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Abstract
In this thesis coarse graining renormalization transformations are applied to an effective theory of LQCD in
1+1 and 2+1 dimensions. The theory is valid in the strong coupling and heavy quark regime. The tool of choice
determines recursion relations for the couplings of the theory at varying length scales.
In 1+1 dimensions the method is introduced in the context of pure gauge theory. Step by step, parts of the
quark determinant are included in the description of the model and the corresponding running couplings are
obtained. Yielding the transfer matrix, the recursion relations are solved analytically. The thermodynamic
limit is taken for some intensive observables. Afterwards, continuum extrapolation is performed numerically
and results are discussed.
In 2+1 dimensions the coarse graining method is applied in the pure gauge and static quark limit. Running
couplings are obtained and the fixed points of the transformations are discussed. Last, the critical coupling of
the confinement-deconfinement transition is determined in both limits. Comparisons to literature values are
drawn.
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Chapter 1

Introduction

Quantum chromodynamics (QCD) describes the theory of strong interactions. It characterizes the behavior of
quarks, the fermions of the theory, and gluons, its gauge bosons. The different kinds of quarks are called flavors,
of which six are known: up, down, charm, strange, top and bottom. Next to the electromagnetic and weak
interactions, the strong force is part of the standard model of today’s particle physics. [1]
Additionally to the usual quantum numbers, e.g. electric charge and spin, the fundamental particles of QCD
carry the color charge. It can have the values red, green and blue. In everyday life the particles can only be
found in color neutral states. These are build either from three quarks occupying all the three values or a
quark-antiquark pair, where the particles are in a color-anticolor combination [1].
Because the force between quarks increases with their distance, separating the particles results in pair pro-
duction, which again leads to bound states. This phenomenon is called confinement. At high temperatures,
however, the coupling of the quarks decreases. Then, the particles can transition into a deconfined state and
appear in unbound states. This state is known as the quark gluon plasma [1,2].
Due to the additional properties of QCD its phase diagram is expected to feature many interesting phenomena,
which are still mostly hypothetical [3]. The current idea of the phase diagram of QCD is shown in figure 1.1.

Figure 1.1: Current draft of the QCD phase diagram. The figure is taken from [4].

Next to the deconfinement transition, the nuclear liquid-gas transition will be of interest in this work. It de-
scribes the formation of droplets of nuclear matter at sufficiently high chemical potential. At zero temperature
it is a first order transition. Away from this limit it changes into a crossover [5, 6].
Because of the high coupling between the particles QCD has to be treated non-perturbatively. The discretiza-
tion of the theory has proven itself in this context and led to the development of lattice QCD (LQCD) [7].
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Chapter 1. Introduction

In recent developments an effective theory of LQCD has been derived in 1+1 and 3+1 dimensions (1+1D and
3+1D) to study the model at finite chemical potential and temperature. This has been implemented by expand-
ing around the vanishing inverse coupling β and the vanishing hopping parameter κ ∝ 1/mq with mq being the
quark mass. Therefore, the theory is valid in the strong coupling and heavy quark regime [8–11].
The effective theory can be interpreted as a spin model, where the spins are the irreducible characters of the
gauge group SU(Nc) and Nc is the amount of colors. The theory reproduced the deconfinement and nuclear
liquid-gas transitions qualitatively [5, 6, 8].
The use of techniques on the effective theory that proved themselves in the context of Ising-type systems is
suggested by the aforementioned interpretation. A prominent example of them are coarse graining renormal-
ization transformations. They describe the process of iteratively reducing the spacial degrees of freedom. This
leads to a description of the same theory on a coarser lattice. This is captured by scale dependent interaction
strengths, the running couplings. In this thesis coarse graining renormalization transformations are applied on
the effective theory in 1+1D and 2+1D [12,13].
In chapter 2 renormalization group theory on the lattice is introduced and general features relevant to this
thesis are discussed. Chapter 3 deals with pure gauge theory in 1+1D and its analytical solution is covered.
Afterwards, in chapter 4 the derivation of the effective theory in 1+1D is summarized and comments regarding
higher dimensions are made.
The application of coarse graining renormalization group transformations on the effective theory in 1+1D is
studied in chapter 5. First, the tool of choice is tested on pure gauge theory. It reproduces the analytical
solution that was previously discussed in chapter 3. Afterwards the static quark determinant is included in the
effective action. The knowledge from this step is used to consider more and more parts of the quark determi-
nant. Corrections to the heavy quark limit are incorporated up to O(κ4) - the highest order the effective action
is known to. This restriction is circumvented by assuming a general form of the effective action. All gauge
integrals are performed analytically.
Regarding the effective theory in 2+1D coarse graining renormalization is applied in chapter 6 in the pure gauge
and heavy quark limit, respectively. In contrast to the discussion regarding 1+1D, approximations have to be
introduced to obtain the running couplings.
In chapter 7 the renormalization scheme is evaluated for 1+1D. First, it is observed that the running couplings
are in all cases of a similar form. This insight allows us to solve the recursion relations analytically. Because
of that, the partition function is obtained in terms of the transfer matrix and the thermodynamic limit is per-
formed. In the last step the baryon density and the pressure are calculated on the lattice and after continuum
extrapolation. The observables show the liquid-gas to nuclear matter transition paired with typical lattice arte-
facts.
The evaluation of the running couplings in 2+1D is covered in chapter 8. The fixed point of the renormalization
transformation is determined analytically. This allows us to determine the critical inverse coupling βc of the
deconfinement transition in the pure gauge and the heavy quark limit, respectively. The results are compared
to the literature.
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Chapter 2

Renormalization Group Theory

The general idea of renormalization group transformations is to relate a physical system with a characteristic
scale, e.g. the distance between two neighboring lattice sites of a discretized model, to the same model at a
different scale. This process can be split into two steps, coarse graining and rescaling. The first corresponds to
a reduction of degrees of freedom of the system, e.g. by integrating out appropriately chosen lattice sites. In
the resulting expression the new scales of the theory are identified causing the new action to be of the same
form as the previous one, except for altered coupling constants [12,13].
In the following this will be discussed by considering the action

S[ψ] =
∑
n

Knθn[ψ] (2.1)

with the coupling constants Kn and functionals θn acting on the field configuration ψ. The latter is determined
by each ψx corresponding to the field strength of ψ at lattice site x. Additionally, we collect the coupling
constants Kn in a vector K = (K1, . . . ) [12].
The quantitiy of interest is the partition function [12]

Z(K) =

∫
[dψ]e−S(K)[ψ] (2.2)

2.1 Coarse Graining and Rescaling
Let Λ be the lattice underlying our system of interest and a its length scale. To implement coarse graining we
split Λ into two distinct sublattices Λ′ and Λ′′ with sites {x′} and {x′′}, respectively. We assume the distance
between all nearest neighbors in Λ′ to be increased by a factor ∆ > 1 compared to a, e.g. a → a∆. Further,
let ψ′ and ψ′′ denote the field configurations of the sublattices Λ′ and Λ′′ respectively. Now, the integration
measure [dψ] can be rewritten as [12,14]∫

[dψ] =

∫
[dψ′][dψ′′] =

∫ ( ∏
x′∈Λ′

dψx′

)( ∏
x′′∈Λ′′

dψx′′

)
(2.3)

To reduce the degrees of freedom we integrate out the lattice sites of Λ′′ and rewrite the resulting expression in
terms of a new action S′ [12] ∫

[dψ′′]e−S(K)[ψ′,ψ′′] !
= e−S

′[ψ′] (2.4)

In general the new action S′ is not of the same form as S. Often, however, by choosing the previously introduced
lattice decomposition appropriately and introducing approximations, S′ can be brought into the same form as
S. Then the same functionals θn appear except for altered couplings Kn → K ′n. Thus, (2.4) can be written
as [12] ∫

[dψ′′]e−S(K)[ψ′,ψ′′] = e−S(K′)[ψ′] + corrections (2.5)
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Chapter 2. Renormalization Group Theory

The details of this step depend on the particular system.
The model is now described on a coarser lattice with characteristic length a′ = a∆ and the partition function
(2.2) is left invariant under the scale transformation (except for possible correction terms) [12]

Z =

∫
[dψ]e−S(K)[ψ] =

∫
[dψ′]e−S(K′)[ψ′] + corrections (2.6)

2.2 Renormalization Group Transformations

2.2.1 General Properties
Renormalization group transformations are defined to relate the coupling constants at varying length scales. In
the context of this discussion this implies that there exists a mapping R∆ between the couplings K and K′ [12]

K′ = R∆(K) (2.7)

Imagine two successively applied coarse graining and rescaling iterations with factors ∆1 and ∆2 respectively.
According to the previous discussion the system has length scale of a′ = a∆1 after the first iteration and
a′′ = a′∆2 = a∆2∆1 after the second. This implies, that renormalization group transformations follow [12]

R∆2∆1
(K) = K′′ = R∆2

(K′) = R∆2
(R∆1

(K)) (2.8)

In other words renormalization group transformations satisfy the closure relation R∆2∆1
= R∆2

◦ R∆1
with

the composition operator ◦. Because ∆1,∆2 > 1, there is no inverse in the set of all renormalization group
transformations {R∆}. Thus, the tuple ({R∆}, ◦) forms a semi-group [12].
The couplings

K(n) = R∆1...∆n
(K(0)) (2.9)

now determine the interaction strengths at arbitrary scales and therefore correspond to the running couplings
of the theory. The trajectories K(0), . . . ,K(n) for all initial couplings K(0) create a renormalization group flow
on the coupling manifold [12].

2.2.2 The Renormalized Correlation Length
The correlation length of a system describes over which distances variations in the field ψ can be expected. If
it is infinitely large, it implies, that the system undergoes a phase transition. Note, that the converse is not
necessarily true, because not every phase transition implies a diverging correlation length. The interplay of
renormalization group transformations and the correlation length will lead to important insights. [12]
For a lattice with scale a the physical correlation length ζ can be expressed in terms of its counterpart in lattice
units ζ1 by ζ = ζ1a. On the other hand, like any physical observable ζ is invariant under renormalization group
transformations ζ = ζ∆∆a. Therefore, the renormalized correlation length satisfies [12]

ζ∆ =
ζ1
∆
. (2.10)

2.2.3 Fixed Points
A particular choice of couplings Kc is called a fixed point, if [12]

Kc = R∆(Kc) (2.11)

If the system is at a fixed point Kc, it shows scale invariance and we have

ζ∆(Kc) = ζ1(R∆(Kc)) = ζ1(Kc) (2.12)

Then, following (2.10) the correlation length either vanishes or is infinitely large [12].
For ζ = ∞ the fixed point is called critical as the system undergoes a phase transition. For ζ = 0 the fixed
point is called trivial and no critical behavior is implied. Further, for any non-fixed point (2.10) indicates, that
the system is driven away from criticality by iterating the renormalization group transformation infinitely many
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Chapter 2. Renormalization Group Theory

times [12]. A more detailed discussion of behavior away from fixed points is given in the next subsection.
The basin of attraction of a fixed point Kc corresponds to the set of all initial couplings {K0} that converge
to Kc by (repeated) application of the renormalization group transformation. Note that all points K0 in the
basin of attraction of a critical point have the same correlation length. This can be quickly seen by considering
the correlation length over the renormalization flow K(n) of {K0} [12]

ζ1(K0) = ∆ζ1(K(1)) = · · · = ∆nζ1(K(n)) (2.13)

In the limit n→∞ the running couplings flow towards the critical point, where the correlation length diverges.
Because ∆ > 1, the same holds true for ζ1(K0) [12].
The basin of attraction of a critical fixed point is called critical manifold [12].

2.2.4 Stability of Fixed Points
To gain information on the renormalization flow close to fixed points let us consider some coupling K with a
small deviation δK from a critical point Kc [12]

K = Kc + δK (2.14)

We apply a renormalization group transformation on δK and expand it around the critical point

K′ = R∆(K) = Kc +
∂K′

∂K

∣∣∣∣
K=Kc

δK +O
(
(δK)2

)
(2.15)

with the Jacobian J(∆) := ∂K′

∂K

∣∣∣
K=Kc

δK [12]. This matrix now determines the behavior near the critical point

at a given scale factor δ. For simplicity we assume J(∆) to be symmetric and therefore diagonalizable with real
eigenvalues [12].
The closure relation (2.8) transfers itself onto its linearization J(∆) [12]

J(∆1)J(∆2) = J(∆1∆2) = J(∆2)J(∆1) (2.16)

and the matrices commute with one another independent of the scale parameters. Consequently, the eigenvalues
ji,∆ of J(∆) maintain the same behavior

j
(∆1)
i j

(∆2)
i = j

(∆1∆2)
i (2.17)

Equation (2.17) is solved by the approach j(∆)
i = ∆yi for some unknown and scale independent yi [12].

The deviation δK′ from the critical coupling compared to δK then determines the behavior we are interested
in. Decomposing both in the eigenbasis {e(∆)

i } of J(∆) gives

δK′ =
∑
i

a
(∆)
i
′e

(∆)
i = J(∆)δK = J(∆)

∑
i

a
(∆)
i e

(∆)
i =

∑
i

a
(∆)
i j

(∆)
i e

(∆)
i (2.18)

The eigenvalues j(∆)
i now dictate the renormalization flow [12].

For yi > 0 the deviation in direction e(∆)
i increases. Contributions of this kind have been found to correspond

to deviations from the critical manifold. By iterating the transformation infinitely many times the coupling is
driven away from criticality. This corresponds to an unstable recursion relation. If all yi < 0, contributions in
all direction e(∆)

i decrease and cause deviations only inside the critical manifold. After an infinite number of
iterations the system still shows critical behavior. For yi = 0 the coefficients are not altered. They have been
found to be important for logarithmic corrections to the scaling behavior of the system [12].
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Chapter 3

Pure Lattice Gauge Theory in 1+1D

Pure lattice gauge theory in 1+1D can be solved analytically in dependence on single group integrals. This
solution is discussed for periodic boundary conditions in both the temporal and spacial direction. Periodicity
in the former direction is mandatory for describing systems at finite temperature [15,16].
The studied system is described by the Wilson gauge action with a compact Lie group G [7, 15,16]

SG =
β

df

∑
P

Re Tr [1− UP ] (3.1)

Here β is the inverse coupling strength, P a plaquette, UP a plaquette of link variables in the fundamental
representation and df its dimension. Additionally, in this chapter Λ will denote the set of all sites on the 1+1D
lattice. [7, 15,16].
In this thesis we are interested in the case of special unitary groups G = SU(Nc), because they describe the
gauge fields of LQCD [7].
Because the partition function can be used to obtain important thermodynamic observables, e.g. the pressure
and density, it is our quantity of interest. In terms of the gauge action (3.1) it reads [7, 15]

Z =

∫
[dU ]e−SG[U ] (3.2)

The integration measure is given by ∫
[dU ] =

∏
n∈Λ

∫
dU0(n)

∫
dU1(n) (3.3)

where U0(n) is the temporal link variable at lattice site n and U1(n) is its spacial counterpart [7].
Like any class function1 the integrand in (3.2) can be expressed in terms of a character expansion [15,16]

Z =

∫
[dU ]

∏
P

∑
r

crχr(UP ) (3.4)

The sum goes over all irreducible representations r of the group. The χr are the characters of the respective
representation r and cr the corresponding character coefficients [16]

cr =

∫
dUχr(U

†) exp

(
− β

df
Re Tr [1− U ]

)
(3.5)

The irreducible characters follow the orthogonality, gluing and separation relation∫
dUχr(U)χr′(U

†) = δrr′ (3.6)∫
dΩχr(UΩ†)χr′(ΩV ) =

δrr′

dr
χr(UV ) (3.7)∫

dΩχr
(
ΩUΩ†V

)
=

1

dr
χr(U)χr(V ) (3.8)

1A class function f has the property f(ΩUΩ−1) = f(U) for all elements of the gauge group Ω, U ∈ G
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Chapter 3. Pure Lattice Gauge Theory in 1+1D

with the dimension dr of the representation r and some group elements U, V ∈ G [7,15,17]. Further properties
will be used later on in this thesis and can be found for example in the references [15], [17] and [18].
Another observable of interest will be the lattice string tension σL. It is related to the Wilson loop WC , which
describes the expectation value of a closed path C of link variables on the lattice

W (C) =
1

Z

∫
[dU ]χf

P ∏
(n,i)∈C

Ui(n)

∏
P

∑
r

crχr(UP ) = dfe
−ALσL (3.9)

Here we used the area of the loop in lattice units AL and the path ordered product P
∏

(n,i)∈C along the closed
contour C [15, 16].

3.1 Gluing of Plaquettes
To perform all gauge integrals Migdal proposed to use the gluing relation (3.7) [19].
Consider two neighboring plaquettes and their contribution of the character expansion, e.g.∑
r

crχr

(
U0(x)U1(x+ e0)U†0 (x+ e1)U†1 (x)

)
and

∑
r

crχr

(
U0(x+ e0)U1(x+ 1e0)U†0 (x+ e0 + e1)U†1 (x+ e0)

)
Both share the link variable U1(x+e1), which we integrate out using the gluing relation (3.7). This is illustrated
in figure 3.1 and results in∑

r

∑
r′

crcr′

∫
dU1(x+ e0)χr

(
U0(x)U1(x+ e0)U†0 (x+ e1)U†1 (x)

)
χr′
(
U0(x+ e0)U1(x+ 2e0)U†0 (x+ e0 + e1)U†1 (x+ e0)

)
=
∑
r

c2r
dr
χr

(
U†0 (x+ e1)U†1 (x)U0(x)U0(x+ e0)U1(x+ 2e0)U†0 (x+ e0 + e1)

)
(3.10)

Figure 3.1: Gluing two plaquettes to form a larger contour. Figure based on [15].

The link variables in the characters in (3.10) now describe a path ordered product around both plaquettes and
the exponent of the character coefficient resembles the amount of plaquettes enclosed by this path, its area in
lattice units [15,19].
This can be generalized to arbitrary closed contours that share a common edge. Because of the closure relation
of the group, we can parameterize the paths as UV and V †W , where V is the shared edge and U as well
as W are the residual parts of the respective contours. Due to the invariance of the Haar measure under
multiplication with other group elements, e.g. dU = d(UU ′), it is then sufficient to integrate only over V to
perform the integration over the whole shared edge. Additionally, we assume that the loops enclose areas A1

and A2, respectively. Their contributions to the partition function then read [15,19]∑
r

dr

(
cr
dr

)A1

χr(UV ) and
∑
r

dr

(
cr
dr

)A2

χr(V
†W )

By performing the integration over V , one obtains [15,19]∫
dV

(∑
r

dr

(
cr
dr

)A1

χr(UV )

)(∑
r

dr

(
cr
dr

)A2

χr(V
†W )

)
=
∑
r

dr

(
cr
dr

)A1+A2

χr(UW ) (3.11)

Because U and W are the parts of the two contours that are not directly next to each other, but were connected
by the edge V , the character χr(UW ) describes the combined path around the outer edges of the previous
contours. This relation is also known as Migdal’s recursion relation [15,19].
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Chapter 3. Pure Lattice Gauge Theory in 1+1D

3.2 The Partition Function
We assume that the lattice has Nx spacial, Nτ temporal sites and lattice spacing a. This corresponds to a
system with spacial extend V = Nxa and temperature T = (Nτa)

−1.
With Migdal’s recursion relation the partition function can be obtained quickly by gluing all plaquettes in the
lattice. The remaining path is then given by the outer edges of the lattice. Because of the periodic boundary
conditions, the partition function reads [15]

Z =

∫
dUdV

∑
r

dr

(
cr
dr

)NxNτ
χr
(
UV U†V †

)
(3.12)

The gauge integration is then finished by first using the separation relation (3.8) and the orthogonality relation
(3.6) afterwards [15]

Z =
∑
r

(
cr
dr

)NxNτ
= cNxNτ0

∑
r

(
cr
drc0

)NxNτ
(3.13)

This is an analytic function and thus the theory has no phase transitions at finite temperature and inverse
coupling β [15, 16,19].
Note that the coefficients are for finite β bound by 0 ≤ cr

drc0
< 1 for r 6= 0 [10, 11]. Therefore, if the spacial or

temporal extends are large, the only relevant term in the sum is the trivial character contribution [16]

Z
NxNτ�1
≈ cNxNτ0 (3.14)

The only gauge integrals left appear in the expression for the character coefficients (3.5). For G = SU(Nc) they
can be solved in terms of an infinite series

cr =

∞∑
k=−∞

det
1≤i,j≤Nc

Ilj+i−j+k

(
β

Nc

)
(3.15)

where I is the modified Bessel function of the first kind [20]. The lj are related to the Nc − 1 non-negative
integers (p1, . . . , pNc−1) labeling the irreducible representation r [18, 20]

lj =

Nc−1∑
n=j

pn +Nc − j (3.16)

For j = Nc we have lNc = 0. The fundamental representation of SU(Nc) is labeled by (1, 0, . . . , 0) and the
anti-fundamental representation by (0, . . . , 0, 1) [18, 20].

3.3 The Wilson Loop and String Tension
The string tension determines whether the potential energy between two static quarks increases with their
distance. If the string tension is non-zero, at some distance between the quarks the potential energy becomes
large enough for pair production. Thus, the quarks only appear in color screened states and are confined. If the
string tension vanishes and the potential energy decreases sufficiently fast, pair production may not set in and
the former consequences do not apply. Then they exist in a deconfined state [15]. In the following we calculate
the Wilson loop and use (3.9) to obtain the string tension.
The gauge integrals that have to be performed to obtain the Wilson loop reside in (3.9). We assume the contour
C in the Wilson loop to enclose an area A′ and denote the path ordered product as V .
To apply Migdal’s recursion relation (3.11) the lattice is divided into two regions, the one enclosed by C and the
area outside of it. The contour of the ladder case can be parameterized by WV †, where W is the path ordered
product of link variables, that do not appear in C. The contribution to the integration by the surrounding area
is given by [15]

∑
r

dr

(
cr
dr

)NxNτ−A′
χr(WV †) = cNxNτ−A

′

0

∑
r

dr

(
cr
drc0

)NxNτ−A′
χr(WV †)

11



Chapter 3. Pure Lattice Gauge Theory in 1+1D

whereas the contribution by the enclosed area and the contour C is

∑
r

dr

(
cr
dr

)A′
χr(V ) and χf (V )

The contour C now appears in the integrand of (3.9) three times in various representations. Gauge integrals
of this type depend strongly on the structure of the group and can be complicated to solve, if Nc ≥ 3 [17, 18].
However, in the limit of large spacial extend we can use a similar argument as was used to obtain (3.14). In
this case, the coefficients of any representation other than the trivial one is suppressed exponentially. Thus, we
neglect these contributions and the Wilson loop reads [15,16]

W (C)
Nx�1
≈ cNxNτ−A

′

0

Z

∑
r

dr

(
cr
dr

)A′ ∫
dV χr(V )χf (V ) = df

(
cf
dfc0

)A′
(3.17)

Using (3.9) the string tension is obtained [15,16]

σL = − log
cf
dfc0

(3.18)

Because of the previously used inequality the string tension is non-zero for any finite β and the quarks are
always confined. This result is not surprising, because switching from confined to deconfined quarks requires a
phase transition, which was does not exist in this theory [15, 16]. However, the string tension will be of use in
the evaluation of the 1+1D effective theory in chapter 7.
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Chapter 4

On the Effective Theory

In this chapter the derivation of an effective theory of lattice QCD in 1+1D is summarized and some adjustments
that are necessary in higher dimensions are discussed. The complete derivation can be found in [9] for 1+1D
and in [10,11,21] for the 3+1D theory.
Until now only the Wilson gauge action (3.1) has been introduced. To fully describe QCD on the lattice,
however, our system of interest has to be filled with (dynamical) quarks. In our case these are described by the
Wilson fermion action [7]

SF = ψ̄Q[U ]ψ (4.1)

where Q[U ] is the Wilson-Dirac-Operator [7]

Q[U ] = 1− κ
d∑

υ=0

[
eaµδυ0(1+ γυ)Uυ(x)δy,x+υ̂ + e−aµδυ0(1− γυ)U†υ(y)δy,x−υ̂

]
(4.2)

Here κ = (2+2d+2am)−1 is the hopping parameter, d the amount of spacial dimensions, γυ the Dirac matrices
for d + 1 dimensional space time, µ the chemical potential and υ̂ the unit vector in direction v. For d = 1 the
matrices are equivalent to the first two Pauli matrices [9]

γ0 = σ1 =

(
0 1
1 0

)
and γ1 = σ2 =

(
0 −i
i 0

)
(4.3)

The action (4.1) is chosen instead of the naive discretization of the fermion action of QCD. The latter has been
shown to imply additional particles, usually referred to as doublers, in the continuum limit, that do not exist in
full QCD. This problem is solved by introducing a counter term, that shifts their mass by a term proportional to
1/a. In the continuum limit a→ 0 their total mass diverges and the doublers become unphysical. A drawback
of (4.1) is the explicit breaking of chiral symmetry even for vanishing quark masses [7].
The Wilson fermion action reproduces the continuum action of QCD to first order in the lattice spacing a. This
choice, however, is not unique because different actions as well as corrections to (4.1) have been proposed to
reduce certain side effects. These include for example the introduction of counter terms to (4.1) increasing the
order at which discretization artefacts start to appear. Wilson actions including such terms are called improved
Wilson actions [7]
The action and partition function of our description of lattice QCD read, respectively, [7]

S = SG + SF (4.4)

Z =

∫
[dU ]D[ψ̄]D[ψ]e−S[U,ψ̄,ψ] (4.5)

The fermionic contribution is a Gaussian integral over Grassmann fields and can be performed analytically [14]

Z =

∫
[dU ] detQ[U ]e−SG[U ] (4.6)

13



Chapter 4. On the Effective Theory

The description of the system of interest is shifted into an effective action by performing the integration over
all spacial link variables

Zeff =

∫
[dU0]e−Seff with Seff = − log

d∏
i=1

∫
[dUi] detQe−SG (4.7)

We will find, that the resulting action is dimensionally reduced from d+ 1→ d, whereas the temporal evolution
of the system is fully shifted into the path integral over the time-like gauge field [9–11,21].
To determine the effective action the character expansion and a hopping parameter expansion around κ = 0
are our tools of choice [9–11,21]. First, the pure gauge limit κ = 0 (section 4.1), then the strong coupling limit
β = 0 (section 4.2) is discussed. Deviations from both limits imply corrections, which are covered afterwards
(section 4.3).

4.1 The Gauge Field as an Effective Spin Model
To obtain the effective gauge action we turn back to the character expansion, which was already introduced in
chapter 3.
In the 1+1D theory we can immediately use Migdal’s recursion relation to perform the integration. This is
achieved by ordering the plaquettes by their spacial position and gluing them together [8, 15, 19]. This is
illustrated in figure 4.1.

x

τ

Figure 4.1: Gluing plaquettes in the temporal direction is the first step to obtain the effective gauge action in
1+1D. Figure based on [15].

The neighboring plaquettes on the left hand side of figure 4.1 share a common spacial link. Integrating them
out leads according to Migdal’s recursion relation to a rectangle expanding into the temporal direction [8, 19].
Applying this to all Nτ plaquettes for a given x and using the periodic boundary conditions leads to the effective
action

Seff = − log cNxNτ0

∫
[dU1]

Nx∏
x=1

Nτ∏
τ=1

∑
r

cr
drc0

χr

(
U1(x, τ)U0(x+ 1, τ)U†1 (x, τ + 1)U†0 (x, τ)

)
= − log cNxNτ0

Nx∏
x=1

∫
dU1(x, 1)

∑
r

(
cr
drc0

)Nτ
χr

(
U1(x, 1)U0(x+ 1, 1) . . . U0(x+ 1, Nτ )U†1 (x,Nτ + 1)U†0 (x,Nτ ) . . . U†0 (x, 1)

)
= − log cNxNτ0

Nx∏
x=1

∑
r

(
cr
drc0

)Nτ
χr

(
U0(x+ 1, 1) . . . U0(x+ 1, Nτ )

)
χr

(
U†0 (x,Nτ ) . . . U†0 (x, 1)

)
(4.8)

Using the invariance of the Haar measure for the remaining temporal link integrals then implies [8]

Seff = − log cNxNτ0 −
Nx∑
x=1

log
∑
r

(
cr
drc0

)Nτ
χr(U

†
x)χr(Ux+1)

∫
[dU0]→

Nx∏
x=1

∫
dUx =:

∫
[dU ] (4.9)
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Chapter 4. On the Effective Theory

Because only the sum over spacial positions is calculated the effective action is dimensionally reduced compared
to our initial theory [8].
The description of the system at hand is shifted into effective nearest neighbor interactions between complex
and continuous valued spins χr(Ux). They are often referred to as Polyakov loops in the representation r, as
they describe windings of link variables in the temporal direction. In the fundamental representation they are
usually denoted as Lx := χf (Ux) [10, 11,21].
The effective partition function is given by

Zeff = cNxNτ0

∫
[dU ]

∏
〈x,y〉

∑
r

λrχr(Ux)χr(U
†
y ) (4.10)

where we defined the coupling constants

λr := uNτr :=

(
cr
drc0

)Nτ
(4.11)

As we will find in section 7.4.2, the trivial character coefficient is the vacuum contribution to the free energy
density and cancels in expectation values of observables. The latter holds true in higher dimensions as well
[10, 11,21].
In higher dimensional pure gauge theory spacial plaquettes appear and approximations become necessary to
derive the effective action. The additional steps include neglecting spacial plaquettes and aborting the sums
over representations at the fundamental and anti-fundamental terms. Then the partition function is of the
form [8]

Zeff =

∫
[dU ]

∏
〈x,y〉

(
1 + λf

(
LxL

†
y + L†xLy

) )
+O(uNτ+4

f ) (4.12)

Here the trivial character coefficient has already been disregarded.
Corrections to (4.12) can be obtained by including higher representations and spacial plaquettes in various
combinations. This leads to

• Further characters in the interaction terms, e.g. in the adjoint representation

1 + λf
(
LxL

†
y + L†xLy

)
→ 1 + λf

(
LxL

†
y + L†xLy

)
+ λaχa(Ux)χa(U†y ) (4.13)

In this case the correction is of order O(u2Nτ
f ). Other non-fundamental character contributions are of even

higher orders [22].

• Additional interactions over distances beyond nearest neighbors, e.g. between lattice sites with |x−y|/a =√
2 [8, 23]. This is implemented into the partition function by including∏

[x,y]

(
1 + λ2,f

(
LxL

†
y + LyL

†
x

) )
with λ2,f = Nτ (Nτ − 1)u2Nτ+2

f (4.14)

in the integrand of (4.12). This example causes corrections of order O
(
u2Nτ+2

)
[8]. Here [x, y] refers to

pairs of lattice sites at the distance mentioned above.

• Adjustments to the coupling strengths λr, λ2,r, etc. For λf and λ2,f the corrections are of the order
O(uNτ+4

f ) and O(u2Nτ+4
f ), respectively. Because the overall Nτ dependence of the additional terms does

not change, high order corrections can become necessary to accurately determine the coupling strengths,
if uf 6� 1 [8].

Note that (4.12) and (4.10) are explicitly center symmetric. In 3+1D the effective theory is able to reproduce
its spontaneous breaking resulting in the confinement-deconfinement phase transition [8]. In chapter 8 we will
find, that this holds true in 2+1D as well.
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4.2 The Quark Determinant
The Wilson-Dirac-operator (4.2) describes the interaction of quarks between each pair of lattice sites x and
y. For light quarks κ ≈ (2 + 2d)

−1 its determinant is highly non-local because it allows interactions over long
ranges. In the heavy quark regime κ� 1, however, only interactions over shorter ranges are important [9–11].
In the following the quark determinant is expanded around the latter limit for a single flavor of quarks Nf = 1 in
1+1D and spacial links are integrated out. Comments regarding higher Nf and higher dimensions are included
at their given time.
First, it is useful to split the Wilson-Dirac-operator into its temporal T and spacial contributions S, respectively,
[9]

T = κeaµ(1+ γ0)U0(x)δy,x+0̂ + κe−aµ(1− γ0)U†0 (x)δy,x−0̂ (4.15)

S = κ(1+ γ1)U1(x)δy,x+1̂ + κ(1− γ1)U†1 (x)δy,x−1̂ (4.16)

Q = 1− T − S (4.17)

This lets us factorize the quark determinant into two contributions. One describes only a temporal evolution
of quarks, which is called the static determinant. The other describes dynamical quarks and is called kinetic
quark determinant. The latter will contain the long range interactions mentioned above. To be more specific
the quantities read [9]

detQ = det(1− T − S) = det

(
1− T

)
det

(
1− S

1− T

)
(4.18)

After applying multiple relations for the Dirac matrices to the static contribution in (4.18) one obtains [9]

det (1− T ) =
∏
x

det (1+ h1Ux)
2

det
(
1+ h̄1U

†
x

)2
=:
∏
x

detQloc
stat(Ux) =: detQstat (4.19)

where we defined the heavy quark couplings

h1 = (2κ)Nτ eNτaµ (4.20)

h̄1 = (2κ)Nτ e−Nτaµ (4.21)

The Ux are the same temporal windings as in section 4.1 and detQloc
stat(Ux) describes the evolution of static

quarks at lattice site x. Note that the form (4.19) holds in higher dimensions as well [10, 11].
For SU(3) the static determinant can be expressed in terms of Polyakov loops [10,11]

detQstat =
∏
x

(
1 + h1Lx + h2

1L
†
x + h3

1

) (
1 + h̄1L

†
x + h̄2

1Lx + h̄3
1

)
(4.22)

whereas higher choices of Nc imply more complicated expressions [11].
To obtain the kinetic quark determinant the spacial contribution to the Wilson-Dirac-operator is further divided
into the propagation in positive x direction P and negative x direction M . Using the trace-log identity results
in [9]

detQkin = det

(
1− S

1− T

)
= det(1− P −M) = exp

(
−Tr

∞∑
n=1

1

n
(P +M)n

)
(4.23)

It can be shown that only closed loops of the propagators P and M are allowed. Therefore both have to appear
in the same amount inside a trace. Otherwise the term immediately vanishes. Because each P and M carries a
κ, only even orders in the hopping parameter appear in the expanded logarithm [9–11].
At a given n the longest loop extends from x to x+ n/2. Because for low quark masses high order terms, e.g.
with n� 1, are necessary, this captures the non-local behavior of the quark determinant [9–11].
The expression (4.23) is expanded around heavy quark limit κ = 0 and the Dirac matrices are evaluated. This
has to be done order by order, after which the spacial links can be integrated out. To second order in κ this
leads to [9]∫

[dU1] detQkin = 1− κ2Nτ
Nc

∑
x

(
Tr

h1Ux
1+ h1Ux

− Tr
h̄1U

†
x

1+ h̄1U
†
x

)(
Tr

h1Ux+1

1+ h1Ux+1
− Tr

h̄1U
†
x+1

1+ h̄1U
†
x+1

)
+O(κ4)

(4.24)
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The right hand side introduces a new type of nearest neighbor interaction with coupling constant κ2Nτ/Nc =: h2.
The traced fractions represent one-point correlation functions, that will also appear in variations at higher orders
in κ. Therefore, it is useful to define [9, 11]

Wabāb̄(U) = Tr

 (h1U)
a

(1+ h1U)
b

(
h̄1U

†)ā(
1+ h̄1U†

)b̄
 (4.25)

W−
abāb̄

(U) = Wab00 −W00āb̄ (4.26)

W+
abāb̄

(U) = Wab00 +W00āb̄ (4.27)

These correlation functions are referred to as node functions. With those definitions the kinetic quark determi-
nant to leading order reads [9]

detQkin = 1− h2

∑
〈x,y〉

W−1111(Ux)W−1111(Uy) +O(κ4) (4.28)

In higher dimensions (4.28) holds as well [10, 11].
For general chemical potential the kinetic determinant has been derived in 1+1D [9] and 3+1D [10] to O(κ4),
whereas the expression in the heavy and dense regime is known to O(κ8) [11].
To obtain the effective action, it is common to rewrite the kinetic determinant as an exponential. If expanded,
it reproduces detQkin to the given order. To leading order this results in [9, 11]

detQkin → exp

−h2

∑
〈x,y〉

W−1111(Ux)W−1111(Uy)

+O(κ4) (4.29)

At higher orders, however, counter terms have to be included in the exponential. This process is known as
resummation and improves the convergence of the theory, because an infinite number of terms is included in the
quark determinant. Afterwards, the argument of the exponential corresponds to the kinetic quark contribution
to the effective action [9–11]. To fourth order in κ for 1+1D it can be found in [9].
Note that there are methods to rewrite the node functions in terms of Polyakov loops in the fundamental
representation. Therefore, the interpretation of the effective theory as a spin model holds in this limit as
well [10, 11].
For Nf degenerate flavors it can be shown that only the following simple substitutions have to be made [9–11]

detQstat → detQ
Nf
stat, h2 → Nfh2, h31

→ Nfh31
, h32

→ Nfh31
(4.30)

4.3 Gauge Corrections to the Fermion Couplings
To describe deviations from the strong coupling and heavy quark limits corrections to the effective action
become necessary. These can be shifted into the couplings, which then become a function of both κ and β,
e.g. h1(κ) → h1(κ, β). By inserting plaquettes to the spacial link integration in section 4.2 the corrections are
obtained [10,11].
In 1+1D they have been derived to order O(κnumf ) with n+m ≤ 7 [9]

h1 = (2κ)Nτ eNτaµ exp

(
2Nτκ

2
uf − uNτf

1− uf
+ κ4Nτ

(
−8uf + 6u2

f + 4u3
fNτ

))
(4.31)

h2 =
κ2Nτ
Nc

(
1 + 2

uf − uNτf
1− uf

)
(4.32)

h31 =
κ4Nτ
n2
c

(
1 + 4

uf − uNτf
1− uf

)
(4.33)

h32
=
κ4Nτ (Nτ − 1)

N2
c

(
1 + 4

Nτ−2∑
n=1

nunf
Nτ − (n+ 1)

Nτ − 1

)
(4.34)
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Chapter 5

1+1D: Coarse Graining Renormalization
in the Effective Theory

In this chapter we will apply renormalization group transformations to the effective theory of 1+1D heavy quark
QCD.
We start with pure gauge theory, where the running couplings result in the exact expression for the partition
function, which was already discussed in chapter 3. In the next step the static quark determinant is included.
Still, the scheme will be valid to arbitrary order in β. Subsequently, corrections to the heavy quark limit up
to O(κ4) are implemented. Finally, assuming a certain form of the effective action the recursion relations are
generalized to arbitrary order in both κ and β.
All running couplings are expressed in terms of single integrals over the gauge group, which are solved analyti-
cally.

5.1 Pure Gauge Theory

Pure gauge theory in two dimensions is commonly deemed to be trivial, as its analytical solution is well known
from literature and the theory governs no physical degrees of freedom [15,16]. Here it is used as a test bed for
our recursion scheme. The partition function for 1+1D pure gauge theory was already given in (4.10).
Periodic boundary conditions in space are assumed. Because our effective theory can be interpreted as a 1D spin
model, it is natural to apply similar techniques as have been applied to the 1D Ising model. Thus, the recursion
scheme will be obtained by integrating every second site of the lattice. This corresponds to a renormalization
group transformation with scale factor 2. [10–12,15]
To capture the renormalization group transformation we substitute [dU ]→ [dU ](n), Nx → N

(n)
x and λr → λ

(n)
r

in (4.10). These quantities describe the interaction measure and the amount of lattice sites remaining after n
coarse graining iterations as well as the couplings between them, respectively [12]. The pure gauge partition
function then reads

Zpg = cNxNτ0

∫
[dU ](n)

N(n)
x∏
x=1

∑
r

λ(n)
r χr(Ux)χr(U

†
x+1) (5.1)

with the boundary conditions

λ(0)
r = λr =

(
cr
drc0

)Nτ
(5.2)

[dU ](0) = [dU ] (5.3)

N (0)
x = Nx (5.4)
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To obtain a recursion scheme the interaction terms are grouped into pairs of two and the product is expanded

Zpg =cNxNτ0

∫
[dU ](n)

N(n)
x∏
x=1

x mod 2=0

(∑
r

λ(n)
r χr(Ux)χr(U

†
x+1)

)(∑
r

λ(n)
r χr(Ux+1)χr(U

†
x+2)

)

=cNxNτ0

∫
[dU ](n)

N(n)
x∏
x=1

x mod 2=0

∑
rr′

λ(n)
r λ

(n)
r′ χr(Ux)χr(U

†
x+1)χr′(Ux+1)χr′(U

†
x+2) (5.5)

Now the integration over the link variable Ux+1 can be performed. Thus, the integration measure transforms as

[dU ]n =

N(n)
x∏
x=1

dUx →
N(n)
x∏
x=1

x mod 2=0

dUx
!
= [dU ](n+1) (5.6)

The gauge integral is performed with the orthogonality relation for irreducible characters (3.6), which collapses
one of the sums

Zpg =cNxNτ0

∫
[dU ](n+1)

N(n)
x∏
x=1

x mod 2=0

∑
rr′

λ(n)
r λ

(n)
r′ χr(Ux)χr′(U

†
x+2)

∫
dUx+1χr(U

†
x+1)χr′(Ux+1) (5.7)

=cNxNτ0

∫
[dU ](n+1)

N(n)
x∏
x=1

x mod 2=0

∑
r

λ(n)2
r χr(Ux)χr(U

†
x+2) (5.8)

After renaming the lattice sites and identifying the renormalized quantities one obtains the recursion relations
[12]

λ(n+1)
r = λ(n)2

r (5.9)

N (n+1)
x =

N
(n)
x

2
(5.10)

The relations are quickly solved by λ(n)
r = λ2n

r and N (n)
x = 2−nNx, respectively.

If the amount of spacial sites is a power of two, e.g. Nx = 2nx , the recursion scheme can be iterated nx times
to perform all gauge integrals and solve the theory [12]. Due to the periodic boundary conditions this leads to

Zpq =cNxNτ0

∑
r

λ(nx)
r = cNxNτ0

∑
r

(
cr
drc0

)NxNτ
(5.11)

Thus, our procedure reproduces the expression (3.13) obtained with Migdal’s recursion relation.

5.2 The Static Quark Limit at Finite Density

5.2.1 From Pure Gauge to Static Quarks
Because the static determinant depends only on temporal links, the partition function for heavy quarks is simply
determined by including detQstat into the gauge integrals [9–11]

Zsq = cNxNτ0

∫
[dU ] detQstat

∏
〈x,y〉

∑
r

λrχr(Ux)χr(U
†
y ) = cNxNτ0

∫
[dU ]

∏
x

∑
r

λrχr(Ux)χr(U
†
x+1) detQloc

stat(Ux)

(5.12)

To gain an intuition how the recursion relation is going to look like, it is instructive to notice that we can get
from pure gauge theory to static quarks by substituting the Haar measure dUx for all lattice sites

dUx → dUx detQloc
stat(Ux) (5.13)
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In context of (5.7), this corresponds to∫
dUx+1χr(U

†
x+1)χr′(Ux+1)→

∫
dUx+1 detQloc

stat(Ux+1)χr(U
†
x+1)χr′(Ux+1) (5.14)

The static determinant induces deviations from the orthogonality relation (3.6) and thus creates dependencies
on the intrinsic structure of the gauge group. Because this can be complicated especially for Nc ≥ 3, mixed
terms between all different representations will be allowed [17,18].
The appearance of combinations of all possible interaction terms is a typical feature of renormalization group
transformations and the simplicity of the pure gauge limit is ascribed to the triviality of the theory [12,15,16].
Contrary to higher dimensions renormalization group transformations in 1D usually do not increase the range
of interactions. Thus, no further approximations are expected to be necessary in this chapter and allowing
all possible mixed terms of interactions can be expected to occur in the remaining cases of this chapter as
well. [12, 15].

5.2.2 The Renormalization Scheme
Based on the previous subsection we formulate our recursion approach to be

Z = cNxNτ0

∫
[dU ](n) detQ

(n)
stat

N(n)
x∏
x=1

∑
r,r′

λ
(n)
rr′χr(Ux)χr′(U

†
x+1) (5.15)

where [dU ](n), detQ
(n)
stat and N

(n)
x contain only the integration measure, local static determinant and lattice

sites after n coarse graining iterations, respectively. The two indices of the couplings λ(n)
rr′ allow interactions

involving distinct irreducible representations.
With the following boundary conditions the initial expression for the partition function (5.12) is reproduced by
(5.15)

λ
(0)
rr′ = λrδrr′ =

(
cr
drc0

)Nτ
δrr′ (5.16)

detQ
(0)
stat = detQstat (5.17)

To obtain the running couplings the same integration scheme as in section 5.1 is used. We start by grouping
the interaction terms into pairs of two and pull every second gauge integral into the product [12]

Zsq = cNxNτ0

∫
[dU ](n) detQ

(n)
stat

N(n)
x∏
x=1

x mod 2=0

∑
r1,r′1

λ
(n)
r1r′1

χr1(Ux−1)χr′1(U†x)

∑
r2,r′2

λ
(n)
r′2r2

χr′2(Ux)χr2(U†x+1)


= cNxNτ0

∫
[dU ](n+1) detQ

(n+1)
stat

N(n)
x /2∏
x=1

∑
r1,r2

χr1(Ux)χr2(U†x+1)
∑
r′1,r

′
2

λ
(n)
r1r′1

λ
(n)
r′2r2

∫
dU detQloc

stat(U)χr′1(U†)χr′2(U)

!
= cNxNτ0

∫
[dU ](n+1) detQ

(n+1)
stat

N(n+1)
x∏
x=1

∑
r1,r2

λ(n+1)
r1r2 χr1(Ux)χr2(U†x+1) (5.18)

From the first to the second line we renamed the sites on the coarse grained lattice as well as the variable in
the gauge integral.
The recursion relation for the running couplings can be simply read of from (5.18) [12,15]

λ(n+1)
r1r2 =

∑
r′1,r

′
2

λ
(n)
r1r′1

λ
(n)
r′2r2

∫
dU detQloc

stat(U)χr′1(U†)χr′2(U) (5.19)

The gauge integral is solved in section 5.2.3. The expression shows the complex behavior we expected in section
5.2.1.
In the limit h1, h̄1 → 0 the static determinant approaches detQloc

stat(U) → 1 and the gauge integral can be
performed with the orthogonality relation for irreducible characters (3.6) [9–11]. Thus, the pure gauge recursion
relation (5.9) is recovered.
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5.2.3 The Static Quark Gauge Integral
To solve the recursion relations for static quarks it is necessary to perform the gauge integral

fsq(r, r′) =

∫
dU detQloc

stat(U)χr(U
†)χr′(U) (5.20)

As both the irreducible characters and the static determinant are class functions, the integrand in (5.20) depends
only on the eigenvalues y1, . . . , yNc of the group element U ∈ SU(Nc) [24].
Here we follow the approach by Nishida that can be used to solve integrals over some class function f with [24,25]∫

dUf(U) =

∫
dU

Nc∑
t=1

f̃1,t(y1) . . . f̃Nc,t(yNc) (5.21)

This procedure has been applied in previous discussions of the 3+1D effective theory [24,26].
The approach consists of re-writing the SU(Nc) Haar measure in the Polyakov gauge by [25]∫

dU → 1

(2π)Nc

Nc∏
t=1

(∫ π

−π
dφt

)
|∆|22πδ

(
Nc∑
t=1

φt mod 2π

)
(5.22)

where ∆ is the Vandermonde determinant [18,25]

∆ =

∣∣∣∣∣∣∣
zNc−1

1 . . . zNc−1
Nc

...
...

zNc−Nc1 . . . zNc−NcNc

∣∣∣∣∣∣∣ and zj = eiφj (5.23)

The delta function in (5.22) can be expressed by its Fourier series [25]

2πδ

(
Nc∑
t=1

φt mod 2π

)
=

∞∑
k=−∞

exp

(
−ik

Nc∑
t=1

φt

)
=

∞∑
k=−∞

z−k1 . . . z−kNc (5.24)

The irreducible characters can be expressed with Weyl’s character formula [18]

χr(U) =
1

∆

∣∣∣∣∣∣∣
zl11 . . . zl1Nc
...

...
z
lNc
1 . . . z

lNc
Nc

∣∣∣∣∣∣∣ (5.25)

The l1, . . . , lNc have already been discussed in section 3.2 and are given by (3.16).
Inserting (5.22)-(5.25) in (5.20) yields [25]

fsq =
1

(2π)Nc

∞∑
k=−∞

∑
i1,...,iNc

∑
j1,...,jNc

εi1,...,iNc εj1,...,jNc

Nc∏
t=1

∫ φ

−φ
dφtz

l′j−li−k
t

(
1 + h1zt

)2Nf (
1 + h̄1

1

zt

)2Nf

(5.26)

The sums over indices i1, . . . , iNc and j1, . . . , jNc can be summed up to the determinant of a matrix Msq with
dimension Nc [25]

fsq =

∞∑
k=−∞

det
1≤i,j≤Nc

Msq,l′j−li−k (5.27)

whereas each matrix element is given by [25]

Msq,l′j−li−k =
1

2πi

∮
dzzl

′
j−li−k(1 + h1z)

2Nf (z + h̄1)2Nf (5.28)

Additionally, we shifted k → k − 2Nf − 1, brought the integrand into rational form and transformed the
integration to a contour integral over the complex unit circle.
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The integral (5.28) can be solved by application of Cauchy’s residue theorem. The only pole of the integrand
lies at z = 0 and exists if and only if l′j − li − k < 0. Then it is equivalent to the residue at z = 0 [27]

Msq,l′j−li−k =
1(

k + li − l′j − 1
)
!

∂k+li−l′j−1

∂zk+li−l′j−1
(1 + h1z)

2Nf (z + h̄1)2Nf

∣∣∣∣∣
z=0

(5.29)

The derivative can be distributed to each factor with the general product rule and gives

Msq,l′j−li−k =
1(

k + li − l′j − 1
)
!

k+li−l′j−1∑
t=0

(
k + li − l′j − 1

t

)
(2Nf )!

(2Nf − t)!
(2Nf )!

(2Nf − k − li + l′j + 1 + t)!

ht1h̄
2Nf−k−li+l′j+1+t

1 (5.30)

If the previous condition is not met, the integral vanishes. Thus, the lower limit of the sum over k in (5.27)
becomes finite, as the order of the pole becomes non-positive for each matrix element. To be more precise, due
to the li’s and l′j ’s being subsequently decreasing non-negative integers l1 > · · · > lNc = 0, l′1 > · · · > l′Nc = 0
each summand is guaranteed to vanish for k ≤ −l1 [18].
Additionally, there exists an upper limit of k, beyond which all summands vanish. Because the derivatives in
(5.29) are taken of a polynomial of order 4Nf , the matrix Msq at a given k has only zero entries, if for all choices
of i and j the inequality k + li − l′j − 1 > 4Nf holds true. Thus, the sum (5.27) terminates at k = 4Nf + l′1 + 1
and has in total only a finite amount of terms.
All in all, the static quark gauge integral gives

fsq =

4Nf+l′1+1∑
k=−l1+1

det
1≤i,j≤Nc

{
Msq,l′j−li−k if k > l′j − li
0 otherwise

(5.31)

Figure 5.1 shows a plot of matrices, where each pair of indices (i, j) corresponds to the static quark gauge integral
of the respective representations fsq(ri, r

′
j) for Nc = 3, Nf = 1 and h̄1 = 0 at varying values of h1. The values

of the indices correspond to the first 36 representations of SU(3), satisfying 0 ≤ p1, p2 ≤ 5. Representations are
enumerated according to the bijection i↔ 6p1(ri) + p2(ri) + 1.

1
6

12

18

24

30

36

1 6 12 18 24 30 36

0 0.2 0.4 0.6 0.8 1.0
(a) h1 = 0

1
6

12

18

24

30

36

1 6 12 18 24 30 36

0 0.2 0.4 0.6 0.8 1.0
(b) h1 = 1/10

1
6

12

18

24

30

36

1 6 12 18 24 30 36

0 2 4 6 8 10
(c) h1 = 1

Figure 5.1: The heavy quark gauge integral matrix for Nc = 3, Nf = 1 and h̄1 = 0 for the first 36
representations at varying values of h1

Figure 5.1 shows the deviation of (5.31) from the pure gauge limit. For vanishing heavy quark couplings (h1 = 0,
Figure 5.1a) the heavy quark integral reproduces the orthogonality relation for irreducible characters. At small
couplings (h1 = 1/10, Figure 5.1b) deviations from the pure gauge case become apparent, as matrix elements
away from the diagonal assume non-zero values. Still, the diagonal is the most protruding feature of the matrix.
At high couplings (h1 = 1, Figure 5.1c) many off-diagonal elements are comparable to on-diagonal ones and the
matrix has a band structure. Additionally, the matrix elements can become noticeably larger than 1. Here the
dynamics of the system can be expected to differ from pure gauge theory [15,16].
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5.3 Leading Order Corrections

5.3.1 The Running Couplings
Considering the leading order corrections in κ to the effective action is the next natural step.
As discussed in the section 4.3, including both the gauge field and kinetic quarks to the theory implies modifica-
tions to the coupling constants, e.g. h1(κ)→ h1(κ, β) and h2(κ)→ h2(κ, β). Even though the corrections have
only been derived for lower dimensional representations, e.g. fundamental and anti-fundamental, we include all
irreducible representations in the effective gauge action. Deriving similar corrections originating from higher
representations is, however, beyond the scope of this thesis [9–11,21].
We start by using the leading order effective action of kinetic quarks [9]

S2 = h2

∑
〈x,y〉

W−1111(Ux)W−1111(Uy), (5.32)

split the exponential into product form and expand it to be able to perform the gauge integrals [9–11]

Z = cNxNτ0

∫
[dU ] detQstate

−S2

∏
〈x,y〉

∑
r

λrχr(Ux)χr(U
†
y )

= cNxNτ0

∫
[dU ] detQstat

Nx∏
x=1

∑
r,α

(−h2)α

α!
λrχr(Ux)χr(U

†
x+1)W−,α1111(Ux)W−,α1111(Ux+1) +O(κ4) (5.33)

Building on the static quark discussion 5.2.1 one can again expect mixed terms between different contributions
of the interaction terms. Here, however, this may not only impact the gauge and kinetic quark contributions
separately, but may induce a loss of the factorization of both as well [12].
The approach consists of writing the running couplings as a tensor hαα

′(n)
rr′ [12]. The indices correspond to the

representations of the gauge interaction and the powers of the node function, respectively,

Z2 = cNxNτ0

∫
[dU ](n) detQ

(n)
stat

N(n)
x∏
x=1

∑
r,r′

α,α′

h
αα′(n)
rr′ χr(Ux)χr′(U

†
x+1)W−,α1111(Ux)W−,α

′

1111 (Ux+1) (5.34)

With (5.3), (5.17) and (5.4) the partition function (5.33) is reproduced to leading order in κ by the boundary
condition

h
αα′(0)
rr′ =

(−h2)α

α!
λrδrr′δαα′ (5.35)

It implies both the initial factorization of the effective action and the gauge action as well as the resummation
to an exponential.
The coarse graining iteration can be performed analogously to the heavy quark discussion 5.2.2 [12]

Z =cNxNτ0

∫
[dU ](n+1) detQ

(n+1)
stat

N(n)
x /2∏
x=1

∑
r1,r2
α1,α2

χr1(Ux−1)χr2(U†x+1)W−,α1

1111 (Ux−1)W−,α2

1111 (Ux+1)

∑
r′1,r

′
2

α′1,α
′
2

h
α1α

′
1(n)

r1r′1
h
α′2α2(n)

r′2r2

∫
dU detQloc

stat(U)χr′1(U†)χr′2(U)W
−,α′1+α′2
1111 (U)

!
=cNxNτ0

∫
[dU ](n+1) detQ

(n+1)
stat

N(n+1)
x∏
x=1

∑
r1,r2
α1,α2

hα1α2(n+1)
r1r2 χr1(Ux)χr2(U†x+1)W−,α1

1111 (Ux)W−,α2

1111 (Ux+1) (5.36)

Reading of the running couplings from (5.36) we obtain [12]

hα1α2(n+1)
r1r2 =

∑
r′1,r

′
2

α′1,α
′
2

h
α1α

′
1(n)

r1r′1
h
α′2α2(n)

r′2r2

∫
dU detQloc

stat(U)χr′1(U†)χr′2(U)W
−,α′1+α′2
1111 (U) (5.37)

The gauge integral induces the occurring coupling between powers of node functions and the gauge action.
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5.3.2 The Leading Order Gauge Integral
To solve the gauge integral from (5.37)

f2(r, r′, α) =

∫
dU detQloc

stat(U)χr(U
†)χr′(U)W−,α1111(U) (5.38)

steps analogously to section 5.2.3 are performed. Additionally, the node function has to be expressed in terms
of the z1, . . . , zNc [24]

W−1111 =

Nc∑
t=1

(
h1zt

1 + h1zt
− h̄1z

−1
t

1 + h̄1z
−1
t

)
(5.39)

W−,α1111 =
∑

m1...mNc

δ

(
Nc∑
t=1

mt, α

)(
α

m1, . . . ,mNc

) Nc∏
t=1

(
h1zt

1 + h1zt
− h̄1z

−1
t

1 + h̄1z
−1
t

)mt
(5.40)

whereas powers of the node function are obtained with the multinomial theorem.
To bring (5.40) into factorizing form the Kronecker delta is substituted with

δ

(
Nc∑
t=1

mt, α

)
=

1

K

K∑
u=1

e2πi(
∑Nc
t=1mt−α)u/K (5.41)

Choosing K, however, is not arbitrary, because the right hand side of (5.58) does not vanish, if and only if∑Nc
t=1mt−αn is divisible by K instead of just

∑Nc
t=1mt−α = 0. As this sum is bounded by 0 ≤ |

∑Nc
t=1mt−α| ≤

(Nc − 1)α, the smallest sufficient choice of K is given by K = (Nc − 1)α+ 1.
With (5.22)-(5.25) and (5.40) the leading order gauge integral (5.38) reads after shifting k → k − 2Nf [25]

f2 =
α!

K

∞∑
k=−∞

K∑
u=1

exp
(
−2πi

αu

K

)
det

1≤i,j≤Nc
M2,l′j−li−k(α) (5.42)

M2,l′j−li−k(α) =

α∑
m=0

1

m!
exp

(
2πi

mu

K

) 1

2πi

∮
dzzl

′
j−li−k (1 + h1z)

2Nf−m (z + h̄1

)2Nf−m
(
h1z(z + h̄1)− h̄1(1 + h1z)

)m (5.43)

The complex integration is performed again with Cauchy’s residue theorem [27]. Because the effective kinetic
quark action is valid to leading order in the hopping parameter, we assume that the expansion of the exponential
in section 5.3 was done to the same accuracy. Thus, the highest possible value of α is 2 ≤ 2Nf and, likewise to
the static quark limit, a pole exists only at z = 0. The general case will be of interest in section 5.4.
The calculation of the residue is simplified by expanding the last factor in (5.43). Then, because of the equivalent
pole structure to the static quark limit the result from section 5.2.3 can be reused [27]

M2,l′j−li−k(α) =

α∑
m=0

1

m!
exp

(
2πi

mu

K

) m∑
v=0

(
m
v

)
hv1(−h̄1)m−v

1

2πi

∮
dzzl

′
j−li−k+m−v (1 + h1z)

2Nf+v (
z + h̄1

)2Nf+m−v

=

α∑
m=0

1

m!
exp

(
2πi

mu

K

) m∑
v=0

(
m
v

)
hv1(−h̄1)m−v

k+li−l′j−m+v−1∑
t=0

1(
k + li − l′j −m+ v − 1

)
!(

k + li − l′j −m+ v − 1
t

)
(2Nf + v)t (2Nf +m− v)k+li−l′j−m+v−1−t h

t
1h̄

2Nf+v−k−li+l′j+1+t

1

(5.44)

For brevity we exploit the convention, that the sum over t vanishes if its upper limit is smaller than the lower
limit, even if its terms are mathematically ill-defined.
In case all terms of the m-summation are zero, the matrix element is zero as well. Because the order of the pole
is reduced for increasing m, the lower limit of the k-summation receives no adjustments compared to section
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5.2.3. In the integrand of (5.43) varying m does not lead to a change of the order of the polynomial. Thus, the
upper limit of the k-summation remains unchanged as well.
The leading order gauge integral reads together with (5.44)

f2 =
α!

K

4Nf+l′1+1∑
k=−l1+1

K∑
u=1

exp
(
−2πi

αu

K

)
det

1≤i,j≤Nc
M2,l′j−li−k(α) (5.45)

The low amount of adjustments necessary from the heavy quark integral (5.31) is due to the fact that the static
determinant enters in the denominator of the node function, but cancels with the determinant from the effective
action. At powers α ≥ 2Nf , e.g. when expanding the effective action to higher order than O(κ2) ,this is not
guaranteed anymore if the amount of flavors Nf is not chosen appropriately [10, 11]. This may lead to further
contributions in the gauge integral. However, this is subject in section 5.4.3 in context of a more general gauge
integral.

5.4 Next to Leading Order Corrections
Fourth order corrections in κ to the effective action provide the next increase in accuracy of the theory. To this
order the effective kinetic quark action can be found in [9]. For brevity we write it as

S4 =:
∑
x

Sloc
4 (Ux, Ux+1, Ux+2) (5.46)

To prepare the corresponding partition function we start with the same steps in section 5.3 by bringing the
exponential into product form and expanding it [9–11]

Z = cNxNτ0

∫
[dU ] detQstate

−S4

∏
〈x,y〉

∑
r

λrχr(Ux)χr(U
†
y ) +O(κ6)

= cNxNτ0

∫
[dU ] detQstat

Nx∏
x=1

∑
r

λrχr(Ux)χr(U
†
x+1)

(
1− Sloc

4 (Ux, Ux+1, Ux+2) +
h2

2

2
W−,21111(Ux)W−,21111(Ux+1)

)
+O(κ6) (5.47)

Here, however, the discussion is restricted to an expansion to O(κ4), because of both the high amount of terms
appearing at higher orders and the accuracy of the action being equivalent to that order. Higher orders of the
resummed action can be implemented analogously.

5.4.1 Modifications to the Integration Scheme
Including the kinetic determinant to this order implies more node functions and next to nearest neighbor in-
teractions. In the context of the 1D Ising model long range couplings have been found to create complications
with the integration scheme previously used. Simply summing up every second spin does not lead to a recursion
scheme anymore. Instead the form of the action is lost after the first iteration [15].
As generating recursion schemes was possible for nearest neighbor interactions, we transform long range cou-
plings to effectively short range by considering the interactions between two neighboring pairs of lattice sites [15]

Z =cNxNτ0

∫
[dU ] detQstat

Nx∏
x=1

x mod 2=0

∑
rx−1

λrx−1
χrx−1

(Ux−1)χr(U
†
x)
∑
rx

λrxχrx(Ux)χr(U
†
x+1)

(
1− Sloc

eff,κ4(Ux−1, Ux, Ux+1) +
h2

2

2
W−1111(Ux−1)W−1111(Ux)

)
(

1− Sloc
eff,κ4(Ux, Ux+1, Ux+2) +

h2
2

2
W−1111(Ux)W−1111(Ux+1)

)
+O(κ6)

=: cNxNτ0

∫
[dU ] detQstat

Nx∏
x=1

x mod 2=0

A(Ux−1, Ux, Ux+1, Ux+2) +O(κ6) (5.48)
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The quantity A now describes the interaction between the pairs (Ux−1, Ux) and (Ux+1, Ux+2) and only nearest
neighbor interactions occur between them. Therefore, the interaction length is reduced effectively. The integra-
tion scheme is then given by integrating over every second pair instead of every second lattice site [15].
As we noticed in the previous sections, the recursion schemes generate all possible mixtures between different
parts of the action in a non-trivial way. Here this leads to a loss of the factorization between the two constituents
of the pairs and thus to a large amount of terms in the interaction [12].

5.4.2 Obtaining the Running Couplings
Analogously to the previous sections we will express the renormalization scheme in terms of a coupling tensor
h
r1r2r3r4(n)
a1a2a3a4 that realizes the mixture of all possible terms, e.g. it describes mixed terms between different

representations, the node functions and combinations thereof [12].
To characterize all possible couplings we need to investigate the effective pair interaction A. Because it is a
product of expanded parts of the effective kinetic quark action, products of node functions depending on the
same gauge variable appear [15]. We denote those contributions by Wv(U), where v is a set of node functions
and their respective powers

Wv(U) =
∏

(abāb̄,α)∈v

Wα
abāb̄(U) (5.49)

Examples to this are v = {(0000, 0)}, which describes a constant and v = {(1100, 3), (0011, 2)} corresponding
to Wv = W 3

1100W
2
0011. Hereinafter, the Wv’s are referred to as compound node functions.

With the newly introduced entity we can express the pair interaction A in terms of some to be specified coupling
tensor hv1v2v3v4 [15]

A(Ux−1, Ux, Ux+1, Ux+2)
!
=

∑
v1,v2,v3,v4

hv1v2v3v4Wv1(Ux−1)Wv1(Ux)Wv2(Ux+1)Wv3(Ux+2) (5.50)

To fully reproduce the partition function to next to leading order (5.48) all compound node functions appearing
in A have to be identified for each gauge variable Ux−1, . . . , Ux+2, respectively. In appendix B the possible
values for each index v1, . . . , v4 are listed and the respective amounts of compound node functions are given in
table 5.1.

Index v1 v2 v3 v4

Number of compound
node functions 12 72 28 4

Table 5.1: The amount of compound node functions needed for each index v1, . . . , v4 to reproduce the next to
leading order partition function (5.48)

Because renormalization typically realizes all possible combinations of interactions, a total of 12·72·28·4 = 96768
terms has to be allowed by the running couplings, even though most of the hv1v2v3v4 vanish. By including Ng
representations of the gauge action this number is increased to 96768N4

g [12].
To capture the coupling between the gauge action and kinetic quark action the approach reads [12]

Z4 =cNxNτ0

∫
[dU ](n) detQ

(n)
stat

N(n)
x∏
x=1

x mod 2=0

∑
v1,v2,v3,v4
r1,r2,r3,r4

hr1r2r3r4(n)
v1v2v3v4 χr1(Ux−1)χr2(U†x)χr3(Ux)χr4(U†x+1)

Wv1(Ux−1)Wv2(Ux)Wv3(Ux+1)Wv4(Ux+2) (5.51)

The boundary condition reads

hr1r2r3r4(0)
v1v2v3v4 = hv1v2v3v4λr1δr1r2λr3δr3r4 (5.52)

The values of hv1v2v3v4 can be obtained by using (5.50) with the list of compound node functions in appendix
B.
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Now the coarse graining iteration can be performed to obtain the running couplings analogously to the previous
sections

Z4 =cNxNτ0

∫
[dU ](n) detQ

(n)
stat

N(n)
x∏
x=1

x mod 4=0

( ∑
v1,v2,v

′
3,v
′
4

r1,r2,r3,r
′
4

h
r1r2r3r

′
4(n)

v1v2v′3v
′
4

χr1(Ux−1)χr2(U†x)χr3(Ux)χr′4(U†x+1)

Wv1(Ux−1)Wv2(Ux)Wv′3
(Ux+1)Wv′4

(Ux+2)

)( ∑
v′1,v

′
2,v3,v4

r′1,r
′
2,r
′
3,r4

h
r′1r
′
2r
′
3r4(n)

v′1v
′
2v3v4

χr′1(Ux+1)χr′2(U†x+2)χr′3(Ux+2)χr4(U†x+3)

Wv′1
(Ux+1)Wv′2

(Ux+2)Wv3(Ux+3)Wv4(Ux+4)

)

=cNxNτ0

∫
[dU ](n+1) detQ

(n+1)
stat

N(n)
x /2∏
x=1

x mod 2=0

∑
v1,v2,v3,v4
r1,r2,r3,r4

χr1(Ux−1)χr2(U†x)χr3(Ux)χr4(U†x+1)Wv1(Ux−1)Wv2(Ux)

Wv3(Ux+1)Wv4(Ux+2)
∑

v′1,v
′
2,v
′
3,v
′
4

r′1,r
′
2,r
′
3,r
′
4

h
r1r2r3r

′
4(n)

v1v2v′3v
′
4

h
r′1r
′
2r
′
3r4(n)

v′1v
′
2v3v4

(∫
dU detQloc

statWv′1
(U)Wv′3

(U)χr′4(U†)χr′1(U)

)
(∫

dU detQloc
statWv′2

(U)Wv′4
(U)χr′2(U†)χr′3(U)

)
!
=cNxNτ0

∫
[dU ](n+1) detQ

(n+1)
stat

N(n+1)
x∏
x=1

x mod 2=0

∑
v1,v2,v3,v4
r1,r2,r3,r4

hr1r2r3r4(n+1)
v1v2v3v4 χr1(Ux−1)χr2(U†x)χr3(Ux)χr4(U†x+1)

Wv1(Ux−1)Wv2(Ux)Wv3(Ux+1)Wv4(Ux+2) (5.53)

The running couplings now read

hr1r2r3r4(n+1)
v1v2v3v4 =

∑
v′1,v

′
2,v
′
3,v
′
4

r′1,r
′
2,r
′
3,r
′
4

h
r1r2r3r

′
4(n)

v1v2v′3v
′
4

h
r′1r
′
2r
′
3r4(n)

v′1v
′
2v3v4

(∫
dU detQloc

stat(U)Wv′1
(U)Wv′3

(U)χr′4(U†)χr′1(U)

)
(∫

dU detQloc
stat(U)Wv′2

(U)Wv′4
(U)χr′2(U†)χr′3(U)

)
(5.54)

Together both gauge integrals couple the interactions between pairs of lattice sites.

5.4.3 The Gauge Node Integral

By using the appearing compound node functions listed in appendix B one can find 188 distinct gauge integrals
appearing in (5.54), if the gauge action is disregarded. By using the commutativity of the characters this number
increases to 188Ng(Ng + 1)/2, if Ng irreducible representations are included.
At this order of the effective action one can find integrals, that involve high powers of node functions, e.g. over
detQloc

statW
5
1100, from appendix B. In contrast to section 5.3.2 we are therefore not able to exclude additional

residues for arbitrary Nf [10, 11].
To cope with the large amount of integrals and to provide a general solution to them in hindsight of section 5.5
we consider the function [24]

fκ4

r, r′,
α1

...
αN

 ,

a1

...
aN

 ,

 b1
...
bN

 ,

 ā1

...
āN

 ,

 b̄1
...
b̄N


 =

∫
dU detQloc

statχ
†
r(U)χr′(U)

N∏
i=1

Wαi
aibiāib̄i

(U) (5.55)
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Performing the steps from the previous cases analogously one obtains [18,24,25]

f4 =
1

(2πi)Nc

∞∑
k=−∞

∫
dz1 . . . dzNcz

k−1
1 . . . zk−1

Nc

∣∣∣∣∣∣∣
z−l11 . . . z−l1Nc
...

...
z
−lNc
1 . . . z

−lNc
Nc

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
z
l′1
1 . . . z

l′1
Nc

...
...

z
l′Nc
1 . . . z

l′Nc
Nc

∣∣∣∣∣∣∣∣(
1 + h1z1

)2Nf (
1 + h̄1

1

z1

)2Nf

. . .

(
1 + h1zNc

)2Nf (
1 + h̄1

1

zNc

)2Nf

N∏
n=1

 Nc∑
m=1

han1 h̄ān1

zan−ānm(
1 + h1zm

)bn (
1 + h̄1

1
zm

)b̄n

αn

(5.56)

To obtain a similar expression of the integral as in the previous cases the last product has to be brought into
a form factorizing with regards to the integration variables. Again this can be done using the multinomial
theorem [24,25] Nc∑

m=1

han1 h̄ān1

zan−ānm(
1 + h1zm

)bn (
1 + h̄1

1
zm

)b̄n

αn

=

αn∑
m1n=0

· · ·
αn∑

mNcn=0

(
αn

m1n, . . . ,mNcn

)
δ

(
Nc∑
t=1

mtn, αn

)

Nc∏
t=1

hanmtn1 h̄ānmtn1

(
1 + h1zt

)−bnmtn (
1 + h̄1

1

zt

)−b̄nmtn
(5.57)

Likewise to the leading order discussion section section 5.3.2 to decouple the summations over them1n, . . . ,mNcn

the Kronecker delta is substituted with

δ

(
Nc∑
t=1

mtn, αn

)
=

1

Kn

Kn∑
un=1

e2πi(
∑Nc
t=1mtn−αn)un/Kn (5.58)

Choosing Kn now depends on each power αn, respectively. Following the same arguments from section 5.3.2
yields Kn = (Nc − 1)αn + 1.
By plugging (5.57) and (5.58) into (5.56) and re-expressing the determinants, the integrals are decoupled [25]

f4 =
α1! . . . αN !

K1 . . .KN

∞∑
k=−∞

K1∑
u1=1

· · ·
KN∑
uN=1

∑
i1,...,iNc

∑
j1,...,jNc

exp

(
−2πi

N∑
n=1

αnun/Kn

)
εi1,...,iNc εj1,...,jNc

Nc∏
t=1

α1∑
mt1=0

· · ·
αN∑

mtN=0

1

mt1! . . .mtN !
exp

(
2πi

N∑
n=1

mtnun/Kn

)
h
∑N
n=1 anmtn

1 h̄
∑N
n=1 ānmtn

1

1

2πi

∫
dztz

l′jt−lit+k−1−2Nf+
∑N
n=1(an−ān)mtn

t

(
1 + h1zt

)−(
∑N
n=1 bnmtn−2Nf)(

1 + h̄1
1

zt

)−(
∑N
n=1 b̄nmtn−2Nf)

(5.59)

Again the sums over i1 . . . iNc and j1 . . . jNc can be collected as the determinant of a matrix M4 [25]

f4 =
α1! . . . αN !

K1 . . .KN

∞∑
k=−∞

K1∑
u1=1

· · ·
KN∑
uN=1

exp

(
−2πi

N∑
n=1

αnun/Kn

)
det

1≤i,j≤Nc
M4,l′j−li+k (5.60)

with M4,l′j−li+k in rational form given as

M4,l′j−li+k =

α1∑
m1=0

· · ·
αN∑

mN=0

1

m1! . . .mN !
exp

(
2πi

N∑
n=1

mnun/Kn

)
h
∑N
n=1(an−bn)mn+2

1 h̄
∑N
n=1 ānmn

1

1

2πi

∮
dzzl

′
j−li+k−1−2Nf+

∑N
n=1(an−ān+b̄n)mn

(
z +

1

h1

)−(
∑N
n=1 bnmn−2Nf)(

z + h̄1

)−(
∑N
n=1 b̄nmn−2Nf)

(5.61)
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Application of Cauchy’s residue theorem then leads to the final result for the matrix M4. Since the integrand
is already in rational form, both the poles and their respective order can be readily read of and are listed in
table 5.2 [27].

Pole at z = Order
0 −(l′j − li + k − 1− 2Nf +

∑N
n=1(an − ān + b̄n)mn)

− 1
h1

∑N
n=1 bnmn − 2Nf

−h̄1

∑N
n=1 b̄nmn − 2Nf

Table 5.2: Poles and their respective orders in the gauge node integral

Note that the poles only contribute if their position lies inside the complex unit circle and their order is positive.
The last two poles show a competition between the static determinant and the node functions. This results in
a piecewise expression for M4. To shorten the notation this behavior is captured by introducing a piecewise
operator B

(
g(x)

)
, taking a Boolean condition g(x) and acting on some function f(x) as [27]

B
(
g(x)

)
f(x) :=

{
f(x) if g(x) is true
0 if g(x) is false

(5.62)

As an example the expression B(n > 0) 1
(n−1)! is well defined for all integers n.

The procedure is illustrated on calculating the residue at z = − 1
h1
. In the following, the integrand in (5.61) is

denoted as f(z), whereas the order of the pole is denoted as g. Its residue at this pole can be calculated as [27]

Res− 1
h1

f = B (g > 0 ∧ h1 > 1)
1

(g − 1)!

∂g−1

∂zg−1

(
z +

1

h1

)g
f(z)

∣∣∣∣
z=− 1

h1

(5.63)

The derivatives of the product can be distributed to each factor quickly with the general product rule

Res− 1
h1

f =B (g > 0 ∧ h1 > 1)
1

(g − 1)!

g−1∑
t=1

(
g − 1
t

)[
∂t

∂zt
zl
′
j−li+k−1−2Nf+

∑N
n=1(an−ān+b̄n)mn

]
[
∂g−1−t

∂zg−1−t

(
z + h̄1

)−(
∑N
n=1 b̄nmn−2Nf)

] ∣∣∣∣∣
z=− 1

h1

(5.64)

For each factor the derivative can be expressed by falling factorials (x)y = x ·(x−1) · . . . ·(x−y+1). Afterwards,
z = − 1

h1
is applied [27]

Res− 1
h1

f =B (g > 0 ∧ h1 > 1)
1

(g − 1)!

g−1∑
t=0

(
g − 1
t

)(
l′j − li + k − 1− 2Nf +

N∑
n=1

(an − ān + b̄n)mn

)
t(

− 1

h1

)l′j−li+k−1−2Nf+
∑N
n=1(an−ān+b̄n)mn−t

(
−

N∑
n=1

b̄nmn + 2

)
g−1−t

(
h̄1 −

1

h1

)−(
∑N
n=1 b̄nmn−2+g−1−t)

(5.65)

Due to its length the final expression for M4,l′j−li+k is given in appendix A.
Note that the order of the pole at z = 0 depends on k. Because this index runs from −∞ to ∞, having another
sum depend on it may render computations inefficient. Analogously to the previous cases, this can be restricted
by exploiting a symmetry of M4. Substituting the contour of the integral from counterclockwise to clockwise
integration and back [27]∮

dzf(z)→ i

∫ π

−π
dφeiφf(eiφ)→ −i

∫ −π
π

dφe−iφf(e−iφ)→
∮

dzz−2f

(
1

z

)
(5.66)
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as well as transforming the integrand back into rational form gives

M4,l′j−li+k =

α1∑
m1=0

· · ·
αN∑

mN=0

1

m1! . . .mN !
exp

(
2πi

N∑
n=1

mnun/Kn

)
h̄
∑N
n=1(ān−b̄n)mn+2

1 h
∑N
n=1 anmn

1

1

2πi

∮
dzz−l

′
j+li−k−1−2Nf+

∑N
n=1(ān−an+bn)mn

(
z +

1

h̄1

)−(
∑N
n=1 b̄nmn−2Nf)(

z + h1

)−(
∑N
n=1 bnmn−2Nf)

(5.67)

Comparing (5.61) to (5.67) M4 is found to be symmetric under the simultaneous exchange of

l′j − li + k ↔ −(l′j − li + k),

 a
...
aN

↔
 ā

...
āN

 ,

 b
...
bN

↔
 b̄

...
b̄N

 , h1 ↔ h̄1 (5.68)

This then leads to an altered pole structure as shown in table 5.3 [27].

Pole at z = Order
0 l′j − li + k + 1 + 2Nf −

∑N
n=1(ān − an + bn)mn

− 1
h̄1

∑N
n=1 b̄nmn − 2Nf

−h1

∑N
n=1 bnmn − 2Nf

Table 5.3: Poles and their respective orders after applying the symmetry transformation

For any node function in the effective action the indices satisfy an ≤ bn and ān ≤ b̄n. Therefore, the order of
the z = 0 pole is in both cases (table 5.2 and 5.3) reduced by compound node functions. Further, in a single
matrix element M4,l′j−li+k this pole may not contribute, if [9–11]

l′j − li + k ≥ 2Nf + 1 in equation (5.61), (5.69)

l′j − li + k ≤ −2Nf − 1 in equation (5.67) (5.70)

Therefore, the interval of k containing poles at z = 0 in (5.61) can be reduced to −2Nf ≤ l′j − li + k ≤ 2Nf by
exploiting the symmetry (5.68) if (5.69) is not met.
In contrast to the integrals from section 5.2.3 and 5.3 the existence of two more poles in (5.61) interferes with
the termination of the infinite sum.
Because of the symmetry relation (5.68), considering only the limit k → ∞ is sufficient to determine how fast
the sum converges. For this case only the residues at z 6= 0 contribute and all terms in the matrix elements are
proportional to h̄k1 if h̄1 < 1 or to h−k1 , if h1 > 1. Therefore the elements of M4 are suppressed exponentially
in k.

5.5 Renormalization Beyond Next to Leading Order Corrections
The pattern observed when going from leading to next to leading order can be generalized to arbitrary order
O(κ2Nκ) by assuming that the effective kinetic quark action can be written in general as

S2Nκ =

Nκ∑
nκ=1

∑
x

Sloc
nκ (Ux, . . . , Ux+nκ) =

Nκ∑
nκ=1

∑
x

∑
q0,...,qnκ

sq0,...,qnκ

nκ∏
i=0

Wqi(Ux+i) (5.71)

This pattern appears because only closed loops with a length of at most 2Nκ
1 are allowed in the kinetic quark

determinant [9–11].
Together with the occurring node functions Wqi(Ux+i) the sq0...,qnκ have to be determined from the derivation
of the effective action. In three dimensions it is known up to O(κ8) [11]. But in our one dimensional system
corrections higher than O(κ4) are yet to be derived. Thus, we are not able to determine the boundary conditions

1At most Nκ steps in one direction and Nκ steps back to close the loop
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in terms of the quark couplings h2, h31
, h32

, etc. [9]
In discussions of the 3+1D effective theory the number of terms in the effective action has been shown to
increase exponentially with its order in κ. Therefore, beyond next to leading order the amount of terms in the
compound interaction (5.74) can be expected to increase even further compared to section 5.4.2.
With (5.71) the partition function reads [9–11]

Z = cNxNτ0

∫
[dU ] detQstat

Nx∏
x=1

exp

(
−

Nκ∑
nκ=1

Seff,nκ(Ux, . . . , Ux+nκ)

)∑
r

λrχr(Ux)χr(U
†
x+1) +O

(
κ2(Nκ+1)

)
(5.72)

Expanding the exponential in κ to order 2Nκ brings the integrand in the general form

Z = cNxNτ0

∫
[dU ] detQstat

Nx∏
x=1

∑
v0,...,vNκ

h′v0,...,vNκ

Nκ∏
i=0

Wvi(Ux+i)
∑
r

λrχr(Ux)χr(Ux+1) +O
(
κ2(Nκ+1)

)
(5.73)

To reduce the interaction length to effective nearest neighbor interactions the lattice sites are grouped into
tuples governing the interaction terms originating from Nκ sites. As each of those terms includes interactions
of range Nκ as well, the tuple contains 2Nκ link variables A(Ux, . . . , Ux+2Nκ−1) with [15]

A(Ux, . . . , Ux+2Nκ−1) =
∑

v0,...,v2Nκ−1

hv0,...,v2Nκ−1

(
2Nκ−1∏
i=0

Wvi(Ux+i)

)
Nκ−1∏
i=0

∑
r

λrχr(Ux+i)χr(U
†
x+i+1) (5.74)

Using the effective lattice sites A the O(κ2Nκ) partition function is given by [15]

Z2Nκ = cNxNτ0

∫
[dU ] detQstat

Nx∏
x=1

x mod Nκ=0

A(Ux, . . . , Ux+2Nκ−1) (5.75)

The link variables of A can be split into a pair consisting of two sets of Nκ links (Ux, . . . , Ux+Nκ−1) and
(Ux+Nκ , . . . , Ux+2Nκ−1). Between those only nearest neighbor interactions occur effectively [15].
Finding a renormalization scheme now corresponds to finding a recursion relation of the compound interaction
A → A(n). With the intuition from the previous section we want to allow different couplings for all possible
combinations of node functions and characters. Thus, we set [12]

A(n) =
∑

v0,...,v2Nκ−1

r20 ,r
1
1 ,r

2
1 ,...,r

1
Nκ−1,r

2
Nκ−1,r

1
Nκ

h
r20 ,r

1
1 ,r

2
1 ,...,r

1
Nκ−1,r

2
Nκ−1,r

1
Nκ
,(n)

v0,...,v2Nκ−1

(
2Nκ−1∏
i=0

Wvi(Ux+i)

)
Nκ−1∏
i=0

χr2i (Ux+i)χr1i+1
(U†x+i+1)

(5.76)

With this boundary condition the partition function to order 2Nκ (5.75) is reproduced

h
r20 ,r

1
1 ,r

2
1 ,...,r

1
Nκ−1,r

2
Nκ−1,r

1
Nκ
,(0)

v0,...,v2Nκ−1 = hv0,...,v2Nκ−1

Nκ−1∏
i=0

λr2i δr2i ,r1i+1
(5.77)

The compound interactions now follow the recursion relation [15]

A(n+1)
(

(Ux−Nκ , . . . , Ux−1), (Ux+Nκ , . . . , Ux+2Nκ−1)
)

=

∫
dUx . . . dUx+Nκ−1 detQloc

stat(Ux) . . . detQloc
stat(Ux+Nκ−1)

A(n)
(

(Ux−Nκ , . . . , Ux−1), (Ux, . . . , Ux+Nκ−1)
)
A(n)

(
(Ux, . . . , Ux+Nκ−1), (Ux+Nκ , . . . , Ux+2Nκ−1)

)
(5.78)
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from which the running couplings are found to be

h
r20 ,r

1
1 ,r

2
1 ,...,r

1
Nκ−1,r

2
Nκ−1,r

1
Nκ
,(n+1)

v0,...,v2Nκ−1 =
∑

a′0,...,a
′
2Nκ−1

r
′2
0 ,r
′1
1 ,r
′2
1 ,...,r

′1
Nκ−1,r

′2
Nκ−1,r

′1
Nκ

h
r20 ,r

1
1 ,r

2
1 ,...,r

1
Nκ−1,r

2
Nκ−1,r

′1
0 ,(n)

v0,...,vNκ−1,v′Nκ ,...,a
′
2Nκ−1

[
Nκ−1∏
i=0

∫
dU detQ statχr1i (U

†)χr2i (U)Wvi(U)Wvi+Nκ
(U)

]

h
r
′2
0 ,r
′1
1 ,r
′2
1 ,...,r

′1
Nκ−1,r

′2
Nκ−1,r

1
Nκ
,(n)

a′0,...,a
′
Nκ−1,vNκ ,...,v2Nκ−1

(5.79)

For Nκ = 2 the next to leading order running couplings (5.54) and for Nκ = 1 the leading order recursion
relations are recovered, respectively. Furthermore, for Nκ = 1 the heavy quark running couplings are obtained
by setting h2 = 0, because all relevant compound node functions are constant [9–11].
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Chapter 6

2+1D: Coarse Graining Renormalization
and the Running Couplings

In this chapter we apply coarse graining renormalization transformations to the 2+1D effective theory in the
pure gauge limit and the limit of static quarks at finite density. For both cases our knowledge from chapter
5 will be used. In contrast to the theory in 1+1D, however, further approximations will become necessary to
obtain the running couplings.
Because we are interested in the thermodynamic limit, finite size effects will be neglected [12,15].

6.1 Pure Gauge Theory

6.1.1 The Transformation Scheme

In 2+1D renormalization group transformations are known to typically cause new interactions on the coarser
lattice over longer ranges than the starting system. To capture this behavior to order O(u2Nτ+2) we allow
interactions at distances |x− y| =

√
2a and in the adjoint representation. The partition function then reads as

discussed in section 4.1 [12,15]

Z =

∫
[dU ]

∏
〈x,y〉

(
1 + λf

(
LxL

†
y + LyL

†
x

)
+ λaχa(Ux)χa(U†y )

) ∏
[x,y]

(
1 + λ2,f

(
LxL

†
y + LyL

†
x

) )
+O(u2Nτ+4)

(6.1)

The interpretation of the effective theory suggests to apply a similar transformation as it is typically done to the
2D Ising model in the literature. We therefore integrate out every second lattice site in a checkerboard pattern.
This is illustrated in figure 6.1a. We choose to integrate out every red colored lattice site. Because of the
interactions over diagonals, once more we divide the sublattice that we want to integrate over. This is depicted
in figure 6.1b. An iteration of the renormalization group transformation is then given by first integrating out
the red filled lattice sites and the red hollow sites afterwards [12,15].

(a) Integrating out lattice sites in the 2+1D
effective theory. Figure based on [15].

(b) Further dividing the lattice to control for
diagonal interactions. Figure based on [15].
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6.1.2 Determining the Running Couplings

Analogously to pure gauge theory in 1+1D, section 5.1, we substitute the couplings λf → λ
(n)
f , λa → λ

(n)
a and

λ2,f → λ
(n)
2,f . Further, we denote with 〈x, y〉(n) and [x, y](n) nearest neighbors and next to nearest neighbors on

the coarse grained lattice after n iterations. The partition function then reads [12,15]

Z =

∫
[dU ](n)

∏
〈x,y〉(n)

(
1 + λ

(n)
f

(
LxL

†
y + LyL

†
x

)
+ λ(n)

a χa(Ux)χa(U†y )
) ∏

[x,y](n)

(
1 + λ

(n)
2,f

(
LxL

†
y + LyL

†
x

) )
+O(u2Nτ+4) (6.2)

with the boundary conditions

λ
(0)
f = λf , λ(0)

a = λa, λ
(0)
2,f = λ2,f ,

∏
〈x,y〉(0)

=
∏
〈x,y〉

,
∏

[x,y](0)

=
∏
[x,y]

,

∫
[dU ](0) =

∫
[dU ] (6.3)

To obtain the running couplings we consider a specific lattice site, say x, that we want to integrate out in the
first integration step of the transformation (full red circles in figure 6.1b). Here we denote the product of all
eight interaction terms between x and its neighbors with A(Ux). All terms of order O(u2Nτ+4

f ) in A(Ux) are
neglected. Then at most two non-trivial characters of Ux appear in a given term and the integration can be
performed with the orthogonality relation (3.6) [12,15]∫

dUxA(Ux) = 1 + λ
(n)2
f

(
L†x−e1Lx−e2 + L†x−e1Le2+x + L†e1+xLx−e2 + L†e1+xLe2+x + Lx−e1L

†
x−e2

+ Le1+xL
†
x−e2 + Lx−e1L

†
e2+x + Le1+xL

†
e2+x + Le1+xL

†
x−e1 + Lx−e1L

†
e1+x

+ Le2+xL
†
x−e2 + Lx−e2L

†
e2+x

)
+O(u3Nτ

f ) (6.4)

Because of the approximation the contributions of both λ(n)
2,f and λ(n)

a do not appear anymore in (6.4). As there

are diagonal interactions between non-integrated lattice sites (black dots in figure 6.1b), λ(n)
2,f still contributes

to the partition function. Additionally, because the diagonal couplings drop out from (6.4), the integration over
the second sublattice (red hollow circles in figure 6.1b) can be performed and yields expressions of the same
form. Contributions involving the adjoint coupling thus drop out completely.
To the given order (6.4) can be rewritten into a product form [15]∫

dUxA(Ux) =
(

1 + λ
(n)2
f (Lx+e1L

†
x−e1 + Lx−e1L

†
x+e1)

)(
1 + λ

(n)2
f (Lx−e1L

†
x−e2 + Lx−e2L

†
x−e1)

)
(

1 + λ
(n)2
f (Lx+e2L

†
x−e1 + Lx−e1L

†
x+e2)

)(
1 + λ

(n)2
f (Lx+e2L

†
x−e2 + Lx−e2L

†
x+e2)

)
(

1 + λ
(n)2
f (Lx+e1L

†
x+e2 + Lx+e2L

†
x+e1)

)(
1 + λ

(n)2
f (Lx+e1L

†
x−e2 + Lx−e2L

†
x+e1)

)
+O(u3Nτ

f )

(6.5)

After putting this product back into the partition function, the factors describe interactions between the non-
integrated lattice sites at distances |x − y| = 2a and |x − y| =

√
2a. The coupling strength of the former is

given by λ
(n)2
f . For the latter the symmetry of the system implies that the interaction terms appear twice.

An additional contribution originates from the initial diagonal interactions between non-integrated lattice sites.
The total interaction between two diagonal lattice sites x and y is denoted as E(Ux, Uy) and reads [15]

E(Ux, Uy) =
(

1 + λ
(n)2
f (LxL

†
y + LyL

†
x)
)2 (

1 + λ
(n)
2,f (LxL

†
y + LyL

†
x)
)

(6.6)

To bring (6.6) into the same form as the initial interactions in (6.2) terms of order O(u2Nτ+4
f ) are neglected

E(Ux, Uy) = 1 +
(

2λ
(n)2
f + λ

(n)
2,f

)
(LxL

†
y + LyL

†
x) +O(u2Nτ+4

f ) (6.7)

By rotating the lattice by π/4 the diagonal contribution (6.7) becomes the new nearest neighbor interaction,
whereas the interactions at distance |x−y| = 2a become the new diagonal ones [15]. Thus, the running couplings
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read

λ
(n+1)
f = 2λ

(n)2
f + λ

(n)
2,f (6.8)

λ
(n+1)
2,f = λ

(n)2
f (6.9)

6.2 Static Quarks at Finite Density

In the last system of interest in this thesis the static quark determinant is included into our description of
the 2+1D effective theory. Like in the previous section we allow diagonal interactions. The renormalization
scheme will be accurate to the order O(uvNτf κwNτ ) with v + w = 2. By following the calculation including the
adjoint representation its contributions can be found to exceed this condition and are therefore neglected. This
is analogous to the previous section.
The partition function reads [8]

Z =

∫
[dU ] detQstat

∏
〈x,y〉

(
1 + λf

(
LxL

†
y + LyL

†
x

) ) ∏
[x,y]

(
1 + λ2,f

(
LxL

†
y + LyL

†
x

) )
+O(u2Nτ+4) (6.10)

In the static quark discussion in 1+1D in section 5.2, it was found that including the static determinant into
the partition function implies mixed terms between the different representations after renormalization. Here
this is applied to both the nearest neighbor and next to nearest neighbor interactions, respectively. This leads
to the approach [15]

Z =

∫
[dU ](n) detQ

(n)
stat

∏
〈x,y〉(n)

(
1 + λ

(n)
1,1 (Lx + Ly) + λ

(n)
1,2 (L†x + L†y) + λ

(n)
1,3LxLy + λ

(n)
1,4L

†
xL
†
y

+ λ
(n)
1,5 (LxL

†
y + LyL

†
x)
) ∏

[x,y](n)

(
1 + λ

(n)
2,1 (Lx + Ly) + λ

(n)
2,2 (L†x + L†y) + λ

(n)
2,3LxLy + λ

(n)
2,4L

†
xL
†
y

+ λ
(n)
2,5 (LxL

†
y + LyL

†
x)
)

+O(u2Nτ+4) (6.11)

The boundary conditions that have not been stated in the previous section read

0 = λ
(0)
1,1 = λ

(0)
1,2 = λ

(0)
1,3 = λ

(0)
1,4 = λ

(0)
2,1 = λ

(0)
2,2 = λ

(0)
2,3 = λ

(0)
2,4, λ

(0)
1,5 = λf , λ

(0)
2,5 = λ2,f (6.12)

Like in the previous section we integrate out the lattice sites in a checkerboard pattern, first over red filled sites
in figure 6.1b and red hollow sites afterwards. Before we do this, it turns out to be useful to define the gauge
integral [28]∫

dU detQloc
statL

jL†k =: o(j, k) =

∫
dULjL†k +O(κNτ ) = δ(j − k mod Nc, 0) +O(κNτ ) (6.13)

It will capture the influence of the static determinant when integrating out a lattice site. Additionally, two
statements have to be made regarding the following calculation

1. Because we expect coarse graining to increase the order of the couplings at least once, we assume all
interaction strengths to be at least of order O(uvNτf κwNτ ) with v + w = 2. However, λf is of O(uNτf ), so

λ
(n)
1,5 is the only exception to this and counts as v + w = 1.

2. We assume Nc ≥ 3. Thus, all o(j, k) with |j − k| = 1 or |j − k| = 2 count as an additional factor of κNτ .

Again we choose a lattice site x of the red colored sites and denote with A(Ux) the product of its eight
interaction factors. Performing the gauge integration over Ux results in a large term, which is truncated at
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order O(uvNτf κwNτ ) with v + w = 3 [12, 15].

∫
dUxA(Ux) =λ

(n)2
1,5

(
o(1, 1)Le1+xL

†
x−e2 + o(1, 1)Le1+xL

†
e2+x + o(1, 1)L†x−e1Lx−e2 + o(1, 1)L†x−e1Le2+x

+ o(1, 1)L†e1+xLx−e2 + o(1, 1)L†e1+xLe2+x + o(1, 1)Lx−e1L
†
x−e2 + o(1, 1)Lx−e1L

†
e2+x

+ o(1, 1)L†x−e1Le1+x + o(1, 1)Lx−e1L
†
e1+x + o(1, 1)Le2+xL

†
x−e2 + o(1, 1)Lx−e2L

†
e2+x

)
+ λ

(n)
1,5

(
o(0, 1)Lx−e1 + o(0, 1)Le1+x + o(1, 0)L†x−e1 + o(1, 0)L†e1+x + o(0, 1)Lx−e2

+ o(0, 1)Le2+x + o(1, 0)L†x−e2 + o(1, 0)L†e2+x

)
+ λ

(n)
1,1

(
o(0, 0)Lx−e1 + o(0, 0)Le1+x + o(0, 0)Lx−e2 + o(0, 0)Le2+x

)
+ λ

(n)
2,1

(
o(0, 0)L−e1−e2+x + o(0, 0)Le1−e2+x + o(0, 0)L−e1+e2+x + o(0, 0)Le1+e2+x

)
+ λ

(n)
1,2

(
o(0, 0)L†x−e1 + o(0, 0)L†e1+x + o(0, 0)L†x−e2 + o(0, 0)L†e2+x

)
+ λ

(n)
2,2

(
o(0, 0)L†−e1−e2+x + o(0, 0)L†e1−e2+x + o(0, 0)L†−e1+e2+x + o(0, 0)L†e1+e2+x

)
+ o(0, 0) +O(uvNτf κwNτ ) with v + w = 3 (6.14)

In contrast to the pure gauge limit some of the diagonal couplings still appear and terms including Polyakov
loops of red hollow sites from figure 6.1b remain. Because in the interaction factors in (6.11) the terms are
either equal to 1 or proportional to some coupling, there are two possible scenarios that have to be distinguished
when integrating out the red hollow sites from figure 6.1b. Both are explained based on the term proportional
to λ(n)

2,1Le1+e2+x in (6.14)

1. We integrate over the product of λ(n)
2,1Le1+e2+x with one of the constant terms. This leads to a contribution

proportional to

λ
(n)
2,1

∫
dUe1+e2+xLe1+e2+x = λ

(n)
2,1o(1, 0) (6.15)

Based on the previous assumption this term is of higher order than O(uvNτf κwNτ ) with v + w = 2 and is
therefore neglected.

2. We integrate over the product of λ(n)
2,1Le1+e2+x and some other term proportional to λLe1+e2+x or λL

†
e1+e2+x

with some coupling λ. This results in

λ
(n)
2,1λ

∫
dUe1+e2+xLe1+e2+xLe1+e2+x or λ

(n)
2,1λ

∫
dUe1+e2+xLe1+e2+xL

†
e1+e2+x (6.16)

which is again of higher order than O(uvNτf κwNτ ) with v + w = 2 and is therefore neglected. Terms of
higher powers in the Polyakov loop are of even higher orders in uNτf and κNτ .

Because the integration over the red hollow sites in figure 6.1b results in an additional factor of orderO(uvNτf κwNτ )

with n+m ≥ 1, the overall order of terms involving the diagonal couplings in (6.14) exceed O(uvNτf κwNτ ) with
v + w = 2 and are neglected. This decouples the red filled and hollow lattice sites and both give contributions
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of the same form. For any integrated lattice site x this means∫
dUxA(Ux) =λ

(n)2
1,5

(
o(1, 1)Le1+xL

†
x−e2 + o(1, 1)Le1+xL

†
e2+x + o(1, 1)L†x−e1Lx−e2 + o(1, 1)L†x−e1Le2+x

+ o(1, 1)L†e1+xLx−e2 + o(1, 1)L†e1+xLe2+x + o(1, 1)Lx−e1L
†
x−e2 + o(1, 1)Lx−e1L

†
e2+x

+ o(1, 1)L†x−e1Le1+x + o(1, 1)Lx−e1L
†
e1+x + o(1, 1)Le2+xL

†
x−e2 + o(1, 1)Lx−e2L

†
e2+x

)
+ λ

(n)
1,5

(
o(0, 1)Lx−e1 + o(0, 1)Le1+x + o(1, 0)L†x−e1 + o(1, 0)L†e1+x + o(0, 1)Lx−e2

+ o(0, 1)Le2+x + o(1, 0)L†x−e2 + o(1, 0)L†e2+x

)
+ λ

(n)
1,1

(
o(0, 0)Lx−e1 + o(0, 0)Le1+x + o(0, 0)Lx−e2 + o(0, 0)Le2+x

)
+ λ

(n)
1,2

(
o(0, 0)L†x−e1 + o(0, 0)L†e1+x + o(0, 0)L†x−e2 + o(0, 0)L†e2+x

)
+ o(0, 0) + terms leading to contributions of order O(uvNτf κwNτ ) with v + w > 2

(6.17)

Equation (6.17) now describes the interactions between the four lattice sites x− e1, x+ e1, x+ e2 and x− e2.
Like in the pure gauge limit (6.17) ought to be brought into a factorizing form. For brevity we define the set of
appearing interactions [15]

C := {(x+ e1, x− e1), (x+ e1, x− e2), (x+ e1, x+ e2), (x− e1, x+ e2), (x− e1, x− e2), (x+ e2, x− e2)}
(6.18)

To the given order of accuracy one finds the factorization∫
dUxA(Ux) =o(0, 0)

∏
(a,b)∈C

(
1 +

1

3

(
λ1,1 +

o(0, 1)

o(0, 0)
λ

(n)
1,5

)
(La + Lb) +

1

3

(
λ1,2 +

o(1, 0)

o(0, 0)
λ

(n)
1,5

)
(L†a + L†b)

+
o(1, 1)

o(0, 0)
λ

(n)2
1,5 (LaL

†
b + LbL

†
a)

)
+ terms leading to contributions of order O(uvNτf κwNτ ) with v + w > 2 (6.19)

The factors now describe the interaction between the four lattice sites over the distances
√

2a and 2a. The
overall factor of o(0, 0) is irrelevant to the running couplings. Additionally, because terms proportional to LxLy
and L†xL†y do not appear, the couplings λ(n)

1,3 , λ
(n)
1,4 , λ

(n)
2,3 and λ(n)

2,4 are disregarded completely [15].
As in section 6.1 after plugging (6.19) back into the partition function (6.2) the interactions over

√
2a are

found to appear twice. An additional contribution to them comes from the diagonal interactions between non-
integrated lattice sites [15].
Let E(x, y) denote the total interaction between two diagonal, non-integrated lattice sites. E(x, y) can be
approximated as

E(x, y) =

(
1 +

1

3

(
λ1,1 +

o(0, 1)

o(0, 0)
λ

(n)
1,5

)
(Lx + Ly) +

1

3

(
λ1,2 +

o(1, 0)

o(0, 0)
λ

(n)
1,5

)
(L†x + L†y)

+
o(1, 1)

o(0, 0)
λ

(n)2
1,5 (LxL

†
y + LyL

†
x)

)2(
1 + λ

(n)
2,1 (Lx + Ly) + λ

(n)
2,2 (L†x + L†y) + λ

(n)
2,5 (LxL

†
y + LyL

†
x)

)

=1 +

(
2
λ

(n)
1,1

3
+ 2

o(0, 1)

3o(0, 0)
λ

(n)
1,5 + λ

(n)
2,1

)
(Lx + Ly) +

(
2
λ

(n)
1,2

3
+ 2

o(1, 0)

3o(0, 0)
λ

(n)
1,5 + λ

(n)
2,2

)
(L†x + L†y)

+

(
2
o(1, 1)

o(0, 0)
λ

(n)2
1,5 + λ

(n)
2,5

)
(LxL

†
y + LyL

†
x) +O(uvNτf κwNτ ) with v + w = 3 (6.20)

Analogously to section 6.1, the interactions at distance
√

2a become the new nearest neighbor couplings, whereas
the ones at distance 2a become the new next to nearest neighbor interactions by rotating the lattice by π/4 [15].
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Thus, the running couplings are given by

λ
(n+1)
1,1 = 2

λ
(n)
1,1

3
+ 2

o(0, 1)

3o(0, 0)
λ

(n)
1,5 + λ

(n)
2,1 (6.21)

λ
(n+1)
1,2 = 2

λ
(n)
1,2

3
+ 2

o(1, 0)

3o(0, 0)
λ

(n)
1,5 + λ

(n)
2,2 (6.22)

λ
(n+1)
1,5 = 2

o(1, 1)

o(0, 0)
λ

(n)2
1,5 + λ

(n)
2,5 (6.23)

λ
(n+1)
2,1 =

λ
(n)
1,1

3
+

o(0, 1)

3o(0, 0)
λ

(n)
1,5 (6.24)

λ
(n+1)
2,2 =

λ
(n)
1,2

3
+

o(1, 0)

3o(0, 0)
λ

(n)
1,5 (6.25)

λ
(n+1)
2,5 =

o(1, 1)

o(0, 0)
λ

(n)2
1,5 (6.26)

Note that the previous assumption of all couplings except for λ(n)
1,5 being at least of order O(uvNτf κwNτ ) with

v + w = 2 is fulfilled self-consistently for all n ≥ 0. Additionally, the gauge integrals o(0, 0), o(1, 0), o(0, 1) and
o(1, 1) can be obtained with the solution to the 1+1D static quark gauge integral (5.31).
In the last step, we check whether our recursion relations recover the pure gauge limit correctly. As one finds
quickly from (6.13), we have o(1, 0) = 0 = o(0, 1) and o(1, 1) = 1 = o(0, 0), if κ = 0. Then we have the
implications

Equation (6.21): λ
(n)
1,1 = 0 = λ

(n)
2,1 ⇒ λ

(n+1)
1,1 = 0 (6.27)

Equation (6.22): λ
(n)
1,2 = 0 = λ

(n)
2,2 ⇒ λ

(n+1)
1,2 = 0 (6.28)

Equation (6.24): λ
(n)
1,1 = 0 ⇒ λ

(n+1)
2,1 = 0 (6.29)

Equation (6.25): λ
(n)
1,2 = 0 ⇒ λ

(n+1)
2,2 = 0 (6.30)

By combining (6.27) with (6.29) as well as (6.28) with (6.30) one obtains λ(n)
1,1 = 0 = λ

(n)
2,1 ⇒ λ

(n+1)
1,1 = 0 = λ

(n+1)
2,1

and λ(n)
1,2 = 0 = λ

(n)
2,2 ⇒ λ

(n+1)
1,2 = 0 = λ

(n+1)
2,2 . Because of the boundary conditions (6.12) these couplings will

always vanish in the pure gauge limit. Thus, the only relevant couplings follow the relations

λ
(n+1)
1,5 = 2λ

(n)2
1,5 + λ

(n)
2,5 (6.31)

λ
(n+1)
2,5 = λ

(n)2
1,5 (6.32)

which are equivalent to the pure gauge running couplings (6.8) and (6.9).
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Chapter 7

1+1D: Evaluation of the Renormalization
Scheme

It is shown that all expressions for the running couplings in 1+1D can be written as matrix recursion relations.
An analytical solution to them is found leading to the transfer matrix if the number of spatial sites is given
by Nx = Nκ2nx . This allows us to calculate intensive observables in terms of an eigenvalue problem in the
thermodynamic limit. This procedure is applied to the pressure as well as the baryon density. The continuum
limit is performed numerically. Finally, results for both observables are discussed at varying parameters of the
theory and compared at different orders of the hopping parameter expansion [15].

7.1 Transforming Running Couplings into Matrix Recursion Rela-
tions

The expressions for running couplings found for the 1+1D effective theory have a common structure. Any of
them is expressed by a quadratic recursion relation and when considering only a finite amount of representations
of the gauge action all sums are finite1. Further, it is possible to split the indices of the running couplings into
two groups: the ones that are added up and the ones that are not. Each of them can then be indexed by a
natural number. For our previously discussed cases this leads to the bijections

1. Heavy quarks:

r ↔ ir ∈ N (7.1)

2. Leading order corrections:

(α, r)↔ i(α,r) ∈ N (7.2)

3. Next to leading order corrections

(a1, a2, r1, r2, r3)↔ i(a1,a2,r1,r2,r3) ∈ N and (a3, a4, r4)↔ j(a3,a4,r4) ∈ N (7.3)

The explicit choice of the mapping is arbitrary and one can expect physical observables to not depend on it.
Using these mappings all sums in the recursion relations (5.19), (5.37) and (5.54) can be transformed to sums
over these natural numbers and can be identified as quadratic recursion relations of matrix elements. Further,
these relations exhibit the form

h(n+1) = h(n)gh(n) (7.4)

The elements of the matrices are determined by the boundary conditions of the recursion relations and the
gauge integrals appearing in the transformations

1For calculations in practice it is necessary to abort the sums at a finite order of β
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1. Heavy quarks:

h
(0)
ij = λriδrirj and gij =

∫
dU detQloc

stat(U)χri(U
†)χrj (U) (7.5)

2. Leading order corrections:

h
(0)
ij =

(−h2)αi

αi!
λriδrirjδαiαj and gij =

∫
dU detQloc

stat(U)χri(U
†)χrj (U)W

−,αi+αj
1111 (7.6)

3. Next to leading order corrections:

h
(0)
ij =hv1,iv2,iv3,jv4,jλr1,iδr1,ir2,iλr3,iδr3,ir4,j (7.7)

gij =

(∫
dU detQloc

stat(U)Wv1,j (U)Wv3,i(U)χr4,i(U
†)χr1,j (U)

)
(∫

dU detQloc
stat(U)Wv2,j (U)Wv4,i(U)χr2,j (U

†)χr3,j (U)

)
(7.8)

Equation (7.4) is quickly solved by the approach

h(n) =
(
h(0)g

)2n−1

h(0) (7.9)

Note that the matrix h(0)g is not necessarily symmetric, so complex eigenvalues might occur depending on the
parameters of the theory. Additionally, when considering the O(κ4)-effective action both h(0) and g are not
quadratic, but their product is [10–12].

7.2 The Partition Function for Periodic Boundary Conditions
The partition function is of major interest when evaluating a theory as it can be used to obtain many aggregate
observables of the system. Here we calculate the partition function for heavy quarks with periodic boundary
conditions in both dimensions. However, the steps can be performed including corrections in κ analogously and
the more general result is discussed.
A single iteration of coarse graining halves the amount of sites in the lattice, so N (n)

x needs to be divisible by two.
Assuming that the size of the lattice is a power of two N (0)

x = 2nx the renormalization group transformation can
be applied nx times. This reduces the lattice to a single site interacting with itself due to the periodic boundary
conditions [16]

Z = cNxNτ0

∫
[dU ](nx) detQ

(nx)
stat

N(nx)
x∏
x=1

∑
r1,r2

λ(nx)
r1r2χr1(Ux)χr2(U†x+1) (7.10)

= cNxNτ0

∑
r1,r2

λ(nx)
r1r2

∫
dU detQx, stat(U)χr1(U)χr2(U†) (7.11)

After reusing the previously introduced bijections the constituents of (7.11) can be identified as the matrix
elements in (7.5)2

Z = cNxNτ0

∑
ij

h
(nx)
ij gji = cNxNτ0 Trh(nx)g = cNxNτ0 Tr

[(
h(0)g

)Nx]
= cNxNτ0 Tr

[(
gh(0)

)Nx]
(7.12)

Because different choices of the bijective mapping correspond to choosing different bases of the matrices h(nx)

and g, the partition function (7.12) does not depend on its explicit choice. Thus, neither do physical observables,
as it was expected.
Performing the steps including corrections in κ leads to the same expression (7.12). Only the matrices h(0)

2This is analogous to combinations of renormalization group transformations and the transfer matrix in the 1D Ising model [15]
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and g have to be chosen according to section 7.1 and the exponent inside the trace has to be shifted from
Nx → Nx/Nκ.
Because of the cyclicity of the trace the last equality sign holds, even though the matrices neither commute nor
are quadratic in general. Further, when considering the O(κ4) effective action using the last equality sign in
(7.12) decreases the dimension of the matrix and thus reduces computational costs.
Another observation in (7.12) is its structure being similar to those usually obtained from transfer matrix
approaches [15]. This is in agreement with the usual interpretation of irreducible characters as wave functions
and the respective representation as a quantum number [18].
Further, this suggests the interpretation of compound node functions in a similar manner. For each tuple from
the bijections (7.1)-(7.3) the dimension of the transfer matrix is increased by one. Thus, for any of those there
exists a many body wave function in the Hilbert space of a lattice site. They therefore serve as quantum
numbers, while the strong coupling and heavy quark expansions act as a truncation of the Hilbert space [15].

7.3 Accuracy of the Strong Coupling Expansion

The fact, that the heavy quark recurrence scheme is accurate to arbitrary order in β, is used to obtain insight in
the accuracy of the strong coupling expansion. Figure 7.1 shows the relative error of the heavy quark partition
function up to high values of β.
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(4,4)
(5,5)
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Figure 7.1: The relative error of the heavy quark partition function for different amount of representations.
Here h1 = 1, h̄1 = 0, Nf = 1 and Nc = 3 have been chosen.

The numbers in the brackets represent the highest values of p1 and p2 respectively, i.e. (4, 4) means all irreducible
representations with p1, p2 ≤ 4 are included in the gauge action. The error is calculated relative to the partition
function with the most representations, p1, p2 ≤ 5 corresponding to the first (5 + 1)(5 + 1) = 36 irreducible
representations.
The line (1, 1) includes the trivial, fundamental, anti-fundamental and adjoint representation, which corresponds
to the ones used in the currently known effective theories in 3+1D. Its curve shows a relative error of ≈ 12%
at β ≈ 6, which is in agreement with earlier discussions of the accuracy of the 3+1D effective theory [29].
Especially at larger values of the inverse coupling representations of higher dimensions than those previously
mentioned are necessary to obtain accurate results in the continuum limit β →∞.
Note that taking the absolute value in the relative error is not necessary. Therefore, aborting the strong coupling
expansion typically leads to underestimating the exact partition function.
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7.4 Observables

7.4.1 Observables to Be Discussed

In this section using the partition function (7.12) the pressure p, (anti) quark density nq (nq̄) and baryon
number density nB = (nq − nq̄)/3 at temperature T and spatial volume V are discussed. They are related to
the partition function via the relations [15,16]

p = T
∂

∂V
logZ

∣∣∣∣
T

=
T

V
logZ (7.13)

nq =
h1

V

∂

∂h1
logZ

∣∣∣∣
T,V

=
h1

V

1

Z

∂

∂h1
Z

∣∣∣∣
T,V

(7.14)

The anti quark density is obtained by replacing h1 with h̄1 in (7.14). The last equality sign in (7.13) holds
only in the thermodynamic limit. To render the (anti) quark density the derivative has to be taken. Using the
cyclicity of the trace one quickly obtains from (7.12) [15]

nq =
h1

V

cNxNτ0 2nx

Z
Tr

[(
h(0)g

)2nx−1

h(0) ∂

∂h1
g

∣∣∣∣
T,V

]
(7.15)

Again the anti quark density is obtained by replacing h1 with h̄1.
It is common to normalize the baryon chemical potential µB = 3µ with respect to the baryon mass mB . It has
been calculated up to order O(κnumf ) where n+m ≤ 7 [9]

amB = −3 log 2κ− 6κ2 uf
1− uf

+ 24κ4uf − 54κ4u2
f − 60κ4u3

f (7.16)

When performing calculations in the heavy quark limit corrections of order O(κ2) and higher are to be neglected.

7.4.2 The Thermodynamic Limit

Naturally, one is interested in physical systems with large spatial extend. This corresponds to taking the limit
V → ∞ in the continuum or Nx → ∞ in lattices while keeping the lattice spacing a(β) finite [7]. Here we
exemplify how to perform this limit for intensive observables using the quark density (7.14). However, the
procedure can be applied to other quantities analogously.
In our framework the limit of many lattice sites can be taken by iterating the recursion scheme infinitely many
times, e.g. nx →∞ [12]. In fact, the only dependence of nx in (7.14) appears in the exponents of the transfer
matrix. By performing the trace in its eigenbasis we can gain further insight in the behavior of the observable.
Let d1, . . . , dt be the eigenvalues of h(0)g and Ed1 , . . . , Edt their respective sets of (orthonormal) eigenvectors.
Using these quantities the quark density reads [15]

nq =
h1

aNκ

1∑t
i=1 |Edi |d2nx

i

t∑
i=1

d2nx−1
i

∑
v∈Edi

v†

(
h(0) ∂

∂h1
g

∣∣∣∣
T,V

)
v (7.17)

As it was already stated in section 7.1 the eigenvalues are complex valued in general. This results in oscillations
in both sums of (7.17), which have to disappear in the thermodynamic limit. Because we only have a finite
amount of eigenvalues, this is only possible, if the eigenvalues with largest modulus are real valued. We choose
d1 to denote one of them. For brevity we assume −d1 to not be an eigenvalue of the transfer matrix. This is
indicated by (7.12), because expressions using the transfer matrix usually hold for arbitrary Nx. However, no
proof to this is given in this thesis, but this has been checked numerically for every evaluation [15,16].
In the limit nx → ∞ both the numerator and denominator are dominated by terms ∝ d1 and all other contri-
butions are neglected [15,16]

nq =
h1

aNκd1|Ed1 |
∑
v∈Ed1

v†

(
h(0) ∂

∂h1
g

∣∣∣∣
T,V

)
v (7.18)
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Performing an analogous calculation for the pressure (7.13) one obtains [15,16]

p =
1

a2
log c0 +

T

aNκ
log |d1| (7.19)

In the pure gauge limit the density matrix is already in diagonal form and its eigenvalues are the couplings λr
with λ0 = 1 the largest. Thus, in (7.19) only the first term persists and our result is reduced to the expression
well known from literature [30].
A physical pressure is only obtained after subtraction of vacuum divergences [16], e.g.

p→ p− lim
T→0

p
∣∣∣
µ=0

(7.20)

On the lattice the zero temperature limit corresponds to taking the limit Nτ → ∞ while keeping the lattice
spacing finite. At zero chemical potential it implies h1, h̄1 and λr for r 6= 0 to vanish. Thus, none of the terms in
the action proportional to node functions or characters contribute except for the trivial character contribution.
Subtracting it from (7.19) yields the physical pressure [7, 15,16]

p =
T

aNκ
log |d1| (7.21)

In pure gauge theory the pressure always vanishes and no dynamics take place. This agrees with the typical
notion of the "two [dimensional] gauge field [having] no physical degrees of freedom" [16].

7.4.3 Setting the Scale and Continuum Extrapolation
In contrast to our effective theory QCD does not lie on a lattice but rather in a continuous space time. Thus,
in order for our theoretical description to describe actual physics the limit of decreasing lattice spacing a or
conversely increasing β has to be taken. This, however, is to be performed with the caveat of keeping physical
parameters, i.e. temperature T and volume V , fixed. As we already performed the thermodynamic limit in
section 7.4.2 the latter example does not apply to this discussion [7].
Another obstacle is determining the correct scaling behavior of our theory to reproduce physical observables,
e.g. determine the lattice spacing as function of the coupling a(β). In general, a(β) depends on the hopping
parameter κ as well. However, in discussions of the 3+1D theory this dependence was argued to be negligible
for heavy quarks. In this thesis the same assumption is made and we determine the scaling behavior based on
pure gauge theory [10,11].
To actually determine a(β) an observable has to be computed on the lattice and has to be related to its
continuum value. Then, a(β) can be chosen in a way„ that the lattice observable reproduces its continuum
counterpart for all values of the inverse coupling. In this thesis we use the approach of Huang, et al., where the
string tension σ was chosen to obtain a simple expression for the lattice spacing. The lattice string tension σL
was already given in (3.9) [31].
In the continuum limit the area law of the Wilson loop is known to persist and the string tension assumes a
value independent on the temperature and volume of the system, e.g. [15, 16,30]

W (C) = e−NxNτσL → e−Aσ with A = lim
β→∞

a2NxNτ and σ = lim
β→∞

σL
a2

(7.22)

Now the lattice spacing can be chosen in a way allowing σL/a2 to reproduce the continuum string tension for
all values of β [31]

a(β) =

√
− 1

σ
log uf (7.23)

All observables and parameters of the theory will then be given as dimensionless ratios to the continuum string
tension, i.e. T → T/

√
σ. In Figure 7.2 the dimensionless lattice spacing

√
σa is shown as a function of β and it

shows its expected limiting behavior for increasing values of the inverse coupling [31].
The last step necessary before taking the continuum limit is altering Nτ and κ in a way, that leaves the
temperature and particle mass constant. Here we approach this in the same way as in the 3+1D theory by
inverting the relation T = (aNτ )−1 and fixing the baryon mass mB/

√
σ. For Nτ one immediately finds [10]

Nτ =

√
σ

T

1√
− log uf

(7.24)

43



Chapter 7. 1+1D: Evaluation of the Renormalization Scheme

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.5

1.0

1.5

2.0

Figure 7.2: The lattice spacing
√
σa as a function of the inverse coupling β

obtained following the approach of Huang et al. [31]

By fixing the baryon mass in the heavy quark limit we obtain with (7.23)

κ(β) =
1

2
exp

(
−1

3

mB√
σ

√
− log uf

)
(7.25)

From (7.25) larger values of β are found to correspond to increasing values of κ, so the hopping parameter
expansion further limits the range of β, where our theory is accurate. This is in agreement with previous
discussions of 3+1D effective theories. Inverting the baryon mass including corrections to O(κ2) and beyond
require numerical inversion [10].
Because our theory is only applicable in a finite range of β, observables have to be extrapolated to the continuum
limit. Here, we follow the procedure of the discussion of the 3+1D effective theory. A (dimensionless) observable,
i.e. nB/

√
σ, is calculated for different values of

√
σa(β) and fitted to a second degree polynomial [7, 10]

nB√
σ

=
nB,cont√

σ
+A1

√
σa+A2(

√
σa)2 +O

(
(
√
σa)3

)
(7.26)

The constant term in (7.26) then corresponds to the continuum value of our observable. The coefficients A1

and A2 are also dimensionless [10].

7.4.4 Results for Observables
In this section the results for the baryon density and the pressure in dependence on µB/mB are discussed. Both
the lattice spacing and the temperature after continuum extrapolation are varied.

Observables in the Heavy Quark Limit

In the heavy quark case the hopping parameter κ is chosen to satisfy κ(β) < 10−2 for all values of beta, in
which we expect our theory to be accurate, e.g. β/6 ∈ [0, 3]. Thus, we set mB√

σ
= 25. The smallest reachable

lattice spacing is given by
√
σa(β/6 = 3) ≈ 1/2. For the continuum extrapolation 11 equidistant points in the

interval
√
σa ∈ [1/2, 1] are used.

The baryon density for heavy quarks with varying lattice spacing is shown in figure 7.3a and its continuum
extrapolation at varying temperatures is shown in figure 7.3b. The corresponding plots of the pressure are
shown in figure 7.3c and figure 7.3d, respectively.
All plots in figure 7.3 show the same qualitative behavior as found in discussions of the 3+1D effective theory.
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Figure 7.3: Observables vs. the baryon chemical potential in the static quark limit for Nf = 1, Nc = 3 and
mB/

√
σ = 25

Even though the lattice action is explicitly dependent on the chemical potential, observables do not change
when the chemical potential is small compared to the baryon mass mB . If µB ≈ mB , the onset region is reached
and the system starts filling up with baryons. Here a dependence on the chemical potential becomes apparent.
This feature is known as the silver blaze property [10,32,33].
At increasing values of µB the system reaches an unphysical saturation resulting from the discretization of space
time and the Pauli-principle. Every lattice site can hold at most 2NcNf quarks or equivalently 2Nf baryons. In
the continuum this effect does not occur, which resembles itself in the diverging behavior for decreasing lattice
spacing in figure 7.3a. Thus, our results become inaccurate for µB > mB and reducing the lattice spacing is
mandatory to obtain accurate results [5].
Figure 7.3b shows the behavior of the liquid-gas transition to nuclear matter for varying temperatures. While at
low temperatures the transition is of first order, increasing the temperature removes this discontinuous character
and replaces it with a crossover [5].

Observables Beyond Heavy Quarks

As already mentioned in 5.3, higher order gauge corrections to the quark couplings h1, h̄1, h2, h31 and h32

are implied by higher representations beyond the heavy quark limit. Thus, the gauge action is included only
up to the adjoint representation. In comparison to the the heavy quark case this leads to a more restricted
range of lattice spacing available for continuum extrapolation. Here, 11 equidistant points in the interval√
σa ∈ [9/10, 14/10] are used. The results are compared for baryon masses down to mB√

σ
= 5 - satisfying κ < 0.1
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in the lattice spacing interval.
Going beyond the heavy quark limit no new qualitative behavior of the observables is found. Thus, only a
comparison between the different orders in the heavy quark expansion for varying baryon masses is shown in
figure 7.4.
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(a) Comparison of the pressure in the heavy quark limit
(dashed lines) and to O(κ2) (solid lines) for different

baryon masses
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Figure 7.4: Comparison of the pressure vs. the baryon chemical potential for different orders in the heavy
quark expansion at Nf = 1, T/

√
σ = 0.15 and Nc = 3 and varying baryon masses

Figure 7.4a shows the pressure for mB/
√
σ = 25, 10 and 5 in both the heavy quark limit (dashed lines) and

to leading order (solid lines), whereas figure 7.4b compares the pressure to leading (dashed lines) and next to
leading order (solid lines) for mB/

√
σ = 10 and 5.

As shown in figure 7.4a, at high baryon masses (mB/
√
σ = 25) leading order corrections are negligible because

both curves agree well with each other. Approaching lower masses (mB/
√
σ = 10) first disagreements become

apparent, which further increase when going to even smaller baryon masses (mB/
√
σ = 5). Typically, the

pressure in the heavy quark limit overshoots its leading order counterpart.
In figure 7.4b at mB/

√
σ = 10, in contrast to the previous case, both pressures agree well. At lower baryon

masses (mB/
√
σ = 5) differences are small, but noticeable. Both observations show the convergence of the

heavy quark expansion. The pressure to O(κ4) is typically undershot by its leading order analogue.
Comparing figure 7.4a to 7.3d the pressure can be observed to be significantly smaller in this part of the
discussion. For mB/

√
σ = 25 and T/

√
σ = 0.15 the O(κ2)-pressure assumes values up to p/

√
σ ≈ 1.3, whereas

the respective pressure in the heavy quark limit in figure 7.3d assumes values up to p/
√
σ ≈ 2.4. As observed

in section 7.3, this can be ascribed to neglecting higher representations, causing the partition function to be
estimated from below.
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Chapter 8

2+1D: The Confinement-Deconfinement
Transition

In this chapter the renormalization group transformations from 2+1D pure gauge theory and the static quark
limit (chapter 6) are used to determine the critical inverse coupling βc of the confinement-deconfinement tran-
sition. The results of this discussion are compared to simulation values from previous analysis in the literature.

8.1 Determining the Fixed Point
In this section properties of the fixed point of the renormalization group transformations from chapter 6 are
discussed. This is done by determining the values of the critical couplings for static quarks and taking the pure
gauge limit afterwards.
As discussed in chapter 2 the couplings show invariance under renormalization group transformations, if the
system has been driven to a fixed point. For our static quark running couplings this relates directly to solving [12]

λ
(n)
1,1 = λ

(n+1)
1,1 = 2

λ
(n)
1,1

3
+ 2

o(0, 1)

3o(0, 0)
λ

(n)
1,5 + λ

(n)
2,1 (8.1)

λ
(n)
1,2 = λ

(n+1)
1,2 = 2

λ
(n)
1,2

3
+ 2

o(1, 0)

3o(0, 0)
λ

(n)
1,5 + λ

(n)
2,2 (8.2)

λ
(n)
1,5 = λ

(n+1)
1,5 = 2

o(1, 1)

o(0, 0)
λ

(n)2
1,5 + λ

(n)
2,5 (8.3)

λ
(n)
2,1 = λ

(n+1)
2,1 =

λ
(n)
1,1

3
+

o(0, 1)

3o(0, 0)
λ

(n)
1,5 (8.4)

λ
(n)
2,2 = λ

(n+1)
2,2 =

λ
(n)
1,2

3
+

o(1, 0)

3o(0, 0)
λ

(n)
1,5 (8.5)

λ
(n)
2,5 = λ

(n+1)
2,5 =

o(1, 1)

o(0, 0)
λ

(n)2
1,5 (8.6)

The equations (8.3) and (8.6) can be used directly to obtain(
λ

(n)
1,5 , λ

(n)
2,5

)
=
(

0, 0
)

or
(
λ

(n)
1,5 , λ

(n)
2,5

)
=

(
o(0, 0)

3o(1, 1)
,
o(0, 0)

9o(1, 1)

)
(8.7)

The first solution corresponds to the trivial fixed point at β = 0 and is therefore disregarded. The second
solution represents a fixed point at finite β and is therefore the physically relevant case [12].
Simply using the latter case of (8.7) to determine the remaining running couplings gives

o(0, 1)λ
(n)
1,5 = 0 = o(1, 0)λ

(n)
1,5 (8.8)

which is seemingly inconsistent with the non-trivial fixed point away from the pure gauge limit κ→ 0. However,
this can be solved by investigating the orders of the running couplings.
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Because all terms involving λ(n)
1,1 and λ

(n)
1,2 in (6.21), (6.22), (6.24) and (6.25) are neither proportional to any

other coupling nor to an κNτ , their order always stays at O(uvNτf κwNτ ) with v +w = 2. On the other hand, at
n = 1 the two-point coupling is of O(u2Nτ

f ). Due to the fact that the orders of the couplings cannot decrease

for increasing n, all terms in (8.1), (8.2), (8.4) and (8.5) involving λ(n)
1,5 are at least of order O(uvNτf κwNτ ) with

v+w = 3 for n > 0. As the system can only be driven to criticality for n > 0, neglecting all those contributions
is consistent with the derivation of the running couplings. Thus, the only relevant relation to the deconfinement
transition is given by the non-trivial solution in (8.7) [12].
In the pure gauge limit the critical couplings are given by(

λ
(n)
1,5 , λ

(n)
2,5

)
=
(
λ

(n)
f , λ

(n)
2,f

)
=

(
1

3
,

1

9

)
(8.9)

8.2 The Critical Inverse Coupling in Pure Gauge Theory
To drive the analytical evaluation further another approximation is introduced. We replace the initial next to
nearest neighbor coupling λ2,f by λ2

f . This step is analogous to the approximation of next to nearest neighbor
interactions in the 2D Ising model and leads to the boundary conditions [15]

λ
(0)
f = λf and λ

(0)
2,f = λ2

f (8.10)

This reduces the accuracy of our discussion and corrections appear already at order O(u2Nτ
f ) instead of

O(u2Nτ+6
f ).

To determine the critical value of λf the renormalization scheme is iterated once

λ
(1)
f = 3λ2

f and λ
(1)
2,f = λ2

f (8.11)

By using (8.9) it is found that the running couplings are driven to criticality, if

λf =
1

3
(8.12)

This relation can be inverted to determine the critical inverse coupling βc of the deconfinement transition in
dependence on Nτ and Nc.
To compare our results to literature values we consider Nc = 2, . . . , 5 and Nτ = 2, . . . , 5. In the tables 8.1 to
8.4 the solutions to (8.12) are listed with their respective literature values βc,lit, which are taken from [34], and
the absolute relative deviations |∆βc|/βc,lit = |βc − βc,lit|/βc,lit.

Nτ βc βc,lit |∆βc|/βc,lit in %
2 3.0876 3.4475 10.4394
3 4.5309 4.9430 8.3369
4 5.9226 6.4830 8.6448
5 7.2994 8.1430 10.3600

Table 8.1: Critical inverse coupling βc for SU(2)

Nτ βc βc,lit |∆βc|/βc,lit in %
2 8.9267 8.1489 9.5449
3 12.6488 11.3711 11.2365
4 16.3067 14.7170 10.8021
5 19.9532 18.1310 10.0501

Table 8.2: Critical inverse coupling βc for SU(3)

Nτ βc βc,lit |∆βc|/βc,lit in %
2 17.1586 14.8403 15.6219
3 24.0450 20.3770 18.0007
4 30.8689 26.2280 17.6945
5 37.6884 32.1540 17.2123

Table 8.3: Critical inverse coupling βc for SU(4)

Nτ βc βc,lit |∆βc|/βc,lit in %
2 27.7731 23.5315 18.0254
3 38.7103 32.0650 20.7246
4 49.6003 41.0570 20.8085
5 60.4972 50.6700 19.3946

Table 8.4: Critical inverse coupling βc for SU(5)

Our results for Nc = 2 and Nc = 3 reproduce the literature values with an accuracy of around 10%, whereas
the accuracy for Nc = 4 and Nc = 5 are around 20%.

48
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Note that most values of βc are outside of the region where the effective theory can be expected to be accurate.
Still, our renormalization scheme reproduces the critical values qualitatively. Due to the large critical values
high order corrections to the couplings λf and λ2,f can be expected to be necessary to increase the accuracy of
the theory. Deriving these corrections is, however, beyond the scope of this thesis [10,11].

8.3 Deconfinement of Static Quarks at Finite Density
In the following the same approximation as in section 8.2 is applied. Therefore the relevant boundary conditions
to this discussion read

λ
(0)
1,5 = λf , λ

(0)
2,5 = λ2

f (8.13)

Analogous to the previous section the renormalization group transformation is applied once

λ
(1)
1,5 = 3

o(1, 1)

o(0, 0)
λ2
f and λ

(1)
2,5 =

o(1, 1)

o(0, 0)
λ2
f (8.14)

Similar to the previous section the running couplings are at their critical value, if

λf =
o(0, 0)

3o(1, 1)
(8.15)

This equation can be used to determine the critical inverse coupling βc in dependence on Nc, Nτ as well as the
heavy quark couplings h1 and h̄1.
Because the derivation of the renormalization scheme assumed Nc ≥ 3 and due to the high inaccuracies found
in the previous section for Nc = 4, 5, only SU(3) is considered in this section. For this gauge group the critical
inverse coupling βc is shown in figure 8.1 for Nτ = 2, . . . , 5 and κ = 0.01.

0.86 0.88 0.90 0.92 0.94 0.96 0.98 1.00
0

5

10

15

20

Figure 8.1: The critical inverse coupling βc in the static quark limit for Nc = 3 and κ = 0.01 vs. the baryon
chemical potential µB/mB for Nτ = 2, . . . , 5

In figure 8.1 it can be observed that the presence of the static determinant reduces the value of βc. This may
be explained by the static determinant explicitly breaking center symmetry. As the influence of the symmetry
breaking fields is mediated by h1 and h̄1 increasing the chemical potential leads to decreasing βc [16].
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Chapter 8. 2+1D: The Confinement-Deconfinement Transition

Another feature is the silver blaze property that was already discussed in the context of 1+1D in section
7.4.4. The values of βc are for low chemical potentials independent on this parameter, even though µB/mB

explicitly appears in the action. Only if µB/mB ≈ 1, the critical inverse coupling shows a dependence on
the chemical potential. The lower the temperature (or equivalently the higher Nτ ) is, the more this effect is
pronounced [32,33].
It is important to note that the renormalization scheme becomes less accurate at µB/mB ≈ 1 as the order of
accuracy of the transformation can be rewritten as O(uvNτf κwNτ ) = O(uvNτf hw1

1 h̄w2
1 ) with v+w = 2 = v+w1+w2

[11].
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Chapter 9

Conclusion

In this work renormalization group techniques were applied to an effective theory of LQCD in 1+1 and 2+1
dimensions. The theory was derived in previous works by expanding around the strong coupling and heavy
quark limit. There, it was also found that the model can be interpreted as a spin model [8–11]. This suggested
the use of coarse graining renormalization. It describes the process of successively reducing the spacial degrees
of freedom of a discretized theory. The technique determines recursion relations for the couplings of the model
in dependence of its typical length scale [12,15].
In 1+1 dimensions the coarse graining technique was tested first in the pure gauge limit. The running couplings
reproduced the analytic solution of the system, which is well known from literature [15, 20]. Afterwards, the
static quark determinant was included in the description of the model. Subsequently, the running couplings
were determined while additionally considering parts of the kinetic quark determinant. All recursion relations
were observed to maintain a common form. Written as matrix recursion relations they were solved analytically.
This lead to the transfer matrix of the theory, which allowed us to take the thermodynamic limit [15, 16]. The
pressure and baryon density were discussed both on the lattice and after continuum extrapolation.
In 2+1 dimensions the renormalization transformation was applied to pure gauge theory and the static quark
limit. To implement that, results from the discussion in 1+1 dimensions were taken into consideration. The
fixed point was determined and the critical inverse coupling of the confinement-deconfinement transition was
obtained both in the pure gauge limit and at finite chemical potential. The results were discussed and compared
to the literature. The literature values were reproduced qualitatively.
All in all, coarse graining renormalization proved itself as a viable tool in the treatment of the effective theory.
Therefore, further research in the application of renormalization group transformations on the model, especially
in 3+1 dimensions, would be of great interest. In 2+1D the accuracy of the deconfinement transition might be
improved by considering corrections to the nearest and next to nearest neighbor couplings. Additionally, a gen-
eralization of the 2+1D renormalization group transformation to capture parts of the kinetic quark determinant
might lead to important insights.
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Appendix A

The Gauge Node Matrix Elements

The calculation of the node gauge integral for SU(Nc) in section 5.4.3 gives

M4,l′j−li+k =

α1∑
m1=0

· · ·
αN∑

mN=0

1

m1! . . .mN !
exp

(
2πi

N∑
n=1

mnun/Kn

)
h
∑N
n=1(an−bn)mn+2

1 h̄
∑N
n=1 ānmn

1

[

B

(
li − l′j − k + 1 + 2Nf −

N∑
n=1

(an − ān + b̄n)mn > 0

)

1(
li − l′j − k + 2Nf −

∑N
n=1(an − ān + b̄n)mn

)
!

li−l′j−k+2Nf−
∑N
n=1(an−ān+b̄n)mn∑
t=0(

li − l′j − k + 2Nf −
∑N
n=1(an − ān + b̄n)mn

t

)(
−

N∑
n=1

bnmn + 2Nf

)
t

h
−

∑N
n=1 bnmn+2Nf−t

1(
−

N∑
n=1

b̄nmn + 2Nf

)
li−l′j−k+2Nf−

∑N
n=1(an−ān+b̄n)mn−t

h̄
l′j−li+k+

∑N
n=1(an−ān)mn+t

1

+B

(
N∑
n=1

b̄nmn > 2Nf ∧ h̄1 < 1

)
1(∑N

n=1 b̄nmn − 2Nf − 1
)

!

∑N
n=1 b̄nmn−2Nf−1∑

t=0

(∑N
n=1 b̄nmn − 2Nf − 1

t

)
(
l′j − li + k − 2Nf − 1 +

N∑
n=1

(an − ān + b̄n)mn

)
t

(
−h̄1

)l′j−li+k−2Nf−1+
∑N
n=1(an−ān+b̄n)mn−t

(
−

N∑
n=1

bnm+ 2Nf

)
∑N
n=1 b̄nmn−2Nf−1−t

(
1

h1
− h̄1

)−∑N
n=1(bn−b̄n)mn+4Nf+1+t

+B

(
N∑
n=1

bnmn > 2Nf ∧ h1 > 1

)
1(∑N

n=1 bnmn − 2Nf − 1
)

!

∑N
n=1 bnmn−2Nf−1∑

t=0
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n=1 bnmn − 2Nf − 1

t
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(
l′j − li + k − 2Nf − 1 +

N∑
n=1
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(
− 1

h1

)l′j−li+k−2Nf−1+
∑N
n=1(an−ān+b̄n)mn−t

(
−

N∑
n=1

b̄nm+ 2Nf
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(
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1
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n=1(b̄n−bn)mn+4Nf+1+t
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(A.1)

The first block inside the square brackets corresponds to the residue at z = 0, whereas the second and third
block correspond to the residues at z = −h̄1 and z = − 1

h1
, respectively.
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Appendix B

List of Compound Node Functions

i
∏

(abāb̄,α)∈viW
α
abāb̄

v1 v2 v3 v4

1 1
2 W0101

3 W 2
0101

4 W1200

5 W1200W0101

6 W 2
1200

7 W0012

8 W0012W0101

9 W0012W1200

10 W 2
0012

11 W1111

12 W1111W0101

13 W1111W1200

14 W1111W0012

15 W 2
1111

16 W0022

17 W0022W0101

18 W0022W1200

19 W0022W0012

20 W0022W1111

21 W 2
0022

22 W2200

23 W2200W0101

24 W2200W1200

25 W2200W0012

26 W2200W1111

27 W2200W0022

28 W 2
2200

29 W0011

30 W0011W0101

31 W0011W1200

32 W0011W0012

33 W0011W1111

34 W0011W0022

35 W0011W2200

36 W 2
0011

i
∏

(abāb̄,α)∈viW
α
abāb̄

v1 v2 v3 v4

37 W 2
0011W0101

38 W 2
0011W1200

39 W 2
0011W0012

40 W 2
0011W1111

41 W 2
0011W0022

42 W 2
0011W2200

43 W 3
0011

44 W 4
0011

45 W1100

46 W1100W0101

47 W1100W1200

48 W1100W0012

49 W1100W1111

50 W1100W0022

51 W1100W2200

52 W1100W0011

53 W1100W0011W0101

54 W1100W0011W1200

55 W1100W0011W0012

56 W1100W0011W1111

57 W1100W0011W0022

58 W1100W0011W2200

59 W1100W
2
0011

60 W1100W
3
0011

61 W 2
1100

62 W 2
1100W0101

63 W 2
1100W1200

64 W 2
1100W0012

65 W 2
1100W1111

66 W 2
1100W0022

67 W 2
1100W2200

68 W 2
1100W0011

69 W 2
1100W

2
0011

70 W 3
1100

71 W 3
1100W0011

72 W 4
1100

In total there are 12 compound node functions for v1, 72 for v2, 28 for v3 and 4 for v4 found in section 5.4.
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