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Deutsche Zusammenfassung

Diese Arbeit beschäftigt sich mit der starken Wechselwirkung, einer der vier heute bekan-

nten fundamentalen Kräften. Als korrekte Theorie zu ihrer Beschreibung gilt heute

die Quantumchromodynamik (QCD). Zusammen mit der Theorie der elektroschwachen

Wechselwirkung, welche die schwache und elektromagnetische Kraft vereinigt, bildet

diese das Standardmodell der Teilchenphysik.

Unser Hauptinteresse gilt der Untersuchung des Phasendiagramms stark wechselwirk-

ender Materie. Für dieses werden gewöhnlich als Parameter die Temperatur T und das

chemische Potential µ verwendet. µ ist ein Maß für die Quark-Antiquark Asymmetrie,

Regionen mit großen µ sind daher äquivalent zu Regionen hoher Dichte. In dieser Arbeit

untersuchen wir zwei Phasenübergänge, den sogenannten deconfinement Übergang und

den Übergang vom Vakuum zur nuklearen Materie.

Bei hinreichend hohen Temperaturen, wie sie am Large Hadron Collider der Eu-

ropäische Organisation für Kernforschung oder am Relativistic Heavy Ion Collider des

Brookhaven National Laboratory erzeugt werden können, geht das confinement verloren

und Materie geht in den Zustand des Quark-Gluon-Plasmas über. Die Natur dieses de-

confinement Übergangs hängt sowohl von den Quarkmassen als auch von µ ab. Bei

µ = 0 und physikalischen Quarkmassen handelt es sich um ein crossover, also um einen

analytischen Übergang.

Von besonderem Interesse für uns, da theoretisch weit weniger gut verstanden, ist

die Region tiefer Temperaturen und hoher Dichten. Hier betrachten wir den Übergang

vom Vakuum zur Kernmaterie, wie sie im Inneren von Atomkernen oder Neutronenster-

nen vorliegt. Experimente zeigen, dass dieser Übergang bei tiefen Temperaturen erster

Ordnung ist und bei T ≈ 20 MeV in ein crossover übergeht.

Der deconfinement Übergang findet bei Energien von der Größenordnung der QCD

Energieskala, Ω ≈ 200 MeV, statt, der Übergang zur Kernmaterie bei O(10) MeV. Ω

ist dabei die Energieskala bei der α ≈ 1 gilt. Störungstechnische Ansätze, basierend

auf Reihenentwicklungen in der Eichkopplung g, sind erst in Bereichen bei Energien viel

größer als Ω möglich. Für die Erforschung des QCD Phasendiagramms werden daher

nicht-störungstechnische Ansätze benötigt.

In der vorliegenden Arbeit verfolgen wir den 1974 von Wilson eingeführten Ansatz
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der Gittereichtheorie. In diesem wird die kontinuierliche Raum-Zeit durch ein Gitter mit

endlichem Gitterabstand a ersetzt. Die QCD Wirkung wird dabei in einer passenden

Weise diskretisiert, so dass im Grenzfall a → 0, genannt Kontinuumslimes, die ur-

sprüngliche Theorie wiederhergestellt wird. Die so entstehende Theorie wird als Gitter-

QCD bezeichnet. Die Diskretisierung gibt den zur Quantisierung der QCD verwende-

ten Pfadintegralen eine endliche Dimensionalität und erlaubt dadurch deren numerische

Lösung. Weiterhin dient die Diskretisierung als Regularisierung, indem Impulse größer

als π
a , abgeschnitten werden.

Die in der Gittereichtheorie vorkommenden Pfadintegrale sind von extrem hoher Di-

mensionalität, zu ihrer effizienten Lösung kommt daher die sogenannte Monte-Carlo

Methode zum Einsatz. In dieser wird das Pfadintegral, welches ein Integral über sämtliche

Feldkonfigurationen darstellt, durch eine begrenzte Stichprobe an Konfigurationen ap-

proximiert. Die Verteilungsfunktion, nach welcher die Stichproben gewählt werden,

wird dabei durch den Boltzmannfaktor, e−S mit Wirkung S, bestimmt. Dieser wird als

Wahrscheinlichkeit interpretiert, eine bestimmte Feldkonfiguration vorzufinden, wenn

sich das System im Gleichgewicht befindet. Diese als importance sampling bekannte

Methode gewährleistet eine effiziente Approximierung des Pfadintegrals und ist die Stan-

dardmethode zur nicht-perturbativen Lösung der QCD.

Die Gitter-QCD ermöglicht Simulationen bei niedrigen Energien und damit Aussagen

über nicht-perturbative Prozesse. Beispiele dafür sind die Berechnung von Hadron-

massen, genannt Hadronenspektroskopie, sowie die Untersuchung des deconfinement

Übergangs. Jedoch führt die Interpretation des Boltzmannfaktors als Wahrscheinlichkeit

zu Schwierigkeiten sobald Systeme endlicher Dichte, also Systeme mit endlichem che-

mischen Potential, betrachten werden. Dies führt notwendigerweise zu einer komplexen

Wirkung, wodurch e−S > 0 nicht mehr erfüllt ist. Dadurch kann der Boltzmannfaktor

nicht mehr als Wahrscheinlichkeit bei der Auswahl der in die Stichprobe einfließenden

Feldkonfigurationen dienen, wodurch auf importance sampling beruhende Methoden ver-

sagen. Dies ist als das Vorzeichenproblem bekannt und hat zur Folge, dass ein Großteil

des QCD Phasendiagramms für nichtperturbative Methoden unzugänglich ist.

Zur Bewältigung des Vorzeichenproblems wurden verschiedene Strategien vorgeschla-

gen. Eine verbreitete Methode ist das so genannte reweighting. Bei dieser werden

die nicht-positiven Anteile des Boltzmannfaktors in die Observable absorbiert. Diese

kann dann mit dem restlichen, strikt positiven Boltzmannfaktor berechnet werden. Die

Methode des reweighting erlaubt daher, Observablen eines Systems mit Wirkung S(µ)

auf Konfigurationen generiert mit der Wirkung S(µ = 0) zu berechnen. Brauchbare

Ergebnisse werden dabei nur erzielt, wenn die Verteilungen e−S(µ) und e−S(0) sich nicht

signifikant unterscheiden. Dies ist als das overlap Problem bekannt. Der statistische

Fehler von mit reweighting berechneten Werten verschlechtert sich dabei exponentiell
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mit µ
T sowie mit der Größe des Gitters, wodurch die Methode auf kleine Werte von µ/T

und kleine Gittervolumina V beschränkt ist.

In dieser Arbeit verfolgen wir einen alternativen Ansatz zur Lösung des Vorzeichen-

problems, die stochastischen Quantisierung. Diese wurde 1981 von Parisi und Wu

eingeführt und bietet eine alternative, nicht auf Pfadintegralen basierende Methode zur

Quantisierung euklidischer Feldtheorien. Die statistische Verteilung der Feldkonfigu-

rationen wird hier als Gleichgewichtsverteilung eines stochastischen Prozesses erzeugt.

Dieser Prozess ist durch die Langevin-Gleichung gegeben, einer ursprünglich zur Beschrei-

bung der Brownschen Bewegung aufgestellten stochastischen Differentialgleichung. Die

Entwicklung der Freiheitsgrade φ strebt dabei zum Minimum der Wirkung, ∂φ
∂θ = −∂S

∂φ ,

und erhält zusätzlich Korrekturen durch einen stochastischen Rauschterm. Diese En-

twicklung findet in einer neu eingeführten, fiktiven Zeit θ statt. Ausgehend von einer

beliebigen Startkonfiguration ergibt sich dann im Limes θ →∞ die gewünschte Gleich-

gewichtsverteilung.

Da die stochastische Quantisierung nicht auf der Wahrscheinlichkeitsinterpretation

des Boltzmannfaktors basiert, funktioniert sie unabhängig davon ob eine komplexe

Wirkung vorliegt. Jedoch lässt sich die Äquivalenz zur Pfadintegralmethode nur für

reelle Wirkungen beweisen. In der Tat sind Modelle bekannt, bei denen die stochastis-

che Quantisierung bei Existenz einer komplexen Wirkung zu falschen Ergebnissen führt.

Wir führen daher auf kleinen Gittern Vergleichssimulationen mit der reweighting Meth-

ode durch um die Zuverlässigkeit der stochastischen Quantisierung sicherzustellen.

Obwohl die Methode der stochastischen Quantisierung in jüngster Zeit direkt für

Gitter-QCD Simulationen verwendet wurde, ist dies extrem rechenintensiv und dadurch

auf kleine Gitter beschränkt. Da die Temperatur in Euklidischer Gitter-QCD durch die

Ausdehnung in der temporalen Dimension gegeben ist, verhindert die Beschränkung auf

kleine Gitter ebenfalls die Untersuchung tiefer Temperaturen. Auch sind in der Gitter-

QCD bei hohem chemischen Potential vergleichende, mit reweighting durchgeführte Sim-

ulationen selbst auf kleinen Gittern unmöglich. Eine unabhängige Überprüfung der

Ergebnisse ist dadurch nicht möglich.

Um einen alternativen Zugang zu den Bereichen endlicher Dichte des Phasendia-

gramms zu ermöglichen leiten wir aus der Gitter-QCD eine effektive Theorie her. Diese

soll einerseits einfacher numerisch zu lösen sein, andererseits aber in einem relevan-

ten Parameterbereich zur vollen Theorie konvergieren. Die Herleitung sowie die nu-

merische und analytische Untersuchung dieser Theorie sind das Thema der vorliegenden

Arbeit. So sollen Aussagen über bisher unzugängliche Bereiche des Phasendiagramms

stark wechselwirkender Materie ermöglicht werden.

Zur Herleitung bedienen wir uns der Störungsrechnung und betrachten zwei Limites.

Erstens ist dies der sogenannte strong coupling Limes, in welchem die Eichkopplung

gegen unendlich geht, g → ∞. In diesem Limes geht die Gittereichkopplung, β ∝ 1
g2 ,
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gegen Null. Es handelt sich hierbei also um den entgegengesetzten Fall des im Kon-

tinuums üblichen Schwachkopplungslimes, welcher zur störungstheoretische Behandlung

der QCD bei hohen Temperaturen verwendet wird. Darüber hinaus betrachten wir den

Limes unendlich großer Quarkmassen, mq →∞, den sogenannte static quark Limes. In

der von uns verwendeten Wilson Formulierung der Gitterfermionen wird die Quarkmasse

durch den Parameter κ bestimmt, der Limes statischer Quarks entsprichtκ→ 0.

Gitter-QCD im strong coupling static quark Limes, also mit β = κ = 0, ist exakt

lösbar. Ausgehend von diesem Grenzfall berechnen wir Ordnung für Ordnung Kor-

rekturen in β und κ. Diese Entwicklung erlaubt es uns dann, einen Teil der in der

Zustandssumme vorkommendenden Integrale explizit auszuführen. Dies ermöglicht es,

aus der ursprünglich vierdimensionalen Theorie eine effektive, dreidimensionale Theorie

von signifikant reduzierter Komplexität herzuleiten.

Wie bereits erwähnt ist die QCD Kopplung eine Funktion der Energie und damit

des Abstands. Deswegen bestimmt in diskreter Raum-Zeit die Gittereichkopplung den

Gitterabstand, a = a(β). Das Kontinuum wird im Limes β →∞ erreicht. Dies bedeutet,

dass der strong coupling Limes den Grenzwert maximalen Gitterabstands beschreibt.

Sukzessiv eingeführte Korrekturen in β erlauben uns daher die Verwendung feinerer

Gitter und dadurch die Annäherung an das Kontinuum. Durch Extrapolation kann dann

das Kontinuum, a = 0, erreicht werden. Die Korrekturen in κ ermöglicht es uns den

Bereich, in dem die effektive Theorie die volle Gitter-QCD abbildet, Schritt für Schritt

zu leichteren Quarkmassen auszubauen. Fernziel ist dabei das Erreichen physikalischer

Quarkmassen.

Da unsere Theorie lediglich eine Näherung zur vollen Gitter-QCD darstellt, benötigen

wir ein Maß für die Größe der Trunkierungseffekte. Wir erlangen dies, indem wir unter-

schiedliche Trunkierungen in κ und β vornehmen und miteinander vergleichen. Sind die

Differenzen zwischen den unterschiedlichen Ordnungen klein kann davon ausgegangen

werden, dass Korrekturen höherer Ordnung vernachlässigbar sind und unsere Theorie

eine gute Näherung darstellt.

Nachdem wir den Parameterbereich, in dem unsere Theorie eine gute Näherung zur

Gitter-QCD darstellt, bestimmt haben, führen wir numerische Untersuchungen durch.

Alle Simulationen werden mit einem oder zwei entarteten Quark-Flavors durchgeführt.

Dabei betrachten wir die zwei bereits erwähnten Phasenübergänge, den deconfinement

Übergang zum Quark-Gluonen-Plasma und den Übergang vom Vakuum zur Region

endlicher Dichte.

Der deconfinement Übergang ist dabei, neben dem bereits angesprochenen Verlusts



Contents xiii

des Confinements, durch die spontane Wiederherstellung der chiralen Symmetrie gekennze-

ichnet. Die von uns verwendeten Wilson Fermionen brechen die chirale Symmetrie ex-

plizit. Trotzdem zeigen Gitter-QCD Simulationen mit Wilson Fermionen ein Überbleib-

sel der Wiederherstellung der chiralen Symmetrie beim erreichen der kritischen Temper-

atur Tc. Wir untersuchen das chirale Kondensat, den Ordnungsparameter der chiralen

Symmetrie, bei verschwindendem chemischen Potential und vergleichen die Ergebnisse

mit Gitter-QCD Simulationen.

Der Vergleich mit vollen Gitter-QCD Simulationen ist ebenfalls möglich wenn ein rein

imaginäres chemisches Potential, µ = iµI , gewählt wird, da hierbei ebenfalls kein Vor-

zeichenproblem auftritt. Da die Regionen imaginären und reellen chemischen Potentials

analytisch verbunden sind, erlauben solche Simulationen Aussagen über physikalische

Parameterbereiche. Das Phasendiagramm im Bereich imaginären chemischen Potentials

ist periodisch in µI , die einzelnen Sektoren sind durch die so genannten Roberge-Weiss

Übergänge getrennt. Diese sind erster Ordnung bei hohen und crossover bei tiefen

Temperaturen. Die Natur des kritischen Endpunkts ist dabei eine Funktion der Quark-

massen. In Gitter-QCD Simulationen wurden zwei trikritische Punkte gefunden, welche

wir versuchen zu replizieren.

Für unsere Untersuchungen im Bereich kalter, dichter Materie stehen keine Gitter-

QCD Simulationen zum Vergleich zur Verfügung. Hier betrachten wir, bei Tempera-

turen zwischen T = 2.5 MeV und T = 20 MeV, thermodynamischen Größen wie Druck,

Teilchen- und Energiendichten. Von besonderem Interesse ist die nukleare Bindungsen-

ergie. Diese ist ein Ergebnis der attraktiven Anziehung zwischen den Quarks, welche

zu einer Restwechselwirkung zwischen Nukleonen führt. In der Natur ist diese verant-

wortlich für die Bildung nuklearer Materie indem sie Protonen und Neutronen bindet.

Durch Simulationen bei verschiedenen Gitterabständen können die Ergebnisse aus

dem kalten, dichten Bereich ins Kontinuum extrapoliert werden. Um eine gute Konver-

genz zur vollen Gitter-QCD zu gewährleisten, müssen wir uns hierbei auf sehr schwere

Quarks, äquivalent zur Verwendung einer Pionmasse von mπ ≈ 20 GeV, beschränken.

Ebenso ist die Verwendung feiner Gitter durch die endliche Anzahl an Ordnungen in

β beschränkt. Wir verwenden Gitterabstände zwischen a = 0.11 fm und a = 0.08 fm.

Ausgehend von diesen Daten extrapolieren wir dann zum Kontinuum. Mit unseren

kontinuumsextrapolierten Ergebnissen können wir demonstrieren, wie beim Verlassen

des static quark Limes eine endliche Bindungsenergie in der Größenordnung von 10−3

Baryonmassen pro Nukleon auftritt.

Ergänzend zu den numerischen Untersuchungen ist es möglich unsere effektive The-

orie analytisch zu lösen. Dazu machen wir uns die Existenz kleiner Parameter, nämlich

κ und β, zunutze und entwickeln in diesen. Dies erlaubt es uns, die zur Berechnung

der Zustandssumme nötigen Integrale explizit zu berechnen. Durch die Kenntnisse der
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Zustandssumme können wir analytische Ausdrücke für die verschiedene thermodynamis-

che Größen herzuleiten, welche unsere numerischen Ergebnisse mit hoher Genauigkeit

reproduzieren. Weiterhin ermöglicht dies es uns zu zeigen, dass das Nukleon-Nukleon

Potential zur führenden Ordnung exponentiell mit der Pionenmasse abfällt, also einem

auf Pionenaustausch basierenden Yukawa-Potential entspricht.

Weiterhin eröffnen die analytischen Ausdrücke neue Möglichkeiten der Resumma-

tion. Dabei können bestimmte Unterklasse von Diagrammen aufsummiert werden. Dies

ermöglicht es den Konvergenzbereich der analytischen Ausdrücke über den Konver-

genzbereich der ursprünglichen, effektiven Theorie hinaus zu verbessern. Wir präsen-

tieren Ansätze wie eine solche Resummation in κ durchgeführt werden kann. Zusätzlich

zeigen wir, wie β Korrekturen hierzu hinzugefügt werden können. Mithilfe dieses Ansatzes

könnte es möglich sein in zukünftigen Arbeiten den Konvergenzbereich der effektiven

Theorie in der kalten, dichten Region bis zu physikalischen Quarkmassen auszubauen.



Chapter 1

Introduction

Today, three of the known four fundamental forces are described by the Standard Model,

with only gravitation yet to be included. It includes electromagnetism, strong and weak

interaction, which are formulated as quantum field theories and can be characterized

by their symmetry with respect to certain gauge groups. Electromagnetism and weak

interaction are unified in the electroweak force, a gauge theory with symmetry group

SU(2)× U(1) 1.

This thesis is concerned with the theory of strong interaction, called Quantum Chro-

modynamics (QCD). It is widely believed nowadays to be the correct theory of strong

interaction, an overview covering recent high energy experiments testing QCD predic-

tions can be found e.g. in [1]. No mismatch between QCD and experiment has been

found so far.

The beginnings of QCD lies in the early 1960s, when Gell-Mann [2] and Ne’eman

[3] independently discovered that the large number of newly discovered baryons and

mesons, originally thought to be fundamental, could be arranged in patterns formed by

different SU(3) representations. The success of this so called Eightfold Way, especially

in the prediction of the Ω−, hinted at a common substructure of the hadrons. After

that, the quark model was introduced independently by Gell-Mann [4] and Zweig [5] in

1964, proposing that hadrons are bound states of fundamental particles called quarks.

Initially, three different types of quarks, called flavors, where postulated. Those where

the up, down and strange quark. The quark model explained the success of the Eightfold

Way in terms of the approximately realized flavor symmetries between this three quarks,

whose mass difference is small compared to the masses of the hadrons they form. Today

six quark flavors are known, whose properties are given in table 1.1. 2 3

1U(N) denotes the group of unitary N × N matrices, SU(N) is the respective subgroup that only
contains matrices with determinant 1.

2Because of confinement, quark masses depend on the subtraction scheme and the energy scale used,
see [6].

3Throughout this thesis natural units will be used, i.e. c = ~ = 1.

1
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Flavor up down strange charm bottom top

Mass[MeV] ≈ 2.3 ≈ 4.8 ≈ 95 ≈ 1.3 · 103 ≈ 4.2 · 103 ≈ 160 · 103

Charge[e] 2/3 -1/3 -1/3 2/3 -1/3 2/3

Table 1.1: Masses and charges of the six quark flavors.

The quark model made the introduction of a new quantum number, called color,

necessary. This became apparent with particles like the ∆++, which consists of three

up quarks with parallel spins and vanishing orbital momentum, giving it a symmetric

wave function. In order to receive a antisymmetric wave function, as required by the

Pauli exclusion principle, Greenberg in 1964 postulated the existence of a new, hidden

quantum number [7]. The number of colors, Nc, can be concluded from the ratio of

the cross section e+e− → hadrons and e+e− → µ+µ−, which QCD perturbation theory

predicts to be proportional to Nc. Experiments show that Nc = 3 [8].

While being successful in explaining the known hadron spectrum, needing only a small

number of degrees of freedom, the quark model fails to give an explanation to two crucial

phenomena. Firstly, no color carrying states or fractional charges could be observed in

experiment, instead quarks always form color singlets (color neutral states), built from

three (anti-)quarks or a quark-anti-quark pair 4. This phenomenon is known as color

confinement. Secondly, and contrary to the observation of confinement, deep inelastic

scattering experiments showed quarks to behave as free particles at high momentum

transfer or, equivalently, small distance. This indicates that the strength of the strong

interaction, measured as αs = g2

4π , with g being the gauge coupling, decreases at high

energies. This phenomenon is known as asymptotic freedom.

The apparent contradiction can be resolved by formulating the strong interaction as

a Yang-Mills gauge theory [10], a gauge theory shown to exhibit asymptotic freedom by

Gross [11], Wilczek and Politzer [12] and shown to be renormalizable by t’Hooft [13].

The resulting theory of strong interaction is known as QCD.

We will give a short introduction of QCD in its continuum formulation in chapter

2, defining its Lagrangian and demonstrating how the theory can be quantized in an

Euclidean spacetime by the use of Feynman path integrals. We will also introduce some

important symmetries that will be needed later in the thesis. Furthermore, we discuss the

QCD phase diagram, i.e. the phase diagram of strongly interacting matter. Due to the

running of the coupling, perturbative approaches, which rely on expansions in the gauge

coupling g, are limited to the region of asymptotic high energies and densities. Because

of this, a large region of the QCD phase diagram is only accessible to nonperturbative

approaches.

One such approach, called lattice QCD (LQCD), is presented in chapter 3. LQCD is

the formulation of QCD in a discrete space-time. This is achieved by replacing space-time

4States consisting of more than three quarks are hypothesized but are not confirmed yet [9].
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by a lattice with lattice spacing a, introducing a shortest distance. This approach gives

path integrals a finite dimensionality and allows their evaluation by means of numerical

methods. We will introduce, Some of those methods, namely Monte-Carlo and stochastic

quantization. The use of Monte-Carlo methods has proven to be highly successful in

describing zero density QCD. Examples are the calculation of hadron masses [14] and

simulations of the crossover to the quark-gluon plasma [15]. However, they fail when

simulating systems with a finite net density of fermions, i.e. systems with a nonvanishing

chemical potential µ. We will discuss this issue, known as the sign problem. We will

furthermore discuss the different approaches that have been developed in recent years

in order to circumvent the sign problem and demonstrate their respective achievements

and shortcomings.

The main goal of this thesis is to offer a new possibility for investigating finite density

QCD by deriving an effective theory of LQCD. The purpose of such an effective theory is

to be less computationally demanding and have a less pronounced sign problem compared

to LQCD, while converging to LQCD in a controlled parameter region. We describe the

derivation of this effective theory in chapter 4. The theory is derived by an expansion

around the limit of infinite quark masses mq and infinite gauge coupling g and can

be systematically improved order by order. We will furthermore demonstrate how the

theory simplifies significantly when we consider the limit of cold temperatures and high

densities. This parameter region is of particular interest, since it includes the region of

nuclear matter and is inaccessible to LQCD simulations.

In chapter 5 we will then show how our theory is solved numerically. We compare dif-

ferent algorithms and present results for two distinct regions of the QCD phase diagram.

One is, for reasons just mentioned, the region of low temperature and high density. Here

we will present continuum extrapolated results for different thermodynamical quantities

and demonstrate the existence of a finite nuclear binding energy. The other region of in-

terest is the region of zero density, since here LQCD results exist for comparison. We will

investigate the chiral condensate, which is an approximate order parameter for the chi-

ral symmetry. Furthermore we will repeat LQCD investigations at imaginary chemical

potential, where we investigate the nature of the critical Roberge-Weiss endpoint.

The numerical results are complemented with the analytic approach presented in

chapter 6. In the cold dense limit this allows us to derive analytic expressions for all

thermodynamical observables, accurately reproducing the numerical results from chapter

5. This approach also opens new resummation possibilities, which we will discuss.





Chapter 2

Continuum Quantum

Chromodynamics

In this chapter we introduce the theory of Quantum Chromodynamics (QCD) in the

continuum, aiming to give a rough overview and highlighting some key features that

will be needed in the later parts of the thesis. For a far more detailed overview consult

the textbooks [16, 17], on which we partly rely in the following presentation. We start

with reviewing the QCD Lagrangian in section 2.1. Section 2.2 is concerned with the

quantization of QCD, the transition to Euclidean space-time and the introduction of

finite temperature and density. In section 2.3 we present some important symmetries of

QCD, while section 2.4 is concerned with the running coupling. Finally, in section 2.3,

we discuss the phase diagram of strongly interacting matter.

2.1 QCD Lagrangian

QCD is a Yang-Mills theory, a non-abelian gauge theory with gauge group SU(Nc = 3),

coupled to fermion fields in the fundamental representations. The gauge field quanta

are called gluons, the quanta of the fermion fields are the quarks. The theory is defined

by its Lagrange density, which is constructed by requiring invariance under local SU(3)

rotations and renormalizability. The Lagrange density can conveniently be split into a

fermionic and a pure Yang-Mills part. The latter part, describing the dynamics of the

gluon field in the absence of quarks, being 1

Lg = −1

4
F aµν(x)Fµνa(x). (2.1)

The field strength tensor F aµν depends on the gauge fields Aaµ,

F aµν = ∂µA
a
ν − ∂νAaµ + gfabcA

b
µA

c
ν , [T a, T b] = ifabcT

c, (2.2)

1Throughout this thesis summation over repeated indices is implied.

5
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with Lorenz indices µ, ν = 0, 1, 2, 3 and adjoint color indices a, b, c = 1, ..., N2
c − 1. The

generators of the SU(3) group are the eight Gell-Mann matrices λa, T a = λa

2 , with

fabc being the structure constants of SU(3). In analogy to the electromagnetic coupling

constant αem = e2

4π , depending on the elementary electromagnetic charge e, the strength

of the QCD interaction is given as the strong coupling constant αs = g2

4π , depending on

the gauge coupling g. The field strength tensor includes terms that are cubic and quartic

in the gauge fields, giving rise to gluon self interaction, a consequence of the non abelian

nature of QCD. This is in contrast to abelian theories like Quantum Electrodynamics,

where gauge fields carry no charge and therefore do not interact with each other. This

self interaction gives already the pure gauge part of QCD a highly non trivial dynamics.

The fermionic part of the Lagrange density for Nf quark flavors is

LF (ψ, ψ̄, A) = ψ̄(i /D −m)ψ. (2.3)

The quark field spinors, ψ = ψi,α,c, carry a fundamental color index c = 1, .., Nc, a flavor

index i = 1, ..., Nf and a Lorentz index µ = 0, 1, 2, 3. The Dirac matrices, acting in

flavor space, are defined by their anticommutation relations,

{γµ, γν} = γµγν + γνγµ = 2gµ,ν × 1, (2.4)

where we have chosen the Minkowski metric gµ,ν to have the signature (+,−,−,−).

The quark masses enter via the mass matrix, which is diagonal in flavor space, m =

diag(mu,md, ...). The covariant derivative /D = γµDµ is formulated in a way that

preserves gauge invariance, which is achieved by adding gauge fields,

/D = γµ(∂µ − igAµ), (2.5)

with Aµ = AaµT
a. The resulting Lagrange density, L = Lg + Lf , is by construction

invariant under SU(3) gauge transformations, L[ψ, ψ̄,A] = L[ψ
′
, ψ̄
′
,A′ ]. Under such a

transformation fermion fields transform in the fundamental and gauge fields transform

in the adjoint representation,

ψ(x)→ ψ
′
(x) = U(x)ψ(x),

ψ̄(x)→ ψ̄
′
(x) = ψ̄(x)U †(x),

Aµ(x)→ A
′
µ(x) = U(x)

(
Aµ(x) +

i

g
∂µ

)
U †(x), (2.6)

with U ∈ SU(3). Indeed this is the most general Lagrange density that is invariant under

gauge transformation while still being renormalizable 2. It encodes all the features of

2The addition of an additional, CP symmetry breaking terms is possible, but will not be considered
here.
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strongly interacting matter, while involving only seven free parameters, namely the six

quark masses mf and the gauge coupling g, which have to be fixed through input from

experiment.

2.2 QCD at finite Temperature and Density

The Lagrange density presented in the last section defines QCD on a classical level.

In order to quantize the theory we make use of the Feynman Path Integral formalism,

which allows us to express the transition amplitude between field configuration as an

integral,

〈φ1|e−iĤ(t2−t1)|φ2〉 ∼
∫
D[ψ̄, ψ,A] exp

(
i

∫ t2

t1

dx0

∫
d3xL

)
, (2.7)

with Hamiltonian Ĥ. The integration measure, D[ψ, ψ̄, A], is meant to represent an

integral over all possible field configurations with φ1 and φ2 as boundary conditions.

This is ill defined in the continuum since we have an infinite number of degrees of

freedom, but will become clearer once we switch to a discrete space-time formulation.

The quantity in the exponent is called the action, it is given by the space-time integral

over the Lagrange density,

S =

∫
d4xL. (2.8)

The Path Integral formalism expresses the transition amplitudes in terms of ordinary

fields instead of operators. Gauge fields are represented in terms of complex numbers,

while the fermion fields are represented by anticommuting Grassmann variables,

ηiηj = −ηjηi. (2.9)

We will later see how they can be integrated out to make the partition function depend

solely on ordinary numbers.

Since the exponent in 2.11 is purely imaginary for a real action, the weight eiS

will be complex, with its real part being highly oscillating. For numerical treatment

this is not desirable, because the result will strongly depend on cancellations between

contributions from different field configurations. It is therefore common to switch from

real to imaginary time, using the so called Wick rotation,

t→ −iτ, S → iSE , L→ −LE . (2.10)

The imaginary time formalism allows us to make a connection between Euclidean field
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theory and statistical equilibrium physics. The central quantity for deriving expecta-

tion values for a system in equilibrium is the grand canonical partition function, which

describes a system of volume V in thermal and chemical equilibrium with a reservoir

of temperature T and chemical potentials µi. Each chemical potential is coupled to the

respective conserved particle number Ni =
∫
d4x ψ̄iγ0ψ,

Z[T, µ, V ] = Tr e−(Ĥ−µiN̂i)/T . (2.11)

The formal similarity between this and eq. 2.7 allows us to express the partition function

as a path integral,

Z =

∫
D[ψ, ψ̄, A] exp(−SE [ψ, ψ̄, A]). (2.12)

Here the path integral now represents an integral over all possible field configurations,∫
D[ψ̄, ψ,A] =

∫ ∏
x

dψxdψ̄xdAx. (2.13)

The chemical potential can be included into the action as the fourth component of an

imaginary vector potential, coupled to the quark fields,

SE =

∫ 1/T

0
dτ

∫
d3x ψ̄i( /Dµ,E +mi + γ4µi)ψi +

1

4
F aµνF

a
µν , (2.14)

with

/Dµ,E = γµ(∂µ + igAµ) (2.15)

The change to an Euclidean action cures the problem of having an imaginary exponent

like in eq. 2.7 as long as SE is real. We will later see how it reemerges when treating

systems that have finite chemical potential, i.e. finite density systems.

The rotated, imaginary time dimension iτ is now interpreted as a temperature by

compactifying it to [0, 1/T ). The compactification of the temporal dimension makes the

introduction of appropriate boundary condition necessary. We chose periodic bound-

ary conditions for bosons and antiperiodic ones for fermions, reflecting their respective

statistical properties:

A(~x, 0) = A(~x, 1/T ),

ψ(~x, 0) = −ψ(~x, 1/T ). (2.16)
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Expectation values can be computed as the average over all field configuration, weighted

with the Euclidean action:

〈O〉 =
1

Z

∫
D[ψ, ψ̄, A]O exp(−SE). (2.17)

The fact that the weight in the Euclidean path integral suppresses a large fraction of the

phase space will later allow for efficient numerical treatments by Monte-Carlo methods.

Since we will exclusively use the Euclidean formulation of QCD we will drop the index

E for the Euclidean action from now on.

2.3 Symmetries of QCD

The QCD Lagrangian exhibits several local and global symmetries, some of which are

spontaneously broken or only approximately realized. Here we will shortly discuss the

symmetries that will be of importance for the later parts of this thesis.

2.3.1 Center Symmetry

Pure gauge theory, described by the Lagrangian eq. 2.1, exhibits a symmetry called

Center, or ZNc=3, Symmetry. Letting the gauge transformations U in the transformation

eq. 2.6 pick up an additional twist z when crossing the temporal boundary,

U(~x, τ) = zU(~x, τ + 1/T ), (2.18)

leaves the Lagrangian invariant if z is an element of the SU(3) center. The center

of the SU(3) group is the subgroup that commutes with all members of the group,

z ∈ Z3 = {1, e2/3iπ, e−2/3iπ}. The simplest gauge invariant quantity that is affected by

this is the so called Polyakov loop,

L(~x) = Tr Peig
∫ 1/T
0 A4(~x,τ), (2.19)

with time-ordering operator P. Under Z3 transformation such a Polyakov loop will pick

up a factor z, L→ L
′

= zL. If the Z3 symmetry is realized, i.e. if the action is invariant

under such a transformation, the Polyakov loop expectation value will average out over

the three possible phases,

〈L〉 =
1

3
〈L+ zL+ z2L〉 = 0. (2.20)

A broken Z3 symmetry, meaning that one sector is favored, gives L a finite expectation

value. L is therefore an order parameter for the Z3 symmetry. In the gauge sector

of QCD center symmetry is realized at low temperatures, while being spontaneously
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broken at a critical temperature Tc. This acquires a physical meaning when we use the

Polyakov loops to represent a single, static color charge. The expectation value for such

a charge is given by

〈L(~x)〉 =
1

Z

∫
[dU ]L(~x)e−Sg =

ZL
Z

= e−∆F/T , (2.21)

where Z and ZL denote the partition functions for a system with and without the charge

respectively. The ratio of both partition functions vanishes exponentially with the free

energy difference between both systems, ∆F . A vanishing Polyakov loop expectation

value therefore signals that ∆F → ∞, meaning it takes an infinite amount of energy

to place a single color charge in the system. A finite Polyakov loop expectation value

correspondingly signals that such a configuration can be created with a finite amount of

energy. The center symmetry is therefore connected to confinement, with the breaking

of the symmetry at Tc indicating deconfinement.

Center symmetry gets explicitly broken by the introduction of dynamical quarks,

leading to a nonzero, although exponentially suppressed, Polyakov loop at low tem-

peratures. Physically, this is caused by the screening of color charges through pair

production, making ∆F finite even in the confined phase. Since the deconfinement

transition is a crossover for physical quark masses and zero chemical potential, no real

order parameter exists. Nevertheless, the Polyakov loop is used as an indicator for

deconfinement.

2.3.2 Chiral Symmetry

In the limit of Nf massless quarks the QCD Lagrangian exhibits the so called chiral

symmetry. Decomposing the quark fields into left and right handed spinors,

ψL =
1− γ5

2
ψ, ψR =

1 + γ5

2
ψ, (2.22)

the fermion part of the Lagrangian decouples,

L = ψ̄L /DψL + ψ̄R /DψR. (2.23)

This means that, in absence of the mass matrix in eq. 2.14, the left and right handed

components of the quark spinors do not mix. The Lagrangian is then invariant under

separate rotations of the spinors in flavor space,

ψL/R → ψ
′

L/R = UψL/R, U ∈ U(Nf ). (2.24)
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This symmetry can be decomposed into

U(Nf )L × U(Nf )R = SU(Nf )L × SU(Nf )R × U(1)V × U(1)A. (2.25)

The U(1)V symmetry remains unbroken, its related conserved Noether charge being the

baryon number. The axial U(1)A symmetry, although present on the level of the La-

grangian, gets broken explicitly by quantum corrections due to the presence of instantons

[18].

The remaining SU(Nf )L × SU(Nf )R symmetry is called chiral symmetry. If chiral

symmetry was realized exactly in nature, the equality between right and left handed

components would mean that states of opposite parity, like the N and the N∗, are

mass degenerate. This is not realized in nature, where we find the masses to be mN =

939.6MeV and mN∗ = 1535MeV. As can be seen looking at the masses of the up

and down quark in table 1.1, this difference is too big to be explained be the explicit

symmetry breaking introduced by finite quark masses. This suggests that the chiral

symmetry is broken spontaneously,

SU(Nf )L × SU(Nf )R → SU(Nf )V . (2.26)

The order parameter for the chiral symmetry is the chiral condensate,

〈ψ̄ψ〉 = 〈ψ̄LψR + ψ̄RψL〉 = −T
V

∂Z

∂mq
, (2.27)

with mq being the mass of the light quarks. A finite chiral condensate signals the

formation of a quark-anti-quark condensate in the vacuum and the breaking of the

chiral symmetry. According to the Goldstone theorem, the spontaneous breaking of a

continuous symmetry is accompanied by the appearance of massless, scalar bosons, called

Goldstone bosons. The Goldstone bosons connected to the breaking of chiral symmetry

are the pions. Their small, although nonzero, masses are a result of the explicit chiral

symmetry breaking due to the nonzero up and down quark masses. Chiral symmetry

gets restored above a critical temperature Tc, called the chiral phase transition 3. At

small values of the chemical potential it coincides with the deconfinement transition.

Both transitions are crossover for physical quark masses.

2.3.3 Roberge-Weiss Symmetry

The QCD phase diagram can be extended into the region of imaginary chemical po-

tential, µi = iµ. Here, QCD exhibits a new symmetry that is related to the center

symmetry described in section 2.3.1. The center symmetry gets broken explicitly by

3Throughout this thesis we use the term ”transition” in a loose way, describing any rapid change in
thermodynamical observables including crossovers.
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chiral/deconfinement
transition
(crossover)

RW transition

2.order

µi
T
/π

3

T

0 1 2 3 4

intermediate masses

Figure 2.1: QCD phase diagram in the region of imaginary chemical potential for
different quark masses. The nature of the deconfinement transition indicated by the

dashed line depends in the quark mass. Taken from [19]

the introduction of dynamical fermions. However, the effect of a Z3 transformation

on the fermion fields can be absorbed into a shift in the imaginary chemical potential,

µi/T → µi/T + 2/3nπ. This makes the partition function periodic in µi
T ,

Z(µi/T ) = Z(µi/T + 2/3πn), n ∈ N. (2.28)

This is called the Roberge-Weiss Symmetry [20]. The resulting phase diagram is shown

schematically in fig. 2.1. There are different Z3 sectors that are separated by Roberge-

Weiss transitions at

µi/T = 2/3π(n+ 1/2), n = 0,±1,±2, ... (2.29)

The different sectors can be distinguished by the Polyakov loop phase, L = |L|eiφ, which

changes as we move through the Z3 sectors. The transition between the sectors is of first

order at high temperature, ending in an endpoint as temperature is lowered. As can be

seen in fig. 2.1 the nature of this endpoint depends on the nature of the dashed lines. The

transition order of those depends on the quark masses. For Nf = 2 degenerate quarks

they are of first order at very high and very low quark masses, meaning that at the

endpoints we have coexistence of three phase. At intermediate masses, the dashed lines

are crossovers and the Roberge-Weiss transition has a second order endpoint. Therefore

two tricritical points exist, separating those two cases [19].
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Figure 2.2: Strength of the gauge coupling αs ∼ 1
log(Q) as a function of the energy

scale Q. At low energies the coupling becomes strong, spoiling perturbative approaches.
Taken from [6].

2.4 Asymptotic Freedom

Coupling constants and masses appearing in the action are only bare parameters and

get modified when renormalization is employed. In this process the theory is regularized

by introducing a ultraviolet cutoff ∆ in order to cancel divergences appearing when

calculating observables. Coupling constants then get modified, while keeping observables

constant. This allows to take the cutoff to infinity. The running of the gauge coupling

g with energy scale M is determined by the so called β function,

∂as
∂ ln(M)

= β(g). (2.30)

A negative sign of the β function will therefore mean that the coupling goes to zero at

high energies, leading to asymptotic freedom. In QCD the leading order of β, calculated

with perturbation theory for Nf massless quarks to one loop order, is [11, 12]

β = −(
11

3
Nc −

2

3
Nf )

g3

(4π)2
+O(g5). (2.31)

β is therefore negative. Solving eq. 2.30 gives

αs(M) =
1

1
12π (11Nc − 2Nf ) ln( M

∆QCD
)
, (2.32)

with ∆QCD ≈ 200MeV being the QCD energy scale. The dependence on a dimensionless

coupling has therefore been replaced with a dimensionful quantity, a process known as
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Figure 2.3: Sketch of the QCD phase diagram. Of the shown transitions only the
deconfinement crossover and the nuclear liquid gas transition are well studied experi-

mentally. Taken from [21].

dimensional transmutation. Fig. 2.2 shows how the prediction of QCD, derived through

perturbation theory and using the experimental value of αs at the energy scale of the

Z-Boson mass as an input, compared to different experiments. The fact that the gauge

coupling goes to zero logarithmically as M → ∞ allows for perturbative treatment of

QCD in the high temperature region where M >> ∆QCD. The running of the coupling

is well established experimentally [6] and allows to make theoretical predictions for high

energy processes in particle accelerators, serving as the main source for comparisons

between theory and experiment. At low energies the coupling grows, making the use of

nonperturbative methods necessary.

2.5 QCD Phase Diagram

Our theoretical understanding of the phase diagram of QCD matter is limited, with

perturbation theory being only valid at temperatures or values of the chemical potential

much larger than ∆QCD, and the breakdown of nonperturbative lattice methods at

finite chemical potential [22]. Fig. 2.3 shows one possible phase diagram, including

some conjectured phase boundaries together with the path the universe evolved along

after the Big Bang. It has to be stressed that of the phase boundaries shown only

the crossover to the quark gluon plasma and the liquid gas transition to cold nuclear

matter are studied experimentally. Other phases and phase boundary are conjectures

based on different theoretical approaches. Many more phases than shown in fig. 2.3 are

speculated to exist at large µ. Here we want to discuss the regions of the phase diagram

that are relevant for this thesis, namely the high temperature, low density region where

deconfinement transition to the quark gluon plasma takes place and the low temperature,

high density phase of nuclear matter.
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2.5.1 Deconfinement Transition

As we have seen in the last section the gauge coupling will decrease as temperature or

density rises. This led to the prediction of a new state of matter at high temperatures,

where confinement gets lost and chiral symmetry is restored, the Quark Gluon Plasma

(QGP) [23]. The QGP was finally produced in experiment at RHIC [24] and CERN

[25].

The transition from the hadronic phase, where quarks are confined to hadronic states,

and the quark gluon plasma, where they are free, is not a real phase transition at van-

ishing chemical potential. It rather is a broad crossover, characterized by rapid changes

in pressure and energy density due to the increase in the number of degrees of freedom

[26]. The position and width of the transition will therefore depend on the observables

used, and no exact critical temperature can be stated. Common choices in lattice calcu-

lations are the maximum in the Polyakov loop susceptibility to determine deconfinement

and the maximum in the chiral condensate susceptibility to determine the restoration

of chiral symmetry. Both methods yield critical temperatures of Tc ≈ 150 MeV, with

transition widths of O(10) MeV [15, 26]. It is speculated that the crossover turns into

a first order transition as chemical potential is raised, but the location of the critical

endpoint of this first order transition and even its existence is unclear so far. Lattice

Methods for studying the critical endpoint are e.g. Taylor Expansion [27], Monte Carlo

with reweighting [28] and simulations at imaginary chemical potential [29]. We will

discuss those techniques in chapter 3, when talking about simulations at finite density.

Although hints for the existence of a critical endpoint have been found experimentally

[30], no conclusive result has been reached so far [31].

2.5.2 Cold Dense Matter

The low temperature, high density region, including nuclear matter, is inaccessible to

non-perturbative lattice methods. The reason for this lies in the sign problem, which

will be discussed in section 3.1. Studying this region therefore relies mainly on effective

models, large Nc expansion and chiral perturbation theory. For a review covering the

theoretical and experimental approaches for studying the high density region see e.g.

[33].

If we move along the lower axis in fig. 2.3 we are in the zero temperature limit. This

is a good approximation to the state we find in atomic nuclei and in compact stars.

Such a system will be in its ground state and the baryon density will be zero as long as

µB < µc = mB − ε, with mB being the lightest baryon state and µB = 3µ the baryon

chemical potential. ε is the nuclear binding energy, whose magnitude depends on the

baryon density, reaching a maximum of εsat ≈ 16.3 MeV per nucleon at a saturation

density of nsat ≈ 0.17 nucleons per fm3 [16]. Those values will get modified when



Chapter 2. Continuum Quantum Chromodynamics 16

Figure 2.4: Left: Binding energy of nuclear matter derived using mean field approx-
imations, plotted against the baryon number density. Right: Pressure for different
temperatures plotted against the baryon density, predicting Tc = 16.6MeV. Taken

from [32].

electromagnetic forces are included. Furthermore, they depend on the composition of

the nuclear matter. The left side of fig. 2.4 shows the binding energy, derived from mean

field approximations, plotted against the baryon density.

The existence of a finite binding energy means that at intermediate values of the

chemical potential a state of uniform density is energetically disfavoured. Instead, we

will find a state where matter forms into droplets of nuclear matter with density nsat,

surrounded by vacuum. The coexistence of two different phases means that the transition

from the vacuum to nuclear matter is of first order. At finite temperature the nuclear

matter drops will be surrounded by an evaporated hadron gas. As temperature gets

raised this gas will become denser, while the density of the droplets gets lower. Finally,

above a critical temperature, both phases will have the same density and the distinction

between both phases vanishes. This critical temperature marks the critical endpoint of

the first order liquid-gas transition between both phases and is experimentally found to

be Tc ≈ 20 MeV [34]. The left side of fig. 2.4 shows the prediction of Tc from a mean

field approximation.

If we stay at low temperatures and go to increasingly higher values of µ, more and

more space will become occupied until we eventually end up with a uniform state of

nuclear matter. At lower densities physical nuclear matter, i.e. matter also underlying

QED interactions, is expected to form various structures called ”pasta”. Their shape

is determined through the competition between repulsive Coulomb interaction and the

surface energy [35].

At even higher values of the chemical potential asymptotic freedom is expected to

lead to deconfinement and a state of matter called quark matter, but no experiments

involving such matter exist. Predictions regarding this phase therefore rely on the use

of effective models [36]. Only at asymptotically high densities the Fermi momentum
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kf ∼ 3
√
n becomes large and rigorous calculations based on perturbation theory becomes

possible again. It is predicted that quarks on the Fermi surface will form Cooper Pairs

and therefore become superconductive, breaking the local SU(3) color symmetry. Such

extreme states of matter are speculated to exists inside of compact stars [37].





Chapter 3

QCD on the Lattice

In this chapter we will introduce lattice QCD (LQCD) and discuss some of its features.

We will furthermore discuss how the theory is solved numerically.

LQCD is the formulation of QCD in discrete space-time and constitutes the main

tool for nonperturbative investigations of QCD. It was pioneered in 1974 by Wilson,

who used it to demonstrate confinement in the limit of infinite gauge coupling [38]. An

overview over the development of the field of lattice gauge theory can be found e.g. in

[39, 40].

The underlying idea of LQCD is to replace continuous space-time with a hypercubic

lattice Λ with lattice spacing a1, such that x = (x1, x2, x3, x4) ∈ Λ. We call the spatial

extent Nσ and the temporal extent Nτ , so that the lattice consists of N3
σNτ lattice points

occupying a volume of a4N3
σNτ . Since introducing a shortest distance a is equivalent to

a momentum cutoff π/a, this also serves as a regularization. Furthermore, it means that

integrals of the type eq. 2.13 will be of finite dimensionality, making them well defined.

This will allow the calculation of expectation values by solving eq. 2.17 via numerical

integration.

In this chapter we will proceed in the following way: In section 3.1 and 3.2 we

discuss how a discretized version Slatt of the continuum action can be derived in a

way such that Slatt → Scont as we take the continuum limit. This limit is defined

by taking a → 0, while keeping physical quantities like 1
aNτ

, i.e. the temperature,

constant. Furthermore, in section 3.3, we will present different methods for numerical

evaluation of high dimensional integrals, needed for the effective treatment of LQCD.

Finally, in section 3.4, we will discuss the simulation of finite density systems. We

will show how chemical potential is introduced on the lattice, demonstrate the notorious

problems arising when simulating finite density systems and present common approaches

to overcome those difficulties.

In the following outline of the basics of LQCD we mainly follow the textbooks [41–43].

1Lattice spacings in temporal and different spatial directions do not necessarily have to be the same,
but only isotropic lattices will be used in this thesis.

19
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3.1 Gauge action

We will discuss the discretization of the gauge action first, since it is straightforward

compared to the fermionic contribution. When working on a lattice, gauge fields are

commonly represented as so called gauge links, which connect neighbouring lattice sites.

Uµ(x) denotes the oriented connection between the sites x and x+ aµ̂ and is related to

the continuum gauge field via

Uµ(x) = eigaAµ(x), Uµ(x) ∈ SU(3). (3.1)

The inverse link, going from x+ aµ̂ to x, is given by the adjoint matrix U †µ(x). Under a

local SU(3) rotation gauge links transform as 2

Uµ(x)→WxUµ(x)W †x+µ Wx ∈ SU(3). (3.2)

From this it is clear that, in order to construct a gauge invariant quantity, we need an

ordered chain of link variables forming a closed loop. The simplest possibility to do so

is the so called gauge plaquette, build from four link variables,

Uµ,ν(x) = Uµ(x)Uν(x+ µ)U †µ(x+ ν)U †ν (x). (3.3)

One can easily check that Tr Uµ,ν(x) is invariant under the transformation eq. 3.2. The

plaquette is the building block for the most commonly used gauge action, known as the

Wilson gauge action. It consists of the sum over all plaquettes on the lattice [38],

Sg =
β

Nc

∑
x

∑
µ<ν

Re Tr(1− Uµ,ν(x)) =
β

2Nc

∑
P

(TrUP + TrU †P ), β =
2Nc

g2
, (3.4)

and is therefore also gauge invariant. The lattice gauge coupling β is inverse to the

squared continuum gauge coupling. This is the basis for the so called strong coupling

expansion around β = 0, which will be discussed in chapter 4.2. Expanding eq. 3.1 for

small lattice spacings and using the Baker-Campbell-Hausdorff formula, one can check

that in the limit of a→ 0 we recover the continuum action,

Sg =
1

4

∫ 1/T

0
dτ

∫
d3x F aµνF

a
µν +O(a2). (3.5)

Corrections due to finite lattice spacings are of order a2 and are referred to as lattice

artifacts. They determine how fast the lattice action converges to the continuum limit.

2When working on the lattice we will in the following usually write x+ µ to denote a translation by
one lattice spacing in direction µ̂, i.e. x+ µ = x+ aµ̂.
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The convergence can be improved by adding appropriate counterterms of order a2, thus

removing the leading lattice artifacts [44].

3.2 Fermion action

Deriving a discrete version of the fermionic action, eq. 2.3, is less obvious than discretiz-

ing the gauge action. The reason for this is explained by the No-Go-Theorem proved

by Nielsen and Ninomiya [45], which states that it is impossible to formulate a fermion

action on a 4 dimensional lattice that is chirally symmetric, local, has the desired num-

ber of fermion species and the correct continuum limit. Possible fermion actions differ

in which of those desirable attributes they sacrifice.

We will start by demonstrating the appearance of unwanted fermion flavors, the so

called doubling problem, in section 3.2.1. In section 3.2.2 we then introduce the Wilson

fermions, which we will use in this thesis.

3.2.1 Fermion Doubling

The most straightforward way of discretizing fermions leads to what is called Naive

Fermions. These are commonly used to demonstrate the problems arising with the

discretization of fermions.

On the lattice fermion fields are represented by spinors located on the lattice sites,

ψx, ψ̄x, x ∈ Λ. (3.6)

Deriving a form of eq. 2.3 that is suitable for the lattice we first require a discretized

field derivative,

∂µψx →
ψx+µ − ψx−µ

2a
+O(a2). (3.7)

Under a SU(3) transformation the fermion fields transform in the same way as in the

continuum,

ψx → ψ
′
x = Wxψx,

ψ̄x → ψ̄
′
x = ψ̄xW

†
x , W ∈ SU(3). (3.8)

Products of fermion fields at different lattice positions are therefore not gauge invariant.

However, we can construct gauge invariant terms by connecting the fermion fields by

gauge links. Comparing with the transformations eq. 3.2 we see that e.g. ψxUµ,xψx+µ is

a gauge invariant quantity. The simplest lattice fermion action is therefore constructed

by discretizing the derivative in the continuum action, eq. 2.14, and adding gauge fields
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to satisfy gauge invariance 3,

SN =
1

2a

∑
x,µ

[
ψ̄(x)γµUµ(x)ψ(x+ µ)− ψ̄(x)γµU

†
µ(x− µ)ψ(x− µ)

]
+m

∑
x

ψ̄(x)ψ(x)

=
∑
x,y

∑
a,b,α,β

ψ̄α,a(x)Q(x|y)α,β,a,bψβ,b(y). (3.9)

The Dirac operator Q(x|y) is defined as

Q(x|y)α,β,a,b =
4∑

µ=1

(γµ)α,β
Uµ(x)abδx+µ,y − U †µ(x− µ)abδx−µ,y

2a
+mδα,βδabδx,y. (3.10)

It can easily be checked that this action is invariant under the transformations 3.2 and

3.8. Nevertheless, it suffers from a flaw which becomes apparent when studying the limit

of free quarks, which correspond to setting U = 1 for all gauge links. Setting m = 0 the

free Dirac operator in momentum space is

Q(p) =
i

a

4∑
µ=1

γµ sin(pµa)
a→0
= i

4∑
µ=1

γµpµ. (3.11)

The discretized Dirac operator in momentum space is proportional to sin(pµa). This is in

contrast to the continuum version, which is linear in the momentum. The reason for this

is that the lattice momentum has to be periodic in the Brillouin zone (−π
a ,

π
a ]. Because of

this the lattice propagator, Q−1(P ), has 24 poles at p = (0, 0, 0, 0), ...(π/a, π/a, π/a, π/a),

corresponding to 16 fermions. The fact that we ended up with 15 additional fermions,

called doublers, when discretizing the fermion action is called the doubling problem.

3.2.2 Wilson Fermions

The fermion action proposed by Wilson sacrifices chiral symmetry in order to get rid of

the doublers [46]. The idea is to add an additional term ψ̄QWψ to the action, so that

the Dirac operator for free massless fermions becomes

Q(p) =
i

a

4∑
µ=1

γµ sin(pµa) + 1
1

a

4∑
µ=1

(1− cos(pµa)). (3.12)

At the physical pole, pµ = 0, the additional term is zero, while for the doublers it acts

like an additional mass term, being 1
a divergent as the continuum is approached. This

causes the doublers to decouple from the theory. The modification is achieved by adding

3We will refrain from introducing chemical potential on the lattice until section 3.4.1.
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a second order derivative like term to the naive fermion action,

SW = rψ̄DWψ = − r

2a

∑
n,µ

ψ̄n(ψn+µ − 2ψn + ψn−µ). (3.13)

This introduces a new parameter r, which we will set to be r = 1 as is commonly done.

The Wilson action is usually restructured to be proportional to the so called hopping

parameter, κf = 1
2(mfa+ 4)−1, by rescaling the quark fields as ψ →√

2κfψ,

S = SN + SW =
∑
x

ψ̄(x)ψ(x)

− κf
∑
x,µ

(
ψ̄x(1− γµ)Uµ(x)ψx+µ + ψ̄(x)(1 + γµ)U †µ(x− µ)ψx−µ

)
.

(3.14)

The corresponding Dirac operator is

Q[U ] = 1 + κf

3∑
i=1

[
(1 + γi)Ui(x)δy,x+î + (1− γi)U †i (y)δy,x−î

]
−κf

[
eµ(1 + γ4)U4(x)δy,x+4̂ + e−µ(1− γ4)U †i (y)δy,x−4̂

]
. (3.15)

This formulation is doubler free in the continuum, but even in the limit of massless

quarks the Wilson term breaks chiral symmetry explicitly. In the limit a → 0 Wilson

fermions converge to the continuum action with O(a) lattice artifacts.

3.3 Numerical Methods

Now that we derived a suitable discrete version of the gauge and fermion action we want

to proceed to derive observables. We do this by using the discretized version of eq. 2.17,

〈O〉 =
1

Z

∫
[dU ][dψ̄][dψ]O exp(−Sg[U ]− ψ̄Q[U ]ψ). (3.16)

Since on the lattice we work with a finite number of space-time points, this is a well

defined quantity. While the link variables are SU(3) matrices, the fermion fields are

formulated in terms of anticommuting numbers, and therefore are problematic to imple-

ment in a simulation. Using the Matthews-Salam formula [47, 48],∫
dnηdnη̄ exp(η̄iQijηj) = det[Q], (3.17)
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it is possible to integrate the fermionic fields out analytically. This leaves us with the

so called fermion, or quark, determinant,

Z =

∫
[dU ] detQ[U ] exp(−Sg[U ]). (3.18)

Since the QCD action does not mix the different flavors, this can be done separately for

each flavor,

detQ[U ] =

Nf∏
f=1

detQf [U ]. (3.19)

In the case of Nf degenerate flavors, this reduces to (detM [U ])Nf . After the integration

the partition function and all observables can be expressed solely in terms of gauge

links. The drawback is that the determinant in eq. 3.18 is a highly non-local object. Its

computational cost is related to the number of lattice sites being correlated, which grows

as quark masses are lowered, making simulations with physical quark masses expensive

[49].

Since we are working on a finite lattice, the path integral over all gauge configuration

is of finite dimension, ∫
[dU ] =

∏
x,µ,a

∫
dUµ,a(x), (3.20)

and can in theory be performed using standard numerical integration algorithms. Due

to the large number of dimensions though, this is not possible on lattices with realistic

sizes. Therefore efficient numerical methods are needed to evaluate the integral. In

the next section we will present those that will be employed in this thesis, namely the

Monte-Carlo method and the method of stochastic quantization.

3.3.1 Monte-Carlo Method

The most common method for solving high dimensional integrals is the Monte-Carlo

Method, pioneered in the late 1940s by Ulam, von Neumann, Fermi and Metropolis [50].

When working with LQCD we are interested in solving integrals of the type 4

O =
1

Z

∫
[dU ] exp(−S[U ]). (3.21)

The underlying idea of the Monte-Carlo Method is to sample only a small subset of

possible lattice configurations and construct the result out of those samples. The crucial

observation is that the integrals we are interested in will be sharply peaked for some

regions of the configuration space where the action is minimal, while most configurations

4The fermion determinant in 3.18 can be included into the action as detQ = exp(log detQ).
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will have a large action and therefore be suppressed exponentially. This is linked to the

observation that a statistical system realizes only a very small subset of all physical

possible states, namely those that are close to being minimal in the energy.

Instead of sampling the integral with purely random or equidistantly distributed

configurations, we therefore want to sample configurations distributed according to the

probability distribution

P [U ] ∝ e−S[U ]. (3.22)

This method is called importance sampling and ensures that we do not waste compu-

tation time generating configurations that have only a negligible contributions to the

partition function. The creation of a suitable distribution is done via a Markov chain.

Such a chain starts with a arbitrary configuration, from which new configuration are

chosen in such a way that the transition probability to go from configuration U to U
′
,

expressed as P (U → U
′
), satisfies

P (U → U
′
)

P (U ′ → U)
= eS[U ]−S[U

′
]. (3.23)

This property is called detailed balance. Additionally one has to ensure that the whole

configuration space can be reached, even if this may take an arbitrarily long amount of

time. This property is called ergodicity. Those two conditions are sufficient to ensure

that the distribution approaches the one in eq. 3.22 in the infinite time limit.

3.3.2 Metropolis Algorithm

There is still a considerable freedom in how detailed balance is achieved, leading to

different Monte-Carlo algorithms. A common choice is the Metropolis method [51].

Here, we first generate a new state and calculate its action, S[U
′
]. In order to fulfill

detailed balance the state is accepted with the probability

P [U → U
′
] = eS[U ]−S[U

′
] (3.24)

if S[U
′
] > S[U ], while always being accepted otherwise. If the configuration is accepted,

it becomes the next element of the Markov chain. Otherwise, the next element will

be identical to the previous one. The Metropolis algorithm does not specify how new

configurations are generated, so any ergodic method is acceptable. The method of

creating new configurations will have to be fine tuned to the model under consideration.

A too high acceptance ratio means that successive states are closely correlated. A very

low ratio causes the chain to frequently be stuck at a single configuration. Both cases

lead to an inefficient sampling of the configuration space. While the optimal acceptance
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rate will depend on the model, an accept ratio of P ≈ 0.23 has been shown to be optimal

in the limit of an infinite number of dimensions [52].

3.3.3 Stochastic Quantization

The method of stochastic quantization, or complex Langevin, offers an alternative ap-

proach to generate configurations from the desired distribution eq. 3.22. This method

was pioneered by Parisi and Wu in 1981 [53]. A comprehensive review of stochastic

quantization can be found in [54].

There are two equivalent formulations of stochastic quantization. The first uses

the Langevin Equation, originally derived by Langevin for the description of Brownian

Motion in 1908 [55], to evolve the systems degrees of freedom in a new, fictitious time

θ. After that, observables are obtained as noise averages. In the other one derives

expectation values with respect to a probability distribution, which evolves according

to the Focker-Planck equation. We will concentrate on the first approach, since it is the

approach commonly used for numerical treatment [56–61].

In the Langevin approach the desired distribution, eq. 3.22, is seen as the equilibrium

distribution of a stochastic process, evolving in θ. In the limit θ →∞ stochastic averages

are then supposed to agree with vacuum expectation values. The stochastic process

evolves according to the Langevin equation,

∂φ(x, θ)

∂θ
= − ∂S

∂φ(x, θ)
+ η(x, θ). (3.25)

Here the scalar field φ represents a single degree of freedom, but generalizing this to

multiple degrees of freedom per site or gauge links is straightforward [59]. η(x, θ) is a

gaussian white noise term with the moments

〈η(x, θ)〉η = 0,

〈η(x1, θ1)η(x2, θ2)〉η = 2δx1,x2δθ1,θ2 . (3.26)

〈〉η denotes noise averages. They are calculated as

〈φ(x1, θ1), ..., φ(xn, θn)〉η =

∫
Dη φ(x1, θ1), ..., φ(xn, θn) exp(−1

4

∫
dnx dτη2)∫

Dη exp(−1
4

∫
dnx dτη2)

. (3.27)

The two point correlator, eq. 3.26, shows that the noise is uncorrelated in time, reflecting

the Markov property of the stochastic process. Note that, for η = 0, we recover the

classical field equation,

∂S

∂φ(x, t)
= 0. (3.28)
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The assertion of the Complex Langevin method is that correlation functions become

equal to the corresponding quantum Greens functions as θ →∞,

lim
θ→∞
〈(x1)...φ(xn)〉η = 〈φ(x1)...φ(xn)〉. (3.29)

This equivalence can be shown to be true in the case of real actions [62, 63]. Nevertheless,

the possibility to apply stochastic quantization to problems involving complex actions is

its most attractive feature. This also makes it possible to apply it to quantize systems in

Minkowskian space-time [64]. Often problems due to numerical instabilities arise, those

can be solved by applying an adaptive stepsize when discretizing eq. 3.25 [65].

We will apply stochastic quantization to systems with finite fermion densities, where

complex actions appear. The problems of finite density systems and the application of

stochastic quantization to such systems are discussed in section 3.4.

3.3.4 Data Analysis

After we generated an ensemble of configurations, following any of the aforementioned

methods, we can estimate observables by averaging over their values on said configura-

tions,

O =
1

N

N∑
i

O[U (i)]. (3.30)

This gives an estimate of eq. 3.16 respectively eq. 3.27. We can estimate the error

of O by resampling. This means we randomly choose N configurations of our original

sample, allowing for multiple draws of the same configuration, to create a new ensemble.

Calculating the observable on each configuration we get a set of K estimates Ok, which

we then can use to estimate the standard deviation of O,

σ2
O =

1

K

K∑
k=1

(
Ok −O

)2
. (3.31)

This method is known as bootstrapping. It assumes that the data is uncorrelated, i.e.

that for observables calculated on successive configurations we have

CO(t) = 〈OiOi+t〉 − 〈Oi〉〈Oi+t〉 = 0. (3.32)

This will not be the case in most simulations, where configurations are usually generated

by making small changes to the previous element in the Markov chain. We therefore will

have to deal with autocorrelation between successive configurations. The autocorrelation
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strength is estimated by looking at the function

ΓO =
CO(t)

CO(0)
∝ exp(− t

τO
). (3.33)

The value τO is called autocorrelation time. In order to avoid underestimating statistical

errors only configurations separated by O(τO) should be used for the evaluation of

observables.

3.4 Finite Density

In this section we will consider systems with a finite fermion density. We discuss the

introduction of chemical potential on the lattice and the so called sign problem. This

problem, arising from the fact that the action describing a finite density system is neces-

sarily complex, makes finite density simulations extremely challenging. We will discuss

different approaches that were developed to avoid this problem.

3.4.1 Chemical Potential on the Lattice

In the continuum finite density was introduced by coupling the chemical potentials µi to

the respective quark numbers Ni =
∫
d4x ψ̄iγ4ψi, cf. eq. 2.14. The naive introduction

of a term µiγ4 into the Dirac operator eq. 3.14 leads to a divergent energy density [41].

Chemical potential on the lattice is therefore introduced by multiplying the temporal

gauge links in the Dirac operator by a suitable function f(aµ). The function is chosen

in a way such that f(0) = 1 reproduces the zero density theory and f(aµ) = 1/f(−aµ)

ensures time reflection invariance. Furthermore we want to have f(aµ) = 1 + aµ +

O(aµ)2 to recover the coupling of the chemical potential to the density term, µψ̄γ4ψ,

in continuum limit. This leaves f(aµ) = exp(aµ) as the obvious choice. We therefore

multiply gauge links going forward in time with a factor exp(aµ) while multiplying links

going backwards in time with exp(−aµ),

Uν → eδν,4aµUν ,

U †ν → e−δν,4aµU †ν . (3.34)

This introduces a quark-anti-quark asymmetry, thus favouring the existence of quarks

over antiquarks if µ > 0. While the introduction of chemical potential on the lattice

is straightforward, its presence leads to the infamous sign problem that we will discuss

next.
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Figure 3.1: Left: Real part of the Boltzmann factor in eq. 3.39 for λ = 0 (no sign
problem) and λ = 20 (strong sign problem). Right: Value of the integral eq. 3.39 vs.

λ.

3.4.2 Sign Problem

Monte-Carlo techniques relying on importance sampling are the method of choice in

solving high dimensional integrals, but the interpretation of the Boltzmann weight as

a probability fails when we introduce a finite chemical potential [66]. The reason for

this lies in the fermionic determinant. We start with the observation that the Dirac

operator, /D, is γ5 hermitian, i.e.

γ5 /Dγ5 = /D
†
. (3.35)

If we neglect chemical potential, we therefore can write

det[γ5( /D +m)γ5] = det[( /D +m)] = det[( /D +m)†] = det[( /D +m)]∗, (3.36)

which shows that the determinant has to be real. However, including µ we have

γ5( /D +m+ µγ4)γ5 = ( /D +m− µγ4) = ( /D +m− µ∗γ4)†. (3.37)

After taking the determinant this gives

det[( /D +m+ µγ4)] = det[( /D +m− µ∗γ4)]∗ (3.38)

demonstrating that the determinant does not has to be real for µ 6= 0. Indeed it can

be shown that it has to be complex in order to produce the expected features of finite

density physics [66].
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The problem of having a complex determinant can easily be demonstrated using a

toy model. Consider the partition function

Z =

∫
dx e−x

2+iλx. (3.39)

Since thermodynamical quantities are real, we know that the partition function has to

be real too. Therefore, we can assume that the imaginary contributions cancel out and

concentrate on the real part of the integrand. The left side of fig. 3.1 shows that the

real part of the integrand in eq. 3.39 has negative contributions for sufficiently large

values of λ. This spoils the interpretation of the Boltzmann factor as a probability, like

we did in eq. 3.22, making the use of importance sampling impossible.

The left side of fig. 3.39 shows that in our toy model the value of Z goes to zero for

large λ. This is an effect of the cancellations between positive and negative contributions.

It is therefore necessary to sample the whole x range in order to give a reliable estimation

of Z. This is not feasible when evaluating partition functions one encounters in LQCD.

3.4.3 Silver Blaze

A phenomenon that is closely related to the sign problem is the Silver Blaze property

[67, 68]. This denotes the fact that at T = 0 the QCD partition function, and therefore

all thermodynamical observables, are independent of µ as long as µB < µc = mB − ε,
with ε being the nuclear binding energy. µc is the energy required to produce a baryon

at rest, therefore there is not enough energy available to create baryons below this

threshhold and the system remains in its vacuum state. This is despite the fact that

µB explicitly enters the fermion determinant and changes the eigenvalues of the Dirac

operator. Below µc cancellations have to take place that cause the partition function to

be independent of µ.

3.5 Solving the Sign Problem

In the last section we showed how the introduction of a finite chemical potential leads

to a complex fermion determinant. Since this makes the use of standard Monte-Carlo

Methods impossible, most of the QCD phase diagram is inaccessible to such methods.

Different approaches have been developed in recent years in order to circumvent this

problems, for an overview see e.g. [66]. Some of them, like reweighting [69], Taylor

expansion [70] and analytic continuation from imaginary chemical potential [29], work

only in the region where µ/T is small. Others, like quenched or phase quenched QCD

[71], avoid the sign problem completely but inherently differ from full LQCD. An espe-

cially promising approach is the use of stochastic quantization, which has recently been

applied to full LQCD at large chemical potentials [61]. However, there are known cases
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where stochastic quantization produces wrong results [72–75]. No method that both

works for all values of the chemical potential and is guaranteed to give correct results is

known.

3.5.1 Phase Quenched QCD

Early LQCD simulations employed the so called quenched approximation, which consists

of approximating the fermion determinant with a gauge field independent constant [76].

A more elaborated approximation is phase quenched LQCD [77]. In this approximation

the phase of the quark determinant, det(Q) = eiφ| det(Q)| is neglected and simulations

are performed with the absolute value of the determinant. If we take Nf = 2 degenerate

quarks, up and down, we can use eq. 3.38 to write the partition function in the phase

quenched approximation as

Z =

∫
[dU ] | detQ|2e−Sg =

∫
[dU ] detQ(µ) detQ(−µ)e−Sg . (3.40)

This is equivalent to simulating with finite isospin chemical potential, µiso = µu = −µd.
In contrast to quark or baryon chemical potential, introducing a asymmetry between

particles and antiparticles, µiso introduces an asymmetry between up and down quarks.

At a value of µiso = mπ
2 a transition to a finite density region due to the formation

of a pion condensate takes place. This is in contrast to the case of baryon chemical

potential, where the transition to finite density does not happen until µB = mB
3 [67].

This gap demonstrates that the phase quenched approximation leads to a significantly

different phase diagram compared to QCD with baryon chemical potential.

3.5.2 Reweighting

Reweighting is a technique that can be used to circumvent the problem arising from

negative weights in the partition function by reformulating the partition function [28, 78].

Writing the quark determinant as

det(Q) = | detQ|eiθ (3.41)

and introducing a positive function f [U ] into the partition function, we can write

〈O〉det(Q) =
1

Zdet(Q)

∫
[dU ]O det(Q) e−S

=

∫
[dU ]O e−S eiθ

f f∫
[dU ]e−Seiθ f

f

=
〈O eiφ

f 〉f
〈 eiφf 〉f

. (3.42)

In the second step the absolute value of the determinant was included into the action,

S = Sg − log(| det(Q)|). 〈...〉f denotes expectation values derived with the (positive)
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weight e−S+log(f), while 〈...〉det(Q) is the expectation value obtained with the full action,

S = Sg − log(det(Q)).

After this reformulation we can express an expectation value at µ 6= 0 in terms of

expectation values obtained from a integral over a strictly positive weight. This is pos-

sible because we absorbed the fluctuating parts of the determinant into the observables.

This method of reweighting is not restricted to chemical potential, originally it was used

for calculating expectation values over a range of the lattice coupling β from a single

simulation, a technique known as Ferrenberg-Swendsen Reweighting [79].

Reweighting works well as long as the distribution we are interested in is not too

different from the one we are sampling. The overlap between the two distributions is

determined by the choice of f . The optimal choice, in the sense that it minimizes the

statistical error of the denominator in eq. 3.42, is f = | cos(θ)| [80]. This results in 〈 eiφf 〉
becoming the average sign of cos(θ).

The severity of the problem of sampling a distribution that is significantly different

from the desired distribution becomes clear when we rewrite the denominator as a ratio

between the partition function with weight det(M) and weight f ,

〈e
iφ

f
〉f V→∞

= e−
V
T

∆f (3.43)

with ∆f being the free energy density difference between both ensembles. This means

the denominator will exponentially approach zero as the volume or the free energy

density difference, which is a function of µ
T , increases, causing the statistical error to

grow exponentially. The cause for this is the small overlap between the desired and

the sampled function and is therefore called the overlap problem. This restricts the

technique of reweighting to small volumes and small values of µ
T .

3.5.3 Imaginary Chemical Potential

Another method to explore the phase diagram at finite density is the use of simulations at

imaginary chemical potential [19, 29, 82, 83]. As can be seen in eq. 3.38 the determinant

will be real if we chose a purely imaginary chemical potential µi = iµ. In this case we

have µ∗i = −µi and the determinant will be real again, allowing for the use of standard

Monte-Carlo methods. The fact that the region of real and imaginary chemical potential

are connected analytically then allows the results to be extrapolated by means of an

analytic continuation.

To demonstrate this we look at the left hand side of fig. 3.2, showing the so called

Columbia plot. It shows the order of the deconfinement/chiral transition depending on

the masses of the three lightest quarks. On the right side the same plot is extended to

account for chemical potential at real and imaginary values. Because of the symmetry
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Figure 3.2: Left side: Columbia plot, showing order of the deconfinement/chiral
transition for different values of the quark masses [81]. Right side: Same plot, but
extended in the third dimension to account for real and imaginary chemical potential

[81].

discussed in section 2.3.3 the phase diagram repeats itself if one goes beyond µi
T = π

3 , so

fig. 3.2 shows the complete phase diagram for imaginary chemical potential.

An example for the use of analytic continuation is the question regarding the order

of the transition for Nf = 2 chiral quarks at µ = 0 [83]. Determining the critical points

for different values of µI allowed to determine that, for coarse lattices, the Nf = 2 chiral

limit lies inside the first order region. Another example is the search for the QCD critical

endpoint at finite chemical potential. Investigating the location and curvatures of the

chiral critical surface at finite µI can be used to extrapolate how the surface will continue

at real µ [84]. Nevertheless, this method can only make statements on critical surfaces

that extend into the region of imaginary chemical potential, and naturally becomes less

reliable the further we extrapolate into the region of real chemical potential.

3.5.4 Stochastic Quantization with Complex Action

While µ 6= 0 makes the use of standard importance sampling impossible, it is straight-

forward to apply eq. 3.25 to a complex action. Since this means that derivatives of the

action with respect to the degrees of freedom, the so called drift terms, are complex

all degrees of freedom will become complex too. In the case of LQCD the degrees of

freedom are the gauge links. The presence of a complex action means that they are no

longer restricted to the SU(3) group but belong to the larger SL(3,C) group5. In the

case of physical observables those imaginary contributions will average out after taking

the noise average, see eq. 3.27.

While being successful in solving different models with complex action [56, 58, 59],

stochastic quantization has been shown to fail in other cases when the systems become

unbounded in the complex plane [72–75]. Efforts have been made in recent years to

5SL(N,C) denotes the group of N × N matrices with complex entries and determinant 1. It contains
SU(N) as a subgroup
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formulate a criterion to decide whether the Complex Langevin process converges to the

correct distribution [85, 86], but the reasons causing stochastic quantization to fail are

not yet fully understood.

Stochastic quantization can also be applied to full LQCD. This gets complicated by

the fact that, under the evolution eq. 3.25, the system will spend most of the time

exploring the complex plane, slowing the simulation down. Recently this problem has

been overcome by introducing the so called gauge cooling, designed to keep the gauge

links as close as possible to the SU(3) group [61, 87].



Chapter 4

An Effective Theory for QCD

In this chapter we will derive an effective theory for lattice QCD (LQCD) with heavy

quarks, expanding on the work done in [88–90]. Parts of the results presented here have

already been published in [91, 92].

The purpose of the effective theory is to reproduce LQCD in a relevant parameter

region. The theory we are about to derive can be improved systematically and is easier

to solve numerically than LQCD. Of special interest is the cold and dense region, which

is inaccessible for LQCD due to the sign problem, see section 3.4.2. The resulting theory

still suffers from the sign problem, but can be solved using either the method of stochastic

quantization, see section 3.3.3, or Monte-Carlo with reweighting, see section 3.5.2. The

numerical results can be found in chapter 5. Furthermore, as will be demonstrated in

chapter 6, the theory can also be treated analytically.

The derivation of the effective theory will be organized as follows: In section 4.1 we

outline our general strategy. In section 4.2 we show how the pure gauge part is expanded

in a strong coupling expansion. Section 4.3 is concerned with the expansion of the

fermion determinant by means of a hopping parameter expansion. Gauge corrections

that come from mixing between both expansions are introduced in section 4.4. Finally,

we discuss how to resum the effective action in section 4.5, the introduction of multiple

flavors in section 4.6 and how the theory simplifies when go into the cold dense limit in

section 4.7.

4.1 Effective Action

Starting point for the derivation is LQCD in (3+1) dimensions with the Wilson gauge

and the Wilson fermion action, see eq. 3.4 and eq. 3.14 respectively. With Nf flavors

we have

Z =

∫
[dUµ]

Nf∏
f=1

detQfe
−Sg , Sg =

β

2Nc

∑
P

(TrUP + TrU †P ). (4.1)

35



Chapter 4. Effective Theory for QCD 36

We derive the effective theory in two steps. First, we perform a series expansion of

both the fermion determinant and the gauge action. In the case of the gauge action

this happens via a strong coupling expansion around the limit β → 0. The deter-

minant is expanded in a hopping parameter expansion around the static quark limit,

κ = 1/(2amq + 8)→ 0.

The expansion allows us, as a second step, to perform the gauge integration over

the spatial gauge links analytically, leaving us with an action that solely depends on

temporal link variables. We call this the effective action Seff,

Zeff =

∫
[dU4]e−Seff , Seff = ln

∫
[dUi]

Nf∏
f=1

detQfe−Sg . (4.2)

This will allow us to change the integration measure to an integral over Polyakov Loops,

∫
[dU4]→

∫
[dL], L(~x) = Tr W (~x) = Tr

Nτ−1∏
τ=0

U4(~x, τ). (4.3)

The resulting theory is three dimensional and has a significantly reduced number of

degrees of freedom compared to the original theory. Nevertheless, the reliance on ex-

pansions means that our theory approximates LQCD only in a finite parameter region

in β and κ.

4.2 Strong coupling expansion

The expansion of the pure gauge action was already done in [89]. Since in this thesis

we do not expand on these results we will only briefly review them. New results regard-

ing gauge corrections coming from mixing terms between hopping and strong coupling

expansion will be shown in section 4.4.

The natural limit to consider on the lattice is the opposite of the weak coupling

expansion in the continuum, i.e. that of vanishing lattice coupling β = 2Nc
g2 → 0. Since

β determines the lattice spacing, we will discuss this in section 5.6.2, this is also the

limit of large lattice spacings. By making use of the character expansion [42, 93] we can

write the effective action as

−Seff = ln

∫
[dUi]

∏
p

[1 +
∑
r 6=0

drar(β)χr(Up)]. (4.4)

The sum extends over all irreducible representations r. Each representation has a di-

mension dr, a character χr and an expansion parameter ar(β). While it is possible to

have non-vanishing terms that do not wind through the temporal boundary of the lat-

tice, i.e. by constructing a cube out of six gauge plaquettes, those terms will become
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independent of the link variables after performing the spatial link integration. Since

constant contributions to the partition function cancel out when calculating expectation

values, we can neglect those graphs.

The leading contribution is obtained by neglecting spatial plaquettes, i.e. plaquettes

that contain no temporal links. This limit leaves only chains of plaquettes looping

through the temporal boundary as a possible contribution. The spatial link integration

can then be performed with the group integral∫
dUχr(XU)χs(U

−1Y ) =
δrs
dr
χr(XY ), (4.5)

which enforces all plaquettes of a graph to belong to the same representation. Since,

when considering a chain of plaquettes, we have one spatial link integral per plaquette

the factor dr cancels, and we are left with

−Seff = ln
∏
<ij>

[1 +
∑
r 6=0

[ar(β)]Nτχr(Wi)χr(Wj)]. (4.6)

This describes a nearest neighbour interaction between Polyakov loops in all represen-

tations. The leading order contribution comes from the fundamental representation,

where af = u = β
18 +O(β2) 1,

−Seff =
∑
<i,j>

ln[1 + λ1(L∗iLj + LiL
∗
j )], λ1 = uNτ +O(uNτ+4). (4.7)

The corrections to λ1 come from additionally including spatial plaquettes and are known

up to order uNτ+10 [89].

Interactions between Polyakov loops in higher representations start at higher order

in u. The next contribution comes from the interaction between loops in the adjoint

representation,

−Seff =
∑
<ij>

log(1 + λa(χ(Wi)χ(Wj))), λa =
9

8
u2Nτ +O(u2Nτ+1) (4.8)

with χa(Wi) = |L|2 − 1 [94]. Corrections to the coupling λa, again originating from the

introduction of spatial plaquettes, are known up to order u2Nτ+6 [89]. Contributions

from higher representations have also been investigated in [95].

Interaction over larger distances, i.e. next to nearest neighbours, begin at distance
√

2a and with order u2Nτ+2,

−Seff =
∑
<k,l>

log(1 + λ2(LkL
∗
l + L∗kLl)), λ2 = u2Nτ+2 +O(u2Nτ+4). (4.9)

1Higher orders of af up to O(β14) can be found in [42]
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The effects of long range interaction in the effective theory was investigated in [96].

In [90] it was shown that already the one coupling model, which only includes λ1,

is sufficient to determine the continuum pure gauge deconfinement temperature as

Tc = 250(14)MeV. Since the pure gauge deconfinement transition is of first order,

perturbation theory will break down in the deconfined phase. This sets the limit for the

temperature range that can be described by the effective theory. All thermodynamical

quantities inside of this range are described well, while correlation functions suffer from

neglecting larger distance interaction terms [96].

4.3 Hopping Parameter Expansion

We will now proceed to perform the expansion of the quark determinant around the

limit of static quarks, i.e. κ = 0 [42]. We will first perform the expansion in the strong

coupling limit, i.e. β = 0. The pure gauge contribution shown in the last section can be

included independently from the results shown here. Mixing terms, coming from graphs

that receive contributions from both the strong coupling and the hopping parameter

expansion, will be discussed in section 4.4.

We begin the hopping parameter expansion with the Wilson Dirac operator, eq. 3.15,

which we rewrite as

Qf [U ] = 1− κfM [U ], (4.10)

with the hopping matrix M [U ]. The quark determinant is then expanded as

det[1− κfM ] = exp(Tr log[1− κfM ]) = exp
( ∞∑
l=1

κf
l

TrM l
)

(4.11)

Due to the Kronecker deltas in eq. 3.15 only closed loops, build out of consecutive links,

will give a non-vanishing contribution. The hopping expansion therefore is an expansion

in terms of closed quark lines of length l.

4.3.1 Static quark determinant

The first step in our derivation is the calculation of the static quark determinant. This

is the part of the determinant that describes static, i.e. infinitely heavy, quarks. All

corrections to this limit are contained in the remainder part, which we call kinetic

determinant. As we will see the static part of the determinant can be calculated exactly.

The kinetic part will later be derived order by order in κ ∝ 1
mq

.
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We begin by splitting up M [U ] into temporal and static hoppings 2. For the sake of

simplicity we will first treat the Nf = 1 case and drop the flavor index. The introduction

of multiple flavors will be postponed to section 4.6. We split up the hopping matrix to

rewrite the determinant as

det
c,s,x

Qx,y = det[1− T+
x,y − T−x,y −

3∑
i=1

S+
x,y,i −

3∑
i=1

S−x,y,i]. (4.12)

Here we also introduced the indices c,s and x to show the determinant to be in color,

spin and coordinate space. The respective hopping terms are

S+
x,y,i = κ(1− γi)Ui(x)δy,x+i,

S−x,y,i = κ(1 + γi)U
†
i (y)δy,x−i,

T+
x,y = κeaµ(1 + γ4)U4(x)δy,x+4̂,

T−x,y = κe−aµ(1− γ4)U †4(y)δy,x−4̂. (4.13)

These matrices only have non-vanishing entries for positions x and y that are nearest

neighbours. We will therefore in the following use the notation Sx,y,i = Sx,x+i in order

to reduce the number of indices. Rewriting the hopping matrix like in eq. 4.12 allows

us to split up the fermion determinant into a static and a kinetic part,

det
c,s,x

Q = detQstat detQkin, detQstat = det[1− T+
xy − T−xy]. (4.14)

For now, we are only interested in the static determinant, therefore we will postpone all

considerations regarding the kinetic part to section 4.3.2.

The delta functions in eq. 4.13 mean that we will only have non-vanishing contri-

butions for closed quarks lines. As long as we are in the static limit, where we neglect

spatial hops, the only possibility to form a closed quark line is by looping around the

lattice through the temporal boundary. Such a loop is equivalent to a temporal Wilson

line, i.e. an untraced Polyakov loop, cf. eq. 4.3. Using this we can, after inserting

the definition for the temporal hoppings and using the fact that (1 + γ4)2 = 2(1 + γ4),

calculate the coordinate space determinant and get

det
c,s,x

Qstat =
∏
~x

det
c,s

[1 +
1

2
(2κ)Nτ eNτaµ(1 + γ4)Wx]det

c,s
[1 +

1

2
(2κ)Nτ e−Nτaµ(1− γ4)W †x ].

(4.15)

The additional minus sign compared to eq. 4.14 is caused by the antiperiodic temporal

boundary conditions. In order to evaluate the spin determinant we use fact that det
s

[1+

2We will in the following use the expression ”hopping” to refer to the terms given in eq. 4.13, i.e. a
quark line connecting neighbouring lattice sites.
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α(1± γµ)] = [1 + 2α]2. We get

det
c,s,x

Qstat =
∏
~x

det
c

[1 + h1(µ,Nτ )Wx]2det
c

[1 + h1(µ,Nτ )W †x ]2. (4.16)

Here we have introduced the effective couplings for static quarks and anti-quarks,

h1 = (2κ)Nτ eNτaµ = eNτ (aµ+ln(2κ))

h̄1 = (2κ)Nτ e−Nτaµ = eNτ (−aµ+ln(2κ)). (4.17)

Both couplings will receive gauge corrections once we leave the strong coupling limit,

see section 4.4. The color determinant can be computed from the fact that for a SU(3)

matrix U we can write [97]

det
c

[1 + αU ] = 1 + αTrU + α2TrU † + α3. (4.18)

Using this relation we get the final expression for the static quark determinant,

det
c,s,x

Qstat =
∏
~x

(1 + h1L~x + h2
1L
†
~x + h3

1)2(1 + h̄1L
†
~x + h̄2

1L~x + h̄3
1)2. (4.19)

The new degrees of freedom are now traces over temporal Wilson lines, i.e. Polyakov

loops, L = Tr W .

As the final step we now have to perform the integration over spatial links, but since

we neglected those in order to obtain the static limit this does not change the result. The

partition function for a system of static quarks in the strong coupling limit is therefore

Z =

∫
[dU4]e−

∫
[dUi] Sstat

=

∫
[dU4]

∏
~x

(1 + h1L~x + h2
1L
†
~x + h3

1)2(1 + h̄1L
†
~x + h̄2

1L~x + h̄3
1)2 (4.20)

This partition function describes a system of static quarks and converges to full LQCD

only in the limit of κ → 0, i.e. the infinite quark mass limit. To populate the lattice

with (anti)-quarks we have to take the limit aµ→∞(−∞), while keeping the coupling

constant h1(h̄1) fixed. Note that in this limit it is only possible to have either quarks

or anti-quarks on the lattice, because at least one of the coupling constants is always

zero. As will be discussed in section 5.1, the Polyakov loops L can be parameterised in

terms of two angles, so eq. 4.20 describes a three dimensional spin model. This action,

including leading orders of the pure gauge contributions discussed in section 4.2, has

been studied as an effective theory for heavy quark QCD at finite chemical potential

before, using Complex Langevin dynamics to avoid the sign problem [56, 57, 59, 60]. It

is also possible to recast it into a flux representation that is sign problem free [90, 98].
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As we will discuss in chapter 6 we can also compute this partition function analytically.

4.3.2 Kinetic Quark Determinant to Leading Order

We are now ready to expand the kinetic part of the determinant, which we split off in

eq. 4.14. The determinant, after factoring out the static part, becomes

detQ = detQstat detQkin

= det[1− Tx,y] det[1−
S+
x,x+i + S−x,x+i

1− T ]

= det[1− Tx,y] det[1− P −M ], (4.21)

with the abbreviation Tx,y = T+
x,y + T−x,y. We introduced two new quantities, P = Px,i

and M = Mx,i. They contain the static quark propagator, (1 − Tx,y)−1, followed by a

spatial hopping to a neighbouring lattice site. Our first step is therefore to calculate the

static propagator, after that we will be able to expand the kinetic quark determinant as

det[1− P −M ] = exp(Tr

∞∑
n=1

[− 1

n
(P +M)n]). (4.22)

The leading order in the expansion of the kinetic determinant consists of truncating the

sum in eq. 4.22 at n = 2. Since an equal number of P and M is required in order to

form a closed loop 3 the n = 1 term as well as the n = 2 contributions proportional to

PP and MM vanish. Each spatial hopping comes with a factor of κ, we therefore find

the leading contribution to be of order O(κ2) 4. We get

detQkin = exp
(
−
∑
ij

TrPiMj +O(κ4)
)
. (4.23)

The requirement of closed loops means that we can set i = j, i.e. forward and backward

hoppings happen in the same spatial direction. To find the expressions for P and M we

need to calculate the static quark propagator Q−1
stat = (1 − T−1

x,y ). This is simplified by

the observation that graphs involving backtracking, i.e. 180◦ turns, give no contribution

since (1 + γµ)(1 − γµ) = 0. We can therefore split the static propagator into forward

3This is not true when we consider finite lattices with periodic boundary conditions, but since we are
interested in the thermodynamical limit we will neglect finite size corrections.

4This convention of course neglects the fact that h1 and h̄1 are already of order κNτ , but since we
have h1 = O(1) in finite density systems those can not serve as expansion parameters. It therefore makes
sense to order the expansion in terms of spatial hoppings.
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and backward, i.e. quark and anti-quark, propagation,

(Qstat)
−1
x,y = (1− T+

x,y − T−x,y)−1

= (1− T+
x,y)
−1 + (1− T−x,y)−1 − 1

= (Q+
stat)

−1 + (Q−stat)
−1 − 1. (4.24)

We will start with calculating the static quark propagator (Q+
stat)

−1. Since no spatial

propagation is involved, we can fix ~x = ~y, so propagation will be from time τx to τy. In

the case that τx = τy we get

(Q+
stat)

−1
τx,τx = 1− h1

1
2(1 + γ4)W

1 + h1W
. (4.25)

The leading one comes from the possibility to move from τx to τx by making no movement

at all. Alternatively, the quark can travel an arbitrary number of times around the

temporal extent of the lattice, i.e. have infinitely many windings. These can be summed

up as a geometric sum resulting in the second term.

Considering next the case that τx 6= τy we have two separate contributions, coming

from τx > τy and τx < τy,

(Q+
stat)

−1
τx 6=τy = h

τy−τx
Nτ

1

1
2(1 + γ4)W (τx, τy)

1 + h1W
[θ(τy − τx)− h1θ(τx − τy)]. (4.26)

We write W (τx, τy) to denote a temporal Wilson line going from τx to τy in the positive

time direction. Such a partial winding is proportional to the fractional static quark

coupling constant h
τy−τx
Nτ

1 . Note how we can reach an earlier timeslice by crossing the

antiperiodic boundaries, adding an additional minus sign. We get the complete positive

propagator by combining the cases τx = τy and τx 6= τy
5,

(Q+
stat)

−1
xy = δτx,τy(1− q h1W ) + q h

τy−τx
Nτ

1 W (τx, τy)[θ(τy − τx)− h1θ(τx − τy)],

q =
1
2(1 + γ4)

1 + h1W
. (4.27)

The static anti-quark propagator is derived equivalently by making the replacements

τx ↔ τy, W (τx, τy)↔W (τx, τy)
† µ↔ −µ. (4.28)

5We use the convention θ(0) = 0.
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Doing so we get

(Q−stat)
−1
xy = δτx,τy(1− q̄h̄1W

†) + q̄h̄1

τx−τy
Nτ W †(τx, τy)[θ(τx − τy)− h̄1θ(τy − τx)],

q̄ =
1
2(1− γ4)

1 + h̄1W †
. (4.29)

W †(τx, τy) now denotes a string of temporal links connecting the timeslices τx and τy in

the negative time direction.

For the following calculations it will prove convenient to furthermore split up the

static propagator according to

(Qstat)
−1
xy = A+

xy + γ4B
+
xy +A−xy − γ4B

−
xy. (4.30)

The respective terms then read

A+
xy =

1

2

[
1− h1W

1 + h1W

]
δxy +

1

2
h
τy−τx
Nτ

W (τx, τy)

1 + h1W

[
θ(τy − τx)− h1θ(τx − τy)

]
δ~x,~y,

B+
xy = −1

2

h1W

1 + h1W
δxy +

1

2
h
τy−τx
Nτ

W (τx, τy)

1 + h1W

[
θ(τy − τx)− h1θ(τx − τy)

]
δ~x,~y,

A−xy =
1

2

[
1− h̄1W

†

1 + h̄1W †

]
δxy +

1

2
h̄
τy−τx
Nτ

W †(τx, τy)

1 + h̄1W †

[
θ(τx − τy)− h̄1θ(τy − τx)

]
δ~x,~y,

B−xy = −1

2

h̄1W
†

1 + h̄1W †
δxy +

1

2
h̄
τy−τx
Nτ

W †(τx, τy)

1 + h̄1W †

[
θ(τx − τy)− h̄1θ(τy − τx)

]
δ~x,~y. (4.31)

This completes our derivation of the static quark propagator. We can proceed to calcu-

late the leading order of the kinetic determinant. Inserting the definitions of P and M

the leading order, eq. 4.23, reads

detQkin = exp(TrPM +O(κ4))

= exp(
∑
x,y,i

Tr[(Qs)
−1
x,yS

+
y,y+i(Qs)

−1
y+i,x+iS

−
x+i,x] +O(κ4)). (4.32)

This corresponds to propagation in the temporal direction, followed by a spatial hop to

a neighbouring lattice site, then temporal propagation and finally a spatial hop back to

the original site. Inserting the definition of the static quark propagator and the spatial

hoppings, while using the abbreviation Ax,y = A+
x,y + A−x,y and Bx,y = B+

x,y − B−x,y, we

can write this as

detQkin = exp
(
− κ2

∑
x,y,i

Tr[(Ax,y + γ4Bx,y)(1 + γi)Ui(y)

× (Ay+i,x+i + γ4By+i,x+i)(1− γi)U †i (x)] +O(κ4)
)

(4.33)

We now see the benefit of splitting up the static quark propagator as we did in eq. 4.30,
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since after we evaluate the Dirac matrices the terms proportional to Ax,y drop out. The

kinetic quark determinant is then equal to

exp
(
− 8κ2

∑
x,y,i

Tr[(B+
x,y −B−x,y)Ui(y)(B+

y,x −B−y,x)U †i (x+ i)] +O(κ4)
)
. (4.34)

Now we have to perform the integration over spatial links. Since this can not be done

for links in the exponential we have to expand,∫
[dUi] exp(Tr

∑
x,y,i

Px,iMy,i) = 1 +

∫
[dUi]Tr

∑
x,y,i

Px,iMy,i +O(κ4). (4.35)

Furthermore, we need the following group integrals [99]∫
dUUij = 0∫
dUU †ij = 0∫

dUUijU
†
kl =

1

Nc
δilδjk (4.36)

This means graphs involving single occupied spatial links vanish, implying that we have

to set x4 = y4. Since Ax,y and Bx,y describe purely temporal propagation we already

know that ~x = ~y, so we can set x = y. Performing the integration this leads to

−
∫

[dUi]
∑
x,i

Tr[(Qs)
−1
x,xS

+
x,x+i(Qs)

−1
x+i,x+iS

−
x+i,x(Qs)

−1
x,x] =

−8
κ2

Nc

∑
x,i

Tr[B+
x,x +B−x,x]Tr[B+

x+i,x+i +B−x+i,x+i]. (4.37)

Now that the action does no longer depend on spatial links we can perform the sum over

all temporal positions. This changes the sum to a sum over spatial positions, making

the action three dimensional. Bx,x does not depend on x4, so we only have to introduce

an additional factor of Nτ . Inserting the definition for Bx,x we get the final expression

for the kinetic determinant to leading order,

∫
[dUi] detQkin = 1− 2

κ2Nτ

Nc

∑
~x,i

(
Tr

h1W~x

1 + h1W~x
− Tr

h̄1W
†
~x

1 + h̄1W
†
~x

)

×
(

Tr
h1W~x+i

1 + h1W~x+i
− Tr

h̄1W
†
~x+i

1 + h̄1W
†
~x+i

)
+O(κ4). (4.38)

The leading correction to the static quark limit is therefore a nearest neighbour inter-

action. This can take place between two quarks, two anti-quarks or between a quark

and an anti-quark. Like in the static case there is no more dependence on temporal



Chapter 4. Effective Theory for QCD 45

coordinates. To characterize the nearest neighbour interaction strength we introduce

the coupling

h2(κ,Nτ ) =
κ2Nτ

Nc
. (4.39)

Like the static quark couplings this will receive gauge corrections once we introduce a

finite β. Those corrections will be discussed in section 4.4.

Note that our degrees of freedom changed from Polyakov loops, as in the static case,

to Tr h1W
1+h1W

, i.e. traces over all powers of temporal Wilson lines. This happened due to

the resummation over all possible winding numbers. In appendix C we show that it is

always possible to exactly rewrite the action in terms of Polyakov loops.

The action involving the sum over all winding numbers is far superior to the unre-

summed version which was given in [90]. The reason for that is that at the onset to the

region of finite baryon density h1 will be large. High winding numbers will therefore give

a significant contribution. In the limit of high chemical potential µ we have h1 → ∞.

The unresummed action, which is proportional to h1Tr W , will therefore diverge. The

resummed action in contrast becomes constant, leading to the expected behaviour of

lattice saturation once the lattice is filled with quarks. The resummed version therefore

gives the correct behaviour for all values of µ, while the truncated version is limited to

small values of µ.

4.3.3 Kinetic Quark Determinant to Next to Leading Order

We will now proceed to calculate the fermion determinant to next to leading order, i.e.

to order O(κ4). For this we have to include the n = 4 case in eq. 4.22. An additional

contribution arises from the expansion of the exponential in eq. 4.35.

Including n = 4 in eq. 4.22 results in

exp(Tr

∞∑
n=1

[− 1

n
(P +M)n]) =

exp(−
∑
i

TrPiMi −
∑
ijkl

TrPiPjMkMl −
1

2

∑
ijkl

TrPiMjPkMl) +O(κ6). (4.40)

As previously, only closed quark lines give a contributions, so we dropped terms that

contain an unequal number of P s and Ms. Furthermore we have to enforce restrictions

on the spatial directions by introducing the delta functions δi+j−k−l for the PPMM and

δi−j+k−l for the PMPM term. Evaluating those we get multiple distinct contributions
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from both terms,

∑
ijkl

TrPiPjMkMl δi+j−k−l =
∑
i 6=j

TrPiPjMjMi +
∑
i,j

TrPiPjMiMj∑
ijkl

TrPiMjPkMl δi−j+k−l =
∑
i

TrPiMiPiMi +
∑
i 6=j

TrPiMiMjMj

+
∑
i 6=j

TrPiMjPjMi. (4.41)

As can be seen those terms describe lines and wedges of length 2a. An exception is the

term PiPjMiMj , that forms a square if i 6= j. The restrictions in the sums have to be

introduced in order to avoid overcounting. The last O(κ4) contributions comes from the

expansion of eq. 4.35,

exp(−
∑
~x,i

TrPx,iMx,i) = 1−
∑
~x,i

TrPx,iMx,i

+
∑
x,i

∑
y,j

TrPx,iMx,iTrPy,jMy,j +O(κ6). (4.42)

Since here we have two independent sums and two traces this term describes mostly

disconnected diagrams and is quadratic in the lattice volume. In section 4.5 we will

demonstrate how terms like this can be resummed.

We start with the first term in eq. 4.41. Inserting again the definitions for the hopping

terms and remembering that spatial hops have to take place at the same timeslices we

get

∑
i,j

TrPiPjMjMi =
∑
x,y,i,j

Tr[(Q−1
s )xxS

+
x,x+i(Q

−1
s )x+i,y+iS

+
y+i,y+i+j

(Q−1
s )y+i+j,y+i+jS

−
y+i+j,y+i(Q

−1
s )y+i,x+iS

−
x+i,x]

= κ4
∑
i,j

Tr[(A− γ4B)(1 + γi)Ui(x)(A+ γ4B)(1 + γj)Uj(y + i)

(A+ γ4B)(1− γj)U †j (y + i)(A+ γ4B)(1− γi)U †i (x)] (4.43)

As in the previous section several terms drop out when we evaluate the Dirac matrices,

∑
i,j

TrPiPjMjMi =

32κ4
∑
x,y,i,j

Bx,xUi(x)Ax+i,y+iUj(y + i)By+i+j,y+i+jU
†
j (y + i)Ay+i,x+iU

†
i (x). (4.44)
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We are again only dealing with doubly occupied spatial links. We therefore use eq. 4.36

to perform the integration,∫
[dUi]

∑
i,j

TrPiPjMjMi = 32
κ4

N2
c

∑
x,y,i,j

TrBx,xTrAx+i,y+iAy+i,x+iTrBy+i+j,y+i+j .

(4.45)

Since Ax,y describes temporal propagation we can set ~x = ~y. After that we perform the

sums over temporal positions and insert the definitions for A and B,

−
∫

[dUi]
∑
i,j

TrPiPjMjMi = 2
κ4Nτ (Nτ − 1)

N2
c

∑
~x,i,j

Tr
( h1W~x

1 + h1W~x
− h̄1W

†
~x

1 + h̄1W
†
~x

)

Tr
( h1W~x+i

(1 + h1W~x+i)2
−

h̄1W
†
~x+i

(1 + h̄1W
†
~x+i)

2
− 2

1
Nτ−1

∑Nτ−1
t=1 (2κ)2t

(1 + h1W~x+i)(1 + h̄1W
†
~x+i)

)
Tr
( h1W~x+i+j

1 + h1W~x+i+j
−

h̄1W
†
~x+i+j

1 + h̄1W
†
~x+i+j

)
−2

κ4Nτ

N2
c

∑
~x,i,j

Tr
( h1W~x

1 + h1W~x
− h̄1W

†
~x

1 + h̄1W
†
~x

)
Tr
(

1− h1W~x+i

(1 + h1W~x+i)
+ 1−

h̄1W
†
~x+i

1 + h̄1W
†
~x+i

)2

Tr
( h1W~x+i+j

1 + h1W~x+i+j
−

h̄1W
†
~x+i+j

1 + h̄1W
†
~x+i+j

)
. (4.46)

There are two distinct contributions. The first one is proportional to Nτ (Nτ − 1). It

stems from the sum over the terms where x4 6= y4. The second one is proportional to Nτ ,

accounting for the case where x4 = y4. They differ in the value of TrAx+i,y+iAy+i,x+i.

In the case of x4 6= y4 the two propagators, Ax+i,y+i and Ay+i,x+i, are both fractional

Wilson lines, but together they form one closed loop around the lattice. Both partial

propagations can be followed by an arbitrary number of complete loops, accounting for

the square in the denominator. The term containing the sum over 2κ describes the case

where forward and backward propagation mixes 6. The case where x4 = y4 is somewhat

simpler. Both propagators describe full windings around the temporal dimension.

Due to the length of the expressions, the remainder of the κ4 action is shown in

appendix A. This completes our discussion of the derivation of the hopping parameter

expansion in the strong coupling limit. We will now proceed with the derivation of gauge

corrections.

6Since this is intermitted by spatial hoppings, which can not be seen any more since they have been
integrated out, this does not violate the restriction concerning backtracking.
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Figure 4.1: Left: Static quark coupling h1 truncated at orders κ2, κ4 and κ6 at
β = 6, Nτ = 10. Right: h1 truncated at order u3, u4 and u5 at κ = 0.25, Nτ = 10.

4.4 Gauge Corrections

The pure gauge contribution was already discussed in section 4.2, but moving away from

the strong coupling limit also introduces mixing terms. We use this term to describe

diagrams that contain graphs coming from the strong coupling as well as graphs coming

from the hopping parameter expansion. Such diagrams contain gauge plaquettes as well

as quark lines. Many of those new contributions reduce to graphs already present in

the strong coupling limit after the spatial link integration has been performed. We can

therefore absorb them into the respective coupling constants, so we will get h1(κ) =

h1(β, κ) , h2(κ) = h2(β, κ), and so on. These contributions are presented in section

4.4.1, while the new interactions are shown in section 4.4.2. Since there is an infinite

number of possible gauge corrections to all of our couplings we additionally have to

check their convergence by comparing different truncations in u(β). Finally, there are

fermionic corrections that get absorbed into the gauge couplings, λ1(β) = λ1(β, κ). We

will discuss those in 4.4.3.

4.4.1 Corrections to Fermion Couplings

The gauge corrections for h1 are [90, 100] 7

h1(u, κ,Nτ ≥ 3) = exp
[
Nτ (µ+ ln(2κ))

]
exp

[
6Nτκ

2u
(1− uNτ−1

1− u + 4u4

− 12κ2 + 9k2u+ 4κ2u2 − 4κ4
)]

(4.47)

The anti-quark coupling h̄1 receives the same corrections. In fig. 4.1 we compare different

truncations of h1 to test the convergence of the expansion in κ and u(β). As can be

seen, h1 (and therefore h̄1) is convergent up to large values of κ and values of β ≈ 6.

7Two prefactors given in [90] are wrong, we therefore replace them with the correct one from [100].
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Figure 4.2: Left: Convergence of the nearest neighbour coupling h2, truncated at
order u4 and u5 and plotted vs. β with Nτ = 10, κ = 0.1. Right: h2 truncated at order
κ2 and κ5, plotted vs κ with Nτ = 10 and β = 6. Both lines lie on top of each other.

We already gave the leading gauge corrections for the nearest neighbour coupling h2

in [91], the next corrections are

h2(κ,Nτ , u) =
κ2Nτ

Nc

(
1 + 2

u− uNτ
1− u + 8u5 + 16κ3u4

)
. (4.48)

The leading correction comes from graphs where the two spatial quark hoppings happen

at separate locations. Since the integration rule eq. 4.36 enforces links to be at least

doubly occupied we have to fill the area between them with gauge plaquettes. This can

be done with up to Nτ − 1 plaquettes and is summed up. The factor of two accounts for

the possible orientations the plaquettes can take. The next correction that is not already

included in this sum is of order u5 and comes from attaching a cube out of five plaquettes

onto quark hoppings separated by distance a. This can be done in four different spatial

directions and in two different orientations. The final contribution comes from graphs

where one of the plaquettes in the cube is replaced by three additional quark hoppings.

Fig. 4.2 shows the value of h2 truncated to different orders in u and plotted against

β. As can be seen including the corrections up to order u5 should be sufficient to have

good convergence up to values of β ≈ 6. The leading κ correction is negligible up to

high values of κ.

We now proceed to consider the couplings for the κ4 graphs. We start with the two

point interactions, eq. A.2 and eq. A.3. We begin with the terms that only contain

double occupied spatial links, i.e. the parts of eq. A.2 and eq. A.3 that are proportional

toNτ (Nτ−1). We are going to call the coupling constant for those terms h31 . Calculating

corrections up to O(u5) and O(κ3u4) we get
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time

space

Figure 4.3: The leading gauge correction to h33 , created by inserting a single gauge
plaquette, before and after the spatial link integration. To the next order one can
attach another plaquette to the first one, or start inserting plaquettes to the other

spatial quark links.

h31(Nτ = 2) =
Nτ (Nτ − 1)κ4

N2
c

,

h31(Nτ = 4) =
Nτ (Nτ − 1)κ4

N2
c

[
1 +

8

3

(
u+ u2 + 4u5 + 8κ3u4

)]
,

h31(Nτ = 6) =
Nτ (Nτ − 1)κ4

N2
c

[
1 +

2

5

(
8u+ 12u2 + 12u3 + 8u4 + 32u5 + 64κ3u4

)]
,

h31(Nτ = 8) =
Nτ (Nτ − 1)κ4

N2
c

[
1 +

8

7

(
3u+ 5u2 + 6u3 + 6u4 + 17u5 + 24κ3u4

)]
,

h31(Nτ > 8) =
Nτ (Nτ − 1)κ4

N2
c

[
1 +

4u(2−Nτ +Nτu)

(Nτ − 1)(u− 1)3
+

20(Nτ − 6)

Nτ − 1
u5

+
40(Nτ − 6)

Nτ − 1
κ3u4]. (4.49)

As in the case of the h2 corrections the leading orders come from adding plaquettes

to the area enclosed by the two Polyakov loops. The O(u5) correction again contains

contributions from adding a cube of plaquettes, and the κ dependent correction from

replacing two plaquettes of the cube with quark hoppings.

In the case of two point interactions with all four spatial links sharing one position,

i.e. the contributions proportional to κ4Nτ in eq. A.2 and eq. A.3, the gauge corrected

coupling constant is

h32(Nτ ≥ 2) =
κ4Nτ

N2
c

[
1 + 4

u− uNτ
1− u + 16u5 + 32κ3u4

]
. (4.50)

These corrections are derived analogously to the h2 case, but with an additional factor

of two due to the possibility to swap spatial quark lines.

The remaining terms, eq. A.4 , eq. A.5 and A.6 are three point interactions. Their

coupling constant is

h33(Nτ ≥ 2) =
κ4N2

τ

N2
c

[
1 + 4

(1− uNτ )(u− uNτ )

(1− u)2
+ 16u5 + 32κ3u4

]
. (4.51)
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Figure 4.4: Coupling constants h31 , h32 and h33 truncated at order u3, u4 and u5,
plotted vs. β with Nτ = 10, κ = 0.1.

Again we can sum up contributions coming from inserting plaquettes between the

Polyakov loops, but since we now have three loops we have a double sum. The other

corrections are derived as in the previous cases.

In fig. 4.4 we show the coupling constant h31 , h32 and h33 truncated at different

orders in u(β). As can be seen the gauge corrections converge well up to values of β ≈ 6.

Since the κ dependent corrections are similarly small as for the h2 coupling we do not

show the respective plots.

4.4.2 New Interactions at finite β

An entirely new contributions comes from the term TrPiPjMiMj in eq. 4.41, which

we neglected because its contributions vanishes for β = 0. This is because it forms a

square and therefore has only singly occupied spatial links. But considering finite values

of β, it becomes non-vanishing when we insert a gauge plaquette inside of the square.

This requires all spatial hoppings to happen in the same timeslice, the contribution is
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Figure 4.5: Coupling constant h34 truncated to order u and u5, κ = 0.1, Nτ = 10.

therefore proportional to κ4uNτ . Inserting the definitions for P and M we get

−
∫

[dUk]
∑
i 6=j

TrPiPjMiMj = Ncκ
4u
∑
x,i 6=j

Tr
[
U †j (x+ i)U †i (x)Uj(x)Ui(x+ j)

]
Tr
[
(Ax,x + γ4Bx,x)Ui(x)(1 + γi)(Ax+i,x+i + γ4Bx+i,x+i)Uj(x+ i)(1 + γj)

(Ax+i+j,x+i+j + γ4Bx+i+j,x+i+j)U
†
i (x+ j)(1− γi)(Ax+j,x+j + γ4Bx+j,x+j)U

†
j (x)(1− γj)

]
.

(4.52)

After evaluating the gamma matrices and performing the spatial link integration this

gives

−
∫

[dUk]
∑
i 6=j

TrPiPjMiMj =

8
κ4u

N3
c

∑
x,i 6=j

[
TrAx,xTrAx+i,x+iTrAx+i+j,x+i+jTrAx+j,x+j

−TrBx,xTrBx+i,x+iTrAx+i+j,x+i+jTrAx+j,x+j

−TrBx,xTrAx+i,x+iTrBx+i+j,x+i+jTrAx+j,x+j

−TrAx,xTrBx+i,x+iTrBx+i+j,x+i+jTrAx+j,x+j

−TrBx,xTrAx+i,x+iTrAx+i+j,x+i+jTrBx+j,x+j

−TrAx,xTrBx+i,x+iTrAx+i+j,x+i+jTrBx+j,x+j

−TrAx,xTrAx+i,x+iTrBx+i+j,x+i+jTrBx+j,x+j

+TrBx,xTrBx+i,x+iTrBx+i+j,x+i+jTrBx+j,x+j

]
. (4.53)

Like in the case of the other O(κ4) contributions the final result after performing the

temporal sum has been moved to appendix A. The coupling constant for this term,
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Figure 4.6: Gauge constant λ1 truncated to orders κ4 and κ6. Parameters are β =
6, Nτ = 4, Nf = 3.

including leading gauge corrections, is

h34(Nτ ≥ 2) =
1

2

κ4uNτ

N3
c

[
1 + 4u4 + 16u3κ3

]
. (4.54)

The convergence of the gauge corrections for h34 are shown in fig. 4.5. Like for the other

coupling constants, κ dependent corrections seem to be negligible, while the convergence

in β is good up to β ≈ 6.

4.4.3 Fermion Corrections to the Gauge Action

We now want to discuss fermionic contributions to λ, i.e. λ(β,Nτ ) = λ(β,Nτ , κ). The

leading order correction was already given in [90]. It comes from the possibility to replace

any gauge plaquette by four quark hoppings. Since this can be done for every plaquette

we can absorb this contribution into an overall shift in β, by making the correction

β → β + 48Nfκ
4. (4.55)

The next contribution comes from replacing two adjacent plaquettes in the graphs lead-

ing to the leading interaction 4.7 with six quark hoppings, giving 8

λ(β, κ) = uNτ +
16NfNτκ

6

9u2
. (4.56)

Since this only applies to adjacent plaquettes this contribution can not be absorbed into

an overall shift in β.

In fig. 4.6 we again check the convergence of λ1 by truncating it at different orders

in κ. Fermionic corrections to λ1 seem to become sizable at κ > 0.1 .

8For higher corrections of λ1 in u and the respective truncation error see [89].
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4.5 Resummation of the effective action

The 4 dimensional action we started with was written in the exponential. We had to ex-

pand it in order to perform the spatial link integrals. Neglecting anti-quark contributions

for brevity the κ2 theory we derived so far reads

Z =

∫
[dU4] Qstat

(
1− h2

∑
~x,i

Tr
h1W~x

1 + h1W~x
Tr

h1W~x+i

1 + h1W~x+i

)
. (4.57)

The κ2 truncation will only be a good approximation if the O(κ2) contributions are

small, i.e. if the sum in eq. 4.57 times h2 is much smaller than one. Since the sum

goes over all spatial positions convergence depends on the lattice size, meaning that the

thermodynamical limit only exists in the limit of κ→ 0.

To get a finite result for κ 6= 0 we need to resum the effective action, bringing it back

into an exponentiated form. Taking the leading O(κ2) term and searching for suitable

κ4 terms we see that this is indeed possible. The O(κ4) contribution from eq. 4.42 can

be used as the next order in the resummation. Taking both contributions we can write

1− 2
κ2Nτ

Nc

∑
~x,i

Tr
h1W~x

1 + h1W~x
Tr

h1W~x+i

1 + h1W~x+i

+2
κ4Nτ (Nτ − 1)

N2
c

∑
~x,~y,i,j

Tr
h1W~x

1 + h1W~x
Tr

h1W~x+i

1 + h1W~x+i
Tr

h1W~y

1 + h1W~y
Tr

h1W~y+j

1 + h1W~y+j
+O(κ6)

= exp
[
− 2

κ2Nτ

Nc

∑
~x,i

Tr
h1W~x

1 + h1W~x
Tr

h1W~x+i

1 + h1W~x+i

]
+O

(κ4Nτ

N2
c

)
. (4.58)

This resummation improves the convergence by including an infinite number of graphs.

Inspection of higher order terms indicates that this should be valid to all orders. Since

the term we found was of order Nτ (Nτ−1) instead of order N2
τ , the resummation requires

the introduction of counterterms that are of subleading order in Nτ in order to avoid

overcounting.

This completes our derivation of the effective theory. We will end the chapter by

demonstrating how to introduce multiple flavors in section 4.6, and discussing the limit

of low temperatures and high chemical potential in section 4.7.

4.6 Multiple Flavors

So far we only considered the Nf = 1 case. Introducing another flavor means adding a

second quark determinant, cf. eq. 3.19, so for Nf = 2 we have

Z =

∫
[dU4] detQu detQd e

−Sg . (4.59)
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Each new flavor also introduces a new hopping parameters, so we now have κu and κd.

The static strong coupling approximation for two flavors is therefore

Z =

∫
[dU4]

∏
~x

(1 + h1,uL~x + h2
1,uL

∗
~x + h3

1,u)2(1 + h1,dL~x + h2
1,dL

∗
~x + h3

1,d)
2, (4.60)

with h1,u and h1,d being the static coupling constants for the respective quark flavors.

The kinetic quark determinant, eq. 4.22, becomes

det[1− Pu −Mu] det[1− Pd −Md] =

exp
(

Tr
∞∑
n=1

[− 1

n
(Pu +Mu)n]) + Tr

∞∑
n=1

[− 1

n
(Pd +Md)

n]
)
. (4.61)

A great simplification arises when we consider degenerate quarks, κu = κd. In the case

of Nf degenerate quarks the expansion of the kinetic quark determinant simplifies to

Q
Nf
kin = exp(NfTr

∞∑
n=1

[− 1

n
(P +M)n]). (4.62)

In this case all expressions we derived so far stay the same, only the appropriate factors

of Nf have to be introduced. We will use the approximation of multiple degenerate

flavors in the chapters 5 and 6 to investigate QCD with Nf = 2, 3 heavy quarks.

4.7 Cold Dense Limit

The action derived so far can be simplified enormously when going to the cold dense

limit. The limit of low temperatures T = 1
aNτ

is reached by taking Nτ → ∞. In this

limit only terms that are of leading order in Nτ will be relevant. This means that terms
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in appendix A that are proportional to κ4Nτ are of subleading order compared to terms

proportional to κ4N2
τ and therefore can be neglected.

The dense limit is reached when the chemical potential µB becomes comparable to

the baryon mass mB, so that h1 = O(1). Fig. 4.7 shows that in this limit the anti-quark

coupling h̄1 goes to zero exponentially. This means that when investigating systems with

large density, contributions proportional to h̄1 can be safely neglected. Terms contain-

ing both quark and anti-quark propagators, i.e. mesonic terms, are not exponentially

suppressed in this limit. But since h1h̄1 = (2κ)Nτ , those become suppressed in the limit

of large Nτ .

An additional simplification arises since the pure gauge couplings λ1, λ2 and λa go

to zero in the limit Nτ → ∞. This can be seen from the fact that the lowest order

contribution of all gauge coupling is at least O(uNτ ). Since we have u < 1 for all β

this will vanish if we take Nτ → ∞ while keeping β fixed. Gauge corrections in the

low temperature limit can therefore be completely absorbed into the fermionic coupling

constants.

We therefore can approximate the complete O(κ4) action, including gauge contribu-

tions, as

Seff =−
∑
~x

ln[1 + h1TrW~x + h2
1TrW †~x + h3

1]

+ 2h2

∑
~x,i

Tr
h1W~x

1 + h1W~x
Tr

h1W~x+i

1 + h1W~x+i

− 2h2
2

∑
~x,i

(
Tr

h1W~x

1 + h1W~x

)2(
Tr

h1W~x+i

1 + h1W~x+i

)2

− 2h2
2

∑
~x,i

Tr
h1W~x

(1 + h1W~x)2
Tr

h1W~x+i

(1 + h1W~x+i)2

− h3,3

∑
~x,i,j

Tr
h1W~x

1 + h1W~x
Tr

h1W~x+i

(1 + h1W~x+i)2
Tr

h1W~x+i+j

1 + h1W~x+i+j

− 2h3,3

∑
~x,i,j

Tr
h1W~x

1 + h1W~x
Tr

h1W~x+i

(1 + h1W~x+i)2
Tr

h1W~x+i−j
1 + h1W~x+i−j

− h3,3

∑
~x,i,j

Tr
h1W~x

1 + h1W~x
Tr

h1W~x−i
(1 + h1W~x−i)2

Tr
h1W~x+i+j

1 + h1W~x+i+j
. (4.63)

This action is significantly simplified compared to the full expression, it is therefore

preferable to use it wherever possible. We will investigate in the next chapter how fast

this approximation converges to the complete O(κ4) action.



Chapter 5

Numerical Results

In this chapter we will present the numerical results obtained from the effective theory

which we derived in chapter 4. Like full lattice QCD (LQCD) our theory still suffers from

the sign problem, described in section 3.4.2, when we use it to simulate finite density

systems. We will therefore have to rely on the methods of Monte-Carlo with reweighting

and stochastic quantization, which we outlined in section 3.5.2 and 3.5.4 respectively.

We begin in section 5.1 with demonstrating how the integration measure of the parti-

tion function can be changed from temporal gauge links to Polyakov loops. This leads to

a reduced number of degrees of freedom and therefore to a further reduction of numer-

ical costs. In section 5.2 we then discuss the observables we are interested in and how

they are calculated. In Section 5.3.1 we compare data from Monte-Carlo and stochastic

quantization simulations, in order to confirm the validity of the latter. Section 5.5 is

concerned with the size of the truncation effects in κ. Those determine how far we can

raise κ, i.e. lower the quark mass, until the neglect of higher orders is no longer a valid

approximation. Together with the truncating effects on the coupling constants, dis-

cussed in section 4.4, this determines the parameter region where our theory converges

to full LQCD. After those considerations we present our main results for two different

regions of the QCD phase diagram:

Section 5.6 presents the results for the region of low temperatures and high density,

which we discussed in section 2.5.2, including continuum extrapolated data for vari-

ous thermodynamical observables. Furthermore, indications for a first order liquid-gas

transition to cold nuclear matter are shown.

Section 5.7 is concerned with the high temperature phase, which we discussed in

section 2.5. This region extents up to the deconfinement transition, where the effective

theory breaks down. Here we show results for the chiral condensate and the nature of

the Roberge-Weiss transition, see section 2.3.3, and compare our results to recent LQCD

results [19].

57
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Figure 5.1: The Polyakov Loop potential eq. 5.2, induced by the change of the
integration measure.

5.1 Integration Measure

When solving our theory in a simulation we have to chose an appropriate integration

measure. The effective action we derived in chapter 4 depends on traces over fractions

containing temporal Wilson lines. As described in appendix C we can always reformulate

this in terms of Polyakov loops. This is true for all higher orders as well. It is therefore

preferable to change the integration measure from temporal links to Polyakov loops

[60, 89]. This introduces a Jacobian that takes the form of an effective potential,

Z =

∫
[dU4]e−Seff =

∫
[dL]e−SeffeV . (5.1)

For SU(3) this potential is

V =
∑
~x

V~x =
1

2

∑
~x

ln(27− 18|L~x|2 + 8ReL3
~x − |L~x|4). (5.2)

The potential restricts the Polyakov loops to the region shown in fig 5.1. Following [101]

we rotate the temporal gauge links to their diagonal form and write the Polyakov loops

as

L~x(θ, φ) = eiθ + eiφ + e−i(θ+φ), θ, φ ∈ [−π, π). (5.3)

Changing the integration variables to θ and φ introduces another Jacobian identical to

the one in eq. 5.1, ∫
[dU4] =

∫
[dL]eV =

∫
[dθ][dφ]e2V . (5.4)
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We can therefore formulate our theory using only two complex degrees of freedom per

spatial lattice site, as compared to 27Nτ in the original theory.

5.2 Observables

The simplest observable in our effective theory is the Polyakov loop expectation value

〈L〉. Its physical relevance is twofold: As explained in section 2.3.1 we can use the

Polyakov loop as an approximate order parameter for deconfinement, with 〈L〉 ≈ 0 in

the confined and 〈L〉 6= 0 in the deconfined phase. Secondly, as shown in section 2.3.3,

its phase distinguishes the different Z3 sectors at imaginary chemical potential. We will

use 〈L〉 for both those purposes in section 5.7.2.

Since the calculation of correlation functions suffers from the neglect of long range

interactions [96], we are primarily interested in bulk thermodynamic quantities. We

therefore will investigate baryon number density, pressure, energy density and nuclear

binding energy. The first three, being thermodynamical quantities, can be directly

derived from the partition function,

a3nB =
1

NτN3
σ

∂

∂aµB
lnZ,

a4p =
1

NτN3
σ

lnZ,

a4e = − a

NτN3
σ

∂

∂a
lnZ

∣∣∣
z
, (5.5)

where the the derivatives in the last line are to be taken at constant fugacity z = eµ/T .

Besides those quantities we are interested in the nuclear binding energy ε. This is the

binding energy between the nucleons, created by the residual attractive baryon-baryon

potential. To calculate this quantity we first calculate the energy density using eq. 5.5.

From this we subtract the rest mass contained in the system, nBmB and normalize with

respect to the baryon mass and the baryon number density in order to get a dimensionless

quantity,

ε ≡ e− nBmB

nBmB
. (5.6)

In the limit of low temperatures, where thermal excitations can be neglected, ε is then

equal to the nuclear binding energy.

5.3 Validity of Stochastic Quantization

In this section we want to check the validity of the method of stochastic quantization for

our model. This is necessary, because there are known case where stochastic quantization
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Figure 5.2: Left: Average sign of the phase of the determinant, cos(θ), plotted against
the spatial lattice extent Nσ, Parameters are κ = 0.01, Nf = 3 and β = 0. Right:
Numerical instabilities at large values of h2 lead to failure of Monte-Carlo and Complex

Langevin algorithm.

leads to wrong results when it is applied to systems with a complex action [72–75]. We

therefore compare results obtained from simulations with Monte-Carlo using reweighting

in the phase of the determinant, see section 3.5.2, and stochastic quantization, see section

3.3.3. We furthermore perform two tests that have been proposed in order to check the

reliability of Stochastic Quantization when simulating a given model.

5.3.1 Comparison between Stochastical Quantization and Monte-Carlo

As can be seen in fig. 5.2 the sign problem of our effective theory is mild enough to pose

no problem for the use of reweighting, as long as we use small spatial lattice sizes. We

therefore perform the comparison on small lattices with a volume of only V = 43. Since

at κ = 0.01 the Compton wavelength of a pion is far smaller than one lattice spacing,

this is still a valid approximation. In fig. 5.3 we show the expectation values of the

quark number density and the Polyakov loop plotted against the chemical potential.

It has to be emphasized that in this case 〈L〉 6= 0 does not signal a deconfinement

transition, since the argument made in section 2.3.1 does not hold for large densities.

In dense systems color charges are screened by the medium, leading to 〈L〉 6= 0. At

higher chemical potential lattice saturation sets in, and we again have 〈L〉 ≈ 0, since

that lattice is now filled with color neutral states.

As fig. 5.3 shows, Stochastic Quantization and Monte-Carlo agree well.

5.3.2 Criteria for Correctness

Previous failures of the Stochastic Quantization method have been linked to an broad

distribution of the degrees of freedom in the complex plane. A criteria has been proposed

to check whether the distribution is localized enough to produced correct results [85].

This is done by applying the Langevin operator L̂ to every observable. The criteria is
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Figure 5.4: Applying the criteria in eq. 5.7 to L = TrW and L∗ = TrW †, using our
effective theory to order κ2 (left) and κ4 (right). Parameters are V = 10, κ = 0.0245,

Nτ = 50, aµB = 9.7 and β = 6.

fulfilled if for every observable we have

〈L̂O〉 = 0, L̂ =
∑

x, a
( ∂

∂φa(x)
− ∂S

∂φa(x)

) ∂

∂φa(x)
. (5.7)

Since in our model all observables can be expressed as functions of L and L∗, it is

sufficient to check those. As can be seen in fig. 5.4 the criteria are fulfilled in the limit

of vanishing stepsize.

5.3.3 The logarithm of the static determinant

Another possible source for wrong results produced by Stochastic Quantization was

given in [102]. Fermionic systems have an effective action proportional to log(detQ).

For complex arguments the logarithm develops a cut along the negative real axis and

is therefore multivalued. In [102] it was discovered that, for the random matrix model,

wrong results were produced when derivatives frequently have to be taken across this
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Figure 5.5: Distribution of the static determinant, eq. 4.20, in the complex plane for
low and high chemical potential with κ = 0.0173, Nτ = 100 and β = 0. No crossings of

the negative real axis occur.

cut.

Since in our model all higher orders are being exponentiated, see section 4.5, no logarithm

appears for those contributions. This only happens for the leading order, i.e. the

static determinant, see eq. 4.20. In fig. 5.5 we observed the logarithm of the static

determinant at low and high chemical potential. As can be clearly seen the real part of

the determinant is always positive, therefore no crossings of the branch cut occur.

Together with the comparison with analytic results, which we will present in chapter 6,

the three tests shown here make us confident that Stochastic Quantization works well

in the convergence region of our effective theory.

5.4 Numerical Stability

While the effective theory is always numerically stable in the static limit, at higher orders

one can get instabilities due to truncation effects. To demonstrate this, we compare

numerical results from simulations using Monte-Carlo and Stochastic Quantization with

analytic results (see chapter 6 for details regarding the analytic results). As can be

seen on the right side of fig. 5.2, the Monte-Carlo algorithm breaks down at h2 ≈
0.07. Stochastical Quantization seems to keep working, but qualitatively differs from the

analytic result. Since this happens in a parameter region where the hopping expansion

is no longer convergent, this has no consequences for our investigations. Both algorithms

as well as the analytic results agree in the parameter region we will be working in.

5.5 Convergence to full QCD

The most important property of our effective theory to consider is the size of the pa-

rameter region where it is a good approximation to full LQCD. The parameter region is
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Figure 5.6: Left: Baryon density for Nf = 3 calculated with action truncated at
different orders in the hopping expansion, V = 63, β = 0. Baryon chemical potential
was tuned to fix h1 = 0.8, making the contribution from the static determinant constant.

Right: Maximal value of κ that is still in the convergence region, h2 <= 0.04

defined by the input parameters of the original theory, i.e. β, κ and Nτ . We distinguish

three different sources of truncation effects that we can test independently:

- The first source of truncation errors come from gauge corrections to the fermionic

coupling constants, h1(κ,Nτ , β), h2(κ,Nτ , β) and so on. The truncation effects for those

contributions were already discussed in section 4.4. There we concluded that higher

corrections should be small up to β ≈ 6.

- The second contribution comes from the pure gauge action and can be further

divided into two different sources of truncation effects. Firstly there are truncation

effects in the coupling constants, λ1(β,Nτ ), λ2(β,Nτ ) and so on, which are only known

to a certain order in β. Secondly there is an error due to neglecting higher order

interactions, i.e. coupling constants for interactions over larger distances and between

Polyakov loops in higher representations are set to zero. Both of those errors were

already discussed in [89]. There it was concluded that, for small Nτ , convergence is

good up to the deconfinement transition. This does not hold for the region of large Nτ

we want to consider in order to investigate low temperature QCD. However, because

of the considerations in section 4.4, we will not go beyond β ≈ 6, and, as discussed in

section 4.7, all pure gauge couplings go to zero for large values of Nτ and fixed β.

- The remaining uncertainty concerns the truncation of the expansion in eq. 4.11. In

the following we will investigate how fast this error grows as we leave the limit of infinite

quark mass.

5.5.1 Convergence of the Hopping Expansion

Since we integrated out the temporal dimension, the effective expansion parameter of

our theory is h2 = κ2Nτ
Nc

rather than just κ. Strictly speaking this is only true in the

cold and dense limit, since in the full effective theory additional contributions that are

of subleading order in Nτ appear. We will nevertheless use it as an approximation since
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in eq. 4.63 for β = 0, V = 43, Nf = 1. Chemical potential and κ were fixed such that

h1 = 0.8 and h2 = 0.05, meaning that the action in eq. 4.63 will be constant.

it greatly simplifies the problem while still giving a good estimate, especially if Nτ is

large. We will see in section 5.6.1 how large Nτ has to be in order to justify such

approximations.

In order to check the convergence properties of the hopping expansion we go to the

strong coupling limit, β = 0, and perform simulations at different values of h2. In order

to judge convergence we calculate the baryon number density using the effective action

truncated at O(κ0), O(κ2) and O(κ4). The behaviour of the respective expectation

values 〈a3nB〉k0 , 〈a3nB〉κ2 and 〈a3nB〉κ4 is then compared at different values of h2. The

region of convergence for an order κa is then determined by setting a desired accuracy

α and searching for the point where 〈a3nB〉κa+2 diverges by more than this threshhold.

We therefore define our criteria for convergence as

∣∣∣〈a3nB〉κa+2

〈a3nB〉κa
− 1
∣∣∣ < α. (5.8)

We decide to set our desired accuracy to 10%, i.e. α = 0.1. The results are shown in fig.

5.6. We scaled aµB in such a way that h1, and therefore 〈a3nB〉κ0 , is constant. As we

can see the static κ0 approximation is valid up to h2 ≈ 0.015, while the κ2 approximation

converges up to h2 ≈ 0.04. The convergence radius of the κ4 approximation can not be

determined without the κ6 action. The left side of fig. 5.6 shows the values of κ for

different Nτ if we fix h2 = 0.04. At lower values of Nτ , i.e. higher temperatures, larger

κ and therefore lighter quarks can be achieved. Probing low temperatures therefore

restrict us to the use of heavy quarks, while at larger temperatures the simulation of

lighter quarks is possible.
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5.6 Low Temperature

In this section we will investigate the cold dense limit. This is equivalent to the region

of the QCD phase diagram described in section 2.5.2. As discussed in section 2.2, tem-

perature in an Euclidean field theory is equivalent to the inverse extent of the temporal

dimension, so on the lattice we have the temperature T = 1
aNτ

. We therefore can reach

low temperatures by increasing the number of timeslices Nτ or the lattice spacing a.

Since we will want to extrapolate to the continuum by taking a → 0 we will fix the

temperature by varying Nτ .

This suggest the use of the limit discussed in section 4.7, so we will begin with testing

the validity of this approximation in section 5.6.1. After that we perform continuum

extrapolations of various observables in the sections 5.6.2 and 5.6.3. Section 5.6.4 finally

discusses the existence of a first order liquid-gas transition to cold nuclear matter.

Most of the results presented in this section have already been published [91, 92].

5.6.1 Convergence of the heavy dense limit

As a first step we want to investigate the validity region of the heavy dense limit ap-

proximation. We do this by comparing the action given in eq. 4.63 to the full κ4 action

as shown in appendix A. In the approximation subleading orders in Nτ , pure gauge and

anti-quark contribution are neglected. Fig. 5.7 shows the comparison between both

actions plotted against the number of timeslices. We scale the parameters in such a way

that observables calculated with the approximated action are constant. The approxi-

mated action shows the expected 1
Nτ

convergence to the full result, giving a result better

than 10% at Nτ = 10, better than 5% for Nτ = 20 and better than 2% for Nτ = 50.

An error of 2% can be considered to be small compared to the error of up to 10% due

to the truncation of the hopping expansion in section 5.5. We will therefore use the

approximated action whenever we work with Nτ ≥ 50 and keep this additional error in

mind. We will return to the use of the full action when working at high temperatures

in section 5.7. Together with the estimate given in sections 4.4 and 5.5 this concludes

our discussion of the convergence properties of our effective theory.

5.6.2 Setting a scale

As discussed in chapter 2 we need to take the limit of vanishing lattice spacing, a→ 0, in

order to recover continuum QCD from LQCD. Therefore simulations at different values

of a with a subsequent extrapolation have to be performed. Because of the running

coupling, see section 2.2, quark masses and gauge coupling depend on the energy scale

or, equivalently, on the distance, i.e. the lattice spacing. We can therefore determine

the lattice spacing as a function a = a(β, κ). Since the gauge coupling g goes to zero for

close range the limit a→ 0 corresponds to β = 2Nc
g2 →∞.
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Figure 5.8: Left: Strong coupling pion mass with and without leading gauge correc-
tions, eq. 5.11. For heavy quarks pion masses are reasonably well approximated by
their strong coupling value. Right: Running of the lattice spacing with respect to β,

eq. 5.9

In order to determine a(β, κ) we use the fact that heavy quarks have only a small

influence on the running of the coupling, i.e. for small κ we can approximate a(β, κ) =

a(β). We then use the non-perturbative beta function of the pure gauge theory to fix

the lattice spacing. For this we use the interpolation function [103]

a(β) = r0 exp[− 1.6804− 1.7331(β − 6)

+ 0.7849(β − 6)2 − 0.4428(β − 6)3], 5.7 < β < 6.92, (5.9)

with the Sommer parameter r0 = 0.5 fm.

Furthermore, the continuum extrapolation has to be performed along lines of constant

physics. We will do this by computing the baryon mass in lattice units, amB(β, κ),

and use this to tune a(β) while keeping the ratio mπ
T constant as we approach the

continuum. In order to compute the baryon mass we use the fact that hadron masses

can be calculated exactly in the strong coupling limit [104]. For β = 0 the masses of

pions and nucleons built from Nf = 2 degenerate quarks are

cosh mπ,β=0 = 1 +
(M2 − 4)(M2 − 1)

2M2 − 3
,

expmB,β=0 =
M3(M3 − 2)

M3 − 5/4
, (5.10)

with M = 1
2κ . Leading gauge corrections to all orders in κ are also known [105], starting

with

amπ = mπ,β=0 − 24κ2 u

1− u,

amB = mB,β=0 − 18κ2 u

1− u, u =
β

18
+O(β2) (5.11)
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β a[fm] Nτ κ

5.70 0.170 116 0.000089

5.75 0.152 130 0.000224

5.80 0.136 144 0.000491

5.85 0.123 160 0.000964

5.90 0.112 176 0.001724

5.95 0.102 194 0.002851

6.00 0.093 211 0.004419

6.05 0.086 230 0.006487

6.10 0.079 250 0.009098

Table 5.1: Parameters for continuum extrapolation with T = 10MeV and mπ

T = 2000.

As can be seen on the left plot of fig. 5.8 the leading gauge corrections vanish in the

limit of heavy quarks. As we will restrict ourselves to heavy quarks, cf. table 5.1, we

can use eq. 5.11 as an approximation for the hadron masses.

5.6.3 Continuum extrapolation

We are now ready to perform continuum extrapolations along lines of constant physics.

We begin our calculation with setting the desired temperature T . Knowing that 1 fm =

197 MeV we can then use this value to determine Nτ as a function of the lattice spacing,

Nτ (T, β) = 197
MeV

T

fm

a(β)
. (5.12)

Having chosen a temperature we can therefore tune a(β) by using eq. 5.9 and determine

the respective Nτ (β) that keeps T constant by using eq. 5.12.

Next we have to set a pion mass. We do that by fixing the ratio mπ
T = c, which then

gives

amπ(κ, β) =
c

Nτ (β)
. (5.13)

By solving eq. 5.11 for κ we can use this to determine κ(β). We see that, after fixing

T and c as input parameters, all other parameters are functions of β. This allows us

to perform simulations at different values of the lattice spacing a(β) and extrapolate

a→ 0, β →∞.

Next we have to decide what values to choose for T and c. Since we have to rely on eq.

5.9 to determine a(β), our range of accessible lattice spacings is limited. Furthermore

our effective theory converges to full QCD only in a limited parameter region, see section

5.5, so we have to restrict our choice of mπ
T to the region where κ2Nτ

Nc
< 0.04. With this

in mind we choose a temperature of T = 10 MeV and c = 2000, which corresponds

to a pion mass of mπ = 20 GeV. Varying β between 5.7 and 6.1 gives us the input

parameters shown in table 5.1.
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Figure 5.9: Left: Reduced χ2 for quadratic fitting including different numbers of
lattice spacings. Right: Density vs. lattice spacing, fitted quadratically including 4

and 5 lattice spacings.

After performing simulations at various values of β, we have to extrapolate. Since

our theory is based on unimproved Wilson fermions, see section 3.2.2, corrections due

to finite lattice spacing are expected to start at O(a),

nB,latt.

m3
B

=
nB,cont.

m3
B

+A(µ)a+B(µ)a2 +O(a3). (5.14)

The normalization with respect to the baryon mass is necessary in order to get a

dimensionless quantity. Note that only the constant term has a physical meaning. It

is therefore preferable to fit the data with a polynomial of low order. While our lattice

spacings seem much too coarse to permit a linear fit, a quadratic fit is possible. The left

plot of fig. 5.9 shows the reduced χ2 for different quadratic fits. We varied the number

of data points included into the fit by excluding some of the coarsest lattices. As can be

seen, the inclusion of too coarse lattices introduces higher order corrections and makes

the quadratic fit worse. We therefore choose to use fits involving only our four and five

finest lattices, leaving one and two degrees of freedom for the quadratic fit. We then

use the difference between those fits as a measure for the uncertainty of the continuum

result. On the right side of fig. 5.9 we show how this method yields a continuum value

of
nB,cont.

m3
b

= 0.00054 ± 0.00009 for µB
mB

= 0.999. This process is repeated for a range of

different values of µB.

As a next step the extrapolation V → ∞ has to be performed in order to reach the

thermodynamical limit. However, the finite size scaling effects are much smaller than

statistical and fitting error. The reason for this is that heavy baryons have very short

Compton wavelengths, λ = 1/mB ≈ 0.01fm. This makes the use of small lattices, in

our case with a spatial extents of aNs = 0.5− 0.7fm, sufficient to suppress all finite size

effects. On the other hand this means that our lattice is much too coarse to resolve any

inner structures of the baryons.

In fig. 5.10, 5.11 and 5.12 we show the results for the continuum extrapolation of
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Figure 5.10: Continuum extrapolated results for baryon density (left) and pressure
(right) with respect to chemical potential. Density is shown for Nf = 1, 2 degenerate
flavors, pressure for Nf = 2 degenerate flavors. In both cases we have V = 63 and

mπ = 20 GeV

baryon number density, pressure, energy density and binding energy. For baryon number

density we show both the Nf = 1, 2 case for comparison. As can be seen going from

one to two degenerate flavors adds roughly a factor of two to the density. The same

is true for the other quantities for which we only show the Nf = 2 case. Continuum

extrapolation becomes less reliable when one goes beyond µB
mB

= 1. The reason for this

is the unphysical lattice saturation once the lattice starts to fill up with quarks. Due

to the Fermi principle each lattice site can only be filled with up to 2NcNf quarks.

Approaching this limit requires the use of increasingly finer lattices to resolve physical

effects. Because of this we cut the data at µB
mB

= 1.0012. In fig. 5.12 we additionally

show the baryon number density for different temperatures. Note that the error grows

as the temperature is lowered. This signals the breakdown of our effective theory as Nτ

is raised.

Several interesting observation can be made from our results. The onset to the region

of finite density happens at µB < mB. This is consistent with the existence of a finite

binding energy. Since our quarks are very heavy, the difference is small. This is confirmed

by the results shown in fig. 5.11, which indicate a binding energy of approximately 0.1

% of the baryon mass at the onset, compared to approximately 1.7 % as assumed for

nuclear matter with physical quark masses [16]. While our results do show the existence

of a finite binding energy, they do not show a minimum like in fig. 2.4. We believe

that the reason for this is the influence of saturation effects that set on as we approach

µB = mB.

Furthermore, the data in fig. 5.12 demonstrates what is known as the Silver Blaze

property [67]. The density is independent of µB as long as we are in the region where

µB < µc = mB − εmB, despite the fact that the chemical potential explicitly enters the

partition function.
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Figure 5.11: Continuum extrapolated results for energy density (left) and binding
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5.6.4 Liquid-Gas Transition to Nuclear Matter

In section 2.5.2 we discussed the fact that the transition to nuclear matter should be of

first order at low temperatures, turning into a crossover as temperature is raised. Scaling

analysis of the transition shown in fig. 5.12 shows it to be a smooth crossover for quark

masses and temperatures reachable in our effective theory. Since T = 2.5MeV lies below

the critical temperature suggested by experiment [34], this is likely to be caused by the

unphysical quark masses.

Nevertheless we want to test whether the change to a first order transition can be

described at least qualitatively in our effective theory if we lower the quark masses suffi-

ciently. For this we raise the hopping parameter to κ = 0.12 and probe low temperatures

by going to temporal lattice extents up to Nτ = 1000 . Since this means κ2Nτ
Nc

> 1 we
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Figure 5.13: Distributions of the quark density for two different temperatures. At
low temperatures (left) the distributions shows the coexistence of two phases, signaling
a first order transition. As the temperature is raised (right) the transition turns into a
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are far outside the region of convergence we determined in section 5.5. It can there-

fore not be expected that our results represent QCD quantitatively. It is nevertheless

encouraging to see that our model indeed predicts a change from a crossover to a first

order transition as temperature is lowered. Fig. 5.13 shows the distribution of the

quark number density at temperatures above and below the critical endpoint. At low

enough temperatures there is a coexistence between the vacuum and a finite density

phase, signaling a first order transition. This is confirmed by the finite size scaling of

the quark number susceptibility shown in fig. 5.14. At higher temperature this changes

into a crossover, where no region with coexisting phases is present and the quark num-

ber susceptibility does not scale with the volume. Since we are outside of the region of

convergence and therefore can not make any quantitative statements we do not attempt

to locate the exact location of the critical endpoint or extract critical exponents.
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5.7 High Temperature

In this section we use our theory to investigate QCD at high temperatures. This corre-

sponds to the use of small Nτ , thus, in contrast to the previous section, we now have a

significant contribution from the pure gauge action due to λ1 being large. Furthermore,

this means that we can access much lighter quarks while still staying in the convergence

region of the strong coupling and hopping expansion, cf. fig. 5.6. In this section we

will investigate two topics. Both concern either zero or imaginary chemical potential,

therefore we can compare our results with full LQCD simulations since there is no sign

problem.

In section 5.7.1 we will use our effective theory to calculate the chiral condensate as a

function of temperature. Using Wilson quarks, chiral symmetry is always broken explic-

itly, see section 3.2.2. Nevertheless, small effects due to the restoration of spontaneous

symmetry breaking are visible in LQCD simulations [19]. We will try to reproduce those

results.

Furthermore we are interested in the nature of the Roberge-Weiss critical endpoints

at imaginary chemical potential, see section 2.3.3. This topic was already investigated

using the effective theory presented in this thesis, but including only the static quark

determinant [89, 90]. Despite the neglect of higher order corrections this was sufficient

to locate the first Roberge-Weiss tricritical point in accordance with [19]. In section

5.7.2 we will try to expand on these results using our improved O(κ4) action.

5.7.1 Chiral Condensate

In order to test whether our heavy quark effective theory maintains the feature of partial

chiral symmetry restoration we calculate the chiral condensate and compare it with full

LQCD with Wilson quarks, simulated with the software presented in [106] 1. This is

1Many thanks to Georg Bergner for providing the LQCD data.
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Figure 5.16: Comparison of βc for effective theory (left) and full QCD (right) for
Nτ = 4 and Nf = 2. Full QCD results taken from [19].

done at vanishing chemical potential. The chiral condensate is given by

〈ψ̄ψ〉 =
1

NτN3
σ

∂ lnZ

∂mq
(5.15)

with mq = 1
2κ . As can be seen in fig. 5.15 the difference between our effective theory

and full QCD grows with β. The reason for this is the neglect of higher order effects.

The effective theory gives three leading contributions to the chiral condensate:

- The value at β = 0 is a trivial contribution due to the rescaling of the quark fields

in the Wilson fermion action, cf. section 3.2.2.

- The decrease between 0 < β < βc is caused by vacuum graphs of order κ4u and

κ6u2 consisting of diagrams that are of similar type as the one in eq. 4.52, but without

winding around the lattice. They are not included in the action because they cancel out

when calculating thermodynamical expectation values.

- The decrease at βc is caused by the κ dependent corrections to λ1 = λ1(β,Nτ , κ)

which we discussed in section 4.4.3.

We see that the behaviour of the chiral condensate in the confined phase is well

described. The partial restoration at the critical temperature is reproduced qualitatively.

The disagreement in βc is about 10% as in the pure gauge theory [89].

5.7.2 Roberge-Weiss Transition

As already discussed in section 2.3.3 the transition between different Z3 sectors at imagi-

nary chemical potential changes from first order to a crossover as temperature is lowered,

with the nature of the endpoint depending on the quark masses. In [90] the location

of the heavy tricritical Roberge-Weiss point was located at κtric
light = 0.1048 ± 0.0008 for

Nτ = 4. This was done by using an effective theory with the static determinant eq.

4.19 together with the gauge corrections to h1 shown in eq. 4.47 and the pure gauge

contribution eq. 4.7. This has been confirmed by full LQCD calculations, which found
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two tricritical points at κtric
heavy = 0.1000± 0.090 and κtric

light = 0.1550± 0.050 [19]. We try

to locate the second tricritical point by using our O(κ4) effective theory.

For this we perform simulations on lattice sizes Nσ = 8, 10, 12 with Nτ = 4 and

Nf = 2 degenerate flavors. The chemical potential is fixed to µ
T = iπ3 . As an order

parameter we use the absolute value of the imaginary part of the Polyakov loop, |Im(L)|.
The critical temperature βc is extracted by using the Binder cumulant [107],

B4(X) =
〈X − 〈X〉〉4
〈X − 〈X〉〉2 . (5.16)

The Binder cumulant of the order parameter, calculated on lattice of different size,

will intersect at βc. Alternatively this can be done by locating the maximum of the

susceptibility,

χ(X) = V 〈X − 〈X〉〉2, (5.17)

in the infinite volume limit. The result for βc is shown in fig. 5.16. As was already

discussed in [89] the pure gauge transition temperature is reproduced with an accuracy

of around 5%. Since the chemical potential does not enter in the pure gauge case this

does not change at imaginary chemical potential. As finite quark masses are introduced,

βc decreases. Our effective theory describes this well for small κ, but the slope is

significantly different as we move to larger values of κ.

To extract the critical exponent we apply the same method as in [19]. Around βc the

Binder cumulant is assumed to have finite size corrections going as

B4(β,Nσ) = B4(β,∞) + a1(β − βc)N
1
ν
σ +O((β − βc)2). (5.18)

If we are close to βc higher orders can be neglected. Calculating the Binder cumulant

on different lattice volumes then allows the extraction of the critical exponent ν.
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Our results for ν are shown in fig. 5.17. As can be seen the effective theory reproduces

the location of the first Roberge-Weiss tricritical point from [19]. However the second

tricritical point is missing, even when looking at values of κ that are much larger than

the ones investigated in [19].

We assume that this is not caused by the truncation of the pure hopping expansion.

The use of small Nτ means our expansion parameter at the assumed location location

of the second tricritical point is small,
(κtric

light)
2Nτ

Nc
≈ 0.032. Furthermore, the couplings

h1 and h̄1 are small at imaginary chemical potential. Since powers of those couplings

enter at all higher orders this should greatly improve the convergence. We therefore

expect the convergence to be even better than in the cold dense limit shown in section

5.5. Gauge corrections discussed in section 4.4 to the fermionic couplings should also be

well under control.

We therefore assume the problem to be caused by the neglect of gauge interactions

between Polyakov loops in higher representations and at larger distances, which will

receive κ dependent corrections due to mixing terms.





Chapter 6

Analytic Treatment of the

Effective Theory

In chapter 5 we saw how the effective theory can be solved numerically. In addition

to this, our effective theory can also be solved analytically by the use of perturbation

theory. For this we use the fact that the static strong coupling limit, i.e. β = κ = 0, can

be solved exactly. Corrections coming from the kinetic determinant are then expanded

in the nearest neighbour coupling, h2. This parameter has to be small since otherwise

our effective theory would not converge to full lattice QCD.

Besides reproducing the results we already presented in the last chapter, this leads

to additional insight into the structure of the theory. We already published the analytic

results for the leading and next-to-leading order, i.e. for the static fermion determinant

and O(κ2) corrections, in [91, 92]. Here we will demonstrate how those results have been

derived and expand them to the next order.

We will start with discussing the analytic solution of the quark determinant in the

strong coupling limit in section 6.1. In section 6.2 we show how gauge corrections can

be included. We then combine those results to repeat the continuum extrapolation

from section 5.9 in section 6.3, using purely analytic expressions. Finally, in section

6.4, we provide a scheme for resumming the analytic solution, improving its region of

convergence beyond that of the original effective theory.

6.1 Quarks in the strong coupling limit

In this section we derive an analytic solution for our effective theory in the strong

coupling limit. Section 6.1.1 is concerned with the case of static quarks, which can be

solved exactly. Here we demonstrate the basic recipe for deriving analytic expressions

for different observables. The sections 6.1.2 and 6.1.3 expand this to the next orders.

77
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6.1.1 Static Limit

In this section we solve the partition function for a system of static quarks in the strong

coupling limit. For this we have to solve eq. 4.20,

Z =

∫
[dU4]

∏
i

([1 + h1L
∗
i + h2

1Li + h3
1][1 + h̄1L

∗
i + h̄2

1Li + h̄3
1])2Nf . (6.1)

Since there is no interaction between quarks at different lattice sites the gauge integral

factorizes. If we denote the contributions of the spatial position xi to the fermion

determinant with Qstat
i , we get∫

[dU4]
∏
i

Qstat
i =

∏
i

∫
[dU4]Qstat

i =
∏
i

z0 = zV0 . (6.2)

In order to calculate z0 we have to explicitly perform the gauge integration. We explain

in appendix B how integrals of this type can be evaluated and list all integrals that

are necessary for the following calculations. Since higher numbers of Nf lead to longer

expressions we set Nf = 1 for now. After the integral is performed all dependence on

link variables has vanished and we get

Z = zV0 =[(1 + 4h3
1 + h6

1) + (4h+ 6h4) h̄1 + (10h2 + 6h5) h̄2
1

+ (4 + 20h3 + 4h6) h̄3
1 + (6h+ 10h4) h̄4

1

+ (6h2 + 4h5) h̄5
1 + (1 + 4h3 + h6) h̄6

1]V . (6.3)

We can already make several interesting observations from this result. Since h (h̄) is

the coupling constant for a single quark (anti-quark), a term hnh̄m corresponds to a

state that is built from n quarks and m anti-quarks. All states have exponents that

satisfy m−n = mod Nc, showing that after performing the gauge integration only color

neutral states remain. Z therefore is the partition function of a non-interacting hadron

gas consisting of baryonic and mesonic states. Furthermore, spin degeneracy factors can

be read from the prefactors. For the first state, i.e. the first non constant term in eq.

6.3, the degeneracy is 4. We can interpret this as a spin 3
2 quadruplet build from of 3

quarks. The second state is a spin 0 singlet consisting of 6 quarks. The next state is

again a spin 3
2 quadruplet, but build from a quark and an antiquark.

In order to map these states to physical particles we will have to go to Nf = 2.

Doing so while keeping anti-quarks leads to very long formulas without introducing new

conceptual difficulties. We therefore apply the limit discussed in section 4.7, where anti-

quark contributions are exponentially suppressed and only baryonic states survive. We

again have to solve eq. 6.1, this time setting Nf = 2 and h̄1 = 0. Using the integrals
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given in appendix B we get

Z =(1 + 4h3
u + h6

u) + (6h2
u + 4h5

u)hd + (6hu + 10h4
u)h2

d + (4 + 20h3
u + 4h6

u)h3
d

+ (10h2
u + 6h5

u)h4
d + (4hu + 6h4

u)h5
d + (1 + 4h3

u + h6
u)h6

d. (6.4)

Despite the fact that we already assumed all quarks to be degenerate in eq. 6.1 we

introduce separate coupling constants hu and hd in order to distinguish the contributions

from the different flavors. Eq. 6.4 describes all baryonic states that can be built out of

up to 12 constituent quarks, while respecting the Fermi principle and color confinement.

For example the state huh
2
d, i.e. udd, is sixfold degenerate. This can be divided into

a spin 1/2 doublet, the proton and a spin 3/2 quadruplet, the ∆+. The udd state

correspondingly represents the neutron and the ∆0. The ∆++ and ∆− quadruplets

correspond to uuu and ddd. Terms of higher order can be interpreted as combinations

of those, forming di-baryon states.

Now that we calculated the partition function, deriving thermodynamical expectation

values is straightforward. To demonstrate this we return to the full Nf = 1 partition

function and perform the derivative with respect to the chemical potential µ. We get

a3nB =
1

3

1

NτN3
σ

∂logZ

∂aµq

=
[
2(3h4h̄+ 3h5h̄2 − 3hh̄4 − 3h2h̄5 − h̄3(2 + h̄3) + h6(1 + 2h̄3)

− 2h3(−1 + h̄6))
][

1 + 4h̄3 + h̄6 + 2h2h̄2(5 + 3h̄3)

+ 2h4h̄(3 + 5h̄3) + h(4h̄+ 6h̄4) + h5(6h̄2 + 4h̄5)

+ h6(1 + 4h̄3 + h̄6) + 4h3(1 + 5h̄3 + h̄6)
]−1

h.d.
=

4h3
1 + 2h6

1

1 + 4h3
1 + h6

1

, (6.5)

with the last expression being valid in the heavy dense limit where anti-quarks can be

neglected. This result demonstrates two features we already observed in the numerical

simulations, the Silver Blaze property and Fermi saturation.

Fermi saturation, which we already saw in the results shown in fig. 5.3, can be seen

from our analytic expression by taking the limit of high chemical potential, µB >> mB.

In this limit we have h1 →∞ and h̄1 → 0. Expanding around both limits we get

lim
aµ→∞

a3nB = 2 +O(
1

h3
) +O(h̄3). (6.6)

This means we have a maximum of two baryons, or six quarks, per lattice site. In general

the Fermi principle allows up to 2NcNf quark per site, with the factor of two accounting

for spin. Note that saturation is a lattice effect that occurs due to the discretization,
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there is no saturation in the continuum as one goes to asymptotically high chemical

potential.

Silver Blaze behaviour denotes the independence of observables from the chemical

potential below a critical value µc. In the zero temperature limit µc is µB − εmB, with

εmB being the nuclear binding energy. We saw this in the numerical results when we

compared results at different temperatures, see fig 5.12. To extract this behavior from

our analytic expression we take the limit Nτ → ∞, while staying in the region where

µB < µc ≈ mB. In this limit both h and h̄ go to zero exponentially, so we can expand

to leading order in both couplings and get

lim
Nτ→∞

a3nB
µ<µc

= O(h3) +O(h̄3). (6.7)

In the zero temperature limit the density therefore also gets suppressed exponentially

as long as µ < µc. This confirms the behavior we saw in the numerical results.

Since we will later want to analytically calculate the binding energy we also calculate

the energy density,

a4e =
a

NτN3
s

∂ lnZ

∂a

=
a

NτN3
s

∂κ

∂a

∂h1

∂κ

∂ lnZ

∂h1

=
a

NτN3
s

Nτ

κ

∂κ

∂a

∂ lnZ

∂h1

= amBa
3nB, (6.8)

where only the leading terms for ∂κ
∂a = −κmB3 and amB = 3 ln(2κ) were used. This is

simply the energy of the rest mass contained in the system. The binding energy, as we

defined it in eq. 5.6, is therefore zero in the static limit.

Knowing the analytic expression for the partition function, we can easily calculate all

other thermodynamical observables by taking the respective derivatives. This is not the

case for the Polyakov loop, so we will calculate 〈L〉 in order to demonstrate that we can

also analytically derive expectation values. Using eq. 3.16 and the respective integrals
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Figure 6.1: Comparison between simulation using stochastic quantization and ana-
lytic result for the static quark action, Nτ = 10, κ = 0.01, β = 0.

from appendix B we get

〈L〉 =
1

Z

∫
[dU4]

∏
i

(1 + hLi + h2L∗i + h3)2(1 + h̄L∗ + h̄2L+ h̄3)2L

=
1

Z

[ ∫
[dU4](1 + hL+ h2L∗ + h3)2(1 + h̄L∗ + h̄2L+ h̄3)2

]V−1

[ ∫
[dU4](1 + h1L+ h2

1L
∗ + h3

1)2(1 + h̄1L
∗ + h̄2

1L+ h̄3
1)2L

]
=

1

z0

[
h6h̄

(
3h̄3 + 2

)
+ 2h5

(
h̄6 + 6h̄3 + 1

)
+ h4h̄2

(
8h̄3 + 15

)
+ 4h3h̄

(
5h̄3 + 3

)
+ h2

(
3h̄6 + 20h̄3 + 3

)
+ 4hh̄2

(
h̄3 + 2

)
+ 3h̄4 + 2h̄

]
. (6.9)

We saw in fig. 5.3 that the Polyakov loop only takes a finite value around µ ≈ mB.

As we discussed in sections 2.3.1 and 5.3.1 this is due to the screening of color charges.

We can easily see this behaviours from our analytic expression by taking the respective

limits.

The complex conjugate of the Polyakov loop is calculated in an equivalent way, giving

〈L∗〉 =
1

z0

[
h
(
3h3 + 2

)
hb6 + 4h

(
5h3 + 3

)
h̄3 + h

(
3h3 + 2

)
+ 2

(
h6 + 6h3 + 1

)
h̄5

+
(
3h6 + 20h3 + 3

)
h̄2 + h2

(
8h3 + 15

)
h̄4 + 4h2

(
h3 + 2

)
h̄
]
. (6.10)

We end this section by comparing the analytic expressions for baryon number density,

Polyakov loop and adjoint Polyakov loop with results obtained from simulations using

stochastic quantization. As can be seen in fig. 6.1, the analytic solution for the static

quark determinant agrees well with the numerical results. Indeed the solution we just

derived is exact, since we did not have to rely on any approximations to perform the

gauge integrals.
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6.1.2 κ2 corrections

The next step is to move away from the limit of static quarks. For this we will stay in

the cold dense limit, i.e. use the approximate action discussed in section 4.7. The full

action, i.e. the κ2 contribution eq. 4.38 and the κ4 contribution shown in appendix A,

can be solved in an equivalent way, but leads to much longer formulas. For the same

reason we keep Nf = 1. Introducing multiple degenerate flavors can, besides requiring

the adjustments to the static determinant we already performed in the last section,

can be achieved by modifying the respective prefactors in the hopping expansion as we

explained in section 4.6.

The leading order contribution to the kinetic determinant was derived in section 4.3.2.

The partition function we have to solve is

Z =

∫
[dU4]

∏
i

(1 + h1L
∗
i + h2

1Li + h3
1)2

× exp[2h2

∑
<i,j>

Tr
h1Wi

1 + h1Wi
Tr

h1Wj

1 + h1Wj
], h2 =

κ2Nτ

Nc
, (6.11)

with h2 being the nearest neighbour coupling. In order to perform the gauge integral

we have to rewrite the traces as Polyakov loops. We explain in appendix C how this can

be done. Furthermore, the exponential has to be expanded, undoing the resummation

we performed in section 4.5. After rewriting the traces and expanding the exponential

up to leading order, the partition function reads

Z =

∫
[dU4]

∏
i

(1 + h1L
∗
i + h2

1Li + h3
1)2

×
[
1− 2h2

∑
<i,j>

h1Li + 2h2
1L
∗
i + 3h3

1

1 + h1Li + h2
1L
∗
i + h3

1

h1Lj + 2h2
1L
∗
j + 3h3

1

1 + h1Lj + h2
1L
∗
j + h3

1

]
+O(κ4). (6.12)

The fact that the Polyakov loops are contained in rational functions still prevents us from

performing the gauge integral. This is resolved by noticing that they cancel with the

respective contributions from the static determinant. This is hardly surprising, since the

fractions originate from summing over all winding numbers in the temporal directions,

which involved the use of the static quark propagator. Since higher orders in the hopping

expansion introduce higher exponents in the denominators, relying on this cancellations

is the limiting factor for the analytic solution as we proceed to solve higher orders in κ.

At order κn, i.e. order h
n/2
2 , the highest order that can appear in the denominator is

(1 + h1W )n/2. Since the exponent of the static quark determinant is 2Nf , this gives us

a limit for the order, κn we can solve analytically when working with Nf flavors. This
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limit is

n ≤ 4Nf . (6.13)

That means that, staying at Nf = 1, we will not be able to go beyond analytically

calculating the O(κ4) corrections. At higher orders we still have the possibility to

expand the fraction in eq. 6.12 in terms of h1, but this relies on h1 being small. Since

h1 grows exponentially with the chemical potential this is not feasible when working at

high densities.

After we canceled the denominators in eq. 6.12 we can perform the gauge integration

using the integrals given in the appendix B and get

Z = zV0 − 6h2V z
V−2
0 z2

1 , (6.14)

where z1 is

z1 =

∫
[dU4](1 + h1L+ h2

1L
∗ + h3

1)2 h1Li + 2h2
1L
∗
i + 3h3

1

1 + h1Li + h2
1L
∗
i + h3

1

= 6h3
1 + 3h6

1. (6.15)

Factorizing out the static contribution we see that, to leading order, this can be written

as an exponential,

Z = zV0 [1− 6h2V
z2

1

z2
0

] = zV0 exp[−6h2V
z2

1

z2
0

] +O(κ4). (6.16)

The arguments for the necessity of resuming the result into an exponential are essentially

the same as the ones given in section 4.5. After exponentiating, the logarithm of the

partition function,

lnZ

V
= lnz0 − 6h2

z2
1

z2
0

, (6.17)

has the correct volume dependence to ensure that intensive and extensive quantities

scale correctly.

As an example we look at the baryon number density once more. The leading order

correction to the static limit is

〈a3nB〉κ2 = 〈a3nB〉0 − 216h2
2h6

1 + 3h9
1 + 3h12

1 + h15
1

z3
0

, (6.18)

with 〈O〉κ0 〈O〉κ2 denoting expectation values calculated to the respective order in the

hopping expansion. As can be seen the result is independent of the volume due to the
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Figure 6.2: Binding energy for 3 different quarks masses vs chemical potential, V =
63, Nτ = 50, Nf = 1, V = 6. Solid lines are analytical, points are numerical results.

resummation.

Fig. 6.2 shows the comparison between the analytic solution, eq. 6.18, and the

numerical solution of the action, i.e. eq. 6.11, for different values of κ. As can be seen,

both agree well for small κ, but start to diverge for larger values. The difference is of

order κ4. To see this we expand the nearest neighbour interaction in eq. 6.11 to the

next order,∫
[dU4]exp(−2h2

∑
<i,j>

Tr
h1Wi

1 + h1Wi
Tr

h1Wj

1 + h1Wj
)

= 1− 2h2

∑
<i,j>

Tr
h1Wi

1 + h1Wi
Tr

h1Wj

1 + h1Wj

+ 2h2
2

∑
<i,j>

∑
<k,l>

Tr
h1Wi

1 + h1Wi
Tr

h1Wj

1 + h1Wj
Tr

h1Wk

1 + h1Wk
Tr

h1Wl

1 + h1Wl
+O(κ6). (6.19)

We solved the leading contribution in h2 without needing any approximation. The next

order contains two independent sums over nearest neighbours and is therefore quadratic

in the volume. When we resummed our solution in eq. 6.16 we included all those

graphs as if they were non-overlapping, i.e. proportional to z2
1 . This introduces an error

that is proportional in the volume and of order κ4, corresponding to the diagrams with

overlapping sums.

Finding the exact analytic solution to the action eq. 6.11 therefore would require

knowledge of an infinite number of gauge integrals. Since the effect is of order κ4, the

growing discrepancy between numerical and analytical data also signals the breakdown

of the κ2 approximation in the hopping expansion.
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Now we want to calculate the binding energy to leading order. For this we again need

the energy density,

a4e = − a

NτN3
s

∂lnZ

∂a

= − a

NτN3
s

∂κ

∂a

(∂h1

∂κ

∂lnZ

∂h1
+
∂h2

∂κ

∂lnZ

∂h2

)
=

amB

NτN3
s

(
κ

3
− 2κ4)

(Nτ

κ
N3
s a

3nq +
2

κ
h2
∂ lnZ

∂h2

)
= amBa

3nB(1− 6k3)− 4
amBh2

Nτ
(1− 6κ3)

z2
1

z2
0

. (6.20)

To get the binding energy we again subtract the rest mass contained in the system and

normalize with respect to the density and the baryon mass. Keeping only leading orders

in κ we get

ε =
a4e− nbmb

nbmb
= −2κ2 z1

z0
= −1

2

z1

z0
e−amπ . (6.21)

In the last step we furthermore used eq. 5.10 to leading order. It shows that, to leading

order, the binding energy is exponentially suppressed by the pion mass. This hints at a

Yukawa type potential between the baryons, where an attractive interaction is mediated

by pion exchange.

The comparison in fig. 6.3 shows that this solution reproduces the numerical results

well. The increasing discrepancy between the numeric and analytic solution with larger

κ is caused by the missing κ4 contributions we already discussed.

6.1.3 κ4 corrections

We will now proceed to present the analytic solution to the partition function including

corrections up to order κ4, i.e. the contributions shown in eq. 4.63. This is the last
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order that can be solved analytically for Nf = 1 because of the limit set by eq. 6.13.

Repeating the steps of the previous section the partition function up to order κ4 is

Z = zV0 exp
[
− 6V h2

z2
1

z2
0

+ 30V h3
z2

1z2

z3
0

+ 6V h3
z2z3

z2
0

+ 6V h3
z2

2

z2
0

+ 60V h3
z2

1z3

z3
0

+ 6V h3
z2

3

z2
0

− 66V h3
z4

1

z4
0

]
. (6.22)

where we again made use of the integrals in appendix B to compute

z2 =

∫
[dU4](1 + h1L+ h2

1L
∗ + h3

1)2 h1(L+ 4h3
1L+ 4h1L

∗ + h4
1L
∗ + h2

1(9 + LL∗))

(1 + h1L+ h2
1L
∗ + h3

1)2

= 10h3
1,

z3 =

∫
[dU4](1 + h1L+ h2

1L
∗ + h3

1)2
( h1L+ 2h1L

∗ + 3h3
1

1 + h1L+ h2
1L
∗ + h3

1

)2

= 4h3
1 + 9h6

1. (6.23)

The last term of eq. 6.22 is a counterterm that corrects the order κ4 error introduced

when exponentiating the solution, see the discussion in section 6.1.2.

Calculating the baryon density we get

〈a3nB〉κ4 = 〈a3nB〉κ2 + 36h2
2

(
52h6

1 + 2117h9
1 + 2990h12

1 + 4050h15
1

+ 5110h18
1 + 3067h21

1 + 272h24
1 − 162h27

1

)
/z5

0 . (6.24)
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analytic result for the static quark determinant including leading λ corrections, V =

63, Nτ = 4 h1 = 0.8.

As in the κ2 case these corrections vanish in the limits of low and high chemical potential.

For the binding energy we get

< ε >κ4= < ε >κ2

+ h2
2

12(52h3
1 + 902h6

1 + 1827h9
1 + 1712h12

1 + 862h15
1 + 162h18

1 )

(6 + h3
1) z3

0

(6.25)

In fig. 6.4 we show how those results compare to the numerical values. We have good

agreement for small κ. The deviation for higher values of κ is again caused by the

missing κ6 contributions not included in the analytic result.

6.2 Gauge corrections

As already discussed in chapter 4, gauge corrections can be grouped into two cate-

gories. First there are contributions coming from the pure gauge action. Second we also

have contributions coming from the possibilities to attach single plaquettes to fermionic

graphs and vice versa, i.e. mixing terms between fermionic and gluonic contributions.

The latter are included by introducing gauge corrections to the fermionic coupling

constants h1, h2, ... and fermionic corrections to the gauge couplings λ1, λ2, ... . We

already calculated those corrections in section 4.4. We can trivially incorporate them

into the analytic solution by replacing the respective couplings.

What remains to be done is including the contributions from the pure gauge action.

To derive those we have to include the leading contribution from section 4.2,

Sg =
∑
<i,j>

log[1 + 2λ1(u(β), Nτ )ReLiL
∗
j ]. (6.26)
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Taking Nf = 1 and again neglecting anti-quarks for brevity, we have

Z =

∫
[dU4]

∏
i

(1 + h1L+ h2
1L
∗ + h3

1)2
∏
<i,j>

(1 + 2λ1ReLiL
∗
j )

= zV0 (1 + 6V λ1
zλ,1zλ,2
z2

0

)

= zV0 exp[6V λ1
zλ,1zλ,2
z2

0

)] +O(λ2), (6.27)

with the integrals

zλ,1 =

∫
[dU4](1 + h1L+ h2

1L
∗ + h3

1)2L = 3h2
1 + 2h5

1,

zλ,2 =

∫
[dU4](1 + h1L+ h2

1L
∗ + h3

1)2L∗ = 2h1 + 3h4
1. (6.28)

The integrals necessary for this computation can again be found in appendix B. We

exponentiated the result following the same arguments as in the case of eq. 6.16. Cal-

culating the baryon number density for a system of static quarks, now including leading

gauge corrections, gives us

〈nB〉λ = 〈nB〉λ=0 + 2λ1
6h3

1(3 + h3
1 − h9

1 − 3h12
1 )

z3
0

+O(λ2). (6.29)

As can be seen in fig. 6.5 this is a good approximation as long as λ < 0.1. This again

confirms the validity of our approximation introduced in section 4.7, where we completely

neglect the pure gauge contribution when Nτ → ∞. Note that the deconfinement

transition already takes place at λ1 ≈ 0.188 [89], so the leading correction shown in fig.

6.5 already covers a large parameter region.

6.3 Analytic Continuum Extrapolation

Now that we have an analytic expression for the partition function up to order κ4 in-

cluding gauge corrections, it is possible to repeat the continuum extrapolation presented

in the section 5.9 on a purely analytical basis. This allows us to test the validity of the

analytic solution in a physically meaningful context. Using the parameters in table 5.1

we repeat the fitting procedure shown in fig. 5.9. The results in fig. 6.6 show that

the results from the numerical approach and the ones derived analytically are in per-

fect agreement. Errors for the analytic result come from the difference between the

O(κ2) and the O(κ4) expressions and the uncertainties due to the fitting procedure.

The numerical data has an additional statistical error.
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Figure 6.6: Comparison between the continuum extrapolated baryon density at T =
10MeV and a pion mass of mp = 20GeV calculated using numerical simulations and

analytical methods.

6.4 Resummation of higher order terms

So far we tried to reproduce the numerical results with analytic expressions. While this

provides additional insight to the theory and serves as a check for the numerical results,

its area of applicability is at best equal to the theory we started with. We conclude this

chapter with presenting an approach to extent this by applying further resummations

to the analytic results.

To demonstrate our approach we pick the following κ2 and κ4 contribution from the

analytic κ4 expression, see eq. 6.22,

Zκ2 = zV0 exp
[
− 6V h2

z2
1

z2
0

+ 30V h3
z2

1z2

z3
0

]
. (6.30)

It will be recalled that these expressions come from the following two and three point

interaction terms of the effective action, forming either a straight line or a wedge,

−S2p = −2Nfh2

∑
〈ij〉

Tr
h1Wi

1 + h1Wi
Tr

h1Wk

1 + h1Wk

−S3p = 2Nfh3

∑
〈ijk〉

Tr
h1Wi

1 + h1Wi
Tr

h1Wj

(1 + h1Wj)2
Tr

h1Wk

1 + h1Wk
. (6.31)

Looking at higher orders one finds corresponding n-point interactions at higher orders.

Those correspond to the contributions PiMi, PiPjMjMi, PiMiPjMj and so on from

eq. 4.22. If we restrict ourselves to cases where this n-point interactions form non-

overlapping strings resummation is possible. This is because those diagrams do not

introduce new types of gauge integrals, so each one can be recursively generated from
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Figure 6.7: Comparison between the resummed κ2 solution (red line) and its trunca-
tion at various orders. The point where the series expansion breaks down is κ = 0.1095,

Parameters are h1 = 0.8, Nτ = 50, Nf = 3.

the previous term. The first terms of this subclass of diagrams gives the contribution

Zκ2 = zV0 exp
[
− 6V h2

z2
1

z2
0

+ 30V h2
2

z2
1z2

z3
0

− 150V h3
2

z2
1z

2
2

z4
0

+726V h4
2

z2
1z

3
2

z5
0

− 3534V h5
2

z2
1z

4
2

z6
0

+O(κ12)
]
. (6.32)

Here we used the fact that in the strong coupling limit h3 = h2
2, h4 = h3

2 and so on. The

crucial observation is the fact that we can sum this up as a geometric series,

Zκ2 = zV0 exp
[
6V z2

1

∞∑
n=1

(−5)n−1hn2
zn−1

2

zn+2
0

]
=

6h2z
2
1

z0(z0 + 5h2z2)
. (6.33)

As can be seen from eq. 6.32 the factor of five is an approximation. For higher order

graphs the number will be slightly lower since graphs that involve overlapping contribu-

tions have to be subtracted. This can be done order by order when resumming higher

order graphs.

Note that this kind of resummation is not possible before the gauge integrals over

the temporal links were performed. In our original effective action, eq. 6.31, every new

order introduces a new sum over spatial positions that has to be performed explicitly.

In fig. 6.7 we truncated eq. 6.33 at different orders in κ and compared it to the
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Figure 6.8: Coupling constant h3(β)/h3(β = 0) truncated at different orders in u and
plotted against the gauge coupling β.

untruncated expression. Note that the order in κ here refers to the diagram subclass

we are looking at, not the full quark determinant. As can be seen the expansion breaks

down at κ ≈ 0.1095. The resummed expression in contrast seems to significantly extend

the convergence region.

It is also possible to introduce gauge corrections for the higher order terms. Those are

different for each order, so we denote hn to be the coupling constant for order κ2(n−1),

with n ≥ 2. Leading orders from the possibilities to attach gauge plaquettes between

nearest neighbour Polyakov loops. This happens in the same way as in the case of h31 ,

see fig. 4.3, but now with the possibility to attach the first plaquette at n different

positions. At higher orders we again have the possibility to attach a cube build out of

five gauge plaquettes. In general we have, at order κ2n, the gauge corrections

hn+1(u) =hn+1(u = 0)
[(

1 +
2u

1− u
)n

+ 8nu5
]
. (6.34)

These corrections can easily be introduced by replacing hn2 by hn+1 in eq. 6.33. Fig.

6.8 shows h3, i.e. the coupling for κ8 terms, truncated at different values of u. While

the convergence is good, it gets worse as we increase n. This gets mitigated by the fact

that higher order terms have a smaller overall impact on the result. Note that, as long

as we are in the heavy dense limit, the corrections given in eq. 6.34 apply for all types

of diagrams, not only the subclass summed up in eq. 6.33.





Chapter 7

Conclusions and Outlook

In this thesis we presented the derivation as well as the numerical and analytical treat-

ment of an effective theory for lattice Quantum Chromodynamics (LQCD). We derived

the effective theory directly from LQCD, which allows us to systematically introduce

further improvements. The derivation was performed by means of an expansion around

the limit of infinite quark masses and infinite gauge coupling. Using this theory we were

able to derive results in the region of large densities. This region is, due to the sign prob-

lem, inaccessible to standard LQCD approaches. Although LQCD simulations at large

densities have been performed recently by applying stochastic quantization [61], those

are still limited to lattice with low numbers of timeslices and therefor can not reach the

low temperature region. Furthermore, they can not be crosschecked with Monte-Carlo

simulations. Since the equivalence between stochastic quantization and Monte-Carlo is

unproven for the case of finite density systems, new approaches to access the cold dense

region of the QCD phase diagram are desirable. The effective theory presented in this

thesis provides such an approach.

We introduced continuum QCD in chapter 2. In chapter 3 we presented how LQCD,

i.e. QCD in a discretized space-time, can be formulated and used as a tool to explore

the non-perturbative regions of the QCD phase diagram. Special emphasis was placed

on simulations at finite baryon densities and the numerical problems that arise in this

region. These problems are caused by the complexification of the action and are known

as the sign problem.

We gave a detailed presentation of the derivation of our effective theory in chapter 4.

For this we performed expansions around the limit of strong coupling and static quarks,

κ = β = 0, introducing corrections order by order in the expansion parameters κ and

β. Truncating the theory at different orders allowed us to determine the parameter

region where the convergence to full LQCD is good. As we showed in section 4.4, the

gauge corrections are sufficient to reach β ≈ 6, which translates to lattice spacings down

to a ≈ 0.1fm. In section 5.6.1 we determined the convergence in κ by simulating the

93
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action truncated at different orders. Due to the three dimensional nature of our theory

the convergence depends on the temporal extent Nτ . We concluded that our theory

converges well up to values of at least Nτκ2

3 ≈ 0.04. Both results can be improved by

deriving further corrections.

In chapter 5 we presented the numerical treatment of our theory. While the sign

problem is still present, it is mild compared to the case of full LQCD. This allowed

us to use both Monte-Carlo with reweighting and stochastic quantization in order to

crosscheck results. This confirms the validity of stochastic quantization for our theory,

which is our method of choice since, in contrast to reweighting, it is not limited to small

lattice volumes. We presented results for two parameter regions, the region of large

density and low temperatures, and the region of high temperature and low density.

For the cold dense region we calculated several thermodynamical quantities and per-

formed continuum extrapolations. This allows us to make a connection to continuum

QCD, although in a parameter region far away from the physical point. The results

show the onset from the vacuum to the region of finite density, displaying Silver Blaze

behavior. We furthermore demonstrated the existence of a finite binding energy between

baryonic states, which in the continuum are responsible for the formation of nuclear mat-

ter. Although experiments show the transition from the vacuum to the region of finite

density to be of first order for low enough temperatures, the convergence region of our

theory is not large enough to reproduce this. Nevertheless, we where able to find signals

for a change from a crossover to a true phase transition when we left this region. This

demonstrates that our theory is in principle able to reproduce the qualitative features

of cold and dense nuclear matter.

In the region of high temperatures and low densities, we investigated the chiral con-

densate and the nature of the critical endpoint of the Roberge-Weiss transition. In both

cases LQCD calculations exist for comparison. While the behaviour of the chiral con-

densate can be modeled quantitatively, the second tricritical Roberge-Weiss endpoint

located in [19] is absent in our theory. We discussed possible reasons for this, but can

not offer a final conclusion so far.

Chapter 6 demonstrated how, in the cold dense region, our effective theory can be

solved analytically. We used this to accurately reproduce the numerical results from

chapter 5. We furthermore derived analytic expressions for different thermodynamical

observables, demonstrating how to leading order the binding energy can be described

by a Yukawa potential. We finally showed how the analytic results can be resummed,

potentially extending their range of validity beyond the range of the original effective

theory.

Future research perspectives lie in the possibility to systematically improve the theory.

Using the methods described in chapter 4, higher orders can be derived in order to extend

the convergence region. This is much simplified in the limit of low temperature and high
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density presented in chapter 4, which simultaneously is the most interesting parameter

region due to the lack of LQCD simulations. Together with the resummation scheme

from chapter 6 it should be possible to extend the theory far beyond the parameter

range presented here. This will allow for better continuum extrapolations and the use

of lighter quarks. Simultaneously the use of lighter quarks will mean that it is no longer

possible to use the pure gauge beta function in order to set the scale, so those will have

to come from LQCD simulations including fermions.





Appendix A

Effective Action to Order κ4

In this appendix we list the full action of our effective theory including corrections up

to order κ4. Parts of this action were already published in [92]. Here we additionally

include the interactions from section 4.4.2, which were neglected in [92] since they are of

higher order in β. We use this action, including the gauge action shown in section 4.2,

for the simulations presented in section 5.7. For the simulations in the cold and dense

region, section 5.6, we use the simplified version shown in section 4.7.

In order to implement the terms shown here one can either use the reformulation

in terms of Polyakov Loops, cf. appendix C, or use the fact that all matrices are

diagonalized, cf. eq. 5.3, which makes the matrix divisions contained in the action

trivial.

In the derivation of eq. A.2 and eq. A.3 fourfold occupied spatial links are encoun-

tered, so besides the integration rules in eq. 4.36 we also need the integral over four

gauge links [99],∫
dUUi1j1Ui2j2U

†
k1l1

U †k2l2
=

1

N2
c − 1

[
δi1l1δi2l2δj1k1δj2k2 + δi1l2δi2l1δj1k2δj2k1

]
− 1

Nc(N2
c − 1)

[
δi1l2δi2l1δj1k1δj2k2 + δi1l1δi2l2δj1k2δj2k1

]
. (A.1)
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The full O(κ4) contributions reads:
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The TrPiMiPjMj and TrPiMjPjMi contributions are the same, just with different di-

rections and a factor of 1
2 in front. We therefore do not show them.
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+
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Appendix B

SU(3) Integration

Treating the effective theory analytically requires knowledge of integrals of the type∫
dULm(L∗)n, (B.1)

with m,n being positive integers and L and L∗ Polyakov loops. This can be done

either numerically by parameterize the traces in terms of eq. 5.3 and introducing the

Haar-Measure eq. 5.2 or by using the technique given in [99].

Using the second approach we start with the simplest non vanishing integral,∫
dULL∗ =

∫
dU TrU TrU † =

∫
dUUiiU

†
jj (B.2)

Knowing from [99] that ∫
dUUijU

†
kl =

1

Nc
δilδjk (B.3)

we get ∫
dULL∗ =

1

Nc
δijδij = 1. (B.4)

In general integrals of this kind will only give a nonzero contribution if (n−m)%3 = 0.

For the analytic calculations in chapter 6 integrals up to order m+ n = 10 where used,
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the nonvanishing contributions are ∫
dUL3 = 1,∫
dUL6 = 5,∫
dUL9 = 42,∫

dU(L∗)3 = 1,∫
dU(L∗)6 = 5,∫
dU(L∗)9 = 42,∫

dUL4(L∗) = 3,∫
dUL7(L∗) = 21,∫
dUL2(L∗)2 = 2,∫
dUL5(L∗)2 = 11,∫
dUL8(L∗)2 = 98,∫
dUL3(L∗)3 = 6,∫
dUL6(L∗)3 = 47,∫
dUL(L∗)4 = 3,∫
dUL4(L∗)4 = 23,∫
dUL2(L∗)5 = 11,∫
dUL5(L∗)5 = 103,∫
dUL3(L∗)6 = 47,∫
dUL(L∗)7 = 21,∫
dUL2(L∗)8 = 98. (B.5)



Appendix C

Transformation of the propagator

traces into Polyakov Loops

The effective action derived in this thesis is formulated in traces over rational functions

containing temporal Wilson lines, i.e.

Tr
h1W

1 + h1W
. (C.1)

When solving the theory analytically it is necessary to reformulate this in terms of

Polyakov loops. This may also be convinient for numerical implementations. For this

we use the generating function 1

G[α, β] = ln det[α+ βh1W ] = ln[α3 + α2βh1L+ αβ2h2
1L
† + β3h3

1]. (C.2)

Expressions can then be derived by taking derivatives with respect to α and β at α =

β = 0,

Tr
(h1W )n

(1 + h1W )n+m
=

(−1)m+n−1

(m+ n− 1)!

( ∂

∂α

)m( ∂

∂β

)n
G[α, β]

∣∣∣
α=β=0

. (C.3)

For example for m = 0, n = 1 we get

Tr
h1W

1 + h1W
=

h1L+ 2h2
1L
∗ + 3h3

1

1 + h1L+ h2
1L
∗ + h3

1

, (C.4)

while m = 1, n = 1 gives

Tr
h1W

(1 + h1W )2
=
h1(L+ 4h3

1L+ 4h1L
∗ + h4

1L
∗ + h2

1(9 + LL∗))

(1 + h1L+ h2
1L
∗ + h3

1)2
. (C.5)

1Georg Bergner, private communication, 2014.
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[54] P. Damgaard and H. Hüffel. Stochastic Quantization. PHYSICS REPORTS 152,

Nos. 5 & 6 (1987) 227-398.

[55] P. Langevin. On the Theory of Brownian Motion. C. R. Acad. Sci. (Paris) 146,.

530–533 (1908).

[56] F. Karsch and H.W.Wyld. Complex Langevin Simulation of the SU(3) Spin Model

With Nonzero Chemical Potential. Phys.Rev.Lett. 55 (1985) 2242,, 1985.

[57] N. Bilic, H. Gausterer, and S. Sanielevici. Complex Langevin Solution to an

Effective Theory of Lattice QCD. Phys.Rev. D37 (1988) 3684, 1987.

[58] G. Aarts. Can stochastic quantization evade the sign problem? – the rela-

tivistic Bose gas at finite chemical potential. Phys.Rev.Lett. 102 (2009) 131601,

arXiv:0810.2089 [hep-lat].

[59] I. O. Stamatescu G. Aarts. Stochastic quantization at finite chemical potential.

JHEP 0809 (2008) 018, arXiv:0807.1597 [hep-lat], .

[60] F. A. James G. Aarts. Complex Langevin dynamics in the SU(3) spin model at

nonzero chemical potential revisited. JHEP 1201 (2012) 118, arXiv:1112.4655

[hep-lat], .

[61] D. Sexty. Simulating full QCD at nonzero density using the complex Langevin

equation. Phys.Lett. B729 (2014) 108-111, arXiv:1307.7748 [hep-lat].

[62] H. Hueffel and G. Kelnhofer. QED Revisited: Proving Equivalence Between Path

Integral and Stochastic Quantization. Phys.Lett. B588 (2004) 145-150.

[63] W. Grimus and H. Hueffel. Pertubation Theory from Stochastic Quantization of

Scalar Fields. Z.Phys. C18 (1983) 129.

[64] H. Huffel and H. Rumpf. Stochastic Quantization in Minkowski Space. Phys.Lett.

B148 (1984) 104-110.

[65] G. Aarts, F.A. James, E. Seiler, and I.O. Stamatescu. Adaptive stepsize and

instabilities in complex Langevin dynamics. Phys.Lett. B687 (2010) 154-159,

arXiv:0912.0617 [hep-lat], .

[66] P. de Forcrand. Simulating QCD at finite density. PoS LAT2009 (2009) 010,

arXiv:1005.0539 [hep-lat].

[67] T. Cohen. Functional integrals for QCD at nonzero chemical potential and zero

density. Phys.Rev.Lett. 91 (2003) 222001, arXiv:hep-ph/0307089.



Bibliography 112

[68] J. R. Ipsen and K. Splittorff. Baryon Number Dirac Spectrum in QCD. Phys.Rev.

D86 (2012) 014508, arXiv:1205.3093 [hep-lat].

[69] I. M. Barbour, S. E. Morrison, E. G. Klepfish, J. B. Kogut, and M. P. Lom-

bardo. Results on Finite Density QCD. Nucl.Phys.Proc.Suppl. 60A (1998) 220-

234, arXiv:hep-lat/9705042.

[70] S. Gottlieb, D. Toussaint W. Liu, R. L. Renken, and R. L. Sugar. Quark-number

susceptibility of high-temperature QCD. Phys. Rev. Lett. 59 (1987) 2247.

[71] J. B. Kogut and D. K. Sinclair. The finite temperature transition for 2-flavour

lattice QCD at finite isospin density. Phys.Rev. D70 (2004) 094501, arXiv:hep-

lat/0407027.

[72] S.K. Yang J. Ambjorn. Numerical Problems in applying the Langevin Equation

to complex effective actions. Phys.Lett. B165 (1985) 140.

[73] H.Q. Lin and J.E. Hirsch. Monte Carlo versus Langevin methods for nonpositive

definite weights. Phys. Rev. B 34, 1964.

[74] J. Berges, Sz. Borsanyi, D. Sexty, and I. O. Stamatescu. Lattice simulations of

real-time quantum fields. Phys.Rev. D75 (2007) 045007, arXiv:hep-lat/0609058.

[75] G. Aarts and F. A. James. On the convergence of complex Langevin dynamics:

the three-dimensional XY model at finite chemical potential. JHEP 1008 (2010)

020, arXiv:1005.3468 [hep-lat].

[76] H. Hamber and G. Parisi. Numerical Estimates of Hadronic Masses in a Pure

SU(3) Gauge Theory. Phys.Rev.Lett. 47 (1981) 1792.

[77] D.T. Son and M.A. Stephanov. QCD at finite isospin density. Phys.Rev.Lett. 86

(2001) 592-595, arXiv:hep-ph/0005225.

[78] I. M. Barbour and Susan E. Morrison. The Critical Points of Strongly Coupled

Lattice QCD at Nonzero Chemical Potential. Phys.Rev. D56 (1997) 7063-7072,

hep-lat/9705038.

[79] A. Ferrenberg and R. Swendsen. New Monte Carlo technique for studying phase

transitions. Phys.Rev.Lett. 61 (1988) 2635-2638.

[80] P. de Forcrand, S. Kim, and T. Takaishi. QCD simulations at small chemical

potential. Nucl.Phys.Proc.Suppl. 119 (2003) 541-543, arXiv:hep-lat/0209126.

[81] C. Bonati, P. de Forcrand, M. D’Elia, O.Philipsen, and F. Sanfilippo. Constraints

on the two-flavor QCD phase diagram from imaginary chemical potential. PoS

LATTICE2011 (2011) 189, arXiv:1201.2769 [hep-lat], .



Bibliography 113

[82] P. de Forcrand and O. Philipsen. Constraining the QCD phase diagram by tri-

critical lines at imaginary chemical potential. Phys.Rev.Lett. 105 (2010) 152001,

arXiv:1004.3144 [hep-lat], .

[83] C. Bonati, P. de Forcrand, M. D’Elia, O. Philipsen, and F. Sanfilippo. The chiral

phase transition in two-flavor QCD from imaginary chemical potential. Phys.Rev.

D90 (2014) 074030, arXiv:1408.5086 [hep-lat], .

[84] P. de Forcrand and O. Philipsen. The chiral critical point of Nf=3 QCD at finite

density to the order (µ/T )4. JHEP0811:012 (2008), arXiv:0808.1096, .

[85] G. Aarts, F. A. James, E. Seiler, and I. O. Stamatescu. Complex Langevin:

Etiology and Diagnostics of its Main Problem. Eur.Phys.J. C71 (2011) 1756,

arXiv:1101.3270 [hep-lat], .

[86] G. Aarts, P. Giudice, and E. Seiler. Localised distributions and criteria for

correctness in complex Langevin dynamics. Annals Phys. 337 (2013) 238-260,

arXiv:1306.3075, .
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