1 ` p8h1 ` 15h4

1qh̄
2
1 ` 4p5h2

1 ` 3h5
1qh̄

3
1

` p3` 20h3
1 ` 3h6

1qh̄
4
1 ` p4h1 ` 8h4

1qh̄
5
1 ` p3h

2
1 ` h

5
1qh̄

6
1. (4.38)

z˚1 “p2h1 ` 3h4
1q ` p8h

2
1 ` 4h5

1qh̄1 ` p3` 20h3
1 ` 3h6

1qh̄
2
1 ` p12h1 ` 20h4

1qh̄
3
1

` p15h2
1 ` 8h5

1qh̄
4
1 ` p2` 12h3

1 ` 2h6
1qh̄

5
1 ` p2h1 ` 3h4

1qh̄
6
1. (4.39)

It is obvious that beyond the first few orders each computation step of the Polyakov loop
susceptibility such as graph generations, lattice constant calculations, and single-site SUp3q
group integral calculations become cumbersome. Fortunately, these can be automatized on a
computer with the use of the state-of-the-art algorithm described above.

4.4 Series analysis methods

After the discussion of how the high-temperature expansion is used to compute the Polyakov
loop susceptibility which is a series in the power of pλ, h1, h̄1q, we now turn to another problem
of how this series is analyzed, such that the information about criticality for our theory can
be revealed. In this section, we will describe the two main methods: Padé approximant

4An external source is not needed per se, if one just wants to obtain results at leading orders, however, it
becomes a crucial technique for higher-order calculations.
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Label Graphs Embeddings Label Graphs Embeddings

1.1 3N 2.2 −33N

2.1 15N 3.3 −1440N

3.1 20N 3.4 876N

3.2 75N 4.5 −10080N

4.1 15N 4.6 −37512N

4.2 300N 4.7 90072N

4.3 363N 4.8 −38286N

4.4 3N 4.9 −20556N

Table 4.1: Connected and separated graphs with up to four bonds with labels and embeddings
on a simple cubic lattice.

and Canterbury approximant, whose combination can determine the critical endpoint from
a multivariate series. We refer the reader to [91, 92] for an extensive introduction to series
analysis.

4.4.1 Padé approximant

Suppose that we are given a power series associated to a function fpxq

fpxq “
8
ÿ

i“0

cix
i. (4.40)

For any analysis using Padé approximant, this power series is the fundamental starting point.
In practice, we can only obtain a finite power N for the series. A rL{M s Padé approximant
(PA) is a rational fraction of two polynomials PL and QM of degree L and M respectively,

rL{M s “
PLpxq

QMpxq
“

p0 ` p1x` ¨ ¨ ¨ ` pLx
L

q0 ` q1x` ¨ ¨ ¨ ` qMxM
, L`M ď N, (4.41)

where its Maclaurin expansion agrees with L ` M ` 1 series coefficients of (4.40) as far
as possible, and without loss of generality, we take q0 “ 1. The L ` M ` 1 coefficients
p0, p1, . . . , pL, q1, . . . , qM are determined by equating like powers of x, i.e. one solves two sys-
tems of linear equations. The eqn. (4.41) indicates that Padé approximants of sufficiently high
order will exactly represent rational functions with which one can analyze critical points and
non-analyticities of the series. Two important properties of the Padé approximant are that the
diagonal rN{N s PAs are invariant under homographic transformation, y “ pax ` bq{pcx ` dq
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which is useful for analytic continuation, and also under Euler transformation x “ Aw{p1`Byq
which explains the acceleration of convergence using the sequence of diagonal PAs [92].

A Padé approximant is able to present functions with simple poles - poles of order one,
exactly. Thus, in the study of critical phenomena it is advantageous to take the logarithmic
derivative of the series, which converts an algebraic singularity into a simple pole. For example,
given a function fpxq of the form

fpxq “
A

px´ xcqα
, then d log fpxq “

f 1pxq

fpxq
“

α

x´ xc
. (4.42)

One can now use the denominator polynomial QMpzq to estimate the location of the singular
points, while the exponents are obtained from the corresponding residues.

4.4.2 Canterbury approximant

In the field of critical phenomena, many significant physical systems have more than one
coupling. For example, the Ising model in an external magnetic field, the Opnq symmetric
lattice φ4 theory in four dimensions, or the theory of our interest - QCD at finite temperature
and finite chemical potential. Thus, a novel method for approximating functions of two or
more variables that exhibits singular behavior of a relevant theory is needed. It is natural
to consider a generalization of the Padé approximant to more than one variable. It turns
out that we can just focus on the case of two-variable problems because the more-variable
cases can be treated similarly. In this section, we consider the simplest scheme for a direct
formulation of two-variable rational approximants, i.e. without a reduction to a single variable.
This approach was developed by Chisholm and his coworkers [93–95]. Consider the following
two-variable series

fpx, yq “
8
ÿ

i“0

8
ÿ

j“0

cijx
iyj. (4.43)

Our focus is to construct the defining lattice spaces L and M and polynomials of two variables

Apx, yq “
ÿ

i,jPL
aijx

iyj, (4.44)

and
Bpx, yq “

ÿ

i,jPM
bijx

iyj, (4.45)

so that

fpx, yq “
Apx, yq

Bpx, yq
`

8
ÿ

i“0

8
ÿ

j“0

eijx
iyj, (4.46)

where most of the coefficients eij are zero. The basic idea is similar to the Padé approximant
that we approximate the function fpx, yq by a ratio of two polynomials of two variables, where
the coefficients are chosen to reproduce the original coefficients to as high an order as possible.
The numerator and denominator coefficients have been taken to lie in lattice spaces L and M,
and there exists a requirement that eij for i, j P E , the equality lattice space.

Similarly to the Padé approximant one can choose b00 “ 1 without loss of generality, then
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(b) The lattice space E

Figure 4.5: The lattice spaces L and E for the r2{2s Canterbury approximant.

this scheme is determined by

dimpEq “ dimpLq ` dimpMq ´ 1. (4.47)

This is the foundation for a variety of approximation schemes. The most systematic develop-
ments are known as the Canterbury approximants. The Canterbury scheme is known to inherit
many of the interesting invariance properties of ordinary, in particular diagonal Padé approx-
imants, see [92]. Furthermore, it satisfies accuracy-through-order conditions and reduces to
Padé approximants if either x or y is zero. Typically, this scheme is defined by writing Apx, yq
and Bpx, yq as

ArL{Lspx, yq “
L
ÿ

i“0

L
ÿ

j“0

aijx
iyj, (4.48)

BrL{Lspx, yq “
L
ÿ

i“0

L
ÿ

j“0

bijx
iyj, b00 “ 1. (4.49)

An example of the lattice space L and M for the r2{2s Canterbury approximant corresponding
to (4.48) and (4.49) are presented in fig. 4.5 (a), where the lattice spaces L and M are identical.
Then at order pα, βq we obtain the following equality equations

α
ÿ

i“0

β
ÿ

j“0

bijcα´i,β´j “ aα,β, pα, βq P L, (4.50)

and
minpα,Lq
ÿ

i“0

minpβ,Lq
ÿ

j“0

bijcα´i,β´j “ 0, pα, βq P E , pα, βq R L. (4.51)

Then the numerator coefficients are determined by (4.50) once the denominator coefficients are
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determined. The coefficients bij are determined by (4.51), and the determination of the lattice
space E is illustrated by an explicit example. In fig. 4.5 (b), we present the lattice space E for
the r2{2s Canterbury approximant5.

For y “ 0, we need an exact accuracy to order x3 and x4 to be able to determine the
coefficients b10 and b20, and to obtain the r2{2s Padé approximant. An accuracy through
order x3, x4, x3y, y3, y4, and y3x is required to obtain six of the eight equations, which are then
solved for the coefficients bij, as indicated by ˚ in fig. 4.5 (b). The other two equations are
obtained by adding the equations (4.51) for order x3y2 and x2y3, and those for order x4y and
xy4. These two equations are called symmetrized equations. Thus Canterbury approximants
always satisfy accuracy-through-order conditions for orders up to x2L´αyα, α “ 0, 1, ..., 2L. For
symmetric functions, the symmetrising process becomes a formality, and the approximants are
accurate through orders x2L, y2L, and x2L`1´αyα, α “ 1, 2, ..., 2L. Suppose that the necessary
approximants exist, the scheme has the following properties: Canterbury approximants reduce
to diagonal Padé approximants if either variable is zero; they also satisfy restricted homographic
invariance, duality, unitarity, and the factorization rule. For more detail and proof of these
properties, see for instance [93,95].

5Unlike Padé approximants, there is no available library in Mathematica for computing Canterbury ap-
proximants of higher orders. For this purpose, we have written a program in Mathematica to automatize the
process of computing Canterbury approximants



Chapter 5

Numerical treatment for the effective
theory

The first real applications of the statistical sampling method

to research problems in physics seem to have been those of

Enrico Fermi, who was working on neutron diffusion in Rome

in the early 1930s. Fermi never published his numerical meth-

ods ... .

M. E. J. Newman, G. T. Barkema in [96]

In the last chapter, we discussed the analytic treatment of the pure gauge effective theory
including static quarks. Although we have come a long way towards finding a suitable expansion
scheme for the effective theory with static quarks, it is realized that analytic methods are
usually applicable to physical systems whose action is sufficiently simple only, for example
the pure gauge effective theory, with static quarks or potentially with the κ2-correction. On
the other hand, these methods are not suitable for the effective theory with the κ4- or higher
corrections due to the complexity of its action. The deconfinement endpoint of the effective
theory is improved with higher corrections and approaches the value of full QCD. For this
reason, the higher correction effective theory is treated by Monte-Carlo methods. Although
only the case of zero chemical potential is considered, we should note that at finite chemical
potentials the fermion sign problem of the effective theory is mild enough for simulations to
be possible, since many degrees of freedom associated with spacial links have been integrated
out.

5.1 Monte Carlo algorithms

The standard numerical method used to calculate the partition function of QCD is Monte-
Carlo simulation. The Monte-Carlo simulations are based on Markov chains in combination
with the concepts of ergodicity and importance sampling. This is currently still the most
efficient method for computing functional integrals of lattice QCD where the dimensionality
of the integrals is way too high for usual numerical integration techniques. In this section, the
fundamentals of this method are briefly introduced; see for example [3,48,50] for more details.

Because of the Grassmann nature of the quark fields in the QCD functional integral, stan-
dard Monte-Carlo methods do not allow such fields to be simulated directly. Thus, it is required
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to simulate the theory after integrating out the quark fields. As described in section 2.5.2, one
can extract the physics described by QCD by calculating expectation values

xOy “ 1

Z

ż

DU detrDse´SGrUsO. (5.1)

Here, we can re-express this formula to obtain a normalized probability density on the space
of all gauge fields

prU s “
1

Z
detrDse´SGrUs. (5.2)

We note that this density only works if it is real, which is normally the case if a chemical
potential is not present. One then selects configurations of U ’s according to this density, and
this step is the central idea of the importance sampling. Assume that a set of configurations
U pnq with n “ 1, . . . , N is generated, then the expectation value of the observable O is given
by

xOy “ lim
NÑ8

1

N

N
ÿ

n“1

OrU pnqs. (5.3)

In practice, actual calculations are carried out only at a finite number N , and the uncertainty
of the mean is of order 1{

?
N [48].

We note that most large-scale simulations used today are based on the so-called Hybrid
Monte Carlo algorithm [97]. However, since the effective theory is a function of temporal gauge
links or Polyakov loops only, the link-update algorithms used for the pure SUp3q gauge theory
can still be applied for reasons of efficiency, i.e. the complicated step of calculating the fermion
determinant is not involved.

5.1.1 The Metropolis algorithm

Configurations according to desired distributions are generated through some iterative proce-
dure called the Markov process, i.e. the field configurations are obtained one after another via
some stochastic algorithm. A Markov process is characterized by two important properties:
ergodicity (or in practice, relaxed ergodicity), i.e. a Markov chain must be able to cover the
whole space of configurations with a finite number of steps; and detailed balance where for a
probability p and a transition probability Ptrans we have

PtranspU Ñ U 1qprU s “ PtranspU
1
Ñ UqprU 1s. (5.4)

The Metropolis algorithm is the simplest stochastic algorithm that can be used to construct a
Markov chain. This algorithm consists of two steps: The proposal and the accept/reject step.
Let us explain this in more details. First a new candidate configuration U 1 is proposed by
employing a selection probability HpU Ñ U 1q, and then the configuration U 1 is accepted with
probability

PaccpU Ñ U 1q “ min

„

1, e´pSGrUs´SGrU
1sqHpU

1 Ñ Uq detDrU 1s

HpU Ñ U 1q detDrU s



, (5.5)
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as the next configuration in the Markov chain, and if U 1 has not been accepted, we set U 1 “ U .
Note that the inclusion of detrDs in (5.5) is not relevant for our case, because the effective
theory is simulated without the calculation of the fermion determinant. Furthermore, it is con-
venient to implement it with a symmetric proposal probability, i.e. the transition probability
HpU Ñ U 1q of a state U to another state U 1 equals the transition probability HpH 1 Ñ Uq of
the state U 1 to the state U . Then the accept/reject step takes the simple form

PaccpU Ñ U 1q “ min

„

1, e´pSGrUs´SGrU
1sqdetDrU 1s

detDrU s



. (5.6)

The expectation value of an gauge-invariant operator O can be approximated by

xOy “ lim
NÑ8

1

N

N
ÿ

n“1

OrUns, (5.7)

where we have used N configurations Un of link variables which are distributed according to
the equilibrium probability prU s in equation (5.2).

Link proposal

We briefly describe how the link proposal works, for more details see [3, 48, 59]. The link
proposal is a crucial step of the Metropolis algorithm. This step helps find a suitable proposal
for the new configurations of links. It is advantageous to apply the local update procedure
and to change the link such that the new link is close to the old link. This will give a large
acceptance rate, and consequently a symmetric proposal probability. For gauge group SUpNcq

we have the additional constraint that the new link is again an element of the group. This
means that a naive generalized proposal of the form1 U Ñ U`δ ¨ε1, similar to the one used for
the harmonic oscillator will not work, since the new matrix U 1 would not belong to the group
SUpNcq anymore. To find a suitable proposal, we can use the property that the multiplication
of two elements of SUpNcq leads to another element of SUpNcq, so that we can implement the
proposal following

U 1 “ ΘU P SUpNcq with Θ P SUpNcq. (5.8)

Here Θ should be an element of SUpNcq and close to the unit matrix.

The construction of the matrix Θ can be done by making use of the fact that elements
of SUpNcq can be represented in terms of the fields θ that are elements in the corresponding
algebra supNcq. We can thus express Θ as

Θ “ eθ with θ “

N2
c´1
ÿ

a“1

θapiT aq, (5.9)

where θ is an element of the anti-hermitian representation of the Lie algebra supNcq. For Θ
close to the unit matrix, then the matrix θ must contain small coefficients θa. The coefficients

1Note that for simplicity we write U instead of the link Uµpxq that we want to update. U does not indicate
an entire field configuration anymore.
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can be generated as follows

θa “ δ ¨ ε. (5.10)

Here δ P r´1, 1s is a random variable and ε a fixed small number. This procedure has a big
advantage because it leads to a symmetric proposal probability since θ and ´θ are equivalently
likely and expp´θq “ Θ´1. The last step for the implementation of the proposal is to find a
suitable implementation of the exponential function from supNcq to SUpNcq.

SUpNcq exponential function

The exponential function is either implemented fully by using the Cayley-Hamilton theo-
rem [98] or implemented with a suitable approximation including certain properties that are
required by the desired algorithm [99]. On one hand, the first option can be correct up to
machine precision, however, it normally requires a high numerical demand in comparison to
the approximation option. For the Metropolis algorithm, an approximation to the exponential
function is good enough.

In the case of the SUp2q gauge group, it is possible to use both the exact representation

exppiφp~n ¨ ~rqq “ cospφq1` i sinpφqp~n ¨ ~rq, (5.11)

where ~n is a unit vector and ~r is the vector of Pauli matrices, or the approximation via the
Cayley map

eiX “
1` iX{2

1´ iX{2
, (5.12)

where X P supNcq. It is straightforward to see that the exact representation demands three
matrix multiplications for each proposal step since one needs to repeat the computation for
each of the coefficients. The latter is more efficient since the only complicated computation is to
inverse the 2ˆ 2 matrices which can be carried out explicitly. Furthermore, the approximated
implementation can be easily applied with the anti-hermitian form of the Lie algebra. For
the gauge group SUp3q, a suitable approximation can be constructed from SUp2q matrices
embedded in 3ˆ 3 matrices, for more details see [99].

The local effective action

The efficiency of the Metropolis algorithm can be improved significantly if we use the local
action in the accept/reject step. To demonstrate the idea of the Metropolis algorithm more
transparently, let us discuss how to apply this algorithm to the SUp3q pure gauge effective
theory. The Metropolis algorithm can be easily generalized to be used for a more complicated
effective theory involving heavy quarks. Let us write down again the action of the pure gauge
effective theory here

SG,eff “ ´
ÿ

x~n1,~n2y

log
`

1` 2λRepL~n1L
˚
~n2
q
˘

. (5.13)

The procedure called maximal tree allows transforming a set of link variables to the identity 1
until a link U˚ which connects to another link that already has been transformed to 1 before.
Thus, here L~n “ tr

ś

t U0pt, ~nq “ trUp~nq. If we want to update the link Up~nq or the Wilson
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line, i.e. we make a random change Up~nq Ñ U 1p~nq or L~n Ñ L1~n. For the effective theory, it
is straightforward to see that a random change of U only affects its corresponding Polyakov
loop while its six nearest-neighbor Polyakov loops are unaffected. The local contribution to
the three-dimensional effective Yang-Mills action is

Sloc
G,effrU

1
s “ ´

ÿ

~n2

log
`

1` 2λRepL1~n1
L˚~n2
q
˘

, (5.14)

where ~n2 represents six nearest-neighbor points of ~n1. Due to the nature of the logarithm in
the action, instead of computing the change in the local action in the accept/reject step it is
convenient to consider a direct change of the acceptance probability, i.e.

∆p “

ś

~n2
p1` 2λRepL~n1L

˚
~n2
q

ś

~n2
p1` 2λRepL1~n1

L˚~n2
q
. (5.15)

Let us remark that the computer time required per link update is quite small for the effective
theory up to Opκ2q. For the effective theory at Opκ4q or higher, the computer time per
link update increases significantly due to the complexity of the action. As we have already
mentioned earlier, for the implementation of the effective theory at high orders to be feasible,
the approach described in section 3.4 should be developed.

5.2 The sign problem

The progress of investigating lattice QCD at finite chemical potential is far from being settled
due to the violation of γ5-hermiticity of the Dirac operator when a chemical potential is in-
troduced. As a consequence, this violation makes the determinant detrDs complex, and the
QCD path integral at finite chemical potential cannot be evaluated by standard Monte-Carlo
methods. One can easily see it by the following equation

γ5Dpµqγ5 “ D:p´µ˚q. (5.16)

Taking the determinant on both sides of the equation and using some simple properties of
linear algebra, we obtain

rdetDpµqs˚ “ detDp´µ˚q. (5.17)

At µ “ 0 or when µ is a purely imaginary chemical potential, this gives back the positive-
definite determinant, which allows us to simulate the lattice QCD path integral with standard
Monte-Carlo methods. However, for a real chemical potential, the complex determinant cannot
be used as a probability weight. This is called the sign problem. Recently, some attempts based
on extrapolation methods and stochastic quantization were proposed to circumvent the sign
problem:

• Reweighting method [100]: measurements are performed at µ “ 0 and extrapolated to
finite µ with help of reweighting or power series in µ{T .

• Imaginary chemical potential [26, 101]: the calculations are performed for imaginary µ
and then analytically continued to real values.

• Taylor expansion in µ [102]: the quark determinant is expanded in power of µ{T and the
resulting expressions are calculated term by term.
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• Complex Langevin: this method is based on a stochastic quantization, which was in-
troduced in [103–105], and recently some progress has been made for lattice gauge the-
ory [22,106].

If the numerical study of the effective theory at finite chemical potential will be carried out in
the future, then the sign problem can be dealt with by using the reweighting method. In this
method, configurations are generated at µ “ 0 with detrDp0qs, i.e. a real probability weight,
then these configurations are used to derive new weights describing a finite µ ensemble. See [48]
for much more details on this subject in a more general context.

In this thesis we are not going to deal with the sign problem of the effective theory in terms
of numerical methods, we focus instead on investigating the deconfinement critical point of the
effective theory at zero µ.

5.3 Statistical error analysis

The estimation of statistical errors will be summarized briefly in this section. For more details
see the extensive review in [3, 71, 96]. The estimation of the statistical errors in numerical
lattice QCD seems to be a straightforward task. However, in practice, complicated fits and
extrapolations might be involved in the procedure of evaluating physical quantities from the
simulation data. Jackknife and bootstrap methods [107] are resampling techniques that sim-
plify the error estimation of the calculated physical quantities significantly. The correctness
of the resampling techniques can be established for most cases of interest including physical
quantities considered in this thesis. However, we note that in some special cases, resampling
techniques are incorrect. For example, generally, the jackknife method gives wrong results for
the statistical error of the median of an observable [3].

Given a sample of measurements tAnu for n “ 1, . . . , N , traditionally the corresponding
statistical error will be the standard deviation of the mean, which only works if the N measure-
ments are independent. In this case, the statistical error would decrease as 1{

?
N . However,

measurements are extracted from successive configurations of a Markov chain, i.e. there exists
a correlation between those measurements. Then, the reliability of the error estimation de-
pends strongly on the inclusion of the autocorrelations. The autocorrelations are characterized
by a quantity called the autocorrelation function

ΓAptq “ ΓAp´tq “ xpAn ´ xAyqpAn`t ´ xAyqy. (5.18)

The uncertainty for an estimator for the variance of our data can be computed using correlated
measurements as

σA “

g

f

f

e

2τintA

NpN ´ 1q

N
ÿ

n“1

rAn ´ xAys2. (5.19)

Here τint,A is called the integrated autocorrelation time which has the approximated form [99]

τint,A “
1

2
`

N
ÿ

t“1

ΓAptq

ΓAp0q
. (5.20)

We can see that our statistics is decreased by a factor 2τint,A, and we end up with only N{2τint,A

uncorrelated measurements. The integrated autocorrelation can be computed as described in
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for example [99], but in practice, the error estimation is made via resampling techniques such as
the jackknife or the bootstrap method. The reason for this is that there are some cases where
it is either inaccessible or too complicated to estimate the error using the direct method, for
example, the cases of composite observables which will be discussed in more detail in chapter
6.2. Note that only the jackknife method will be discussed here, because it is used heavily
for error estimations in this thesis, and we refer the readers to [71] for the discussion of the
bootstrap method.

Jackknife error estimation

The jackknife method is a resampling method, i.e. for this method it is required to choose NB

independent sub-samples or bins out of the main sample tAnu. Each bin contains K “ N{NB

individual measurements. With those bins, we can start with the computation of the block
average

ĀB,n “
1

K

K
ÿ

i“1

AKpn´1q`i, with n “ 1, . . . , NB. (5.21)

Next, the n-th jackknife estimate ĀJn is the average over all data in the sample except the point
n and this step combines multiple bins into a larger sample, namely jackknife bins.

ĀJn “
1

NB ´ 1

NB
ÿ

i‰n

ÂB,i. (5.22)

After averaging these jackknife bins, i.e. taking

ĀJ “
1

NB

NB
ÿ

n“1

ĀJn, (5.23)

the covariance of the observable then reads

σ2
ĀJ “

NB ´ 1

NB

NB
ÿ

n“1

pĀJn ´ Ā
J
q
2. (5.24)

The relations in (5.23) and (5.24) can be generalized to the cases of composite observables
like the susceptibility, skewness, or kurtosis of the Polyakov loop. For more details about how
composite observables are treated see [108].

The choice of the binsize K will decide whether the jackknife error is reliable or not. A
suitable check of the reliability is to plot the relative error of the quantity of interest against K,
then at some value of K a plateau in dependence of the relative error appears. The presence
of such a plateau indicates that the standard deviation starts to signal the correct behavior of
uncorrelated samples.
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Chapter 6

Critical phenomena of the effective
theory

... for many physical quantities the perturbation series are

sufficiently slowly convergent that one needs to calculate more

than two terms in order to achieve accuracies of the order of

1 per cent.

by H. Eugene Standley in [109]

The effective theory has been proved to be useful and can be applied to investigate full
lattice QCD with heavy quarks, in particular at finite chemical potential. Recently, approaches
have been developed to treat the effective theory analytically, which can serve as a cross-check
for numerical methods, as well as provide insights into the mathematical and physical structure
of the effective theory [29–32]. A method called linked cluster expansion gives a systematic
treatment for certain limits of the effective theory such as the cold and dense regime or the
SUp3q spin model [30,32], however, this expansion scheme can no longer be used to evaluate the
improved effective theory with the logarithmic gauge action. Thus, we will apply another, more
suitable expansion scheme called the high-temperature expansion to the improved effective
theory. Furthermore, from a historical point of view, it should be pointed out that the high-
temperature expansion has been a powerful tool for quantitative studies of statistical mechanics
long before Monte-Carlo methods. In this work, the partition function and the susceptibility
are computed up to the 13th power series in the power of the effective gauge coupling λ.
While the 13th order is certainly not a very high order compared to series of spin systems
like Ising or Heisenberg model, it is sufficiently large for a quantitative investigation. A series
analysis method that combines the Padé and the Canterbury approximant, is used to analyze
the resulting Polyakov loop susceptibility χLpλ, h1, h̄1q. A comparison to results obtained from
recent simulations using flux representation [28] is carried out.

In the second part, we show results obtained in the Nf P t1, 2u effective theory with
zero chemical potential at Nt P t4, 6u up to order Opκ4q by using the standard Monte-Carlo
simulation. This is a continuation of previous studies of the effective theory at µ “ 0 and an
extension to our preliminary results [110]. After presenting the analysis of statistical sufficiency
for our simulations, we give some comments on how to split simulation data into the appropriate
number of bins, such that the statistical errors can be estimated correctly by the jackknife
method. The critical endpoint, by which the first-order line of our effective theory terminates,
is determined. Finally, a comparison to results obtained with full QCD using hopping expansion
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Figure 6.1: Respective critical coupling λc for SUp3q and SUp2q to different orders of its
corresponding susceptibility series.

for Nt P t4, 6u, and with full QCD for Nt “ 6 is considered.

6.1 Analytic results from series expansions

In chapter 4, we have shown a description of how the high-temperature expansion scheme
adopted from statistical mechanics is applied to the effective theory. Because a large number
of graphs and a large number of group integrals are involved in our computations, a fully com-
puterized approach was implemented. The general multivariate power series of the Polyakov
loop susceptibility χL is of the form

χL “
L
ÿ

i“0

L
ÿ

j“0

L
ÿ

k“0

cijkλ
ihj1h̄

k
1. (6.1)

We have obtained all terms contributing to the coefficients cijk for L ď 13. In this section,
we are going to explore the phase transitions of the heavy quark effective theory in pλ, h1, h̄1q

parameter space. We start with the pure gauge effective theory, then the system with the
presence of static quarks at zero, real and imaginary chemical potential are studied one after
the other.

6.1.1 Yang-Mills theory

In the limit κÑ 0, we work with the nearest-neighbor pure gauge effective theory for Nc “ 2, 3
which includes a logarithmic resummation given in eqn. (3.15)1. As mentioned in section 4.4,
a standard method to extract information about criticality of single-variable functions from
their available coefficients is the method of Padé approximants (PAs), in particular, the dlog

1The gauge group SUp2q has no anti-fundamental representation and consequently there is no complex
conjugate Polyakov loop L˚ in the SUp2q effective action.
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Padé method:

d

dλ
logχL » rL{M s “

PLpλq

QMpλq
, (6.2)

where Padé approximants to the logarithmic derivative of χL then allows the critical parameter
λc to be estimated as poles of the PA. In the case of SUp3q, the resulting logarithmic derivative
of the Polyakov loop susceptibility up to Opλ12q is

dplogχLq{dλ “ 6` 24λ` 126λ2
` 768λ3

` 3126λ4
` 20736λ5

` 87198λ6
` 552384λ7

` 2440782λ8
` 14984064λ9

` 68368086λ10
` 526709064λ11

` 2575039434λ12
`Opλ13

q. (6.3)

Because of the invariance properties of diagonal Padé approximants mentioned earlier, it is
common practice to use the tridiagonal band of PAs rN ´1{N `1s, rN{N s and rN `1{N ´1s.
This is explained as follows: at order λM in eqn. (6.3) we take either three or two approximants
depending on whether M is even or odd, for example, two PAs pr1{2s, r2{1sq are computed at
orderM “ 3 and three PAs pr1{3s, r2{2s, r3, 1sq at orderM “ 4. For each of these approximants,
we determine the poles λc and their residues γc. We then compute the mean value and quote
as systematic error the maximum deviation between pairings |λj ´ λi|, where i, j label the
approximants. We remark that this procedure is useful to observe the convergence of our power
series, however, the best results are usually obtained from the diagonal Padé approximants
rN{N s of sufficiently high orders. Moreover, Padé approximants of a power series always
produce poles, even in the case of the SUp3q effective pure gauge theory, where the transition
is of first-order. In this case, they signal the end of the metastability region and thus are an
upper bound on the true critical coupling. The same behavior has been observed in the q-state
Potts model [111].

In fig. 6.1 (a) we show the critical coupling λc for Nc “ 3 to each order of eqn. (6.3).
The best estimate of λc is within 2% of the simulation result for the same model [27]. Even
though the results have stabilized as the order increases, they slightly overshoot the true value,
indicating that the series probes the end of the metastability region. The same computation
for Nc “ 2 is shown in fig. 6.1 (b). Here the estimate for Nc “ 2 at order Opλ8q already
reaches the range of 1% from simulation data. It is easy to invert eqn. (3.18) to obtain the
critical couplings βc and compare with results of the four-dimensional Yang-Mills theory [112].
Fig. 6.2 (a) presents this for the SUp3q case, and a satisfactory convergence behavior of strong
coupling series to the four-dimensional Yang-Mills result is observed.

In fig. 6.2 (b), the resulting critical exponents γc for Nc “ 2, 3 associated with four different
Padé approximants r4{4s, r4{3s, r3{3s and r3{5s are shown, respectively. The estimates for
SUp2q accurately reproduce the values for the universality class of the three-dimensional Ising
model, while the SUp3q case give values different from all known universality classes. This
is consistent with the known behavior of the first-order phase transition, as well as with the
Svetitsky-Yaffe conjecture [79].

6.1.2 Zero chemical potential

The effective theory aims to investigate the deconfinement transition of QCD with heavy quarks
as a function of quark mass and chemical potential. First, we consider only the case of zero
chemical potential, whose schematic phase structure is shown in the Columbia plot, see fig.
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Figure 6.2: Left: Critical coupling βc converted by (3.18). Right: Exponent γ for the SUp2q
and SUp3q effective theory.

1.2. The phase diagram of full QCD in the heavy quark regime is described as follows. In
the pure gauge limit, i.e. the upper right corner, the deconfinement transition is of first order.
Dynamical quarks break the global Z3 center symmetry of the QCD action for any Nf explicitly.
As a consequence, as the quark masses decrease the phase transition becomes weaker until it
terminates at a critical point. For still lighter quark masses the deconfinement transition is an
analytic crossover. The effective theory also inherits this behavior, as is sketched in fig. 6.3
(b).

For one flavor case2 Nf “ 1 and µ “ 0, we have h ” h1 “ h̄1, and the effective theory
then reduces to a system of two couplings pλ, hq. This system possesses a first-order line
with a weakening transition as h increases, and this line eventually terminates at a critical
point. These expectations are based on the known results captured by the three-dimensional
3-state Potts model coupled to an external field [113, 114], which has the same symmetry
breaking pattern. Similar to the argument for the SUp3q spin model given in [32], we note
that for h ‰ 0 the center symmetry of the effective theory is explicitly broken, and the pλ, hq-
axes are misaligned with the temperature and magnetic field scaling axes of the effective
Ising Hamiltonian governing the vicinity of the critical point. This situation of a first-order
transition terminating in a critical point is the generic one of a liquid-gas transition. While the
behavior of the system in the vicinity of the critical point is dictated by the universality class,
the location of the transition in parameter space is not. Thus, our investigation will provide
valuable insights into QCD. Localization of the critical heavy quark mass with full QCD has
been studied numerically in [115], and with the effective theory in [28].

Before we proceed with the analytic attempt to study the phase transition of the effective
theory, it should be pointed out that, unlike the SUp3q spin model where the specific heat
observable is a well-defined quantity and can be used together with the susceptibility to locate
the critical point of the system [32], the log-action of the improved effective theory prevents
the specific heat observable to have a simple form, which does not signal the information of a
phase transition. For this reason, we propose a more suitable approach described below.

2For simplicity we only consider the Nf “ 1 case, however, it is quite straightforward to perform the same
calculations for Nf ě 2, since one only needs to change the power of the static quark determinant, while the
expansion scheme to the log action remains unchanged.
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Figure 6.3: Left: Schematic phase diagram of the effective theory in pλ, h, µq parameter space.
A surface of first-order transitions is bounded by a Z2-second-order line beyond which the
transitions are analytic crossover. Right: A schematic phase diagram for the effective theory
corresponding to µ “ 0.

Before we proceed to a localization procedure of the critical endpoint with help of the new
approach, a few points need to be clarified. First of all, both non-dlog Padé and dlog Padé
approximants can be employed to determine the location of the phase transition, because they
model the singular behavior of the full observables best at a second-order point. Second, to
employ the Padé analysis for singular functions of two or more variables one must reduce
the power series to a single variable, i.e. scanning over a variable and performing the Padé
analysis on the other. For example, by fixing h “ 0.00073, a value close to the endpoint, the
singular of two series χL and d logχL can be found by solving their denominator Q6pλq of the
correspondent Padé approximant r6{6s for λ, respectively. Thus, we obtain

λχLc “ 0.189282, λd logpχLq
c “ 0.189456, (6.4)

which agree within 0.09%. The result indicates that both series χL and d logpχLq are capable
of determining the critical point. Fig. 6.4 shows the convergence of our results, and the r6{6s
approximant to the Opλ12q series of χL and d logχL, respectively. The phase transition is then
accounted by a singularity in the approximant.

If we plot the phase transition estimated by the Padé and the Canterbury approximant
in the pλ, hq parameter space separately, then it is easy to recognize that they can probe the
phase boundary of the theory as well as the convergence of the series, not the critical endpoint.
Similar behavior has also been observed in the SUp3q spin model. Analogous to the method
used in [32], where the intersection points of poles in approximants to different observables
can be taken as estimates for the location of the critical point, we realize that the critical
endpoint can be determined by a combination of the Padé and Canterbury approximant. Here
we argue that these methods construct different approximants, but those approximants are
most sensitive to the second-order point and only there. Thus, we expect that they possess
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Figure 6.5: Critical points estimated from the high-temperature expansion at zero and finite
chemical potential.

the same diverging behavior at this point.

At this stage, it is convenient to clarify our notations first before going into details of the
series analysis. As one can see in tab. 6.1, there are several types of approximants coming
from the Padé and Canterbury method for the χL and d logχL series. To keep track of those
approximants, we use the following index notations: cp - Padé approximants for χL series, lp
- Padé approximants for d logχL series, cc - Canterbury approximants for χL series, and lc -
Canterbury approximants for d logχL series. While Padé approximants work astonishingly well
for one-variable problems with a second-order transition as shown previously, the two-variable
situation of the SUp3q effective theory with various types of transitions is more complicated. For
instance, if we isolate the Padé approximants r4{4slp and r6{6slp, they tend to pick up the rise
of the d logχL series near the phase boundary, where the full series is known to be analytic, and
are unable to clearly distinguish between orders of the phase transition or crossover behavior.

Fig. 6.5 (a) shows the estimates of the critical point at µ “ 0. The critical point is
reproduced within 2% accuracy in λ and 40% in h. According to the arguments given above,
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µ “ 0 µ “ 0.75

PA/CA PA/CA hc λc hc λc
r5{5scp r4{4slp 0.001118 0.188453 0.000868 0.188478
r5{5scp r6{6slp 0.001220 0.188192 0.000908 0.188340
r6{6scp r4{4slp - - 0.000806 0.188582
r6{6scp r6{6slp 0.001170 0.188316 0.000868 0.188384
r4{4slc r5{5scp 0.000998 0.188669 0.001596 0.186599
r4{4slc r6{6scp 0.000969 0.188761 0.001548 0.186780
r5{5scc r5{5scp - - 0.001229 0.187532
r4{4slc r4{4slp 0.000396 0.190356 - -
r5{5scc r6{6scp 0.000936 0.188820 0.001239 0.187505
r5{5scc r4{4slp 0.001077 0.188519 0.001019 0.187941
r5{5scc r6{6slp 0.001160 0.188341 0.001037 0.187909
r6{6scc r5{5scp 0.001025 0.188608 0.001559 0.186676
r6{6scc r6{6scp - - 0.001370 0.187148
r6{6scc r4{4slp 0.001156 0.188326 0.000786 0.188684
r6{6scc r6{6slp 0.001254 0.188098 0.000873 0.188448
r6{6slc r5{5scp 0.001149 0.188340 - -
r6{6slc r6{6scp 0.001130 0.188405 - -
r6{6slc r4{4slp 0.001311 0.187919 - -
r5{5scc r6{6scc 0.000790 0.189144 0.001254 0.187448
r5{5scc r4{4slc 0.000958 0.188779 0.001393 0.187206
r5{5scc r6{6slc 0.001119 0.188428 0.002197 0.185686
r6{6scc r4{4slc 0.000991 0.188690 0.001603 0.186560
r6{6scc r6{6slc 0.001180 0.188274 - -
r6{6slc r4{4slp - - 0.001218 0.187665

Table 6.1: Intersection points of the poles in the Padé and Cantebury approximants to χL and
d logχL.
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ET (analytic) ET (simulation) [28] hopp. exp.-QCD [115]

Nf Nt Mc{T κc Mc{T κc κc
1 4 6.85(19) 0.088(4) 7.22(5) 0.0822(11) 0.0783(12)
1 6 - 0.148(4) - 0.1404(11) 0.1525(34)

Table 6.2: Location of the critical point for µ “ 0 and Nf “ 1, Nt “ 4, 6. The first two
columns report our results from series expansion, the next four columns compare with those
from simulation and hopping expanded QCD.

these need to agree at a second-order transition and only there, so we take their intersections
as estimates for the location of the critical point. To obtain an error estimate, we compute the
standard deviation of all intersections of diagonal Padé and Canterbury approximants listed in
tab. 6.1. On average, i.e. including results at µ ‰ 0, the predictions from the series approach
have an averaged relative error of about 1% in λc and about 30% in hc. Presumably, the larger
error on the latter variables is due to the flatness of the critical line in the phase diagram, so it
takes more accuracy meaning higher orders to resolve changes in those directions. Within error
bars, the predicted critical points agree with the numerical determined ones, so the estimate
of the systematic error is realistic.

Our estimated critical point at µ “ 0 is

pλc “ 0.188572p50q, hc “ 0.00106p20qq, (6.5)

which can be easily converted into those of the couplings pβc, κcq using (3.18) and (3.61). In
order to compare with previous work, we approximate Mc{T with the relation that is valid for
heavy quarks to leading order in the hopping expansion [82],

exp

ˆ

´
M

T

˙

»
h

Nf

. (6.6)

The results are listed in tab. 6.2 and are in reasonable agreement with the corresponding ones
from simulations of the four-dimensional QCD with Wilson fermions at Nf “ 1, Nt “ 4 [115].
In the case of pure gauge theory, the critical effective couplings can be mapped to those of
QCD for any Nt, thus providing predictions for larger Nt which have not yet been simulated in
four-dimensional full QCD. However, it was checked in [28], that Nt “ 6 is the finest thermal
lattice for which κc is consistent meaning that it is still significantly smaller than the chiral
critical hopping parameter κch evaluated at the same gauge coupling since we are expanding
around infinite quark masses.

6.1.3 Real and imaginary chemical potential

Let us turn now to the investigation of the deconfinement transition at finite baryon density.
For µ ‰ 0, we get h1 ‰ h̄1, then the full parameter space of the effective theory pλ, h1, h̄1q must
be considered. That means the diagram in fig. 6.3 (b) turns into a three-dimensional diagram
with a surface of first-order phase transitions terminating in a critical line as illustrated in fig.
6.3 (a). Since the change of the critical quark mass with chemical potential is in our main
focus, it is convenient to map out the critical line by fixing different chemical potentials and
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Figure 6.6: Critical coupling h̃c for real and imaginary chemical potential.

then scan for the critical hopping parameter κ. A new parameter defined as

h̃ “ he´µ{T
`

» p2κqNt to leading order in κ
˘

(6.7)

is more appropriate for that purpose. With the new parameter h̃, the parameter space
of the effective theory at finite chemical potential becomes pλ, h̃, µ{T q. We perform simi-
lar calculations to the case µ “ 0 using the chemical potential range µ{T P t0.1, . . . , 2.0u
to determine the corresponding phc, λcq. For example, for µ{T “ 0.75 the critical point
phc, λcq “ p0.00123p37q, 0.18756p84qq is obtained from averaging intersection points of different
approximants, see fig. 6.5 (b). It is then straightforward to convert hc with the corresponding
values of µ{T into h̃c and plot it against µ{T . The analytic and the simulation data taken
from [28] are shown in fig. 6.7 (a). Our analytic results are in reasonable agreement with those
from simulations, and it is clear that the important trend of the critical line is captured by the
series expansion method. As one can see that the error bars of the analytic results are quite
large, which can possibly be explained using the fact that our 13th power series is not very
high compared to the series of Ising model, for example in [116], and as mentioned earlier the
flatness of the critical line in the phase diagram might affect the error estimates. To fit our
data we use the fitting function

h̃cpµ{T q “
D

coshpµ{T q
, (6.8)

which has been used in [28]. This function was derived by expanding the critical lambda
around the pure gauge limit pλ, h̃, µ{T q “ pλ, 0, 0q and using the fact that the critical line of
the effective theory depends only weakly on µ{T . Our fit of all µ ą 0 data with one parameter
D performs well, yielding D “ 0.00081p6q with χ2{d.o.f “ 0.76. The corresponding critical
hcpµ “ 0q “ D is improved when all µ ą 0 data is used, and a compatible agreement with the
fit result of D “ 0.00075p1q with µ “ 0 from simulation.

Let us conclude this section with the study of the effective theory at imaginary chemical
potential and its relations to the Robert-Weiss symmetry. For imaginary chemical potential
µ “ iµi, µi P R, the Dirac operator is γ5-hermitian and the determinant is real, which allows
application of importance sampling techniques. The QCD phase transitions and its critical sur-
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faces possess an analytic continuation between real and imaginary chemical potentials, where
measurements are carried out at various values of the purely imaginary chemical potential
and then analytically continue to a real chemical potential with the use of some ansatz func-
tion [16, 101, 117, 118]. The continued results are affected significantly by the choice of this
ansatz function, therefore one needs to choose it carefully. It has been found that for heavy
quark masses the form of the deconfinement critical surface is determined by tricritical scaling
and terminates in a tricritical line at µi{T “ π{3 [119] which sets the boundary to an adjacent
Z3 center-sector of the partition function [120].

The center symmetry and its breaking in QCD are correctly reflected by the effective theory.
Indeed, for purely imaginary chemical potential the effective action (4.27) is also real and thus
does not suffer from a sign problem. In addition, the effective partition function is symmetric
by reflection in µ, which allows an expansion for the free energy density or the pressure in
powers of µ2, and it is periodic in µi{T with a period of 2π{Nc, implying the Roberge-Weiss
symmetry shared by QCD [119],

Zpλ, h, iµiq “ Zpλ, h, iµi ` i2πn{3q, Nc “ 3, n “ 0, 1, 2, . . . , (6.9)

i.e., center transformations are equivalent to shifts in imaginary chemical potential. Next, we
are interested in the continuation of the critical quark masses, i.e. the deconfinement critical
surface, from µ “ 0 to µ{T “ iπ{3. We follow the same approach as for real chemical potential
with the imaginal chemical potential range µi{T “ 0.1 ´ π{3, followed by determinations of
the pseudo-critical and critical couplings. Unlike the situation of simulation results where
numerical difficulties increase as µi approaches the boundary to the next center symmetry
sector [28], our controlled errors are valid up to µi{T “ π{3. This is because the analytic results
are directly obtained from the thermodynamic limit, where one does not have to construct a
better finite size analysis and to demand large volumes for dealing with a crossover between
three-dimensional Ising and tricritical scaling as moving along the critical line towards the
Roberge-Weiss tricritical point, see fig. 6.8 (a).

As the values of µi increased, we get a shift towards higher values in h̃cpµi{T q by the
endpoint of the corresponding first-order line. The resulting critical line is shown in fig. 6.6 (b),
where an analytic continuation of the real-µ fit eqn. (6.8) to imaginary chemical potential has
been performed, and the data has been well described. For this fit, we obtain D “ 0.00097p2q,
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χ2{d.o.f “ 0.96. Furthermore, we may present real and imaginary chemical potential data
together and plot hc and λc against µ2{T 2 as shown in fig. 6.7. For µ “ 0, the critical points
λcph̃cpµ{T q, µ{T q can be found again by evaluating our series. It is also easy to see from fig.
6.7 (b), the resulting transition line λcph̃cpµ{T q, µ{T q shows only weak dependence on µ{T .
A linear fit with χ2{d.o.f “ 0.26 yields that the critical points vary around λc “ 0.18825p9q
which is ă 1% in comparison with simulation results. Interestingly, the weak dependence was
also observed in the three-dimensional Potts model, where the spin coupling as a function of
the external fields is nearly constant along the critical line [114]. A possible explanation for
this weak dependence is that the center symmetric couplings are suppressed since they always
couple to pairs of L and L˚.

It was demonstrated in [119] for the Potts model and strong coupling QCD that the critical
quark mass at imaginary chemical potential is governed by tricritical scaling, with a scaling
region extending all the way to real µ. We thus attempt the corresponding two-parameter fit
to tricritical scaling of both hc and Mc{T with

hc

ˆ

µ2

T 2

˙

“ htric `K1

„

´π

3

¯2

`

´µ

T

¯2
2{5

, (6.10)

Mc

T

ˆ

µ2

T 2

˙

“
Mtric

T
`K2

„

´π

3

¯2

`

´µ

T

¯2
2{5

, (6.11)

which are plotted in fig. 6.7 (a) and 6.8 (b), respectively. While the hc data can be fitted for
the full range of µ, we are allowed only to fit the region µ2 ă 0 for Mc{T because of the eqn.
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(6.6). We then obtain

htric “ 0.00288p17q, K1 “ ´0.0016p2q, χ2
{d.o.f “ 0.270, (6.12)

Mtric{T “ 5.31p2q, K2 “ 1.41p2q, χ2
{d.o.f “ 0.002. (6.13)

Remarkably, for Mc{T the scaling function correctly describes the data up to large real chemical
potentials µ ă 2, and in a reasonable agreement with the simulation data, where Mtric{T “
5.56p3q and K2 “ 1.55p3q [28].

Our analysis described for real chemical potential has been repeated for a range of parameter
values and how the location of the critical endpoint changes as a function of h and µ has been
also mapped out. Thus the complete phase diagram of the theory is determined, as shown in
fig. 6.7 and 6.8 (b). For every choice of ph̃, µq there is a λcph̃, µqmarking the phase boundary for
center symmetry transition. The figure shows the second-order line separating the parameter
region with first-order transitions from that of smooth crossovers, i.e., it is a projection into
the transition surface of fig. 6.3 (a). The expected analyticity of the critical line around µ “ 0
is observed, and at this moderate accuracy, the entire range of chemical potentials is well
described by fitting a next-to-leading-order Taylor expansion in µ2 about zero. Note that at
´µ2 “ pπ{3q2 “ p1.05q2 the boundary to the neighboring center sector is crossed, beyond which
the phase diagram is dictated by the Roberge-Weiss symmetry. This point is marked by a cusp,
where two critical lines from neighboring center sectors meet, and which thus is tricritical in
all theories featuring this center symmetry, such as the Z3 Potts model or QCD [119]. As a
consequence, the critical line is leaving this point with a known tricritical exponent, and a fit
to this functional form also described our results over the whole range.

Lastly, we note that the parameter range 0.001 ă h ă 0.004 corresponds to a situation,
where there is a crossover for µ “ 0 but a critical point followed by a first-order transition
beyond some imaginary µc, as is often expected for QCD and read µ. We conclude that the
computational technique and analysis examined here are in principle able to handle such a
situation.

6.2 Numerical results

In this section, we present results updating previous studies of three-dimensional effective
theories at zero chemical potential in the heavy quark regime using standard Monte Carlo
simulations. We calculate the deconfinement phase transition and its critical endpoint with
Nf P t1, 2u, Nt P t4, 6u for different truncations of the three-dimensional effective theory up to
order Opκ4q in the hopping parameter. The measurement of the Polyakov loop, the Polyakov
loop susceptibility, the kurtosis, and the skewness are shown as a function of the corresponding
effective couplings, i.e. h1, κ, u, and λ. We follow closely the strategy used to locate the critical
endpoint presented in [16,28,122]. Finally, a comparison to results obtained from simulations
of four-dimensional QCD after hopping expansion, as well as with full QCD simulations for
Nt “ 6 is carried out.

6.2.1 Observables and finite size scalings

As described before in subsection 2.5.2, for any finite volume the expectation of the Polyakov
loop xLy vanishes for adequately long simulations, therefore one often performs an analysis
on x|L|y instead, which also agrees with |xLy| in the thermodynamics limit. Let us define the
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primary observable that is used throughout the study of the deconfinement phase transition
of the effective theory3

O “
1

N3
s

ÿ

~n

|L~n|. (6.14)

A true non-analytic phase transition can only exist in the infinite volume limit. In order to
extract this transition from simulations performed at finite volumes, an extrapolation with a
finite size scaling is needed. One uses two quantities called skewness and kurtosis [124] which
can be constructed from our primary observable O as follows

B3pOq “
xpO ´ xOyq3y
xpO ´ xOyq2y3{2 , B4pOq “

xpO ´ xOyq4y
xpO ´ xOyq2y2 . (6.15)

The critical value of B4 in the thermodynamic limit for different orders of the phase transition
is given in tab. 6.3. The leading finite size corrections are obtained by performing Taylor
expansion on the kurtosis

B4pO, κ,Nsq “ B4pO, κc,8q ` a1pκ´ κcqN
1{ν
s ` . . . . (6.16)

The formula (6.16) is used to fit the data on different volumes. Here we consider only the
linear term of the Taylor expansion which is sufficient for the analysis of the effective theory
due to the reasonable range of simulated points around the critical point. The quality of the
fit is reliable meaning B4 and ν take their universal value if the simulated volumes are not
too small and if the errors on the kurtosis are not too large [108]. In addition, the skewness
B3 is a measure for an asymmetry of the probability distribution of our observable. As our
couplings approach the phase transition, the shape of the distribution becomes asymmetric
left or asymmetric right, depending on the side of the phase transition. This indicates that the
skewness will take a positive value on one side and a negative on the other, and it has to cross
zero at the phase transition where the probability distribution is symmetric around its mean
value. We note that one can also extract information on the location of the phase transition
from the peak of the susceptibility with the following scaling behavior [125]

χpOq “ Nγ{ν
s fpkN1{ν

s q. (6.17)

Here f is a universal scaling function, k “ κ ´ κc denotes the reduced coupling and γ, ν are
critical exponents given in tab. 6.3. The description of this method is as follows: we fix the
critical exponents γ, ν to the correct universal values, then measure χ{N

γ{ν
s with multiple spa-

tial volumes. The curves should then collapse when plotted against kN1{ν (collapse plot), and
finally, the values for ν determined from the kurtosis can be checked. The main disadvantage
of this method is that sometimes it is difficult to estimate by eye the nature of the phase tran-
sition due to the similarity of the collapse plots [125]. Fortunately, a quantitative measure for
the quality of finite size scaling plots is developed, which significantly reduces the subjective
judgment required for fitting [108,126].

3There is another way to define x|L|y by taking the absolute value after summing over the spatial lattice,
which also gives compatible results to our convention [123].
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Crossover first-order triple Tricritical 3D Ising
B4 3 1.5 2 1.604
ν - 1/3 1/2 0.6301(4)
γ - 1 1 1.2372(5)

Table 6.3: Critical values for ν, γ and B4 for different phase transitions [127].

6.2.2 The analysis of the data

Let us briefly discuss the sufficiency of statistics in Monte-Carlo simulations. It is not straight-
forward to see whether simulations have enough statistics or not. Of course, the higher statistics
they have the better, and the smaller will be the errors in the quantities measured. There are
several methods for checking this, the readers are referred to [108] for more detail. First, the
standard way is to measure the integrated autocorrelation τint which is related directly to the
number of independent events collected. However, the data analysis with this method might
become a nontrivial task if some non-linear procedure involves, where complicated fits and
extrapolations are required. In this work, we decide the statistics sufficiency of a simulation
by running several Monte Carlo simulations until the value of the considered observable is
statistically the same on the different Markov chains. In fig. 6.9 we present the result for four
simulations with the same physical setup, but different seeds of the pseudo-random number
generator. The 100% of our statistics for this run corresponds to 1.5 million measurements. An
overview of the statistics accumulated in all the simulations can be found in tab. 6.5 and 6.6.
Followed [108], when all of the values of the kurtosis B4p|L|q of different seeds are compatible
within three standard deviations, we can estimate the range of statistics for a simulation4.

In section 5.3 we have discussed how to use the jackknife method for estimating the error
of a composite observable. However, one important remaining question is how to choose the
number of bins that the initial time series is split into. As stated in 5.3, the choice of bins is
determined by a plot of relative errors of the quantity of interest against the binsize K “ N{NB,
by which at some value of K a plateau in dependence of the relative error appears, indicating
the chosen bins are practically uncorrelated. We present two examples of this behavior for the
Nf “ 2 Opκ2q effective theory at Nt “ 6 and Ns “ 24 in fig. 6.10, one for a simulation far
away from the phase transition and one for a simulation near the phase transition, respectively.
Here the statistics for both runs is again 1.5 million measurements. From these two plots, one
can easily observe that for the simulation far away from the phase transition a small binsize of
„2000 already gives a reliable error estimation. On the other hand, near the phase transition,
a significantly larger binsize of „20000 is required in order to obtain a reliable error. This is
also expected since near the phase transition the correlation length tends to go to infinity in
the thermodynamic limit. We emphasize that with the jackknife method each quantity (the
mean, susceptibility, skewness, and kurtosis) has in principle a different binsize, which has to
be chosen accordingly.

4There is an exception for the effective theory at order Opκ4q where the statistics of the simulation in the
volume Ns “ 20 is quite small because the running time for Opκ4q increases significantly. We will come back
to this point later.
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Figure 6.9: Successive analysis of the kurtosis measurements at κ “ 0.140 on Nt “ 6, Ns “ 20
of the Nf “ 1 Opκ2q effective theory.

6.2.3 Discussion of the results

As was mentioned in the introduction, a numerical investigation of the effective theory at
zero chemical potential with different orders in the hopping parameter is our main focus. The
absence of the chemical potential leads to a real effective action to which standard Monte Carlo
methods can be employed. According to (3.16), (3.29), (3.69) and (3.56), the effective action
associated with different orders of κ are summarized as follows

SLO “ SG,eff ` S0, (6.18)

SNLO “ SG,eff ` S0 ` S2, (6.19)

SNNLO “ SG,eff ` S0 ` S2 ` S4. (6.20)

Here SG,eff, S0, S2 and S4 are the effective pure gauge, the static quark, the Opκ2q and the
Opκ4q effective action, respectively. The list of chosen values for the running parameters in
our simulations for Nf “ 1, 2 are reported in tab. 6.5 and 6.6, respectively. We present the
results of the critical endpoint determined by our numerical simulations. First, as a cross-check
the validity of our results in the leading order effective theory SLO is presented. This effective
theory has been studied numerically in [28], and analytically by means of the series expansion
method shown in section 6.1. We note that the steps in determining the critical endpoint will
be used for all possible orders of the effective theory.

To find the location of the critical deconfinement endpoint where the first-order transition
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Figure 6.10: The respective estimates for variance from jackknife sampling for increasing binsize
far (left) and near (right) the phase transition.

line terminates, a finite size scaling analysis as described above must be performed. In the
vicinity of the critical point, the behavior of the system is dictated by its universality class
which is characterized by the mechanism of symmetry breaking. The symmetry group that
involves is the Z3 symmetry. For the pure gauge theory, the deconfinement transition is
of first-order, and the phase transition was found to occur at λc “ 0.187885p30q [27]. For
λ ą λc, the Z3 symmetry is spontaneously broken, i.e. three distinct deconfined phases coexist.
The presence of dynamical quarks then breaks the global Z3 symmetry of the effective action
explicitly. It leads to a vanishing of the first-order deconfinement transition at a critical
endpoint for sufficient small quark masses. For still lighter quarks the transition becomes an
analytic crossover.

To determine the phase diagram fig. 6.3 (b), we follow a two-step procedure. First, we
determine the phase boundary, i.e. the pseudo-critical line λpcph1q in the two-coupling space
of the effective theory. In the second step, using dedicated finite size scaling analyses, we
determine the order of the transition along that line, and in particular the location pλc, h1cq

of the critical point. To accomplish the first task, one needs to fix the external field variable
to the values h1 P t0.0004, . . . , 0.0012u on lattice sizes Ns “ 16, 24, 32, and then scan for
the corresponding pseudo-critical coupling λpc. As indicators for the phase boundary, we use
zeros of skewness B3 and minimums of Binder cumulants or kurtosis B4 constructed from the
measurements of the Polyakov loop. For example, the behavior near a phase transition of the
Polyakov loop and its composite observables associated with the SNLO action are shown in fig.
6.11. One can extrapolate these to infinite volume using

λpcph1, Nsq “ λpcphq ` c1ph1q{N
α
s . (6.21)

From the minima of the kurtosis B4pOq and the extrapolation of these along with those of
other observables. This results in the pseudo-critical line shown in fig. 6.12 (a) which is well
described by a linear fit due to a small magnitude of h1 and the argument given in [113] that
the line of first order phase transitions λph1q is determined by the condition that the free
energy densities of the disordered (confined) phase and ordered (deconfined) phase are equal,
i.e., fcpλ, h1q “ fdpλ, hq. Expanding both sides about the pure gauge transition, pλ0, h “ 0q,



6.2. Numerical results 85

0.92

0.96

1

1.04

0.42879 0.42881 0.42883 0.42885

x|
L
|y

u

κ “ 0.056, Ns “ 20

(a) Magnetization

5

11

17

23

0.42879 0.42881 0.42883 0.42885

χ
|L
|

u

κ “ 0.056, Ns “ 20

(b) Susceptibility

´2

0

2

0.42879 0.42881 0.42883 0.42885

B
3
p|
L
|q

u

κ “ 0.056, Ns “ 20

(c) Skewness

2

5

8

11

0.42879 0.42881 0.42883 0.42885

B
4
p|
L
|q

u

κ “ 0.056, Ns “ 20

(d) Kurtosis

Figure 6.11: Magnetization, susceptibility, skewness and kurtosis for the Opκ2q effective theory
at κ “ 0.56, Nf “ 2, Nt “ 6, Ns “ 20.

and noting that Bhfc “ x|L|y “ 0 in zero external field, we obtain

λpcph1q “ λ0 ´ a1h1, a1 “
Bhfd

Bλpfc ´ fdq

ˇ

ˇ

ˇ

ˇ

ˇ

pλ0,0q

. (6.22)

The χ2{d.o.f value of the fit to the data given in fig. 6.12 (a) is 0.54, indicating a good fit
quality. This fit yields

λ0 “ 0.188010p28q, a1 “ 1.71p3q, (6.23)

which is in excellent agreement with the results obtained in [28].

In general, the investigation procedure is the same for the higher-order effective theory.
However, because of the inclusion of the gauge corrections in the effective couplings, where the
temporal extent involves, see eqn. (3.61)-(3.66), for practical reasons, the running parameters
are now chosen to be u and κ. By employing the same analysis to the effective theory with
higher corrections, the pseudo-critical line upcpκq can be mapped out, and subsequently, its
critical point puc, κcq is also located by using the same finite size scaling analysis. The pseudo-
critical line is found by fixing values of κ and performing a u-scan at Ns “ 16, 20, 24, identifying
the maximum of the susceptibility χ|L| and the minimum of the kurtosis B4. Result of Ns “ 24
and Nf “ 1 is shown in fig. 6.12 (b). Due to the smallness of κ at Nt “ 4, as shown in [113]
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Figure 6.12: The pseudo-critical line for the next-to-leading order effective theory with
Nf P t1, 2u, Nt P t4, 6u and Ns “ 24. A linear fit was performed for Nt “ 4 according to
equation (6.24).

the entire line can be parameterized by the following linear equation

upcpκq “ u0 ´ a1κ, (6.24)

with the following respective fit results,

a1 “ 0.0071p3q, u0 “ 0.429192p22q, χ2
{d.o.f “ 0.49, for Nf “ 1, (6.25)

a1 “ 0.0109p8q, u0 “ 0.429448p52q, χ2
{d.o.f “ 1.74, for Nf “ 2. (6.26)

On the other hand, for Nt “ 6 the hopping parameter range is expanded, by which the linearity
of the fit does not hold as shown in fig. 6.12 (c) and 6.12 (d) for Nf “ 1, 2, respectively. Thus,
for Nt “ 6 we are only able to determine the critical hopping parameter κc by using eqn.
(6.16).

After we have determined the tangent to the first-order transition line close to the endpoint,
we still need to find the exact location of the critical endpoint on the phase boundary. We
plot the minimum values of B4 against the couplings h1, κ for several volumes, see fig. 6.13,
and perform a linear fit to equation (6.24). The χ2{d.o.f values of the four fits are between
0.99 ´ 1.49, showing good fit qualities. With the same analysis, we also estimate the critical
values κc for the Opκ2q effective action at Nt “ 6, and for the Opκ4q effective action at Nt “ 4.
All results are summarized in tab. 6.4. One observes that the value of κc for Nf “ 2 of the
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Figure 6.13: Example of multi-branch fits for the kurtosis at different orders of the effective
theory

same order effective theory is smaller than those of Nf “ 1. This can be easily seen from the
shift to the left of the curve in fig. 6.12 (d) in comparison with the one in fig. 6.12 (c). We
argue that this is because the explicit center symmetry breaking becomes stronger as there are
more fermion fields involved. With the same argument, as it is expected, the critical value of
the hopping parameter κc is shifted towards lower values for the higher-order effective theory.

In tab. 6.4, a comparison of our results with those obtained from 4-dimensional QCD sim-
ulations in heavy quark region is carried out, in one case with a hopping expanded fermion
determinant, in the other case with no approximations. We see that the phase structure of
the 4-dimensional full QCD is reproduced by the effective theories on a semi-quantitative level
so that their application to the cold and dense regime can be trusted. Regarding quantita-
tive accuracy, the comparison with either hopping expanded or full QCD allows for detailed
conclusions regarding the strong coupling and hopping expansions: the three-dimensional ef-
fective theory agrees almost quantitatively with the hopping expanded four-dimensional QCD,
while both exhibit larger differences with full QCD as Nt grows. This means that the charac-
ter expansion shows good convergence behavior and is sufficient for these applications, while
higher-order corrections are necessary in the hopping expansion already at Nt “ 6.

Let us now determine the critical endpoint in the parameter space pu, κq in SLO and SNLO

for Nt “ 4, where this point is computable due the linearity of the phase boundary. It is
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3d eff. theories hopping expanded-QCD [115] Full QCD [128]

Nt action Nf “ 1 Nf “ 2 Nf “ 1 Nf “ 2 Nf “ 2
SLO 0.0810(4) - 0.0783(12) 0.0658(10) -

4 SNLO 0.0756(6) 0.0629(4) 0.0753(11) 0.0640(10) -
SNNLO 0.0515(16) 0.0443(34) - - -

6 SNLO 0.1319(6) 0.1210(5) 0.1326(21) 0.1202(19) 0.0877(9)

Table 6.4: Comparison of the κc-values for the deconfinement critical point obtained by different
approximations to lattice QCD with Wilson quarks.
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Figure 6.14: Histograms of |L| for two different simulations with Nf “ 2, Nt “ 6 before and
after the critical value.

straightforward to obtain the critical endpoint by inserting (6.23) into eqn. (6.22), and (6.25),
(6.26) into eqn. (6.24), respectively, and then solve for λc and uc. The resulting critical
endpoint for the respective effective theory are

pλc, h1cq “ p0.18688p6q, 0.000690p13qq for SLO, (6.27)

puc, κcq “ p0.428658p32q, 0.0756p6qq for SNLO with Nf “ 1, (6.28)

puc, κcq “ p0.428762p60q, 0.0629p4qq for SNLO with Nf “ 2, (6.29)

which have been partly shown in fig. 6.12 (a) and 6.12 (b). We cross-check the different
behavior of first-order versus crossover at two points p1 “ pu1, κ1q “ p0.443174, 0.120q and
p2 “ pu2, κ2q “ p0.443060, 0.140q by investigation of histograms for the distribution of the
magnetization. From our previous analysis, the point p1 is in the first-order region, while p2

is in the crossover region. As one can see in fig. 6.14, the familiar metastable two-state signal
- the coexistence of two phases that characterizes first-order transitions, is clearly established
for the point p1, while at p2 - the point after the critical point, we have a crossover, where no
region with coexisting phases is present and the magnetization does not scale with the volume.

As a last remark, it is important to point out that although we have good fits and consistent
results for the Opκ4q effective theory, its statistics for Nf P t1, 2u should be improved in order to
obtain more accurate results for the critical endpoints. As we mentioned, a complicated action
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such as the Opκ4q effective action with a large number of terms can significantly slow down the
simulation. Indeed, its updating time indeed increases „100 times that of the Opκ2q effective
theory with the same volume. There exists a powerful method called the multiple histogram
method which combines all estimates of given simulations to give the best possible outcome
for the expectation value of an observable, the reader is referred to [96,129,130] for a detailed
discussion. Currently, this method applied to the Opκ4q effective theory is being developed
within our group, aiming to resolve the low statistics problem, i.e. the critical endpoint can be
estimated with high accuracy, and an extension of our study for higher Nt and Ns at Opκ4q is
expected.
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Nf “ 1 Ns

action Nt κ{h λ{u range 12 16 20 24 32
0.00040 0.187250-0.187450 - 1.50M - 1.50M 1.50M
0.00060 0.186900-0.187100 - 1.50M - 1.50M 1.50M

SLO 0.00080 0.186550-0.186750 - 1.50M - 1.50M 1.50M
0.00100 0.186200-0.186400 - 1.50M - 1.50M 1.50M
0.00120 0.185850-0.186050 - 1.50M - 1.50M 1.50M

4 0.06000 0.428800-0.429000 - 1.00M 1.00M 1.00M -
4 0.06300 0.428800-0.429000 - 1.00M 1.00M 1.00M -
4 0.06600 0.428750-0.428950 - 1.00M 1.00M 1.00M -
4 0.06900 0.428750-0.428950 - 1.00M 1.00M 1.00M -
4 0.07200 0.428700-0.428900 - 1.00M 1.00M 1.00M -
4 0.07500 0.428700-0.428900 - 1.00M 1.00M 1.00M -

SNLO 4 0.07800 0.428700-0.428900 - 1.00M 1.00M 1.00M -
4 0.08100 0.428650-0.428850 - 1.00M 1.00M 1.00M -
6 0.12500 0.443200-0.443250 - 1.50M 1.50M 1.50M -
6 0.13000 0.443180-0.443230 - 1.50M 1.50M 1.50M -
6 0.13500 0.443155-0.443205 - 1.50M 1.50M 1.50M -
6 0.14000 0.443130-0.443180 - 1.50M 1.50M 1.50M -
6 0.14500 0.443095-0.428850 - 1.50M 1.50M 1.50M -
4 0.04000 0.428700-0.429000 0.20M 0.12M 0.06M - -
4 0.04500 0.428650-0.428950 0.20M 0.12M 0.06M - -
4 0.05000 0.428600-0.428900 0.20M 0.12M 0.06M - -
4 0.05500 0.428550-0.428850 0.20M 0.12M 0.06M - -

SNNLO 4 0.06000 0.428500-0.428800 0.20M 0.12M 0.06M - -
4 0.06500 0.428450-0.428750 0.20M 0.12M 0.06M - -
4 0.07000 0.428400-0.428700 0.20M 0.12M 0.06M - -
4 0.07500 0.428200-0.428500 0.20M 0.12M 0.06M - -
4 0.08000 0.428000-0.428300 0.20M 0.12M 0.06M - -

Table 6.5: Overview of the statistics accumulated in our simulations of the Nf “ 1 effective
theory at different κ-contributions.
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Nf “ 2 Ns

action Nt κ{h λ{u range 12 16 20 24 32
4 0.04000 0.428840-0.429040 - 1.50M 1.50M 1.50M -
4 0.04400 0.428840-0.429040 - 1.50M 1.50M 1.50M -
4 0.04800 0.428840-0.429040 - 1.50M 1.50M 1.50M -
4 0.05200 0.428800-0.429000 - 1.50M 1.50M 1.50M -
4 0.05600 0.428780-0.428880 - 1.50M 1.50M 1.50M -
4 0.06000 0.428750-0.428850 - 1.50M 1.50M 1.50M -
4 0.06400 0.428700-0.428800 - 1.50M 1.50M 1.50M -

SNLO 4 0.06800 0.428650-0.42850 - 1.50M 1.50M 1.50M -
4 0.07200 0.428630-0.428730 - 1.50M 1.50M 1.50M -
4 0.07600 0.428560-0.428660 - 1.50M 1.50M 1.50M -
4 0.08000 0.428500-0.428600 - 1.50M 1.50M 1.50M -
6 0.12500 0.443130-0.443180 - 1.50M 1.50M 1.50M -
6 0.13000 0.443100-0.443150 - 1.50M 1.50M 1.50M -
6 0.13500 0.443060-0.443110 - 1.50M 1.50M 1.50M -
6 0.14000 0.443010-0.443060 - 1.50M 1.50M 1.50M -
6 0.14500 0.442960-0.423010 - 1.50M 1.50M 1.50M -
4 0.04000 0.428650-0.428950 0.20M 0.12M 0.06M - -
4 0.05000 0.428650-0.428950 0.20M 0.12M 0.06M - -

SNNLO 4 0.06000 0.428550-0.428850 0.20M 0.12M 0.06M - -
4 0.07000 0.428150-0.428450 0.20M 0.12M 0.06M - -
4 0.08000 0.427500-0.427800 0.20M 0.12M 0.06M - -

Table 6.6: Overview of the statistics accumulated in our simulations of the Nf “ 2 effective
theory at different κ-contributions
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Chapter 7

Conclusions and outlooks

In this work, we have investigated aspects of the deconfinement transition and its critical
endpoint associated with the three-dimensional Polyakov loop effective theory with zero and
nonzero chemical potential in the heavy quark regime. This theory is derived from thermal
lattice QCD with heavy Wilson quarks by using combined strong coupling and hopping pa-
rameter expansions. It possesses the global center symmetry in the pure gauge sector, which is
broken explicitly by dynamical fermions. With nonzero chemical potential, the effective theory
has a fermion sign problem, but this sign problem is mild enough to be carried out by standard
Monte-Carlo simulations. On the other hand, the effective theory is analogous to spin systems
such as the three-dimensional Ising model, where interacting spins are replaced by interacting
Polyakov loops. Thus, the effective theory allows an analytic evaluation by means of the high-
temperature expansion. This method has many important properties such as it is not affected
by the sign problem, is highly systematic, and serves as sophisticated tools for quantitative
calculations in many areas of theoretical physics.

In this thesis, we have attempted to systematically improve the effective theory to higher
orders in κ. We found that the kinetic quark determinant can be represented in terms of
closed graphs which might be generated and evaluated by computer. We have successfully
evaluated the effective pure gauge theory including static quarks with all chemical potentials
by using the high-temperature expansion. The corresponding partition function and Polyakov
loop susceptibility were computed to the 13th order. We have proposed a new series analysis
tool - a combination of the Padé and the Canterbury approximant, which can signal the
location of the critical endpoint on the phase boundary of the effective theory, while the Padé
or the Canterbury approximant alone is only able to show the phase boundary. The entire
deconfinement critical surface has been then determined, and our results are in good agreement
with those obtained from simulations whose sign problem is solved by a flux representation.
Furthermore, we have determined the critical endpoint associated with the effective theory
with zero chemical potential up to Opκ4q by using the Metropolis algorithm. Our results
for the Opκ2q effective theory agree excellently with those obtained from simulations of four-
dimensional QCD after hopping expansion. There are differences between our results and the
full QCD at Nt “ 6, which indicates that higher corrections are necessary in the hopping
expansion already at this temporal extent.

After introducing lattice gauge theory and its important features such as the symmetries
of the system, how to get to the continuum limit, the construction of the theory at finite
temperature and finite chemical potential or the QCD thermodynamics, in chapter 3 we have
focused on the derivation of the effective theory up to Opκ6q. We have employed two expansion
schemes: the character expansion and the hopping parameter expansion, and discussed their
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effects on the effective theory. The exponential resummation scheme has been introduced in
order to improve thermodynamics studies. In addition, we have attempted to improve the
effective theory to Opκ6q. A graph representation method inspired by series expansions has
been suggested, which might provide a systematic way to derive the effective theory on com-
puter. Furthermore, we realized that in combination with the link-update method described
in chapter 5 one can control the combinatorial problem arising from the re-expression of all
terms of the effective action into a function of Polyakov loops. This indicates a boosting for
the updating process since we have found in our simulations that due to the complexity of the
Opκ4q effective theory its updating time increases drastically compared to the order Opκ2q.

In chapter 4 we have discussed one of the main objectives of the present work, in particular,
the analytical treatment for the pure gauge and static quarks. We have introduced first the
graph terminology which plays a major role in the evaluation of the effective theory, where the
high-temperature expansion was employed. We have then described the procedure of how one
can generate graphs and compute their lattice constants on the computer using the ’Pegs in
Holes’ (PIH) algorithm. With the high-temperature expansion, we have computed successfully
the partition function and the Polyakov susceptibility of the corresponding effective theory up
to the 13th order in the effective gauge coupling λ. The analytic expression of the partition
function allows us to derive and study the equation of state quite easily. However, since we are
more interested in the study of the critical points, attention has been paid to the Polyakov loop
susceptibility. We also discussed two series analysis methods which are combined to extract
information about the criticality from the series.

In chapter 5 we gave a brief introduction to the Monte-Carlo method, in particular, the
Metropolis algorithm which can be applied to the effective theory with zero chemical potential.
The standard link proposal and the accept/reject step have been described in considerable
detail. We have also described how the sign problem occurs in the study of lattice gauge theory
at finite chemical potential, and the current status of this study. The end of this chapter was
devoted to describing the jackknife method which was used to deal with the statistical errors
from simulations.

Finally, we presented our analytic and numerical results in chapter 6. The Polyakov suscep-
tibility of the effective pure gauge theory can be reproduced easily by taking κÑ 0. By means
of a Padé analysis for a one-variable case, we have extracted critical couplings βc for the phase
transition. The results agree to better than 10% with simulations of the full four-dimensional
Yang-Mills theory for Nt “ 2 ´ 16. For the SUp2q case which possesses a second-order phase
transition, the critical exponent γc was accurately reproduced, while the Padé analysis gen-
erally cannot identify a first-order transition like the case of SUp3q. We have extended the
effective theory by including static fermion fields at finite density. With a multivariate series
at hand, we combine two different series analysis methods: Padé and Canterbury approximants
to estimate the second-order endpoint for zero, finite and imaginary chemical potential. Our
results agree well with those from simulations whose sign problem was resolved by the flux
representation.

In tab. 6.4, we also compared our results with those obtained from four-dimensional QCD
simulations in the heavy quark region, one case with a hopping expanded fermion determinant
and the other case with no approximation. We observed that the phase structure of the four-
dimensional full QCD is reproduced by the effective theories on a semi-quantitative level so that
their application to the cold and dense regime can be trusted. Regarding quantitative accu-
racy, the comparison with either hopping expanded or full QCD allows for detailed conclusions
regarding the strong coupling and hopping expansions separately: the three-dimensional effec-
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tive theory agrees almost quantitatively with the hopping expanded four-dimensional QCD,
while both exhibit larger differences with full QCD as Nt grows. This means that the character
expansion shows good convergence behavior and is sufficient for thermodynamical applications
up to Nt “ 6, while higher-order corrections are necessary in the hopping expansion already
at Nt “ 6.

There are several promising directions for future research perspectives. First, the graph
representation allows a systematic improvement of the effective theory, i.e., similar to series ex-
pansion methods an algorithm, which can generate all graphs according to a set of constraints,
should be developed. One then applies directly the SUp3q link update in order to prevent the
number of terms in the effective action from increasing exponentially, indicating the updating
procedure is still efficient. This provides a possibility to aim for simulating the effective theory
at higher orders in the hopping parameter, where we expect that its deconfinement transition
occurs at a critical value compatible with the full QCD. Furthermore, the original attempt of
the effective theory is to deal with the sign problem of the lattice QCD at finite chemical po-
tential, with the excellent agreements of the effective theory with hopping-expanded full QCD
the next interesting study is to explore the effective theory of higher orders in the hopping
parameter at finite chemical potential. Currently, a method called the finite-cluster method
has been developing for the effective theory, which attempts to simplify the effective theory
by reorganizing and summing higher orders of the hopping parameter κ into an effective cou-
pling analogous to upβq obtained by the character expansion. If this program is established,
then series expansion methods might also be applied further to this improved effective theory.
Last but not least, we should point out that applications of deep learning have been found
recently in many areas of physics, from particle, condensed matter physics to cosmology. There
are many quite promising results obtained using machine learning techniques for the study of
phase transitions, for example, the study of two-dimensional complex scalar field theory at
nonzero temperature and chemical potential with a nontrivial phase diagram using Generative
Adversarial Networks (GAN) [131] or via the path optimization method [132]. Although the
three-dimensional Polyakov loop effective theory at first sight seems to be only an approxima-
tion to the full QCD, we have shown that it still shares many important features with QCD,
thus applying machine learning techniques to the effective theory at finite chemical potential
might be a good probe to attack the sign problem of QCD.
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Appendix A

Group integration

Based on a graphical method of computing integrals over matrix representations of the SUpNcq

group elements, which was developed in [133], we evaluate the following integrals explicitly that
occur often in the derivation of the effective theory. In low-order strong coupling expansions,
we have a useful integral

Ic1d1
a1b1

“

ż

dUUa1b1U
:

c1d1
“

1

Nc

δa1d1δb1c1 , (A.1)

which reproduces the familiar single site integral of the form

Ic1c1a1a1
“

ż

dU trU trU : “

ż

dULL˚ “
1

Nc

δa1c1δa1c1 “
Nc

Nc

“ 1. (A.2)

Moreover, to derive the Opκ4q effective theory, there are steps involving integrals of four SUpNcq

elements

Ic1d1c2d2
a1b1a2b2

“

ż

dUUa1b1U
:

c1d1
Ua2b2U

:

c2d2
,

“
1

N2
c ´ 1

pδa1d1δa2d2δb1c1δb2c2 ` δa1d2δa2d1δb1c2δb2c1q

´
1

NcpN2
c ´ 1q

pδa1d1δa2d2δb1c2δb2c1 ` δa1d2δa2d1δb1c1δb2c2q, (A.3)

which similarly to (A.2) gives us

Ic1c2a1a2
“

ż

dU trU trU : trU trU : “

ż

dUL2L˚2

“
1

N2
c ´ 1

2N2
c ´

1

NcpN2
c ´ 1q

2Nc “ 2
N2
c ´ 1

N2
c ´ 1

“ 2. (A.4)

The detailed calculation of the integrals (A.1) and (A.3) can be found in [133]. We follow the
graphical method introduced in [133] to evaluate the integral of six SUpNcq matrix elements

Ic1d1c2d2c3d3
a1b1a2b2a3b3

“

ż

dUUa1b1U
:

c1d1
Ua2b2U

:

c2d2
Ua3b3U

:

c3d3
, (A.5)
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which is an important step for deriving the effective theory up to the 6th order in κ, where
there is a case that all six spatial hops occupy the same spatial link at the same time slice. It
is evaluated as follows: First, a group element Uab, its inverse U :ab which is also the conjugate
of this element in SUpNcq and the Kronecker symbol can be illustrated as upward directed,
downward directed and undirected lines, respectively

Uab “

a

b

, U :ab “

b

a

, δab “

b

a

Here the labels of the ends of these line segments are the matrix indices of the respective group
elements. Running from the first to the second index can be represented by the line direction.
After introducing these conventions, it is straightforward to see that the graphic representation
of the integral I is

Ic1d1c2d2c3d3
a1b1a2b2a3b3

“

b1

a1 c1

d1 b2

a2 c1

d1 b3

a3 c3

d3

(A.6)

We replace U : with the cofactor of U to make all lines direct upwards, where the cofactor of
U is defined as follows

U :ab “ pcofUqba

“
1

pNc ´ 1q
εb,a1,...,aNc´1

εa,b1,...,bNc´1
Ua1b1 . . . UaNc´1bNc´1

. (A.7)

By substituting (A.7) into (A.6) we obtain an expression with p2Ncq!{p2!Nc!
2q terms. However,

there is a trick to simplify this evaluation for general Nc. All resulting terms will all have six,
an even number, of ε vertices both at the top and at the bottom of the diagram. These can
be eliminated using the following identities

εa1,...,aNc
εa1,...,aNc

“ Nc!,

εa,a1,...,aNc
εb,a1,...,aNc

“ pNc ´ 1q!δab, (A.8)

εa,b,a1,...,aNc
εc,d,a1,...,aNc

“ pNc ´ 2q!pδacδbd ´ δadδbcq.

The terms are then reduced to sets of Kronecker δ symbols connecting separately indices at
the top and the bottom of the diagram. Moreover, a Kronecker δ cannot connect the indices ai
and ci or bi and di according to our choice of notations, because they can be initially coupled
only through an odd number of ε vertices. According to the symmetry of the integrand under
c1d1 Ø c2d2 Ø c3d3 we obtain 3! “ 6 independent sets of graphs and 6 independent coefficients
ki for i “ 1, . . . , 6 as below. This results I to be in terms of sets of Kronecker δ symbols
connecting separately indices at the top and bottom of the diagram.
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“ k1

ˆ

` ` ` ` `

˙

(A.9)

`k2

ˆ

` ` ` ` `

˙

`k3

ˆ

` ` ` ` `

˙

`k4

ˆ

` ` ` ` `

˙

`k5

ˆ

` ` ` ` `

˙

`k6

ˆ

` ` ` ` `

˙

.

The coefficients ki for i “ 1, ..., 6 can be determined by multiplying by δa1c1 to I and using the
result in (A.3) to reduce the integral

“

“
1

N2
c ´ 1

ˆ

`

˙

´
1

NcpN2
c ´ 1q

ˆ

`

˙

(A.10)

Next we can multiply δa1c1 to the general expression of I in (A.9), equalize it with (A.10)
to give six equations with ki as variables. We then solve these equations for the coefficients
k1, ..., k6, and obtain

k1 “
N2
c ´ 2

NcpN4
c ´ 5N2

c ` 4q
,

k2 “ ´
1

N2
c ´ 5N2

c ` 4
,

k3 “ k4 “ ´
1

pN2
c ´ 1qpN2

c ´ 4q
,

k5 “ k6 “
2

NcpN2
c ´ 1qpN2

c ´ 4q
.
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Finally, inserting the coefficients ki in Ic1d1c2d2c3d3
a1b1a2b2a3b3

and converting its graph representation in
terms of the Kronecker δ symbols give the desired integral

I “
N2
c ´ 2

NcpN4
c ´ 5N2

c ` 4q
¨

˜

δa1c1δa2c2δa3c3δb1d1δb2d2δb3d3 ` δa1c1δa2c3δa3c2δb1d1δb2d3δb3d2

` δa1c2δa2c1δa3c3δb1d2δb2d1δb3d3 ` δa1c2δa2c3δa3c1δb1d2δb2d3δb3d1

` δa1c3δa2c1δa3c2δb1d3δb2d1δb3d2 ` δa1c3δa2c2δa3c1δb1d3δb2d2δb3d1

¸

´
1

N4
c ´ 5N2

c ` 4
¨

˜

δa1c1δa2c2δa3c3δb1d1δb2d3δb3d2 ` δa1c1δa2c3δa3c2δb1d1δb2d2δb3d3

` δa1c2δa2c1δa3c3δb1d2δb2d3δb3d1 ` δa1c2δa2c3δa3c1δb1d2δb2d1δb3d3

` δa1c3δa2c1δa3c2δb1d3δb2d2δb3d1 ` δa1c3δa2c2δa3c1δb1d3δb2d1δb3d2

¸

´
1

pN2
c ´ 1qpN2

c ´ 4q
¨

˜

δa1c1δa2c2δa3c3δb1d2δb2d1δb3d3 ` δa1c1δa2c3δa3c2δb1d3δb2d1δb3d3

` δa1c2δa2c1δa3c3δb1d1δb2d2δb3d3 ` δa1c2δa2c3δa3c1δb1d3δb2d2δb3d1

` δa1c3δa2c1δa3c2δb1d1δb2d3δb3d2 ` δa1c3δa2c2δa3c1δb1d2δb2d3δb3d1

` δa1c1δa2c2δa3c3δb1d3δb2d2δb3d1 ` δa1c1δa2c3δa3c2δb1d2δb2d3δb3d1

` δa1c2δa2c1δa3c3δb1d3δb2d1δb3d2 ` δa1c2δa2c3δa3c1δb1d1δb2d3δb3d2

` δa1c3δa2c1δa3c2δb1d2δb2d1δb3d3 ` δa1c3δa2c2δa3c1δb1d1δb2d2δb3d3

¸

`
2

NcpN2
c ´ 1qpN2

c ´ 4q
¨

˜

δa1c1δa2c2δa3c3δb1d2δb2d3δb3d1 ` δa1c1δa2c3δa3c2δb1d3δb2d2δb3d1

` δa1c2δa2c1δa3c3δb1d1δb2d3δb3d2 ` δa1c2δa2c3δa3c1δb1d3δb2d1δb3d2

` δa1c3δa2c1δa3c2δb1d1δb2d2δb3d3 ` δa1c3δa2c2δa3c1δb1d2δb2d1δb3d3

` δa1c1δa2c2δa3c3δb1d3δb2d1δb3d2 ` δa1c2δa2c3δa3c2δb1d1δb2d2δb3d3

` δa1c3δa2c2δa3c1δb1d1δb2d3δb3d2 ` δa1c2δa2c1δa3c3δb1d3δb2d2δb3d1

` δa1c1δa2c3δa3c2δb1d2δb2d1δb3d3 ` δa1c2δa2c1δa3c2δb1d2δb2d3δb3d1

¸

. (A.11)
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In order to ensure correctness of the formula, we can compute

I “
ż

dU trU trU : trU trU : trU trU :

“

ż

dUUa1a1U
:
c1c1

Ua2a2U
:
c2c2

Ua3a3U
:
c3c3

“

ż

dUL3L˚3,

where the Einstein sum convention over the indices ai and ci is applied. Then we obtain easily

I “ N2
c ´ 2

NcpN4
c ´ 5N2

c ` 4q
¨ 6N3

c ´
1

N4
c ´ 5N2

c ` 4
¨ 6N2

c

´
1

pN2
c ´ 1qpN2

c ´ 4q
¨ 12N2

c `
2

NcpN2
c ´ 1qpN2

c ´ 4q
¨ 12Nc “ 6. (A.12)

The results in (A.2), (A.4) and (A.12) agrees with results computed using generating func-
tions in [90], which ensures the correctness of our computations. In addition, we observe an
interesting property of the SUpNcq group integration that for an equal power of L and L˚, the
integral

ż

dLnL˚n (A.13)

is independent of Nc for Nc ą 2.
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Appendix B

Wnm terms

An important group dependent quantity of interest appearing in the effective action is the
traces over rational functions containing temporal Wilson line, and their general form reads

Wnm “ tr
ph1W q

m

p1` h1W qn
, (B.1)

It is convenient for our analytic and numerical calculations to reformulate this quantity in
terms of Polyakov loops. This can be done using the expression for the static determinant

Gpα, βq “ log detpα ` βh1W q,

“ logpα3
` α2βh1L` αβ

2h2
1L ˚ `β

3h3
1q. (B.2)

The quantity Wnm can then be computed by taking derivatives with respect to α and β at
α “ β “ 1 as follows

Wnm “
p´1qn´1

pn´ 1q!

Bpn´mq

Bαpn´mq
Bm

Bβm
Gpα, βq

ˇ

ˇ

ˇ

ˇ

ˇ

α“β“1

. (B.3)

As an example, let us consider the case m “ 1, n “ 2, using eqn. B.2 and B.3 we obtain

W21 “ tr
h1W

p1` h1W q2
“ ´

B

Bα

B

Bβ
Gpα, βq

ˇ

ˇ

ˇ

ˇ

ˇ

α“β“1

“
h1 pL` 4h3

1 ` 4h1L
˚ ` h4

1L
˚ ` h2

1p9` LL
˚qq

p1` h1L` h2
1L
˚ ` h3

1q
2

. (B.4)
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Appendix C

Coefficients χL and f

As was remarked in the introduction, it is indeed not possible to publish all the expansion
coefficients in this work since there several thousands of them. Thus, only some specific cases
which were reduced to one-variable series are printed here. Furthermore, it was emphasized
earlier that the equation of state can be easily obtained from the logZ series, which is valid up
to the phase transition. Although the study of the equation of state is not in our main focus,
for completeness we provide the coefficients to the 13th order of the free energy for specific
values of h and µ.

zero µ finite µ imaginary µi

n anph “ 0.00073, µ “ 0q anph “ 0.001, µ “ 0.9q anph “ 0.0015, µi “ π{3q
0 2.00292 ¨ 100 2.00573 ¨ 100 2.00300 ¨ 100

1 1.20526 ¨ 101 1.21033 ¨ 101 1.20541 ¨ 101

2 6.05265 ¨ 101 6.10349 ¨ 101 6.05415 ¨ 101

3 3.04304 ¨ 102 3.08466 ¨ 102 3.04431 ¨ 102

4 1.60359 ¨ 103 1.63419 ¨ 103 1.60457 ¨ 103

5 8.14895 ¨ 103 8.35948 ¨ 103 8.15596 ¨ 103

6 4.27868 ¨ 104 4.41705 ¨ 104 4.28353 ¨ 104

7 2.20149 ¨ 105 2.28954 ¨ 105 2.20475 ¨ 105

8 1.15583 ¨ 106 1.21050 ¨ 106 1.15797 ¨ 106

9 5.98944 ¨ 106 6.32248 ¨ 106 6.00321 ¨ 106

10 3.14946 ¨ 107 3.34933 ¨ 107 3.15821 ¨ 107

11 1.64075 ¨ 108 1.75925 ¨ 108 1.64623 ¨ 108

12 8.83686 ¨ 108 9.53410 ¨ 108 8.87094 ¨ 108

13 4.74047 ¨ 109 5.14824 ¨ 109 4.76150 ¨ 109

Table C.1: Coefficients of the Polyakov loop susceptibility χL for zero, finite and imaginary
chemical potential.
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zero µ finite µ imaginary µi

n anph “ 0.00073, µ “ 0q anph “ 0.0012, µ “ 1.0q anph “ 0.0013, µi “ π{4q
0 2.13471 ¨ 10´6 5.89918 ¨ 10´6 6.74758 ¨ 10´6

1 1.28176 ¨ 10´5 3.58127 ¨ 10´5 4.04483 ¨ 10´5

2 6.41817 ¨ 10´5 1.83240 ¨ 10´4 2.01870 ¨ 10´4

3 3.21501 ¨ 10´4 9.42655 ¨ 10´4 1.00701 ¨ 10´3

4 6.00169 ¨ 100 6.00508 ¨ 100 6.00526 ¨ 100

5 8.53664 ¨ 10´3 2.65332 ¨ 10´2 2.64835 ¨ 10´2

6 4.40446 ¨ 101 4.41429 ¨ 101 4.41377 ¨ 101

7 3.62284 ¨ 101 3.67570 ¨ 101 3.67004 ¨ 101

8 5.05193 ¨ 102 5.08081 ¨ 102 5.07637 ¨ 102

9 6.94145 ¨ 102 7.09778 ¨ 102 7.06613 ¨ 102

10 7.29214 ¨ 103 7.37758 ¨ 103 7.35672 ¨ 103

11 1.40984 ¨ 104 1.45623 ¨ 104 1.44292 ¨ 104

12 2.43094 ¨ 105 2.45666 ¨ 105 2.44853 ¨ 105

13 6.65170 ¨ 105 6.79387 ¨ 105 6.74481 ¨ 105

Table C.2: Coefficients of the free energy f for zero, finite and imaginary chemical potential.



Appendix D

Graph representations of the Opκ6q
effective action

As mentioned in section 3.4, in this appendix we present the rest of the K1
6 expressions, and an

incomplete list of graph representations for the Opκ6q effective theory because the whole graph
representations are just too long to print. We will make the whole graph representations of K6

present somewhere else. At the Opκ6q effective theory, we still managed to get its complete set
of graph representations, and no graph generation program is required. However, to derive the
effective theory at higher orders in κ a graph generating algorithm is necessary because the
number of graphs will increase exponentially. A starting point for this program is to modify
the program provided in [83] which is used for an effective theory in the cold and dense regime.
In addition, we note that the graph representations listed here are before the resummation,
and in order to obtain the resummed action one needs to pay attention to terms contributing
to the resummation of lower orders.

Let us present the rest expressions of K1
6 contributions K1b

6 , . . . , K
1e
6

Z1b
6 “

ż

DUi
ÿ

i,tn,~n

tr

«

4tn1 tn1
p~nqΓi`Uiptn1 , ~nq ¨4tn1 tn2

p~n` îqΓi`Uiptn2 , ~n` îq

4tn2 tn3
p~n` 2̂iqΓj`Ujptn3 , ~n` 2̂iq ¨4tn3 tn3

p~n` 2̂i` ĵqΓi´U
:

i ptn3 , ~n` 2̂iq

4tn3 tn2
p~n` 2̂iqΓi´U

:

i ptn2 , ~n` îq ¨4tn2 tn1
p~n` îqΓi´U

:

i ptn1 , ~nq

ff

. (D.1)

Z1c
6 “

ż

DUi
ÿ

i,tn,~n

tr

«

4tn1 tn1
p~nqΓi`Uiptn1 , ~nq ¨4tn1 tn2

p~n` îqΓj`Ujptn2 , ~n` îq
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p~n` 2̂i` ĵqΓi´U
:

i ptn3 , ~n` î` ĵq
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p~n` î` ĵqΓj´U

:

j ptn2 , ~n` îq ¨4tn2 tn1
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:

i ptn1 , ~nq

ff

. (D.2)
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:
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:

i ptn1 , ~nq

ff

. (D.3)
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p~n` î` ĵ ` k̂qΓk´U
:

kptn3 , ~n` î` ĵq
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:

j ptn2 , ~n` îq ¨4tn2 tn1
p~n` îqΓi´U

:

i ptn1 , ~nq

ff

. (D.4)

Here the spatial directions are different, i.e., i ‰ j ‰ k. Their graph representations are
presented in tab. D.1.
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î

î
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î

î
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´î

î
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ĵ

t

î
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´î

î
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Table D.1: Graph representations associated to Opκ6q contributions of the effective theory.
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