
Johann Wolfgang von Goethe Universität Frankfurt

Institut für theoretische Physik

Master thesis

Evaluating Gauge Corrections to Leptogenesis

Author:
Andreas Halsch

Supervisor:
Prof. Dr. Owe Philipsen

January 4, 2018





1



Contents

1 Introduction 4
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 The Baryon Asymmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.1 Baryon Asymmetry in the Standard Model . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2.2 GUT Baryogenesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2.3 Affleck-Dine Baryogenesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3 The Model of thermal Leptogenesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.4 The effective Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Nonequilibrium Quantum Field Theory 13
2.1 Statistical Quantum Field Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2 The Real Time Formalism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3 Equilibrium Propagators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.4 The nonequilibrium Majorana Neutrino Propagator . . . . . . . . . . . . . . . . . . . . . . . . . 17

3 Gauge corrected Majorana Self Energy 21
3.1 Momentum Scales . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2 Perturbation Theory close to the Lightcone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2.1 Thermal Widths and asymptotic Masses . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2.2 Lightcone Coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2.3 Collinear thermal Loops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.3 The Landau-Pomeranchuk-Migdal Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.4 Strategy of the Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.4.1 Integrating out the hard Modes - SM Propagators with asymptotic Masses . . . . . . . 25
3.4.2 The reduced Self Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.4.3 Definition of a Current and Recursion Relation . . . . . . . . . . . . . . . . . . . . . . . 28
3.4.4 Integrating out the soft gauge Bosons . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4 Lepton Asymmetry with the Lepton Number Matrix 30
4.1 The Lepton Number Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.2 CP-Violation from Self Energy Corrections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.3 Flavor diagonal Lepton Number Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.3.1 Simplification of Lii using KMS-Relations . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.4 Left- and right-handed Projection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5 The gauge corrected Lepton Number Matrix 37
5.1 The gauge corrected Majorana Decay Width . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.2 Gauge corrected CP-violating Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.3 Solving the Integral Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.3.1 Boundary Conditions and limiting Behavior . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.3.2 The perpendicular Momentum Integration . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.4 Calculating the gauge corrected Majorana Decay Width . . . . . . . . . . . . . . . . . . . . . . 48
5.5 Full gauge corrected Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

6 The numerical Algorithm to calculate the gauge Corrections 51
6.1 Recipe of the Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
6.2 Solving the Equation for ψ0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

6.3 Equation for ψ
(1)/(2)
1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

6.4 Solving the inhomogeneous Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
6.5 Calculating the c2-Coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
6.6 Procedure for h(b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
6.7 ODE Solver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

2



7 Approximation of the gauge corrected Lepton Number Matrix 58
7.1 Symmetry Observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
7.2 Time Integration and the infinite Time Limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
7.3 Dominating Part of the gauge corrected Lepton Number Matrix . . . . . . . . . . . . . . . . . . 61
7.4 Approximating the gauge corrected Lepton Number Matrix . . . . . . . . . . . . . . . . . . . . 65
7.5 Interpreting the Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

8 Numerical Results 69
8.1 Numerical Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

8.1.1 Model Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
8.1.2 Standard Model Couplings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
8.1.3 Structure of the Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

8.2 Thermalization of Lii . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
8.2.1 GSL - QAG adaptive Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
8.2.2 CUBA - VEGAS adaptive Monte Carlo Integration . . . . . . . . . . . . . . . . . . . . . 75
8.2.3 CUBA - CUHRE multidimensional Integration . . . . . . . . . . . . . . . . . . . . . . . 76
8.2.4 Crosscheck via restricted Integration Boundaries using SUAVE . . . . . . . . . . . . . . 77

8.3 The thermalized Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
8.4 Time dependent Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
8.5 Temperature and Time dependent Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

9 Conclusion and Research Perspectives 90

10 Appendix A - Feynman Rules 92

11 Appendix B - List of Propagators 93

12 Appendix C - Full time integrated Lepton Number Matrix 94

13 Appendix D - Result for Lii as calculated in [Ani+11] 95

3



1 Introduction

1.1 Motivation

The most successful scenario of modern cosmology to explain the origin of our universe is the Big-Bang sce-
nario. The Big-Bang model describes the evolution of the universe from an initial singularity in an accelerated
expansion. In 1927 the idea of a linearly expanding universe has been proposed by Georges Lemâıtre [Lem27]
and it has become famous as ”Hubble expansion of the universe” named after the US-American physicist Ed-
win Hubble who first measured the Hubble constant by investigating the redshift of spiral galaxies in 1929
[Hub29]. Most recent analysis lead to the Nobel prize of physics in 2011 for S. Perlmutter, B.P. Schmidt and
A.G. Riess for proving that the expansion of the universe is actually accelerated [Bah+99]. The most suc-
cessful model in cosmology explaining the accelerated universe and several other observations as for example
the cosmic background radiation is the ΛCDM model. It requires not only a cosmological constant Λ that
might be connected to dark energy but also a new, not yet discovered, matter named cold dark matter (CDM)
[Bam+12]. Nevertheless cosmology remains a highly interesting topic of modern physics with various open
problems. One of the most famous problems will be attacked in this thesis: It is still open to explain the origin
of the baryon-to-antibaryon distribution in the universe. Latest measurements, as for example the Wilkinson
Microwave Anisotropy Probe (WMAP), could measure the net-baryon (baryons minus antibaryons) to photon
ratio as a small positive number. Two fundamental questions arise from this measurement: Why has the ratio
the observed small value and why is it a positive quantity? The positive number gives evidence that there is
more matter in our universe then antimatter arising the question of the origin of this asymmetry.
This leads to a fundamental problem: When considering the Big-Bang model one starts with symmetric initial
conditions for particles and antiparticles. As a result, no matter would remain due to annihilation effects.
On the other hand, non-symmetric initial conditions are ineffective because of the inflationary phase and non-
perturbative effects in the Standard Model of elementary particle physics (SM). All these effects erasing a
preexisting (or dynamically generated) baryon asymmetry are referred to as washout. In context of a preex-
isting asymmetry the washout is so strong that an enormous initial asymmetry would be required to arrive
at the measured value making it an unlikely scenario. A possible way out is the idea of a dynamical process
generating a baryon asymmetry during the expansion of the universe. In 1967 Andrei Dmitrijewitsch Sakharov
formulated three necessary conditions such a process has to fulfill [Sak67] to generate a finite asymmetry.
Up to date numerous processes fulfilling the Sakharov conditions have been discussed. One of the most suc-
cessful candidates is the model of thermal Leptogenesis we have chosen as our preferred model. Thermal
Leptogenesis requires an extension of the Standard Model: Three additional heavy right handed neutrinos are
added to the SM Lagrangian. These additional fermions couple to standard model Higgs fields and leptons
and they are introduced with a Majorana mass term. Majorana particles are their own antiparticles making
it possible to decay into leptons and anti-leptons. The change of temperature due to the Hubble expansion
leads to a decay of the Majorana neutrino at temperatures of the mass scale. The out-of-equilibrium decay
is CP-violating such that a lepton asymmetry is generated. The lepton asymmetry is later converted into a
baryon asymmetry via nonperturbative effects in the SM known as sphaleron transitions.
Thermal Leptogenesis is closely linked to parameters in the neutrino sector that can eventually be tested ex-
perimentally. For example the neutrinoless double beta decay is a promising candidate. On top of that the
seesaw mechanism uses the presence of very heavy neutrinos to explain the very light ordinary neutrino masses
observed in neutrino oscillation experiments. At the moment neither thermal Leptogenesis nor any other the-
ory explaining the baryon asymmetry in the universe has been tested successfully in an experiment. The topic
remains a challenging problem both experimentally and theoretically.
Since thermal Leptogenesis requires an out-of-equilibrium process, most of the theoretical descriptions are done
by making use of Boltzmann equations. In 2011 A. Anisimov and W. Buchmüller presented a full quantum
mechanical treatment of the problem [Ani+11] based on Kadanoff-Baym equations [KB62] and the Schwinger-
Keldysh formalism [Sch61; Kel64]. In contrast to Boltzmann equations, where the involved collision terms are
calculated from zero temperature S-matrix elements, the quantum mechanical ansatz is based completely on
Green functions including temperature and memory effects. By introducing thermal widths for SM propaga-
tors it was possible to show that the Boltzmann result could be reproduced. Nevertheless a more systematic
treatment of gauge corrections in the quantum mechanical approach is still missing.
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The aim of this thesis is to provide such a systematic treatment and investigate the effect of SM corrections
in quantum mechanical thermal Leptogenesis especially by focusing on electroweak gauge corrections. A first
approach has been presented in a PhD thesis by Janine Hütig, a former member of the group of Prof. Owe
Philipsen at the Goethe Universität Frankfurt [Hüt13].

This work continues the PhD thesis by presenting an approximation for the gauge corrected result that al-
lows to solve the remaining equation numerically. It is structured the following way:

In this first section a brief overview on various models explaining the baryon asymmetry in the universe is
presented, focusing especially on the model of thermal Leptogenesis.
In the next section basic concepts of statistical quantum field theory are presented focusing on nonequilibrium
field theory and the real time formalism. The final part of the section is a short review of the calculation for
the nonequilibrium Majorana propagator as presented in [Ani+11].
In the third section SM corrections to the Majorana self energy are discussed. It is pointed out that resumma-
tion is needed and for this purpose hard thermal loop (HTL) resummation and collinear thermal loop (CTL)
resummation are discussed. For CTL resummation a recursion relation to calculate the gauge corrected self
energy is developed. This part is based on previous works by A. Ansisimov, D. Besak and D. Bödecker [BB10;
ABB11].
In the forth section a measure for the amount of asymmetry called lepton number matrix is calculated following
[Ani+11]. In this step the asymmetry causing diagrams need to be identified. The calculation leads to a final
expression without SM corrections.
The aim of the fifth section is to include corrections to the lepton number matrix from section 4. As a result
the gauge corrected Majorana decay width is presented as well as gauge corrections to the asymmetry-causing
diagrams following the discussion in [Hüt13]. Finally, after taking all corrections into account, a full gauge
corrected result of the lepton number matrix is presented.
In section 6 the numerical procedure for the calculation of the gauge corrected Majorana self energy is presented
following [ABB11].
Section 7 motivates an approximation for the gauge corrected lepton number matrix leading to a result that
can be treated numerically. For this purpose the infinite time limit of the lepton number matrix is discussed
and the dominating parts of the integral are investigated.
The final section 8 presents the numerical results. After introducing the numerical setup and explaining the
program structure the thermalization of the Lepton number matrix is investigated by comparing the results
from different algorithms. Next the thermalized result is calculated as a function of temperature. The result
is compared to a previous results from [Ani+11] obtained in a different more phenomenological way. Next
the time dependence of our result is compared to the time dependence obtained by [Ani+11]. Finally the
gauge corrected lepton number matrix is calculated as a function of time and temperature. Again the result is
compared to [Ani+11].
There are 4 appendices attached: The first two give an overview on the Feynman rules and the propagators.
The third one presents the lengthy result of the gauge corrected lepton number matrix when carrying out all
time integrations. The final appendix gives details on the result from [Ani+11] used in section 8 to compare
the gauge corrected result to.
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1.2 The Baryon Asymmetry

The observation of a baryon asymmetry in the universe is a frequently discussed problem of modern physics.
As pointed out in the introduction, starting with symmetric initial conditions in a Big-Bang scenario would
lead to no baryon asymmetry due to annihilation b+ b̄→ γγ. As a result there would be no matter left in the
universe nowadays.

Latest measurements as for example by the WMAP-collaboration give

ηWMAP
B =

nb − nb̄
nγ

= (6.19± 0.15) · 10−10 (1)

as value for the baryon to antibaryon to photon ratio [Kom+11]. This is a positive small number making clear
that the amount of baryons is larger than the amount of antibaryons in the universe. Note that the smallness
of the value shows that the universe is dominated by photons instead of baryons.

Considering large regions of antimatter in the universe that could not be observed yet does not solve the
problem since intersecting regions would be measurable due to radiation from annihilation. On top of that
an initial asymmetry would have to be extremely large to arrive at the measured value. During inflation the
baryon number density is reduced at least by a factor order of 1060 [DK03] making such a scenario very unlikely.
As a result the inflationary phase would washout an initial asymmetry together with SM effects explained later.

Most likely the asymmetry arises during the expansion of the universe for example by a decay of a heavy
particle existing only in the early universe at high energies.

A first theoretical approach on such a process has been presented by Andrei Dimitrijewitsch Sakharov in
1967. He formulated 3 necessary conditions a dynamical process has to fulfill to create a baryon asymmetry.
These condition became famous as the 3 Sakharov conditions [Sak67]:

• Baryon number violation: Keeping the baryon number constant could obviously not lead to an
asymmetry.

• C- and CP-violation: Even if a process violates baryon number conservation a zero net baryon number
is kept if not both C and CP is violated. The reason for that is that in the absence of a preference of
matter over antimatter both will be produced at the same ratio leading to a zero net baryon number.

• Departure from thermal equilibrium: In equilibrium the entropy is maximized when the chemical
potentials associated with non conserved quantum numbers vanish. As a result the phase space densities
for baryons and antibaryons are necessarily identical and no asymmetry survives [KT90].

There have been numerous models considered fulfilling the Sakharov conditions and leading to a baryon asym-
metry. A very short overview will be given in the following.

6



1.2.1 Baryon Asymmetry in the Standard Model

In 1976 t’Hooft et al. [t H76a; t H76b] discovered nonperturbative processes in the SM that could violate
baryon number conservation. On one hand the Instantons. These are vacuum solutions in a non-Abelian
gauge theory that can change the sum of baryon and lepton number B + L while keeping B − L constant.
On the other hand there is another nonperturbative process with such an ability in the SM appearing in the
electroweak symmetric phase at temperatures T & 100 GeV. It is known as saddle point solution or Sphaleron
process. Both processes are solutions of the field equations of a non-Abelian gauge theory. The topology of the
vacuum of such a gauge theory known as θ-vacuum is a non trivial periodic structure. The Instanton solution
is a tunneling between different minima of the vacuum. For the Sphaleron process the SM is in its electroweak
symmetric phase and the barrier separating neighboring minima can be surmounted. These processes change
the Chern-Simons-number by ∆NCS = 3 leading to a change of the baryon number ∆B.

Figure 1: Schematic Structure of the θ-vacuum for the free energy F as a function of the Higgs field φa and
gauge fields Aaµ with Instanton and Sphaleron transitions c.f. [Hüt13, p. 7]

With the Sphaleron processes at hand the first Sakharov condition is fulfilled and one could wonder if it is
possible to describe the generation of a baryon asymmetry completely with the SM. Experimentally a source of
CP-violation has been observed in the Quark sector given by the neutral Kaon decay [Fan+99]. Unluckily the
amount of CP-violation is too small to explain the observed asymmetry. At least eight orders of magnitude are
missing [HS95]. Departure from equilibrium could be provided by a phase transition. In the SM the electroweak
phase transition could be the candidate. It shows that a first order phase transition is required to obtain a
baryon number B 6= 0. Up to date lattice simulations have set an upper limit on the Higgs mass to guarantee
a first order phase transition mH = 66.5 ± 1.4 GeV [CFH99]. The latest measured value of the Higgs mass
mH = 125.09(24) GeV [Pat+16] lies beyond this estimate making a crossover the most likely scenario for the
phase transition. Nevertheless the order of the phase transition is still a frequently discussed topic. The theory
of electroweak Baryogenesis requires an extra CP violating factor that could be provided by an extension of the
Higgs sector for example by adding two further CP-violating Higgs doublets or in the framework of the MSSM
(Minimal Supersymmetric Standard Model) [MR12]. Besides the difficulties on the order of the electroweak
phase transition these models often require a large number of new parameters.

1.2.2 GUT Baryogenesis

In grand unified theories the electroweak and the strong interaction would be unified in a non-Abelian gauge
group as for example SU(5) or SO(10) [Lan81]. The energy scale of such a theory is estimated to be at least at
the order of 1014 GeV or larger. A baryon asymmetry is generated by a CP-violating out-of-equilibrium decay
of a super heavy boson from the underlying gauge group that decays into baryons and antibaryons. Besides
the very high energy scale the main problem of such a theory is that the asymmetry is washed out by the
Sphaleron processes. These processes still occur at lower energies where most of the bosons already decayed.
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1.2.3 Affleck-Dine Baryogenesis

In 1984 Affleck and Dine published a mechanism [AD85] defined for a SU(5) GUT based on a many parameter
set of vacuum expectation values for scalar quarks and leptons. Such a setup is naturally implemented in
supersymmetric models. The generation of an asymmetry appears after the supersymmetry breaking and the
inflationary phase. In this case quarks and leptons can have a large non zero expectation value that can be
connected to a generation of an asymmetry. Nevertheless this model is highly non trivial and difficult to falsify.
The question arises if a more ”natural” model exists.

1.3 The Model of thermal Leptogenesis

A successful model to attack the problem of baryon asymmetry is thermal Leptogenesis. It extends the SM
by adding 3 additional right-handed electroweak singlet fermions to the SM Lagrangian. These particles are
considered to be very heavy with masses beyond M & 108 GeV. The mass term has the structure of a Majorana
mass term. Majorana particles are their own antiparticles making it possible for them to decay to particles
as well as antiparticles. Of course they do not carry an electric charge and can be identified as right-handed
heavy Majorana neutrinos.

This Ansatz has the advantage that it could solve two problems of particle physics:

On one hand the very light but finite mass of ordinary neutrinos in the SM could be explained via the See-Saw
mechanism [BPY05]. The Majorana mass term does not affect the gauge symmetry properties of the SM.
The presence of a very heavy neutrino relates the Dirac mass matrix mD to the Majorana mass matrix MR

via the Eigenstates of the complete mass matrix. With the mass matrix given as

M =

(
0 mD

mD MR

)
, (2)

integrating out the heavy neutrinos defines an effective mass given here for only one neutrino generation
(MR ≡M1)

m̃1 h
m2
D

M1
. (3)

Due to the heaviness of the Majorana neutrinos the effective mass m̄1 of the ordinary neutrinos turns out to
be very small.

On the other hand at temperatures T ∼ M the CP-violating out-of-equilibrium decay of the Majo-
rana neutrinos can generate a lepton asymmetry. This was first proposed by Fukugita and Yanagida [FY86] in
1986. After generating a lepton asymmetry it is possible to convert it to a baryon asymmetry by making use
of the Sphaleron processes.

The new introduced right-handed electroweak singlet fermions are denoted as νR,i, i = {1, 2, 3} and they
couple to the SM Higgs doublet φ as well as to SM left-handed lepton doublets lL,i via Yukawa couplings λ
leading to the following Lagrangian

L = LSM + ν̄R,ii/∂νR,j + l̄L,iφ̃λ
∗
ijνR,j + ν̄R,jλij lL,iφ−

1

2
Mi,j(ν̄cR,iνR,j + ν̄R,jν

c
R,i). (4)

We have introduced the notation νcR,i = CνTR,i with C = iγ2γ0 being the charge conjugation matrix and

φ̃ = iσ2φ.

From the electroweak singlets the Majorana neutrinos are defined as

Ni = νR,i + νcR,i. (5)

Since they are their own antiparticle they couple to SM leptons and antileptons making it possible to decay
in both. As a result the decay process violates lepton number conservation. This satisfies the first Sakharov
condition.

8



The departure from equilibrium arises due to the effect of Hubble expansion. When the temperature drops
to T . M with M being the mass scale of the heavy neutrinos the neutrinos are not able to follow the rapid
change of the equilibrium distribution. A too large number of heavy neutrinos compared to thermal equilibrium
is the result. At temperatures T ∼M the system then equilibrates due to the decay of the out-of-equilibrium
particles. Since this is a CP-violating process a finite lepton asymmetry is generated (for a review see [BPY05]).

To understand the mechanism of Leptogenesis it is crucial to study the CP-violation of the heavy neutrino
decay. This has to be done by studying the dynamics of the heavy neutrinos. In this case the CP-violation is
an interference effect of tree level and loop graphs manifesting itself in complex Yukawa couplings.

Figure 2: Tree level and 1-loop graphs leading to a complex Yukawa coupling causing CP violation via inter-
ference effects. [Hüt13, p. 10]

At temperature T = 0 one can define a parameter measuring the amount of CP-violation

εi :=
Γ(Ni → φl)− Γ(Ni → φ̄l̄)

Γ(Ni → φl) + Γ(Ni → φ̄l̄)
. (6)

For simplicity we restrict our model to a strict mass hierarchy with heavy neutrino masses Mi given as M1 �
M2,M3. A calculation of the interference between tree level and loop graphs leads to the coupling giving the
amount of CP-violation. A detailed analysis can be found in [CRV96].

ε1 ' −
3

16π

3∑
k=2

Im
[
(λ†λ)2

k1

]
(λ†λ)11

M1

Mk
+O

((
M1

Mk

3
2

))
. (7)

At finite temperature calculations are even more involving. A hard thermal loop corrected result can for ex-
ample be found in [GHK10; KP12a; KP12b]. In this work we want to study the effects of SM corrections in a
systematic quantum treatment.

The main problem of Leptogenesis is the postulate of a new particle living on an energy scale that is yet
experimentally out of range. On top of that the coupling is expected to be very weak making measurements
even more difficult. An indirect test could be provided by the neutrinoless double beta decay [Hal+76], but at
the moment only small masses are experimentally in range.

Never the less there are interesting constraints on the model of Leptogenesis. Besides the heavy neutrino
mass M and the effective mass m̃ it is possible to define the mass scale m̄2 = m2

1 + m2
2 + m2

3 with mi being
the masses of the ordinary neutrinos. In the past Leptogenesis has been studied by making use of Boltzmann
equations and it was possible to find a maximal asymmetry as function of the mass parameters. It should of
course be close to the observed asymmetry [BPY05]

ηB ≤ ηmax
B (m̃1,M1, m̄). (8)

This sets a bound on the mass parameters given as [BDP03]

mi < 0.1 eV, M1 > 4× 108 GeV. (9)

For a zero initial abundance of the heavy neutrino N1 one receives an even larger value of

M1 > 2× 109 GeV. (10)

Note that the other two heavy neutrinos require an even larger mass due to the assumption of mass hierarchy.
The lower bound for the ordinary neutrinos is not affected by the hierarchy assumption.
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1.4 The effective Model

A first approach is an effective theory formulated by integrating out the two heavier neutrinos N2 and N3.
After defining N1 := N and M1 := M the effective Lagrangian has the following form (leaving out kinetic
parts) [BF00]

L ∼ l̄L,iφ̃λ∗i1N +NTλi1ClL,iφ−
1

2
MNTCN +

1

2
ηij l

T
L,iφClL,jφ+

1

2
η∗ij l̄L,iφ̃Cl̄

T
L,j φ̃. (11)

The remaining heavy neutrino N is weakly coupled to SM particles with small Yukawa couplings λi1 � 1. By
integrating out the heavier neutrinos we have defined an effective coupling

ηij :=

3∑
k=2

λik
1

Mk
λTkj . (12)

Most analyses of thermal Leptogenesis are formulated in terms of Boltzmann equations. Assuming small
number densities justifies the use of Maxwell-Boltzmann statistics and the Boltzmann equations can be written
as [BDP02; Bar+00]

dNN1

dz
= −(D + S)(NN1 −N

eq
N1

), (13)

dNB−L
dz

= −ε1D(NN1
−Neq

N−1)−WNB−L,

with the dimensionless parameter z = M1/T . The number densities N are calculated in a portion of co-moving
volume containing one photon at temperatures T �M .

D denotes the decay and inverse decay processes of the Majorana neutrino generating a Lepton asymme-
try and S are scattering processes of the heavy neutrino. The scattering processes do not appear in the B −L
equation since they do not directly change the lepton number. W denotes the so called washout processes that
play a crucial role. As implied by their name washout processes tend to erase a created Lepton asymmetry.
The final lepton asymmetry is the result of a competition between washout and production processes.

The importance of washout is closely connected to the decay parameter K originally introduced in the context
of GUT Baryogenesis. It gives information if the decay is out of equilibrium. It is defined as a function of the
decay rate and the Hubble expansion1 2

K :=
ΓD(z →∞)

H(z = 1)
=
m̃1

m∗
. (14)

In this step we have further introduced the equilibrium neutrino mass m∗ given by

m∗ =
16π

5
2
√
g∗

3
√

5

v2

MPl
' 1.08× 10−3 eV, (15)

as a function of the total number of degrees of freedom in the SM g∗ = 106.75, the Planck mass MPl and the
Higgs VEV denoted as v.

Far out-of-equilibrium K is very small because the Hubble expansion is dominating (K � 1). As a result
decays occur at very small temperatures z � 1 and the produced asymmetry is not reduced by washout effects
on a significant level. This scenario is referred to as the weak washout regime.

On the opposite for K � 1 the asymmetry is generated at high temperatures and efficiently washed out.
This is the strong washout regime.

The issue of washout has been attacked in several publications using a Boltzmann approach on Leptogene-
sis for example see [BDP05].

1Remember that the Hubble expansion takes the system out of equilibrium.
2z = M/T , so z →∞ corresponds to T = 0 and z = 1 to T ∼M the temperature scale where Leptogenesis happens
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In this work we are having a look at Leptogenesis using a purely quantum mechanical treatment. In par-
ticular we want to investigate SM corrections focusing on gauge corrections. Instead of Boltzmann equations
we have to use equations from nonequilibrium statistical field theory known as Kadanoff-Baym equations.
These equations make use of the Schwinger Keldysh formalism to obtain real time nonequilibrium propagators.
The basic ideas and techniques of nonequilibrium QFT will be presented in the next section.

In thermal Leptogenesis the departure from equilibrium is provided by the Hubble expansion of the universe.
At temperatures T ∼ M this leads to an excess of the Majorana neutrino abundance compared to the equi-
librium thermal abundance of the heavy neutrinos. As a result the neutrino decays to SM leptons and Higgs
fields generating a lepton asymmetry. This asymmetry generating decay competes with numerous processes
as for example scattering processes that diminish the generated asymmetry. After a short time these washout
processes are no longer in equilibrium and the asymmetry is ”frozen in”.

The described process of Leptogenesis starts with a thermal distribution of heavy neutrinos. In the stan-
dard picture of Leptogenesis the Majorana neutrinos need to be produced first at temperatures T > M by
thermal scatterings in the early universe [Bio+17]. During this production a first lepton asymmetry is created,
that is later completely washed out. Afterwards when the equilibrium distribution of the heavy neutrino is
reached and the temperature drops to T ∼M the process described above takes place.

By making use of Boltzmann analysis it could be observed in [BDP02] that for a physical set of Leptoge-
nesis parameters M = 1010 GeV, m̃1 = 10−3 eV, ε = 10−6 the first asymmetry created during the production
of the heavy neutrinos is of the same size as the final asymmetry (compare to figure 3). As a result it is possible
to investigate the generation of a lepton asymmetry starting with a zero initial abundance of heavy neutrinos.
For the given parameters it could be observed that the first and the final lepton asymmetry is at the same
order of magnitude.

Figure 3: Generated Lepton asymmetry as a function of the initial abundance of the neutrino N by making
use of the model parameters M = 1010 GeV, m̃1 = 10−3 eV, ε = 10−6. [Hüt13, p. 14]

When investigating the generation of the first asymmetry the effect of Hubble expansion can be neglected and
the temperature of the thermal bath of SM fields can be kept constant. This is based on a discussion made
by [Ani+11] allowing a full quantum mechanical treatment of the generation of a lepton asymmetry. Since the
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first and the final asymmetry are of the same size calculating the first asymmetry gives information about the
final asymmetry of the system.

As mentioned, after the first asymmetry is created and before the generation of the final asymmetry takes
place the first asymmetry is washed out efficiently. This allows us to neglect washout when considering the
generation of the first asymmetry.

This scenario can of course also be investigated by making use of Boltzmann equations. The equations can for
example be found in [HPW09] by neglecting washout and Hubble expansion. The equation for the Majorana

neutrino distribution fN has the following form
(∫

~q
=
∫

d3q
(2π)32q0)

)
∂

∂t
fN (t, ω~p) = − 2

ω~p

∫
~q,~k

(2π)4δ4(k + q − p)(λ†λ)11p · k (16)

× [fN (t, ω~p)(1− fl(k))(1 + fφ(q))− fl(k)fφ(q)(1− fN (t, ω~p))].

All other distribution functions in the equation are equilibrium Fermi- and Bose distribution functions fl and
fφ. Note that ω~p =

√
M2 + ~p2 is on shell and k, q denote the energies of l and φ. The matrix element of the

decay process obtained by investigating CP-violation |M(N(p)→ l(k)φ(q))|2 = 2(λ†λ)p · k can for example be
found in [BF00].

Neglecting the momentum dependence of the heavy neutrino distribution and using a zero initial abundance
given as fN (0, ω~p) = 0 one obtains the following solution of the Boltzmann equation

fN (t, ω~p) = feqN (ω~p)(1− e−Γ~pt). (17)

The thermal width is given as a sum of decay and inverse decay widths and has the following form

Γ~p = (λ†λ)11
2

ω~p

∫
~k,~q

(2π)4δ4(k + q − p)p · k(1− fl(k) + fφ(q)). (18)

With the equilibrium distribution of the heavy neutrino, given as Fermi-distribution.

To compute the lepton asymmetry we require an equation for the lepton distribution function. It is given
by

∂

∂t
fl(t, k) = − 1

2k

∫
~q,~p

(2π)4δ4(k + q − p) (19)

[|M(lφ→ N)|2fl(k)fφ(q)(1− fN (t, ω~p))− |M(N → lφ)|2fN (t, ω~p)(1− fl(k))(1 + fφ(q))].

Solving the equation assuming no initial asymmetry fL,i(0, k) = 0 leads to the following result

fL,i(t, k) = fl,i(t, k)− fl̄,i(t, k) = −εii
1

k

∫
~p,~q

(2π)4δ4(k + q − p)p · k(1− fl(k) + fφ(q))feqN (ω~p)
1− e−Γ~pt

Γ~p
, (20)

where the coupling has been defined as

εii =
3

16π
Im(λ∗i1(ηλ∗)j1)M. (21)

It is directly connected to the parameter obtained previously when analyzing the amount of CP-violation in
our effective model

ε =

3∑
k=2

εii
(λ†λ)11

. (22)

It will be interesting to compare the quantum mechanical result to the structure of this non gauge corrected
Boltzmann result.
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2 Nonequilibrium Quantum Field Theory

In our model we consider one out-of-equilibrium heavy Majorana neutrino weakly coupled to a thermal bath
of SM leptons and Higgs fields. For this reason calculations have to be performed using technics of statistical
quantum field theory to derive the propagators. In the following section a short review of statistical QFT
will be given and the calculation of the nonequilibrium Majorana propagator will be motivated. A detailed
presentation can be found in [Ani+11] or [Men10].

2.1 Statistical Quantum Field Theory

For a thermodynamic system described by the statistical ensemble a density matrix ρ can be defined as [Ani+11]

ρ :=
e−βH

tr (e−βH)
=
e−βH

Z[β]
. (23)

With the Hamilton operator H of the system and the inverse temperature β = 1/T . An observable is now
measured by calculating the expectation value of the corresponding operator

〈O〉 = tr(ρO) =
1

Z[β]
tr(Oe−βH). (24)

Leptogenesis is considered to be a process in the early universe at high temperatures above the electroweak
scale. As a result the SM is in its symmetric phase with the Higgs fields given as massless real scalar fields. The
two characteristic functions for massless scalar fields are the spectral function ∆− and the statistical propagator
∆+

∆−(x1, x2) = i 〈[φ(x1), φ(x2)]〉 , (25)

∆+(x1, x2) =
1

2
〈{φ(x1), φ(x2)}〉 .

The spectral function is the Fourier transform of the spectral density, which characterizes the density of quan-
tum mechanical states in phase space. The statistical propagator gives information about the occupation
number of states.

Further one can define two two-point functions referred to as Wightman functions

∆>(x1, x2) = 〈φ(x1)φ(x2)〉 , (26)

∆<(x1, x2) = 〈φ(x2)φ(x1)〉 .

It is now straight forward to define the time ordered propagator

∆(x1, x2) = 〈T (φ(x1)φ(x2))〉 = Θ(x1 − x2)∆>(x1, x2) + Θ(x2 − x1)∆<(x1, x2). (27)

The Wightman functions are connected to the statistical and spectral propagator the following way

∆−(x1, x2) = i(∆>(x1, x2)−∆<(x1, x2)), (28)

∆+(x1, x2) =
1

2
(∆>(x1, x2) + ∆<(x1, x2)).

Since the spectral function is defined by making use of a commutator for field operators φ one obtains the
following boundary conditions after making use of the condition for canonical quantization

∆−(x1, x2)|t1=t2 = 0, (29)

∂t1∆−(x1, x2)|t1=t2 = δ( ~x1 − ~x2),

∂t1∂t2∆−(x1, x2)|t1=t2 = 0.

It is important to notice that these conditions do not depend on physical initial conditions yet. Physical initial
conditions enter only as the boundary conditions for the statistical propagator ∆+.
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Recalling the effective Lagrangian of our model the neutrino couples also to left-handed leptons. For these
Weyl fields it is possible to define the statistical propagator and the spectral function in an analogous way

(S−L,ij)αβ(x1, x2) = i
〈
{lL,iα(x1), l̄L,jβ(x2)}

〉
, (30)

(S+
L,ij)αβ(x1, x2) =

1

2

〈
[lL,iα(x1), l̄L,jβ(x2)]

〉
,

keeping in mind that the commutator has to be replaced by an anticommutator for fermions.

The fields are denoted with flavour indices i, j and spinor indices α, β, the index L denotes left-handed
leptons. The definition of Wightman functions stays the same as in the bosonic case, as well as the connection
between Wightman functions and statistical propagator or spectral function.

Finally the heavy Majorana neutrino propagator can be defined in analogy to the lepton propagator

G−αβ(x1, x2) = i 〈{Nα(x1), Nβ(x2)}〉 , (31)

G+
αβ(x1, x2) =

1

2
〈[Nα(x1), Nβ(x2)]〉 .

2.2 The Real Time Formalism

As known from the Sakharov conditions departure from thermal equilibrium is a necessary condition to create
a baryon asymmetry or an initial lepton asymmetry later transformed into a baryon asymmetry. The heavy
Majorana neutrino has to be out-of-equilibrium. The corresponding out-of-equilibrium correlation function
G± can be obtained by making use of the Schwinger-Keldysh formalism [Kel64]. In the Schwinger-Keldysh
formalism Green functions are calculated along a special time integration contour C in the complex time-plane.
The reason for that is that nonequilibrium processes are initial value problems. In equilibrium quantum field
theory S-matrix elements are calculated by sending the initial and final time to ti → −∞ and tf → ∞. By
contrast for a nonequilibrium processes the system is prepared in a known initial state at time ti = 0. Since
the system is not in equilibrium there is no information on the system before the initial time so taking the
limit ti → −∞ is not possible. Instead one can only have a look at the final state of the system by sending
tf →∞ but keeping ti fixed. Since the only information about the system is at initial time it is intuitive that
the contour C in the complex x0-plane has to begin and end at ti. It is referred to as Keldysh contour.

Figure 4: Keldysh contour C in the complex time plane used to compute nonequilibrium propagators [Hüt13,
p.20]. Starting point is a known configuration at ti = 0 + iε the integration is then performed parallel to the
real axis up to tf → ∞ + iε denoted as C+ and then in opposite direction from tf → ∞− iε to ti = 0 − iε,
denoted as C−. The physical correlation function is obtained in the limit ε→ 0.

The Green function of the heavy neutrino calculated along the Keldysh contour is denoted as GC and given as

GC(x1, x2) = ΘC(x
0
1, x

0
2)G>(x1, x2) + ΘC(x

0
2, x

0
1)G<(x1, x2). (32)

The path ordering along the Keldysh contour is enforced by the Θ-functions.
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The Green function satisfies the following equation of motion given as Schwinger-Dyson equation [Bel11]

C(i/∂1 −M)GC(x1, x2)− i

∫
C
CΣC(x1, x

′)GC(x
′, x2)d4x′ = iδC(x1 − x2), (33)

where CΣC(x1, x
′) is the self energy on the contour and a charge conjugation matrix C has been factorized

out. It can also be decomposed by making use of the Θ-functions

ΣC(x1, x2) = ΘC(x
0
1, x

0
2)Σ>(x1, x2) + ΘC(x

0
2, x

0
1)Σ<(x1, x2). (34)

Having a closer look at the Schwinger-Dyson equation shows that both time coordinates of GC and ΣC can lie
on the upper branch of the Keldysh contour. In this case one denotes G11 and this is the familiar time-ordered
Feynman propagator. Never the less there are 3 more possibilities as for example both time coordinates on
the lower branch or a mixing between branches leading to a total number of 4 propagators. Since the upper
branch is ”earlier” than the lower branch one obtains

G12(x1, x2) = G<(x1, x2), (35)

G21(x1, x2) = G>(x1, x2),

G11(x1, x2) = G+(x1, x2)− i

2
sgn(x0

1 − x0
2)G−(x1, x2),

G22(x1, x2) = G+(x1, x2) +
i

2
sgn(x0

1 − x0
2)G−(x1, x2).

The propagator can now be written as a 2× 2 matrix, with the indices Gkl referred to as contour indices. This
is of course also the case for the self energy Σkl.

The self energy fulfills the same relations introduced previously connecting Wightman functions and the sta-
tistical propagator and spectral function

Σ−(x1, x2) = i(Σ>(x1, x2)− Σ<(x1, x2)), (36)

Σ+(x1, x2) =
1

2
(Σ>(x1, x2) + Σ<(x1, x2)).

Splitting the Schwinger-Dyson equation above in terms of contour indices finally leads to a set of two coupled
differential equations for G±~p known as Kadanoff-Baym equations

C(iγ0∂t1 − ~p~γ −M)G−~p (t1, t2) = −
t2∫
t1

CΣ−~p (t1, t
′)G−~p (t′, t2)dt′, (37)

C(iγ0∂t1 − ~p~γ −M)G+
~p (t1, t2) = −

t2∫
ti

CΣ+
~p (t1, t

′)G−~p (t′, t2)dt′ +

t1∫
ti

CΣ−~p (t1, t
′)G+

~p (t′, t2)dt′, (38)

with the spacial components transformed to momentum space. There are important properties of the Kadanoff-
Baym equations:

• The Kadanoff-Baym equation is an exact equation containing all quantum and non-Markovian effects.
There has not been made any assumption on the size of the deviation from equilibrium. As a result it is
valid for arbitrary nonequilibrium initial states which can be parametrized by Gaussian initial conditions
[Ani+11, p. 13]. This is the case in this work because the generated lepton asymmetry is calculated to
leading order in Yukawa coupling by making use of 2-point functions of the heavy neutrino only.

• As mentioned previously the physical initial conditions at ti enter only via the statistical propagator or
more precisely in the equation of the statistical propagator (38).

• The state of a nonequilibrium system is characterized in terms of quantum mechanical correlation func-
tions G± instead of distribution functions. The interactions enter as corrections to the self energies Σ±

making it necessary to identify the corresponding self energy diagrams.
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It is also possible to calculate equilibrium propagators using a contour in the complex x0-plane. As mentioned
earlier for a system in thermal equilibrium, S-matrix elements are calculated by sending ti → −∞ and tf →∞.
Further it is well known from the imaginary time formalism that the complex time is connected to the inverse
temperature β. The resulting time integration contour can for example be found in [Bel11]. It has the following
form:

Figure 5: Time integration contour Cβ to calculate equilibrium propagators in real time formalism [Hüt13,
p. 24]. Integration starts at ti → −∞+ iε parallel to the real time axis up to tf →∞+ iε denoted as C+

β and

then backwards from tf → ∞− iε to ti → −∞− iε, denoted as C−β , finishing at ti − iβ. Again the physical
propagator is obtained in the limit ε→ 0.

A straightforward calculation leads to the equilibrium propagators.

2.3 Equilibrium Propagators

For the calculation of our nonequilibrium Majorana neutrino propagator we are dealing with one particle, the
heavy Majorana neutrino, that is weakly coupled to a thermal bath of SM Higgs fields and leptons. As pointed
out in section 1.4 the thermal bath of SM fields is kept at a constant temperature, because the SM interactions
keep the thermal bath in equilibrium. This is the case because at temperatures T ∼ M the timescale of SM
interactions τSM ∼ 1/(g2T ) is much shorter then the equilibration time τN ∼ (λ2M) of the heavy neutrino
due to the weakness of the Yukawa coupling λ � 1. As a result this governs the the generation of the lepton
asymmetry, since τSM � τN allows the assumption that the background medium equilibrates instantaneously
on the timescale of the heavy neutrino, leaving open the details of the equilibration process [Ani+11, p. 13].

In the effective Lagrangian only massless left-handed leptons couple to the Majorana neutrino so there will be
no mass term involved in the lepton propagator. On top of that at temperatures where Leptogenesis takes
place the SM is in its electroweak symmetric phase leading to massless Higgs fields.

It is well known from equilibrium statistical QFT that correlation functions of spatially homogeneous sys-
tems only depend on spacetime differences. Further the propagators fulfill the Kubo-Martin-Schwinger (KMS)
relations known as

∆<
~k

(ω) = e−βω∆>
~k

(ω), S<~k (ω) = −e−βωS>~k (ω). (39)

Together with the connection between Wightman functions and the statistical function and spectral propagator
this implies

∆+
~k

(ω) = −i

(
1

2
+ fφ(ω)

)
∆−~k

(ω) = − i

2
coth

(
βω

2

)
∆−~k

(ω), (40)

S+
~k

(ω) = −i

(
1

2
− fl(ω)

)
S−~k

(ω) = − i

2
tanh

(
βω

2

)
S−~k

(ω).

The distribution functions are classic Fermi- and Bose-distribution functions

fφ(ω) =
1

eβω − 1
, fl(ω) =

1

eβω + 1
, (41)
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yet ω is not fixed at the on-shell value denoted as ω~k.

Calculating the propagators using the time integration contour presented in the last section leads to the desired
equilibrium propagators (q = |~q|, k = |~k| [Bel11]

∆−~q (y) =
1

q
sin(qy), (42)

∆+
~q (y) =

1

2q
coth

(
βq

2

)
cos(qy), (43)

S−
L,~k

(y) = PL

(
iγ0 cos(ky)−

~k~γ

k
sin(ky)

)
, (44)

SL,~k(y)+ = −1

2
PLtanh

(
βk

2

)(
iγ0 sin(ky) +

~k~γ

k
cos(ky)

)
. (45)

A detailed list can be found in Appendix B.

2.4 The nonequilibrium Majorana Neutrino Propagator

The calculation of the out-of-equilibrium Majorana propagator is more involved. As explained in the beginning
the calculation is an initial value problem that can be treated in real time formalism by making use of the
Keldysh contour.

As pointed out, we consider the heavy neutrino to be weakly coupled to a thermal bath of SM particles.
Keeping the thermal bath in equilibrium and at constant temperature allows us to compute the self energy Σ
of the Majorana neutrino from equilibrium propagators of bath fields only. All backreactions can be neglected
[Ani+11, chap. 4]. This corresponds to a truncation in the perturbative expansion in Yukawa coupling λ where
corrections are suppressed due to the smallness of the coupling and the number of degrees of freedom in the
bath. The corresponding Feynman graph of the self energy up to one loop order is given as:

N
l

φ
N

Figure 6: Leading order one loop contribution to the Majorana neutrino self energy.

Note that the diagram is time-translation invariant since the SM equilibrium propagators are time-translation
invariant. As a result the spectral function of the heavy neutrino is time-translation invariant G−~p (t1, t2) ≡
G−~p (t1 − t2).

Having a first look at the equation for the spectral function of the Majorana neutrino and using the time-
translation invariance leads to

C(iγ0∂y − ~p~γ −M)G−~p (y)−
y∫

0

CΣ−~p (y − y′)G−~p (y′)dy′ = 0. (46)

This equation can be simplified further by introducing the Laplace-transform

G̃−~k
(s) :=

∞∫
0

e−syG−~k
(y)dy, Σ̃−~p (s) :=

∞∫
0

e−syΣ−~p (y)dy. (47)
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The equation simplifies to (
iγ0s− ~p~γ −M − Σ̃−~p (s)

)
G̃−~p (s) = iγ0G−~p (0). (48)

This is an algebraic equation that can be solved easily. The final propagator can then be obtained by calculating
the inverse Laplace transformation given as

G−~p (y) =

∫
CB
esyG̃−~p (s)

ds

2πi
. (49)

The integration contour CB is known as Bromwitch contour.

Figure 7: Bromwitch contour: The contour part parallel to the imaginary s axis is chosen with all singularities
to its left and then the contour is closed via a semicircle with Re(s) < 0 taking all singularities into account.

The Laplace transform of the self energy Σ is analytic for real s but has a discontinuities across the imaginary
axis [Ani+11, p. 18]. One can define a spectral representation exploiting this fact

Σ̃−~p (s) := i

∞∫
−∞

Σ−~p (p0)

is− p0

dp0

2π
. (50)

Known for example from [Sch14] the retarded and advanced self energy is then given as

Σ̃−~p (−iω + ε) = ΣR~p (ω), (51)

Σ̃−~p (−iω − ε) = ΣA~p (ω). (52)

The discontinuity determines the total self energy

discΣ̃−~p (−iω) = Σ̃−~p (−iω + ε)− Σ̃−~p (−iω − ε) = Σ−~p (ω). (53)

The real part is given as the principal value integral and in total we have

Σ̃−~p (−iω ± ε) = iP
∞∫
−∞

Σ−(p0)

ω − p0

dp0

2π
± 1

2
Σ−~p (ω). (54)

Calculating the inverse spectral function G−~p (y) by solving the inverse Laplace transformation along the
Bromwich contour and applying a Fourier transformation then leads to the spectral density

ρ~p(ω) =

(
−i

/p−M − 1
2Σ−~p (ω)

− −i

/p−M + 1
2Σ−~p (ω)

)
C−1. (55)

It has been assumed that the divergent contribution of the real part has already been absorbed into mass and
wave function renormalization, so that ρ~p is a renormalized quantity.
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The result of the one loop self energy is well known and can for example be found in [Wel83]

Σ−~p (ω) = 2i(λ†λ)11

∫ ∫
/kσ(p; k, q)

d3k

(2π)32k0

d3q

(2π)32q0
. (56)

Note that k = (k,~k) as well as q = (q, ~q) are on-shell, whereas p = (ω, ~p) is still off-shell. The quantity σ is
defined as a function of distribution functions and the energy-momentum conservation

σ(p; k, q) := fl,φ(k, q)(2π)4
(
δ4(p− k − q) + δ4(p+ k + q)

)
+ f̄l,φ(k, q)(2π)4

(
δ4(p+ k − q) + δ4(p− k + q)

)
,

fl,φ(k, q) := 1− fl(k) + fφ(q), f̄l,φ(k, q) := fφ(q) + fl(k). (57)

The properties of the Dirac γ matrices and rotational invariance give rise to the following Ansatz [Ani+11,
p. 19]

Σ−~p (ω) = ia~p(ω)γ0 + ib~p(ω)~p~γ, (58)

defining (
∫
~k

:=
∫

d3k
(2π)32k0

)

a~p(ω) := 2(λ†λ)11

∫
~k,~q

kσ(p; k, q), (59)

b~p(ω) := −2(λ†λ)11
1

~p2

∫
~k,~q

~p · ~kσ(p; k, q). (60)

Using the definition of a and b, as well as the definition of σ(p; k, q) one can easily check the following symmetry
properties

a~p(−ω~p) = a~p(ω~p), b~p(−ω~p) = −b~p(ω~p). (61)

With the help of these definitions the spectral density can be written in the following form

ρ~p(ω) =
2ωΓ~p(ω)

(ω2 − ω2
~p) + (ωΓ~p(ω))2

(/p+M)C−1, (62)

where the width Γ~p has been defined as

ωΓ~p(ω) = ωa~p(ω) + ~p 2b~p(ω) = 2(λ†λ)11

∫
~k,~q

p · kσ(p; k, q). (63)

The width Γ~p(ω~p) fulfills the following symmetry properties

Γ~p(−ω~p) = Γ−~p(ω~p) = Γ~p(ω~p). (64)

Note that in the zero width limit the spectral density reduces to the familiar expression from the vacuum

ρ~p(ω) = 2πsgn(ω)δ(p2 −M2)(/p+M)C−1. (65)

After calculating the inverse Fourier transformation, the final result of G−~p (ω) takes the following form3.

G−~p (y) =

(
iγ0 cos(ω~py) +

M − ~p~γ
ω~p

sin(ω~py)

)
e−Γ~p|y|/2C−1. (66)

In comparison to the free spectral function this result contains an extra thermal damping factor.

3The integral can not be solved without an approximation: The form of the integrand function gives rise to a Breit-Wigner
approximation valid for small widths Γ�M [Ani+10]
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After calculating the spectral function we have to continue to solve the second Kadanoff-Baym equation for
the statistical propagator

C(iγ0∂t1 − ~p~γ −M)G+
~p (t1, t2)−

t1∫
0

CΣ−~p (t1, t
′)G+

~p (t′, t2)dt′ = −
t2∫

0

CΣ+
~p (t1, t

′)G−~p (t′, t2)dt′

︸ ︷︷ ︸
:=ζ~p(t1−t2)

, (67)

where the initial time has been set to ti = 0 and a source term ζ~p(t1 − t2) has been defined.

The general solution is a superposition of the homogeneous solution and an inhomogeneous solution called
’memory integral’ containing non-Markovian effects

C(iγ0∂t1 − ~p~γ −M)G+,hom
~p (t1, t2)−

t1∫
0

CΣ−~p (t1, t
′)G+,hom

~p (t′, t2)dt′ = 0, (68)

G+,mem
~p (t1, t2) =

t1∫
0

t2∫
0

G−~p (t1 − t′)Σ+
~p (t′ − t′′)G−~p (t′′ − t2)dt′′dt′, (69)

G+
~p (t1, t2) = G+,hom

~p (t1, t2) +G+,mem
~p (t1, t2). (70)

The memory part can be calculated using the previous result of the statistical propagator, applying a Fourier
transformation and neglecting contributions of O(Γ~p)

4. Sticking to the notation of [Ani+11] we change variables
from (t1, t2) to (t, y = t1 − t2). The final result is given as

G+,mem
~p (t, y) = −1

2
tanh

(
βω~p

2

)(
iγ0 sin(ω~py)− M − ~p~γ

ω~p
cos(ω~py)

)(
e−Γ~p|y|/2 − e−Γ~pt

)
C−1. (71)

Note that in the limit t→∞ the memory part takes the form of the equilibrium statistical propagator

lim
t→∞

G+,mem
~p (t, y) = G+,eq

~p (y) = −1

2
tanh

(
βω~p

2

)(
iγ0 sin(ω~py)− M − ~p~γ

ω~p
cos(ω~py)

)
e−Γ~p|y|/2C−1. (72)

Up to this point no physical boundary conditions have been used in the calculation. The boundary conditions
now enter when solving the homogeneous equation as physical boundary conditions for the statistical propa-
gator G+

~p (0, 0).

As motivated in section 1 we consider vacuum initial conditions corresponding to a zero abundance of the
heavy Majorana neutrino

G+,vac
~p (0, 0) =

M − ~p~γ
2ω~p

C−1. (73)

The Kadanoff-Baym equation for the statistical propagator can then be solved in an analogous way as presented
previously for the spectral function. One finally obtains the following full solution of the statistical propagator

G+
~p (t, y) = −

(
iγ0 sin(ω~py)− M − ~p~γ

ω~p
cos(ω~py)

)[
1

2
tanh

(
βω~p

2

)
e−Γ~p|y|/2 + feqN (ω~p)e

−Γ~pt

]
. (74)

All other propagators as for example the Wightman functions are given as linear combinations of the two
propagators calculated. Their form can be found in Appendix B.

4This corresponds to the approximation made earlier when calculating the inverse Fourier transformation of the spectral function
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3 Gauge corrected Majorana Self Energy

In the considered model we are looking at one out-of-equilibrium heavy neutrino N weakly coupled to a thermal
bath of SM particles. As explained previously the self energy of the heavy neutrino can be calculated from
equilibrium bath field propagators only [Ani+11, p. 16]. The bath fields couple to electroweak gauge fields
making it interesting to consider gauge corrections to the Majorana self energy. Unluckily perturbation theory
breaks down in thermal field theory and one has to consider resummation. The resummation schemes are
distinguished by different momentum scales of the system (for more details see [Bes10]).

3.1 Momentum Scales

There are three different momentum scales relevant in our model:

• Hard scale: The momentum of the particle is of order p ∼ T and p2 ∼ T 2. In this region perturbation
techniques familiar from vacuum QFT are valid since the propagating particle is only weakly affected by
interactions with the thermal bath.

• Soft Scale: The momentum is of order p ∼ gT . As a result the particle interacts significantly with
the thermal bath. These interactions are of order O(1) and collective excitations arise. These effects
are included by making use of thermal masses m ∼ gT and thermal widths Γ. These quantities can be
calculated using the HTL (Hard Thermal Loop) resummation scheme [Bel11, chap. 7].

• Lightcone Scale: In this case the momentum is of order p ∼ T , but the squared momentum is of order
p2 ∼ g2T 2. In this regime additional collinear divergences arise due to interactions with the thermal bath.
Similar to the soft scale new masses become important defined as asymptotic masses m∞. Calculations
are done using the Collinear Thermal Loop resummation scheme (CTL) [BB10].

We are working at large temperatures where large momenta are relevant. Typical particle momentum in our
system is of order O(T ). The Majorana neutrino belongs to the hard scale and is not influenced by the thermal
bath up to leading order, so that its mass M remains a temperature independent parameter. On the contrary
in the high temperature regime with M . T corrections to SM propagators need to be taken into account.
They carry hard but nearly lightlike momenta and a treatment involving asymptotic masses is needed [BB10].
Therefore the relation k2 ∼ g2T 2 is strictly needed. As a result SM particles can become heavier then Majorana
particles at high temperatures beyond the neutrino mass T > M . Nevertheless for M . T the asymptotic
masses are relatively small compared to the momenta of the particles. It is possible to consider the external
and internal loop momenta as nearly collinear with angles of the order of the weak coupling O(g) [ABB11,
p. 5].

3.2 Perturbation Theory close to the Lightcone

3.2.1 Thermal Widths and asymptotic Masses

Close to the lightcone only the relation k2 ∼ g2T 2 is strictly needed whereas k ∼ T . The scalar propagator
∆(k) can be parametrized in terms of a thermal width Γ(k) and the corresponding thermal mass m via [Bes10,
p. 18]

∆(k) =
−1

k2 −Π(k)
=

−1

(k0 + iΓ(k))2 − ~k2 −m2
, (75)

with the self energy Π(k). To keep a quasi-particle description of the interaction we have to deal with a small
rate Γ2 � m2 otherwise we are dealing with a broad resonance, such that the interpretation as a particle is
not valid anymore [Bes10, p. 19]. One easily arrives at

ReΠ(k) = m2, ImΠ(k) = −2ik0Γ(k). (76)

In general we have m2 ∼ O(g2T 2) and k0Γ(k) ∼ O(g2T 2) such that they are equally important, but at suffi-
ciently high temperatures we are dealing with hard loop momentum close to the lightcone. In this case the self
energy turns out to be purely real keeping only the thermal mass now referred to as asymptotic mass m2 = m2

∞.
It should be mentioned that the asymptotic mass is in general not equal to the thermal mass calculated using
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HTL resummation, especially for fermions the results differ.

The asymptotic masses of the nearly lightlike SM Higgs fields and leptons have already been calculated in
[BB10, p. 76-81] or [Hüt13, App. A] arriving at

mφ,∞ =
1

16

(
3g2 + g′2 + 4h2

t + 8λ
)
T 2, (77)

ml,∞ =
1

16

(
3g2 + g′2

)
T 2,

with g, g′ the SU(2) and U(1) gauge group couplings, ht the coupling to the top quark and λ the Higgs self-
coupling. The corrections do not only include gauge corrections but also other SM corrections as a coupling to
the quark sector via λt.

3.2.2 Lightcone Coordinates

As we deal with hard lightlike momenta for SM particles it is useful to transform momenta to lightcone
coordinates. For this purpose the four vector v := (1, ~v) is defined, with ~v2 = 1. The transformed coordinates
are defined the following way

k‖ := ~k · ~v, (78)

and the remaining perpendicular 2-momentum ~k⊥. The four vector can then be written as

k = (k+, k−,~k⊥), k+ = k0 + k‖, k− = k0 − k‖. (79)

Finally we have

k2 = k+k− − ~k2
⊥ = (k0 + k‖)(k0 − k‖)− ~k2

⊥ ∼ g2T 2. (80)

We choose v such that

~k⊥ ∼ gT, k+ ∼ T, k− ∼ g2T. (81)

Note that this choice has the feature that parallel components are hard k‖ ∼ T whereas the perpendicular
components are soft k⊥ ∼ gT .

3.2.3 Collinear thermal Loops

As explained in the beginning, in contrast to HTL resummation, the external momentum p is not considered
to be soft but close to the lightcone for CTL resummation. In this approach motivated by [Bes10, Sec. 2.3]
generic 1-loop diagrams with external momenta pi ∼ T, i ∈ {1, N}, p2

i ∼ g2T 2 are considered with inner loop
momentum k. The loop momentum is of the same kind as the external momentum k ∼ T , k2 ∼ g2T 2 such
that pi · k ∼ g2T 2. The momenta are then called collinear. In lightcone coordinates we then have k‖, pi ‖ ∼ T ,

|~k⊥|, |~pi ⊥| ∼ gT and the angle between momenta is of order O(g).

pi p1

p2

pN

k
...

...

Figure 8: Generic 1-loop diagram used for CTL resummation with external momenta pi and internal loop
momentum k.

We want to investigate gauge corrections for the Majorana self energy, therefore it is sufficient to limit our
considerations of external particles to spin-1/2 fermions and spin-1 gauge bosons.
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In this case the power counting rules can be found in [Bes10, p. 21] and are given as

• A loop integral gives a g4 suppression

• A propagator gives 1/(g2T 2)

• The vertex contribution of a gauge boson is given by another factor of g

• A Yukawa vertex leads to a further factor of g

For n vertices involving a gauge boson and m = N − n arbitrary vertices our generic 1-loop CTL N-point
function is of order

Π
(N)
CTL ∼ g

4

(
1

g2T 2

)N
gngN ∼ g4−m. (82)

In our case of the Majorana self energy we have m = 2 external particles that are not gauge particles namely the
neutrinos leading to a contribution of order O(g2). So at first we are going to have a look at the contribution
to the self energy with one additional soft gauge boson.

p

k

p
q

Figure 9: 2-point self energy contribution with one additional soft gauge boson of momentum q.

The corresponding integral expression in imaginary time formalism is given as [Bes10, p. 23]

Π1 gauge ∼ g2T
∑
p0

∫
T
∑
q0

∫
V (p, k, q)∆(p)∆(p− q)∆(p− k + q)∆(p− k)∆(q)

d3q

(2π)3

d3p

(2π)3
, (83)

with V (k, p, q) denoting the vertex factor. Following [Bes10] a scalar loop is considered for simplicity but the
presented strategy is also valid if one (or both) scalar particles are replaced by fermions. Applying the power
counting rules:

• We get an additional g2 suppression from the new gauge boson vertices.

• Further there is an 1/g2 contribution from each new propagator and q is chosen such that q · p ∼ g2T .

• There is an additional g4 factor due to the sum-integral.

• Finally all other contributions from the previous discussions have to be taken into account (choosing of
course N = 2 and m = 2 in (82))

The final result is then given as

Π1 gauge ∼ g2︸︷︷︸
external line vertices

g2︸︷︷︸
gauge boson vertices

(
1

g2T 2

)5

︸ ︷︷ ︸
propagators

(g4)2︸ ︷︷ ︸
phase space integration

∼ g2. (84)

Remarkably all additional powers of g have canceled and the correction is of the same order as the tree level.
In fact this is still the case when inserting further gauge boson lines leading to ladder diagrams.
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Summing up all contributions one arrives at the following ladder diagram for the CTL resummed Majorana
self energy with asymptotic masses for equilibrium SM propagators.

N
l

φ
N

l

φ
...N N

Figure 10: Left: tree level Majorana self energy as known from section 2. Right: gauge corrected ladder
diagram of the Majorana self energy with CTL resummation containing propagator and vertex corrections.

3.3 The Landau-Pomeranchuk-Migdal Effect

The presented calculation is closely connected to thermal particle production in terms of the Landau-Pomeranchuk-
Migdal effect. The effect was first discovered 1953 by Landau and Pomeranchuk [LP53] and later described by
A. Migdal [Mig56] as an effect in electromagnetic showers coming from high-energy cosmic rays. It has shown
to be important when describing photon production in the quark gluon plasma (QGP). The effect describes
the behavior of a high energetic particle propagating through a thermal medium while undergoing multiple
soft scattering processes with the thermal bath. If the formation time of an emitted particle is of the same
order as the mean free time between collisions it is not possible anymore to separate events as independent,
thus interference arises.
In case of the Majorana neutrino the LPM effect gives information about a thermal production of the Majorana
neutrino as investigated in [BB10; ABB11] as well as in the PhD thesis of Denis Besak [Bes10].
For sufficiently high temperatures T > M SM particles are heavier than the Majorana neutrino due to the effect
of thermal masses. As a result the Higgs particle can decay into a heavy neutrino. Further the propagation is
influenced by the thermal bath because of soft gauge scattering, leading to interference effects of processes as

Figure 11: Interfering processes that have to be taken into account when investigating the thermal production
of the heavy Majorana neutrinos at temperatures T > M [ABB11, p. 6].

Note that these graphs can be obtained by cutting the ladder diagram (figure 10). The production rate Γprod

per unit time and unit volume can then be calculated via [ABB11, p. 3]

dΓprod

d3k
=

1

(2π)3k0
fF (k0)tr[/kImΣret(k)], (85)

with the retarded self energy Σret(k) of the heavy neutrinos. It has to be calculated using the ladder diagram.
This turns out to be very useful as a crosscheck of results presented later in section 5.
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3.4 Strategy of the Calculation

As presented in the last section corrections to the Majorana self energy are connected to the ladder diagram.
In the following we are going to present the strategy for calculating the ladder diagram leading to a result
for the self energy including all leading order SM corrections. The calculation is structured the following way
[ABB11, p. 7]

• At first the hard field modes are integrated out. As a result asymptotic masses for particles near the
lightcone scale are generated and a HTL effective action for soft gauge bosons is defined. Since thermal
widths and hard-hard interactions are of order O(g4T ) they can be neglected.

• Next a current is defined. Starting point is a one-loop diagram with two external Majorana neutrinos
and an arbitrary number of soft external gauge bosons. The loop momentum and the external momenta
are considered to be nearly collinear. At first the 2-point function without external gauge bosons is
calculated. Next it is possible to set up a recursion relation between the n point function and the (n− 1)
point function obtained by removing one external gauge boson. This is done by making use of a current
which is induced by the gauge field background and defined as the integral over all external momenta
contracted with the external fields.

• In the last step the soft gauge boson background has to be integrated out. The gauge bosons appear only
in self energy insertions leading to thermal widths for lepton and Higgs fields and as rungs in the ladder
diagram presented previously. The current now satisfies an integral equation. Finally after stripping of all
external fields from the current an integral equation for the desired gauge corrected self energy remains.

3.4.1 Integrating out the hard Modes - SM Propagators with asymptotic Masses

As described the first step of the calculation is to get rid of the hard modes by integrating them out. As a result
one obtains a resummed lepton and Higgs propagators with asymptotic masses. For simplicity the subscript
∞ for the asymptotic mass will be dropped in the following. After neglecting contributions of order O(g2T )
one arrives at the following scalar propagator [BB10, p. 5] and spin-1/2 fermion propagator [BB10, p. 12]

∆~k(ω) =
−1

k2 −m2
φ

, (86)

S~k(ω) =
/k − m2

l

2k0
γ0

k2 −m2
l

.

Since we only have asymptotic masses the contribution of left- or right-handed leptons flowing in the loop is the
same. Therefore it is sufficient to consider only one orientation of fermions in the loop. Sticking with [ABB11]
we choose left-handed fermions.

In Weyl basis the gamma matrices have the following form

γ0 =

(
0 12×2

12×2 0

)
, γk =

(
0 σk

−σk 0

)
, (87)

and one can defined the 4-vector

kµ · σµ := k0 − σkkk, kµ · σ̄µ := k0 + σkkk. (88)

By making use of the Weyl basis the lepton propagator S can be written in the following form

S~p =
1

p2 −m2
l

(
0 p · σ − m2

l

2p0
12×2

p · σ̄ − m2
l

2p0
12×2 0

)
:=

1

p2 −m2
l

(
0 p̃ · σ

p̃ · σ̄ 0

)
, (89)

where we have defined

k̃ = k − m2
l

2k0
u, u = (1,~0). (90)
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The projectors in Weyl basis are given as

PL =
14×4 − γ5

2
=

(
12×2 0

0 0

)
, PR =

14×4 + γ5

2
=

(
0 0
0 12×2

)
. (91)

Using the projectors we can define the left- and right-handed fermion propagators

PLS~k(ω) =
1

k2 −m2
l

(
12×2 0

0 0

)
·
(

0 k̃ · σ
k̃ · σ̄ 0

)
=

1

k2 −m2
l

k̃ · σ, (92)

PRS~k(ω) =
1

k2 −m2
l

(
0 0
0 12×2

)
·
(

0 k̃ · σ
k̃ · σ̄ 0

)
=

1

k2 −m2
l

k̃ · σ̄. (93)

Note that the only difference between the propagators is a sign in front of the spacial momentum components.
A parity transformation then changes left-handed to right-handed.

Since we are only interested in left-handed leptons we can limit our consideration to

SL~k =
1

k2 −m2
l

k̃ · σ. (94)

Since the momenta are close to the lightcone we are making use of lightcone coordinates. The scalar propagator
can then be written as

∆~k(k0) =
−1

k2 −m2
φ

=
−1

k+k− − ~k2
⊥ −m2

φ

=
−1

(k0 + k‖)(k0 − k‖)− ~k2
⊥ −m2

φ

. (95)

By making use of collinearity v · p ∼ v · k ∼ g2T it is possible to approximate k0 ∼ k‖ [BB10, p. 5].

∆~k(k0) =
−1

k2 −m2
φ

≈ −1

2k‖k− − ~k2
⊥ −m2

φ

=
1

2k‖

−1

k0 − k‖︸ ︷︷ ︸
=k0−~v·~k=v·k

− (~k2
⊥+m2

φ)

2k‖

=
1

2k‖

−1

v · k − (~k2
⊥+m2

φ)

2k‖︸ ︷︷ ︸
:=Dφ(k)

(96)

≈ Dφ(k)

2k‖
.

The left-handed fermion propagator SL can be approximated in a similar way

SL~k =
1

k2 −m2
l

k̃ · σ ≈ Dl(k)

2k‖
k̃ · σ. (97)

On top of that if the fermion is on-shell k2 = m2
l , k̃ is lightlike up to higher order terms that have been

neglected. Evaluating the loop integral in imaginary time formalism and taking the imaginary part leads to
an on-shell fermion propagator allowing to treat k̃ as light-like 4 vector [ABB11, p. 9]. Now it is possible to
rewrite SL in the following form

SL(p) = η(p̃)η†(p̃)Dl(p), (98)

by expanding the Weyl spinor η in terms of its coupling g

η =

(
12×2 −

~σ · ~p⊥
2p‖

)(
0
1

)
+O(g2) → η ' η0 + η1 +O(g2), η0 =

(
0
1

)
, η1 = −~σ · ~p⊥

2p‖
η0. (99)

Note that it is sufficient to write η(p) instead of η(p̃) since the difference is of order O(g2T ) and therefore
neglectable.
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3.4.2 The reduced Self Energy

With the propagators at hand it is now possible to write down the 2-point function referred to as non gauge
corrected Majorana self energy

ΣR~p,4×4(ω) = Σ~p(ω)PR =

∫
S~k(ω′)∆~p−~k(ω − ω′)dω

′

2π

d3k

(2π)3
PR =

∫
PLS~k(ω′)∆~p−~k(ω − ω′)dω

′

2π

d3k

(2π)3
(100)

=

∫
SL~k,4×4

(ω′)∆~p−~k(ω − ω′)dω
′

2π

d3k

(2π)3
.

Note that we obtain the left-handed self energy when changing ~p→ −~p

ΣR−~p(ω) =

∫
SL~k (ω′)∆−~p−~k(ω − ω′)dω

′

2π

d3k

(2π)3
(101)

~k→−~k
=

∫
SL−~k(ω′)∆−~p+~k(ω − ω′)dω

′

2π

d3(−k)

(2π)3

=

∫
SR~k (ω′)∆~p−~k(ω − ω′)dω

′

2π

d3k

(2π)3
= ΣL~p (ω),

where we have used SR
−~k

= SL~k as pointed out in the last section.

Since Σ is a function of the lepton propagator SL and the Higgs propagator ∆, it is possible to define the
following quantity using the simplifications and approximations of the propagators given before [ABB11, p. 9-
10]

Σret,R~p (ω) := |λ|2
∞∫
−∞

η(ω,~k)Σ̃(ω,~k, ~p)
d3k

(2π)3
, (102)

with the Yukawa coupling |λ|2 =
∑
i

(λ†λ)1i extracted.

The object Σ̃ is referred to as reduced self energy and it is calculated by solving

∞∫
−∞

SL(ω′,~k)∆(ω − ω′, ~p,~k)
dω′

2π
= η(k)

∞∫
−∞

η†(k)
Dl(k)Dφ(k − p)

2(k‖ − p‖)
dω′

2π
= η(k)Σ̃(p,~k). (103)

With the definition of Dx we have

D−1
l (k) = −

(
v · k −

~k2
⊥ +m2

l

2k‖

)
, D−1

φ (k − p) = −

(
v · (k − p)−

(~k⊥ − ~p⊥)2 +m2
φ

2(k‖ − p‖)

)
, (104)

Dl(k)−Dφ(p− k) = − 1

v · k −
~k2
⊥+m2

l

2k‖

+
1

v · (k − p)− (~k⊥−~p⊥)2+m2
φ

2(k‖−p‖)

(105)

=
−v · (k − p) +

(~k⊥−~p⊥)2+m2
φ

2(k‖−p‖)
+ v · k −

~k2
⊥+m2

l

2k‖(
v · k −

~k2
⊥+m2

l

2k‖

)(
v · (k − p)− (~k⊥−~p⊥)2+m2

φ

2(k‖−p‖)

) :=
ε(p,~k)

(Dl ·Dφ)−1
.

So ε is given as

ε(p,~k) = v · p+
(~k⊥ − ~p⊥)2 +m2

φ

2(k‖ − p‖)
−
~k2
⊥ +m2

l

2k‖
. (106)

Using this we can simplify further

∞∫
−∞

η(k)η†(k)
Dl(k)Dφ(k − p)

2(k‖ − p‖)
dω′

2π
=

∞∫
−∞

η(k)η†(k)
1

2ε(p,~k)

Dl(k)−Dφ(k − p)
k‖ − p‖

dω′

2π
= η(k)Σ̃(p,~k). (107)
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The calculation of the reduced self energy has already been done in the PhD thesis of Denis Besak [Bes10]
using the imaginary time formalism and ending up with

Σ̃(p,~k) = −
d(r)F(p‖, k‖)

2ε(p,~k)

η†(k)

k‖ − p‖
, (108)

where F(p‖, k‖) = fF (k‖) + fB(k‖ − p‖) is a function of the equilibrium distribution functions and d(r) the
dimension of the gauge group representation.

3.4.3 Definition of a Current and Recursion Relation

With this expression for the one loop Majorana self energy at hand we can now continue the calculation by
introducing a current Jaµ . Our aim is to derive a recursion relation for the n-point function. For this purpose
the external soft gauge fields are written as Aaµ(qi) with a = {1, 2, 3} and momenta qi. The current is defined
as [BB10, p. 8]

Jaµ(p) :=

∫
Vµ(k, k − p)Tr

[
taĴ(p,~k)

] d3k

(2π)3
, (109)

with the vertex factor Vµ(k, k− p) = 1
2k‖

(2k− p)µ and the gauge group generators ta. The object Ĵ is referred

to as unintegrated current and defined via

Ĵ(p,~k) =

∞∑
n=2

n−1∏
i=1

∫
qi

Aµi(qi)(2π)4δ

p− n−1∑
j=1

qj

 Σ̃(n)a1...an−1
µ1...µn−1

(q1, ..., qn−1,~k)
d4qi

(2π)4
, (110)

with the short notation Aµi = taiA
µi
ai and the reduced self energy Σ̃. After taking the trace over SU(2) indices

we arrive at

trĴ(p,~k) = Σ̃(p,~k)N(p). (111)

By looking at the vertex structure and making use of partial fraction decomposition and the explicit form of
the reduced self energy, it is possible to arrive at a recursion relation for the current

ε(p,~k)Ĵ(p,~k) =− 1

2
F(p‖, k‖)

η†(k)

k‖ − p‖
N(p) (112)

+

∫
q

[Ĵ(p− q,~k)V ·A(q)− V ·A(q)Ĵ(p− q,~k − ~q)] d
4q

(2π)4
.

Note that the recursion relation has the general form J = N +AJ . For further details see [ABB11, p. 11-12].

3.4.4 Integrating out the soft gauge Bosons

Finally the soft gauge boson background has to be integrated out. Integrating over the gauge fields A can be
done by iterating the recursion relation: J = N + AJ leads to J = N + A(N + AJ) after the first iteration
and so on. Integrating over the gauge fields A then leads to contributions as 〈AAJ〉 = 〈AA〉 whereas all terms
linear in A vanish [ABB11, p. 12-13]. The gauge field propagator is given as

〈Aµ(q)Aν(q′)〉 =
1

T
δq0−q′0,0(2π)3δ3(~q − ~q ′)(C2(r)g2∆µν(q) + y2

l g
′2∆′µν(q)), (113)

derived in imaginary time formalism with the HTL resummed gauge propagators for SU(2) and U(1) respec-
tively. For SU(2) the Casimir operator equals C2(r) = 3/4 and the hypercharge yl = −1/2. Finally after taking
the trace over SU(2) indices and stripping of all background fields N we end up with [ABB11, p. 14]

iε(p,~k)Σ̃(p,~k) =− i

2
d(r)F(p‖, k‖)

η†(k)

k‖ − p‖
(114)

+

∫
C(~q⊥)

[
Σ̃(p,~k)− Σ̃(p, k‖,~k⊥ − ~q⊥)

] d2q⊥
(2π)2

.

28



The kernel C has been derived by integrating out the A contribution and using the corresponding gauge
propagators with HTL resummed Debye mass mD

C(~q⊥) = T

[
C2(r)g2

(
1

~q 2
⊥
− 1

~q 2
⊥ +m2

D

)
+ y2

l g
′2
(

1

~q 2
⊥
− 1

~q 2
⊥ +m′2D

)]
. (115)

Note that the parallel momentum direction q‖ as well as the Matsubara sum over q0 has been solved already.

The Debye masses are given as [ABB11, p. 13]

m2
D =

11

6
g2T 2, m′2D =

11

6
g′2T 2. (116)

Looking at the final expression it should be clear that the obtained recursion relation for the self energy can
not be solved analytically, moreover a numerical treatment is needed. For this reason it is useful to rewrite the
reduced self energy again by parameterizing it using a scalar function ψ and a vector function ~f [Aur+02]

Σ̃(p,~k) ∼ η†(k) =

(
−k1 + ik2

2k‖
, 1

)
∼ (−~w · ~f, ψ), (117)

with the auxiliary vector ~w = (1, i). Using this parametrization one can write the reduced self energy in the
following form [ABB11, p. 15, note the missing factor of 4]

Σ̃(p,~k) = − i

2

d(r)F(p‖, k‖)

k‖ − p‖

(
−(f1+if2)

4p‖

ψ

)
(118)

. Instead of one single equation we then end up with two integral equations for ψ and ~f that have to be solved
numerically [ABB11, p. 14]

iε(p,~k)~f(~k⊥)−
∫
C(~q⊥)

[
~f(~q⊥)− ~f(~k⊥ − ~q⊥)

] d2q⊥
(2π)2

= 2~k⊥, (119)

iε(p,~k)ψ(~k⊥)−
∫
C(~q⊥)

[
ψ(~q⊥)− ψ(~k⊥ − ~q⊥)

] d2q⊥
(2π)2

= 1. (120)

For the integrated self energy one arrives at

Σret,R~p (ω) := |λ|2
∞∫
−∞

η(ω,~k)Σ̃(ω,~k, ~p)
d3k

(2π)3
= −|λ|2 i

2

∞∫
−∞

η(ω,~k)
d(r)F(p‖, k‖)

k‖ − p‖

(
−(f1+if2)

4p‖

ψ

)
d3k

(2π)3
. (121)

Solving the integral equations for ψ and ~f leads to the desired gauge corrected result of the Majorana self
energy.
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4 Lepton Asymmetry with the Lepton Number Matrix

The aim of the section is to compute a measure for the generated Lepton asymmetry. For this purpose the
calculation follows the strategy developed by Anisimov, Buchmüller et al. in [Ani+11].

4.1 The Lepton Number Matrix

Starting point is the flavor non-diagonal lepton current in a spacial homogeneous system. It is obtained from
the statistical lepton propagator [Ani+11, p. 24]

jµij(x) = −tr
[
γµS+

L,ij(x, x
′)
]
x′→x

. (122)

The zeroth component of this current is referred to as flavor non-diagonal lepton number matrix

L~k,ij(t, t) = −tr
[
γ0S

+
~k,L,ij

(t, t′)
]
t′→t

. (123)

For free fields in equilibrium it is possible to show that the flavor diagonal part of the matrix is connected to
the equilibrium distribution functions of leptons and anti-leptons

L~k,ii(t) = fli(t,~k)− fl̄,i(t,~k). (124)

In section 2 the Kadanoff-Baym equations had been presented. An important feature of the equations was
that interactions enter as corrections to the self energy Σ± in nonequilibrium QFT. This is why the lepton
number matrix is going to be calculated from self energy corrections to the statistical propagator S+. These
corrections involve the out-of-equilibrium Majorana neutrino and are closely connected to the CP-violating
processes investigated in section 1. Details on the corrections will be given in the next subsection. The
corresponding Kadanoff-Baym equations have the following form [Ani+11, p. 25]

(iγ0∂t − ~k~γ)S+
~k,L,ij

(t, t′) =

t∫
0

Π−~k
(t, t1)S+

~k,L,ij
(t1, t

′)dt1 −
t′∫

0

Π+
~k

(t, t1)S−~k,L,ij
(t1, t

′)dt1, (125)

S+
~k,L,ij

(t, t′)(−iγ0←−∂t′ − ~k~γ) = −
t′∫

0

S+
~k,L,ij

(t, t1)Π−~k
(t1, t

′)dt1 +

t∫
0

S−~k,L,ij
(t, t′)Π+

~k
(t1, t

′)dt1, (126)

where the self energy correction to S is denoted as Π±.

4.2 CP-Violation from Self Energy Corrections

There are numerous self energy corrections to the statistical lepton propagator involving a heavy Majorana
neutrino. Most of the diagrams are referred to as washout diagrams and do not lead to the intended lepton
asymmetry. As a result the relevant diagrams have to be identified.

As explained in the first section CP-violation is a non trivial effect caused by interference of tree level and
loop graphs. It manifests itself in the imaginary part of the complex Yukawa couplings λ. For our effective
model with two of three Majorana neutrinos integrated out the amount of CP-violation is given as [Ani+11,
p. 7]

ε := −ε1 '
3

16π

3∑
j=2

Im
[
(λ†λ)2

j1

]
(λ†λ)11

M1

Mj
+ o

((
M1

Mj

) 3
2

)
=

3

16π
M
∑
i

Im(λ∗i1(ηλ∗)i1)

(λ†λ)11
=

3

16π
M

Im((λ†ηλ∗)11)

(λ†λ)11
,

(127)

with effective coupling η and M1 ≡M .
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There are two two-loop self energy corrections leading to the same coupling structure known from the
analysis of CP-violation in section 1: [Ani+11, figure 7]

l

φ

N

l

φ

l l

φ

l

φ N

l

Figure 12: CP violating two-loop contributions to the lepton self energy Π± leading to a non zero lepton
asymmetry.

From now on these diagrams will be referred to as CP-violating diagrams. The couplings can be found by
applying the Feynman rules from Appendix A. The two-lepton-two-Higgs effective vertex leads to a factor ηij
or its conjugate, the lepton-Higgs-Majorana vertex to a factor of λi1 or its conjugate. All in all the complete
diagram leads to a factor of Im(λ∗i1(ηλ∗)i1) reproducing the (unnormalized) result known from the analysis of
the CP-violating out-of-equilibrium decay.
The integral expressions of these diagrams can easily be derived using the propagators and Feynman rules given
in the appendices A and B. All other one- or two-loop self energy corrections are washout processes. Higher
order contributions are neglected in this approach.

4.3 Flavor diagonal Lepton Number Matrix

We can continue the derivation by taking the time derivative of the lepton number matrix [Gar+10] and using
the Kadanoff-Baym equation from section 2

∂tL~k,ij(t, t) = i tr[(iγ0∂t + iγ0∂t′)S
+
~k,L,ij

(t, t′)]t′→t (128)

= i tr[(iγ0∂t − ~k~γ)S+
~k,L,ij

(t, t′) + S+
~k,L,ij

(t, t′)(iγ0
←−
∂t′ + ~k~γ)]

= i tr

 t∫
0

Π−~k,ij
(t, t1)S+

~k,L
(t1, t

′)dt1 −
t′∫

0

Π+
~k,ij

(t, t1)S−~k,L
(t1, t)dt1

t′∫
0

S+
~k,L

(t, t1)Π−~k,ij
(t1, t

′)dt1 −
t∫

0

S−~k,L
(t, t1)Π+

~k,ij
(t1, t

′)dt1

 .
Integrating the whole expression with respect to t and using identities for the integration domains and the
trace we obtain the following result [Ani+11, p. 26]

L~k,ij(t, t) = i

t∫
0

t1∫
0

tr
[
Π−~k,ij

(t1, t2)S+
~k,L

(t2, t1)−Π+
~k,ij

(t2, t1)S−~k,L
(t2, t1)

]
dt2dt1. (129)

With the connection between spectral function and statistical propagator and the Wightman functions it is
possible to rewrite the result

L~k,ij(t, t) = −
t∫

0

t1∫
0

tr
[
Π>
~k,ij

(t1, t2)S<~k,L(t2, t1)−Π<
~k,ij

(t1, t2)S>~k,L(t2, t1)
]
dt2dt1. (130)
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Anisimov, Buchmüller et al. have shown that the equilibrium part of the heavy neutrino propagator does
not contribute to the asymmetry [Ani+11, p. 27]. So when calculating the lepton asymmetry to leading order
in Yukawa coupling λ it is sufficient to keep only the deviation from equilibrium, denoted for the lepton self
energy as δΠ

L~k,ij(t, t) = i

t∫
0

t1∫
0

tr
[
δΠ−~k,ij

(t1, t2)S+
~k,L

(t2 − t1)− δΠ+
~k,ij

(t1, t2)S−~k,L
(t2 − t1)

]
dt2dt1. (131)

The expression δΠ± is obtained from the two CP-violating loop graphs

δΠ~k,ij(t1, t2) = Π
(1)
~k,ij

(t1, t2) + Π
(2)
~k,ij

(t1, t2). (132)

The couplings can be factorized out by using the Feynman rules from Appendix A [Ani+11, p. 28]

Π
(1)
~k,ij

(t1, t2) = −3iλ∗i1(ηλ∗)j1Π
(1)
~k

(t1, t2), (133)

Π
(2)
~k,ij

(t1, t2) = 3i(η∗λ)i1λj1Π
(2)
~k

(t1, t2). (134)

As pointed out in the beginning, for equilibrium fields the flavor diagonal part of the lepton number matrix is
connected to the lepton distribution functions. Since we are most interested in the distribution of leptons to
antileptons we are setting i = j and look at the diagonal elements of the lepton number matrix. Using various
identities for the lepton and Higgs propagator as well as some trace identities that can be found in [Ani+11,
p. 28-29] we arrive at

L~k,ii(t, t) = 12 Im(λ∗i1(ηλ∗)i1)︸ ︷︷ ︸
:=λii

∫ t

0

∫ t

0

Re
[
tr
(

Π
(1) >
~k

(t1, t2)S<~k (t2 − t1)
)]
dt1dt2. (135)

Note that the result is proportional to the coupling known from the analysis of CP-violation and of course
known from Boltzmann analysis.

Since both diagrams lead to the same contribution it is sufficient to calculate the correction to the lepton
self energy Π given by the first of the two CP-violating diagrams. Using the Feynman rules and the short
notation yij = ti − tj leads to [Ani+11, p. 28],[Hüt13, p. 54]

Π
(1) >
~k

(t1, t2) =

∫ ∫ ∫ ∫ ∫
G̃~p(t1, t3)

[
S11
~k′

(y23)∆11
~q′ (y23)− S<~k′(y23)∆<

~q′(y23)
]

∆<
~q (y21)PL (136)

(2π)3δ(~p− ~k′ − ~q′)(2π)3δ(~p+ ~k + ~q)
d3p

(2π)3

d3q

(2π)3

d3q′

(2π)3

d3k′

(2π)3
dt3.

Due to chiral projections at the vertices only the scalar part of the Majorana propagator contributes [Ani+11,
p. 28]

G̃~p(t1, t3) =
M

ω~p
cos(ω~p(t1 − t3))feqN (ω~p)e

−Γ~p
t1+t3

2 . (137)

The lepton propagator S and the Higgs propagator ∆ fulfill the following identities [Hüt13].

S11(x, , y) = S+(x, y)− i

2
sgn

(
x0 − y0

)
S−(x, y), (138)

∆11(x, y) = ∆+(x, y)− i

2
sgn

(
x0 − y0

)
∆−(x, y), (139)

S−(x, y) = i
(
S>(x, y)− S<(x, y)

)
, (140)

S+(x, y) =
1

2

(
S>(x, y) + S<(x, y)

)
, (141)

∆−(x, y) = i
(
∆>(x, y)−∆<(x, y)

)
, (142)

∆+(x, y) =
1

2

(
∆>(x, y) + ∆<(x, y)

)
. (143)
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Combining these equations leads to

S11(x, y) =
1

2

(
S>(x, y) + S<(x, y)

)
+

1

2
sgn

(
x0 − y0

) (
S>(x, y)− S<(x, y)

)
, (144)

∆11(x, y) =
1

2

(
∆>(x, y) + ∆<(x, y)

)
+

1

2
sgn

(
x0 − y0

) (
∆>(x, y)−∆<(x, y)

)
. (145)

Since lepton and Higgs fields are in equilibrium the propagator depends only on the time difference y23 = t2−t3.
Transforming spacial components to momentum space then leads to

S11
~k′

(y23) =
1

2

(
S>~k′(y23) + S<~k′(y23)

)
+

1

2
sgn(y23)

(
S>~k′(y23)− S<~k′(y23)

)
, (146)

∆11
~q′ (y23) =

1

2

(
∆>
~q′(y23) + ∆<

~q′(y23)
)

+
1

2
sgn(y23)

(
∆>
~q′(y23)−∆<

~q′(y23)
)
, (147)

S11
~k′

(y23)∆11
~q′ (y23) =

[
1

2

(
S>~k′(y23) + S<~k′(y23)

)
+

1

2
sgn(y23)

(
S>~k′(y23)− S<~k′(y23)

)]
(148)

×
[

1

2

(
∆>
~q′(y23) + ∆<

~q′(y23)
)

+
1

2
sgn(y23)

(
∆>
~q′(y23)−∆<

~q′(y23)
)]

=
1

4

(
S>~k′(y23) + S<~k′(y23)

)(
∆>
~q′(y23) + ∆<

~q′(y23)
)

+
1

4

(
S>~k′(y23)− S<~k′(y23)

)(
∆>
~q′(y23)−∆<

~q′)(y23)
)

+
1

4
sgn(y23)

(
S>~k′(y23)− S<~k′(y23)

)(
∆>
~q (y23) + ∆<

~q (y23)
)

+
1

4
sgn(y23)

(
S>~k′(y23) + S<~k′(y23)

)(
∆>
~q (y23)−∆<

~q (y23)
)

=
1

2

(
S>~k′(y23)∆>

~q (y23) + S<~k′(y23)∆<
~q (y23)

)
+

1

2
sgn(y23)

(
S>~k′(y23)∆>

~q (y23)− S<~k′(y23)∆<
~q (y23)

)
,

S11
~k′

(y23)∆11
~q′ (y23)− S<~k′(y23)∆<

~q (y23) =
1

2
(1 + sgn(y23))︸ ︷︷ ︸

Θ(y23)

S>~k′(y23)∆>
~q (y23) (149)

− 1

2
(1 + sgn(y23))︸ ︷︷ ︸

Θ(y23)

S<~k′(y23)∆<
~q (y23)

= Θ(y23)
(
S>~k′(y23)∆>

~q (y23)− S<~k′(y23)∆<
~q (y23)

)
.

From the calculation of the Majorana neutrino propagator in section 2 the object

Σ<~k′,~q(y23) ≡ S<~k′(y23)∆<
~q (y23) (150)

is well known as the neutrino self energy.

Using the cyclicity of the trace and combining all results, the lepton number matrix can be written in the

following form (for simplicity using the short notation
∫
~p

=
∫

d3p
(2π)3 )

L~k,ii(t, t) = 12λii

t∫
0

t∫
0

t2∫
0

∫
~p,~k′,~q,~q′

G̃~p(t1, t3)Re
[
tr
(

Σ>~k,~q(y21)
(

Σ>~k′,~q′(y23)− Σ<~k′,~q′(y23)
)
PL

)]
(151)

× (2π)3δ(~p− ~k′ − ~q′)(2π)3δ(~p+ ~k + ~q) dt3dt2dt1.
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As pointed out in the beginning, for free fields in equilibrium the lepton number matrix is equivalent to the
distribution functions of leptons and anti-leptons

L~k,ii(t, t) = fli(k)− fl̄i(k). (152)

Our aim is to implement gauge corrections to the Lepton number matrix. For later purpose we are going to
integrate out the ~k dependency and obtain an integrated lepton number matrix. This corresponds to a change
from distribution functions to particle densities [Dev+17]

Lii(t, t) = nli − nl̄i. (153)

The full out-of-equilibrium result takes the following form

Lii(t, t) = 12λii

t∫
0

t∫
0

t2∫
0

∫
~p,~k,~k′,~q,~q′

G̃~p(t1, t3)Re
[
tr
(

Σ>~k,~q(y21)
(

Σ>~k′,~q′(y23)− Σ<~k′,~q′(y23)
)
PL

)]
(154)

× (2π)3δ(~p− ~k′ − ~q′)(2π)3δ(~p+ ~k + ~q) dt3dt2dt1.

The result can be simplified further by making use of the KMS-relations, well known from thermal field theory.

4.3.1 Simplification of Lii using KMS-Relations

In momentum space the KMS-relations have the following form [Bel11]

∆<
~q (ω) = e−βω∆>

~q (ω), (155)

S<~k (ω) = −e−βωS>~k (ω).

Transforming the Majorana self energy to Fourier space leads to

Σ<~k′,~q(y23) = S<~k′(y23)∆<
~q (y23) → Σ<~k′,~q(ω21) =

∞∫
−∞

S<~k′(ω
′)∆<

~q (ω21 − ω′)
dω

2π
, (156)

by using the convolution theorem.

Now we can use the KMS-relations:

Σ<~k′,~q(ω21) =

∞∫
−∞

S<~k′(ω
′)∆<

~q (ω21 − ω′)
dω

2π
= −

∞∫
−∞

S>~k′(ω
′)∆>

~q (ω21 − ω′)e−β(ω′+ω21−ω′) dω

2π
(157)

= −e−βω21Σ>~k′,~q(ω21).

Transforming the complete Lepton number matrix to Fourier space then leads to

Lii(t, t) = 12λii

t∫
0

t∫
0

t2∫
0

∞∫
−∞

∞∫
−∞

∫
~p,~k,~k′,~q,~q′

G̃~p(t1, t3)(2π)3δ(~p− ~k′ − ~q′)(2π)3δ(~p+ ~k + ~q) (158)

× Re
[
tr
(

Σ>~k,~q(ω21)
(

Σ>~k′,~q′(ω23)− Σ<~k′,~q′(ω23)
)
PL

)
e−i(ω21y21+ω23y23)

] dω21

2π

dω23

2π
dt3dt2dt1,

and after making use of the KMS-relations we find

Lii(t, t) = 12λii Re

 t∫
0

t∫
0

t2∫
0

∞∫
−∞

∞∫
−∞

∫
~p,~k,~k′,~q,~q′

G̃~p(t1, t3)(2π)3δ(~p− ~k′ − ~q′)(2π)3δ(~p+ ~k + ~q) (159)

(−e−βω23 − 1)︸ ︷︷ ︸
−fF (ω23)−1

tr
(

Σ<~k,~q(ω23)Σ<~k′,~q′(ω23)PL

)
e−i(ω21y21+ω23y23) dω21

2π

dω23

2π
dt3dt2dt1

 .
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Another very useful identity for the self energy found in [Bel11] is the following

Σ<~k,~q(ω) = −2fF (ω)ImΣret
~k,~q

(ω), (160)

so we have

Lii(t, t) = −48λii Re

 t∫
0

t∫
0

t2∫
0

∞∫
−∞

∞∫
−∞

∫
~p,~k,~k′,~q,~q′

G̃~p(t1, t3)(2π)3δ(~p− ~k′ − ~q′)(2π)3δ(~p+ ~k + ~q) (161)

fF (ω21)tr
(

ImΣret
~k,~q

(ω23)ImΣret
~k′,~q′

(ω23)PL

)
e−i(ω21y21+ω23y23) dω21

2π

dω23

2π
dt3dt2dt1

]

= −48λii

t∫
0

t∫
0

t2∫
0

∞∫
−∞

∞∫
−∞

∫
~p,~k,~k′,~q,~q′

G̃~p(t1, t3)(2π)3δ(~p− ~k′ − ~q′)(2π)3δ(~p+ ~k + ~q)

fF (ω21)tr
(

ImΣret
~k,~q

(ω23)ImΣret
~k′,~q′

(ω23)PL

)
Re
[
e−i(ω21y21+ω23y23)

] dω21

2π

dω23

2π
dt3dt2dt1.

Plugging in the Majorana propagator G̃ and leaving out short notation finally leads to

Lii(t, t) = −48λii

t∫
0

t∫
0

t2∫
0

∫ ∫ ∫ ∫ ∫ ∞∫
−∞

∞∫
−∞

M

ω~p
cos(ω~py13)fF (ω~p)e

−Γ~p
t1+t3

2︸ ︷︷ ︸
G̃ Majorana propagator

(162)

fF (ω21)tr
(

ImΣret
~k,~q

(ω23)ImΣret
~k′,~q′

(ω23)PL

)
Re
[
e−i(ω21y21+ω23y23)

]
︸ ︷︷ ︸

Majorana self energy

(2π)3δ(~p− ~k′ − ~q′)(2π)3δ(~p+ ~k + ~q)︸ ︷︷ ︸
momentum conservation

dω21

2π

dω23

2π

d3q

(2π)3

d3q′

(2π)3

d3k

(2π)3

d3k′

(2π)3

d3p

(2π)3
dt3dt2dt1.

Especially the Majorana self energy part can be simplified further by making use of the projector PL.

4.4 Left- and right-handed Projection

Since we are working with lepton and Higgs fields that carry no mass (or only thermal mass) it is possible to
write the self energy in the following form [Ani+11, p. 19]

ImΣret
~p (ω21) =

1

2
(a~p(ω21)γ0 + b~p(ω21)~p~γ) =

1

2

(
0 a~p(ω21)12×2 + b~p(ω21)pkσ

k

a~p(ω21)12×2 − b~p(ω21)pkσ
k 0

)
,

(163)

where the Weyl representation of the γ-matrices has been used. Recalling the projectors in Weyl representation:

PL =
14×4 − γ5

2
=

(
12×2 0

0 0

)
, PR =

14×4 + γ5

2
=

(
0 0
0 12×2

)
, (164)

it is possible to use the following two identities in the expression of Lii

ImΣret~k,~q
(ω21)PL = PRImΣret~k,~q

(ω21) = P 2
RImΣret~k,~q

(ω21) = PRImΣret~k,~q
(ω21)PL, (165)

tr
(

ImΣret~k,~q
(ω21)ImΣret~k′,~q′

(ω23)PL

)
= tr

(
ImΣret~k,~q

(ω21)PRImΣret~k′,~q′
(ω23)PL

)
, (166)

or in detail

ImΣret~k′,~q′
(ω23)PL =

1

2

(
0 a~p(ω21)12×2 + b~p(ω21)pkσ

k

a~p(ω21)12×2 − b~p(ω21)pkσ
k 0

)(
12×2 0

0 0

)
(167)

=


0 0

1

2
(a~p(ω21)12×2 − b~p(ω21)pkσ

k)︸ ︷︷ ︸
:=ImΣret,L

~k′,~q′
(ω23)

0

→ ImΣret,L~k′,~q′
(ω23).
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The PR projection can be obtained in a similar way. In general the self energy has the following form

ImΣret
~p (ω21) =

1

2
(a~p(ω21)γ0 + b~p(ω21)~p~γ) =

(
0 ImΣret,R

~p (ω21)

ImΣret,L
~p (ω21) 0

)
. (168)

Note that this Ansatz corresponds to the symmetry observed earlier in section 3.4.2 when changing ~p → −~p.
The prefactors b−~p = b~p and a−~p = a~p are both symmetric [Ani+11, p. 19] leading to

ImΣret,R
−~p =

1

2
(a−~p12×2 − b−~ppkσk) =

1

2
(a~p12×2 − b~ppkσk) = ImΣret,L

~p . (169)

As a result the trace reduces to a 2× 2 trace and we have

tr
(

ImΣret~k,~q
(ω21)ImΣret~k′,~q′

(ω23)PL

)
= tr

(
ImΣret,R~k,~q

(ω21)ImΣret,L~k′,~q′
(ω23)

)
. (170)

Note that the trace and the momentum conservation part are the only ~k,~k′, ~q, ~q′ dependent parts.

Putting everything together gives the following integral

Lii(t, t) = −48λii

t∫
0

t∫
0

t2∫
0

∫ ∫ ∫ ∫ ∫ ∞∫
−∞

∞∫
−∞

M

ω~p
cos(ω~py13)fF (ω~p)e

−Γ~p
t1+t3

2 (171)

fF (ω21)tr
(

ImΣret,R
~k,~q

(ω23)ImΣret,L
~k′,~q′

(ω23)
)

Re
[
e−i(ω21y21+ω23y23)

]
(2π)3δ(~p− ~k′ − ~q′)(2π)3δ(~p+ ~k + ~q)

d3q

(2π)3

d3q′

(2π)3

d3k

(2π)3

d3k′

(2π)3

d3p

(2π)3

dω21

2π

dω23

2π
dt3dt2dt1.

The aim of the next section is to systematically include gauge corrections to this result of the lepton number
matrix.
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5 The gauge corrected Lepton Number Matrix

There are two parts of the lepton number matrix where gauge corrections need to be taken into account to
arrive at a full gauge corrected result. On one hand the decay width Γ~p of the heavy neutrino and on the other
hand the CP-violating diagrams.

5.1 The gauge corrected Majorana Decay Width

Recalling the calculation of the heavy neutrino propagator, the Majorana self energy can be written in the
following form [Ani+11, p. 19]

Σ−~p (ω) = ia~p(ω)γ0 + ib~p(ω)~p · ~γ. (172)

The decay width was connected to a and b via

ωΓ~p(ω) = ωa~p(ω) + ~p 2b~p(ω). (173)

Using these two equations, a simple calculation leads to a connection between Γ and Σ−

tr
(
−i/pΣ

−
~p

)
= tr

(
−i/p(ia~p(ω)γ0 + ib~p(ω)~p~γ)

)
= tr

(
/pa~p(ω)γ0 + /pb~p(ω)~p~γ

)
= tr

(
/pa~p(ω)γ0

)
+ tr

(
/pb~p(ω)~p~γ

)
= tr

((
γ0
)2
ωa~p(ω)

)
+ tr

(
−γ0~γ~pa~p(ω)

)︸ ︷︷ ︸
=0

+ tr
(
γ0~γ~pωb~p(ω)

)︸ ︷︷ ︸
=0

+tr
(
−(~γ~p)2b~p(ω)

)
= 4ωa~p(ω) + tr(−~γ2︸︷︷︸

=1

~p 2b~p(ω)) = 4ωa~p(ω) + 4~p2b~p(ω)

= 4ωΓ~p(ω). (174)

Further in section 2 we introduced the spectral representation of the self energy [Ani+11, p. 17]

Σ̂−~p (s) := i

∞∫
−∞

Σ−~p (p0)

is− p0

dp0

2πi
. (175)

The retarded self energy is connected to the spectral representation via

Σret
~p (ω) = Σ̂−~p (−iω + ε). (176)

All in all Σ̂ and Σ are connected the following way

Σ̂−~p (−iω + ε) = iP
∫ ∞
−∞

Σ−(p0)

ω − p0

dp0

2π
+

1

2
Σ−~p (ω), (177)

with the real part given as principal value integral [Ani+11, p. 18].

Taking the imaginary part then leads to

Im
(

Σ̂−~p (−iω + ε)
)

= Im
(
Σret
~p (ω)

)
=

1

2i
Σ−~p (ω). (178)

By making use of this connection for the retarded self energy Σret and the self energy Σ− we obtain

tr
(
−i/pΣ

−
~p (ω)

)
= tr

(
2/pIm

(
Σret
~p (ω)

))
= 4ωΓ~p(ω), (179)

so finally the decay width is given as

Γ~p(ω) =
1

2ω
tr
(
/pIm

(
Σret
~p (ω)

))
. (180)
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This can be simplified further using the Weyl basis for gamma matrices with /p = ωγ0 − ~p · ~γ

pµγ
µ =

(
0 p01 + piσ

i

p01− piσi 0

)
=

(
0 σ · p

σ̄ · p 0

)
. (181)

Recalling the splitting of the retarded self energy Σret into left- and right-handed self energy from section 4

Im
(
Σret
~p (ω)

)
=

 0 Im
(

Σret,R
~p (ω)

)
Im
(

Σret,L
~p (ω)

)
0

 , (182)

we end up with

Γ~p(ω) =
1

2ω
tr
(
/pIm

(
Σret
~p (ω)

))
=

1

2ω
tr

( 0 σ · p
σ̄ · p 0

)
·

 0 Im
(

Σret,R
~p (ω)

)
Im
(

Σret,L
~p (ω)

)
0

 . (183)

Since left- and right-handed contributions lead to the same result we get an extra factor of 2 and can finally
write

Γ~p(ω) =
1

ω
tr
(
σ̄ · p Im

(
Σret,R
~p (ω)

))
. (184)

In section 3 we developed a procedure to include gauge corrections to the Majorana self energy. This was done
by formulating two integral equations for the two functions ψ and ~f , motivated by calculating a ladder diagram
for the Majorana self energy containing all leading order gauge corrections. The developed decay width is
given as the imaginary part of the Majorana self energy, thus gauge corrections are implemented by solving
the integral equations using

Σret,R~p (ω) = −|λ|2 i

2

∞∫
−∞

η(ω,~k)
d(r)F(p‖, k‖)

k‖ − p‖

(
−(f1+if2)

4p‖

ψ

)
d3k

(2π)3
. (185)

The result is the desired gauge corrected decay width.

We can further simplify by choosing a frame with ~p⊥ = 0 [Hüt13, p. 73]

σ̄ · p =

(
p0 + p3 p1 − ip2

p1 + ip2 p0 − p3

)
~p⊥=0

=

(
p+ 0
0 p−

)
. (186)

The decay width then simplifies to

Γ~p ∼ tr
[
σ̄ · p Im

(
Σret,R
~p (ω)

)]
= −|λ|

2

2
tr

(p+ 0
0 p−

)
Im

i

∞∫
−∞

η(ω,~k)
d(r)F(p‖, k‖)

k‖ − p‖

(
−(f1+if2)

4p‖

ψ

)
d3k

(2π)3


(187)

= −|λ|
2d(r)

2

∞∫
−∞

F(p‖, k‖)

k‖ − p‖
tr

[(
p+ 0
0 p−

)
Re

(
η(ω,~k)

(
−(f1+if2)

4p‖

ψ

))]
d3k

(2π)3
.

Recalling a few equations for η from section 3

η ≈ η0 + η1, η0 =

(
0
1

)
, η1 = −~σ ·

~k⊥
2k‖

η0, (188)

and using the Pauli matrices leads to

η1 = −σ1k1 + σ2k2

2k‖

(
0
1

)
= − 1

2k‖

(
k1 − ik2

0

)
. (189)
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So we have the following result for η

η = η0 + η1 =

(
−k1−ik2

2k‖

1

)
. (190)

Expanding it then leads to

Re

(
η(ω,~k)

(
−(f1+if2)

4p‖

ψ

))
= Re

((
−k1−ik2

2k‖

1

)(
−(f1+if2)

4p‖
, ψ
))

= Re

 (k1−ik2)(f1+if2)
8k2
‖

−k1−ik2

2k‖
ψ

− f
1+if2

4k‖
ψ

 .

(191)

The real part is taken by calculating Re(Σ) = 1
2 (Σ + Σ†)

Re

(
η(ω,~k)

(
−(f1+if2)

4p‖

ψ

))
=

1

2

 (k1−ik2)(f1+if2)
8k2
‖

−k1−ik2

2k‖
ψ

− f
1+if2

4k‖
ψ

+

( (k1+ik2)(f∗1−if∗2 )

8k2
‖

− f
∗
1 +if∗2
4k‖

−k1+ik2

2k‖
ψ∗ ψ∗

) (192)

=
1

2

 (k1−ik2)(f1+if2)+(k1+ik2)(f∗1−if∗2 )

8k2
‖

−k1−ik2

2k‖
ψ − f∗1 +if∗2

4k‖

− f
1+if2

4k‖
− k1+ik2

2k‖
ψ∗ ψ + ψ∗


=

1

2

 2Re(~k⊥ ~f)+2k2Im(f1)−2k1Im(f2)
8k2
‖

−k1−ik2

2k‖
ψ − f∗1 +if∗2

4k‖

− f
1+if2

4k‖
− k1+ik2

2k‖
ψ∗ 2Re(ψ)

 .

The decay width is then given as

Γ~p(ω) = −|λ|
2d(r)

2ω

∞∫
−∞

F(p‖, k‖)

k‖ − p‖
tr

(p+ 0
0 p−

)Re(~k⊥ ~f)+k2Im(f1)−k1Im(f2)
8k2
‖

−k1−ik2

4k‖
ψ − f∗1 +if∗2

8k‖

− f
1+if2

8k‖
− k1+ik2

4k‖
ψ∗ Re(ψ)

 d3k

(2π)3

(193)

= −|λ|
2d(r)

2ω

∞∫
−∞

F(p‖, k‖)

k‖ − p‖

[
p+

Re(~k⊥ ~f) + k2Im(f1)− k1Im(f2)

8k2
‖

+ p−Re(ψ)

]
d3k

(2π)3
.

The presented result can be compared to the thermal Majorana neutrino production rate calculated by Anisi-
mov, Bödecker et al. [ABB11]. We will come back to this expression later when discussing the solution of the
integral equations.
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5.2 Gauge corrected CP-violating Diagrams

Further we need to investigate gauge corrections to the CP-violating diagrams discussed earlier in section 4.
On one hand there are corrections to the Higgs and lepton propagator:

Figure 13: Three loop diagrams with gauge corrections for the Higgs (a)-(e) and lepton propagator (f)-(h)
[Hüt13, p. 52].

As pointed out in section 3, these contributions are included using HTL resummation for momenta close to the
lightcone leading to the asymptotic masses mφ and ml.
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Further vertex corrections need to be taken into account. The possible three-loop corrections are shown in
the following picture

Figure 14: Three loop vertex corrections to the CP-violating diagram [Hüt13, p. 53].

An idea how to include all these contributions was first presented in the PhD thesis of J. Hütig [Hüt13]. The
procedure to include the corrections works the following way: At first, for a better visualization, the Majorana
line is reinserted at the effective vertex in the CP-violating diagram but actually the heavier neutrinos N2 and
N3 are left integrated out keeping the effective vertex. Now the outer line is closed by integrating over the
external momentum. This leads to the following diagram referred to as cylindrical diagram [Hüt13, p. 51-52].

Figure 15: Systematic approach to include all gauge corrections [Hüt13]: In step (1) the effective Majorana
line is reinserted, in step (2) the outer lepton line is closed, step (3) just changes the visualization.
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It is now possible to identify the top and the bottom of the cylindrical diagram with the Majorana self
energy known from calculations before. Gauge corrections can now be implemented by making use of the results
for the gauge corrected Majorana self energy from section 3. Note that this corresponds to not only taking all
3-loop corrections into account but also higher loop order corrections since they are of the same order in the
gauge coupling g. All in all we are left with the following gauge corrected cylindrical diagram

t3

t1

t4

t2

k′

q′

...

k

q

...

p N p′ N2/3

Figure 16: Gauge corrected cylindrical diagram containing all gauge contributions for a consistent treatment
of gauge corrections to the Lepton number matrix.

Keep in mind that the line on the right hand side is integrated out and the effective vertex is given by t2 ≡ t4.

Comparing the diagram to the 3-loop vertex corrections from figure 15 shows that the contributions (a), (f) and
(g) are obviously included. Further all other contributions are included as well since they are treated as soft
external gauge bosons for the Majorana self energy in the resummation procedure from section 3. In short all
leading order gauge corrections to the CP-violating diagrams are included when calculating the presented dia-
gram [Hüt13, p. 53]. It is now also clear why we had to integrate Lii~k over the external momentum ~k in section 4.

The result of the lepton number matrix without corrections had the following form

Lii(t, t) = −48λii

t∫
0

t∫
0

t2∫
0

∫ ∫ ∫ ∫ ∫ ∞∫
−∞

∞∫
−∞

M

ω~p
cos(ω~py13)fF (ω~p)e

−Γ~p
t1+t3

2 (194)

fF (ω21)tr
(

ImΣret,R
~k,~q

(ω23)ImΣret,L
~k′,~q′

(ω23)
)

Re
[
e−i(ω21y21+ω23y23)

]
(2π)3δ(~p− ~k′ − ~q′)(2π)3δ(~p+ ~k + ~q)

dω21

2π

dω23

2π

d3q

(2π)3

d3q′

(2π)3

d3k

(2π)3

d3k′

(2π)3

d3p

(2π)3
dt3dt2dt1.

The part of the lepton number matrix where the gauge corrections in context of the cylindrical diagram have
to be implemented is∫ ∫ ∫ ∫

tr
(

ImΣret,R~k,~q
(ω21)ImΣret,L~k′,~q′

(ω23)
)

(2π)3δ(~p− ~k′ − ~q′)(2π)3δ(~p+ ~k + ~q)
d3k

(2π)3

d3k′

(2π)3

d3q

(2π)3

d3q′

(2π)3
.

(195)
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At first we can use the momentum conservation by integrating out q and q′.∫ ∫ ∫ ∫
tr
(

ImΣret,R~k,~q
(ω21)ImΣret,L~k′,~q ′

(ω23)
)

(2π)3δ(~p− ~k′ − ~q
′
)(2π)3δ(~p+ ~k + ~q)

d3k

(2π)3

d3k′

(2π)3

d3q

(2π)3

d3q′

(2π)3

(196)

=

∫ ∫
tr
(

ImΣret,R~k,−~p−~k
(ω21)ImΣret,L~k′,~p−~k′

(ω23)
) d3k

(2π)3

d3k′

(2π)3
= tr

(
ImΣret,R

−~p (ω21)ImΣret,L
~p (ω23)

)
.

As previously seen in section 4.4 the only difference between left- and right-handed self energy is the sign of
the spacial momentum components. We can simplify using

tr
(

ImΣret,R
−~p (ω21)ImΣret,L

~p (ω23)
)

= tr
(

ImΣret,R
−~p (ω21)ImΣret,R

−~p (ω23)
)
. (197)

Since Γ~p(ω) is invariant under a change ~p→ −~p we can write

tr
(

ImΣret,R
−~p (ω21)ImΣret,R

−~p (ω23)
)
~p→−~p→ tr

(
ImΣret,R

~p (ω21)ImΣret,R
~p (ω23)

)
, (198)

regarding the complete lepton number matrix.

Keep in mind that the coupling is already factorized out, so in this case the corrected Σ is given as

Im
(

Σret,R
~p (ω)

)
= −d(r)

2

∫ F(p‖, k‖)

k‖ − p‖

Re(~k⊥ ~f)+k2Im(f1)−k1Im(f2)
8k2
‖

−k1−ik2

4k‖
ψ − f∗1 +if∗2

8k‖

− f
1+if2

8k‖
− k1+ik2

4k‖
ψ∗ Re(ψ)

 d3k

(2π)3
. (199)

Putting everything together and using d(r) = 2 leads to

tr
(

ImΣret,R
~p (ω21)ImΣret,R

~p (ω23)
)

=

∫ ∫ F(p‖, k‖)

k‖ − p‖

F(p‖, k
′
‖)

k′‖ − p‖
(200)

tr

Re(~k⊥ ~f)+k2Im(f1)−k1Im(f2)
8k2
‖

−k1−ik2

4k‖
ψ − f∗1 +if∗2

8k‖

− f1+if2

8k‖
− k1+ik2

4k‖
ψ∗ Re(ψ)


Re(~k′⊥

~f ′)+k2Im(f ′1)−k1Im(f ′2)
8(k′‖)

2 −k
′
1−ik′2
4k′‖

ψ′ − (f ′1)∗+i(f ′2)∗

8k′‖

− f
′
1+if ′2
8k′‖

− k′1+ik′2
4k′‖

(ψ′)∗ Re(ψ′)

 d3k

(2π)3

d3k′

(2π)3
.

As well as for the gauge corrected decay width, a numerical treatment is needed.

5.3 Solving the Integral Equations

In section 3 we developed the following integral equations for ψ and ~f

iε(p,~k)~f(~k⊥)−
∫
C(~q⊥)

[
~f(~q⊥)− ~f(~k⊥ − ~q⊥)

] d2q⊥
(2π)2

= 2~k⊥, (201)

iε(p,~k)ψ(~k⊥)−
∫
C(~q⊥)

[
ψ(~q⊥)− ψ(~k⊥ − ~q⊥)

] d2q⊥
(2π)2

= 1. (202)

To simplify these equation it is useful to have a closer look at ε. Recalling its definition and using a frame with
~p⊥ = 0 we can rewrite

ε(p,~k)
~p⊥=0

= v · p︸︷︷︸
=ω−p‖=p−

+
~k⊥ +m2

φ

2(k‖ − p‖)
−
~k2
⊥ +m2

l

2k‖

~p⊥=0
= α(k‖, p‖) + β(k‖, p‖)~k

2
⊥ := β(M2

eff + ~k2
⊥), (203)
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with

α(k‖, p‖) := −m
2
l

2k‖
+

m2
φ

2(k‖ − p‖)
+ p− β(k‖, p‖) :=

p‖

2k‖(k‖ − p‖)
. (204)

M2
eff is then given as M2

eff = α
β and takes the following form

M2
eff =

m2
l (p‖ − k‖) +m2

φk‖ + 2k‖(ω − p‖)(k‖ − p‖)
p‖

. (205)

Further we apply a Fourier transformation

ψ(~k⊥) =

∫
ψ(~b)e−i~k⊥~bd2b, ψ(~b) =

∫
ψ(~k⊥)ei~k⊥~b

d2k⊥
(2π)2

. (206)

Using the result for ε and the Fourier transformation of ψ we can reformulate the integral equation of ψ. Keep
in mind that there are two very useful features of the Fourier transformation used here

• Linear operators become derivative operators:∫
ψ(~k⊥)~k2

⊥e
i~k⊥~b

d2k⊥
(2π)2

= −∆~b

∫
ψ(~k⊥)ei~k⊥~b

d2k⊥
(2π)2

= −∆~bψ(~b). (207)

• The convolution theorem:∫ ∫
C(~q⊥)ei~k⊥~bψ(~k⊥ − ~q⊥)ei~k⊥~b

d2q⊥
(2π)2

d2k⊥
(2π)2

=

∫
C(~q⊥)

(∫
ψ(~k⊥ − ~q⊥)ei~k⊥~b

d2k⊥
(2π)2

)
d2q⊥
(2π)2

(208)

substitute: ~z=~k⊥−~q⊥
=

∫
C(~q⊥)

(∫
ψ(~z)ei(~z+~q⊥)~b d2z

(2π)2

)
d2q⊥
(2π)2

=

∫
C(~q⊥)ei~q⊥~b

d2q⊥
(2π)2

∫
ψ(~z)ei~z~b d2z

(2π)2

= C(~b)ψ(~b).

Now the integral equation is given as differential equation of the following form [Hüt13, Appendix B]

−iβ(∆~b −M
2
eff)ψ(~b)−

(∫
C(~q⊥)

d2q⊥
(2π)2

− C(~b)
)

︸ ︷︷ ︸
:=K(~b)

ψ(~b) = δ(2)(~b). (209)

Due to rotational invariance one has ψ(~b) = ψ(b) and K(~b) = K(b) [Hüt13, p. 76]. Using the ∆ operator in
cylindrical coordinates yields the following ordinary differential equation for b > 0

−iβ

(
∂2
b +

1

b
∂b −M2

eff

)
ψ(b)−K(b)ψ(b) = 0. (210)

It is possible to treat ~f in the same way as presented for ψ using the Ansatz ~f(~b) = h(b)~b [Hüt13, p. 76]. The

right-hand side of the equation is then given as −2i∇~bδ
(2)(~b). The full equation for b > 0 reads

−iβ

(
∂2
b +

3

b
∂b −M2

eff

)
h(b)−K(b)h(b) = 0. (211)

The last part remaining is the calculation of K(b). This is done by integrating C(~q⊥) with respect to ~q⊥, as
well as by calculating the Fourier transform C(b). This has to be done using dimensional regularization and is
presented in [Hüt13, p. 76-77] in detail. The calculation leads to

K(b) = T [C2(r)g2D(mDb) + y2
l (g′)2D(m′Db)]. (212)

In the calculation a new function D has been introduced given as

D(x) =
1

2π

[
γE + ln

(x
2

)
+K0(x)

]
. (213)

Here K0(x) is the modified Bessel function of the second kind and γE the Euler-Mascheroni constant.
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5.3.1 Boundary Conditions and limiting Behavior

To apply the Fourier transformation ψ and ~f have to fulfill the following limiting behavior

lim
b→∞

ψ(b) = 0 lim
b→∞

~f(~b) = 0. (214)

Further we have to investigate the limiting behavior for small b. One shows that [Hüt13, p. 77]

lim
b→0
K(b) ∼ D(b) ∼ b2 → 0, (215)

thus in the limit b→ 0 the differential equations simplify to

∆~bψ(~b) =
i

β
δ(2)(~b), (216)

∆~b
~f(~b) =

2

β
∇~bδ

(2)(~b).

The solution of these equations can easily be derived via separation of variables arriving at the following limiting
solutions for ψ and ~f in the case b→ 0

ψ(~b) =
i

2πβ
ln(b) +O(b0), (217)

~f(~b) =
1

πβ

~b

b2
+O(b)→ h(b) =

1

πβ

1

b2
+O(b0).

Looking at the limiting behavior for b→ 0 it can be noticed that only Re(ψ(b)) and Im(~f(b)) = ~bIm(h(b)) stay

regular for b→ 0 while Im(ψ(b)) and Re(~f(b)) = ~bRe(h(b)) are singular.
The first corrections h̃ and ψ̃ have to fulfill the equations

(∆~b −M
2
eff)ψ̃(b) = ψ̃′′(b) +

ψ̃′(b)

b
−M2

effψ̃(b) = 0, (218)

(∆~b −M
2
eff)h̃(b) = h̃′′(b) + 3

h̃′(b)

b
−M2

effh̃(b) = 0,

and since K(b) = b2ln(b)→ 0 for b→ 0 one obtains ψ̃′(b)→ 0 and h̃′(b)→ 0 for b→ 0.

5.3.2 The perpendicular Momentum Integration

In the following we are going to focus on the contributions after solving the perpendicular momentum integral

∫
d3k

(2π)3
=

∞∫
−∞

∫
d2k⊥
(2π)2

dk‖

2π
. (219)

The Dirac delta distribution can be defined as [Hüt13, p. 84]

δ(2)(~b) :=

∫
e±i~k⊥~b

d2k⊥
(2π)2

. (220)

We have to solve integrals of the form

∫ Re(~k⊥ ~f)+k2Im(f1)−k1Im(f2)
8k2
‖

−k1−ik2

4k‖
ψ − f∗1 +if∗2

8k‖

− f1+if2

8k‖
− k1+ik2

4k‖
ψ∗ Re(ψ)

 d2k⊥
(2π)2

. (221)

At first let us have a look at∫
Re(~k⊥ · ~f(~k⊥))

d2k⊥
(2π)2

=

∫
k1Re(f1(~k⊥)) + k2Re(f2(~k⊥))

d2k

(2π)2
. (222)
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Introducing the Fourier transformation of ~f and replacing the linear ki with a derivative operator acting on
the integral kernel then leads to [Hüt13, p. 84]∫

Re

[
i

∫ (
f1(~b)

d

db1
+ f2(~b)

d

db2

)
e−i~k⊥~bd2b

]
d2k⊥
(2π)2

= −Re

[∫
iδ(2)(~b)

(
f1(~b)

db1
+
f2(~b)

db2

)
d2b

]
(223)

= lim
b→0

Im
(
∇~b · ~f(~b)

)
,

where partial integration has been used. Using the Ansatz ~f(~b) = h(b)~b finally leads to∫
Re(~k⊥ · ~f(~k⊥))

d2k⊥
(2π)2

= lim
b→0

Im(2h(b) + bh′(b)) = lim
b→0

Im(2h(b)) := 2Im[c2,h(ω, k‖, p‖)] (224)

The Im(bh′(b)) contribution has to vanish due to the limiting behavior of h′(b) in the limit b→ 0 as described
in the last section. The O(1/b2) part of the limiting function is purely real and therefore the imaginary part
must be at least of order O(b). As a result h′(b) is at least of order O(1)5, so Im(bh′(b)) vanishes in the limit
b→ 0.

The same can be done for the Re(ψ) contribution∫
Re(ψ(~k⊥))

d2k⊥
(2π)2

= Re

[∫
δ(2)(~b)ψ(~b)d2b

]
= lim
b→0

Re(ψ(b)) := Re[c2,ψ(ω, k‖, p‖)]. (225)

The remaining contribution on the diagonal is given as∫
k2Im(f1(~k⊥))− k1Im(f2(~k⊥))

d2k⊥
(2π)2

. (226)

With the Ansatz ~f(~b) = ~bh(b) from rotational invariance we get∫
k2Im(f1(~k⊥))− k1Im(f2(~k⊥))

d2k⊥
(2π)2

=

∫
Im

[∫ (
k2f1(~b)− k1f2(~b)

)
e−i~k⊥~bd2b

]
d2k⊥
(2π)2

(227)

= −
∫

Im

[∫
i

(
f1(~b)

db2
− f2(~b

db1

)
e−i~k⊥~bd2b

]
d2k⊥
(2π)2

= −
∫

Im

[∫
i

(
b1h(b)

db2
− b2h(b)

db1

)
e−i~k⊥~bd2b

]
d2k⊥
(2π)2

= −
∫

Im

[∫
i

(
b1b2
b
h′(b)− b2b1

b
h′(b)

)
e−i~k⊥~bd2b

]
d2k⊥
(2π)2

= 0.

Further we have to take a look at the contributions on the off-diagonal of the matrix∫
fi(~k⊥)

d2k⊥
(2π)2

=

∫
Refi(~k⊥) + iImfi(~k⊥)

d2k⊥
(2π)2

(228)∫
kiψ(~k⊥)

d2k⊥
(2π)2

=

∫
kiReψ(~k⊥) + ikiImψ(~k⊥)

d2k⊥
(2π)2

,

where i ∈ 1, 2. In detail we have∫
Imfi(~k⊥)

d2k⊥
(2π)2

= Im

[∫
δ(2)(~b)fi(~b)d

2b

]
= lim
~b→0

Im(fi(~b)) = 0. (229)

Again this is clear from the limiting behavior of ~f .

5Keep in mind that the first correction h̃′(b) also vanishes.
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Further we have ∫
Refi(~k⊥)

d2k⊥
(2π)2

= Re

[∫
δ(2)(~b)fi(~b)d

2b

]
= lim
~b→0

Re(fi(~b)), (230)

∫
kiIm(ψ(~k⊥))

d2k⊥
(2π)2

=

∫
Im

[∫
ψ(~k⊥)kie

i~k⊥~bd2b

]
d2k⊥
(2π)2

= −Im

[∫
iδ(2)(~b)

dψ(~b)

dbi
d2b

]
(231)

= − lim
b→0

Re

(
dψ(b)

dbi

)
= − lim

b→0

bi
b

Re (ψ′(b)) ,

∫
kiRe(ψ(~k⊥))

d2k⊥
(2π)2

=

∫
Re

[∫
ψ(~k⊥)kie

i~k⊥~bd2b

]
d2k⊥
(2π)2

= −Re

[∫
iδ(2)(~b)

dψ(~b)

dbi
d2b

]
(232)

= lim
b→0

Im

(
dψ(b)

dbi

)
= lim
b→0

bi
b

Im (ψ′(b)) .

Having a closer look at the limiting behavior again we see that all these terms are 1/b divergent [Hüt13,
p. 56]. This is not a problem because the divergence appears in the temperature independent part of the self
energy. The only temperature dependent part is the function F that only depends on the parallel momentum
components

F(p‖, k‖) = fF (p‖) + fB(k‖ − p‖) =
1

eβp‖ + 1
+

1

eβ(k‖−p‖ − 1

T=0
= Θ(−p‖)−Θ(k‖ − p‖). (233)

Getting rid of the T = 0 divergent parts then leads to vanishing off-diagonal elements [Hüt13, p. 56].

All in all after renormalization and perpendicular momentum integration we are left with∫ Re(~k⊥ ~f)+k2Im(f1)−k1Im(f2)
8k2
‖

−k1−ik2

4k‖
ψ − f∗1 +if∗2

8k‖

− f1+if2

8k‖
− k1+ik2

4k‖
ψ∗ Re(ψ)

 d2k⊥
(2π)2

=

(
Im(c2,h(ω,p‖,k‖))

4k2
‖

0

0 Re(c2,ψ(ω, p‖, k‖))

)
.

(234)

The self energy part in the lepton number matrix has the following form now

tr
(

ImΣret,R
~p (ω21)ImΣret,R

~p (ω23)
)

=

∞∫
−∞

∞∫
−∞

F(p‖, k‖)

k‖ − p‖

F(p‖, k
′
‖)

k′‖ − p‖
tr

[(
Im(c2,h(ω21,p‖,k‖))

4k2
‖

0

0 Re(c2,ψ(ω21, p‖, k‖))

)
 Im(c2,h(ω23,p‖,k

′
‖))

4k
′2
‖

0

0 Re(c2,ψ(ω23, p‖, k
′
‖))

 dk‖
2π

dk′‖

2π

=

∞∫
−∞

∞∫
−∞

F(p‖, k‖)

k‖ − p‖

F(p‖, k
′
‖)

k′‖ − p‖

[
Re(c2,ψ(ω21, p‖, k‖))Re(c2,ψ(ω23, p‖, k

′
‖))

+
1

16k2
‖k
′2
‖

Im(c2,h(ω21, p‖, k‖))Im(c2,h(ω23, p‖, k
′
‖))

]
dk‖

2π

dk′‖

2π
. (235)

Since this is the only part of Lii that is k‖ and k′‖ dependent it is very useful to define

σh(ω, p‖) :=

∞∫
−∞

F(p‖, k‖)

4k2
‖(k‖ − p‖)

Im(c2,h(ω, p‖, k‖))
dk‖

2π
, (236)

σψ(ω, p‖) :=

∞∫
−∞

F(p‖, k‖)

k‖ − p‖
Re(c2,ψ(ω, p‖, k‖))

dk‖

2π
. (237)
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5.4 Calculating the gauge corrected Majorana Decay Width

Previously we have presented how to solve the integral equations for the gauge corrected Majorana neutrino
self energy.

The gauge corrected decay width was given as

Γ~p(ω~p) = −|λ|
2d(r)

2ω~p

∫ F(p‖, k‖)

k‖ − p‖

[
p+

Re(~k⊥ ~f) + k2Im(f1)− k1Im(f2)

8k2
‖

+ p−Re(ψ)

]
d3k

(2π)3
. (238)

Following the results from the previous section the perpendicular momentum components can be integrated
out leading to

Γ~p(ω~p) = −|λ|
2d(r)

2ω~p

∞∫
−∞

F(p‖, k‖)

k‖ − p‖

[
ω~p + p‖

4k2
‖

Im(c2,h(ω~p, p‖, k‖)) + (ω~p − p‖)Re(c2,ψ(ω~p, p‖, k‖))

]
dk‖

2π
(239)

= −|λ|
2d(r)

2ω~p

(
(ω~p + p‖)σh(ω~p, p‖) + (ω~p − p‖)σψ(ω~p, p‖)

)
.

As pointed out earlier it is possible to compare this result for the gauge corrected Majorana decay width to
the thermal production rate developed by Anisimov, Bödecker et al. [ABB11].

The result from the paper has the following form [ABB11, p. 15]

dΓprod

d3p
= −d(r)|λ|2

(2π)32p

∫
1

p− k‖
fF (k‖)fB(p− k‖)Re

[
p

2k2
‖
~p⊥ · ~f +

M2

p
ψ

]
d3k

(2π)3
. (240)

Note that there are two important differences between the results:
The thermal production rate is given as a differential rate, giving evidence on produced particles per unit time
and unit volume. On top of that a further approximation called lightlike approximation has been used in
[ABB11] (p‖ = p)

ω~p ≈ p‖, p+ = ω~p + p‖ ≈ 2p‖, p− = ω~p − p‖ ≈
M2

2p‖
. (241)

Applying the lightlike approximation to the gauge corrected decay width6 leads to

Γlight
~p = −|λ|

2d(r)

2p‖

(
2p‖σh(ω~p, p‖) +

M2

2p‖
σψ(ω~p, p‖)

)
. (242)

Comparing both expression then leads to

dΓprod

d3p

1

fF (p)T |λ|2
=

2

(2π)3T |λ|2
Γlight
~p . (243)

The result of the thermal production rate calculated in [ABB11] is split into a helicity flip part and a non flip
part by defining

dΓprod, hel

d3p

1

fF (p)T |λ|2
= − d(r)

(2π)3Tp‖
2p‖σh(ω~p, p‖), (244)

dΓprod, non

d3p

1

fF (p)T |λ|2
= − d(r)

(2π)3Tp‖

M2

2p‖
σψ(ω~p, p‖). (245)

6This also has an effect on M2
eff which is then given as M2

eff = [k‖(k‖ − p‖)M2 − p‖(k‖ − p‖)m2
l + p‖k‖m

2
φ]/p2

‖.
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It is now possible to compare the result of the gauge corrected decay width to the result of the thermal
production rate from [ABB11] to check the numerical program.
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Figure 17: Left: Result of Γprod from [ABB11, p. 19] for fixed M = 107 GeV. Right: Result for Γprod calculated
with the GSL QAG adaptive integration algorithm with a relative tolerance of tolrel = 10−2 (For further details
see section 8).

Note that [ABB11] uses the label k for the Majorana neutrino momentum. The comparison of the two graphs
shows perfect agreement. The algorithm explained later in section 6 and 8 is implemented correctly to the
program leading to good results.

When calculating Lii we are also integrating over the neutrino momentum p. Because of that it is not consistent
to use the lightlike approximation since it is motivated in terms of large momenta. Investigating the effect of
the approximation leads to the following graph
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Figure 18: Comparing Γprod with and without lightlike approximation with fixed M = 107 GeV.

One can clearly notice that the results differ only for small momenta p. Although the effect is rather small all
results of Lii are calculated without the use of the lightlike approximation in this thesis.

An investigation of the effect of the lightlike approximation on the result for Lii has been done in the Master
thesis of Frederik Depta, proving that the difference is marginal.
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5.5 Full gauge corrected Result

The gauge corrected Majorana self energy contribution in Lii was given as

tr
(

ImΣret,R
~p (ω21)ImΣret,R

~p (ω23)
)

=

∞∫
−∞

∞∫
−∞

F(p‖, k‖)

k‖ − p‖

F(p‖, k
′
‖)

k′‖ − p‖
(246)

[
1

16k2
‖(k
′
‖)

2
Im(c2,h(ω21, p‖, k‖))Im(c2,h(ω23, p‖, k

′
‖))

+Re(c2,ψ(ω21, p‖, k‖))Re(c2,ψ(ω23, p‖, k
′
‖))
] dk‖

2π

dk′‖

2π
= σh(ω21, p‖)σh(ω23, p‖) + σψ(ω21, p‖)σψ(ω23, p‖).

This has to be implemented in the final, not corrected result for the lepton number matrix Lii from section 4

Lii(t, t) = −48λii

t∫
0

t∫
0

t2∫
0

∞∫
−∞

∞∫
−∞

∫ ∫ ∫ ∫ ∫
M

ω~p
cos(ω~py13)fF (ω~p)e

−Γ~p
t1+t3

2 (247)

fF (ω21)tr
(

ImΣret,R
~k,~q

(ω23)ImΣret,L
~k′,~q′

(ω23)
)

Re
[
e−i(ω21y21+ω23y23)

]
(2π)3δ(~p− ~k′ − ~q′)(2π)3δ(~p+ ~k + ~q)

d3q

(2π)3

d3q′

(2π)3

d3k

(2π)3

d3k′

(2π)3

d3p

(2π)3

dω21

2π

dω23

2π
dt3dt2dt1.

Putting everything together now leads to a result for the lepton number matrix include all leading order gauge
corrections

Lii(t, t) = −24

π2
λii

t∫
0

t∫
0

t2∫
0

∞∫
−∞

∞∫
−∞

∞∫
0

M

ω~p
cos(ω~py13)fF (ω~p)fF (ω21)e−Γ~p(ω~p)

t1+t3
2 Re

[
e−i(ω21y21+ω23y23)

]
(248)

[σh(ω21, p)σh(ω23, p) + σψ(ω21, p)σψ(ω23, p)] p
2dp

dω21

2π

dω23

2π
dt3dt2dt1.

Keep in mind that the gauge corrected expression of the Majorana decay width Γ~p has to be used. The next
step is to calculate the lepton number matrix numerically. For this purpose an algorithm is needed to obtain
the c2-coefficients by solving the integral equations leading to the σ contributions. Such an algorithm will be
presented in the next section.
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6 The numerical Algorithm to calculate the gauge Corrections

In the following the procedure to calculate the σ contributions is going to be presented. The idea of the
algorithm follows the results presented in [ABB11, Appendix A] and [Hüt13, Appendix B]. The aim of the

section is to develop two ordinary differential equations for ψ and ~f that can be solved easily using a C++
program.

6.1 Recipe of the Calculation

In the previous section we have simplified the integral equations for ψ and ~f = ~bh(b) as far as possible ending
up with the following differential equations

−iβ

(
∂2
b +

1

b
∂b −M2

eff

)
ψ(b)−K(b)ψ(b) = 0, (249)

−iβ

(
∂2
b +

3

b
∂b −M2

eff

)
h(b)−K(b)h(b) = 0.

To keep it short only the strategy for ψ is going to be presented here in detail. The calculation for h(b) can be
done in the same way. The following steps are made [Hüt13, p. 78]

1. At first ψ is split into a tree-level and a higher order part

ψ(b) = ψ0(b) + ψ1(b), (250)

with ψ0(b) being the solution of the equation

−iβ

(
∂2
b +

1

b
∂b −M2

eff

)
ψ0(b) = 0. (251)

2. The general solution ψ1 is a superposition of a particular solution of the inhomogeneous equation ψ
(p)
1

and homogeneous solutions ψ
(1)/(2)
1

ψ1(b) = ψ
(p)
1 (b) + a1ψ

(1)
1 (b) + a2ψ

(2)
1 (b). (252)

3. It will be shown that a1 = 0 and

a2 = − lim
b→∞

ψ
(p)
1 (b)

ψ
(2)
1 (b)

. (253)

4. After choosing initial values for b→∞ the following algorithm is implemented:

• The homogeneous equation for ψ1(b) is solved with initial values ψ
(1)/(2)
1 (0) = 1 and ψ

(1)/(2)′
1 (0) = 0,

this leads to ψ
(2)
1 .

• The inhomogeneous equation for ψ1(b) is solved using the initial conditions ψ
(p)
1 (0) = i and

ψ
(p)′
1 (0) = 0, this leads to ψ

(p)
1 .

5. Finally the results for ψ
(p)
1 and ψ

(2)
1 are used to calculate a2 which is directly connected to c2.

The main difference in the calculation of h(b) is a different choice of initial conditions in step 4, choosing

h
(1)/(2)
1 (0) = i, h

(1)/(2)′
1 (0) = 0, h

(p)
1 (0) = 1, h

(p)′
1 (0) = 0. (254)

51



6.2 Solving the Equation for ψ0

The solution of

−iβ

(
∂2
b +

1

b
∂b −M2

eff

)
ψ0(b) = 0 (255)

is given as [Hüt13, p. 79]

ψ0(b) = d1J0

(
ib
√
M2

eff

)
+ d2Y0

(
−ib
√
M2

eff

)
, d1, d2 ∈ C, (256)

with the Bessel functions Jn of the first and Yn of the second kind.

It is important to notice that M2
eff can become negative recalling its definition

M2
eff =

m2
l (p‖ − k‖) +m2

φk‖ + 2k‖(ω − p‖)(k‖ − p‖)
p‖

. (257)

There are two cases to look at:

1. M2
eff ≥ 0→

√
M2

eff = Meff.

In this case the Bessel functions have a purely complex argument and they can be rewritten in the
following form

J0

(
ib
√
M2

eff

)
→ I0 (bMeff) , Y0

(
−ib
√
M2

eff

)
→ K0 (bMeff) . (258)

Their limiting behavior for b→ 0 is given as

K0(b)
b→0→ −ln(b), (259)

I0(b)
b→0→ 1

Γ(1)
= 1,

such that in the case b→ 0 the solution takes the following form

ψ0(b) = d
(1)
1 I0 (bMeff) + d

(1)
2 K0 (bMeff)

b→0→ d
(1)
1 − d

(1)
2 ln(bMeff). (260)

The limiting behavior of ψ discussed in section 5.3.1 was given as

ψ(b) ∼ i

2πβ
ln(b) +O(b0). (261)

Comparing both results then leads to

ψ0(b) = d
(1)
1 I0(bMeff)− i

2πβ
K0(bMeff). (262)

2. M2
eff < 0→

√
M2

eff = iMeff.

Now the Bessel functions only depend on real values. For their limiting behavior one can observe

J0(b)
b→0→

(
b
2

)0
Γ(1)

= 1, (263)

Y0(b)
b→0→ 2

π
ln(b).

Again after comparing this with the limiting behavior of ψ from section 5.3.1 we arrive at

ψ0(b) = d
(2)
1 J0(Meffb) +

i

4β
Y0(Meffb). (264)
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Further the limiting behavior for b→∞ needs to be investigated. Since I0 is divergent for b→∞ we have to

set d
(1)
1 = 0 leading to a purely imaginary solution. On top of that the transition between the two regions of

M2
eff needs to be continuous. Since the M2

eff ≥ 0 is now purely imaginary we need to set d
(2)
1 = 0 as well to

obtain continuity [Hüt13, p. 80]. The two purely imaginary solutions are then given as

ψ0(b) = − i

2πβ
K0

(√
M2

effb

)
M2

eff ≥ 0, (265)

ψ0(b) =
i

4β
Y0

(√
|M2

eff|b
)

M2
eff < 0. (266)

6.3 Equation for ψ
(1)/(2)
1

We have made the Ansatz

ψ(b) = ψ0(b) + ψ1(b), with (267)

ψ1(b) = a1ψ
(1)
1 (b) + a2ψ

(2)
1 (b) + ψ

(p)
1 (b).

The solution of the homogeneous equation is given by ψ
(1)/(2)
1

−iβ

(
∂2
b +

1

b
∂b −M2

eff

)
ψ

(1)/(2)
1 (b)−K(b)ψ

(1)/(2)
1 (b) = 0. (268)

After taking a look at the limiting behavior of ψ1 we can simplify further by making a subtle choice of initial
conditions. As already mentioned in section 5.3.1 the D(b) contributions in K(b) have the following limiting
behavior for b→ 0: D(b) ∼ b2ln(b). Further the ψ0 solution constructed in the last section is regular and shows
the same limiting behavior. Thus ψ1 has to be regular for b → 0. By making an adequate choice of initial
conditions we set [Hüt13, p. 80]

ψ
(1)
1

b→0∼ − i

2πβ
ln(b) (∼ K0(b)), ψ

(2)
1

b→0∼ regular (∼ I0(b)). (269)

For the correct limiting behavior of ψ(b) in the limit b→∞ we need

lim
b→∞

ψ(b) = 0 → lim
b→∞

ψ1(b) = 0, (270)

lim
b→∞

ψ1(b) = 0 = a1ψ
(1)
1 (b)︸ ︷︷ ︸

∼a1b2ln(b)→a1
!
=0

+a2 ψ
(2)
1 (b)︸ ︷︷ ︸
∼regular

+ψ
(p)
1 (b),

leading to

a2 = − lim
b→∞

ψ
(p)
1 (b)

ψ
(2)
1 (b)

. (271)

Using the initial conditions

ψ
(1)/(2)
1 (0) = 1, ψ

(1)/(2)′
1 (0) = 0, (272)

leads to the solution ψ
(2)
1 when solving the homogeneous equation since a1 = 0

−iβ

(
∂2
b +

1

b
∂b −M2

eff

)
ψ

(2)
1 (b)−K(b)ψ

(2)
1 (b) = 0. (273)

It is possible to split the equation into two real-valued equations using ψ
(2)
1 (b) = ψ

(2)
1,r(b) + iψ

(2)
1,i (b) since all

other functions are real valued functions(
∂2
b +

1

b
∂b −M2

eff

)
ψ

(2)
1,r(b) +

K(b)

β
ψ

(2)
1,i (b) = 0, (274)(

∂2
b +

1

b
∂b −M2

eff

)
ψ

(2)
1,i (b)−

K(b)

β
ψ

(2)
1,r(b) = 0.

53



For the initial conditions we then have

ψ
(2)
1 (0) = 1 → ψ

(2)
1,r(0) + iψ

(2)
1,i (0) = 1 → ψ

(2)
1,r(0) = 1, ψ

(2)
1,i (0) = 0, (275)

ψ
(2)′
1 (0) = 0 → ψ

(2)′
1,r (0) + iψ

(2)′
1,i (0) = 1 → ψ

(2)′
1,r (0) = 0, ψ

(2)′
1,i (0) = 0.

6.4 Solving the inhomogeneous Equation

The remaining inhomogeneous equation takes the following form

−iβ

(
∂2
b +

1

b
∂b −M2

eff

)
(ψ0(b) + ψ

(p)
1 (b))−K(b)(ψ0(b) + ψ

(p)
1 (b)) = 0, (276)

⇔ −iβ

(
∂2
b +

1

b
∂b −M2

eff

)
ψ

(p)
1 (b)−K(b)(ψ0(b) + ψ

(p)
1 (b)) = 0.

Solving the equation with initial conditions

ψ
(p)
1 (0) = i, ψ

(p)′
1 (0) = 0, (277)

leads to the solution ψ
(p)
1 (b). Again this equation can be split into two real-valued ODEs in the same way as

presented above (
∂2
b +

1

b
∂b −M2

eff

)
ψ

(p)
1,r(b) +

K(b)

β
(ψ0,i(b) + ψ

(p)
1,i (b)) = 0, (278)(

∂2
b +

1

b
∂b −M2

eff

)
ψ

(p)
1,i (b)− K(b)

β
(ψ0,r(b) + ψ

(p)
1,r(b)) = 0.

The initial conditions are then given as

ψ
(p)
1 (0) = i → ψ

(p)
1,r(0) + iψ

(p)
1,i (0) = i → ψ

(p)
1,r(0) = 0, ψ

(p)
1,i (0) = 1, (279)

ψ
(p)′
1 (0) = 0 → ψ

(p)′
1,r (0) + iψ

(p)′
1,i (0) = 1 → ψ

(p)′
1,r (0) = 0, ψ

(p)′
1,i (0) = 0.

6.5 Calculating the c2-Coefficients

All in all we now have the following structure of the solution

ψ(b) = ψ0(b) + ψ1(b) =


− i

2πβK0

(√
M2

effb
)
−
(

lim
b→∞

ψ
(p)
1 (b)

ψ
(2)
1 (b)

)
ψ

(2)
1 (b) + ψ

(p)
1 (b) M2

eff ≥ 0

i
4βY0

(√
|M2

eff|b
)
−
(

lim
b→∞

ψ
(p)
1 (b)

ψ
(2)
1 (b)

)
ψ

(2)
1 (b) + ψ

(p)
1 (b) M2

eff < 0
, (280)

with initial conditions

ψ
(2)
1 (0) = 1 → ψ

(2)
1,r(0) = 1, ψ

(2)
1,i (0) = 0, (281)

ψ
(2)′
1 (0) = 0 → ψ

(2)′
1,r (0) = 0, ψ

(2)′
1,i (0) = 0,

ψ
(p)
1 (0) = i → ψ

(p)
1,r(0) = 0, ψ

(p)
1,i (0) = 1,

ψ
(p)′
1 (0) = 0 → ψ

(p)′
1,r (0) = 0, ψ

(p)′
1,i (0) = 0.

Using these results it is straight forward to calculate the c2-coefficient

Re(c2,ψ) = Re

(
lim
b→0

ψ(b)

)
= Re

−( lim
b→∞

ψ
(p)
1 (b)

ψ
(2)
1 (b)

)
ψ

(2)
1 (0)︸ ︷︷ ︸
=1

+ψ
(p)
1 (0)︸ ︷︷ ︸

=i

 = − lim
b→∞

Re

(
ψ

(p)
1 (b)

ψ
(2)
1 (b)

)
. (282)
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6.6 Procedure for h(b)

As mentioned in the beginning the solution for h(b) can be obtained in the same way as presented for ψ(b).
The homogeneous solution is given as [Hüt13, p. 81]

h0(b) =
Meff

πβb
K1

(√
M2

effb

)
M2

eff ≥ 0, (283)

h0(b) = −Meff

2βb
Y1

(√
|M2

eff|b
)

M2
eff < 0.

Note that h0(b) is now purely real instead of purely imaginary. Further the previously presented equations also
hold for h(b) when replacing 1

b with 3
b(

∂2
b +

3

b
∂b −M2

eff

)
h

(2)
1,r(b) +

K(b)

β
h

(2)
1,i (b) = 0, (284)(

∂2
b +

3

b
∂b −M2

eff

)
h

(2)
1,i (b)−

K(b)

β
h

(2)
1,r(b) = 0,

(
∂2
b +

3

b
∂b −M2

eff

)
h

(p)
1,r(b) +

K(b)

β
(h0,i(b) + h

(p)
1,i (b)) = 0, (285)(

∂2
b +

3

b
∂b −M2

eff

)
h

(p)
1,i (b)−

K(b)

β
(h0,r(b) + h

(p)
1,r(b)) = 0.

The main difference is given in the choice of initial conditions. The coefficient c2,h is given via the imaginary
part of h(b)

Im(c2,h) = Im

(
lim
b→0

h(b)

)
. (286)

The full solution h(b) has a similar structure compared to the full solution ψ(b)

h(b) = h0(b) + h1(b) =


Meff

πβbK1

(√
M2

effb
)
−
(

lim
b→∞

h
(p)
1 (b)

h
(2)
1 (b)

)
h

(2)
1 (b) + h

(p)
1 (b) M2

eff ≥ 0

−Meff

2βb Y1

(√
|M2

eff|b
)
−
(

lim
b→∞

h
(p)
1 (b)

h
(2)
1 (b)

)
h

(2)
1 (b) + h

(p)
1 (b) M2

eff < 0
. (287)

To obtain the imaginary part the following initial conditions are chosen [Hüt13, p. 81]

h
(2)
1 (0) = i → h

(2)
1,r(0) = 0, h

(2)
1,i (0) = 1, (288)

h
(2)′
1 (0) = 0 → h

(2)′
1,r (0) = 0, h

(2)′
1,i (0) = 0,

h
(p)
1 (0) = 1 → h

(p)
1,r(0) = 1, h

(p)
1,i (0) = 0,

h
(p)′
1 (0) = 0 → h

(p)′
1,r (0) = 0, h

(p)′
1,i (0) = 0.

The coefficient c2,h is then given as

Im(c2,h) = Im

(
lim
b→0

h(b)

)
= Im

−( lim
b→∞

h
(p)
1 (b)

h
(2)
1 (b)

)
h

(2)
1 (0)︸ ︷︷ ︸

=i

+h
(p)
1 (0)︸ ︷︷ ︸
=1

 = − lim
b→∞

Im

(
h

(p)
1 (b)

h
(2)
1 (b)

)
. (289)
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6.7 ODE Solver

We arrived at 4 ordinary differential equations of second order for ψ and h where always two of them are
coupled. To solve these equations numerically we have to transform them to first order equations by making
use of

d2f(x)

dx2
+ g(x)

df(x)

dx
= r(x) → df(x)

dx
:= z(x),

dz(x)

dx
= r(x)− g(x)z(x). (290)

The complete set of equations for ψ
(2)
1 is then given as

∂bψ
(2)
1,r(b) = z(2)

r (b), (291)

∂bψ
(2)
1,i (b) = z

(2)
i (b),

∂bz
(2)
1,r(b) = −1

b
z

(2)
1,r(b) +M2

effψ
(2)
1,r(b)−

K(b)

β
ψ

(2)
1,i (b),

∂bz
(2)
1,i (b) = −1

b
z

(2)
1,i (b) +M2

effψ
(2)
1,i (b) +

K(b)

β
ψ

(2)
1,r(b),

with initial conditions

ψ
(2)
1,r(0) = 1, ψ

(2)
1,i (0) = 0, z(2)

r (0) = 0, z
(2)
i (0) = 0. (292)

The complete set of equations for ψ
(p)
1 is given as

∂bψ
(p)
1,r(b) = z(p)

r (b), (293)

∂bψ
(p)
1,i (b) = z

(p)
i (b),

∂bz
(p)
1,r (b) = −1

b
z

(p)
1,r (b) +M2

effψ
(p)
1,r(b)− K(b)

β
(ψ0,i(b) + ψ

(p)
1,i (b)),

∂bz
(p)
1,i (b) = −1

b
z

(p)
1,i (b) +M2

effψ
(p)
1,i (b) +

K(b)

β
(ψ0,r(b) + ψ

(p)
1,r(b)),

with initial conditions

ψ
(p)
1,r(0) = 0, ψ

(p)
1,i (0) = 1, z(p)

r (0) = 0, z
(p)
i (0) = 0, (294)

ψ0,r(b) = 0, ψ0,i(b) =

−
1

2πβK0

(√
M2

effb
)

M2
eff ≥ 0

1
4βY0

(√
|M2

eff|b
)

M2
eff < 0

.

The complete set of equations for h
(2)
1 is given as

∂bh
(2)
1,r(b) = y(2)

r (b), (295)

∂bh
(2)
1,i (b) = y

(2)
i (b),

∂by
(2)
1,r(b) = −3

b
y

(2)
1,r(b) +M2

effh
(2)
1,r(b)−

K(b)

β
h

(2)
1,i (b),

∂by
(2)
1,i (b) = −3

b
y

(2)
1,i (b) +M2

effh
(2)
1,i (b) +

K(b)

β
h

(2)
1,r(b),

with initial conditions

h
(2)
1,r(0) = 0, h

(2)
1,i (0) = 1, y(2)

r (0) = 0, y
(2)
i (0) = 0. (296)
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And finally the complete set of equations for h
(p)
1 is given as

∂bh
(p)
1,r(b) = y(p)

r (b), (297)

∂bh
(p)
1,i (b) = y

(p)
i (b),

∂by
(p)
1,r(b) = −3

b
y

(p)
1,r(b) +M2

effh
(p)
1,r(b)−

K(b)

β
(h0,i(b) + h

(p)
1,i (b)),

∂by
(p)
1,i (b) = −3

b
y

(p)
1,i (b) +M2

effh
(p)
1,i (b) +

K(b)

β
(h0,r(b) + h

(p)
1,r(b)),

with initial conditions

ψ
(p)
1,r(0) = 0, ψ

(p)
1,i (0) = 1, z(p)

r (0) = 0, z
(p)
i (0) = 0, (298)

ψ0,i(b) = 0, ψ0,r(b) =


Meff

πβbK1

(√
M2

effb
)

M2
eff ≥ 0

−Meff

2βb Y1

(√
|M2

eff|b
)

M2
eff < 0

.

At the end we only need the asymptotic solution for b→ b∞ to obtain the c2-coefficients

Re(c2,ψ) = − lim
b→∞

Re

(
ψ

(p)
1 (b)

ψ
(2)
1 (b)

)
= −

ψ
(p)
1,r(b∞)ψ

(2)
1,r(b∞) + ψ

(p)
1,i (b∞)ψ

(2)
1,i (b∞)(

ψ
(2)
1,r(b∞)

)2

+
(
ψ

(2)
1,i (b∞)

)2 , (299)

Im(c2,h) = − lim
b→∞

Im

(
h

(p)
1 (b)

h
(2)
1 (b)

)
= −

h
(p)
1,i (b∞)h

(2)
1,r(b∞)− h(p)

1,r(b∞)h
(2)
1,i (b∞)(

h
(2)
1,r(b∞)

)2

+
(
h

(2)
1,i (b∞)

)2 . (300)

We do now have all equations at hand to obtain the c2-coefficients. These equations can be solved using
standard technics as for example Runge-Kutta methods. Further a numerical integration method can be used
to solve the σ-integrals

σψ(ω, p‖) :=

∞∫
−∞

F(p‖, k‖)

k‖ − p‖
Re(c2,ψ(ω, p‖, k‖))

dk‖

2π
, (301)

σh(ω, p‖) :=

∞∫
−∞

F(p‖, k‖)

4k2
‖(k‖ − p‖)

Im(c2,h(ω, p‖, k‖))
dk‖

2π
. (302)

The numerical details and the program structure will be presented in section 8 together with the results.
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7 Approximation of the gauge corrected Lepton Number Matrix

In section 5 we found the following result of the gauge corrected lepton number matrix Lii

Lii(t, t) = −24

π2
λii

t∫
0

t∫
0

t2∫
0

∞∫
−∞

∞∫
−∞

∞∫
0

M

ω~p
cos(ω~py13)fF (ω~p)fF (ω21)e−Γ~p

t1+t3
2 Re

[
e−i(ω21y21+ω23y23)

]
(303)

[σh(ω21, p)σh(ω23, p) + σψ(ω21, p)σψ(ω23, p)] p
2dp

dω21

2π

dω23

2π
dt3dt2dt1.

Obviously the lepton number matrix has to be calculated numerically since it depends on the c2-coefficients
appearing in the σ-contributions as well as in the decay width Γ~p.

Counting the integral dimensions including the two ”hidden” integrals in the σ-contribution leads to a to-
tal number of 8 dimensions. On top of that for each point the integrand function is evaluated an asymptotic
solution of the ODEs for ψ and h has to be calculated to obtain the c2-coefficients. All together an enormous
amount of computational effort has to be made. As a result calculating the full integral using Monte Carlo
is not only slow but also one has to take care of the approximations made previously when developing the
resummation scheme for the gauge corrections in section 3. For this it is useful to investigate the regions
with the largest contribution. Based on that a systematic approximation of the lepton number matrix will be
presented in the following.

7.1 Symmetry Observations

The result of the lepton number matrix can be simplified further by making use of symmetry properties of the
self energy Σ.

In section 3.4.2 and 4.4 we had seen that the self energy could be written in the following form

ImΣret
~p (ω21) =

(
0 ImΣret,R

~p (ω21)

ImΣret,L
~p (ω21) 0

)
, (304)

with the symmetry

ImΣret,R
−~p (ω21) = ImΣret,L

~p (ω21). (305)

The result for the right-handed gauge corrected self energy developed in section 5 had the following form
(compare to equation (235))

ImΣret,R
~p (ω21)

~p⊥=0
=

(
σψ(ω21, p‖) 0

0 σh(ω21, p‖)

)
. (306)

Recalling the expression from section 4.4 [Ani+11, p. 19] for ~p⊥ = 0

ImΣret
~p (ω21)

~p⊥=0
=

1

2

(
0 a~p(ω21)12×2 + b~p(ω21)p3σ

3

a~p(ω21)12×2 − b~p(ω21)p3σ
3 0

)
(307)

and comparing both expressions of the right-handed self energy then leads to

ImΣret,R
~p (ω21)

~p⊥=0
=

1

2

(
a~p(ω21) + p3b~p(ω21) 0

0 a~p(ω21)− p3b~p(ω21)

)
=

(
σψ(ω21, p‖) 0

0 σh(ω21, p‖)

)
.

(308)

Changing from ~p→ −~p we obtain the left-handed self energy in the following form

ImΣret,L
~p (ω21)

~p⊥=0
=

1

2

(
a~p(ω21)− p3b~p(ω21) 0

0 a~p(ω21) + p3b~p(ω21)

)
=

(
σh(ω21, p‖) 0

0 σψ(ω21, p‖)

)
.

(309)
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We can conclude the following symmetry of the σ-part

σψ(ω21,−p‖) = σh(ω21, p‖). (310)

Further in [Ani+11, p. 19] has been shown that

a~p(ω21) = a~p(−ω21) (311)

b~p(ω21) = −b~p(−ω21).

Recalling again the Ansatz for the self energy, we arrive at another symmetry of the system

ImΣret,R
~p (−ω21)

~p⊥=0
=

1

2

(
a~p(−ω21) + p3b~p(−ω21) 0

0 a~p(−ω21)− p3b~p(−ω21)

)
(312)

=
1

2

(
a~p(ω21)− p3b~p(ω21) 0

0 a~p(ω21) + p3b~p(ω21)

)
≡ ImΣret,L

~p (ω21).

Continuing in the same way as presented before we arrive at the following symmetry

σh(−ω21, p‖) = σψ(ω21, p‖). (313)

Combining now both observations leads to

ImΣret,R
−~p (−ω21) = ImΣret,R

~p (ω21), (314)

ImΣret,L
−~p (−ω21) = ImΣret,L

~p (ω21),

⇒ ImΣret
−~p(−ω21) = ImΣret

~p (ω21).

This is in agreement with the invariance under time reflection pointed out in [Bes10, p. 47].

7.2 Time Integration and the infinite Time Limit

Recalling the expression of the lepton number matrix from section 5.4 it can be noticed that it is possible to
solve the time integrals analytically. The only time dependent part is of the following form

Lii(t, t) = −24

π2
λii

∞∫
−∞

∞∫
−∞

∞∫
0

M

ω~p
fF (ω~p)fF (ω21)

t∫
0

t∫
0

t2∫
0

cos(ω~py13)e−Γ~p
t1+t3

2 Re
[
e−i(ω21y21+ω23y23)

]
dt3dt2dt1︸ ︷︷ ︸

time dependent part T (t)

[σh(ω21, p)σh(ω23, p) + σψ(ω21, p)σψ(ω23, p)] p
2dp

dω21

2π

dω23

2π
. (315)

This time dependent part T (t) can be solved using mathematica [Wol17]

T (t) =

t∫
0

t∫
0

t2∫
0

cos(ω~py13)e−Γ~p
t1+t3

2 Re
[
e−i(ω21y21+ω23y23)

]
dt3dt2dt1 (316)

=

t∫
0

t∫
0

t2∫
0

cos(ω~p(t1 − t3))e−Γ~p
t1+t3

2

[cos(ω21(t2 − t1)) cos(ω23(t2 − t3))− sin(ω21(t2 − t1)) sin(ω23(t2 − t3))]dt3dt2dt1.

Unluckily the calculation leads to a very lengthy result, the detailed result will be given in appendix C.
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An interesting case is the limit t→∞ corresponding to a completely thermalized result

lim
t→∞

T (t) = Re

 ∞∫
0

∞∫
0

t2∫
0

cos(ω~py13)e−Γ~p
t1+t3

2 e−i(ω21y21+ω23y23)dt3dt2dt1

 (317)

= Re

 ∞∫
0

∞∫
0

e−Γ~p
t1+t2

2

((
−2eıt2ω23(−2iω23 + Γ~p) cos(ω~p(t1 − t2))− 4eit2ω23ω~p sin(ω~p(t1 − t2))

)
4ω2

~p − (2ω23 + iΓ~p)2

+
2eΓ~p

t2
2 ((−2iω23 + Γ~p) cos(ω~pt1) + 2ω~p sin(ω~pt1))

4ω2
~p − (2ω23 + iΓ~p)2

)
eiω21t1e−i(ω21+ω23)t2dt2dt1

]

:= Re

 ∞∫
0

∞∫
0

Ft3(ω~p, ω21, ω23, t2, t1,Γ~p)e
iω21t1e−i(ω21+ω23)t2dt2dt1

 .
It is possible to solve the integral by including Heaviside step functions to change the integration limits and
interpreting the new result as a Fourier transformation

lim
t→∞

T (t) = Re

 ∞∫
−∞

∞∫
−∞

Ft3(ω~p, ω21, ω23, t2, t1,Γ~p)Θ(t1)Θ(t2)eiω21t1e−i(ω21+ω23)t2dt2dt1

 (318)

= 4π
(Γ2
~p + 4ω2

~p − 4ω21ω23)(Γ4
~p + 16(ω~p − ω21)(ω~p + ω21)(ω~p − ω23)(ω~p + ω23) + 4Γ2

~p(2ω
2
~p + ω2

21 + ω2
23))

(Γ4
~p + 16(ω2

~p − ω2
21)2 + 8Γ2

ω~p
(ω2
~p + ω2

21))(Γ4
~p + 16(ω2

~p − ω2
23)2 + 8Γ2

~p(ω
2
~p + ω2

23))

× δ(ω21 + ω23),

where the real part has already been taken. Note that the result is proportional to δ(ω21 + ω23). In the
thermalized limit only the region with ω21 = −ω23 contributes. Because of continuity this gives information
about large contributions to the integral in general that will be investigated further in the following. In fact
this will play an important role when approximating the integrand of the lepton number matrix later.

Because of the delta function it is now possible to solve the ω23 integral in the thermalized expression of
Lii leading to

lim
t→∞

Lii(t, t) = −48

π2
λii

∞∫
−∞

∞∫
0

M

ω~p
fF (ω~p)fF (ω21)

(Γ2
~p + 4(ω2

~p + ω2
21))

Γ4
~p + 16(ω2

~p − ω2
21)2 + 8Γ2

~p(ω
2
~p + ω2

21)

[σh(ω21, p)σh(−ω21, p) + σψ(ω21, p)σψ(−ω21, p)] p
2dp

dω21

2π
. (319)

We can simplify further using σh(−ω21, p) = σψ(ω21, p) as derived in the last section, leading to a final result
for the full gauge corrected thermalized lepton number matrix

lim
t→∞

Lii(t, t) = −48

π3
λii

∞∫
−∞

∞∫
0

M

ω~p

fF (ω~p)fF (ω21)(Γ2
~p + 4(ω2

~p + ω2
21))

Γ4
~p + 16(ω2

~p − ω2
21)2 + 8Γ2

~p(ω
2
~p + ω2

21)
σψ(ω21, p)σh(ω21, p)p

2dpdω21 (320)

= −48

π3
λii

∞∫
0

M

ω~p

fF (ω~p)(Γ
2
~p + 4(ω2

~p + ω2
21))

Γ4
~p + 16(ω2

~p − ω2
21)2 + 8Γ2

~p(ω
2
~p + ω2

21) ∞∫
0

fF (ω21)σψ(ω21, p)σh(ω21, p)dω21 +

0∫
−∞

fF (ω21)σψ(ω21, p)σh(ω21, p)dω21

 p2dp

= −48λii
π3

∞∫
0

∞∫
0

[fF (ω21) + fF (−ω21)]︸ ︷︷ ︸
=1

M

ω~p

fF (ω~p)(Γ
2
~p + 4(ω2

~p + ω2
21))(σψ(ω21, p)σh(ω21, p))

Γ4
~p + 16(ω2

~p − ω2
21)2 + 8Γ2

~p(ω
2
~p + ω2

21)
p2 dω21dp

= −48

π3
λii

∞∫
0

∞∫
0

M

ω~p

fF (ω~p)(Γ
2
~p + 4(ω2

~p + ω2
21))

Γ4
~p + 16(ω2

~p − ω2
21)2 + 8Γ2

~p(ω
2
~p + ω2

21)
σψ(ω21, p)σh(ω21, p)p

2 dω21dp.
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7.3 Dominating Part of the gauge corrected Lepton Number Matrix

In this section we are going to investigate the ω dependent parts of the lepton number matrix to identify the
regions with the largest contribution. The results can then be used to approximate Lii leading to an expression
that can be calculated numerically.

At first it is useful to have a closer look at the thermalized expression calculated in the last section

lim
t→∞

Lii(t, t) = −96

π3

∞∫
0

∞∫
0

M

ω~p
fF (ω~p)

(Γ2
~p + 4(ω2

~p + ω2
21))

Γ4
~p + 16(ω2

~p − ω2
21)2 + 8Γ2

~p(ω
2
~p + ω2

21)︸ ︷︷ ︸
:=S(ω21,ω~p,Γ~p)

σψ(ω21, p)σh(ω21, p)p
2 dω21dp.

(321)

The prefactor S(ω21, ω~p,Γ~p) is plotted as a function of ω21 for different values of ω~p with the corresponding
thermal width Γ~p.
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Figure 19: S(ω21, ω~p,Γ~p) for different ω~p and the corresponding thermal width Γ~p plotted as function of ω21.

It can clearly be noticed that S(ω21, ω~p,Γ~p) is narrowly peaked at ω21 ∼ ω~p. On top of that the width of the
peak is smaller then 100 ·Γ~p. It seems reasonable to approximate ω21 ≈ ω~p, but to do so one has to investigate
the deviation of σψ and σh around ω21 ∼ ω~p.

For this purpose we are having a closer look at σψ and σh for ω21 ∈ {ω~p − 100 · Γ~p, ω~p + 100 · Γ~p}.
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Figure 20: Deviation of the σ-contributions from the value of σ at ω21 = ω~p plotted for different ω~p as a
function of ω21 ∈ {ω~p − 100 · Γ~p, ω~p + 100 · Γ~p}.

One notices that the σ-parts do not vary much around their value at ω21 = ω~p. The deviation becomes even
smaller for large momenta ~p.
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Finally we are having a closer look at the complete integrand function denoted as Lintegrand
ii (t, ω21, p). It is

plotted as a function of p while keeping ω21 = ω~p fixed.
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Figure 21: Integrand Lintegrand
ii (t, ω21, p) plotted as a function of p for fixed ω21 = ω~p.

From the plot it becomes clear that the main contribution is given at large momenta p ∈ {1010, 1012}7. Previ-
ously we have seen that the σ-contribution does not vary much around ω21 ∼ ω~p. Combining now both results
we can conclude that the sigma-part varies only around 2 · 10−5 from its ’on-shell’ value at ω21 = ω~p in the
regions with the main contribution to the integral.

All in all this motivates to approximate the self energy part the following way: σh(ω21, p‖) ≈ σh(ω~p, p‖),
as well as σψ(ω21, p‖) ≈ σψ(ω~p, p‖). Nevertheless we have only studied the thermalized lepton number matrix
yet, for completeness we need to check this again with the time integrated non-thermalized version.

Solving the time integrals in the non-thermalized version leads to a lengthy prefactor T (t) given in Appendix
C. The denominator of the expression has the following form

(ω2
23 − ω2

21)(Γ2
~p + 4(ω23 − ω~p)2)(Γ2

~p + 4(ω23 + ω~p)
2)(Γ2

~p + 4(ω21 − ω~p)2)(Γ2
~p + 4(ω21 + ω~p)

2). (322)

The peaks are located at ω21 = ±ω23 = ±ω~p. Note that this includes the dominant case ω21 ∼ −ω23 ∼ ±ω~p of
the thermalized version.

At first we are going to investigate the peaks. From the resummation process of our self energy the ther-
mal width is of order Γ~p ∼ O(λ2T ) [Bes10, p. 33]. With the time dependence being proportional to eΓ~pt

a timescale t ∼ O(λ−2T−1) is implied otherwise for larger times t > 1/Γ~p the thermalized version of Lii is
sufficient8. For the peaks we have to consider two limits:

1. ω21 → ω23, ω23 → ±ω~p.
It is sufficient to consider +ω~p since the result is symmetric under sign changes of ω~p after the first limit.
Calculating both limits using the full time expression given in appendix C leads to

lim
ω23→ω~p

lim
ω21→ω23

T (t) =
2eΓ~pt(eΓ~pt − 1)

Γ~pω~p(Γ
2
~p + 16ω2

~p)

[
4ω~p + e

1
2 Γ~pt(−4ω~p cos(2ω~pt) + Γ~p sin(2ω~pt))

]
. (323)

The relevant scale is ω~p ∼ O(T ) where Γ~p is small. So it is possible to approximate (Γ2
~p + 16ω2

~p) ≈ 16ω2
~p.

Counting orders then leads to ∼ O(λ2T 4) for the denominator. In the numerator the leading part is given
by the first two terms of order ∼ O(T ). All in all the dependence is ∼ O(λ−2T−3).

7Note that this fits to p ∼ O(T ).
8These estimates need to be understood for the dominating part of the integral at p ∼ ω~p ∼ O(T ).
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2. ω21 → −ω23, ω23 → ±ω~p.
Considering now the negative sign in the first limit leads to

lim
ω23→ω~p

lim
ω21→−ω23

T (t) =
e−Γ~pt

Γ3
~p(Γ

2
~p + 16ω2

~p)2

[
− 8(Γ4

~p + 16Γ2
~pω

2
~p + 128ω4

~p) (324)

+ 4eΓ~pt
(

Γ4
~p(Γ~pt− 2) + 8(3Γ~pt− 4)Γ2

~pω
2
~p + 128(Γ~pt− 2)ω4

~p

)
− 2e

1
2 Γ~pt

(
(Γ~pt− 4)(Γ2

~p + 16ω2
~p)2 + Γ3

~p(Γ~p(Γ~pt− 4) + 16ω2
~pt)
)

× cos(2ω~pt)

]
.

The dominating part of the denominator is of order ∼ O(λ6T 7) and the dominating part of the numerator
is of order ∼ O(T 4). So all in all the expression in this case is of order ∼ O(λ−6T−3).

Further we have to investigate the regions away from the peaks. In analogy to [ABB11, p. 35] we perform the
limit Γ~p → 0 while keeping Γ~pt fixed9. Performing the limit leads to the following result for T (t)

e−
1
2 Γ~pt

(ω21 + ω23)(ω2
21 − ω2

~p)(ω2
23 − ω2

~p)

[
(ω21ω23 − ω2

~p)
[

cos(ω~pt)(sin(ω21t) + sin(ω23t))− e
1
2 Γ~pt sin((ω21 + ω23)t)

]
+ (ω21 − ω23)ω~p(cos(ω21t)− cos(ω23t)) sin(ω~pt)

]
. (325)

First note that the result is symmetric under the exchange of ω23 and ω21, therefore we assume ω21 > ω23 to
reduce the number of regions we have to investigate. If doing so we can approximate (ω21 +ω23) ≈ ω21. There
are the following cases of interest:

1. ω21, ω23 > ω~p: In this case we can approximate (ω2
~p − ω2

21) ≈ −ω2
21, respectively (ω2

~p − ω2
23) ≈ −ω2

23 in
the denominator. Further in analogy to the first case we now approximate (ω21ω23 − ω~p) ≈ ω21ω23 in
the numerator. Counting the order leads to ∼ O(ω−2

21 ω
−1
23 ) and since ω21, ω23 > ω~p ∼ O(T ) to a small

contribution.

2. ω21 > ω~p but ω23 < ω~p: Again we make the following approximations (ω2
~p − ω2

21) ≈ −ω2
21, but now

(ω2
~p − ω2

23) ≈ ω2
~p in the denominator. In this case we can not approximate the numerator further.

Counting orders then leads to the following result for the largest contribution ∼ O(ω−2
21 T

−1) and since
ω21 > ω~p ∼ O(T ) this is small again.

3. Finally we are looking at the case ω21, ω23 < ω~p: In this case we can approximate (ω2
~p −ω2

21) ≈ ω2
~p in the

denominator as well for ω23. In the nominator we approximate (ω21ω23 − ω2
~p) ≈ −ω2

~p. By keeping Γ~pt
constant when performing the limit and ω21, ω23 < ω~p ∼ O(T ) we can neglect all terms but

∼
−ω2

~p

[
cos(ω~pt)(sin(ω21t) + sin(ω23t))− e

1
2 Γ~pt sin(ω21t)

]
ω21ω4

~p

∼ 1

ω21ω2
~p

∼ o(ω−1
21 T

−2). (326)

For very small ω21 (and since ω21 > ω23 also small ω23) it is possible to expand the sin(ω21t) contributions
leading to the following expression

∼
− cos(ω~pt)t− e

1
2 Γ~ptt

ω2
~p

. (327)

As discussed in the beginning the timescale of the finite time result is of order t ∼ 1/Γ~p ∼ O(λ−2T−1)
so we arrive at O(λ−2T−3) for the whole expression, which is similar to the observation made when
investigating the first peak.

Comparing all results leads to the largest contribution given at ω21 = −ω23 = ±ω~p since the contribution is of
order O(λ−6T−3) with the small coupling λii.

9The first limit has to be understood in the sense Γ~p/ω~p → 0. Further since Γ~p depends on p we investigate the regions with
the largest contribution given by p ∼ O(T ).
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The observed behavior is in very good agreement to the observation made for the thermalized result. In
the thermalized case we even obtained a delta function that forced ω23 = −ω21. Further we have shown in
the beginning that the largest contribution is given around the ”on-shell” value obtained by fixing ω21 and
ω23 at ω~p in the thermalized case. In this case the prefactor of the integrand showed a narrowly peaked behavior.

This can also be observed in the finite time case by directly looking at the time dependent part T (t, ω21, ω23,Γ~p).
For this purpose we plot the prefactor with t = 10−2 1/GeV and fixed momentum p as a function of
ω21 ∈ {ω~p − 10 · Γ~p, ω~p + 10 · Γ~p} and ω23 ∈ {−ω~p − 10 · Γ~p,−ω~p + 10 · Γ~p}.
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Figure 22: T (t, ω21, ω23,Γ~p) plotted for ω21 ∈ {ω~p−10 ·Γ~p, ω~p+10 ·Γ~p} and ω23 ∈ {−ω~p−10 ·Γ~p,−ω~p+10 ·Γ~p}
on the left side and ω21 ∈ {−ω~p− 10 ·Γ~p,−ω~p + 10 ·Γ~p} and ω23 ∈ {ω~p− 10 ·Γ~p, ω~p + 10 ·Γ~p} on the right side
at fixed ω~p for t = 10−2 1/GeV.
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Figure 23: T (t, ω21, ω23,Γ~p) plotted for ω21 ∈ {−ω~p−10·Γ~p,−ω~p+10·Γ~p} and ω23 ∈ {−ω~p−10·Γ~p,−ω~p+10·Γ~p}
on the left side and ω21 ∈ {ω~p − 10 · Γ~p, ω~p + 10 · Γ~p} and ω23 ∈ {ω~p − 10 · Γ~p, ω~p + 10 · Γ~p} on the right side at
fixed ω~p for t = 10−2 1/GeV.

From the plot it is clear that the main contributions are given at ω21 ≈ ±ω~p and ω23 ≈ ∓ω~p corresponding to
our expectation motivated by the estimate presented before.

All in all these observations motivate to approximate ω21 ≈ ±ω~p and ω23 ≈ ∓ω~p. Further we have seen
that the width of the peaks is determined by multiples of Γ~p and therefore of order ∼ O(λ2T ) making it
possible to cross check results as explained in the next section.
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7.4 Approximating the gauge corrected Lepton Number Matrix

We are now able to use the results from the last section to approximate the gauge corrected lepton number
matrix

Lii(t, t) = −24

π2
λii

t∫
0

t∫
0

t2∫
0

∞∫
−∞

∞∫
−∞

∞∫
0

M

ω~p
cos(ω~py13)fF (ω~p)fF (ω21)e−Γ~p(ω~p)

t1+t3
2 Re

[
e−i(ω21y21+ω23y23)

]
(328)

[σh(ω21, p)σh(ω23, p) + σψ(ω21, p)σψ(ω23, p)] p
2dp

dω21

2π

dω23

2π
dt3dt2dt1.

The ω21, ω23 dependent part of the full expression is given as

W (ω21, ω23) :=

∞∫
−∞

∞∫
−∞

fF (ω21)Re
[
e−i(ω21y21+ω23y3)

]
[σh(ω21, p)σh(ω23, p) + σψ(ω21, p)σψ(ω23, p)]

dω21

2π

dω23

2π
.

(329)

In the previous section we have shown that the main contribution to Lii is given by setting ω23 → −ω21±a with
the width a given by multiples of Γ~p. For this purpose we set the integration boundaries of the ω23 integration
to −ω21 − a and −ω21 + a with a > Γ~p but a < ω21

W (ω21, ω23) :=

∞∫
−∞

−ω21+a∫
−ω21−a

fF (ω21)Re
[
e−i(ω21y21+ω23y3)

]
[σh(ω21, p)σh(ω23, p) + σψ(ω21, p)σψ(ω23, p)]

dω21

2π

dω23

2π

(330)

=

∞∫
0

−ω21+a∫
−ω21−a

fF (ω21)Re
[
e−i(ω21y21+ω23y3)

]
[σh(ω21, p)σh(ω23, p) + σψ(ω21, p)σψ(ω23, p)]

dω21

2π

dω23

2π

+

0∫
−∞

−ω21+a∫
−ω21−a

fF (ω21)Re
[
e−i(ω21y21+ω23y3)

]
[σh(ω21, p)σh(ω23, p) + σψ(ω21, p)σψ(ω23, p)]

dω21

2π

dω23

2π
.

Changing first ω21 → −ω21 and then ω23 → −ω23 in the second integral leads to

0∫
−∞

−ω21+a∫
−ω21−a

fF (ω21)Re
[
e−i(ω21y21+ω23y3)

]
[σh(ω21, p)σh(ω23, p) + σψ(ω21, p)σψ(ω23, p)]

dω21

2π

dω23

2π
(331)

=

∞∫
0

ω21+a∫
ω21−a

fF (−ω21)Re
[
e−i(−ω21y21+ω23y3)

]
[σh(−ω21, p)σh(ω23, p) + σψ(−ω21, p)σψ(ω23, p)]︸ ︷︷ ︸

=[σψ(ω21,p)σh(ω23,p)+σh(ω21,p)σψ(ω23,p)]

dω21

2π

dω23

2π

=

∞∫
0

−ω21+a∫
−ω21−a

fF (−ω21)Re
[
ei(ω21y21+ω23y3)

]
[σψ(ω21, p)σh(−ω23, p) + σh(ω21, p)σψ(−ω23, p)]︸ ︷︷ ︸

=[σψ(ω21,p)σψ(ω23,p)+σh(ω21,p)σh(ω23,p)]

dω21

2π

dω23

2π
.

All in all we arrive at

W (ω21, ω23) =

∞∫
0

−ω21+a∫
−ω21−a

Re
(
fF (ω21)e−i(ω21y21+ω23y23) + fF (−ω21)ei(ω21y21+ω23y23)

)
(332)

[σh(ω21, p)σh(ω23, p) + σψ(ω21, p)σψ(ω23, p)]
dω21

2π

dω23

2π

=

∞∫
0

−ω21+a∫
−ω21−a

cos(ω21y21 + ω23y23) [σh(ω21, p)σh(ω23, p) + σψ(ω21, p)σψ(ω23, p)]
dω21

2π

dω23

2π
.
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Further we have seen in the last section that the main contribution is given for ω21 ≈ −ω23 ≈ ±ω~p. Since
the coefficients σψ(ω, p) and σh(ω, p) do not vary much for ω ∈ {ω~p − a, ω~p + a} with a = a(Γ~p) we can
approximate10

σh(ω21, p) ≈ σ(ω~p, p), (333)

σψ(ω21, p) ≈ σψ(ω~p, p).

On top of that we have ω23 ∈ {−ω21−a,−ω21 +a}, so when approximating σ(ω21, p) ≈ σ(ω~p, p) we can further
approximate

σh(ω23, p) ≈ σh(−ω~p, p) = σψ(ω~p, p), (334)

σψ(ω23, p) ≈ σψ(−ω~p, p) = σh(ω~p, p).

Putting everything together leads to the following result

W (ω21, ω23) ≈ 2

∞∫
0

−ω21+a∫
−ω21−a

cos(ω21y21 + ω23y23)
dω21

2π

dω23

2π
[σh(ω~p, p)σψ(ω~p, p)] (335)

= 2

∞∫
0

2
cos(ω21(y21 − y23)) sin(ay23)

y23

1

2π

dω21

2π
[σh(ω~p, p)σψ(ω~p, p)] .

Note that this can be written as

2
cos(ω21(y21 − y23)) sin(ay23)

y23
=

sin(ay23)

y23

(
eiω21(y21−y23) + e−iω23(y21−y23)

)
, (336)

making it possible to solve the remaining ω21 integral

∞∫
0

eiω21(y21−y23) dω21

2π
=

∞∫
−∞

Θ(ω21)eiω21(y21−y23) dω21

2π
=

i

2π(y21 − y23)
+

1

2
δ(y21 − y23), (337)

∞∫
0

e−iω21(y21−y23) dω21

2π
=

∞∫
−∞

Θ(ω21)e−iω21(y21−y23) dω21

2π
=

−i

2π(y21 − y23)
+

1

2
δ(y21 − y23).

Finally we end up with

W (ω21, ω23) =

∞∫
0

sin(ay23)

πy23

(
eiω21(y21−y23) + e−iω23(y21−y23)

) dω21

2π
[σh(ω~p, p)σψ(ω~p, p)] (338)

=
sin(a(t2 − t3))

π(t2 − t3)
δ(t3 − t1)× [σh(ω~p, p)σψ(ω~p, p)] .

We can now solve the time integrals of the lepton number matrix Lii.

Lii(t, t) = −24

π2
λii

t∫
0

t∫
0

t2∫
0

∞∫
0

M

ω~p
cos(ω~py13)fF (ω~p)e

−Γ~p(ω~p)
t1+t3

2 W (ω21, ω23)p2dpdt3dt2dt1 (339)

= −24

π2
λii

∞∫
0

t∫
0

t∫
0

t2∫
0

M

ω~p
cos(ω~py13)fF (ω~p)e

−Γ~p(ω~p)
t1+t3

2
sin(a(t2 − t3))

π(t2 − t3)
δ(t3 − t1)dt3dt2dt1

× [σh(ω~p, p)σψ(ω~p, p)] p
2dp.

10Remember that ω21 ∈ {0,∞} now after using some symmetry properties.
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The time part can be solved using mathematica [Wol17] leading to

Lii =− 48

π2
λii

∫ ∞
0

M

ω~p
fF (ω~p)

1

4Γ~p
e−Γ~pt

(
2i(−CoshIntegral[t(−ia+ Γ~p)] + CoshIntegral[t(ia+ Γ~p)]

+ln[−ia+ Γ~p]− ln[ia+ Γ~p] + SinhIntegral[t(ia+ Γ~p)] + SinhIntegral[t(ia− Γ~p)])

+ 4eΓ~ptSinIntegral[at]
)
× [σh(ω~p, p)σψ(ω~p, p)] p

2dp. (340)

Finally it is even possible to investigate the limit at→∞ while keeping Γ~pt fixed leading to an a-independent
result of the lepton number matrix. In practice this corresponds to the case a � Γ~p. Performing the limit
leads to

Lii(t, t) = − 48

(2π)2
λii

∞∫
0

Mp2

ω~p
fF (ω~p)

1− e−Γ~pt

Γ~p
× [σh(ω~p, p)σψ(ω~p, p)] dp. (341)

As explained previously this is only valid for t & 1/Γ~p with the relevant momentum of order p ∼ O(T ) because
the σ-coefficients do not vary much from their ”on-shell” value at ω = ω~p.

7.5 Interpreting the Result

The obtained result is remarkable due to the following points:

At first we can have a look at the limit t→∞ arriving at

lim
t→∞

Lii(t, t) = − 48

(2π)2
λii

∞∫
0

Mp2

ω~p
fF (ω~p)

1

Γ~p
× [σh(ω~p, p)σψ(ω~p, p)] dp. (342)

In section 7.3 we found

lim
t→∞

Lii(t, t) = −48

π3

∞∫
−∞

∞∫
0

M

ω~p

fF (ω~p)(Γ
2
~p + 4(ω2

~p + ω2
21))

Γ4
~p + 16(ω2

~p − ω2
21)2 + 8Γ2

~p(ω
2
~p + ω2

21)
σψ(ω21, p)σh(ω21, p)p

2 dω21dp. (343)

Approximating now the σ-coefficients as done previously makes it possible to integrate out the ω21 dependent
part

σh(ω21, p) ≈ σh(ω~p, p) (344)

σψ(ω21, p) ≈ σψ(ω~p, p),

∞∫
−∞

(Γ2
~p + 4(ω2

~p + ω2
21))

Γ4
~p + 16(ω2

~p − ω2
21)2 + 8Γ2

~p(ω
2
~p + ω2

21)

dω21

2π
=

1

8Γ~p
. (345)

All in all we end up with

lim
t→∞

Lii(t, t) = − 48

(2π)2
λii

∞∫
0

Mp2

ω~p
fF (ω~p)

1

Γ~p
× [σh(ω~p, p)σψ(ω~p, p)] dp. (346)

This is exactly the same result we found after applying the approximation first and integrating out both ω
dependent parts and performing the limit t→∞ afterwards.

Further the time dependent part of the result has the same structure as the solution of the Boltzmann equation
given in section 1.4. The Kadanoff-Baym calculation presented in [Ani+11] could also reproduce this time
dependence by introducing thermal widths for SM propagators ”by hand” [Ani+11, p. 27]. In our case we
have used a much more rigorous procedure to systematically include gauge corrections using resummation also
arriving at the same time dependence known from Boltzmann analysis. This not only legitimates a Boltzmann
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Ansatz but also it could be proven that gauge corrections are essential to arrive at this kind of time dependence
in a quantum mechanical approach.

Though it should be mentioned once again that the obtained approximated result is only valid for times
t & 1/Γ~p. For smaller times memory and off-shell effects play a more important role making the restriction
ω21 = −ω23 = ±ω~p too strict. For small times smaller momenta become more important and the σ-coefficients
deviate much stronger from their ”on-shell” value around ω ≈ ω~p. Nevertheless it is possible to investigate the
effect of gauge corrections for sufficiently large times t & O(λ−2T−1).

As mentioned previously it is possible to test the approximation further using the following approach. We
motivated the approximation by investigating the main contributions to the integral, given at ω21 ≈ −ω23 and
ω21 ∈ {±ω~p − a,±ω~p + a} with a = a(Γ~p) a & Γ~p. Instead of approximating the σ-coefficients directly we can
also keep the restricted integral boundaries. We arrive at the following expression that should lead to similar
results (|a| < ω~p)

Lii(t, t) = −24

π2
λii

∞∫
0

 ω~p+a∫
ω~p−a

−ω~p+a∫
−ω~p−a

M

ω~p
T (t, ω21, ω23, ω~p, p)fF (ω~p)fF (ω21) (347)

[σh(ω21, p)σh(ω23, p) + σψ(ω21, p)σψ(ω23, p)]
dω21

2π

dω23

2π
−ω~p+a∫
−ω~p−a

ω~p+a∫
ω~p−a

M

ω~p
T (t, ω21, ω23, ω~p, p)fF (ω~p)fF (ω21)

[+σh(ω21, p)σh(ω23, p) + σψ(ω21, p)σψ(ω23, p)]
dω21

2π

dω23

2π

]
p2dp.

Unluckily a numerical treatment is much more involving in this case. That is why we only perform it in one
case for less points to make a cross check of results.

For a better numerical treatment it is convenient to simplify the expression by changing ω23 → −ω23 in
the first and ω21 → −ω21 in the second integral

Lii(t, t) = −24

π2
λii

∞∫
0

 ω~p+a∫
ω~p−a

ω~p+a∫
ω~p−a

M

ω~p
T (t, ω21,−ω23, ω~p, p)fF (ω~p)fF (ω21) (348)

[+σh(ω21, p)σψ(ω23, p) + σψ(ω21, p)σh(ω23, p)]
dω21

2π

dω23

2π
ω~p+a∫
ω~p−a

ω~p+a∫
ω~p−a

M

ω~p
T (t,−ω21, ω23, ω~p, p)fF (ω~p)fF (−ω21)

[σh(ω21, p)σψ(ω23, p) + σψ(ω21, p)σh(ω23, p)]
dω21

2π

dω23

2π

]
p2dp.

Here we have used the symmetries of σ(ω, p) from section 7.1 again.

At the end one could think of a Taylor expansion of σ around ω~p. This is not possible because linear and
higher order contributions of ω21 and ω23 appear in the integrand leading to divergent integral expressions.
This gives evidence that it is not possible to expand the σ-parts in a straight forward Taylor expansion. Maybe
it would be possible to restrict the calculation onto a small interval around the expansion point ω~p and perform
an expansion on a compact interval to calculate corrections and obtain a reasonable result. Regarding pre-
vious results it should be expected that such a calculation requires a difficult and especially costly numerical
treatment.
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8 Numerical Results

In the following the results from numerical calculations of the approximated gauge corrected lepton number
matrix will be presented. At first the time dependence of the lepton number matrix at fixed parameters
T = 1011 GeV and M = 1010 GeV is investigated to learn about the thermalization of the result. Next we are
going to have a closer look at the temperature dependence of the gauge corrections. Hereby the time is left
fixed by looking at the infinite time limit. Finally the results are compared to the result of the lepton number
matrix as presented in [Ani+11, p. ] to determine the effect of gauge corrections.

8.1 Numerical Setup

Before starting with the presentation of results several details of the numerical algorithms have to be pointed
out.

8.1.1 Model Parameters

As explained in the Introduction our work is based on the model first considered in [Ani+11]. We want to
observe the effect of gauge corrections in this scenario. To compare our results to [Ani+11] we are working
with a heavy neutrino mass of M = 1010 GeV. Further as presented in section 3 and 5 the inclusion of gauge
corrections is based on a the method presented in [ABB11]. In analogy we choose the coupling of the decay
width to be |λ|2 = 10−8. Indeed the choice of coupling is not determined since the only term of our result
containing the gauge corrected decay width has the form

T (t) =
1− e−Γ~pt

Γ~p
(349)

It is possible to rescale t such that |λ|2t is left constant, so the result can be given easily for any other value of
|λ|2.

Since the heavy neutrino has not been observed yet, the weakness of the coupling λii is yet unknown. In-
stead of working with an estimate all results will be given without the coupling Lii/λii because it can be
factorized out.

8.1.2 Standard Model Couplings

All other parameters are well known from the standard model. We are working with the following standard
model parameters [Pat+16]

µZ := mZ = 91.1876(21) GeV, (350)

αem(τZ) = 1/127.950(17),

αs(τZ) = 0.1182(16),

sin2(ΘW (τZ)) = 0.23129(5),

mt = 173.21(1.22) GeV,

mH = 125.09(24) GeV,

GF = 1.1663787(6) · 10−5 GeV−2,

denoting τZ = ln(µZ/µ0). The scale of the system has been set at µ0 = 2πTR with reheating temperature
TR = 109 GeV in analogy to [ABB11]. Using these parameters the renormalization group equations can be
solved to obtain renormalized SM couplings.

69



In analogy to [ABB11] the renormalization group equations from [SW96; Ara+92] are taken

dg2
1

dτ
=

g4
1

8π2

41

10
+O

(
g6
)
, (351)

dg2
2

dτ
=

g4
2

8π2

(
−19

6

)
+O

(
g6
)
,

dg2
3

dτ
=

g4
3

8π2
(−7) +O

(
g6
)
,

dλ2
t

dτ
=

λ2
t

8π2

(
9

2
λ2
t −

17

20
g2

1 −
9

4
g2

2 − 8g2
3

)
+O

(
g6
)
,

dΛ

dτ
=

1

16π2

(
27

200
g4

1 +
9

20
g2

1g
2
2 +

9

8
g4

2 −
9

5
g2

1Λ− 9g2
2Λ− 6λ4

t + 12λ2
tΛ + 24Λ2

)
+O

(
g6
)
.

Here τ is given as τ := ln(µ/µ0). The notation O(g6) implies any combination of SM couplings up to the
estimated order, note that Λ is of order Λ ∼ O

(
g2
)
. In section 5 we introduced the couplings g and g′ in

context of the Debeye masses. They can now be identified as g1 ≡ g and g2 ≡ g′. The SM parameters and the
renormalization group equations are related via

α1(τZ) :=
g2

1(τZ)

4π
=

αem(τZ)

cos2(ΘW (τZ))
, (352)

α2(τZ) :=
g2

2(τZ)

4π
=

αem(τZ)

sin2(ΘW (τZ))
,

α3(τZ) :=
g2

3(τZ)

4π
= αs(τZ),

λt(τZ) := g2
t (τZ) = 2

√
2m2

tGF ,

Λ(τZ) := g2
Λ(τZ) =

√
2

2
mHGF .

The renormalization group equations for g1, g2 ad g3 can be solved analytically leading to

g2
i (τ) =

ci
di − τ

, (353)

where the coefficients ci are given as

c1 =
80π2

41
, d1 =

20π(1− sin2(ΘW (τZ)))

41αem(τZ)
+ τZ , (354)

c2 =
48π2

19
, d2 =

12π sin2(ΘW (τZ))

19αem(τZ)
− τZ ,

c3 =
8π2

7
, d3 =

2π

7αs(τZ)
− τZ .

The remaining equations for λt and Λ have to be solved numerically. This is done using a Boolirsch-Stoer
algorithm from the BOOST C++ library [Boo15].
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8.1.3 Structure of the Program

The program is written in C++ and structured the following way:

After setting up the temperature and mass M of the heavy neutrino the renormalization group equations
are solved to obtain the standard model couplings. Next an integration routine is called to solve the lepton
number matrix. For a cross check we have tested various routines from different libraries including the CUBA
library [Hah05] and the GSL library [Con10].

The integration routine calls a routine calculating the integrand and returning its value. Besides a constant
prefactor the integrand has three parts:

Lii(t, t) = − 48

(2π)2
λii

∞∫
0

Mp2

ω~p
fF (ω~p)︸ ︷︷ ︸

”statistics-part”

1− e−Γ~pt

Γ~p︸ ︷︷ ︸
”time-part”

× [σh(ω~p, p)σψ(ω~p, p)]︸ ︷︷ ︸
”self−energy−part”

dp. (355)

Since the integral has infinity as upper bound it is convenient to check if the integrand function reaches zero
for large momenta and therefore a upper bound below infinity exists. To emphasize this the integrand function
is plotted at fixed time t = 10−1 1/GeV leading to
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Figure 24: Integrand Lint
ii (t, t) at fixed t = 10−1 1/GeV

Obviously it is possible to identify an upper bound and the result is finite. The different parts of the integrand
function are calculated the following way:

• Statistics-Part: The statistics part is just given by equilibrium distribution functions and constant
parameters that can be solved easily.

• Time-Part: The time dependent part is a function of the gauge corrected decay width. Depending on
the chosen integration algorithm the decay width is implemented in two different ways:

From section 5.1 we know that the gauge corrected decay width can be written as a function of the
σ-coefficients

Γ~p(ω~p) = −|λ|
2d(r)

2ω~p

(
(ω~p + p‖)σh(ω~p, p‖) + (ω~p − p‖)σψ(ω~p, p‖)

)
. (356)

As a consequence it can be calculated in the same way as the self energy part. Especially when calculating
Lii as a function of T this is very useful since the decay width and the self energy part can be calculated
in one step.

When calculating Lii as a function of t with fixed temperature T = 1011 GeV, the decay width has
been calculated separately and stored in a grid file. The grid file is created with an overall accuracy of
acc = 5.0 · 10−2 starting at p‖ = 2.741556 · 104 GeV with a value of Γ~p = 1.57099006 · 1010 GeV. The
width turned out to be sufficiently small at p‖ ≈ 6.34 · 1012 GeV reaching Γ~p ≈ 1.700775 · 10−1 GeV
marking the last value of the grid file.
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• Self-Energy-Part: The calculation of the σ-coefficients is the most involving part. Recalling their
expression from section 5.3 shows that a one dimensional integral has to be solved

σh(ω, p‖) :=

∞∫
−∞

F(p‖, k‖)

4k2
‖(k‖ − p‖)

Im(c2,h(ω, p‖, k‖))
dk‖

2π
, (357)

σψ(ω, p‖) :=

∞∫
−∞

F(p‖, k‖)

k‖ − p‖
Re(c2,ψ(ω, p‖, k‖))

dk‖

2π
.

The integrand function of the σ-coefficients depends on the c2-coefficients. To obtain the c2-values an
asymptotic solution of the differential equations for ψ and h presented in section 6 is needed. This has
to be done for every point the integrand function needs to be evaluated leading to some numerical effort.
The c2-coefficients are then given as

Re(c2,ψ) = − lim
b→∞

Re

(
ψ

(p)
1 (b)

ψ
(2)
1 (b)

)
= −

ψ
(p)
1,r(b∞)ψ

(2)
1,r(b∞) + ψ

(p)
1,i (b∞)ψ

(2)
1,i (b∞)(

ψ
(2)
1,r(b∞)

)2

+
(
ψ

(2)
1,i (b∞)

)2 , (358)

Im(c2,h) = − lim
b→∞

Im

(
h

(p)
1 (b)

h
(2)
1 (b)

)
= −

h
(p)
1,i (b∞)h

(2)
1,r(b∞)− h(p)

1,r(b∞)h
(2)
1,i (b∞)(

h
(2)
1,r(b∞)

)2

+
(
h

(2)
1,i (b∞)

)2 . (359)

The program module calculating the c2-coefficients consists of two parts: One part calculating c2,ψ and
the other c2,h. The solution of the differential equations is done by making use of a Runge-Kutta-Cash-
Sharp (4,5) method which turned out to be the fastest and most stable Runge-Kutta method. The
algorithm is implemented from the open source library GNU scientific library [Con10]. It turned out that
b0 = 10−5/T for ψ(0) = ψ(b0) is a good initial value [Hüt13, p. 80].

The value of b∞ is obtained the following way:

The program starts with b∞ = 0.1/T and calculates the c2-coefficient. Afterwards the value of b∞ is
increased via the iteration

b∞ = b∞ + 0.1/T the first 20 counts, (360)

b∞ = b∞ + 2./T until 80 counts,

b∞ = b∞ + 10./T until 20000/T.

The loop ends if a plateau for c2 is reached. This is done by comparing the last four c2-values with
each other and if the plateau tolerance hplt = 10−3 is reached the final value is taken as result. If more
than 20000/T iterations are needed the program gives a warning and uses the mean value of the last four
c2-coefficients as result. This only appears for very high momenta which have no large contribution to Lii.

The Runge-Kutta solver works at a relative tolerance of tolrel = 10−6 with the first integration step
given by hstart = 10−10.
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To obtain σ the one dimensional integral over k‖ needs to be solved. This is done using an integration
routine from the GNU Scientific Library [Con10] named QAG adaptive integration. Since we need to solve
an integral with infinite boundaries again an upper and lower bound has to be found by investigating the
integrand function. For this purpose the integrand function is scanned in positive and negative direction
starting at k‖ = ±1010 GeV to find a bound by increasing the momentum k‖ = 1.8 ·k‖ each step until the
integrand value I(k‖) is below I(±k‖,cut) < 10−10. Afterwards the integration algorithm is started with
the corresponding integral bounds kcut. To demonstrate that this is possible an example of the integrand
of σh and σψ is plotted.
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Figure 25: Integrand function of σψ(p, ω~p) left and σψ(p, ω~p) right for M = 1010 GeV, T = 1011 GeV at fixed
ω~p = 1.0074 · 1012 GeV as a function of k‖.

The integration routine works with a relative tolerance of tolrel = 10−2.

For a better understanding the program structure is shown in the following visualization:

integral.cpp
rge_solver.cpp 

renormalization-
group equations

GSL – QAG
adaptive integration

CUBA – VEGAS
Monte - Carlo

CUBA – SUAVE
Monte - Carlo

CUBA – CUHRE
adaptive integration

integrand.cpp integrand.cpp

width.cpp width.cpp
From grid

c2 - coefficients

c2_h_gsl_rkcs.cpp c2_psi_gsl_rkcs.cpp

σ - Part 

σ_h.cpp
GSL adaptive

σ_psi.cpp
GSL adaptive

c2_h.cpp
GSL  - rkcs

c2_psi.cpp
GSL - rkcs

Figure 26: Structure of the C++ program, rkcs stands for the ODE method Runge-Kutta-Cash-Sharp.
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8.2 Thermalization of Lii

At first the result of Lii(t, t) as a function of t for fixed M = 1010 GeV and T = 1011 GeV is presented.
To prove the independence on the choice of algorithm the calculation is performed using different integration
algorithms from the open source libraries GSL [Con10] and CUBA [Hah05].

8.2.1 GSL - QAG adaptive Integration

The result is calculated using the QAG adaptive integration algorithm from the GNU scientific library [Con10].
This is the same algorithm used to calculate the σ-contributions. The integral to solve has the following form
known from the previous section

Lii(t, t) = − 48

(2π)2
λii

∞∫
0

Mp2

ω~p
fF (ω~p)

1− e−Γ~pt

Γ~p
× [σh(ω~p, p)σψ(ω~p, p)] dp. (361)

Note that in this case the decay width of the Majorana neutrino can directly be computed by making use of
the /sigma-coefficients calculated in the integrand function. The integrator works at a relative tolerance of
tolrel = 10−2.
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Figure 27: Result for M = 1010 GeV, T = 1011 GeV using the GSL QAG adaptive integration algorithm with
a relative tolerance of tolrel = 10−2.

Note that we have taken −Lii to plot our results. This is not surprising since keeping B − L = constant
while changing B + L as it is the case when converting the lepton asymmetry to a baryon asymmetry via the
sphaleron processes requires an extend of antileptons over leptons.11

11This can easily be checked with a simple example by starting with an extend of antileptons over leptons L = l − l̄ < 0 and a
vanishing baryon number B = b− b̄ = 0 and shifting the asymmetry while keeping B − L = constant.
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8.2.2 CUBA - VEGAS adaptive Monte Carlo Integration

As a first cross-check Lii(t, t) is calculated using the adaptive Monte Carlo algorithm VEGAS provided by the
CUBA library [Hah05]. Monte Carlo algorithms are most efficient for multidimensional integrals, in fact the
algorithm provided by CUBA only works for at least d & 2 integral dimensions. This is why the σ-terms need
to be replaced by their explicit expression known from section 5.3 leading to a three dimensional integral

Lii(t, t) = − 48

(2π)2
λii

∞∫
0

∞∫
−∞

∞∫
−∞

Mp2

ω~p
fF (ω~p)

1− e−Γ~pt

Γ~p
(362)

×

[
F(p, k‖)

4k2
‖(k‖ − p)

Im(c2,h(ω~p, p, k‖))
F(p, k‖)

k‖ − p
Re(c2,ψ(ω~p, p, k‖))

]
dk‖

2π

dk‖

2π
dp.

Now the c2-coefficients are computed instead of the /sigma-coefficients. As a result it is not possible to calculate
the decay width directly because it would slow down the computation dramatically. This is why the width is
calculated separately and stored in a grid file. In the calculation the data can then be read from the grid file.
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Figure 28: Result for M = 1010 GeV, T = 1011 GeV using the VEGAS Monte Carlo algorithm from the CUBA
library with a relative tolerance of tolrel = 10−2.
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8.2.3 CUBA - CUHRE multidimensional Integration

As a second cross-check Lii(t, t) is calculated using the multidimensional adaptive integration algorithm CUHRE
also provided by the CUBA library [Hah05]. The expression calculated has the same form as presented in the
last section. Again we have to make use of the grid file for the Majorana decay width.
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Figure 29: Result for M = 1010 GeV, T = 1011 GeV using the GSL QAG adaptive integration algorithm with
a relative tolerance of tolrel = 10−1.

The CUHRE algorithm converges much slower and it was only possible to calculate Lii up to a relative toler-
ance of tolrel = 10−1.

The three results for the gauge corrected lepton number matrix calculated with three different integration
algorithms show very good agreement. The integration algorithms are implemented correctly and the result
does not depend on the choice of algorithm. For the following calculations we choose the QAG algorithm
provided by the GSL library, because no grid file for the decay width is needed. This is very useful when
calculating Lii as a function of temperature T because the decay width itself is a function of T , making the
use of a grid file not possible or very unlikely.

The presented results for the lepton number thermalize fast. Thermalization is reached at times around
t & 1/GeV exactly as expected from previous considerations in section 7. On top of that we expected that for
times larger then t > 1/Γ~p it is sufficient to work with the thermalized lepton number matrix limt→∞ Lii(t, t).
The thermalized result is shown as dotted blue line in the plots and we can see that it is indeed sufficient to
use it for times t > 1/Γ~p. In section 7.3 we pointed out that the dominant regions of the integral are given at
momenta p ∼ T . In this region the decay width has the value 1/Γ~p . 1/GeV . The corresponding timescale
of thermalization was given as t & 1/Γ~p ∼ O(λ−2T−1). This could now be proven to be the case. For smaller
times t the e−Γ~pt/Γ~p contribution has a bigger impact on the integral value. This can also be observed in the
plots by looking at the green line. When increasing time the e−Γ~pt/Γ~p contribution becomes smaller and the
remaining time independent part proportional to 1/Γ~p is dominant. Recalling that in the limit t→∞ only the
1/Γ~p contribution remains explains the perfect agreement of Lii(t, t) and Lii(t→∞) for large times.
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8.2.4 Crosscheck via restricted Integration Boundaries using SUAVE

Finally we want to compare the result of the approximated lepton number matrix Lii to the expression with
restricted integration boundaries for ω21 and ω23 from section 7.5

Lii(t, t) = −24

π2
λii

∞∫
0

 ω~p+a∫
ω~p−a

ω~p+a∫
ω~p−a

M

ω~p
T (t, ω21,−ω23, ω~p, p)fF (ω~p)fF (ω21) (363)

[σh(ω21, p)σψ(ω23, p) + σψ(ω21, p)σh(ω23, p)]
dω21

2π

dω23

2π
ω~p+a∫
ω~p−a

ω~p+a∫
ω~p−a

M

ω~p
T (t,−ω21, ω23, ω~p, p)fF (ω~p)fF (−ω21)

[σh(ω21, p)σψ(ω23, p) + σψ(ω21, p)σh(ω23, p)]
dω21

2π

dω23

2π

]
p2dp.

In section 7.3 we have seen that choosing a = 100 · Γ~p seems to be sufficient but nevertheless we have cho-
sen a = 1000 · Γ~p in the calculation to be on the safe side. For small momenta this choice of a leads to
|a| > ω~p → ω~p − a < 0. In this regions the prefactor 1000 is divided by 10 until ω~p − a ≥ 0. It should be
mentioned that these regions do not contribute significantly to the integral.

The calculation is much more involving than previous calculations because several σ values have to be cal-
culated. On top of that as pointed out in section 7.3 the integrand is narrowly peaked, leading to a high
numerical sensitivity of the problem. It turned out that calculating the integral after reinserting the expres-
sions for σh and σψ is much more efficient. All in all the following 5 dimensional integral is calculated

Lii(t, t) = −24

π2
λii

∞∫
0

∞∫
−∞

∞∫
−∞

 ω~p+a∫
ω~p−a

ω~p+a∫
ω~p−a

M

ω~p
T (t, ω21,−ω23, ω~p, p)fF (ω~p)fF (ω21) (364)

(
F(p‖, k‖)

4k2
‖(k‖ − p‖)

F(p‖, k
′
‖)

(k′‖ − p‖)
Im(c2,h(ω21, p‖, k‖))Re(c2,ψ(ω23, p‖, k

′
‖))

F(p‖, k‖)

(k‖ − p‖)
F(p‖, k

′
‖)

4k
′2
‖ (k′‖ − p‖)

Re(c2,ψ(ω21, p‖, k‖))Im(c2,h(ω23, p‖, k
′
‖))

)
dω21

2π

dω23

2π

ω~p+a∫
ω~p−a

ω~p+a∫
ω~p−a

M

ω~p
T (t,−ω21, ω23, ω~p, p)fF (ω~p)fF (−ω21)

(
F(p‖, k‖)

4k2
‖(k‖ − p‖)

F(p‖, k
′
‖)

(k′‖ − p‖)
Im(c2,h(ω21, p‖, k‖))Re(c2,ψ(ω23, p‖, k

′
‖))

F(p‖, k‖)

(k‖ − p‖)
F(p‖, k

′
‖)

4k
′2
‖ (k′‖ − p‖)

Re(c2,ψ(ω21, p‖, k‖))Im(c2,h(ω23, p‖, k
′
‖))

)
dω21

2π

dω23

2π

]
dk‖

2π

dk′‖

2π
p2dp.

The integration has been performed by making use of the adaptive Monte Carlo algorithm SUAVE provided
by the CUBA library. In contrast to the VEGAS algorithm, SUAVE splits the integral into subintervals to
find the largest contributions by sampling points in these subintervals. Unluckily the calculation becomes more
slow in this case but a positive effect on convergence is achieved. Never the less a large number of points needs
to be calculated to obtain a convergent result.
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The result of the calculation is shown in the following plot and compared to the approximated result cal-
culated using GSL from section 8.2.1.
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Figure 30: Result for M = 1010 GeV, T = 1011 GeV with restricted integral boundaries for ω23 = −ω21 and
ω21 ∈ {±ω~p−1000 ·Γ~p,±ω~p+1000 ·Γ~p} calculated using the SUAVE adaptive Monte Carlo algorithm provided
by the CUBA library. The computations are done with a relative tolerance of tolrel = 10−2 and compared
to the approximated result of Lii from section 8.2.1 calculated with the QAG adaptive integration algorithm
provided by the GSL library.

The results slightly differ for small times t. This is not surprising since the approximation of the σ-coefficients
is best for large times t & 1/Γ~p because they do not vary much from their value at ω = ω~p. On top of that the
narrowly peaked behavior of the integrand function increases when increasing time. It can be observed that
around the thermalization time t ∼ 1/Γ~p the results from both calculations fit the best. Especially around
t ∈ {10−2/GeV, 1/GeV } the results fit pretty good. For small times the results are still at the same order of
magnitude so that the result with approximated σ-coefficients gives reasonable information about the effect of
gauge corrections.

Large times are numerically very costly since the prefactor T (t) given in Appendix C is very narrowly peaked.
As a result it is very difficult for the algorithm to identify the subintervals with the largest contributions for
large times. The error seems to be underestimated and for even larger times no convergence is achieved.

All in all this is the first result for Lii up to one loop order where gauge corrections are systematically in-
cluded.
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8.3 The thermalized Result

To observe the effect of gauge corrections on the lepton number matrix it is interesting to look at the thermalized
result given by the limit t → ∞. Up to now gauge corrections have only be investigated by adding thermal
damping widths ’per hand’ to the SM propagators [Ani+11]

∆±,eq~k
(y) = ∆±~k

(y)e−γφ|y|, S±,eq~k
(y) = S±~k

(y)e−γl|y|. (365)

To investigate the effect of our systematic approach on gauge corrections we are going to compare our result
to the result of [Ani+11, p. 36-37]

Lii(t, t) = −3λiiM

16π3

∞∫
0

∞∫
0

k′max(p)∫
k′min(p)

q+∫
q−

q′+∫
q′−

1

ω~p

(
1− p2 + k2 − q2

2pk

p2 + k
′2 − q′2

2pk′

)
fl,φ(k, q)fl,φ(k′, q′)feqN (ω~p)

× γγ′

((ω~p − k − q)2 + γ2)((ω~p − k′ − q′)2 + γ′2
1− e−Γt

Γ︸ ︷︷ ︸
t→∞

= 1
Γ

kk′dq′dqdk′dkdp, (366)

where we have defined γ(k, q) = γl + γφ, γ′ = γ(k′, q′). The integration boundaries have the following form

k′min =
ω~p − p

2
, k′min =

ω~p + p

2
, (367)

q± = |p± k|, q′± = |p± k′|.

Further details on the calculation can be found in Appendix D or in [Ani+11, App. C]. We have integrated out
the k dependence in the result of [Ani+11] to compare it to our result for the gauge corrected lepton number
matrix.

In [Ani+11] the SM thermal damping widths are estimated to be γ = γ′ ∼ 6g2

8π T ∼ 0.1T [Bel11]. On top
of that we are going to vary the thermal widths γ to investigate the behavior of the [Ani+11] result as a
function of γ and to fit it to the result of our systematic approach. Further, sticking to the formulation of
[Ani+11, p. 41], the Majorana decay width is estimated to be Γ ∼ 10−7M as pointed out in [BPY05]. Similar
to our considerations for the SM widths γ we are going to investigate the effect on the result when varying Γ.
The 5 dimensional integral is solved with the VEGAS adaptive Monte-Carlo algorithm provided by the CUBA
library [Hah05].

The result with systematic corrections is again calculated using the QAG adaptive integration algorithm pro-
vided by GSL [Con10]

Lii(t→∞) = − 48

(2π)2
λii

∞∫
0

Mp2

ω~p
fF (ω~p)

1

Γ~p
× [σh(ω~p, p)σψ(ω~p, p)] dp. (368)

Since we are working at fixed time t→∞ we are going to have a look at the result as a function of temperature
T . We would expect that gauge corrections (especially when looking at the corrections to the CP- violating
diagram from section 4) play an important role for temperatures beyond the heavy neutrino mass T > M .
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Figure 31: Result for M = 1010 GeV, Γ ∼ 10−6 ·M using the GSL QAG adaptive integration algorithm to
compute the full result and the CUBA VEGAS Monte Carlo algorithm to compute the expression of [Ani+11].
Both integrator work at a relative tolerance of tolrel = 10−2.
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Figure 32: Result for M = 1010 GeV, Γ ∼ 10−7 ·M using the GSL QAG adaptive integration algorithm to
compute the full result and the CUBA VEGAS Monte Carlo algorithm to compute the expression of [Ani+11].
Both integrator work at a relative tolerance of tolrel = 10−2.
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Figure 33: Result for M = 1010 GeV, Γ ∼ 10−8 ·M using the GSL QAG adaptive integration algorithm to
compute the full result and the CUBA VEGAS Monte Carlo algorithm to compute the expression of [Ani+11].
Both integrator work at a relative tolerance of tolrel = 10−2.

All 3 plots make clear that the systemically gauge corrected result of Lii and the result from [Ani+11] lead
to comparable results in the order of magnitude. Systematic gauge corrections do lead to a deviation but not
to a dramatically new situation. This is especially interesting for vertex corrections that are taken into account
when calculating the cylindrical diagram. Such corrections are not included properly in the Ansatz of thermal
damping widths for SM propagators.

The shape of the full corrected result of Lii shows an interesting behavior at temperatures T ∼ M under-
lining our expectation that gauge corrections are important at temperatures above the heavy neutrino mass
T & M . This becomes even more clear when comparing the shape of the systematically gauge corrected Lii
and the shape of LBuch

ii . The important difference between the two graphs is that the LBuch
ii shape does not

flatten at T ∼M . Just from comparing the shapes the Ansatz of thermal damping widths for SM propagators
seems reasonable for temperatures below the neutrino mass T .M .

This becomes even more clear comparing the different results for different thermal damping widths γ and
neutrino decay widths Γ. The estimate of Γ~p ≈ 10−7 ·M and γ ≈ 0.1 · T , as motivated by [Ani+11], is plotted
in the second graph as green line. It intersects the red line denoting our full result of Lii at a temperature
slightly larger then T ∼M . As introduced in section 1 the parameters M = 1010 GeV and T = 1011 GeV are
connected to the physical scenario. The green line stays close to the red line for temperatures above T > M
making it possible to conclude that the estimate made for the parameters Γ~p and γ is reasonable. Nevertheless
the effect is even a little overestimated because reducing γ to γ ∼ 0.01 · T leads to the blue line in the second
graph. The blue line intersects the red line at temperatures slightly above T > 1011 GeV and is even closer
to the full gauge corrected result at T = 1011 GeV leaving the effect only a little underestimated. We can
conclude that the optimal value is somewhere between γ ≈ 0.1−0.01 ·T . When increasing γ the effect is clearly
overestimated for T = 1011 GeV and M = 1010 GeV, but the results fit better for low temperatures.

We have further investigated the behavior of LBuch
ii when varying the Majorana decay width Γ~p. For a larger

width Γ~p ∼ 10−6 ·M it is still possible to fit the result to the value of Lii at M = 1010 GeV and T = 1011 GeV by
increasing γ as seen from the pink line in the first graph. But in general the difference between the red Lii and
LBuch
ii seems to be to large. More interesting is to investigate a smaller decay width as Γ~p ∼ 10−8 ·M ∼ 10−2

GeV. Note that this value for Γ~p is in good correspondence to the value of the gauge corrected decay width
at the relevant momentum scale o(T ). For small temperatures T < M the full result of Lii and the result of
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LBuch
ii with Γ~p = 10−8 ·M and γ = 0.01 · T denoted as blue line in the third plot do agree nearly perfectly. On

top of that one can clearly notice that non trivial corrections become important for temperatures beyond the
heavy neutrino mass T ≥M , because the results start to differ above T &M .

All in all we can conclude that gauge corrections have an impact on the thermalized result of the lepton
number matrix. Especially for temperatures beyond the heavy neutrino mass T &M non-linear gauge correc-
tions as for example vertex corrections are important. A similar dependence of gauge corrections for T & M
has been found by Frederik Depta in his Master thesis by investigating the effect of propagator and vertex
corrections separately.

8.4 Time dependent Result

In this section we are going to compare the time dependent result of section 8.2 for fixed temperature T = 1011

GeV and fixed mass M = 1010 GeV to the time dependence of the result found in [Ani+11]. Our aim is to
investigate for which choice of parameters Γ~p and γ a similar time dependence of both results is achieved.
On top of that we have calculated the result of [Ani+11] using the gauge corrected decay width of the heavy
neutrino as developed in section 5.1. In this case we only need to estimate γ.
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Figure 34: Time dependent result of Lii with fixed M = 1010 GeV and T = 1011 GeV compared to LBuch
ii

for different Γ~p and γ. Lii calculated using GSL QAG and LBuch
ii using CUBA VEGAS both with a relative

tolerance of tolrel = 10−2.

Looking at the orange and the cyan graph it becomes clear that the result thermalizes faster as the full gauge
corrected result given as the red line. The reason for that can be understood easily recalling our results from
section 8.2. The orange and the cyan graph are both dealing with a decay width of Γ~p ∼ 10−8 ·M ∼ 102

GeV. As explained in section 8.2 a corresponding timescale for thermalization is then given as t ∼ 1/Γ~p ∼ 10−2

1/GeV. This fits very well to the observation made: The result thermalizes for times t ∼ 10−2 1/GeV.

In section 8.2 we have seen that the full gauge corrected result thermalizes for times t ∼ 1 GeV, because of that
we have a closer look at the result of [Ani+11] for a smaller Majorana decay width of Γ~p ∼ 10−9 ·M ∼ 10 GeV.
The results given as black and violet line in the plot show that thermalization is reached later now comparing
better to the red full gauge corrected result.

Varying only the decay width of the heavy neutrino is not sufficient. Moreover we have to vary the ther-
mal damping widths of SM propagators γ as well. It shows that a smaller Γ~p requires a smaller γ because
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otherwise the effect is overestimated. This becomes clear when comparing the cyan and the violet line to the
other lines.

Unluckily as smaller Γ~p and γ get as more difficult is a numerical treatment. It can clearly be noticed that the
noise increases and the error is underestimated. Increasing the number of calculated points has only a marginal
effect on the result making it most likely that machine precision has been reached. This is also the reason why
a discussion for even smaller decay widths is left out.

Finally we are having a look at the result calculated with a gauge corrected heavy Majorana decay width.
In this case the values of Γ~p are taken from the grid file introduced earlier.
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Figure 35: Time dependent result of Lii with fixed M = 1010 GeV and T = 1011 GeV compared to LBuch
ii with

gauge corrected Γ~p and different values of γ. Lii calculated using GSL QAG and LBuch
ii using CUBA VEGAS

both with a relative tolerance of tolrel = 10−2.

As expected the timescale for thermalization is identical now because all results are working with the full gauge
corrected Majorana decay width. More interesting is the final value of Lii that is reached after thermalization.
In both cases for γ ∼ 10−5 · T and γ ∼ 10−6 · T the final value lies above the full value of Lii. Lowering γ
has the effect that the final value becomes smaller, but still the results do not fit. On the other hand for small
times t the result with γ ∼ 10−6 · T fits pretty good to the full gauge corrected result.

From this observation we can conclude that it is not sufficient to work only with a gauge corrected Majorana
decay width. In fact when working with a gauge corrected decay width non trivial gauge corrections to the self
energy part of the lepton matrix are indispensable. It is interesting to see that the result of [Ani+11] can be ’fit-
ted’ better to the result involving a systematic treatment of gauge corrections when leaving Γ~p constant. This
constant value has to be small Γ~p . 10−9 ·M to reproduce the correct time dependence as seen in the beginning.

For completeness it should be mentioned that the data of LBuch
ii with a gauge corrected decay width again

shows increasing numerical noise for smaller γ. In this case calculating more points is even slower and also only
marginal improvement is observed. Again it seems that machine precision has been reached. Keep in mind that
the whole discussion depends on the choice of coupling |λ|2 = 10−8 in the calculation of the Majorana neutrino
decay width. Choosing a smaller value shifts thermalization to later times whereas a larger value results in
earlier thermalization. The actual physical value is unknown since the particle has not been detected yet.
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8.5 Temperature and Time dependent Result

Finally for completeness we are going to investigate the gauge corrected lepton number matrix as a function
of temperature T and time t. As done previously the calculations are performed with the QAG adaptive
integration algorithm provided by the GSL library.
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Figure 36: Result of the full gauge corrected lepton number matrix Lfull
ii (t, t) at fixed M = 1010 GeV as a

function of T and t using the GSL QAG adaptive integration algorithm with a relative tolerance of tolrel = 10−2.

Again it is possible to recognize a thermalization at times t ∼ 1/Γ~p & 1/GeV . On top of that for temperatures
beyond the heavy neutrino mass T & M a bump in the shape can be noticed, as observed previously for the
thermalized lepton number matrix. For small times t this effect is even more visible. The reason for that has to
be connected to the importance of gauge corrections to the decay width of the neutrino since it is the only part
of the integral with an explicit time dependence. For small times the e−Γ~pt/Γ~p term has a larger contribution
to the integral. This corresponds to the observation made in section 8.1 at fixed temperature. Plotting the
dependence explicitly leads to the following graph.
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Figure 37: Result of the full gauge corrected lepton number matrix Lfull
ii (t, t) and the ∼ e−Γ~pt/Γ~p contribution at

fixed M = 1010 GeV. Calculated using the GSL QAG adaptive integration algorithm with a relative tolerance
of tolrel = 10−2.
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Now the temperature and time dependent Lii is plotted in comparison to LBuch
ii for different γ and Γ~p.
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Figure 38: Four different views of the result of Lfull
ii (t, t) compared to LBuch

ii (t, t) at fixed M = 1010 GeV and
γ ∼ 0.1 · T , Γ~p ∼ 10−7 ·M . Both calculated with a relative tolerance of tolrel = 10−2.
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Figure 39: Four different views of the result of Lfull
ii (t, t) compared to LBuch

ii (t, t) at fixed M = 1010 GeV and
γ ∼ 0.01 · T , Γ~p ∼ 10−7 ·M . Both calculated with a relative tolerance of tolrel = 10−2.

full gauge corrected Lfullii (t, t)
LBuchii (t, t) with γ ∼ 0.1 · T , Γ~p ∼ 10−8 ·M

10−410−310−210−1100 101 102 103

t [1/GeV]
108109101010111012

T [GeV]

1038
1040
1042
1044
1046
1048
1050
1052
1054

−
L
ii

(t
,t

)/
λ
ii

[G
eV

4
]

full gauge corrected Lfullii (t, t)
LBuchii (t, t) with γ ∼ 0.1 · T , Γ~p ∼ 10−8 ·M

10−4
10−3

10−2
10−1

100
101

102
103

t [1/GeV] 108 109 1010 1011 1012

T [GeV]

1038
1040
1042
1044
1046
1048
1050
1052
1054

−
L
ii

(t
,t

)/
λ
ii

[G
eV

4
]

full gauge corrected Lfullii (t, t)
LBuchii (t, t) with γ ∼ 0.1 · T , Γ~p ∼ 10−8 ·M

10−410−310−210−1100101102103

t [1/GeV]

108
109

1010
1011

1012

T [GeV]

1038
1040
1042
1044
1046
1048
1050
1052
1054

−
L
ii

(t
,t

)/
λ
ii

[G
eV

4
]

full gauge corrected Lfullii (t, t)
LBuchii (t, t) with γ ∼ 0.1 · T , Γ~p ∼ 10−8 ·M

10−410−310−210−1100101102103

t [1/GeV]

108
109

1010
1011

1012

T [GeV]

1038
1040
1042
1044
1046
1048
1050
1052
1054

−
L
ii

(t
,t

)/
λ
ii

[G
eV

4
]

Figure 40: Four different views of the result of Lfull
ii (t, t) compared to LBuch

ii (t, t) at fixed M = 1010 GeV and
γ ∼ 0.1 · T , Γ~p ∼ 10−8 ·M . Both calculated with a relative tolerance of tolrel = 10−2.
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Figure 41: Four different views of the result of Lfull
ii (t, t) compared to LBuch

ii (t, t) at fixed M = 1010 GeV and
γ ∼ 0.01 · T , Γ~p ∼ 10−8 ·M . Both calculated with a relative tolerance of tolrel = 10−2.

87



As observed in the thermalized case in section 8.2 the estimated result for Lii presented in [Ani+11] com-
pares well to our systematic approach. Both results do not differ much in the order of magnitude. Nevertheless
there are some important differences that can also be noticed now for running temperature and time.

At first the shapes of the results differ. As pointed out in the beginning this can be observed very well in
all 4 graphs, especially for small times. The reason for that has already been given earlier: Since the only
time dependent part of the gauge corrected lepton number matrix is connected to the Majorana decay width,
a gauge corrected decay width becomes crucial, making especially non trivial gauge corrections, as for example
vertex corrections to the Majorana self energy, more important for small times t.

We have calculated 4 cases: two with a Majorana decay width of Γ~p ∼ 10−7 · M and two different ther-
mal widths of SM propagators γ ∼ 0.1 · T and γ ∼ 0.01 · T and two with a decay width of Γ~p ∼ 10−8 ·M and
again two different thermal damping widths γ ∼ 0.1 · T and γ ∼ 0.01 · T . We have left out an investigation of
the lepton number matrix with Γ~p ∼ 10−6 ·M and γ ∼ T because in section 8.2 we could observe that the effect
of gauge corrections is overestimated for this choice of parameters by comparing the results. Investigating now
the intersections between the calculated results makes it possible to observe the effect of systematical gauge
corrections.

For standard parameters, as motivated by [Ani+11], γ ∼ 0.1 · T and Γ~p ∼ 10−7 ·M the deviation between the
systematically corrected result and the result with SM damping widths increases for smaller times t. For large
times t & 1/Γ~p thermalization is reached and we have the same situation investigated previously in section 8.3.
Comparing this to the smaller thermal damping width γ ∼ 0.01 · T shows that the intersection between the
results is shifted to the left. As a result the deviation for small times becomes smaller giving evidence that the
effect is a little smaller than estimated in [Ani+11]. This fits well to our observations from section 8.3. When
comparing the shape of the graphs in temporal direction one notices that the result of LBuch

ii is more flat. Since
the only time dependent part of the lepton number matrix is proportional to the heavy neutrino decay width
∼ e−Γ~pt this gives evidence that the estimate for the non-corrected decay width is to big.

For this reason it is reasonable to look at a smaller decay width estimating Γ~p ∼ 10−8 · M . As pointed
out in section 8.3 this is in better correspondence to the value of the gauge corrected Γ~p at the relevant mo-
mentum scale p ∼ O(T ). Comparing now the shape of the two results in t-direction shows that the red line
is not as flat as in the previous case for a larger Majorana decay width and therefore the shapes fit better.
Nevertheless for small times the result still seems to be a little overestimated.

Further we are looking at two cases for the SM damping widths γ. Comparing both results shows that the
result with γ ∼ 0.1 · T has a bigger deviation from our systematic gauge corrected result than the result with
γ ∼ 0.01 · T . In correspondence to previous observations made in section 8.3 the two results fit very well for
large times and small temperatures below the heavy neutrino mass T < M , especially in the case γ ∼ 0.01 · T .
Again it can clearly be noticed that the deviation increases for temperatures above the heavy neutrino mass
T ≥ M . In analogy to the observation made for a bigger Majorana decay width this is even more visible for
small times t. Again this is because the time dependent part of the lepton number matrix is connected to the
Majorana decay width Γ~p. In section 7.3 we have seen that the dominating part of the integral is given at mo-
menta p ∼ O(T ). In this region the gauge corrected heavy Majorana decay width is small, such that estimating
a small value for the decay width leads to reasonable results. Considering now small times has the effect that
the ∼ e−Γ~pt part in the integrand plays a more important role such that already lower momenta contribute
compared to the thermalized case. As a result a gauge corrected decay width becomes more important because
the decay width can not be kept at a small constant value. On the other hand the σ-contributions are time
independent and give the same values independently on t, but since we have seen now that lower momenta
become more important for small times since they are not suppressed by ∼ e−Γ~pt anymore, gauge corrections
to the σ-part play a more important role for small times. For this reason it is possible to understand that
corrections have a bigger effect on the result for temperatures T > M when considering small times, making
them more visible in our results.
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Finally we can conclude three things:

Non trivial gauge corrections are important for temperatures beyond the heavy neutrino mass T > M . This
could not only be proven to be the case when looking at the thermalized version of Lii, for small times t the
effect is even more visible.
Further we have seen that a smaller heavy Majorana decay width Γ~p than the estimate Γ~p ∼ 10−7 ·M leads
not only to a better result when comparing the time dependence of the results but also the value compares
better to the value of the full gauge corrected decay width at relevant momentum p ∼ O(T ). Never the less
this depends on the choice of |λ|2 in the calculation of the gauge corrected Majorana decay width.
Finally the value γ ∼ 0.1 · T seems to overestimate the effect of gauge corrections a little, especially when
dealing with a small decay width Γ~p. We have seen that a smaller value as γ ∼ 0.01 · T leads to a behavior
that compares better. Nevertheless the estimate Γ~p ∼ 10−7 ·M and γ ∼ 0.1 ·T presented in [Ani+11] is a good
approximation for the thermalized lepton number matrix.
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9 Conclusion and Research Perspectives

In this thesis the effect of gauge corrections on a Leptogenesis scenario has been investigated. This has been done
by systematically including gauge corrections in a full quantum mechanical treatment involving nonequilibrium
Kadanoff-Baym equations. Our calculation was motivated by previous analysis done by Anisimov, Buchmüller
et al. [Ani+11]. Their results were briefly repeated in section 2 and 4 in this thesis. In analogy to [Ani+11]
we considered an effective theory where 2 of 3 heavy neutrinos were integrated out. The remaining Majorana
neutrino is considered to be an out-of-equilibrium particle weakly coupled to a thermal bath of SM leptons and
Higgs fields. In this scenario it was possible to start from a zero initial abundance of the heavy neutrino and
based on that it was possible to solve the Kadanoff-Baym equations for the heavy Majorana neutrino obtaining
an out-of-equilibrium propagator. The lepton asymmetry is now caused by the CP-violating out-of-equilibrium
decay of the heavy neutrino. For this purpose the CP-violating diagrams needed to be identified in section 4.
With these diagrams at hand a measure for the lepton asymmetry could be calculated referred to as lepton
number matrix.
Gauge corrections could be included to the lepton number matrix in two steps: First by calculating a gauge
corrected decay width of the heavy neutrino, second by making use of a cylindrical diagram that systemati-
cally includes all propagator and vertex corrections to the CP-violating diagrams. The idea of the cylindrical
diagram has first been proposed in [Hüt13]. It appeared that in both cases a resummation of the Majorana
self energy is needed. In section 3 such a resummation scheme for the self energy has been presented based on
previous works by Anisimov, Bödecker et al. [ABB11]. It was pointed out that not only propagator corrections
could be included by making use of asymptotic masses for SM equilibrium propagators, but also a systematic
resummation for the Majorana self energy had to be performed. For this purpose the procedure of CTL resum-
mation has been presented in section 3 leading to a recursion relation making it possible to calculate a ladder
diagram for the Majorana self energy [ABB11].
Based on the results of section 3 and 4 it was now possible to formulate a systematic gauge corrected lepton
number matrix in section 5. Note that the final result slightly differs from the expression found in previous
analysis made by [Hüt13].
After presenting a numerical procedure to calculate the gauge corrections in section 6 an approximation for
the gauge corrected lepton number matrix has been presented in section 7. By investigating the thermalized
limit t→∞ we have shown that the integrand function of the full expression is narrowly peaked. As a result it
was possible to restrict the calculation on the regions with the largest contributions leading to a much simpler
form of the gauge corrected lepton number matrix. After applying the approximation it could be shown that
the final result has the same time dependence as observed previously using Boltzmann equations to calculate
the asymmetry. This is very interesting to see because for Anisimov, Buchmüller et al. it was only possible to
arrive at this kind of time dependence in a quantum mechanical approach by including thermal widths γ for
SM propagators ’by hand’ [Ani+11]. A systematic treatment was still missing. We could now not only present
a systematic gauge corrected result of the lepton number matrix calculated purely quantum mechanical but
also the approximated result reproduces the same time dependence known from Boltzmann analysis and the
approach taken by [Ani+11]. In fact we could show that gauge effects do lead to a result for the lepton number
matrix that compares to the Boltzmann case as supposed by Anisimov and Buchmüller. On top of that this
proves that Boltzmann analysis is indeed possible.
The final section 8 presented the numerical results obtained by solving the approximated integral from section
7. Sticking to the model of [Ani+11] we first investigated the time dependence of the result at fixed temperature
T ∼ 1011 GeV and fixed heavy neutrino mass M ∼ 1010 GeV. It could be shown that the result thermalizes on a
timescale given by t ∼ 1/Γ~p ∼ 1/GeV with the value of the Majorana decay width Γ~p ∼ 1 GeV given at relevant
momentum p ∼ O(T ). The calculation has been tested using various numerical algorithms all leading to the
same result. Further it was possible to show that the approximation is best for times t & 1/Γ~p ∼ 1/GeV . Next
we investigated the temperature dependence of the gauge corrections at fixed time t → ∞ corresponding to
the thermalized version of the integral. It was possible to show that gauge corrections are important especially
for temperatures beyond the heavy neutrino mass T ≥ M . Further we compared the full result to the result
from [Ani+11]. Doing this it was possible to search for an optimal set of the parameters Γ~p and γ used in the
result of [Ani+11]. We could show that Γ~p ∼ 10−7 ·M and γ ∼ 0.1 · T is the best global approximation for all
temperatures of the full result, but using Γ~p ∼ 10−8 ·M and γ ∼ 0.01 · T reproduces the behavior of the full
result for small temperatures T nearly perfectly. This underlines again the argument that gauge corrections are
most important for temperatures T ≥M . By investigating the time dependence of the result for fixed T = 1011

GeV and M = 1010 GeV once again and comparing it to the result from [Ani+11] we could additionally show
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that a smaller value for Γ~p . 10−8 ·M compares better to the value of the full gauge corrected decay width at
relevant momentum p ∼ O(T ) and to the timescale of thermalization of the full gauge corrected lepton number
matrix. Nevertheless this depends of course on the choice of coupling |λ|2 = 10−8 in the calculation of the
gauge corrected heavy Majorana neutrino decay width. On top of that we calculated the result from [Ani+11]
using the gauge corrected heavy Majorana neutrino decay width. By doing so we could show that working only
with a gauge corrected decay width but leaving out the systematic treatment via the cylindrical diagram is
not sufficient. Of course the result has the correct thermalization behavior but it is not possible to fit it to the
full gauge corrected result by making a correct guess for the SM damping width γ. A full treatment especially
involving non trivial gauge corrections to the CP-violating diagrams as for example vertex corrections is in-
evitable. Finally we could underline these results by investigating both the temperature and time dependence.
In general the choice of Γ~p ∼ 10−7 ·M and γ ∼ 0.1 · T overestimates the corrections a little, but especially for
temperatures T ≥ M non-trivial gauge corrections become important as for example corrections to the CP-
violating diagrams. This effect could also be investigated by Frederik Depta in his Master thesis on the subject.

We provided a result for a Leptogenesis scenario that systematically includes gauge corrections and showed
that gauge corrections have an effect especially for T ≥M in this thesis. Nevertheless our results did not lead
to a dramatically new situation and we could show that Boltzmann analysis is indeed possible. On top of that
there are still some open questions that could be addressed in future work:

It might be possible to drop some of the approximations made in the quantum mechanical treatment of the
problem. We have worked with an effective theory where 2 of 3 heavy neutrinos where integrated out, thus
it could be interesting to investigate a model with 2 or even all 3 heavy neutrinos. Especially the model of
resonant Leptogenesis could be of interest (for a recent review see [Dev+17]). On top of that only the two-loop
diagrams contributing to CP-violation were taken into account. In a future work one could of course investigate
higher loop order corrections.
Further in the framework of this thesis Hubble expansion was neglected. It is possible to formulate the Kadanoff-
Baym equations including a Hubble term, a formulation can for example be found in [Men10]. Never the less
it remains questionable if these equations are solvable especially it is unlikely to find an analytic solution as it
was possible in our case without Hubble expansion.
Another neglected effect in our model is washout. There a numerous loop diagrams that have to be included
in a systematic treatment of washout. Such a treatment will lead to highly complicated expressions that can
probably only be treated numerically.
We have shown that gauge corrections in a quantum mechanical treatment do not rule out a treatment using
Boltzmann equations due to memory effects or other specific effects of nonequilibrium QFT. As a result it
could be interesting to investigate the scenario further using Boltzmann equations instead of a Kadanoff-Baym
treatment. Especially the effect of Hubble expansion can be included much easier in a Boltzmann treatment
of the problem.
Finally latest models have considered a combination of GUT Baryogenesis and Leptogenesis and it would be
interesting to investigate how both models work together. The same holds for Leptogenesis and the frequently
discussed model of electroweak Baryogenesis.
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10 Appendix A - Feynman Rules

In the following the Feynman rules for propagators and vertices will be given [Hüt13]

• Majorana neutrino propagator:

x2,β x1,α
N

iGαβ(x1x2)

• Lepton propagator:

x2,β,b,j x1,α,a,i
l

iδijδabSαβ(x1, x2)

• Scalar propagator:

x2,b x1,a
φ

iδab∆(x1, x2)

• Majorana-lepton-Higgs vertices:

β

i, α, a

b

N

l

φ

iλ∗i1εab(PR)αβ

β

i, α, a

b

N

l

φ

iλi1εab(CPL)βα

• Lepton-lepton-Higgs-Higgs effective vertices

i, α, a

j, β, b

c

d

l φ

l φ

iη∗ij(εacεbd + εadεbc)(PRC)αβ

i, α, a

j, β, b

c

d

l φ

l φ

iηij(εacεbd + εadεbc)(CPL)αβ

with the chiral projectors PR = 1
2 (1 + γ5) and PL = 1

2 (1 − γ5) and the Levi-Civita tensor in 2 dimensions
εab = −εba.
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11 Appendix B - List of Propagators

The following propagators can also be found in [Ani+11, App. A]. They are given as a function of relative time
y = t1 − t2 and total time t = (t1 + t2)/2.

• Free massive scalar propagators with on-shell momentum ω~q =
√
m2 + ~q2,

∆~q(y)− =
1

ω~q
sin(ω~qy), (369)

∆+
~q (y) =

1

2ω~q
coth

(
βω~q

2

)
cos(ω~qy), (370)

∆>
~q (y) =

1

2ω~q

(
coth

(
βω~q

2

)
cos(ω~qy)− i sin(ω~qy)

)
, (371)

∆<
~q (y) =

1

2ω~q

(
coth

(
βω~q

2

)
cos(ω~qy) + i sin(ω~qy)

)
. (372)

• Free massive Dirac fermion propagators with on-shell momentum ω~k =
√
m2 + ~k2

S−~k
(y) = iγ0 cos(ω~ky) +

m− ~k · ~γ
ω~k

sin(ω~ky), (373)

S+
~k

(y) = −1

2
tanh

(
βω~k

2

)(
iγ0 sin(ω~ky)− m− ~k · ~γ

ω~k
cos(ω~ky)

)
, (374)

S>~k (y) =
γ0

2

(
cos(ω~ky)− itanh

(
βω~k

2

)
sin(ω~ky)

)
+
m− ~k~γ

2ω~k

(
tanh

(
βω~k

2

)
cos(ω~ky)− i sin(ω~ky)

)
,

(375)

S<~k (y) =
γ0

2

(
cos(ω~ky)− itanh

(
βω~k

2

)
sin(ω~ky)

)
+
m− ~k~γ

2ω~k

(
tanh

(
βω~k

2

)
cos(ω~ky) + i sin(ω~ky)

)
.

(376)

• Nonequilibrium massive Majorana fermion ω~p =
√
M2 + ~p2

G−~p (t, y) =

(
iγ0 cos(ω~py) +

M − ~p~γ
ω~p

sin(ω~py)

)
e−Γ~p|y|/2C−1, (377)

G+
~p (t, y) = −

(
iγ0 sin(ω~py)− M − ~p~γ

ω~p
cos(ω~py)

)
×
(

1

2
tanh

(
βω~p

2

)
e−Γ~p|y|/2 + feqN (ω~p)e

−Γ~pt

)
C−1,

(378)

G>~p (t, y) = G+
~p (t, y)− i

2
G−~p (t, y), (379)

G<~p (t, y) = G+
~p (t, y) +

i

2
G−~p (t, y). (380)
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12 Appendix C - Full time integrated Lepton Number Matrix

The full expression of the time integral

T (t) =

t∫
0

t∫
0

t2∫
0

cos(ω~py13)e−Γ~p(ω~p)
t1+t3

2 Re
[
e−i(ω21y21+ω23y23)

]
dt3dt2dt1 (381)

=

t∫
0

t∫
0

t2∫
0

cos(ω~p(t1 − t3))e−Γ~p(ω~p)
t1+t3

2

[cos(ω21(t2 − t1)) cos(ω23(t2 − t3))− sin(ω21(t2 − t1)) sin(ω23(t2 − t3))]dt3dt2dt1

will be given. Using mathematica [Wol17] one ends up with

T (t) =
4e−

1
2 Γ~pt(ω21 − ω23)

(ω2
23 − ω2

21)(Γ2
~p + 4(ω23 − ω~p)2)(Γ2

~p + 4(ω23 + ω~p)2)(Γ2
~p + 4(ω21 − ω~p)2)(Γ2

~p + 4(ω21 + ω~p)2)
(382){

2Γ~p(ω21 + ω23)
[
8ω2

~p(Γ2
~p + 2(ω2

21 − 4ω21ω23 + ω2
23)) + (Γ2

~p + 4ω2
21)(Γ2

~p + 4ω2
23) + 16ω4

~p

]
×
[
e

1
2 Γ~pt cos(ω21t) cos(ω23t)− cos(ω~pt)(cos(ω21t) + cos(ω23t))

]
− 32Γ~pω~p(ω21 − ω23)(ω21 + ω23) sin(ω~pt)(Γ

2
~p − 4ω21ω23 + 4ω~p) sin

(
1

2
(ω21 − ω23)t

)
cos

(
1

2
(ω21 + ω23)t

)
+ 8ω~p(ω21 − ω23) sin(ω~pt)

[
Γ4
~p − 4Γ2

~p(ω
2
21 + 4ω21ω23 + ω2

23 − 2ω2
~p) + 16(ω2

21 − ω2
~p)(ω2

23 − ω2
~p)
]

× sin

(
1

2
(ω21 − ω23)t

)
sin

(
1

2
(ω21 + ω23)t

)
+ (Γ2

~p − 4ω21ω23 + 4ω2
~p)×

[
Γ4
~p + 4Γ2

~p(ω
2
21 + ω2

23 + 2ω2
~p) + 16(ω2

21 − ω2
~p)(ω2

23 − ω2
~p)
]

×
[

cos(ω~pt)(sin(ω21t) + sin(ω23t))− e
1
2 Γ~pt cos(ω21t) sin(ω23t)

]
+ sinh

(
1

2
Γ~pt

)
×
[

sin(ω21t) cos(ω23t)(−Γ2
~p + 4ω21ω23 − 4ω2

~p)

×
(

Γ4
~p + 4Γ2

~p(ω
2
21 + ω2

23 + 2ω2
~p) + 16(ω2

21 − ω2
~p)(ω2

23 − ω2
~p)
)
− 2Γ~p(ω21 + ω23)(sin(ω21t) sin(ω23t) + 1)

×
(

8ω2
~p(Γ2

~p + 2(ω2
21 − 4ω21ω23 + ω2

23) + (Γ2
~p + 4ω2

21)(Γ2
~p + 4ω2

23) + 16ω4
~p

)]
+ cosh

(
1

2
Γ~pt

)
×
[

sin(ω21t) cos(ω23t)(−Γ2
~p + 4ω21ω23 − 4ω2

~p)

×
(

Γ4
~p + 4Γ2

~p(ω
2
21 + ω2

23 + 2ω2
~p) + 16(ω2

21 − ω2
~p)(ω2

23 − ω2
~p)
)
− 2Γ~p(ω21 + ω23)(sin(ω21t) sin(ω23t)− 1)

×
(

8ω2
~p(Γ2

~p + 2(ω2
21 − 4ω21ω23 + ω2

23) + (Γ2
~p + 4ω2

21)(Γ2
~p + 4ω2

23) + 16ω4
~p

)]}
.
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13 Appendix D - Result for Lii as calculated in [Ani+11]

In this Appendix we want to have a closer look at the result of Lii presented in [Ani+11]. We have used it to
compare it to our full gauge corrected result. Starting point is the following expression of the lepton number
matrix given in [Ani+11, p. 32]

L~k,ii(t, t) = −3λiiM

∫
~q,~q′

k · k′

kk′ω~p

γγ′

((ω~p − k − q)2 + γ2)((ω~p − k′ − a′)2 + (γ′)2
(383)

fl,φ(k, q)fl,φ(k′, q′)feqN (ω~p)
1− e−Γt

Γ
.

To arrive at this result SM propagators with thermal damping widths have been used

∆±,eq~k
(y) = ∆±~k

(y)e−γφ|y|, S±,eq~k
(y) = S±~k

(y)e−γl|y|, (384)

denoting γ = γ(k, q) = γφ + γl, γ
′ = γ(k′, q′).

Following [Ani+11] we define the angles with respect to the momentum ~p: θ = ∠(~k, ~p), θ′ = ∠(~k′, ~p) and

ϕ′ = ∠(~k⊥,~k
′
⊥). In this case the perpendicular mark denotes perpendicular to ~p.

We choose the following coordinate system

~̂k =

cos θ
sin θ

0

 , ~̂k′ =

 cos θ′

sin θ′ cosϕ′

sin θ′ sinϕ′

 . (385)

The product of 4-vectors can then be written as

k · k′ = kk′(1− ~̂k~̂k′) = kk′(1− (cos θ cos θ′ + sin θ sin θ′ cosϕ′)). (386)

Since we are interested in the integrated lepton number matrix Lii we have to look at the following expression

Lii(t, t) = −3λiiM

∫
Ω~k

∞∫
0

∫
~q,~q′

1− cos θ cos θ′ − sin θ sin θ′ cosϕ′

ω~p

γγ′

((ω~p − k − q)2 + γ2)((ω~p − k′ − a′)2 + (γ′)2

(387)

fl,φ(k, q)fl,φ(k′, q′)feqN (ω~p)
1− e−Γt

Γ
k2dkdΩ~k.

Following [Ani+11] we change variables (~q, ~q′)→ (~p,~k′)

Lii ∼
∫ ∫

(1− cos θ cos θ′ − sin θ sin θ′ cosϕ′)F (θ, θ′, ...)dΩ~kdΩ~k′ (388)

=

1∫
−1

1∫
−1

2π∫
0

2π∫
0

(1− cos θ cos θ′ − sin θ sin θ′ cosϕ′)F (θ, θ′, ...)dφdφ′d cos(θ)d cos(θ′)

= (2π)2

1∫
−1

1∫
−1

(1− cos θ cos θ′)F (θ, θ′, ...)d cos(θ)d cos(θ′).

We have used that the integrand function F (θ, θ′, ...) does not depend on ϕ′.

The integral has the following form now

Lii(t, t) = −3λii
M

16π3

1∫
−1

1∫
−1

∞∫
0

∞∫
0

∞∫
0

1− cos θ cos θ′

qq′ω~p

γγ′

((ω~p − k − q)2 + γ2)((ω~p − k′ − a′)2 + (γ′)2
(389)

fl,φ(k, q)fl,φ(k′, q′)feqN (ω~p)
1− e−Γt

Γ
p2dpk2dkk

′2dk′d cos θd cos θ′.
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Recall that in [Ani+11] the notation of the integrals had been defined as∫
~q

=

∫
d3q

2(2π)3q0
. (390)

Changing the variables the following way

q = |~p− ~k| = (p2 + k2 − 2pk cos θ)
1
2 , (391)

q′ = |~p− ~k′| = (p2 + k
′2 − 2pk′ cos θ)

1
2 ,

− q

pk
dq = d cos θ, − q′

pk′
= d cos θ′,

leads to

Lii(t, t) = −3λiiM

16π3

∞∫
0

∞∫
0

k′max(p)∫
k′min(p)

q+∫
q−

q′+∫
q′−

1

ω~p

(
1− p2 + k2 − q2

2pk

p2 + k
′2 − q′2

2pk′

)
fl,φ(k, q)fl,φ(k′, q′)feqN (ω~p)

× γγ′

((ω~p − k − q)2 + γ2)((ω~p − k′ − q′)2 + γ′2
1− e−Γt

Γ
kk′dq′dqdk′dkdp. (392)

The integration boundaries are chosen similar to [Ani+11] given as the maximal value of q and q′ connected
to the change of variables

q± = |k ± p|, q′± = |k′ ± p|. (393)

Further the constraint p > (M2 − 4k
′2)/(4k′) [Ani+11, p. 49] leads to

k′ >
ω~p − p

2
:= k′min(p), k′ <

ω~p + p

2
:= k′max(p). (394)

This is the result simulated in section 8.3. For more details see [Ani+11, App. C].

96



References

[ABB11] Alexey Anisimov, Denis Besak, and Dietrich Bodeker. “Thermal production of relativistic Majo-
rana neutrinos: Strong enhancement by multiple soft scattering”. In: JCAP 1103 (2011), p. 042.
doi: 10.1088/1475-7516/2011/03/042. arXiv: 1012.3784 [hep-ph] (cit. on pp. 5, 21, 24–29, 39,
48, 49, 51, 63, 69, 70, 90).

[AD85] Ian Affleck and Michael Dine. “A New Mechanism for Baryogenesis”. In: Nucl. Phys. B249 (1985),
pp. 361–380. doi: 10.1016/0550-3213(85)90021-5 (cit. on p. 8).

[Ani+10] A. Anisimov, W. Buchmuller, M. Drewes, and S. Mendizabal. “Leptogenesis from Quantum In-
terference in a Thermal Bath”. In: Phys. Rev. Lett. 104 (2010), p. 121102. doi: 10 . 1103 /

PhysRevLett.104.121102. arXiv: 1001.3856 [hep-ph] (cit. on p. 19).

[Ani+11] A. Anisimov, W. Buchmüller, M. Drewes, and S. Mendizabal. “Quantum Leptogenesis I”. In:
Annals Phys. 326 (2011). [Erratum: Annals Phys.338,376(2011)], pp. 1998–2038. doi: 10.1016/j.
aop.2011.02.002,10.1016/j.aop.2013.05.00. arXiv: 1012.5821 [hep-ph] (cit. on pp. 4, 5,
11, 13, 15–21, 30–32, 35–37, 58, 59, 67, 69, 79–83, 88–91, 93, 95, 96).

[Ara+92] H. Arason, D. J. Castano, B. Keszthelyi, S. Mikaelian, E. J. Piard, Pierre Ramond, and B. D.
Wright. “Renormalization group study of the standard model and its extensions. 1. The Standard
model”. In: Phys. Rev. D46 (1992), pp. 3945–3965. doi: 10.1103/PhysRevD.46.3945 (cit. on
p. 70).

[Aur+02] P. Aurenche, F. Gelis, G. D. Moore, and H. Zaraket. “Landau-Pomeranchuk-Migdal resummation
for dilepton production”. In: JHEP 12 (2002), p. 006. doi: 10.1088/1126-6708/2002/12/006.
arXiv: hep-ph/0211036 [hep-ph] (cit. on p. 29).

[Bah+99] Neta A. Bahcall, Jeremiah P. Ostriker, Saul Perlmutter, and Paul J. Steinhardt. “The Cosmic
triangle: Assessing the state of the universe”. In: Science 284 (1999), pp. 1481–1488. doi: 10.
1126/science.284.5419.1481. arXiv: astro-ph/9906463 [astro-ph] (cit. on p. 4).

[Bam+12] Kazuharu Bamba, Salvatore Capozziello, Shin’ichi Nojiri, and Sergei D. Odintsov. “Dark energy
cosmology: the equivalent description via different theoretical models and cosmography tests”.
In: Astrophys. Space Sci. 342 (2012), pp. 155–228. doi: 10.1007/s10509-012-1181-8. arXiv:
1205.3421 [gr-qc] (cit. on p. 4).

[Bar+00] Riccardo Barbieri, Paolo Creminelli, Alessandro Strumia, and Nikolaos Tetradis. “Baryogenesis
through leptogenesis”. In: Nucl. Phys. B575 (2000), pp. 61–77. doi: 10.1016/S0550-3213(00)
00011-0. arXiv: hep-ph/9911315 [hep-ph] (cit. on p. 10).

[BB10] Denis Besak and Dietrich Bodeker. “Hard Thermal Loops for Soft or Collinear External Momenta”.
In: JHEP 05 (2010), p. 007. doi: 10.1007/JHEP05(2010)007. arXiv: 1002.0022 [hep-ph] (cit. on
pp. 5, 21, 22, 24–26, 28).

[BDP02] W. Buchmuller, P. Di Bari, and M. Plumacher. “Cosmic microwave background, matter - antimat-
ter asymmetry and neutrino masses”. In: Nucl. Phys. B643 (2002). [Erratum: Nucl. Phys.B793,362(2008)],
pp. 367–390. doi: 10.1016/S0550-3213(02)00737-X,10.1016/j.nuclphysb.2007.11.030.
arXiv: hep-ph/0205349 [hep-ph] (cit. on pp. 10, 11).

[BDP03] W. Buchmuller, P. Di Bari, and M. Plumacher. “The Neutrino mass window for baryogenesis”.
In: Nucl. Phys. B665 (2003), pp. 445–468. doi: 10.1016/S0550-3213(03)00449-8. arXiv: hep-
ph/0302092 [hep-ph] (cit. on p. 9).

[BDP05] W. Buchmuller, P. Di Bari, and M. Plumacher. “Leptogenesis for pedestrians”. In: Annals Phys.
315 (2005), pp. 305–351. doi: 10.1016/j.aop.2004.02.003. arXiv: hep-ph/0401240 [hep-ph]

(cit. on p. 10).

[Bel11] Michel Le Bellac. Thermal Field Theory. Cambridge University Press, 2011. isbn: 9780511885068,
9780521654777. url: http://www.cambridge.org/mw/academic/subjects/physics/theoretical-
physics-and-mathematical-physics/thermal-field-theory?format=AR (cit. on pp. 15–17,
21, 34, 35, 79).

[Bes10] Denis Besak. “Thermal particle production in the early universe”. PhD thesis. 2010 (cit. on pp. 21–
24, 28, 59, 62).

97

http://dx.doi.org/10.1088/1475-7516/2011/03/042
http://arxiv.org/abs/1012.3784
http://dx.doi.org/10.1016/0550-3213(85)90021-5
http://dx.doi.org/10.1103/PhysRevLett.104.121102
http://dx.doi.org/10.1103/PhysRevLett.104.121102
http://arxiv.org/abs/1001.3856
http://dx.doi.org/10.1016/j.aop.2011.02.002, 10.1016/j.aop.2013.05.00
http://dx.doi.org/10.1016/j.aop.2011.02.002, 10.1016/j.aop.2013.05.00
http://arxiv.org/abs/1012.5821
http://dx.doi.org/10.1103/PhysRevD.46.3945
http://dx.doi.org/10.1088/1126-6708/2002/12/006
http://arxiv.org/abs/hep-ph/0211036
http://dx.doi.org/10.1126/science.284.5419.1481
http://dx.doi.org/10.1126/science.284.5419.1481
http://arxiv.org/abs/astro-ph/9906463
http://dx.doi.org/10.1007/s10509-012-1181-8
http://arxiv.org/abs/1205.3421
http://dx.doi.org/10.1016/S0550-3213(00)00011-0
http://dx.doi.org/10.1016/S0550-3213(00)00011-0
http://arxiv.org/abs/hep-ph/9911315
http://dx.doi.org/10.1007/JHEP05(2010)007
http://arxiv.org/abs/1002.0022
http://dx.doi.org/10.1016/S0550-3213(02)00737-X, 10.1016/j.nuclphysb.2007.11.030
http://arxiv.org/abs/hep-ph/0205349
http://dx.doi.org/10.1016/S0550-3213(03)00449-8
http://arxiv.org/abs/hep-ph/0302092
http://arxiv.org/abs/hep-ph/0302092
http://dx.doi.org/10.1016/j.aop.2004.02.003
http://arxiv.org/abs/hep-ph/0401240
http://www.cambridge.org/mw/academic/subjects/physics/theoretical-physics-and-mathematical-physics/thermal-field-theory?format=AR
http://www.cambridge.org/mw/academic/subjects/physics/theoretical-physics-and-mathematical-physics/thermal-field-theory?format=AR


[BF00] Wilfried Buchmuller and Stefan Fredenhagen. “Quantum mechanics of baryogenesis”. In: Phys.
Lett. B483 (2000), pp. 217–224. doi: 10.1016/S0370-2693(00)00573-6. arXiv: hep-ph/0004145
[hep-ph] (cit. on pp. 10, 12).

[Bio+17] Simone Biondini et al. “Status of rates and rate equations for thermal leptogenesis”. In: (2017).
arXiv: 1711.02864 [hep-ph] (cit. on p. 11).

[Boo15] Boost. Boost C++ Libraries. http://www.boost.org/. Last accessed 2015-06-30. 2015 (cit. on
p. 70).

[BPY05] W. Buchmuller, R. D. Peccei, and T. Yanagida. “Leptogenesis as the origin of matter”. In: Ann.
Rev. Nucl. Part. Sci. 55 (2005), pp. 311–355. doi: 10.1146/annurev.nucl.55.090704.151558.
arXiv: hep-ph/0502169 [hep-ph] (cit. on pp. 8, 9, 79).

[CFH99] F. Csikor, Z. Fodor, and J. Heitger. “Where does the hot electroweak phase transition end?” In:
Nucl. Phys. Proc. Suppl. 73 (1999), pp. 659–661. doi: 10.1016/S0920-5632(99)85166-4. arXiv:
hep-ph/9809293 [hep-ph] (cit. on p. 7).

[Con10] GSL Project Contributors. GSL - GNU Scientific Library - GNU Project - Free Software Founda-
tion (FSF). http://www.gnu.org/software/gsl/. 2010. url: http://www.gnu.org/software/gsl/
(cit. on pp. 71–74, 79).

[CRV96] Laura Covi, Esteban Roulet, and Francesco Vissani. “CP violating decays in leptogenesis scenar-
ios”. In: Phys. Lett. B384 (1996), pp. 169–174. doi: 10.1016/0370-2693(96)00817-9. arXiv:
hep-ph/9605319 [hep-ph] (cit. on p. 9).

[Dev+17] Bhupal Dev, Mathias Garny, Juraj Klaric, Peter Millington, and Daniele Teresi. “Resonant en-
hancement in leptogenesis”. In: (2017). arXiv: 1711.02863 [hep-ph] (cit. on pp. 34, 91).

[DK03] Michael Dine and Alexander Kusenko. “The Origin of the matter - antimatter asymmetry”. In:
Rev. Mod. Phys. 76 (2003), p. 1. doi: 10.1103/RevModPhys.76.1. arXiv: hep- ph/0303065

[hep-ph] (cit. on p. 6).

[Fan+99] V. Fanti et al. “A New measurement of direct CP violation in two pion decays of the neutral
kaon”. In: Phys. Lett. B465 (1999), pp. 335–348. doi: 10.1016/S0370-2693(99)01030-8. arXiv:
hep-ex/9909022 [hep-ex] (cit. on p. 7).

[FY86] M. Fukugita and T. Yanagida. “Baryogenesis Without Grand Unification”. In: Phys. Lett. B174
(1986), pp. 45–47. doi: 10.1016/0370-2693(86)91126-3 (cit. on p. 8).

[Gar+10] M. Garny, A. Hohenegger, A. Kartavtsev, and M. Lindner. “Systematic approach to leptogenesis
in nonequilibrium QFT: Self-energy contribution to the CP-violating parameter”. In: Phys. Rev.
D81 (2010), p. 085027. doi: 10.1103/PhysRevD.81.085027. arXiv: 0911.4122 [hep-ph] (cit. on
p. 31).

[GHK10] M. Garny, A. Hohenegger, and A. Kartavtsev. “Medium corrections to the CP-violating parameter
in leptogenesis”. In: Phys. Rev. D81 (2010), p. 085028. doi: 10.1103/PhysRevD.81.085028. arXiv:
1002.0331 [hep-ph] (cit. on p. 9).

[Hah05] T. Hahn. “CUBA: A Library for multidimensional numerical integration”. In: Comput. Phys.
Commun. 168 (2005), pp. 78–95. doi: 10.1016/j.cpc.2005.01.010. arXiv: hep-ph/0404043
[hep-ph] (cit. on pp. 71, 74–76, 79).

[Hal+76] A. Halprin, P. Minkowski, H. Primakoff, and Simon Peter Rosen. “Double-beta Decay and a
Massive Majorana Neutrino”. In: Phys. Rev. D13 (1976), p. 2567. doi: 10.1103/PhysRevD.13.2567
(cit. on p. 9).

[HPW09] F. Hahn-Woernle, M. Plumacher, and Y. Y. Y. Wong. “Full Boltzmann equations for leptogenesis
including scattering”. In: JCAP 0908 (2009), p. 028. doi: 10.1088/1475-7516/2009/08/028.
arXiv: 0907.0205 [hep-ph] (cit. on p. 12).

[HS95] Patrick Huet and Eric Sather. “Electroweak baryogenesis and standard model CP violation”. In:
Phys. Rev. D51 (1995), pp. 379–394. doi: 10.1103/PhysRevD.51.379. arXiv: hep-ph/9404302
[hep-ph] (cit. on p. 7).

[Hub29] Edwin Hubble. “A relation between distance and radial velocity among extra-galactic nebulae”.
In: Proc. Nat. Acad. Sci. 15 (1929), pp. 168–173. doi: 10.1073/pnas.15.3.168 (cit. on p. 4).

98

http://dx.doi.org/10.1016/S0370-2693(00)00573-6
http://arxiv.org/abs/hep-ph/0004145
http://arxiv.org/abs/hep-ph/0004145
http://arxiv.org/abs/1711.02864
http://www.boost.org/
http://dx.doi.org/10.1146/annurev.nucl.55.090704.151558
http://arxiv.org/abs/hep-ph/0502169
http://dx.doi.org/10.1016/S0920-5632(99)85166-4
http://arxiv.org/abs/hep-ph/9809293
http://www.gnu.org/software/gsl/
http://dx.doi.org/10.1016/0370-2693(96)00817-9
http://arxiv.org/abs/hep-ph/9605319
http://arxiv.org/abs/1711.02863
http://dx.doi.org/10.1103/RevModPhys.76.1
http://arxiv.org/abs/hep-ph/0303065
http://arxiv.org/abs/hep-ph/0303065
http://dx.doi.org/10.1016/S0370-2693(99)01030-8
http://arxiv.org/abs/hep-ex/9909022
http://dx.doi.org/10.1016/0370-2693(86)91126-3
http://dx.doi.org/10.1103/PhysRevD.81.085027
http://arxiv.org/abs/0911.4122
http://dx.doi.org/10.1103/PhysRevD.81.085028
http://arxiv.org/abs/1002.0331
http://dx.doi.org/10.1016/j.cpc.2005.01.010
http://arxiv.org/abs/hep-ph/0404043
http://arxiv.org/abs/hep-ph/0404043
http://dx.doi.org/10.1103/PhysRevD.13.2567
http://dx.doi.org/10.1088/1475-7516/2009/08/028
http://arxiv.org/abs/0907.0205
http://dx.doi.org/10.1103/PhysRevD.51.379
http://arxiv.org/abs/hep-ph/9404302
http://arxiv.org/abs/hep-ph/9404302
http://dx.doi.org/10.1073/pnas.15.3.168


[Hüt13] J. Hütig. “Including gauge corrections to thermal leptogenesis”. PhD thesis. Frankfurt U., 2013.
url: http://inspirehep.net/record/1240734/files/Thesis-2013-Hutig.pdf (cit. on pp. 5,
7, 9, 11, 14, 16, 22, 32, 38, 40–42, 44–47, 51–53, 55, 72, 90, 92).

[KB62] L.P. Kadanoff and G. Baym. Quantum Statistical Mechanics. New York: W.A. Benjamin Inc., 1962
(cit. on p. 4).

[Kel64] L. V. Keldysh. “Diagram technique for nonequilibrium processes”. In: Zh. Eksp. Teor. Fiz. 47
(1964). [Sov. Phys. JETP20,1018(1965)], pp. 1515–1527 (cit. on pp. 4, 14).

[Kom+11] E. Komatsu et al. “Seven-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations:
Cosmological Interpretation”. In: Astrophys. J. Suppl. 192 (2011), p. 18. doi: 10.1088/0067-
0049/192/2/18. arXiv: 1001.4538 [astro-ph.CO] (cit. on p. 6).

[KP12a] Clemens Kiessig and Michael Plumacher. “Hard-Thermal-Loop Corrections in Leptogenesis I: CP-
Asymmetries”. In: JCAP 1207 (2012), p. 014. doi: 10.1088/1475-7516/2012/07/014. arXiv:
1111.1231 [hep-ph] (cit. on p. 9).

[KP12b] Clemens Kiessig and Michael Plumacher. “Hard-Thermal-Loop Corrections in Leptogenesis II:
Solving the Boltzmann Equations”. In: JCAP 1209 (2012), p. 012. doi: 10.1088/1475-7516/
2012/09/012. arXiv: 1111.1235 [hep-ph] (cit. on p. 9).

[KT90] Edward W. Kolb and Michael S. Turner. “The Early Universe”. In: Front. Phys. 69 (1990), pp. 1–
547 (cit. on p. 6).

[Lan81] Paul Langacker. “Grand Unified Theories and Proton Decay”. In: Phys. Rept. 72 (1981), p. 185.
doi: 10.1016/0370-1573(81)90059-4 (cit. on p. 7).

[Lem27] Georges Lemaitre. “A Homogeneous Universe of Constant Mass and Growing Radius Accounting
for the Radial Velocity of Extragalactic Nebulae”. In: Annales Soc. Sci. Bruxelles A 47 (1927).
[Gen. Rel. Grav.45,no.8,1635(2013)], pp. 49–59. doi: 10.1007/s10714-013-1548-3 (cit. on p. 4).

[LP53] L. D. Landau and I. Pomeranchuk. “Limits of applicability of the theory of bremsstrahlung elec-
trons and pair production at high-energies”. In: Dokl. Akad. Nauk Ser. Fiz. 92 (1953), pp. 535–536
(cit. on p. 24).

[Men10] Sebastian Mendizabal Cofre. “Quantum mechanics of leptogenesis”. PhD thesis. Hamburg U., 2010.
url: http://www-library.desy.de/cgi-bin/showprep.pl?thesis10-029 (cit. on pp. 13, 91).

[Mig56] Arkady B. Migdal. “Bremsstrahlung and pair production in condensed media at high-energies”.
In: Phys. Rev. 103 (1956), pp. 1811–1820. doi: 10.1103/PhysRev.103.1811 (cit. on p. 24).

[MR12] David E. Morrissey and Michael J. Ramsey-Musolf. “Electroweak baryogenesis”. In: New J. Phys.
14 (2012), p. 125003. doi: 10.1088/1367-2630/14/12/125003. arXiv: 1206.2942 [hep-ph]

(cit. on p. 7).

[Pat+16] C. Patrignani et al. “Review of Particle Physics”. In: Chin. Phys. C40.10 (2016), p. 100001. doi:
10.1088/1674-1137/40/10/100001 (cit. on pp. 7, 69).

[Sak67] A. D. Sakharov. “Violation of CP Invariance, c Asymmetry, and Baryon Asymmetry of the Uni-
verse”. In: Pisma Zh. Eksp. Teor. Fiz. 5 (1967). [Usp. Fiz. Nauk161,61(1991)], pp. 32–35. doi:
10.1070/PU1991v034n05ABEH002497 (cit. on pp. 4, 6).

[Sch14] Matthew D. Schwartz. Quantum Field Theory and the Standard Model. Cambridge University
Press, 2014. isbn: 1107034736, 9781107034730. url: http://www.cambridge.org/us/academic/
subjects/physics/theoretical- physics- and- mathematical- physics/quantum- field-

theory-and-standard-model (cit. on p. 18).

[Sch61] Julian S. Schwinger. “Brownian motion of a quantum oscillator”. In: J. Math. Phys. 2 (1961),
pp. 407–432. doi: 10.1063/1.1703727 (cit. on p. 4).

[SW96] Barbara Schrempp and Michael Wimmer. “Top quark and Higgs boson masses: Interplay between
infrared and ultraviolet physics”. In: Prog. Part. Nucl. Phys. 37 (1996), pp. 1–90. doi: 10.1016/
0146-6410(96)00059-2. arXiv: hep-ph/9606386 [hep-ph] (cit. on p. 70).

[t H76a] Gerard ’t Hooft. “Computation of the Quantum Effects Due to a Four-Dimensional Pseudopar-
ticle”. In: Phys. Rev. D14 (1976). [Erratum: Phys. Rev.D18,2199(1978)], pp. 3432–3450. doi:
10.1103/PhysRevD.18.2199.3,10.1103/PhysRevD.14.3432 (cit. on p. 7).

99

http://inspirehep.net/record/1240734/files/Thesis-2013-Hutig.pdf
http://dx.doi.org/10.1088/0067-0049/192/2/18
http://dx.doi.org/10.1088/0067-0049/192/2/18
http://arxiv.org/abs/1001.4538
http://dx.doi.org/10.1088/1475-7516/2012/07/014
http://arxiv.org/abs/1111.1231
http://dx.doi.org/10.1088/1475-7516/2012/09/012
http://dx.doi.org/10.1088/1475-7516/2012/09/012
http://arxiv.org/abs/1111.1235
http://dx.doi.org/10.1016/0370-1573(81)90059-4
http://dx.doi.org/10.1007/s10714-013-1548-3
http://www-library.desy.de/cgi-bin/showprep.pl?thesis10-029
http://dx.doi.org/10.1103/PhysRev.103.1811
http://dx.doi.org/10.1088/1367-2630/14/12/125003
http://arxiv.org/abs/1206.2942
http://dx.doi.org/10.1088/1674-1137/40/10/100001
http://dx.doi.org/10.1070/PU1991v034n05ABEH002497
http://www.cambridge.org/us/academic/subjects/physics/theoretical-physics-and-mathematical-physics/quantum-field-theory-and-standard-model
http://www.cambridge.org/us/academic/subjects/physics/theoretical-physics-and-mathematical-physics/quantum-field-theory-and-standard-model
http://www.cambridge.org/us/academic/subjects/physics/theoretical-physics-and-mathematical-physics/quantum-field-theory-and-standard-model
http://dx.doi.org/10.1063/1.1703727
http://dx.doi.org/10.1016/0146-6410(96)00059-2
http://dx.doi.org/10.1016/0146-6410(96)00059-2
http://arxiv.org/abs/hep-ph/9606386
http://dx.doi.org/10.1103/PhysRevD.18.2199.3, 10.1103/PhysRevD.14.3432


[t H76b] Gerard ’t Hooft. “Symmetry Breaking Through Bell-Jackiw Anomalies”. In: Phys. Rev. Lett. 37
(1976), pp. 8–11. doi: 10.1103/PhysRevLett.37.8 (cit. on p. 7).

[Wel83] H. Arthur Weldon. “Simple Rules for Discontinuities in Finite Temperature Field Theory”. In:
Phys. Rev. D28 (1983), p. 2007. doi: 10.1103/PhysRevD.28.2007 (cit. on p. 19).

[Wol17] Wolfram Research, Inc. Mathematica 11.0. Version 11.2. 2017. url: https://www.wolfram.com
(cit. on pp. 59, 67, 94).

100

http://dx.doi.org/10.1103/PhysRevLett.37.8
http://dx.doi.org/10.1103/PhysRevD.28.2007
https://www.wolfram.com
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Gemäß §30 (12) der Ordnung des Fachbereichs Physik an der Johann Wolf- gang von Goethe Universität für
den Bachelor- und Masterstudiengang Physik vom 24.04.2013 versichere ich, dass ich die vorliegende Arbeit
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