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Abstract

The objective of this thesis is to study the effect of soft and hard gauge corrections, i.e.
corrections due to interactions with gauge bosons of soft and hard momenta, to thermal
leptogenesis. Thermal leptogenesis is one of the leading candidates for the explanation of
the baryon asymmetry in the universe. It does so by introducing three heavy Majorana
neutrinos. Their CP-violating out-of-equilibrium decay generates a lepton asymmetry that
is converted into a baryon asymmetry via sphaleron processes in the standard model of
particle physics. In the past, progress has been made to move from a description using
Boltzmann equations to a calculation of the lepton asymmetry, the lepton number matrix,
in the framework of Kadanoff-Baym equations [Ani+11]. Furthermore, gauge and other
standard model corrections to the thermal production rate of Majorana neutrinos have
been considered [ABB11]. This thesis follows [Hüt13] to combine the results of these
calculations arriving at an expression for the lepton number matrix that systematically
includes all leading order gauge and other standard model corrections. This expression is
then approximated and numerically evaluated. With the approximations, one recovers the
time-dependence of the solution of the Boltzmann equations. By numerically evaluating
the expression, one finds that by omitting soft gauge corrections, a temperature region
exists, where the generated lepton asymmetry is suppressed due to kinematic reasons. The
inclusion of soft gauge corrections compensates for this suppression.



Zusammenfassung

Ziel dieser Masterarbeit ist die Untersuchung weicher und harter Eichkorrekturen, also
Korrekturen aufgrund von Wechselwirkungen mit Eichbosonen, die weiche und harte Im-
pulse haben, zur thermischen Leptogenese. Thermische Leptogenese ist einer der führenden
Kandidaten zur Erklärung der Baryonenasymmetrie im Universum. Zur Erklärung dieser
werden drei schwere Majorananeutrinos eingeführt. Ihr CP-verletzender Zerfall, der im
Nichtgleichgewicht stattfindet, erzeugt eine Leptonenasymmetrie, die mittels Sphaleron-
prozesse im Standardmodell der Teilchenphysik in eine Baryonenasymmetrie umgewandelt
wird. In der Vergangenheit wurden Fortschritte in der Beschreibung der Erzeugung der
Leptonenasymmetrie gemacht, die von einer Berechnung mittels Boltzmanngleichungen
zu einer Berechnung mithilfe von Kadanoff-Baym-Gleichungen in Form der Leptonenzahl-
matrix übergehen [Ani+11]. Zudem wurde der Einfluss von Eich- und anderen Standard-
modellkorrekturen auf die Produktionsrate von Majorananeutrinos untersucht [ABB11].
Diese Masterarbeit folgt der Betrachtung in [Hüt13], um die Resultate dieser Referenzen
zu kombinieren und so einen Ausdruck für die Leptonenzahlmatrix zu berechnen, der sy-
stematisch alle Eich- und andere Standardmodellkorrekturen führender Ordnung enthält.
Das Resultat wird dann genähert und numerisch ausgewertet. Durch die Näherung findet
man die gleiche zeitliche Abhängigkeit wie in der Lösung der Boltzmanngleichungen. Die
numerische Auswertung zeigt, dass wenn weiche Eichkorrekturen vernachlässigt werden,
ein Temperaturbereich entsteht, in dem die erzeugte Leptonenasymmetrie aufgrund von
kinematischen Gründen unterdrückt wird. Die Berücksichtigung weicher Eichkorrekturen
kompensiert diese Unterdrückung.



1. Introduction

Why do we have matter in the universe?
This is one of the most intriguing and unanswered questions in physics up to date. To

be more concrete, in most cases baryons are meant when talking about matter in this
sense. Hence, one speaks of a baryon asymmetry in the universe.
The opening question mainly arises from two observations:

1. Matter (baryons) is observed in the universe, whereas there is barely any antimatter
(antibaryons) observed.

2. All processes observed create the same amounts of matter (baryons) and antimatter
(antibaryons)1.

In the standard model of cosmology, cf. Fig. 1.1, the issue of this question arises in the
following way. According to the model, the universe started out in a hot big bang. Shortly
afterwards, it underwent a period of inflation, which led to an exponential expansion of the
universe leaving it in a state far from equilibrium. Then, during the period of reheating,
the particles thermalized into a hot and dense plasma. The problem now is that starting
with no baryon asymmetry, i.e. the same amounts of baryons and antibaryons in the
universe, would mean that no baryon number exists unless there was a process generating
a baryon asymmetry. Similarly, starting with a baryon asymmetry at the big bang, the
period of inflation would have thinned out this asymmetry, which makes this scenario
very unlikely. Hence, a baryon asymmetry should be created after or during the period of
inflation. The creation of the baryon asymmetry in the universe is called baryogenesis. In
most scenarios, one assumes that baryogenesis took place in the hot and dense plasma of
the early universe.

There are different models trying to explain the baryon asymmetry. In 1967, Sakharov
found three conditions any theory or model, which tries to do so, has to fulfill [Sak67].
These conditions were later named after him. As it turns out, the standard model of
particle physics, which will be called standard model from hereon, is not sufficient for
generating a large enough baryon asymmetry consistent with observations, even though
it is able to create a baryon asymmetry. Therefore, physics beyond the standard model is
needed.
The model of choice for this thesis is thermal leptogenesis. This model introduces

three heavy Majorana neutrinos. Their CP-violating out-of-equilibrium decay generates
a lepton asymmetry, which is later converted into a baryon asymmetry using standard
model sphaleron processes. Furthermore, it gives an explanation for the observed light
neutrino masses.
Most standard leptogenesis calculations use Boltzmann equations, for an overview see

e.g. [HPW09]. In the past years, efforts have been made to go beyond these and obtain
a full quantum field theoretical description of the nonequilibrium processes needed for
leptogenesis in the framework of Kadanoff-Baym equations. Most notably, this was done
in [Ani+11]. In this work, a solution of the Kadanoff-Baym equations for the simplest case

1Of course, this includes zero creation of matter and antimatter.
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Figure 1.1.: History of the universe according to the standard model of cosmology. Starting
with the big bang on the left hand side, an inflationary phase settled in with
the expansion slowing again afterwards. The afterglow light pattern (cosmic
microwave background) is depicted followed by the dark ages before the first
stars form and the galaxies develop. The universe then entered an accelerated
expansion due to dark energy. Of interest in this thesis is mainly the period
after inflation and before the afterglow light pattern. Note that according
to more recent data the age of the universe is 13.799(21) billion years [see
Ade+16, p. 31]. From [NAS12] [as cited in Hüt13, p. 2].

of hierarchically ordered Majorana neutrino masses with two being much heavier than the
other one was derived and presented. The hierarchical mass ordering enables one to
integrate out the two heavier Majorana neutrinos, thus obtaining an effective theory. This
approach considers a heavy Majorana neutrino out of equilibrium in a plasma of standard
model particles. Using this solution, an expression for the resulting lepton asymmetry, the
so-called lepton number matrix, was calculated.
One of the findings was that in order to make further progress towards a "theory of lep-

togenesis" [see Buc01, p. 10] [as cited in Ani+11, p. 42], gauge corrections, i.e. corrections
due to interactions with gauge bosons, needed to be included and discussed [cf. Ani+11,
p. 42]. This is due to the fact that thermal widths of standard model particles had to be
introduced by hand. Gauge corrections were already found in [Giu+04; KPT10; ABB11]
to be of importance for temperatures greater than or similar to the lightest Majorana
neutrino mass by generating thermal masses for lepton and Higgs boson fields [cf. also
Ani+11, p. 4].
Most importantly for this thesis, all leading order gauge corrections to the production

rate of heavy Majorana neutrinos have been calculated in [ABB11]. These are soft and
hard gauge corrections, i.e. corrections due to interactions with gauge bosons of soft and
hard momenta. Furthermore, corrections coming from interactions with other standard
model particles of hard momenta have been included. This was done using resummation
techniques for the kinematic regime corresponding to the temperature being greater than
the Majorana neutrino mass. Thereby, the Majorana neutrino self-energy, which can be
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related to the Majorana neutrino production rate, was resummed. The corrections connect
to the well-known Landau-Pomeranchuk-Migdal effect.
The objective of this thesis is to estimate the effect of soft and hard gauge corrections on

thermal leptogenesis, hence including all leading order gauge corrections. To achieve this
aim, the result of [Hüt13] is used, which combines the calculation for the lepton asymmetry
from [Ani+11] with the resummed Majorana neutrino self-energy from [ABB11].
This thesis is structured as follows. Note that due to the fact that it uses the result

of [Hüt13], the structure is very similar to this reference, since the same contents are
needed. After giving a brief introduction on the observation of the baryon asymmetry
in the universe, the Sakharov conditions, and different models fulfilling these conditions,
thermal leptogenesis is presented shortly in Ch. 2. In Ch. 3, the basics of nonequilibrium
quantum field theory are discussed and the propagators needed in this thesis, which were
derived in [Ani+11], are given. These will be used in Ch. 4 to calculate an expression
for the lepton asymmetry in the framework of Kadanoff-Baym equations as in [Ani+11]
after first presenting the physical scenario considered in this thesis and the result from
the Boltzmann equations for it. In Ch. 5, the resummation of the Majorana neutrino self-
energy from [ABB11] is discussed. Having presented all needed expressions, the inclusion
of gauge and other standard model corrections in the result for the lepton asymmetry is
detailed following [Hüt13] in Ch. 6. The result is then approximated in the same chapter
and numerically evaluated in Ch. 7. The thesis concludes with Ch. 8 giving an overview
of what has been done and mentioning research perspectives.
Conventions, Feynman rules, and details on the resummation of the Majorana neutrino

self-energy and the evaluation of the lepton number matrix including soft and hard gauge
corrections are given in two appendices.





2. Leptogenesis and Other Models for
Baryogenesis

In this chapter, the physical observation of a baryon asymmetry in the universe (BAU)
is detailed together with the necessary conditions for a model to generate a BAU, the
Sakharov conditions, as well as different models for doing so. Afterwards, the model used
in this thesis, thermal leptogenesis, is introduced.

2.1. Baryon Asymmetry in the Universe
As visible in our everyday environment, barely any antimatter exists in the universe,
whereas a lot of matter is observed. In fact, antimatter is only seen in extreme conditions,
such as lab experiments, like particle colliders, or high-energy cosmic rays.
By measuring the primordial abundances of light elements in the universe, the BAU

can be connected to big bang nucleosynthesis (BBN) [see CDS12, p. 6], which gives the
value [see Ste10] [as cited in CDS12, p. 6]

ηBBNB = nb − nb̄
nγ

= 5.80(27) · 10−10 (2.1)

for the baryon asymmetry, where nb, nb̄, and nγ are the number densities of baryons,
antibaryons, and photons, respectively. Measurements of acoustic peaks in the cosmic
microwave background (CMB) from the WMAP seven year long observation gave a value
of [see Kom+11] [as cited in CDS12, p. 7]

ηWMAP
B =

(
6.160+0.153

−0.156

)
· 10−10 (2.2)

in good agreement with the value from BBN.
The explanation of the BAU is challenging, since in laboratory processes, only matter-

antimatter creation or annihilation is observed in processes like b+ b̄� 2γ. If only these
processes were allowed in general, then starting with symmetric initial conditions would
mean that no BAU could exist. Furthermore, asymmetric initial conditions causing a
BAU, i.e. starting with a BAU at the big bang, have problems with the standard model of
cosmology due to the period of inflation that would have diluted a BAU from the time of
the big bang. Hence, the creation of the BAU, which is called baryogenesis, should occur
after the period of inflation and start with at least almost zero baryon asymmetry [cf.
CDS12, p. 3]. The Sakharov conditions, which models aiming for an explanation of a
BAU have to fulfill, are explained in the next section.

For more information and a review concerning matter and antimatter in the universe
see [CDS12].

2.2. Sakharov Conditions
The three conditions necessary for the creation of a baryon asymmetry were first formu-
lated by Sakharov in 1967. The conditions named after him are [see Sak67]
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1. baryon number violation,

2. C- (charge conjugation) and CP- (charge parity) violation,

3. deviation from thermal equilibrium.

The first condition is clear. For the second condition, one has to consider that if C or CP
were not violated, then for every process creating an asymmetry, a C or CP conjugate pro-
cess would exist generating exactly the opposite asymmetry with the same probability [see
CDS12, p. 3]. Hence, no baryon asymmetry would be generated. The third condition has
to be fulfilled, since in thermal equilibrium, the expectation values of all operators, which
includes the baryon number operator B, are constant [see CDS12, p. 3]. Therefore, going
from a state with no baryon asymmetry to a state with an asymmetry needs deviation
from thermal equilibrium.

2.3. Models for Creating a Baryon Asymmetry

There are different models fulfilling the Sakharov conditions, which are candidates for a
successful generation of the BAU.
The standard model of particle physics (SM) fulfills all three Sakharov conditions. Even

though the baryon number is conserved perturbatively in the SM, non-perturbative effects
can give baryon number violation [see CDS12, pp. 9-11]. This was first found by ’t Hooft [t
H76a; t H76b] based on the Adler-Bell-Jackiw anomaly [Adl69; BJ69]. A very important
solution was found by Klinkhamer and Manton [KM84], the so-called sphaleron solution
(from the greek word σφαλερóζ: "ready to fall"). This solution is a saddle point in the
potential of the electroweak theory [cf. KM84]. By moving from one minimum in this
potential to a neighboring one through the sphaleron solution, the Chern-Simons number
of the gauge field Aµ

NCS = g2

32π2

∫
d3xεijk Tr

(
Ai∂jAk + 2

3 iAiAjAk
)

(2.3)

is changed by one, which connects to a change in baryon number NB and lepton number
NL, the differences of the numbers of antibaryons/antileptons and baryons/leptons, via [cf.
Rin88]

∆NB = ∆NL = nf∆NCS , (2.4)

where nf = 3 is the number of families. This can be formulated using the baryon and
lepton currents jµB and jµL violated by the Adler-Bell-Jackiw anomaly [cf. Adl69; BJ69] [as
cited in Hüt13]

∂µj
µ
B = ∂µj

µ
L = nf

32π2

(
g2
W Tr

(
WµνW̃

µν
)
− g2

Y FµνF̃
µν
)
, (2.5)

where gW and gY are the couplings of the gauge groups SU(2) and U(1) with corresponding
field strength tensors Wµν and Fµν and their duals W̃µν and F̃µν . Each sphaleron transi-
tion creates nine quarks (three for each generation due to color) and three leptons. In the
vacuum, sphaleron transitions, which are then only possible via tunneling, are suppressed
by a factor of around 10−160 [see t H76b]. For temperatures above the sphaleron energy
T & 100 GeV [see KRS85] [as cited in Hüt13, p. 6], where also electroweak symmetry
becomes restored, these transitions are no longer suppressed, and therefore, the baryon
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and lepton numbers are violated. Note that even though NB + NL is violated, NB −NL

is conserved, cf. Eq. (2.4).
The second Sakharov condition is fulfilled due to the fact that the weak interaction vio-

lates P-invariance and the complex phase in the Cabibbo-Kobayashi-Maskawa matrix [cf.
CDS12, p. 9]. This violation however misses at least eight orders of magnitude [see HS95]
[as cited in Hüt13, p. 8].
Deviation from thermal equilibrium is achieved via the expansion of the universe bring-

ing the SM plasma out of equilibrium [cf. CDS12, pp. 9, 11]. However, in order to achieve a
large enough BAU, a first-order electroweak phase transition would be needed [cf. CDS12].
This is only possible for a small Higgs masses mH < 100 GeV [BP95; Kaj+97] [as cited in
Hüt13, p. 8]. Note that results from lattice SU(2)-Higgs calculations give a critical end-
point for the first order electroweak phase transition of mH = (72.4± 1.7) GeV [CFH99].
Since the current value for the Higgs mass is mH = (125.09 ± 0.24) GeV [Pat+16], suc-
cessfull SM baryogenesis is ruled out and one needs a theory beyond the SM.
Before continuing to the model of choice for creating a BAU for this thesis, which is

called leptogenesis, one should note other models beyond the SM that are used for the
explanation of a BAU. Prominent example for these are grand unified theories, electroweak
baryogenesis, and Affleck-Dine baryogenesis. For some details on these see [Hüt13, pp. 8-
9].

2.4. Leptogenesis
The model of choice for this thesis is thermal leptogenesis [FY86]. Using this model, one
hopes to not only solve the question of the generation of a BAU, but also explain the
observed light neutrino masses via the so-called seesaw mechanism. For leptogenesis, one
introduces three right-handed heavy Majorana neutrinos in addition to the SM. Their
CP-violating out-of-equilibrium decay at temperatures around their masses generates a
lepton asymmetry that is later converted into a baryon asymmetry using SM sphaleron
processes. Therefore, all three Sakharov conditions are fulfilled. Since the explanation of
the observed light neutrino masses is not of interest in this thesis, it will not be discussed
further. For overviews of thermal leptogenesis see e.g. [Di 12; BD12; FNR12].
Thermal leptogenesis is described via the Lagrangian [cf. FY86; Ani+11]

L = LSM + νRii/∂νRi + lLiφ̃λ
∗
ijνRj + νRjλijlLiφ−

1
2Mij (νcRiνRj + νRjν

c
Ri) , (2.6)

where the right-handed Majorana neutrinos are described via electroweak singlet fermions
νRi, i = 1, 2, 3, with a Majorana mass term Mij coupling via Yukawa couplings λij to the
left-handed SM leptons lLi and the Higgs doublet φ. One has νcRi = CνTRi with C being
the charge conjugation matrix and φ̃ = iσ2φ∗. Summation over i and j is implied.
The masses of the Majorana neutrinos Mi, i = 1, 2, 3, are given by the eigenvalues

of the Majorana mass matrix corresponding to Mij [cf. Di 12, p. 10]. As this thesis
follows [Hüt13], which is based on [Ani+11] and [ABB11], the simplest case, where the
masses are hierarchically ordered according to Mi>1 � M1 =: M and assuming small
Yukawa couplings λi1 � 1 of the lightest heavy neutrino N1 =: N , is considered. This
enables one to integrate out the heavier neutrinos arriving at an effective Lagrangian [see
BF00; Ani+11]

L =LSM + 1
2Ni

/∂N + lLiφ̃λ
∗
i1N +NTλi1lLiφ−

1
2MNTCN

+ 1
2ηijl

T
LiφClLjφ+ 1

2η
∗
ijlLiφ̃Cl

T
Ljφ̃ (2.7)
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with N = νR1 + νCR1 and the effective coupling

ηij =
∑
k>1

λik
1
Mk

λTkj . (2.8)

This case has the advantage that instead of the CP-asymmetry being obtained by the
interference of tree-level and one-loop graphs, it is obtained from a single one [see BF00]
[as cited in Ani+11, p. 4]. The CP-violating factor ε is related to the decay widths of the
heavy Majorana neutrino into l, φ and l̄, φ̄ via [see BF00, p. 2]

Γ(N → lφ) = 1
2(1 + ε)Γ , (2.9)

Γ(N → l̄φ̄) = 1
2(1− ε)Γ , (2.10)

where Γ is the total decay width and ε� 1 is given by [see BF00, p. 11]

ε = 3
16π

Im(λ†ηλ∗)11
(λ†λ)11

M . (2.11)

The Feynman rules for this effective model [see Ani+11, pp. 45-46] are given in the ap-
pendix, Sec. A.2. The choices of M , ε, and (λ†λ)11 for the numerical evaluations will be
detailed in Ch. 7.
In most practical calculations, one uses Boltzmann equations to describe the evolution

of the distribution functions of the heavy Majorana neutrino and leptons. These are used
to calculate the lepton asymmetry. An overview of the calculation for the physical scenario
used in this thesis is given in Sec. 4.2. As already mentioned, the lepton asymmetry is
converted to a baryon asymmetry using SM sphaleron processes. Note that a fraction of

asph = 28/79 (2.12)

of NB − NL is converted into a baryon asymmetry via these processes [see KS88; HT90]
[as cited in BDP05, p. 4], i.e.

NB = asph(NB −NL) . (2.13)



3. Nonequilibrium Quantum Field
Theory

In this chapter, the basic concepts of nonequilibrium quantum field theory (QFT) nec-
essary for the calculations in the context of this thesis are presented following [Ani+11,
pp. 7-16] and [Hüt13, pp. 17-25]. As in these references, this chapter works in the real-time
formalism [cf. Le 96]. However, the resummation of the Majorana neutrino self-energy is
performed in the imaginary-time formalism [cf. Le 96] and then analytically continued to
real times in Ch. 5.

3.1. Correlation Functions
In statistical thermodynamics, one uses a statistical ensemble with density matrix ρ to
describe a thermodynamic system, thus having [see Ani+11, p. 7]

〈A〉 = Tr(ρA) (3.1)

as the expectation value for an operator A with Tr ρ = 1. In order to know this expec-
tation value for all times using this equation, one has to know the density matrix ρ for
all times and thus solve the von Neumann or quantum Liouville equation of motion as an
initial value problem [cf. Ani+11, p. 7]. This turns out to be difficult and only doable per-
turbatively with additional assumptions in most cases [cf. Ani+11, pp. 7-8]. Instead, one
can solve the equations of motions for the correlation functions mapping infinitely many
degrees of freedom of the initial density matrix on infinitely many initial conditions [see
Ani+11, p. 8]. For a full treatment, one would have to know all n-point functions, but in
the case considered here, one- and two-point functions are sufficient [see Ani+11, p. 8].
Since leptogenesis occurs at temperatures well above the electroweak scale, the SM is

in its symmetric phase, i.e. the Higgs doublet with its four real degrees of freedom can be
described by four massless real scalar fields [see Ani+11, p. 8].
For a real scalar field, one defines the spectral function and the statistical propagator

∆− and ∆+ via [see Ani+11, p. 8]

∆−(x1, x2) = i〈[φ(x1), φ(x2)]〉 , (3.2)

∆+(x1, x2) = 1
2〈{φ(x1), φ(x2)}〉 (3.3)

with the symmetry relations

∆−(x1, x2) = −∆−(x2, x1) , (3.4)
∆+(x1, x2) = ∆+(x2, x1) , (3.5)

where only contributions from connected diagrams should be included in the computation
of the dressed correlation functions. The Wightman functions are defined via [see Ani+11,
p. 90]

∆>(x1, x2) = 〈φ(x1)φ(x2)〉 , (3.6)
∆<(x1, x2) = 〈φ(x2)φ(x1)〉 , (3.7)
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which give the relations

∆−(x1, x2) = i(∆>(x1, x2)−∆<(x1, x2)) , (3.8)

∆+(x1, x2) = 1
2(∆>(x1, x2) + ∆<(x1, x2)) . (3.9)

With microcausality and the condition for canonical quantization, i.e.

[φ(x1), φ(x2)]|t1=t2 = 0 , (3.10)
[φ̇(x1), φ̇(x2)]|t1=t2 = 0 , (3.11)
[φ(x1), φ̇(x2)]|t1=t2 = iδ(x1 − x2) , (3.12)

one obtains the boundary conditions in y = t1 − t2 [see Ani+11, p. 9]

∆−(x1, x2)|t1=t2 = 0 , (3.13)
∂t1∆−(x1, x2)|t1=t2 = −∂t2∆−(x1, x2)|t1=t2 = δ(x1 − x2) , (3.14)

∂t1∂t2∆−(x1, x2)|t1=t2 = 0 (3.15)

for ∆−.
In the Lagrangian in Eq. (2.7), one also has massless left-handed leptons denoted by

Weyl-fields lLi. They can be considered to be massless because of the high temperatures.
Their spectral function and statistical propagator are defined by

(S−Lij)αβ(x1, x2) = i〈{lLiα(x1), l̄Ljβ(x2)}〉 , (3.16)

(S+
Lij)αβ(x1, x2) = 1

2〈[lLiα(x1), l̄Ljβ(x2)]〉 , (3.17)

where α and β are spin indices, SU(2) indices have been suppressed, and the subscript L
denotes the projection of the propagators for Dirac fermions S± to left-handed fields via
S±L = PLS

± [see Ani+11, p. 9]. The following properties also hold for the propagators of
the Dirac fermions. One again has the Wightman functions with their relations to S±L [see
Ani+11, pp. 9-10]

(S>Lij)αβ(x1, x2) = 〈lLiα(x1)l̄Ljβ(x2)〉 , (3.18)
(S<Lij)αβ(x1, x2) = −〈l̄Ljβ(x2)lLiα(x1)〉 , (3.19)

S−Lij(x1, x2) = i(S>Lij(x1, x2)− S<Lij(x1, x2)) , (3.20)

S+
Lij(x1, x2) = 1

2(S>Lij(x1, x2) + S<Lij(x1, x2)) . (3.21)

The propagators have the symmetry properties [see Ani+11, p. 10]

γ0[S−Lij(x1, x2)]†γ0 = −S−Lji(x2, x1) , (3.22)

γ0[S+
Lij(x1, x2)]†γ0 = S+

Lji(x2, x1) . (3.23)

Using the canonical quantization condition

{lLiα(x1), l†Ljβ(x2)} = PLαβδijδ(x1 − x2) (3.24)

one obtains the boundary condition [see Ani+11, p. 10]

S−Lij(x1, x2)|t1=t2 = iPLδijδ(x1 − x2) . (3.25)
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Re t
ti = 0

C+

tf →∞

C−

Figure 3.1.: Contour C in the complex time plane for nonequilibrium Green’s functions,
i.e. propagators, from [Hüt13, p. 20]. It runs from ti + iε parallel to the real
time axis to tf + iε, goes to tf − iε, and then back again to ti − iε parallel
to the real time axis. For physical correlation functions for t > ti, one has to
take the limits tf →∞ and ε→ 0, whereas ti is arbitrary and may be set to
0.

For the Majorana neutrino field N , one has the spectral function and statistical propa-
gator [see Ani+11, p. 10]

G−αβ(x1, x2) = i〈{Nα(x1), Nβ(x2)}〉 , (3.26)

G+
αβ(x1, x2) = 1

2〈[Nα(x1), Nβ(x2)]〉 . (3.27)

The Wightman functions and the relations to the propagators are given by [see Ani+11,
p. 10]

G>αβ(x1, x2) = 〈Nα(x1)Nβ(x2)〉 , (3.28)
G<αβ(x1, x2) = −〈Nβ(x2)Nα(x1)〉 , (3.29)
G−(x1, x2) = i(G>(x1, x2)−G<(x1, x2)) , (3.30)

G+(x1, x2) = 1
2(G>(x1, x2) +G<(x1, x2)) . (3.31)

The propagators have the symmetry properties [see Ani+11, p. 10]

G−(x1, x2) = G−(x2, x1)T , (3.32)
G+(x1, x2) = −G+(x2, x1)T . (3.33)

With the canonical quantization condition and the Majorana property N = CN̄T , one
obtains the boundary condition [see Ani+11, p. 10]

G−(x1, x2)|t1=t2 = iγ0δ(x1 − x2)C−1 . (3.34)

The Feynman rules are given in the appendix, Sec. A.2.

3.2. Kadanoff-Baym Equations for the Majorana Neutrino

In order to create a matter-antimatter asymmetry, deviation from thermal equilibrium is
needed. In thermal leptogenesis, this is obtained via the out-of-equilibrium decay of heavy
Majorana neutrinos [cf. FY86]. Therefore, the equations of motion for their correlation
functions G± are needed for a description from first principles. They can be found via
the Keldysh-Schwinger formalism [cf. Kel64; Sch61] [as cited in Ani+11, p. 11]. This
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formalism works with the Green’s function with time arguments on the contour C in the
complex x0-plane, which is called the Keldysh contour, cf. Fig. 3.1, [see Ani+11, p. 11]

GC(x1, x2) = θC(x0
1, x

0
2)G>(x1, x2) + θC(x0

2, x
0
1)G<(x1, x2) , (3.35)

where the θC-functions (Heaviside step functions) follow the path ordering along the con-
tour C. One has to work with this contour due to the initial problem nature of nonequi-
librium processes, i.e. the fact that only the initial and not later states of the system are
known [see Ani+11, p. 11]. Therefore, the standard procedure for the definition of a S-
matrix, which works with sending initial and final times to negative and positive infinity,
cannot be used [see Ani+11, p. 11]. Instead, one starts and ends at the same time ti1 and
knowledge of the state of the system at t = ±∞ is not needed during the calculation of
correlation functions [see Ani+11, p. 11].
The equation of motion for GC is the Schwinger-Dyson equation [see Ani+11, p. 11]

C(i/∂1 −M)GC(x1, x2)− i
∫
C

d4x′CΣC(x1, x
′)GC(x′, x2) = iδC(x1 − x2) , (3.36)

where CΣC(x1, x
′) is the self-energy, with the charge conjugation matrix C factored out for

convenience in the calculations following [Ani+11, p. 11], and /∂1 = γµ∂/∂xµ1 . Analogously
to the Green’s function, one has for the self-energy

ΣC(x1, x2) = θC(x0
1, x

0
2)Σ>(x1, x2) + θC(x0

2, x
0
1)Σ<(x1, x2) . (3.37)

Since the time coordinates of GC and ΣC can lie on the upper or lower branch of C, i.e. C+

or C−, it is useful to rewrite the Green’s function and the self-energy as (2 × 2)-matrices
with entries Gij and Σij , where the first and second indices refer to the first and second
time arguments, respectively, and an index equal to 1 and 2 refer to the time argument
being on the upper and lower branch of C, respectively. Therefore, the time-ordered
Feynman propagator corresponds to G11. In total, the components for the propagator
are [see Ani+11, p. 12]

G12(x1, x2) = G<(x1, x2) , (3.38)
G21(x1, x2) = G>(x1, x2) , (3.39)

G11(x1, x2) = G+(x1, x2)− i

2 sign(x0
1 − x0

2)G−(x1, x2) , (3.40)

G22(x1, x2) = G+(x1, x2) + i

2 sign(x0
1 − x0

2)G−(x1, x2) . (3.41)

The self-energy components Σij are analogous to these with Σ≶ being defined accord-
ingly [see Ani+11, p. 12]. Analogously to Eqs. (3.30) and (3.31), the self-energies Σ±
fulfill the relations

Σ−(x1, x2) = i(Σ>(x1, x2)− Σ<(x1, x2)) , (3.42)

Σ+(x1, x2) = 1
2(Σ>(x1, x2) + Σ<(x1, x2)) . (3.43)

When dealing with perturbative expansions of the Schwinger-Dyson equation (3.36) using
Feynman diagrams, one has to respect that time arguments of internal vertices can lie on
either branch of the Keldysh contour ("doubling of degrees of freedom"), where each time

1This formalism is therefore sometimes called "in-in" formalism as opposed to the name "in-out" formalism
for the S-matrix [see Ani+11, p. 11].
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argument on the lower branch gives an additional factor −1 [see Ani+11, p. 12]. Vertices
with time arguments on either branch are connected with the corresponding propagators
Gij [see Ani+11, p. 12].

With the relations for Gij and Σij , one may rewrite the Schwinger-Dyson equation (3.36)
into two coupled integro-differential equations for G±, which are called Kadanoff-Baym
equations (KBEs) [KB62] [see Ani+11, p. 12]. In the context of this thesis, spatial ho-
mogeneity may be assumed. Therefore, the spatial dependence of the propagator and the
self-energy is only on the difference x1 − x2. Using the definitions of the spatial Fourier
transforms

G±p (t1, t2) =
∫

d3xe−ipxG±(t1,x1, t2,x1 − x) , (3.44)

Σ±p (t1, t2) =
∫

d3xe−ipxΣ±(t1,x1, t2,x1 − x) , (3.45)

one can consider each Fourier mode of the KBEs separately and obtains [see Ani+11,
pp. 12-13]

C(iγ0∂t1 − pγ −M)G−p (t1, t2) =−
∫ t2

t1
dt′ CΣ−p (t1, t′)G−p (t′, t2) , (3.46)

C(iγ0∂t1 − pγ −M)G+
p (t1, t2) =−

∫ t2

ti

dt′ CΣ+
p (t1, t′)G−p (t′, t2)∫ t1

ti

dt′ CΣ−p (t1, t′)G+
p (t′, t2) . (3.47)

One can also derive the KBEs for the lepton propagators S±Lk and find that they fulfill
analogous equations with the exchange of CΣ±p by the lepton self-energies Π±k , no charge
conjugation matrix C on the left hand sides in front of the kinetic term, and M = 0 [see
Ani+11, pp. 13, 25-26].
Note that the KBEs are exact and contain all quantum and non-Markovian effects [cf.

Ani+11, p. 13]. Also, it is worth remarking that in nonequilibrium QFT, the state of the
system is characterized by correlation and not distribution functions, while interactions
enter through the self-energies [cf. Ani+11, p. 13]. All processes that can occur can be
recovered from the self-energies using generalized cutting rules [cf. Ani+11, p. 13].

3.3. Propagators

As detailed in [Ani+11, p. 13], one may assume for the solution of the KBEs (3.46)
and (3.47) for the Majorana neutrino that there is one field (N) out of equilibrium in a
thermal bath of SM fields (SM plasma). This is due to the smallness of the SM equilibration
time τSM ∼ 1/(g2T ), where g is any SM coupling, at temperatures T ∼M compared to the
Majorana neutrino equilibration time τN ∼ 1/(λ2T ) giving the timescale of the generation
of the lepton asymmetry [see Ani+11, p. 13]. Hence, backreactions from the plasma can be
neglected. This enables one to solve the KBEs for the Majorana neutrino propagator using
the equilibrium lepton and Higgs boson propagators to obtain a leading order solution [see
Ani+11, p. 16]. Using the solutions G±, one can then investigate lepton number changing
processes in the thermal bath by solving the KBEs for the lepton propagator focusing on
the CP violating interactions. However, for this one has to consider the finite equilibration
time of the plasma and therefore possible contributions from the Higgs boson and lepton
fields being out of equilibrium, cf. Ch. 4.3.
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Re t

ti → −∞ C+
β

tf →∞

C−β

ti − iβ

Figure 3.2.: Contour Cβ in the complex time plane for equilibrium Green’s functions, i.e.
propagators, from [Hüt13, p. 24].

Due to spatial homogeneity, equilibrium correlation functions only depend on space-time
differences and it is useful to consider the Fourier transforms

∆±q (ω) =
∫

d4xei(ωx0−qx)∆±(x) , (3.48)

S±k (ω) =
∫

d4xei(ωx0−kx)S±(x) . (3.49)

The Higgs boson and lepton propagators fulfill the Kubo-Martin-Schwinger relations [cf.
Le 96, p. 25], [see Ani+11, p. 15],

∆<
q (ω) = e−βω∆>

q (ω) , (3.50)
S<k (ω) = −e−βωS>k (ω) , (3.51)

which imply that [see Ani+11, p. 15]

∆+
q (ω) = −i

(1
2 + fB(ω)

)
∆−q (ω) = − i2 coth

(
βω

2

)
∆−q (ω) , (3.52)

S+
k (ω) = −i

(1
2 − fF (ω)

)
S−k (ω) = − i2 tanh

(
βω

2

)
S−k (ω) , (3.53)

where

fB(ω) = 1
eβω − 1 , (3.54)

fF (ω) = 1
eβω + 1 (3.55)

are the Bose-Einstein and Fermi-Dirac distribution functions, β = 1/T is the inverse
temperature of the SM plasma, and ω can be off-shell.

The equilibrium propagators can be calculated in the real-time formalism using the
contour Cβ shown in Fig. 3.2. For the lepton (S) and Higgs boson (∆) fields, this calculation
gives [see Ani+11, pp. 15, 43-44] [as cited in Hüt13, p. 24]

∆−q (y) = 1
q

sin(qy) , (3.56)

∆+
q (y) = 1

2q coth
(
βq

2

)
cos(qy) , (3.57)

S−k (y) = iγ0 cos(ky)− kγ
k

sin(ky) , (3.58)

S+
k (y) = −1

2 tanh
(
βk

2

)(
iγ0 sin(ky) + kγ

k
cos(ky)

)
, (3.59)
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where q = |q|, k = |k|, and the time-variable has not been Fourier-transformed. The
relations from Sec. 3.1 give the other propagators. Note that without Fourier transforma-
tions and before implementing the fact that the propagators only depend on space-time
differences, analogously to the Keldysh contour in Fig. 3.1 also in the contour Cβ, the
time arguments can lie on either C+

β or C−β . Hence, one has components depending on the
position of the time arguments on the contour analogously to the Majorana propagator
(P represents ∆ or S)

P 12(x1, x2) = P<(x1, x2) , (3.60)
P 21(x1, x2) = P>(x1, x2) , (3.61)

P 11(x1, x2) = P+(x1, x2)− i

2 sign(x0
1 − x0

2)P−(x1, x2) , (3.62)

P 22(x1, x2) = P+(x1, x2) + i

2 sign(x0
1 − x0

2)P−(x1, x2) . (3.63)

Using the time-translation invariance of the diagrams contributing to the Majorana
neutrino self-energy, the spectral propagator of the Majorana neutrino only depends on
the time difference, i.e. G−p (t1, t2) → G−p (y) with y = t1 − t2 [see Ani+09] [as cited in
Ani+11, pp. 16-17]. This enables one to find the general solution of the KBEs (3.46)
and (3.46) for small coupling λ � 1, which implies a small width Γp � M , in the Breit-
Wigner approximation [see Ani+11, pp. 17-24] [as cited in Hüt13, p. 24]

G−p (y) =
(
iγ0 cos(ωpy) + M − pγ

ωp
sin(ωpy)

)
e−Γp|y|/2C−1 , (3.64)

G+
p (t1, t2) = −

(
iγ0 sin(ωpy)− m− pγ

ωp
cos(ωpy)

)

×
[1

2 tanh
(
βωp

2

)
e−Γp|y|/2 + f eqN (ωp)e−Γpt

]
C−1 , (3.65)

where the width Γp = Γp(ωp) will be discussed later, t = (t1+t2)/2, and f eqN (ωp) = fF (ωp).
The KMS relation as well as the choice ti = 0 were used in order to obtain the second
equation [see Hüt13, pp. 24-25]. Note that its time dependence is not only on y.

3.3.1. Connection Between the Majorana Neutrino Self-Energy and its
Thermal Width

In the derivation of the nonequilibrium Majorana propagator in [Ani+11], the width Γp
is connected to the Majorana self-energy. Explicitly, the retarded Majorana self-energy is
given by [see Ani+11, pp. 17-18]

Σret(p) = Σ̃−(−ip0 + 0+,p) = i P.V.
∫ ∞
−∞

dω
2π

Σ−(ω,p)
p0 − ω

+ 1
2Σ−(p) , (3.66)

where Σ−(p) is considered to be purely imaginary, since the real part is negligible due to
the smallness of the Yukawa coupling of the Majorana neutrino [cf. Ani+11, pp. 18-19],
and P.V. denotes the Cauchy principal value. Therefore, one finds

Im Σret(p) = 1
2iΣ

−(p) , (3.67)
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where the real and imaginary part of a matrix A ∈ Cn×n is defined via

ReA = A+A†

2 , (3.68)

ImA = A−A†

2i . (3.69)

Due to the high temperatures in the thermal bath, the lepton and the Higgs boson are
massless. This implies that the Majorana neutrino self-energy is a pure vector in Lorentz
space [see MQF99] [as cited in Men10, p. 45], i.e.

Σ−(p) = cp(p0)/p+ dp(p0)/u , (3.70)

where u is the four-velocity of the plasma. Note that thermal masses do not change this,
since they give a term ∼ γ0 in the lepton propagator, whereas the thermal mass in the
scalar propagator cannot change the Dirac structure. This will become more clear in
Ch. 5. In the plasma rest-frame, one has u = (1,0), which implies that one can rewrite
this relation according to [cf. Ani+11, p. 19]

Σ−(p) = iap(p0)γ0 + ibp(p0)pγ . (3.71)

Therefore, this relation holds not only in the one-loop case considered in [Ani+11], but in
general. In the imaginary time formalism, as it will be used in Ch. 5, the relation (3.71)
directly follows from the rotational invariance of the self-energy [Wel82]. During the
calculation of the spectral density ρp(ω), which is done in [Ani+11, p. 19] and only uses
Eq. (3.71) for the self-energy, one then finds [see Ani+11, p. 20]

p0Γp(p0) = p0ap(p0) + p2bp(p0) . (3.72)

This gives

Tr[/p Im Σret(p)] = 1
2iTr[/pΣ

−(p)]

= 2[p0ap(p0) + p2bp(p0)] = 2p0Γp(p0)

and therefore
Γp(p0) = 1

2p0Tr[/p Im Σret(p)] . (3.73)

During the calculation of the nonequilibrium Majorana neutrino propagator, the Breit-
Wigner approximation then gives the constraint to on-shell ω = ωp. Therefore, whenever
the argument p0 is omitted, Γp = Γp(ωp) is meant. In this thesis, a resummed width
including gauge corrections is used2. Still, one should cite the on-shell one-loop result for
the width from [Ani+11, p. 20], which is given by

Γp(ωp) = (λ†λ)11
2
ωp

∫ d3q

(2π)32q

∫ d3k

(2π)32kp · kflφ(k, q)(2π)4δ(4)(p− k − q) , (3.74)

where

flφ(k, q) := 1− fF (k) + fB(q) (3.75)

and the lepton and Higgs have been assumed to be massless. Note that q and k both mean
the absolute value of the three-momentum as well as the four-momentum. However, it is
clear from context, which one is meant (p · k := pµk

µ).
The form of Eq. (3.73) is needed in order to implement the resummation scheme for the

inclusion of gauge corrections in the same manner as in [ABB11] in Ch. 5.
2Note that this in not in conflict with the derivation of the non-equlibrium Majorana propagator, since
this only assumes the form Eq. (3.73) and Γp �M , which still holds.



4. Boltzmann and Kadanoff-Baym
Calculations for the Lepton
Asymmetry

In this chapter, the calculations for the lepton asymmetry are presented. First, the result-
ing asymmetry from the solution of the Boltzmann equations is discussed. Afterwards,
as it is necessary for a complete "theory of leptogenesis" [see Buc01, p. 10] [as cited in
Ani+11, p. 42] to know the result from a calculation from first principles [cf. Ani+11], a
calculation of the lepton asymmetry using the KBEs (3.46) and (3.47) from [Ani+11] is
presented.

4.1. Physical Scenario
A standard leptogenesis scenario solved using Boltzmann equations is depicted in Fig. 4.1,
where the time evolution of the heavy Majorana neutrino abundance NN1 and the lepton
asymmetry NB−L is depicted with z = M/T as time variable for thermal and zero initial
Majorana neutrino abundance. The choice of z as time variable is possible due to the
fact that the Hubble expansion gives a cooling (and possibly also departure from thermal
equilibrium) and therefore, with increasing time the temperature decreases. For thermal
initial abundance, the Hubble expansion causes the Majorana neutrino abundance to be
larger than the equilibrium abundance at T ≈ 0.3M and shortly afterwards, the lepton
asymmetry is "frozen in" because washout processes are not in equilibrium anymore [see
Ani+11, pp. 3-4]. For zero initial Majorana neutrino abundance, interactions with the SM
particles bring the Majorana neutrino in equilibrium whilst generating an initial lepton
asymmetry because of the departure from thermal equilibrium. The initial asymmetry is
washed out and at T ≈ 0.3M , the final asymmetry is generated, which has about the same
size as the initial asymmetry [see Ani+11, p. 4].
Following [Ani+11], this thesis uses the second scenario with zero initial Majorana

neutrino abundance and concentrates on the initial asymmetry. For the generation of
this asymmetry, the change in temperature due to the Hubble expansion of the universe
and washout terms can be neglected [see Ani+11, p. 4]. In the context of this thesis,
the effect of soft and hard gauge corrections on the generated lepton asymmetry are
studied using the calculation from [Hüt13] with some modifications. These corrections are
expected to be important for T & M [cf. Giu+04; KPT10; ABB11] [as cited in Ani+11,
p. 4], where also thermal masses of the lepton and Higgs boson are relevant. Hence, it
is instructive to consider the generation of the initial asymmetry as in [Ani+11], but at
higher (constant) temperatures to estimate the effect of gauge corrections. Therefore, the
result from [Ani+11] can be used as a starting point.
Summarizing, the physical scenario studied in the context of this thesis starts with zero

heavy Majorana neutrino abundance, i.e. vacuum initial conditions, in a thermal bath
of SM particles in equilibrium with constant temperature T . The interactions with the
thermal bath then bring the Majorana neutrino in equilibrium whilst generating a lepton
asymmetry, the initial asymmetry in Fig. 4.1.
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Figure 4.1.: Heavy Majorana neutrino abundance NN1 and lepton asymmetry NB−L =
NB − NL, since NL is changed by leptogenesis, evolution for typical lepto-
genesis parameters M = M1 = 1010 GeV, m̃1 = 8πΓ1(vew/M1)2 = 10−3 eV,
ε = 10−6. Dashed and full lines represent thermal and vacuum initial heavy
Majorana neutrino abundance, respectively, whereas the dotted line is the
equilibrium abundance at each z. From [BDP02, p. 22] [as cited in Ani+11,
p. 3].

4.2. Boltzmann Calculation
For a discussion of the well-known Boltzmann equations for a heavy Majorana neutrino, a
lepton, and a Higgs doublet see [HPW09]. Neglecting the Hubble expansion and washout
terms and working at constant temperature of the SM plasma, one finds for the distribution
function of heavy Majorana neutrinos in the physical scenario of interest [see Ani+11, p. 5]

∂

∂t
fN (t, ωp) =− 2

ωp

∫ d3k

(2π)32k

∫ d3q

(2π)32q (2π)4δ4(k + q − p)(λ†λ)11p · k

× [fN (t, ωp)(1− fl(k))(1 + fφ(q))− fl(k)fφ(q)(1− fN (t, ωp))] , (4.1)

where ωp =
√
M2 + p2, k, and q are the energies of N , l, and φ1, respectively, fl(k) ≡

fF (k) and fφ(q) ≡ fB(q) are the equilibrium distribution functions of the indexed fields,
and the averaged decay matrix element is |M(N(p)→ l(k)φ(q)|2 = 2(λ†λ)11p ·k [cf. BF00]
[as cited in Ani+11, p. 5]. The number density of heavy Majorana neutrinos is then given
by [see Ani+11, pp. 5-6]

nN (t) =
∫ d3p

(2π)3 fN (t, ωp) (4.2)

with the assumption of kinetic equilibrium. This number density corresponds to the
comoving number density NN1 from Fig. 4.1 [see Ani+11, p. 7]. Using the vacuum initial

1The lepton and Higgs boson are assumed to be massless.
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condition fN (0, ωp) ≡ 0, one finds for the solution of the Boltzmann equation (4.1)

fN (t, ωp) = f eqN (ωp)(1− e−Γpt) , (4.3)

where f eqN (ωp) ≡ fF (ωp) is the Majorana neutrino equilibrium distribution function and
Γp is the sum of decay and inverse decay widths [cf. Wel83] [as cited in Ani+11, p. 6]
given by Eq. (3.74), i.e. the thermal width. Note that even though this solution is given
only for neglecting the momentum dependence of Γp in [Ani+11], it also holds for the
momentum-dependent Γp from Eq. (3.74).
In order to compute the lepton asymmetry, the Boltzmann equation for the lepton

distribution function is needed, which is given by

∂

∂t
fl(t, k) =− 1

2k

∫ d3q

(2π)32q

∫ d3p

(2π)32ωp
(2π)4δ4(k + q − p)

× [|M(l(k)φ(q)→ N(p))|2fl(k)fφ(q)(1− fN (t, ωp))
− |M(N(p)→ l(k)φ(q))|2fN (t, ωp)(1− fl(k))(1 + fφ(q))] , (4.4)

where O(λ4) corrections to the matrix elements have to be kept [cf. Ani+11, p. 6]. Note
that l here can stand for either a lepton or anti-lepton of i-th family, i.e. li or l̄i. The
distribution function for the lepton asymmetry is defined via

fLi(t, k) = fli(t, k)− fl̄i(t, k) . (4.5)

With the initial condition fLi(0, k) = 0 one finds using Eq. (4.3) [see Ani+11, pp. 6-7]

fLi(t, k) =− εii
1
2k

∫ d3q

(2π)32q

∫ d3p

(2π)32ωp
(2π)4δ4(k + q − p)p · k

× flφ(k, q)f eqN (ωp)1− e−Γpt

Γp
(4.6)

with flφ according to Eq. (3.75) and the definition

εij = 3
16π Im(λ∗i1(ηλ∗)j1)M . (4.7)

After summation over all lepton flavors, the generated lepton asymmetry is thus propor-
tional to the CP-asymmetry [see BF00, p. 11] [as cited in Ani+11, p. 7]

ε =
∑
i

εii
(λ†λ)11

= 3
16π

Im(λ†ηλ∗)11M

(λ†λ)11
. (4.8)

For easier comparison to the solutions of the Kadanoff-Baym equations, it is useful to
rewrite Eq. (4.6) as

fLi(t, k) =− εii
32π
k

∫ d3q

(2π)32q

∫ d3p

(2π)32ωp

∫ d3q′

(2π)32q′
∫ d3k′

(2π)32k′

× k · k′(2π)4δ4(k + q − p)(2π)4δ4(k′ + q′ − p)

× flφ(k, q)f eqN (ωp)1− e−Γpt

Γp
(4.9)

so that the integrand is proportional to the averaged matrix element |M(l(k)φ(q) →
l̄(k′)φ̄(q′))|2 = 2k · k′(λ†λ)11/M

2 [see BF00, p. 11] [as cited in Ani+11, p. 7]. For T �M
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the integrand is strongly suppressed due to a falloff according to e−βωp < e−βM [cf. Ani+11,
p. 7]. Eq. (4.9) can be rewritten to [see Ani+11, pp. 47-49]

fLi(t, k) =− εii
2πk

∫
pmin(k)

dp
∫ k′max(p)

k′min(p)
dk′k′ 1

ωp

(
1− 2ωpk −M2

2pk
2ωpk

′ −M2

2pk′

)

× flφ(k, ωp − k)fF (ωp)1− e−Γpt

Γp
, (4.10)

where

pmin(k) = |M
2 − 4k2|
4k , (4.11)

k′min(p) = ωp − p
2 , (4.12)

k′max(p) = ωp + p

2 . (4.13)

Integration over the three-momentum k and summation over the lepton families gives
the integrated lepton asymmetry, i.e. the number density

nL(t) =
∑
i

∫ d3k

(2π)3 fLi(t, k) (4.14)

corresponding to the comoving number density |NB−L| in Fig. 4.1 [see Ani+11, p. 7].

4.3. Kadanoff-Baym Calculation

4.3.1. Lepton Number Matrix

The starting point of the calculation of the lepton asymmetry using KBEs is the flavor
non-diagonal lepton current, which is related to the statistical propagator via [see Ani+11,
p. 24]

jµij(x) = −Tr
[
γµS+

Lij(x, x
′)
]
x→x′

, (4.15)

where i and j are flavor indices. Due to spatial homogeneity, the spatial dependence of
S+
ij is only on the difference x− x′. The zeroth component of the Fourier transform then

gives the lepton number matrix [see Ani+11, p. 24]

Lk,ij(t, t′) = −Tr
[
γ0S+

Lkij(t, t
′)
]
. (4.16)

For free fields in equilibrium, the lepton number matrix is related to the lepton and anti-
lepton distribution functions by [see Ani+11, pp. 24-25]

Lk,ii(t, t) = fli(k)− fl̄i(k) . (4.17)

As discussed in Sec. 3.3, lepton number changing processes are studied using the KBEs
for the lepton propagator. This means that the propagator in Eq. (4.16) fulfills the
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KBEs [see Ani+11, pp. 25-26]

(iγ0∂t − kγ)S+
Lk(t, t′) = +

∫ t

0
dt1Π−k (t, t1)S+

Lk(t1, t′)

−
∫ t′

0
dt1Π+

k (t, t1)S−Lk(t1, t′) , (4.18)

S+
Lk(t, t′)(−iγ0←−∂t′ − kγ) =−

∫ t

0
dt1S+

Lk(t, t1)Π−k (t1, t′)

+
∫ t′

0
dt1S−Lk(t, t1)Π+

k (t1, t′) , (4.19)

where Πk is the lepton self-energy and flavor indices are suppressed. Note that in principle,
the lepton and Higgs boson fields have to be considered to be out of equilibrium now. Using
these equations, one finds [see Ani+11, p. 26]

∂tLk(t, t) = iTr
[
(iγ0∂t + iγ0∂t′)S+

Lk(t, t′)
]
t=t′

= iTr
[
(iγ0∂t − kγ)S+

Lk(t, t′) + S+
Lk(t, t′)(iγ0←−∂t′ + kγ)

]
t=t′

= iTr
[
(iγ0∂t − kγ)S+

Lk(t, t′) + S+
Lk(t, t′)(iγ0←−∂t′ + kγ)

]
t=t′

= iTr
[∫ t

0
dt1Π−k (t, t1)S+

Lk(t1, t′)−
∫ t′

0
dt1Π+

k (t, t1)S−Lk(t1, t′)

+
∫ t

0
dt1S+

Lk(t, t1)Π−k (t1, t′)−
∫ t′

0
dt1S−Lk(t, t1)Π+

k (t1, t′)
]
. (4.20)

After integration over the time, this gives [see Ani+11, p. 26]

Lk(t, t) = i

∫ t

0
dt1

∫ t

0
dt2 Tr

[
Π−k (t1, t2)S+

Lk(t2, t1)−Π+
k (t1, t2)S−Lk(t2, t1)

]
= −

∫ t

0
dt1

∫ t

0
dt2 Tr

[
Π>

k (t1, t2)S<Lk(t2, t1)−Π<
k (t1, t2)S>Lk(t2, t1)

]
, (4.21)

where the relations between the Wightman functions, the spectral function, and the sta-
tistical propagator from Eqs. (3.20) and (3.21), which also hold for the solutions of the
KBEs as well as the components of the self-energy, have been used. This expression is to
be evaluated at leading order in the small Yukawa coupling λ.

At this step of the calculation, one should specify which diagrams should be included
in the lepton self-energy. Up to two-loop level all diagrams are depicted in Fig. 4.2. Since
this calculation neglects washout terms and only CP-violating terms contribute to a lepton
asymmetry, one has to investigate, which diagrams correspond to the latter. It turns out
that only the diagrams e) and f) in Fig. 4.2 have vertex factors, i.e. combinations of Yukawa
couplings, proportional to the known CP-asymmetry ε from Eq. (4.8) [see Ani+11, pp. 13-
14]2. Therefore, only these diagrams, which are depicted in Fig. 4.3 with the conventions
for this calculation, are considered in [Ani+11] and this thesis as contributions to the
lepton self-energy.

The Majorana neutrino and lepton propagators as well as the lepton self-energy may be

2Note that for finite chemical potential, which is neglected here, also washout terms violate CP [see
Men10, pp. 75-76].
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Figure 4.2.: One- and two-loop contributions to the lepton self-energy with correspon-
dences to washout terms a) - d) and CP-violating terms e) + f) generating a
lepton asymmetry [from Ani+11, p. 14].

decomposed into an equilibrium and a nonequilibrium part following

Gp(t1, t2) = Geq
p (t1, t2) + G̃p(t1, t2) , (4.22)

SLk(t1, t2) = Seq
Lk(t1, t2) + δSLk(t1, t2) , (4.23)

Πk(t1, t2) = Πeq
k (t1, t2) + δΠk(t1, t2) . (4.24)

It can be shown [see Ani+11, pp. 26, 52-53] that the equilibrium part of the Majorana
neutrino propagator does not contribute to a lepton asymmetry. Inserting Seq

k and Πeq
k

into the lepton number matrix obviously gives Lk,ii ≡ 0 because of the lack of a lepton
asymmetry in thermal equilibrium [see Ani+11, p. 27]. At leading order in λ, one finds
for the lepton number matrix [see Ani+11, p. 27]

Lk(t, t) = i

∫ t

0
dt1

∫ t

0
dt2 Tr

[
δΠ−k (t1, t2)Seq+

Lk (t2, t1)− δΠ+
k (t1, t2)Seq−

Lk (t2, t1)
]
, (4.25)

where

δΠk(t1, t2) = Π(1)
k (t1, t2) + Π(2)

k (t1, t2) (4.26)

is calculated using equilibrium Higgs boson and lepton propagators as well as the nonequi-
librium part of the Majorana neutrino propagator, and Π(1)

k and Π(2)
k are the diagrams in

Fig. 4.3. Since the nonequilibrium part of the lepton and Higgs boson propagators are
not needed from now on, Sk and ∆q again denote the equilibrium parts. The diagrams in
Fig. 4.3 can be evaluated using the Feynman rules given in the appendix, Sec. A.2. Fac-
toring out the Yukawa couplings containing the flavor dependence, one finds [cf. Ani+11,
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Figure 4.3.: Two-loop contributions to lepton self-energies Π±k , Π(1)±
k (left-hand side)

and Π(2)±
k (right-hand side), contributing to a non-zero lepton asymmetry,

from [Ani+11, p. 24].

pp. 27-28]

Π(1)
kij(t1, t2) = −3iλ∗i1(ηλ∗)j1Π(1)

k (t1, t2) , (4.27)

Π(2)
kij(t1, t2) = 3i(η∗λ)i1λj1Π(1)

k (t1, t2) . (4.28)

Chiral projections at the vertices cause only the scalar parts of the nonequilibrium Majo-
rana neutrino propagator to contribute, and thus, one has

G̃p(t1, t2) = G̃>p (t1, t2) = G̃<p (t1, t2) = G̃11
p (t1, t2) = G̃22

p (t1, t2)

= M

ωp
cos(ωp(t1 − t2)fF (ωp)e−Γp(t1+t2)/2 (4.29)

inside the expressions for the diagrams [cf. Ani+11, p. 28]. Using symmetry properties
for the propagators as well as relations between the contributions of the diagrams, one
finds [cf. Ani+11, p. 29]

Lk,ii(t, t) = 64πεii
M

∫ t

0
dt1

∫ t

0
dt2 Re

(
Tr
[
Π(1)>

k (t1, t2)S<k (y21)
])

(4.30)

with

Π(1)>
k (t1, t2) =

∫ ∞
0

dt3
∫

q,q′,k′,p
(2π)3δ3(p− k′ − q′)(2π)3δ3(p + k + q)

×
[
G̃p(t1, t3)

(
S11

k′ (y23)∆11
q′ (y23)− S<k′(y23)∆<

q′(y23)
)

∆<
q (y21)

]
PL , (4.31)

where
∫

q :=
∫

d3q/(2π)3 and yij := ti− tj . For a detailed calculation see [Ani+11, pp. 24-
29]. Note that the momentum structure is corrected compared to the result in [Hüt13,
p. 31] so that it agrees with the corresponding diagram.
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4.3.2. Solution without Gauge Corrections

The solution of the lepton number matrix without gauge corrections is obtained by insert-
ing the propagators from Sec. 3.3 in Eq. (6.1). This gives [see Ani+11, p. 30]

Lk,ii(t, t) =− εii
∫ t

0
dt1

∫ t

0
dt2

∫ t2

0
dt3

∫
q,q′,k′,p

× 8π
qq′ωp

(2π)3δ3(p− k′ − q′)(2π)3δ3(p + k + q)fF (ωp)e−Γp(t1+t3)/2 cos(ωpy31)

×
[(
flφ(k, q) cos((k + q)y21) + f̄lφ(k, q) cos((k − q)y21)

)
×
(
flφ(k′, q′) cos((k′ + q′)y23) + f̄lφ(k′, q′) cos((k′ − q′)y23)

)
+ k · k′

kk′

((
flφ(k, q) sin((k + q)y21) + f̄lφ(k, q) sin((k − q)y21)

)
×
(
flφ(k′, q′) sin((k′ + q′)y23) + f̄lφ(k′, q′) sin((k′ − q′)y23)

))]
, (4.32)

where, cf. Eq. (3.75),

flφ(k, q) = 1− fF (k) + fB(q) , (4.33)
f̄lφ(k, q) = fl(k) + fφ(q) . (4.34)

Note that in [Ani+11], three-momentum conservation is implied only and not written
explicitly. In order to compare this to the solution of the Boltzmann equations, one has to
restrict the integrations to intervals with points satisfying the conditions ωp = k + q and
ωp = k′+ q′. Furthermore, the limit Γp/M → 0 while Γpt = const has to be considered so
that one finds for the dominating part of the lepton number matrix [see Ani+11, Erratum]

Lk,ii =− εii
2πk

∫
pmin(k)

dp
∫ k′max(p)

k′min(p)
dk′k′ 1

ωp

(
1− 2ωpk −M2

2pk
2ωpk

′ −M2

2pk′

)

× flφ(k, ωp − k)flφ(k′, ωp − k′)fF (ωp)1− e−Γpt

Γp
, (4.35)

where [see Ani+11, p. 49]

pmin(k) = |M
2 − 4k2|
4k , (4.36)

k′min(p) = ωp − p
2 , (4.37)

k′max(p) = ωp + p

2 . (4.38)

This is the same as Eq. (4.10) apart from a statistical factor [see Ani+11, Erratum]. Most
importantly, it has the same time-dependence as the solution of the Boltzmann equation.
Up to now, thermal damping widths of the Higgs boson and lepton fields due to gauge

interactions have been neglected. This can be implemented by replacing the propagators
according to [see Ani+11, p. 32]

∆q(y)→ e−γφ|y|∆q(y) , (4.39)
Sk(y)→ e−γl|y|Sk(y) , (4.40)

where γφ and γl are the thermal damping widths. It is known that these widths are much
greater than the thermal width of the heavy Majorana neutrino, i.e. γφ ∼ γl ∼ g2T �



4.3. Kadanoff-Baym Calculation 25

λ2M ∼ Γp for M . T [see Ani+11, p. 32]. For the dominating part of the lepton number
matrix, one then obtains [see Ani+11, pp. 32-33]

Lk,ii(t) =− 32πεii
∫

q,q′,k′,p
(2π)3δ3(p− k′ − q′)(2π)3δ3(p + k + q) k · k′

4qq′kk′ωp

× γγ′

((ωp − k − q)2 + γ2)((ωp − k′ − q′)2 + γ′2)

× flφ(k, ωp − k)flφ(k′, ωp − k′)fF (ωp)1− e−Γpt

Γp
, (4.41)

where γ = γl(k)+γφ(q) and γ′ = γl(k′)+γφ(q′). Again, one finds the same time-dependence
as the solution of the Boltzmann equation. However, it is also obvious that the inclusion
of gauge interactions, which are emulated here with the replacement of the propagators,
influence the resulting lepton number matrix. Hence, a systematic approach is needed,
which is presented in Ch. 6.





5. Resummation of the Majorana
Neutrino Self-Energy

In this chapter, the details on the resummation of the Majorana neutrino self-energy, which
is needed for the systematic inclusion of all leading order gauge corrections, are presented.
Note that the imaginary time formalism [cf. Le 96] is used here because of the usage of the
result from [Ani+11], which is discussed in greater detail in [Bes10]. This chapter closely
follows Ch. 5 from [Hüt13] being a summary of the corresponding chapters in [Ani+11;
Bes10].

5.1. Momentum Scales
There are different momentum scales to consider in order to correctly describe particles in
a hot thermal bath, e.g. heavy Majorana neutrinos in a SM plasma. In the context of this
thesis, due to high temperatures T & M , the relevant momentum scale is the lightcone
scale. Therefore, the others will only be presented shortly. In the following, p stands for
a four-momentum and g � 1 is the relevant coupling constant. Note that order estimates
like p ∼ T concern the absolute value of the three-momentum. The different scales are [see
Bes10, pp. 14-15]:

• Hard scale, p ∼ T , p2 ∼ T 2: This is the only momentum scale for particles inside
a plasma, where ordinary perturbation theory is valid. For T . M the Majorana
neutrino is in this momentum scale. Therefore, no resummation is needed there.

• Soft scale, p ∼ gT : This momentum scale is the typical one for collective excitations
in a plasma causing naive perturbation theory to break down. The interactions with
the plasma change the propagation of particles giving corrections of O(1). This
results in a thermal mass of the particle. One can treat this region using the hard
thermal loop (HTL) resummation scheme [Pis89]. Since this is very similar to a
step in the calculation of the resummed self-energy, this approach will be presented
shortly in Sec. 5.2.

• Ultrasoft scale, p ∼ g2T : This momentum scale is the one of magnetic screening, i.e.
transverse polarization of gauge fields become important. Since perturbation theory
breaks down, one needs effective theories or lattice simulations for this regime.

• Lightcone scale, p ∼ T , p2 ∼ g2T 2: This momentum scale is of interest in the
context of this thesis, since T & M and therefore, the absolute value of the three-
momentum is of the same order as the energy of the Majorana neutrino. Here,
collinear divergences occur and asymptotic masses, another sort of thermal masses,
need to be considered. Only for scalars the asymptotic mass is equal to the thermal
mass.

Note that these different kinematical regimes arise due to infrared and collinear divergences
in finite temperature calculations not present in zero temperature calculations. There are
no new ultraviolet divergences [see Bes10, p. 14].
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2. Quantum field theory in a hot thermal bath

The appearance of IR and collinear divergences has a striking effect on perturbative computations: Certain
diagrams of higher order in the loop expansion turn out to be of the same order in the coupling constant. This
phenomenon which is a characteristic feature of finite-temperature calculations appears in different contexts.
The most prominent one is the HTL effective theory that we outline in section 2.2–in order to get the leading
order expression for the propagator of a soft particle, self-energy insertions have to be resummed. However,
such divergences do not exclusively appear at finite temperature. Even in zero-temperature QCD, IR and
collinear divergences can occur if e.g. soft and/or collinear (with respect to the emitting source) gluons are
radiated and they also require a resummation of Feynman diagrams to get finite results. Effective theories,
e.g. the soft-collinear effective theory (SCET), which deals with a very similar kinematical setup as the one
considered in this thesis [21, 22], need to be used and conventional perturbation theory becomes useless.

The next two sections describe the modification of perturbation theory needed for momenta at the soft
scale (section 2.2) and near the lightcone (section 2.3).

2.2. Hard Thermal Loops (HTL)

For soft momenta, the naive perturbation theory described in the previous section fails to include all con-
tributions of a given order in the coupling constant. Instead, propagators for particles with soft momenta
and vertices where all ingoing momenta are soft need to be replaced by effective, resummed counterparts. To
illustrate this phenomenon, we can look at a resummed scalar propagator with 1-loop self-energy insertions
as in figure 2.2.7

= +−Π −Π −Π + . . .

Figure 2.2.: Resummed scalar propagator with pure scalar self-interaction.

For a hard momentum P ∼ T , the resummed propagator is obviously suppressed compared to the bare one,
but for P ∼ gT 8, the resummed propagator is of the order

∆(P )(−Π(P ))∆(P ) . . . ∼ 1

(gT )2
(gT )2

1

(gT )2
. . . ∼ 1

(gT )2

where we assume the loop momentum to be hard, such that −Π(P ) ∼ g2
∑

k0

∫
d3k∆(K) ∼ g2T 2. It is

obviously of the same order as the bare propagator and therefore the resummation needs to be taken into
account. This is the easiest example of a so-called Hard Thermal Loop (HTL). A more explicit computation
can be found in appendix B.1.
HTLs in scalar theories are rather simple whereas gauge theories are more involved. A general power-counting
to establish which Green functions in gauge theories exhibit HTLs and require a resummation was established
in [23] while for Yukawa theories, HTLs were investigated in [24]. The power-counting for gauge theories is
rather involved and one needs to distinguish different cases. We do not reproduce it here since we will not
need the general framework, and only list the HTL corrections that are needed in gauge theories [9, 10, 23]:

• Scalar propagators, where the HTL is momentum-independent and contributes only a thermal mass,

Π(P ) = g2T 2

4 ≡ m2.

• Fermion and gauge boson propagators with momentum-dependent HTL self-energies which modify the
dispersion relations considerably (see below),

• N -gauge boson vertices and (N − 2)−gauge boson + two-fermion vertices.

7Note that the diagrams always correspond to −Π and not +Π. See appendix A for details.
8We assume a self-interaction of the form g2/4!φ4 and denote the scalar self-coupling different from the usual conventions by

g2 to get a more direct analogy to gauge theories.
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Figure 5.1.: HTL resummed scalar propagator with self-interaction, from [Bes10, p. 15].

5.2. Hard Thermal Loops
As discussed in the previous section, in the soft momentum scale naive perturbation theory
breaks down. This can already be seen in the simple example of the propagator with
one-loop self-energy insertions of a scalar particle undergoing self-interactions (with an
interaction corresponding to g2φ4/4!), see Fig. 5.1.
With ∆ being the bare propagator and Π the self-energy one finds in the imaginary time

formalism as order estimates ∆(q) = −1/(q2−m2) ∼ 1/(gT )2, since q2,m2 ∼ g2T 2 in this
momentum scale with the thermal mass m, and −Π(q) ∼ g2∑

q0

∫
d3k∆(q) ∼ g2T 2, where

the loop momentum is assumed to be hard [see Bes10, pp. 10, 15]. Note that q is used
for the momentum in the scalar propagator due to convention. One therefore finds for
an arbitrary number of one-loop self-energy insertions to the bare propagator [see Bes10,
p. 15]

∆(q)Π(q)∆(q) · · · ∼ 1
(gT )2 (gT )2 1

(gT )2 · · · ∼
1

(gT )2 (5.1)

This means that the bare propagator with an arbitrary number of one-loop self-energy
insertions is of the same order as the bare one without any insertions. Hence, all of these
contributions have to be summed up, cf. Fig. 5.1. This is called a resummation, which is
done in the HTL resummation scheme in this case.

5.3. Perturbation Theory Close to the Lightcone

5.3.1. Thermal Width and Asymptotic Mass

A similar situation to the soft momentum scale and the HTL resummation scheme can
arise in the lightcone scale. As it turns out, the condition for a scenario as in Sec. 5.2,
where the bare propagator has to be replaced by its resummed counterpart due to the
fact that self-energy insertions do not change the order, is strictly speaking not that all
components of p are of O(gT ), but p2 ∼ g2T 2 is needed [see Bes10, pp. 18-19]. Therefore,
a similar resummation is necessary at the lightcone scale p ∼ T , p2 ∼ g2T 2. This leads
to asymptotic masses. In contrast to ordinary thermal masses, that change the dispersion
relation differently for scalars, fermions, and gauge bosons, asymptotic masses change the
dispersion relation according to (p0)2 = p2 + m2

∞ for all of these, where p0 is the zero-
component of the four-momentum, p is the corresponding three-momentum, and m∞ is
the asymptotic mass [see Bes10, p. 14].
Considering a scalar particle with the resummed propagator ∆ and the self-energy Π,

one can parametrize the propagator using the thermal width Γ and the asymptotic mass
mφ,∞ [see Bes10, pp. 18-19]

∆(q) = −1
q2 −Π(q) = −1

(q0 + iΓ(q))2 − q2 −m2
φ,∞

. (5.2)

Comparing this to the HTL resummed propagator, one obtains with the assumption Γ2 �
m2
φ,∞, which is necessary for the quasiparticle description of the degrees of freedom [see

Bes10, p. 19],
Re Π(q) = m2

φ,∞ , Im Π(q) = −2q0Γ(q) . (5.3)
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Because of Π being of order O(g2T 2), also m2
φ,∞, q

0Γ are of order O(g2T 2), which implies
that Γ is of order O(g2T ). Therefore, the width and the asymptotic mass are a priori
equally important. Since however, only hard loop momenta need to be considered here,
the self-energy becomes purely real and the width can be neglected [see Bes10, p. 19].
The calculation of the resummed scalar and lepton propagators for light-like momenta

in imaginary time can be found in [Bes10, pp. 76-81]. One finds for the scalar propagator

∆(q) = −1
q2 −m2

φ,∞
(5.4)

with the asymptotic mass (here only for the φ4 case, see below for all relevant interactions)

m2
φ,∞ = g2T 2

4 . (5.5)

For the fermion propagator, the calculation gives

S(k) = −
/k − m2

l,∞
2k0

γ0

k2 −m2
l,∞

(5.6)

with the asymptotic mass (here only for one gauge coupling, see below for all relevant
interactions)

m2
l,∞ = g2C2(r)T 2

4 , (5.7)

where C2(r) is the Casimir operator of the corresponding gauge group. Using all relevant
interactions between the scalar/lepton and other SM particles, one finds for the asymptotic
masses [see Bes10, pp. 76-81] [as cited in Hüt13, p. 36]

m2
φ,∞ = 1

16(3g2
W + g2

Y + 4λ2
t + 8Λ)T 2 , (5.8)

m2
l,∞ = 1

16(3g2
W + g2

Y )T 2 , (5.9)

where gW and gY are the couplings corresponding to the gauge groups SU(2) and U(1),
respectively, λt is the top quark Yukawa coupling, and Λ is the Higgs self-coupling. Note
that the Yukawa couplings to all other quarks can be neglected due to smallness because
of their masses [see Bes10, p. 78].

5.3.2. Lightcone Coordinates and Power Counting

When dealing with the lightcone scale, it is useful to introduce lightcone coordinates. This
introduction is oriented on [Hüt13, p. 36]. For lightcone coordinates, one defines a light-
like four-vector v := (1,v) with v2 = 0, i.e. v2 = 1, and correspondingly p‖ := p · v for a
four-momentum p. p⊥ is then defined as the three-momentum perpendicular to v, which
can be expressed with two components. This enables one to rewrite a four-momentum
according to

p = (pµ) = (p+, p−,p⊥) , (5.10)

where
p+ = p0 + p‖ , p− = p0 − p‖ . (5.11)

With

p2 = p2
0 − p2

‖ − p2
⊥ = (p0 + p‖)(p0 − p‖)− p2

⊥ = p+p− − p2
⊥ ∼ g2T 2 (5.12)
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k

p2

. . .

pN

pm

... p1

Figure 5.2.: One-loop contribution to CTL n-point function [cf. Bes10, p. 20]

the lightcone scale from Sec. 5.1 translates to

p+ ∼ T , p− ∼ g2T , |p⊥| ∼ gT . (5.13)

The measure becomes
d4p = 1

2 dp+ dp− d2p⊥ . (5.14)

Now, a spin-1/2 fermion or a spin-1 gauge boson with light-like momentum as an external
particle is studied in terms of Feynman diagrams. It is assumed that the interaction is
via a gauge coupling g. In terms of the gauge coupling, one finds the following power
counting [see Bes10, p. 21]:

• Loop integral: factor g4

• Propagator: factor 1/(g2T 2)

• Vertex involving gauge boson: factor g

• Trilinear vertex1: another factor g

5.3.3. Collinear Thermal Loops

Consider one-loop diagrams like in Fig. 5.2 with light-like momenta pi, pi ∼ T , p2
i ∼ g2T 2,

i = 1, . . . , N . These are called collinear thermal loops (CTL) [see Bes10, pp. 20-25]. The
loop momentum k2 is assumed to be also light-like k ∼ T , k2 ∼ g2T 2, and collinear to the
external momenta k · pi ∼ g2T 2. This means that pi,‖, k‖ ∼ T , whereas |k‖|, |pi,‖| ∼ gT .
The angle between the vectors is then of order O(g) [see Bes10, p. 20]. Note that if
collinearity is violated, the loop integrals and the vertices will give additional powers of g
suppressing the contribution compared to the CTL result [see Bes10, p. 21].
The power counting rules from Sec. 5.3.2 then give for a CTL N -point function ΠN

CTL
with n vertices involving gauge bosons and m = N − n additional vertices [see Bes10,
p. 22]

ΠN
CTL ∼ g4

( 1
g2

)N
gngN ∼ g4−m . (5.15)

For m = 2, which is the case for two Majorana neutrinos, this means that all CTL N -point
functions are of order O(g2).

1This corresponds e.g. to a Yukawa vertex in the context of this thesis. Note that the factor is additional
to a possible factor for a vertex involving a gauge boson.

2Here, the momentum for each propagator in the loop is meant.
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p− k

φ

p− k + q

φ

k

l

k − q
l

qA
p

N

p

N

Figure 5.3.: Two-point function with one gauge boson rung [cf. Bes10, p. 23].

If one now explicitly considers two-point functions Π1 rung as in Fig. 5.3, where however
already the propagators for the Majorana neutrino self-energy are depicted, with an addi-
tional virtual soft gauge boson rung with momentum q, one finds for this diagram in the
imaginary time formalism [see Bes10, p. 23]

Π1 rung ∼ g2T
∑
k0

∫ d3k

(2π)3T
∑
q0

∫ d3q

(2π)3V (k, p, q)∆(k)∆(k− q)∆(p− k+ q)∆(p− k)∆(q) ,

(5.16)
where V (p, q, k) contains the structure from the vertices (possible Lorentz and/or Dirac
indices suppressed) and a scalar loop is considered for simplicity, since apart from com-
plexity nothing changes. One finds the following power counting for this diagram [see
Bes10, pp. 23-24]:

• New gauge boson vertex: factor g2

• Each new propagator: factor 1/g2 provided q is chosen such that q · p ∼ g2T 2

• Sum-integral: factor 1/g4 due to phase space suppression

The last rule is due to the soft momentum of the gauge boson. Specifically, one has

T
∑
q0

∫ d3q

(2π)3 ∼
∫ ∫

dq+

∫
dq−

(1
2 + fB(q0)

)∫
d2q⊥ , (5.17)

where q+, |q⊥| ∼ gT , q− ∼ g2T , q0 ∼ gT and fB(q0) ∼ 1/g, which gives the above rule [see
Bes10, pp. 23-24].
Applying these rules as well as the ones from Sec. 5.3.2, one finds

Π1 rung ∼ g2g2
( 1
g2

)5
(g4)2 ∼ g2 . (5.18)

This means that adding one soft gauge boson to a CTL two-point function does not change
the order O(g2) of the diagram. Since this procedure can be repeated, the same is true
for an arbitrary number of soft gauge bosons as in Fig. 5.4. Therefore, all of these so-
called ladder diagrams have to be summed up for a consistent leading-order treatment,
whereas crossed ladder rungs turn out to give higher-order corrections due to the larger
time scale between interactions [see Bes10, pp. 23-25, 34-35]. Note that if the gauge
boson’s momentum is not soft such that q ∼ gT , the contribution to the self-energy is
suppressed compared to the soft contribution [cf. Bes10, p. 25]. It is worth mentioning
that because of the fact that the Higgs boson and the lepton propagators are resummed
quantities themselves, since the asymptotic mass has to be included, one arrives at a
"multifold resummation" [see Bes10, pp. 24-25]. This means that in fact, diagrams like in
Fig. 5.6 need to be considered, which will be further discussed in Sec. 5.5.
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Figure 5.4.: Two-point function with arbitrary number of gauge bosons, so-called ladder
diagram, [cf. Bes10, p. 24].
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l̄

φ

N
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Figure 5.5.: Example for two interfering processes obtained by cutting Fig. 5.4,
from [ABB11, p. 6].

5.4. Connection to the Landau-Pomeranchuk-Migdal Effect
The Landau-Pomeranchuk-Migdal (LPM) effect was first discovered in the electromagnetic
showering of high-energy cosmic rays and named after the people who first described it
in [LP53; Mig56]. It can arise when a particle travels through a medium and thus, its
behavior is changed compared to the travel in vacuum. The LPM effect is of particular
importance in the quark-gluon plasma. For a general overview see [Kle99]. The general
phenomenon is that the formation time of an emmitted particle is of the same order as the
mean free time between collisions in the plasma. Therefore, the two processes interfere
and a simple Boltzmann ansatz is not justified [cf. Bes10, pp. 32-33]. An example for two
interfering processes, which are important for the context of this thesis, can be seen in
Fig. 5.5.
As evident from Fig. 5.5, the LPM effect is closely related to particle production. In the

present case, the produced particles are Majorana neutrinos. In fact, the production rate
Γ̃ of Majorana neutrinos per unit time and unit volume is defined by [see ABB11, p. 3]

dΓ̃
d3p

= 1
(2π)3p0 fF (p0)Tr[/p Im Σret(p)] , (5.19)

where Σret(p) is the retarded self-energy of the Majorana neutrino and the convention
from [ABB11] that the self-energy corresponds to (−1) times the Feynman diagrams is
chosen. However, in the case of interest not the production rate per unit time and unit
volume, but the thermal width Γp is needed. The two are related via, cf. Eq. (3.73),

dΓ̃
d3p

= 2
(2π)3 fF (p0)Γp , (5.20)

which means that the difference is a phase space factor 2fF (p0)/(2π)3 (note the 2 because
of the 2 spin degrees of freedom of the Majorana neutrino) that can be interpreted as the
result from the fact that for the production rate, one considers an ensemble of Majorana
neutrinos, whereas for the thermal width, one considers a single particle.



5.5. Strategy of the Calculation 33

k

l

q φ

... A
p

N

p

N

Figure 5.6.: Ladder diagram with gauge boson contributions to leading order treatment of
Majorana neutrino self-energy [cf. ABB11, p. 7].

5.5. Strategy of the Calculation

This section details the strategy of the calculation needed to obtain the resummed Ma-
jorana neutrino self-energy, which includes all leading order gauge as well as other SM
corrections. Due to the fact that gauge corrections turn out to be of particular impor-
tance, whereas other SM corrections, which are only hard ones, enter only as contributions
to the asymptotic masses, sometimes only gauge corrections are named explicitly in the
following. Nevertheless, all resummed results in the following contain the corrections from
the hard interactions with other SM particles. The types of diagrams that need to be
summed up are depicted in Fig. 5.6. In the following, q always denotes the momentum of
the Higgs boson field, k the lepton momentum, and p the Majorana neutrino momentum.
The strategy can be summarized in three steps described in [see ABB11, pp. 7-8]:

1. Integrate out the hard field modes. Here, the propagator of the Higgs boson and
the lepton fields are resummed using the HTL resummation scheme at the lightcone
scale discussed in Sec. 5.3.1 generating the asymptotic masses for the scale q, k ∼ T
and q2, k2 ∼ g2T 2. As discussed before, no thermal width is needed here, since
it is a higher order correction. In this step, loop insertions with SM particles of
hard momenta need to be considered for the scalar and lepton propagators3, cf. loop
on top for scalar particle in Fig. 5.6. Note that this step is achieved by using the
propagators from Eqs. (5.4) and (5.6) with the asymptotic masses from Eqs. (5.8)
and (5.9), respectively.

2. Using the resummed Higgs boson and lepton propagators, compute a recursion
relation for Majorana neutrino self-energy diagrams with an arbitrary number of
soft gauge boson lines assuming that the Majorana neutrino, the Higgs boson, and
the lepton momentum are light-like, i.e. have momenta on the lightcone scale, and
collinear. For this, start with a one-loop diagram with two external Majorana neu-
trinos, but no soft gauge boson lines, i.e. like in Fig. 5.4 with no soft gauge bosons.
There, only leading order terms are kept and the two-point function is computed
explicitly. Then, a recursion relation that relates n-point functions with two external
Majorana neutrinos and n− 2 external soft gauge bosons, see Fig. 5.7, with (n− 1)-
point functions, where one gauge boson has been removed, is derived. As it turns
out, the most easy formulation of the relation is a current induced by background
Majorana neutrino and gauge fields being defined as an integral over all external
momenta contracted with the external fields [see Bes10, p. 35]. With the recur-
sion relation, only the two-point function without any soft gauge boson is needed
explicitly.

3Loops with soft gauge boson momentum are considered in the later steps.
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3. Integrate out the soft gauge boson background. The gauge bosons appear only in self-
energy insertions generating thermal widths for the lepton and the Higgs boson and
as rungs in the ladder diagrams, cf. Fig. 5.6. This gives a new current satisfying an
integral equation that is obtained from the result of the second step. The functional
derivative with respect to the external fields results in an integral equation for the
CTL self-energy that includes all diagrams like in Fig. 5.6. The numerical evaluation
of this is discussed in the appendix, Sec. B.1.

5.6. Calculation of the Resummed Majorana Neutrino
Self-Snergy

5.6.1. Left- and Right-Handed Majorana Neutrino Self-Energy

In Weyl representation of the Dirac matrices, one can write Im Σret(p) as, cf. Eq. (3.71),

Im Σret(p) = 1
2(ap(p0)γ0 + bp(p0)pγ) = 1

2

(
0 ap(p0)12 + bp(p0)pσ

ap(p0)12 − bp(p0)pσ 0

)

=:
(

0 Im ΣR, ret(p)
Im ΣL, ret(p) 0

)
, (5.21)

where

Im Σret(p)PR = Im Σret(p)
(

0 0
0 12

)
=
(

0 Im ΣR, ret(p)
0 0

)
, (5.22)

Im Σret(p)PL = Im Σret(p)
(
12 0
0 0

)
=
(

0 0
Im ΣL, ret(p) 0

)
. (5.23)

These conventions are chosen in order to comply with the conventions from [ABB11]. R
and L denote the right- and the left-handed Majorana neutrino self-energy.
For the thermal width, this implies

Γp(p0) = 1
2p0Tr[/p Im Σret(p)]

= 1
4p0Tr

(
(p0

12 − pσ)(ap12 + bppσ) 0
0 (p0

12 + pσ)(ap12 − bppσ)

)

= 1
p0Tr[(p

0
12 + pσ) Im ΣR, ret(p)]

= 1
p0Tr[σ̄ · p Im ΣR, ret(p)] , (5.24)

where σ̄0 = 12, σ̄ = −σ, and Tr(σjσk) = 2δjk has been used. This is equivalent to the
statement that both orientations of the internal lines, i.e. the Higgs boson and lepton
lines, in Fig. 5.6 give the same contribution due to the neglection of SM CP-violation.
Therefore, one can rewrite the self-energy in a 2× 2 matrix [cf. ABB11, p. 4].
In the following, first the resummation of Im ΣR, ret(p) is discussed as a summary of

the calculation presented in [ABB11]. Then, the connection between the left- and the
right-handed Majorana neutrino self-energy as well as further details are presented.
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5.6.2. Calculation of the Two-Point Function without Soft Gauge
Contributions

As discussed in Sec. 5.5, the first step in the calculation is integrating out the hard field
modes. The results are the resummed Higgs boson and lepton propagators. Hence, this
step is done by using these propagators. From now on, the subscript ∞ is dropped at the
asymptotic masses.
Keeping only the leading order g2T 2 terms in the denominator, i.e. approximating q+ '

2q‖, one has for the Higgs boson [see BB10, p. 5] [as cited in ABB11, p. 8]

∆(q) = −1
q2 −m2

φ

= −1
q+q− − q2

⊥ −m2
φ

' Dφ(q)
2q‖

, (5.25)

where

Da(q) := −1
v · q − (q2

⊥ +m2
a)/(2q‖)

(5.26)

with a standing for φ or l, v being the light-like four-vector for lightcone coordinates as
discussed in Sec. 5.3.2, and q− = q0 − q‖ = v · q.
For the lepton propagator, one has to consider the projector PR, which results in the

fact that due to the multiplication from the right-hand side, one only has to consider a
left-handed fermion in the loop for the right-handed Majorana neutrino self-energy, i.e.

S(k)PR = −
/k − m2

l
2k0
γ0

k2 −m2
l

PR = −PL
/k − m2

l
2k0
γ0

k2 −m2
l

= −
(
12 0
0 0

)
1

k2 −m2
l

 0 (k0 −
m2
l

2k0
)12 − kkσk

(k0 −
m2
l

2k0
)12 + kkσ

k 0


=:
(
12 0
0 0

)(
0 SL(k)

SR(k) 0

)

= − 1
k2 −m2

l

(
0 (k0 −

m2
l

2k0
)12 − kkσk

0 0

)
. (5.27)

One finds with the same approximation for the lepton as for the Higgs boson momen-
tum [see ABB11, pp. 8-9]

SL(k) ' Dl(k)
2k‖

σ · k̃ , (5.28)

where

k̃µ = kµ − m2
l

2k‖
uµ , (5.29)

(σµ) = (12,σ), and (uµ) = (1,0) is the four-velocity of the plasma. The loop integral is
evaluated in the imaginary-time formalism and the imaginary part is taken. Then, the
lepton propagator is on-shell and k can be treated as a light-like four-vector allowing for
the manipulation [see ABB11, p. 9]

σ · k̃ = 2k‖η(k̃)η†(k̃) , (5.30)
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where η(k̃) is the eigenvector of σ · k̃ with eigenvalue k̃0 + |k̃| [see Bes10, p. 80]. Choosing
v along the 3-axis, i.e. k3 = k‖, one can expand η(k̃) [see ABB11, p. 9]

η(k̃) =
(

0
1

)
− σk̃⊥

2k̃‖

(
0
1

)
+
(
O(g2)

0

)
=

− k̃1−ik̃2

2k̃‖
+O(g2)

1

 , (5.31)

where σk̃⊥ only concerns the one- and two-components. Due to normalization, only the
upper component of η has an error of order O(g2). The proof of Eq. (5.30) can be found
in the appendix, Sec. B.2.1. Since the difference of k̃ and k is of order O(g2T ) and only
the leading order of each component of η is needed, which is at most of order O(g), one
can write η(k) instead of η(k̃).
A partial fractioning gives [see ABB11, p. 9]

Dl(k)Dφ(k − p) = 1
ε(p,k) [Dl(k)−Dφ(k − p)] (5.32)

with the difference of the energy poles of the Higgs boson and lepton propagators

ε(p,k) := v · p+
(k⊥ − p⊥)2 +m2

φ

2(k‖ − p‖)
− k2

⊥ +m2
l

2k‖
, (5.33)

which can be easily proven by converting the fractions to a common denominator. Note
that in order to apply this to the momentum conventions in the diagrams here, that are
chosen for later purposes, one has to use the fact that ∆(q) = ∆(−q), since q = p−k for the
diagram in Fig. 5.6. Besides, p and k are exchanged here with respect to their meanings
in [ABB11]. For the one-loop two-point function without any soft gauge boson lines, i.e.
the self-energy without soft gauge contributions, one therefore finds in the imaginary-time
formalism [see ABB11, pp. 9-10]

ΣR, ret(p) = |λ|2
∫ d3k

(2π)3 η(k)Σ̂(p,k) (5.34)

with the Yukawa coupling |λ|2 =
∑
i |λ1i|2 = (λ†λ)11 and the reduced self-energy

Σ̂(p,k) = −
d(r)F(p‖, k‖)

2ε(p,k)
η†(k)
k‖ − p‖

, (5.35)

where d(r) = 2 is the dimension of the gauge group representation for the lepton and the
Higgs boson, and

F(p‖, k‖) := fF (k‖) + fB(k‖ − p‖) = −
fF (k‖)fB(p‖ − k‖)

fF (k‖)
. (5.36)

5.6.3. Derivation of the Recursion Relation

Now, the recursion relation for the n-point function discussed in Sec. 5.5, see Fig. 5.7, is
derived. One starts with the current Jaµ defined as the background of external Majorana
neutrino N and of gauge fields Aaµ [see ABB11, p. 11] and given by [see BB10, p. 8]

Jaµ(p) =
∫ d3k

(2π)3Vµ(k, k − p)Tr
[
taĴ(p,k)

]
(5.37)
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Figure 5.7.: One-loop diagram (n-point function) with soft external gauge boson lines,
2 ≤ j ≤ n− 2, from [ABB11, p. 10]. × denotes external field.

with the vertex factor Vµ(k, k − p) := 1
2k‖

(2k − p)µ, the generators of the gauge group ta,
and the trace over the gauge group indices. The unintegrated current is defined via [cf.
BB10, p. 8]

Ĵ(p,k) =
∞∑
n=2

n−1∏
i=2

(∫
qi

Aµiai (qi)
)∫

p1
δ̃

p− p1 −
n−1∑
j=2

qj


× Σ̂(n)a2...an−1

µ2...µn−1 (p1, q2, . . . , qn−2,k)N(p1) , (5.38)

where
∫
q = T

∑
q0=iω

∫
d3q/(2π)3 (already in the imaginary-time formalism with the Mat-

subara frequencies ω), δ̃(q) = T−1δq0,0(2π)3δ3(q), and qk are soft momenta for gauge
bosons. Σ̂ is again the reduced self-energy. Without gauge fields, one finds

trĴ(p,k) = Σ̂(p,k)N(p) , (5.39)

where the trace tr refers to SU(2) indices. With the partial fraction decomposition
Eq. (5.32) and the reduced self-energy Eq. (5.35), one obtains a recursion relation by
leaving out one soft gauge boson propagator with momentum q and the corresponding
vertex, thus obtaining a (n−1)-point function, and replacing k→ k−q and k0 → k0 +q0.
Details on this can be found in [ABB11, pp. 10-12]. The recursion relation is given by

ε(p,k)Ĵ(p,k) =− 1
2F(p‖, k‖)

η†(k)
k‖ − p‖

N(p)

+
∫
q

[
Ĵ(p− q,k)V ·A(q)− V ·A(q)Ĵ(p− q,k− q)

]
, (5.40)

where Aµ = Aµat
a contains SU(2) and U(1) gauge fields [see ABB11, p. 12].

5.6.4. Integrating out the Soft Gauge Bosons and Result for the
Right-Handed Majorana Neutrino Self-Energy

Turning to the task of integrating out the soft gauge bosons, it is useful to rewrite Eq. (5.40)
schematically as Ĵ = N +AĴ . One iteration of this expression gives Ĵ = N +A(N +AĴ).
After integration over the gauge fields, terms linear in A vanish and 〈AAĴ〉 = 〈AA〉〈Ĵ〉 [see
BB10, pp. 10, 14-16], where 〈. . . 〉 denotes a path integral over the gauge field with soft
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momentum. Explicitly, one has [see ABB11, p. 12]

ε(p,k)tr
〈
Ĵ(p,k)

〉
= −d(r)

2 F(p‖, k‖)
η†(k)
k‖ − p‖

N(p)

+ 2
∫
q

∫
q′

1
V · (p− q)tr

[〈
V ·A(q)V ·A(q′)

〉 〈
Ĵ(k,p)− Ĵ(k, p‖,p⊥ − q⊥)

〉]
(5.41)

with the trace tr over SU(2) indices. At leading order, one has for the SU(2)×U(1) gauge
fields [see ABB11, p. 13]

〈Aµ(q)Aν(q′)〉 = δ̃(q + q′)[C2(r)g2
W∆µν(q) + y2

l g
2
Y ∆′µν(q′)] (5.42)

with the HTL resummed gauge boson propagators ∆µν and ∆′µν of SU(2) and U(1) gauge
fields from [BP90] [as cited in Ani+11, p. 13], the Casimir operator C2(r) = 3/4 for SU(2),
and the lepton hypercharge yl = −1/2. In the expression

I(p,q⊥) := T
∑
q0=iω

∫ dq‖
2π

V µV ν∆µν(q)
V · (p− q) (5.43)

encountered then (analogously for ∆′µν), one can perform the Matsubara summation and
an analytical continuation to p0 + i0+ with p0 being real, since the goal is to find the
retarded self-energy. The result using HTL resummed propagators is [see ABB11, p. 13]

I(p0 + i0+,k,q⊥) ' − i2T
(

1
q2
⊥
− 1

q2
⊥ +m2

D

)
(5.44)

with the appropriate Debye mass mD. Stripping off the background N -field, one finds [see
ABB11, p. 14]

iε(p,k)Σ̂(p,k) =− i

2d(r)F(p‖, k‖)
η†(k)
k‖ − p‖

+
∫ d2q⊥

(2π)2C(q⊥)
[
Σ̂(p,k)− Σ̂(p, k‖,k⊥)

]
(5.45)

with the kernel

C(q⊥) := T

[
C2(r)g2

W

(
1

q2
⊥
− 1

q2
⊥ +m2

D

)
+ y2

l g
2
Y

(
1

q2
⊥
− 1

q2
⊥ + (m′D)2

)]
, (5.46)

where mD and m′D are the Debye masses of SU(2) and U(1), respectively, given by [Car92]

m2
D = 11

6 g
2
WT

2 , (5.47)

(m′D)2 = 11
6 g

2
Y T

2 . (5.48)

The first step in solving Eq. (5.45) is to define the functions f = (f1, f2) and ψ as solutions
to the integral equations

iε(p,k)f(k⊥)−
∫ d2q⊥

(2π)2C(q⊥)[f(k⊥)− f(k⊥ − q⊥)] = 2k⊥ , (5.49)

iε(p,k)ψ(k⊥)−
∫ d2q⊥

(2π)2C(q⊥)[ψ(k⊥)− ψ(k⊥ − q⊥)] = 1 , (5.50)
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where the dependences on p and k‖ has been suppressed. The solution of Eq. (5.45) is
then given by [see ABB11, p. 15]4

Σ̂(p,k) = − i2
d(r)F(p‖, k‖)
k‖ − p‖

(
−f1+if2

4k‖
ψ
)
. (5.51)

In the calculation, one has already chosen the 3-axis to be in the direction of v. Due to
the fact that p and k should be collinear for the leading order contribution, it makes sense
to choose p to also point in this direction, thus giving p⊥ = 0 and p‖ = |p|. Note that
this is supported by the fact that all quantities calculated from the Majorana neutrino
self-energy in the context of this thesis, i.e. the thermal width and the lepton number
matrix, are invariant under rotation. For the retarded right-handed Majorana neutrino
self-energy this gives

ΣR, ret(p0, p‖) = −|λ|2 id(r)
2

∫
k

F(p‖, k‖)
k‖ − p‖

(
−k1−ik2

2k‖
1

)(
−f1+if2

4k‖
ψ
)

= −|λ|2 id(r)
2

∫
k

F(p‖, k‖)
k‖ − p‖

 (k1−ik2)(f1+if2)
8k2
‖

−k1−ik2

2k‖
ψ

−f1+if2
4k‖

ψ

 , (5.52)

where again
∫

k =
∫

d3k/(2π)3, so that one finds for the imaginary part using the defini-
tion (3.69)

Im ΣR, ret(p0, p‖) = −|λ|2d(r)
2

∫
k

F(p‖, k‖)
k‖ − p‖

(Re k⊥f
8k‖

0
0 Reψ

)
, (5.53)

where all other terms vanish as shown in the appendix, Sec. B.2.3. Note that in contrast
to [ABB11] and [Hüt13], the light-like approximation for the Majorana neutrino p0 ' p‖,
i.e. p+ ' 2p‖ and p− ' M2/(2p‖), is not inserted explicitly because of the fact that for
the lepton number matrix, an integration over p0 has to be performed. Nevertheless, the
resummation of the Majorana neutrino self-energy uses collinearity of its momentum with
the Higgs boson and lepton momenta, for which the light-like approximation is needed
during the calculation for the resummation. A comparison between explicitly entering the
light-like approximation for the Majorana neutrino p0 ' p‖ and the on-shell p0 = ωp, i.e.
without explicitly entering the approximation, is made in Ch. 7. For convenience, define

σh(p0, p‖) = d(r)
2

∫ dk‖
2π
F(p‖, k‖)
k‖ − p‖

1
8k2
‖

∫ d2k⊥
(2π)2 Re(k⊥f(k⊥)) , (5.54)

σψ(p0, p‖) = d(r)
2

∫ dk‖
2π
F(p‖, k‖)
k‖ − p‖

∫ d2k⊥
(2π)2 Reψ(k⊥) , (5.55)

where the subscript h is due to the procedure of the numerical evaluation for f . With this,
one has

Im ΣR, ret(p0, p‖) = |λ|2
(
σh(p0, p‖) 0

0 σψ(p0, p‖)

)
. (5.56)

Note that f vanishes for k⊥ = 0, whereas ψ vanishes for M → 0. Due to the fact that
fermions of different chirality are coupled via the Yukawa coupling, this means that f and
therefore σh can be related to a helicity changing process, whereas ψ and σψ can be related
to the helicity conserving process [see ABB11, p. 15].

4A factor of 1/4 is missing in [ABB11], [see Hüt13, p. 42].
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5.6.5. Symmetries of the Majorana Neutrino Self-Energy

In this section, symmetry relations of the Majorana neutrino self-energy are discussed.
First, a relation between the left- and the right-handed Majorana neutrino self-energy is

derived. For this, note that one has to use the right-handed lepton propagator SR for the
left-handed Majorana neutrino self-energy instead of the left-handed one SL. It is obvious
from Eqs. (5.27) that

SR(k0,k) = SL(k0,−k) . (5.57)

Since an integration over the three-momentum k of the loop is performed during the
calculation of the right-handed self-energy, and ∆(q0,q) = ∆(q0,−q) holds for the Higgs
boson propagator, one can change the integration variable from k → −k and therefore
go from the left- to the right-handed lepton propagator. Due to momentum conservation
this however gives p + k as the three-momentum of the Higgs boson in the momentum
directions as in Fig. 5.6. Therefore, after using the fact that the scalar propagator is an
even function of the three-momentum, one arrives at the conclusion that going from the
left- to the right-handed lepton propagator, which obviously corresponds to going from
the right-handed to the left-handed Majorana neutrino self-energy, means also changing
p to −p, i.e.

Im ΣR, ret(p0,p) ∼
∫

k
SL(k0,k)∆(p0 − k0,p− k)

=
∫
−k
SL(k0,−k)∆(p0 − k0,p + k)

=
∫

k
SR(k0,k)∆(p0 − k0,−p− k)

∼ Im ΣL, ret(p0,−p) . (5.58)

The soft gauge boson lines do not change this, since also for the additional lepton propa-
gators and loop integrals, a substitution from the three-momentum to its negative can be
made. In total, one arrives at the conclusion

Im ΣR, ret(p0,p) = Im ΣL, ret(p0,−p) (5.59)

also for the resummed Majorana neutrino self-energy. The structure of the left- and the
right-handed Majorana neutrino self-energy from Eq. (5.21) implies that for p⊥ = 0, one
has

Im ΣL, ret(p0,p) =

(Im ΣR, ret(p0,p)
)

22
0

0
(
Im ΣR, ret(p0,p)

)
11

 . (5.60)

This gives

Im ΣR, ret(p0, p‖) = |λ|2
(
σψ(p0, p‖) 0

0 σh(p0, p‖)

)
(5.61)

with σψ(p0, p‖) and σψ(p0, p‖) as given in Eqs. (5.55) and (5.54), respectively. Together
with (5.59), this implies that

σh(p0,−p‖) = σψ(p0, p‖) , (5.62)
σψ(p0,−p‖) = σh(p0, p‖) . (5.63)
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Using the result for the not resummed one-loop Majorana neutrino self-energy from
[Ani+11, p. 19] [cf. Wel83], which does not contain any gauge or other SM corrections to
the one-loop result, and Eq. (3.67), one has

Im Σret, 1-loop(p) = 1
2iΣ

−, 1-loop(p) = (λ†λ)11

∫ d3k

(2π)32k

∫ d3q

(2π)32q
/kσ(p; k, q) (5.64)

with

σ(p; k, q) =(1− fF (k) + fB(q))(2π)4(δ4(p− k − q) + δ4(p+ k + q))
+ (fF (k) + fB(q))(2π)4(δ4(p+ k − q) + δ4(p− k + q)) , (5.65)

where p is off-shell and k = (k,k) and q = (q,q) are on-shell with k = |k| and q = |q|
as zero components. Note that again, k is used to denote the absolute value of the three-
momentum as well as the four-momentum. As can be easily seen using the symmetry of
the δ-distribution δ4(−p) = δ4(p), this gives

Im Σret, 1-loop(−p) = Im Σret, 1-loop(p) . (5.66)

Due to symmetry under time reflection, the same relation also holds after resummation [see
Bes10, p. 47], i.e.

Im Σret(−p) = Im Σret(p) , (5.67)

which implies that

Im ΣR, ret(−p) = Im ΣR, ret(p) , (5.68)

where Eq. (5.21) has been used. Using Eq. (5.59), one also has

Im ΣR, ret(−p0,p) = Im ΣL, ret(p0,p) (5.69)

and therefore

σh(−p0, p‖) = σψ(p0, p‖) , (5.70)
σψ(−p0, p‖) = σh(p0, p‖) . (5.71)

Note that the method for calculating the resummed and the tree-level σh(p0, p‖) and
σψ(p0, p‖) only works in the vicinity of p0 = p‖. Explicitly, for p0 ' −p‖ one does not take
the correct pole of the propagators in the loop calculations into account [cf. BB10, p. 5].
Therefore, the relations presented in this chapter should be applied before attempting to
integrate over p0 by numerically evaluating the resummed Majorana neutrino self-energy.

5.6.6. Calculation of the Tree-Level Result

In this section, the tree-level result for the right-handed Majorana neutrino self-energy, i.e.
the result without any soft gauge contributions from Eq. (5.35), is calculated. It is called
tree-level result because of the fact that the contributions to the production rate from this
are the contributions from the tree-level decay of the Higgs boson into a Majorana neutrino
and a lepton and the inverse decay of the Majorana neutrino into a Higgs boson and a
lepton [cf. ABB11, p. 16]. Note that hard gauge corrections as well as other corrections
due to interactions with hard SM particles are included due to the usage of the resummed
Higgs boson and lepton propagators. The tree-level result can be obtained from the integral
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equations (5.45), (5.49), and (5.50) by neglecting the contribution from the integral and
thus setting C(q⊥) ≡ 0. Thus, one arrives at the same expression as in Eq. (5.34) with
Eq. (5.35). As before, p⊥ = 0 is chosen. For easier comparison to the fully resummed
result, define

iε(p0 + i0+,p,k)f tree(k⊥) = 2k⊥ , (5.72)
iε(p0 + i0+,p,k)ψtree(k⊥) = 1 , (5.73)

and

σtreeh (p0, p‖) = d(r)
2

∫ dk‖
2π
F(p‖, k‖)
k‖ − p‖

1
8k2
‖

∫ d2k⊥
(2π)2 Re(k⊥f tree(k⊥)) , (5.74)

σtreeψ (p0, p‖) = d(r)
2

∫ dk‖
2π
F(p‖, k‖)
k‖ − p‖

∫ d2k⊥
(2π)2 Reψtree(k⊥) . (5.75)

In the above equations, a small positive imaginary part in ε(p,k) coming from the fact that
one has p0 + i0+ to obtain the retarded self-energy has to be kept, i.e. ε(p0 + i0+,p,k) =
ε(p0,p,k) + i0+. Using the relation [see Bes10, p. 11]

1
x± i0+ = P.V.

(1
x

)
∓ iπδ(x) , (5.76)

where x ∈ R and P.V. again denotes the Cauchy principal value, one therefore finds

Re(k⊥f(k⊥)) = 2k2
⊥ Im 1

ε(p0,p,k) + i0+ = −2k2
⊥πδ(ε(p,k)) , (5.77)

Reψ(k⊥) = Im 1
ε(p0,p,k) + i0+ = −πδ(ε(p,k)) . (5.78)

It is useful to rewrite ε(p,k) to

ε(p,k) = α(p0, p‖, k‖) + β(p‖, k‖)k2
⊥ , (5.79)

where

α(p0, p‖, k‖) := p0 − p‖ + mφ

2(k‖ − p‖)
− m2

l

2k‖
, (5.80)

β(p‖, k‖) :=
p‖

2k‖(k‖ − p‖)
. (5.81)

As before, the light-like approximation p0 ' p‖ is not explicitly inserted here. A manipu-
lation of the δ-distribution gives

δ(ε(p,k)) = δ(α(p0, p‖, k‖) + β(p‖, k‖)k2
⊥) = 1

|β(p‖, k‖)|
δ

(
α(p0, p‖, k‖)
β(p‖, k‖)

+ k2
⊥

)
(5.82)

Since the dependence on k⊥ of the integrands for σtreeh and σtreeψ is only on the absolute
value, one can go to two-dimensional polar coordinates, integrate over the angular part,
and then make a variable substitution to k2

⊥ so that one finds

σtreeh (p0, p‖) = −d(r)
2

∫ dk‖
2π
F(p‖, k‖)
k‖ − p‖

1
16k2
‖

∫ ∞
0

d(k2
⊥) k2

⊥
|β(p‖, k‖)|

δ

(
α(p0, p‖, k‖)
β(p‖, k‖)

+ k2
⊥

)
,

(5.83)

σtreeψ (p0, p‖) = −d(r)
2

∫ dk‖
2π
F(p‖, k‖)
k‖ − p‖

1
4

∫ ∞
0

d(k⊥)2 1
|β(p‖, k‖)|

δ

(
α(p0, p‖, k‖)
β(p‖, k‖)

+ k2
⊥

)
.

(5.84)
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Carrying out the integral over k2
⊥ using the δ-distribution, one needs to consider that the

contributing k2
⊥ = −α(p0, p‖, k‖)/β(p‖, k‖) ≥ 0. For p0 > p‖ > 0, which is the only case

needed in the context of this thesis, this gives

k2
⊥ = −

α(p0, p‖, k‖)
β(p‖, k‖)

≥ 0 (5.85)

⇔ −2(p0 − p‖)k2
‖ +Xk‖ −m2

l p‖ ≥ 0 (5.86)

⇒ if Y ≥ 0: klow := X −
√
Y

4(p0 − p‖)
≤ k‖ ≤

X +
√
Y

4(p0 − p‖)
=: khigh , (5.87)

where

X := m2
l −m2

φ + 2(p0 − p‖)p‖ , (5.88)
Y := X2 − 8m2

l (p0 − p‖)p‖ . (5.89)

If Y ≤ 0, one has σtreeh (p0, p‖) = σtreeψ (p0, p‖) = 0 (for Y = 0 only k‖ = X/(4(p0 − p‖))
contributes to the integral over k‖, which has zero measure). This means that one finds
the expressions

σtreeh (p0, p‖) = d(r)
2

∫ khigh

klow

dk‖
2π
F(p‖, k‖)
k‖ − p‖

α(p0, p‖, k‖)
16k2
‖β(p‖, k‖)|β(p‖, k‖)|

, (5.90)

σtreeψ (p0, p‖) = −d(r)
2

∫ khigh

klow

dk‖
2π
F(p‖, k‖)
k‖ − p‖

1
4|β(p‖, k‖)|

(5.91)

that can now be solved numerically.
Note that if one applies the light-like approximation p+ ' 2p‖ and p− 'M2/(2p‖), one

has

X = m2
l −m2

φ +M2 , (5.92)
Y = (mφ +ml +M)(mφ −ml +M)(mφ +ml −M)(mφ −ml −M) , (5.93)

so that the condition Y ≥ 0 gives mφ ≥M +ml, which has the decay of the Higgs boson
as a corresponding process, or M ≥ mφ + ml, which corresponds to the inverse decay of
the Majorana neutrino, [cf. ABB11, p. 16]. Otherwise, the tree-level Majorana neutrino
self-energy is zero. The correspondences to the processes are obvious from cutting the
one-loop tree-level Majorana neutrino self-energy diagram, which gives these.
These observations illustrate that the tree-level σtreeh and σtreeψ can be suppressed to a

value of zero due to kinematic reasons. This suppression occurs for certain temperatures, as
the asymptotic masses mφ and ml depend on the temperature, and, without the light-like
approximation, for certain p0 and p‖. Explicitly, for a temperature, where the suppression
occurs, and for fixed p0 = ωp, all σh(ωp, p‖) = σψ(ωp, p‖) ≡ 0 above a certain p‖, since
for large p‖ �M , the light-like approximation is fulfilled and hence, the suppression does
not depend on p‖ anymore. This means that σh and σψ can only be non-zero for small p‖
at these temperatures.

5.6.7. Thermal Width

Note that with p⊥ = 0, one has

σ̄ · p =
(
p0 + p‖ 0

0 p0 − p‖

)
. (5.94)
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Therefore, Eq. (5.24) gives for the thermal width in terms of σh and σψ

Γp‖(p
0) = −|λ|

2

p0 [(p0 + p‖)σh(p0, p‖) + (p0 − p‖)σψ(p0, p‖)] . (5.95)

For the tree-level expression one simply uses the tree-level σtreeh and σtreeψ . In all further
calculations only the on-shell Γp = Γp(ωp) is needed.



6. Including Gauge Corrections to
Thermal Leptogenesis

In this chapter, the systematic procedure for the inclusion of gauge and other SM correc-
tions to thermal leptogenesis is presented following [Hüt13, pp. 51-57]. Afterwards, the
necessary approximations for the numerical evaluation of this expression are discussed in
detail.

6.1. Including Gauge Corrections to the Lepton Number
Matrix

6.1.1. Diagrammatic Viewpoint

As discussed in [Hüt13, p. 51], a starting point for the inclusion of gauge corrections in
the lepton number matrix is to consider three-loop contributions to the lepton self-energy
of the form of the diagrams in Fig. 4.3, but with one loop involving a gauge boson1. All of
these diagrams can be found in Figs. 6.1, where contributions to Higgs boson and lepton
propagator corrections are depicted, and 6.2, where contributions to vertex corrections are
depicted. These diagrams have been checked for completeness in [Hüt13] using QGRAF2.
As seen in Ch. 5, only including three-loop diagrams is not sufficient for the systematic

inclusion of gauge corrections and thus, resummation is needed. In order to have a form,
where gauge corrections can be implemented by a resummation of the Majorana neutrino
self-energy, one can modify the two-loop diagrams according to the procedure depicted
in Fig. 6.3 [see Hüt13, pp. 51-52]. First, one countermands the integration of the heavier
Majorana neutrinos N2 and N3 (1). Then, the outer lepton line is closed (2) so that one
arrives at a cylindrical diagram (3). In this diagram, the Majorana self-energy without any
gauge corrections, cf. Fig. 5.4, appears twice. It becomes evident that in order to arrive at
a lepton number matrix that consistently includes all leading order gauge corrections, one
has to replace the Majorana neutrino self-energy by the resummed one. This results in the
cylindrical diagram depicted in Fig. 6.4. Integrating out the heavier Majorana neutrinos
N2 and N3 again gives an effective vertex on the right-hand side of the diagram with
t2 ≡ t4.

In fact, the cylindrical diagram with the resummed Majorana neutrino self-energy from
Ch. 5 includes all three-loop gauge corrections [see Hüt13, pp. 52-53]. The corrections
to the Higgs boson and lepton propagator from Fig. 6.1 are included using the HTL
resummation at the lightcone scale giving asymptotic masses ml and mφ. The vertex
corrections from Fig. 6.2 (a), (f), and (g) are obviously included in the ladder diagram
due to the closing of the outer lepton line. The remaining vertex corrections from Fig. 6.2
correspond to soft external gauge bosons that are integrated out in the last step of the
calculation of the resummed Majorana neutrino self-energy.

1Note that three-loop diagrams are necessary to have CP-violation and at least one gauge boson involved.
2http://cfif.ist.utl.pt/~paulo/qgraf.html

http://cfif.ist.utl.pt/~paulo/qgraf.html
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Figure 6.1.: Three-loop contributions to gauge corrections of Higgs boson (a) - (f) and
lepton (g)-(h) propagators, from [Hüt13, p. 52].

Note that the resummed Majorana neutrino self-energy also includes corrections due to
interactions with other hard SM particles as discussed before. It thus contains all leading
order SM corrections.

6.1.2. Implementing the Resummed Majorana Neutrino Self-Energy in
the Lepton Number Matrix

In order to implement the resummed Majorana neutrino self-energy in the lepton number
matrix, the matrix has to be brought in a form that corresponds to the cylindrical diagram
in Fig. 6.4 with t2 ≡ t4. This calculation was first done in [Hüt13]. This presentation
therefore follows this reference with some errors being corrected. To do so, recall the
result for the lepton number matrix from Eq. (6.1)

Lk,ii(t, t) = 64πεii
M

∫ t

0
dt1

∫ t

0
dt2 Re

(
Tr
[
Π(1)>

k (t1, t2)S<k (y21)
])

(6.1)
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Figure 6.2.: Three-loop contributions to vertex corrections, from [Hüt13, p. 53].

with

Π(1)>
k (t1, t2) =

∫ ∞
0

dt3
∫

q,q′,k′,p
(2π)3δ3(p− k′ − q′)(2π)3δ3(p + k + q)

×
[
G̃p(t1, t3)

(
S11

k′ (y23)∆11
q′ (y23)− S<k′(y23)∆<

q′(y23)
)

∆<
q (y21)

]
PL , (6.2)

where
∫

q =
∫

d3q/(2π)3 and yij = ti − tj . Note that the three-momentum dependence is
corrected compared to [Hüt13]. Using Eqs. (3.8), (3.9), (3.20), (3.21), and (3.62), which
also hold for the spatial Fourier transforms of the Higgs boson and lepton propagators due
to linearity, one finds

S11
k (y) = S+

k (y)− i

2 sign(y)S−k (y)

= 1
2(1 + sign(y))S>k (y) + 1

2(1− sign(y))S>k (y)

= θ(y)S>k (y) + (1− θ(y))S>k (y) ,
∆11

q (y) = θ(y)∆>
q (y) + (1− θ(y))∆<

q (y) . (6.3)

Using the convention θ(0) = 1, this gives [cf. Hüt13, p. 54]

S11
k′ (y23)∆11

q′ (y23)− S<k′(y23)∆<
q′(y23) = θ(y23)

(
S>k′(y23)∆>

q′(y23)− S<k′(y23)∆<
q′(y23)

)
.

(6.4)
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Figure 6.3.: Transformation of the two-loop diagram to a cylindrical diagram, from [Hüt13,
p. 51].

t3

t1

t4

t2

k′

l

q′
φ

... A

k

l

q φ

... A

p N p′ N2/3

Figure 6.4.: Cylindrical diagram depicting gauge corrections for systematic inclusion,
from [Hüt13, p. 54] with corrected momenta.

With the notation

Σ̃≶k,q(y) := S≶k (y)∆≶q (y) (6.5)

the lepton number matrix can be rewritten into [cf. Hüt13, p. 54]

Lk,ii(t, t) =64πεii
M

∫ t

0
dt1

∫ t

0
dt2

∫ t2

0
dt3

∫
k′,p

G̃p(t1, t3)

× Re
(
Tr
[
Σ̃<

k,−(p+k)(y21)
(
Σ̃>

k′,p−k′(y23)− Σ̃<
k′,p−k′(y23)

)
PL
])

, (6.6)

where the θ-function, the δ-distributions, and the fact that G̃p does not have any Dirac
structure, i.e. only contains a scalar part, have been used. Considering the Fourier trans-
form

Σ̃≶k,q(ω) =
∫

dyeiωyΣ̃≶k,q(y) =
∫

dyeiωyS≶k (y)∆≶q (y)

=
∫

dyeiωy
∫ dω′

2π e−iω′yS≶k (ω′)
∫ dω1

2π e−iω1y∆≶q (ω1)

=
∫ dω′

2π

∫ dω1
2π 2πδ(ω − ω′ − ω1)S≶k (ω′)∆≶q (ω1)

=
∫ dω′

2π S
≶
k (ω′)∆≶q (ω − ω′) , (6.7)
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one finds with the KMS identities Eqs. (3.50) and (3.51)

Σ̃>
k,q(ω) =

∫ dω′

2π S
>
k (ω′)∆>

q (ω − ω′)

= −
∫ dω′

2π eβω′S<k (ω′)eβ(ω−ω′)∆<
q (ω − ω′) = −eβωΣ̃<

k,q(ω) . (6.8)

It is obvious from Eq. (6.7) that Σ̃≶k,q(ω) corresponds to the Majorana neutrino self-energy
without integration over the loop three-momentum and vertex factors. Using Eq. (6.8),
one can further evaluate

Re
(
Tr
[
Σ̃<

k,−(p+k)(y21)
(
Σ̃>

k′,p−k′(y23)− Σ̃<
k′,p−k′(y23)

)
PL
])

=

=
∫ dω21

2π

∫ dω23
2π Re

(
e−i(ω21y21+ω23y23)

×Tr
[
Σ̃<

k,−(p+k)(ω21)
(
Σ̃>

k′,p−k′(ω23)− Σ̃<
k′,p−k′(ω23)

)
PL
])

= −
∫ dω21

2π

∫ dω23
2π Re

(
e−i(ω21y21+ω23y23)

(
1 + eβω23

)
×Tr

[
Σ̃<

k,−(p+k)(ω21)Σ̃<
k′,p−k′(ω23)PL

])
= −

∫ dω21
2π

∫ dω23
2π

(
1 + eβω23

)
×
(
Re
(
e−i(ω21y21+ω23y23)

)
Re
(
Tr
[
Σ̃<

k,−(p+k)(ω21)Σ̃<
k′,p−k′(ω23)PL

])
− Im

(
e−i(ω21y21+ω23y23)

)
Im
(
Tr
[
Σ̃<

k,−(p+k)(ω21)Σ̃<
k′,p−k′(ω23)PL

]))
= −

∫ dω21
2π

∫ dω23
2π

(
1 + eβω23

)
× Tr

[(
Re
(
e−i(ω21y21+ω23y23)

)
Re
(
Σ̃<

k,−(p+k)(ω21)Σ̃<
k′,p−k′(ω23)PL

)
− Im

(
e−i(ω21y21+ω23y23)

)
Im
(
Σ̃<

k,−(p+k)(ω21)Σ̃<
k′,p−k′(ω23)PL

))]
, (6.9)

where

Re(Tr(A)) = Tr(A) + (Tr(A))∗

2 = Tr(A) + Tr(A†)
2 = Tr(Re(A)) , (6.10)

Im(Tr(A)) = Tr(A)− (Tr(A))∗

2i = Tr(A)− Tr(A†)
2i = Tr(Im(A)) , (6.11)

for any A ∈ Cn×n has been used. Plugging this expression into the lepton number matrix
leads to

Lk,ii(t, t) =− 64πεii
M

∫ t

0
dt1

∫ t

0
dt2

∫ t2

0
dt3

∫ dω21
2π

∫ dω23
2π

∫
k′,p

G̃p(t1, t3)
(
1 + eβω23

)
× Tr

[(
Re
(
e−i(ω21y21+ω23y23)

)
Re
(
Σ̃<

k,−(p+k)(ω21)Σ̃<
k′,p−k′(ω23)PL

)
− Im

(
e−i(ω21y21+ω23y23)

)
Im
(
Σ̃<

k,−(p+k)(ω21)Σ̃<
k′,p−k′(ω23)PL

))]
.

(6.12)

Note that this result differs from the corresponding result in [Hüt13, p. 55], where ad-
ditional factors of 1 ± exp(2βω23) are found and no 1 + exp(βω23) appears. However,
the result presented here has been checked in two independent calculations for this thesis
and [Hal17]. Therefore, its correctness is assumed and the calculation continues with it.



50 6. Including Gauge Corrections to Thermal Leptogenesis

Since Σ̃≶k,q(ω) corresponds to the Majorana neutrino self-energy without integration over
the loop three-momentum and vertex factors, Eqs. (3.42), (3.67), and (6.8) give3

Σ̃−k,q(ω) = i
(
Σ̃>

k,q(ω)− Σ̃<
k,q(ω)

)
= −i

(
1 + eβω

)
Σ̃>

k,q(ω) = 2i Im Σ̃ret
k,q(ω) (6.13)

⇒ Σ̃>
k,q(ω) = −2fF (ω) Im Σ̃ret

k,q(ω) . (6.14)

Hence,

(
Im Σ̃ret

k,q(ω)
)†

=

 Σ̃ret
k,q(ω)−

(
Σ̃ret

k,q(ω)
)†

2i


†

= Im Σ̃ret
k,q(ω) (6.15)

⇒
(
Σ̃>

k,q(ω)
)†

= Σ̃>
k,q(ω) . (6.16)

Because of the fact that the Majorana self-energy is a vector in Lorentz-space, cf. Eq. (3.71),
one can write

Im Σ̃ret
k,q(ω) = sµ,k,q(ω)γµ

=
(

0 s0,k,q(ω)12 + sj,k,q(ω)σj
s0,k,q(ω)12 − sj,k,q(ω)σj 0

)
(6.17)

=:
(

0 Im Σ̃R, ret
k,q (ω)

Im Σ̃L,ret
k,q (ω) 0

)
(6.18)

and find

Tr
[
Im Σ̃ret

k,−(p+k)(ω21) Im Σ̃ret
k′,p−k′(ω23)PL

]
=

= Tr
[
(s0,k,−(p+k)(ω21)12 + si,k,−(p+k)(ω21)σi)(s0,k′,p−k′(ω23)12 − sj,k′,p−k′(ω23)σj)

]
= Tr

[
Im Σ̃R, ret

k,−(p+k)(ω21) Im Σ̃L,ret
k′,p−k′(ω23)

]
(6.19)

= Tr
[
s0,k,−(p+k)(ω21)s0,k′,p−k′(ω23)12 − si,k,−(p+k)(ω21)sj,k′,p−k′(ω23)σiσj

]
= Tr

[
(s0,k,−(p+k)(ω21)12 − si,k,−(p+k)(ω21)σi)(s0,k′,p−k′(ω23)12 + sj,k′,p−k′(ω23)σj)

]
= Tr

[
Im Σ̃L,ret

k,−(p+k)(ω21) Im Σ̃R, ret
k′,p−k′(ω23)

]
(6.20)

= Tr
[
(s0,k′,p−k′(ω23)12 + sj,k′,p−k′(ω23)σj)(s0,k,−(p+k)(ω21)12 − si,k,−(p+k)(ω21)σi)

]
= Tr

[
Im Σ̃ret

k′,p−k′(ω23) Im Σ̃ret
k,−(p+k)(ω21)PL

]
, (6.21)

where Tr[σiσj ] = 2δij , Tr[σi] = 0, and the cyclicity of the trace have been used. The
definitions of the left- and right-handed parts are made in accordance with the Majorana
neutrino self-energy after integration over loop three-momentum and with vertex factors,

3Note that strictly speaking, these relations have only been proven after integration over the loop three-
momentum. Since this will be performed anyhow, this is not a problem and therefore not considered
any further.
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cf. Eq. (5.21). With PL = P †L, this gives

Tr
[
Re
(
Σ̃<

k,−(p+k)(ω21)Σ̃<
k′,p−k′(ω23)PL

)]
=

= Tr

 Σ̃<
k,−(p+k)(ω21)Σ̃<

k′,p−k′(ω23)PL +
(
Σ̃<

k,−(p+k)(ω21)Σ̃<
k′,p−k′(ω23)PL

)†
2


= 2fF (ω21)fF (ω23) Tr

[
Im Σ̃ret

k,−(p+k)(ω21) Im Σ̃ret
k′,p−k′(ω23)PL

+ Im Σ̃ret
k′,p−k′(ω23) Im Σ̃ret

k,−(p+k)(ω21)PL
]

= 4fF (ω21)fF (ω23) Tr
[
Im Σ̃ret

k,−(p+k)(ω21) Im Σ̃ret
k′,p−k′(ω23)PL

]
, (6.22)

Tr
[
Im
(
Σ̃<

k,−(p+k)(ω21)Σ̃<
k′,p−k′(ω23)

)
PL
]

= 0 . (6.23)

Inserting Eqs. (6.20), (6.22), and (6.23) into the lepton number matrix leads to the ex-
pression

Lk,ii(t, t) =− 256πεii
M

∫ t

0
dt1

∫ t

0
dt2

∫ t2

0
dt3

∫
k′,p

∫ dω21
2π

∫ dω23
2π G̃p(t1, t3)fF (ω21)

× Re
(
e−i(ω21y21+ω23y23)

)
Tr
[
Im Σ̃L,ret

k,−(p+k)(ω21) Im Σ̃R, ret
k′,p−k′(ω23)

]
. (6.24)

With this expression, one can now make the connection to the resummed Majorana neu-
trino self-energy. As discussed before, the integration over the loop three-momentum and
the vertex factors have to be included. Therefore, one has [cf. Hüt13, p. 55]

Im ΣR, ret(ω,p) = |λ|2
∫ d3k

(2π)3 Im Σ̃R, ret
k,p−k(ω) , (6.25)

Im ΣL, ret(ω,−p) = |λ|2
∫ d3k

(2π)3 Im Σ̃L, ret
k,−(p+k)(ω) = Im ΣR, ret(ω,p) , (6.26)

(6.27)

where Eq. (5.59) has been used. These are the right- and left-handed retarded Majorana
neutrino self-energy that have been resummed in Ch. 6. Note that a possible −-sign due to
different conventions for the connection of the Feynman diagrams with the self-energy [see
Hüt13, p. 39] can be ignored, since the self-energy appears quadratically in the lepton
number matrix. Integrating the lepton number matrix over k, one finds

Lii(t, t) =
∫ d3k

(2π)3Lk,ii

=− 256πεii
M(|λ|2)2

∫ t

0
dt1

∫ t

0
dt2

∫ t2

0
dt3

∫ dω21
2π

∫ dω23
2π

∫
p
G̃p(t1, t3)fF (ω21)

× Re
(
e−i(ω21y21+ω23y23)

)
Tr
[
Im ΣR, ret(ω21,p) Im ΣR, ret(ω23,p)

]
. (6.28)

This is also called the integrated lepton number matrix [cf. Hüt13, p. 57]. Due to rotational
symmetry of the integrand, which connects to the coefficients in front of the Dirac- and
Pauli-matrices in Eq. (5.21), one can integrate over the angular part of p, thus finding

Lii(t, t) =− 128εii
π

∫ t

0
dt1

∫ t

0
dt2

∫ t2

0
dt3

∫ ∞
0

dp
∫ dω21

2π

∫ dω23
2π

× p2

ωp
fF (ωp)e−Γp t1+t3

2 fF (ω21) cos(ωpy13)

× Re
(
e−i(ω21y21+ω23y23)

)
(σh(ω21, p)σh(ω23, p) + σψ(ω21, p)σψ(ω23, p)) , (6.29)
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where the nonequilibrium part of the Majorana neutrino propagator from Eq. (4.29)

G̃p(t1, t2) = M

ωp
cos(ωp(t1 − t2)fF (ωp)e−Γp(t1+t2)/2 (6.30)

and the Majorana neutrino self-energy written using σh and σψ from Eq. (5.56)

Im ΣR, ret(p0, p) = |λ|2
(
σh(p0, p) 0

0 σψ(p0, p)

)
(6.31)

have been inserted. Note that due to rotational invariance, all p have been replaced by
p and one has p‖ = p. One should also remark that in contrast to [Hüt13], ω21 and
ω23 have not been connected with the absolute value of the loop momenta |k| and |k′|.
The reason for this is firstly that they are the zeroth components of the arguments (four-
momenta) of the self-energies and secondly that the integrations over ω21 and ω23 are done
approximately in the next section. Because of this difference and the difference discussed
before, the result here is not equal to the result in [Hüt13, p. 57].
A connection between the integrated lepton number matrix Lii and the solution of the

Boltzmann equation can be made using Lk,ii = (t, t) = fli(k) − fl̄i(k) = fLi(k) for free
fields in equilibrium and nL(t) =

∑
i

∫ d3k
(2π)3 fLi(t, k), which give

∑
i

Lii(t, t) = nL(t) (6.32)

for free fields in equilibrium. Therefore, the integrated lepton number matrix connects to
the difference in number densities of leptons and anti-leptons. For simplicity, the integrated
lepton number matrix is just called lepton number matrix from here on.
Even though it is possible to carry out the integrations over t1, t2 and t3 analytically4,

cf. Sec. 6.2.2 and appendix, Sec. B.3.1, it is not possible to evaluate Eq. (6.29) directly
using the procedure for calculating σh and σψ by solving the integral equations. The main
problem here are the integrations over ω21 and ω23. The integrand is strongly and very
narrowly peaked around ω21 = −ω23 = ±ωp. Furthermore, it oscillates fast because it
involves sines and cosines of ω21t and ω23t with ω21, ω23 ∼ ±ωp, t ∼ 1/Γp and p ∼ T for
the dominating region. Since typical values in the simulations later involve T between
106 GeV and 1012 GeV, which gives Γp between 10−3 GeV and 102 GeV, one finds these
fast oscillations. Besides, the symmetries discussed in Sec. 5.6.5 have to be considered
first. It is therefore necessary to approximate the lepton number matrix by approximating
the integrations over ω21 and ω23 and integrating over t1, t2, and t3 analytically.

6.2. Approximating the Lepton Number Matrix

In this section, the approximations of the lepton number matrix from Eq. (6.29) that are
needed for a numerical evaluation are presented. As discussed, these approximations rely
on the symmetries of the Majorana neutrino self-energy, cf. Sec. 5.6.5, and the peaks of
the integrand of Lii.

4Note that this is possible in contrast to the claim made in [Hüt13, p. 57], since the thermal width Γp
does not depend on t1, t2, or t3.
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6.2.1. t→∞ Limit

In this section, the lepton number matrix is calculated in the limit t → ∞, i.e. the
completely thermalized lepton number matrix is regarded. For this, consider the time-
dependend part of Eq. (6.29)∫ t

0
dt1

∫ t

0
dt2

∫ t2

0
dt3 e−Γp t1+t3

2 cos(ωpy13) Re
(
e−i(ω21y21+ω23y23)

)
(6.33)

and take the desired limit

lim
t→∞

∫ t

0
dt1

∫ t

0
dt2

∫ t2

0
dt3 e−Γp t1+t3

2 cos(ωpy13) Re
(
e−i(ω21y21+ω23y23)

)
=

= Re
(∫ ∞
−∞

dt1
∫ ∞
−∞

dt2
∫ ∞
−∞

dt3e−Γp t1+t3
2 cos(ωp(t1 − t3))θ(t1)θ(t2)θ(t2 − t3)θ(t3)

×e−i(t2(ω21+ω23)−t1ω21−t3ω23)
)

=
4π(Γ2

p + 4(ω2
21 + ω2

p))
Γ4
p + 16(ω2

21 − ω2
p)2 + 8Γ2

p(ω2
21 + ω2

p)
δ(ω21 + ω23) . (6.34)

Therefore, one finds

lim
t→∞

Lii(t, t) = −128εii
π

∫ ∞
0

dp
∫ ∞
−∞

dω21
2π

∫ ∞
−∞

dω23
2π

p2

ωp
fF (ωp)fF (ω21)

×
4π(Γ2

p + 4(ω2
21 + ω2

p))
Γ4
p + 16(ω2

21 − ω2
p)2 + 8Γ2

p(ω2
21 + ω2

p)
δ(ω21 + ω23)

× [σh(ω21, p)σh(ω23, p) + σψ(ω21, p)σψ(ω23, p)]

= −64εii
π2

∫ ∞
0

dp
∫ ∞

0

dω21
2π

p2

ωp
fF (ωp)

×
4π(Γ2

p + 4(ω2
21 + ω2

p))
Γ4
p + 16(ω2

21 − ω2
p)2 + 8Γ2

p(ω2
21 + ω2

p)
× 2σh(ω21, p)σψ(ω21, p) , (6.35)

where the symmetry relations for σh and σψ from Eqs. (5.70) and (5.71), i.e.

σh(−p0, p‖) = σψ(p0, p‖) , (6.36)
σψ(−p0, p‖) = σh(p0, p‖) , (6.37)

as well as the fact that fF (ω21) + fF (−ω21) ≡ 1 have been used. If one now uses the
fact that the fraction in Eq. (6.35) is strongly peaked around ω21 = ωp with a width
proportional to Γp, one may approximate σh(ω21, p) ' σh(ωp, p) as well as σψ(ω21, p) '
σψ(ωp, p) due to the smallness of Γp � ωp, cf. Sec. 7.2, under the integral over ω21, and
therefore find

lim
t→∞

Lii(t, t) ' −
64εii
π

∫ ∞
0

dp p2

ωp
fF (ωp)

1
Γp
σh(ωp, p)σψ(ωp, p) . (6.38)

One should note three things here. Firstly, the results in Eqs. (6.35) and (6.38) may
be used to check any calculated expressions for the lepton number matrix for correct
thermalization, which is a necessary condition. Secondly, the form of Eq. (6.35) means
that one cannot naively use a Taylor expansion in the zeroth component of the argument
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of σh and σψ to compute corrections to Eq. (6.38). The reason for this is that any non-
vanishing term of O(ω21) would lead to a divergence of the completely thermalized lepton
number matrix as long as one does not restrict the integration interval of ω21. This is not
surprising, since the divergence occurs as ω21 →∞, where one would have |σh|, |σψ| → ∞
with any non-constant term in a finite order Taylor expansion. Since this divergence
cannot be physical and also an approximation by a Taylor expansion only holds close to
the expansion point, one should restrict the integration interval to a finite one located
around ω21 = ωp if one wants to use terms of linear or higher order. Thirdly, Γp > 0 is
used here. Since Γp = 0 can occur for the tree-level expressions, this has to be discussed.
However, whenever Γp = 0, also σh(ωp, p) = σψ(ωp, p) = 0, and therefore the complete
integrand is zero, since they enter quadratically in the numerator, while they enter only
linearly in the denominator via Γp.

6.2.2. Evaluation of the t1, t2 and t3 Integrations: Dominating Regions
for the Integrations over ω21 and ω23

Also for finite t, the integration of the time-dependent part of Lii(t, t), Eq. (6.33), may
be performed analytically. This leads to a very lengthy term presented in the appendix,
Sec. B.3.1, Eq. (B.104). In the following, the result of this calculation is used to analyze
the integrand in order to find the dominating regions for the integrations over ω21 and ω23
and thus be able to approximate the lepton number matrix self-consistently in Sec. 6.2.3.
The denominator of the result of Eq. (6.33) for finite t reads

(ω21 − ω23)(Γ2
p + 4(ω21 − ωp)2)(Γ2

p + 4(ω21 + ωp)2)(Γ2
p + 4(ω23 − ωp)2)(Γ2

p + 4(ω23 + ωp)2) ,
(6.39)

which results in peaks around ω21 = ±ω23 = ±ωp. It is directly obvious that the peaks
around ω21 = −ω23 = ±ωp should dominate, which will be shown later. These are also
the values of ω21 and ω23 one exprects to contribute from the structure of the cylindrical
diagram in Fig. 6.4. If one is sufficiently far away from these peaks, one may approximate
the result by performing the limit Γp → 0, Γpt = const5 [cf. Ani+11, p. 35], where the
first should be understood in a sense that Γp/ω21,Γp/ω23,Γp/ωp → 0. This is due to the
smallness of Γp, cf. Sec. 7.2. Note that here, because of the regime T � M , M is not
suitable as a scale. One finds as an approximation of the result of Eq. (6.33)

e−Γpt/2

(ω21 + ω23)(ω2
p − ω2

23)(ω2
p − ω2

21)
[(ω21 − ω23)ωp sin(tωp)(cos(tω21)− cos(tω23))

+ (ω21ω23 − ω2
p)(cos(tωp)(sin(tω21)

+ sin(tω23))− eΓpt/2 sin(t(ω21 + ω23))
]
. (6.40)

In the next paragraphs, the dominating regions for the integrals over ω21 and ω23 will
be discussed. For this, the assumption Γp ∼ O(λ2T ), where λ2 represents a combination
of Yukawa couplings, i.e. involving terms like λijλkl, will be used [cf. Bes10, p. 19]6. Note
that this implies that σh, σψ ∼ O(T ) for on-shell ω = ωp, since they do not include |λ|2, i.e.
the coupling at the vertices. For further discussion assume that σh and σψ do not change
their estimate of order when going away from ω = ωp. Estimates for other quantities are
tΓp ∼ O(1), since for larger times the result from Sec. 6.2.1 may be used, and ωp ∼ O(T ).

5Note that Γp depends on the momentum p. Therefore, any statements on the comparison of t to Γp are
to be understood in a sense that they are true for the dominating region for the integral over p, which
can be approximated a priori to be p ∼ O(T ).

6Here, λ is chosen instead of g since there is an explicit factor of |λ|2 in front of the expression for Γp.
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For the result of Eq. (6.33) for ω21 = −ω23 = ±ωp one finds

e−Γpt

Γ3
p(Γ2

p + 16ω2
p)2

[
−8(Γ4

p + 16Γ2
pω

2
p + 128ω4

p)

+ 4 eΓpt(Γ4
p(−2 + Γpt) + 8Γ2

p(−4 + 3Γpt)ω2
p + 128(−2 + Γpt)ω4

p)
+ 2 eΓpt/2(−(−4 + Γpt)(Γ2

p + 16ω2
p)2

− Γ3
p(Γp(−4 + Γpt) + 16tω2

p) cos(2tωp))
]
, (6.41)

which is O(λ−6T−3)7.
For ω21 = ω23 = ±ωp one has for Eq. (6.33)

2e−Γpt
(
−1 + eΓpt/2

)
Γpωp(Γ2

p + 16ω2
p)

[
4ωp + eΓpt/2(−4ωp cos(tωp) + Γp sin(2tωp))

]
, (6.42)

which is O(λ−2T−3).
Going away from the peaks ω21 = ±ω23 = ±ωp one may use Eq. (6.40) to approximate

the result of Eq. (6.33). Here, there are different regions to discuss. Firstly, there is the
case, where ω21, ω23 � ωp

8. In this case, Eq. 6.40 goes towards

t− t cos(tωp)
ω2
p

, (6.43)

which is O(λ−2T−3) for t as discussed above.
Secondly, one has the case, where ω21 � ω23. Here, one has to consider three possibili-

ties: ω21, ω23 � T , ω21 � T with ω23 . T , and ω21 . T . In the three cases, Eq. (6.40) is
O(ω−2

21 ω
−1
23 ), O(ω−2

21 T
−1), and O(ω−1

21 T
−2) respectively. Since the case, where ω21 � ωp,

and therefore ω21 � T , has been discussed before, this summarizes to maximally having
O(T−3) in all three cases.
Thirdly, one has the case, where ω23 � ω21. Since Eq. (6.40) is symmetric under ex-

change of ω21 and ω23, this case is identical to the second one and therefore, one maximally
has O(T−3) for it.
Assuming that σh and σψ do not change their order estimate over the total range of the

integrations over ω21 and ω23 such that they get much larger than at ω21 = −ω23 = ±ωp
and compensate for the suppression due to the result of the integrations over the time
variables, the integrals over ω21 and ω23 are hence dominated by the regions around
ω21 = −ω23 = ±ωp. Only in these regions, the result of the integrations over t1, t2, and
t3, Eq. (6.33), is of leading order O(λ−6T−3). This is also supported by the fact that
one can assume that λ2 ∼ |λ|2, which will be set to 10−8 for the numerical calculations.
Hence, the value of the result of the time integrations in the dominating regions is around
(|λ|2)−2 = 1016 larger than in any other region. Since the width of the peaks is given by
Eq. (6.39) and is of the order of multiples of Γp ∼ O(λ2T ), the dominating regions of the
integrals in ω21 and ω23 have a width of this order in each dimension.

6.2.3. Approximating the Lepton Number Matrix for Finite Time

As it was shown in Sec. 6.2.1 in the limit t→∞, only the region, where ω21 = −ω23 ' ±ωp
contributes (the ± stems from the fact that in fact Eq. (6.35) has contributions from ω21 =

7O(λ−6) = O((λ2)−3).
8Note that this is to be understood such that it does not violate the condition that Γp/ω21,Γp/ω23 → 0,
which is not a problem due to the smallness of Γp, cf. Sec. 7.2.
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±ωp before applying Eqs. (5.70) and (5.71)). Since the interesting regime for t to estimate
the effect of gauge corrections is the time, when the lepton number matrix thermalizes,
one may also assume here that the relevant contributions to the lepton number matrix
stem from the regions, where ω21 ' −ω23 ' ±ωp. The validity of this approximation has
been discussed in Sec. 6.2.2.
To apply the approximation to Lii(t, t), consider the part dependent on ω21 and ω23

I :=
∫ ∞
−∞

dω21
2π

∫ ∞
−∞

dω23
2π fF (ω21) Re

(
e−i(ω21y21+ω23y23)

)
× [σh(ω21, p)σh(ω23, p) + σψ(ω21, p)σψ(ω23, p)] . (6.44)

Next, one can approximate that only the region, where ω23 ∈ [−ω21 − a,−ω21 + a] with
a � Γp > 0, but a � |ω21|, cf. Secs. 6.2.2 and 7.2, contributes to the integral, and
that in this region σh(ω23, p) ' σψ(ω21, p) and σψ(ω23, p) ' σh(ω21, p), where Eqs. (5.70)
and (5.71) have been used. This gives

I ' Re
(∫ ∞
−∞

dω21
2π

∫ −ω21+a

−ω21−a

dω23
2π fF (ω21)e−i(ω21y21+ω23y23)2σh(ω21, p)σψ(ω21, p)

)
= Re

(∫ ∞
−∞

dω21
2π fF (ω21)e−iω21(y21−y23) sin(ay23)

πy23
2σh(ω21, p)σψ(ω21, p)

)
= Re

(∫ ∞
0

dω21
2π (fF (ω21)e−iω21(y21−y23) + fF (−ω21)eiω21(y21−y23))

×sin(ay23)
πy23

2σh(ω21, p)σψ(ω21, p)
)

= Re
(∫ ∞

0

dω21
2π e−iω21(y21−y23) sin(ay23)

πy23
2σh(ω21, p)σψ(ω21, p)

)
,

where the fact that one can change the sign in the purely imaginary argument of the
exponential function when taking only the real part has been used. In the expression
above, the dominating region for the integral is the region around ω21 = ωp

9. Hence,
σh(ω21, p) ' σh(ωp, p) and σψ(ω21, p) ' σψ(ωp, p) may be used for the whole integral as
an approximation, since the width of the peak in the dominating region for the integral is
given by multiples of Γp � ωp, cf. Sec. 7.2. One finds

I ≈ Re
(∫ ∞

0

dω21
2π e−iω21(y21−y23) sin(ay23)

πy23
2σh(ωp, p)σψ(ωp, p)

)
= 1
πy23

δ(y21 − y23) sin(ay23)σh(ωp, p)σψ(ωp, p) . (6.45)

The result after the integrations over t1, t2, and t3 with the rest of the time-dependent
part of the integrand therefore becomes

∫ t

0
dt1

∫ t

0
dt2

∫ t2

0
dt3Ie−Γp t1+t3

2 cos(ωpy13) 'e−Γpt

4πΓp
[−i (2Ei(t(−ia+ Γp))− 2Ei(t(ia+ Γp))

− ln
(
−a− iΓp
a− iΓp

)
+ ln

(
−a+ iΓp
a+ iΓp

))
+ 4eΓptSi(at)

]
σh(ωp, p)σψ(ωp, p) , (6.46)

9Note that there is no ± here, since Eqs. (5.70) and (5.71) have been used already.



6.2. Approximating the Lepton Number Matrix 57

where Ei(z) is the exponential integral and Si(z) is the sine integral. In the limit, where
at→∞, while Γpt = const, i.e. a� Γp, this gives∫ t

0
dt1

∫ t

0
dt2

∫ t2

0
dt3Ie−Γp t1+t3

2 cos(ωpy13) ' e−Γpt

4πΓp

[
−i(2(−iπ)− 2iπ − ln(−1− i0+)

+ ln(−1 + i0+)) + 2πeΓpt
]

× σh(ω21, p)σψ(ω21, p)

= 1− e−Γpt

2Γp
σh(ωp, p)σψ(ωp, p) , (6.47)

where 0+ indicates an infinitesimal shift in positive direction, since the natural logarithm
of a negative real number is not defined. Note that the limit is approached very fast,
so that in practice, the restriction to a � Γp, while t & 1/Γp is sufficient in order to
have numerically equivalent results to the result above. In total, this gives for the lepton
number matrix

Lii(t, t) ' −
64εii
π

∫ ∞
0

dp p
2

ωp
fF (ωp)

1− e−Γpt

Γp
σh(ωp, p)σψ(ωp, p) . (6.48)

This expression includes all leading order gauge as well as other SM corrections when
using the fully resummed σh and σψ and only hard gauge and other SM corrections when
using the tree-level σtreeh and σtreeψ .

There are four things one should note here. Firstly, Eq. (6.48) has the correct thermal-
ization as Γpt > 0 and therefore, e−Γpt → 0 for t→∞, which gives Eq. (6.38).
Secondly, the time-dependence exactly corresponds to the one of the solution of the

Boltzmann equations. This result is very similar to the result from [Ani+11], where
also this time-dependence and a result of the Kadanoff-Baym calculation without gauge
corrections similar to the Boltzmann result has been found for large times t & 1/Γp after
the inclusion of thermal widths for the lepton and the Higgs propagators [see Ani+11, p. 35]
and also for small Γp/M → 0, while Γpt = const [see Ani+11, Erratum], cf. Sec. 4.3.2.
A similar result in this case means that they have the same time-dependence and the
Boltzmann result is approached by the Kadanoff-Baym result in the corresponding limits.
Of course, Γp is gauge-corrected in this thesis.
Thirdly, as for the infinite time limit in Sec. 6.2.1, for Γp = 0, which can occur for

the tree-level expressions, the whole integrand gives zero for the same reasons discussed
before. Therefore, this case does not need to be considered any further.
Fourthly, the result in Eq. (6.48) only holds for t & 1/Γp, which is also illustrated

by the comparison to [Ani+11]. The reason for this is mainly that for earlier times, all
quantum effects, i.e. memory and off-shell effects, would have to be kept [cf. Ani+11,
pp. 35, 42]. This means that for earlier times, the restriction to the regions around
ω21 = −ω23 = ±ωp, which is essentially an on-shell restriction, would not be justified.
Note that also in Sec. 6.2.2, a time with Γpt ∼ O(1) was assumed to get an estimate of
order, since for larger times it is clear that the discussion from Sec. 6.2.1 holds. In the
above calculation, one finds this assumption also in the limit at→∞, since a is required
to be small compared to ω21, but large compared to Γp. However, the applicability of
Eq. (6.48) for t & 1/Γp is not a massive drawback, since the purpose of this thesis is
the estimation of the effect of gauge corrections to leptogenesis. For this, it is enough to
discuss these times as they are needed to estimate the effect of gauge corrections to the
generated lepton asymmetry.
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One should also remark that one finds a very similar result to Eq. (6.48) if one restricts
the integration regions in ω21 and ω23 to (ω21, ω23) ∈ ([ωp − a, ωp + a]× [−ωp − a,−ωp +
a]) ∪ ([−ωp − a,−ωp + a] × [ωp − a, ωp + a]) with Γp � a � ωp. However, it turns out
to be very difficult to do the integrations over t1, t2 and t3 after the integrations over
ω21 and ω23 analytically in this case. Performing all but the one over t2 analytically, and
numerically approximating the limit, where a� Γp with at→∞, one finds a numerically
equivalent result to Eq. (6.48). Since an analytic solution is always preferred, only the
above has been presented in detail.



7. Numerical Results
In this chapter, the numerical results for the evaluation of the lepton number matrix and
all related quantities are presented.

7.1. Setup
In order to estimate the effect of soft and hard gauge corrections on thermal leptogen-
esis, the fully resummed and the tree-level results are used for the Majorana neutrino
self-energy. The fully resummed result includes all leading order gauge and other SM cor-
rections, which are soft and hard gauge corrections and other hard SM corrections. The
tree-level result only includes hard gauge and other hard SM corrections. With the usage
of the results, the corresponding corrections are included in the thermal width and the lep-
ton number matrix. Following [Ani+11] and [ABB11], calculations were performed for two
masses of the heavy Majorana neutrino, M = 1010 GeV as in [Ani+11], andM = 107 GeV
as in [ABB11]. Apart from that, |λ|2 = 10−8 is chosen [cf. Bes10, p. 64]. This is done
just for the calculation, since any other value for |λ|2 can be obtained by rescaling t such
that |λ|2t stays the same and Lii(t, t) by a corresponding factor, since it only enters via
(1− exp(−Γpt))/Γp with Γp ∼ |λ|2 in the calculation1. In the physical scenario described
in Sec. 4.1, ε = 10−6 was used. Continuing to use this choice, one has, cf. Eq. (4.8),∑

i

εii = ε|λ|2 = 10−14 , (7.1)

which means that each εii � 1. However, all results for the lepton number matrix will be
given as Lii(t, t)/εii, i.e. no value for εii is chosen.

7.1.1. Renormalization Group Equations

In analogy to [ABB11, p. 16], [Bes10, p. 63], and [Hüt13, p. 46], the renormalization group
equations (RGEs) from [SW96] were used. Neglecting the tau and bottom quarks Yukawa
couplings because of their smallness compared to the other couplings they are

dg2
1

dτ = g4
1

8π2
41
10 +O(g6) , (7.2a)

dg2
2

dτ = g4
2

8π2

(
−19

6

)
+O(g6) , (7.2b)

dg2
3

dτ = g4
3

8π2 (−7) +O(g6) , (7.2c)

dλ2
t

dτ = λ2
t

8π2

(9
2λ

2
t −

17
20g

2
1 −

9
4g

2
2 − 8g2

3

)
+O(g6) , (7.2d)

dΛ
dτ = 1

16π2

( 27
200g

4
1 + 9

20g
2
1g

2
2 + 9

8g
4
2 −

9
5g

2
1Λ− 9g2

2Λ

−6λ4
t + 12λ2

tΛ + 24Λ2
)

+O(g6) , (7.2e)
1In fact, if one considers a fixed ε, then the value of the lepton number matrix stays the same (after
rescaling of the time), since εii/|λ|2 stays the same. This especially applies for the thermalized Lii.
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where τ := ln(µ/µ0) with µ = 2πT being the scale [cf. Giu+04, p. 1]. Here, µ0 = 2πTR
is chosen with the reheating temperature as TR = 109GeV [cf. Bes10, p. 63]. g6 denotes
any combination of standard model couplings and Λ ∼ O(g2) for this counting [see Hüt13,
p. 46]. In the equations for the thermal and Debye masses, gY is g1 and gW is g2.
In order to solve the RGEs, the following initial conditions are used with the values

from [Pat+16]2

µZ := mZ = 91.1876(21) GeV , (7.3a)
αem(τZ) = 1/127.950(17) , (7.3b)
αs(τZ) = 0.1182(16) , (7.3c)

sin2 θW (τZ) = 0.23129(5) , (7.3d)
mt = 173.21(1.22) GeV , (7.3e)
mH = 125.09(24) GeV , (7.3f)
GF = 1.1663787(6) · 10−5 GeV−2 ⇒ v = 1√√

2GF
= 246.2197(1) GeV , (7.3g)

where τZ = ln(µZ/µ0). For better comparability to [Bes10], also simulations with mH =
150 GeV have been performed for M = 107 GeV [cf. Hüt13, p. 46]. Note that the Higgs
boson mass here denotes the mass in the vacuum and is in no contradiction to the fact
that the Higgs boson is assumed to be massless due to high temperatures in all other
calculations for this thesis. These values are related to Eq. (7.2) via the relations [SW96],
[see Bes10, p. 63], [see Hüt13, p. 47]

α1(τZ) := g2
1(τZ)
4π = αem(τZ)

cos2(θW (τZ)) , (7.4a)

α2(τZ) := g2
2(τZ)
4π = αem(τZ)

sin2(θW (τZ))
, (7.4b)

α3(τZ) := g2
3(τZ)
4π = αs(τ) , (7.4c)

λt(τZ) := g2
t (τZ) = 2m2

t

v2 , (7.4d)

Λ(τZ) := g2
Λ(τZ) = mH

2v2 . (7.4e)

The RGEs for g1, g2, and g3 can be solved analytically giving

g2
1(τ) = c1

d1 − τ
, c1 = 80π2

41 , d1 = 20π(1− sin2 θW (τZ))
41αem(τZ) + τZ , (7.5a)

g2
2(τ) = c2

d2 + τ
, c2 = 48π2

19 , d2 = 12π sin2 θW (τZ)
19αem(τZ) − τZ , (7.5b)

g2
3(τ) = c3

d3 + τ
, c3 = 8π2

7 , d3 = 2π
7αs(τZ) − τZ , (7.5c)

whereas the RGEs for λt and Λ are solved numerically using an implementation of the
Bulirsch-Stoer method [SB13] from the library odeint from Boost3.
Note that the running of the Majorana neutrino coupling is neglected here, since its

experimental value is unknown and it therefore has to be treated as a free parameter [cf.
Bes10, p. 63].

2Note that the values from the 2017 update lie within the error boundaries.
3http://www.boost.org

http://www.boost.org
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7.1.2. Numerical Methods

All numerical calculations for this thesis were done using C++ programs written in the
context of the thesis.
The integral equations for f and for ψ, i.e. for the resummed self-energy, are trans-

formed into ordinary differential equations, which are then solved numerically using an
implementation of the Bulirsch-Stoer method from the library odeint from Boost, see
appendix, Sec. B.1, for details.
In order to calculate σh and σψ, the method qagi from the GNU scientific library4

(GSL), which is an adaptive quadrature integration routine suitable for infinite integration
intervals, has been used and crosschecked with the method qag, an adaptive quadrature
integration routine for finite intervals, and an appropriate cutoff. In the case of the tree-
level σtreeh and σtreeψ , the methods qag and qagp, which can also handle singularities, has
been used. The latter has not been used for the full σh and σψ, since they are smooth and
do not contain any singularities. For ill-defined points in the integration interval, a small
shift has therefore been applied. All checks have shown consistency so that qagi has been
used for the fully resummed σh and σψ, and, depending on whether or not singularities
may exist in the integration region, qag and qagp have been used for the tree-level σtreeh

and σtreeψ .
To ensure that the procedure works, a calculation of the differential production rate, cf.

Eqs. (5.19) and (5.95),

dΓ̃
d3p

= − 2
(2π)3 fF (p)Γp(p) = 2|λ|2

(2π)3p
fF (p)

[
2pσh(ωp, p) + M2

2p σψ(ωp, p)
]

(7.6)

with the light-like approximation for the Majorana neutrino ωp+p ' 2p, ωp−p 'M/(2p)
and mH = 150 GeV has been performed and compared to the corresponding calculation
in [ABB11, p. 19].

To calculate the lepton number matrix, different algorithms have been used. Firstly, for
the formulation using σh and σψ, the method qagiu, which handles semi-infinite integration
intervals similarly to qagi for infinite integration intervals, has been used to solve the
remaining integral over p. As a crosscheck, for one set of T and M the integral has
been rewritten to a three-dimensional integral using the definitions of σh and σψ from
Eqs. (5.54) and (5.55),

σh(ωp, p) = d(r)
2

∫ dk‖
2π
F(p, k‖)
k‖ − p

1
8k2
‖

∫ d2k⊥
(2π)2 Re(k⊥f(k⊥)) , (7.7)

σψ(ωp, p) = d(r)
2

∫ dk‖
2π
F(p, k‖)
k‖ − p

∫ d2k⊥
(2π)2 Reψ(k⊥) , (7.8)

instead of calculating σh and σψ and then integrating over p. The three-dimensional
integrals have been solved using the Vegas algorithm, a Monte Carlo algorithm with im-
portance sampling, and the Cuhre algorithm, an adaptive multidimensional quadrature
routine, of the CUBA library [Hah05]. In these cases, the compactification of infinite inte-
gration intervals has been performed using arctan and dimensionless variables by dividing
with appropriate powers of the temperature.
The completely thermalized lepton number matrix from Eq. (6.38), i.e. its limit as

t → ∞, and its result for finite t from Eq. (6.48) have been calculated for each T and
4https://www.gnu.org/software/gsl/

https://www.gnu.org/software/gsl/
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M using the fully resummed and the tree-level results for the Majorana neutrino self-
energy. The former has been calculated with and without explicitly entering the light-like
approximation for the Majorana neutrino momentum ωp + p ' 2p and ωp − p ' M/(2p),
whereas the latter only has been calculated without explicitly entering this approximation.
The light-like approximation is only valid if the result for the lepton number matrix is
dominated by the region where it holds, i.e. p > M in Eq. (6.48). This can be estimated
to be p ∼ T > M . Note that nevertheless, the resummation of the Majorana neutrino self-
energy uses collinearity of its momentum with the Higgs boson and lepton momenta, for
which the light-like approximation is needed during the calculation for the resummation.
Hence, the difference between the results with and without the light-like approximation for
the Majorana neutrino momentum should not be very large in order to have self-consistent
results. The validity of the approximation is discussed further in Secs. 7.3.2 and 7.4.1.
To study its thermalization, apart from the complete lepton number matrix and its limit

as t → ∞, also the contribution from the part of the lepton number matrix proportional
to exp(−Γpt)/Γp, i.e.

Lii(t, t)exp part ' −64εii
π

∫ ∞
0

dp p
2

ωp
fF (ωp)

−e−Γpt

Γp
σh(ωp, p)σψ(ωp, p) , (7.9)

cf. Eq. (6.48), has been calculated for each finite time considered.
Using the evaluations of the lepton number matrix for different times and temperatures

as well as the limit t→∞, one can define a time ttherm, where

Lii(ttherm, ttherm) =
(
1− e−1

)
lim
t→∞

Lii(t, t) , (7.10)

i.e. the exponential contribution in (1 − exp(−Γpt))/Γp is 1/e of the absolute value of
limt→∞ Lii(t, t). ttherm is then read off from the results for Lii(t, t) for different t using
limt→∞ Lii(t, t). For a constant Γp ≡ Γ that does not depend on the momentum p, this
would correspond to ttherm = 1/Γ. As all calculations here do not deal with a constant
Γp, but a certain region of momentum p contributes mostly to the results, ttherm can be
viewed as an average of 1/Γp with some weight. It should therefore approximately scale
like 1/Γp ∼ O(λ−2T−1).

For more details on the settings for the different algorithms see the appendix, Sec. B.3.2.

7.1.3. Overview over the Calculations

An overview over all calculations performed in the context of this thesis can be found in
table 7.1 for the differential production rate, the thermal width and the self-energies and
table 7.2 for the lepton number matrix and the thermalization time. Note that the units
in all plots in the following are given in powers of 109 GeV.

7.2. Results for the Differential Production Rate, the
Thermal Width, and the Self-Energies

The differential production rate dΓ̃/d3p has been calculated for M = 107 GeV with
T = 2 · 107 GeV and T = 108 GeV, the Higgs boson mass set to mH = 150 GeV, and the
light-like approximation. These are the same parameters and approximations as in the
corresponding calculation in [ABB11, p. 19]. The results of the calculation performed in
the process of this thesis can be found in Fig. 7.1. The helicity flip term corresponds to
the term involving σh, whereas the non-flip term corresponds to the term involving σψ,
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Quantity Eqs. M [GeV] T [GeV] Var. Fig. Remarks

dΓ̃/d3p (7.6) 107 2 · 107, 108 p 7.1 mH = 150 GeV,
light-like

Γp (5.95) 1010 2 · 1010, 1011 p 7.2
Γp (5.95) 107 2 · 107, 108 p 7.3
σh/ψ(p0, p) (5.54), (5.55) 1010 2 · 1010, 1011 p0 7.4 p = T

σ
(tree)
h/ψ (p0, p) (5.54), (5.55), 107 108 p0 7.5 p = T

(5.90), (5.91)
σ

(tree)
h/ψ (ωp, p) (5.54), (5.55), 1010 2 · 1010, 1011 p 7.6

(5.90), (5.91)
σ

(tree)
h/ψ (ωp, p) (5.54), (5.55), 107 2 · 107, 108 p 7.7

(5.90), (5.91)

Table 7.1.: Details on calculations for differential production rate, thermal width and self-
energies. Light-like denotes corresponding approximation for Majorana neu-
trino momentum, not inserted if not indicated. mH = 125.09 GeV if not
indicated otherwise.

Quantity Eq. M [GeV] Var. Tree Figs. Remarks

Lii(t, t) (6.48) 1010 t no 7.8, 7.9, 7.10 T = 1011 GeV
limt→∞ Lii(t, t) (6.38) 1010 T both 7.11
limt→∞ Lii(t, t) (6.38) 1010 T both 7.12 (non-)light-like
Lii(t, t) (6.48) 1010 T , t no 7.13, 7.14
Lii(t, t) (6.48) 1010 T , t yes 7.15, 7.16
Lii(t, t) (6.48) 1010 T , t both 7.17
ttherm (7.10) 1010 T both 7.18
limt→∞ Lii(t, t) (6.38) 107 T both 7.19 both mH

limt→∞ Lii(t, t) (6.38) 107 T both 7.20 (non-)light-like
limt→∞ Lii(t, t) (6.38) 107 T both 7.21 mH = 150 GeV,

(non-)light-like
Lii(t, t) (6.48) 107 T , t no 7.22, 7.23
Lii(t, t) (6.48) 107 T , t yes 7.24, 7.25
Lii(t, t) (6.48) 107 T , t both 7.26
ttherm (7.10) 107 T both 7.27

Table 7.2.: Details on calculations for lepton number matrix. Tree denotes tree-level.
Light-like denotes corresponding approximation for Majorana neutrino momen-
tum, not inserted if not indicated, (non-)light-like denotes both are calculated.
mH = 125.09 GeV if not indicated otherwise.
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Figure 7.1.: Results for the contributions to differential production rate dΓ̃/ d3p for differ-
ent T ; M = 107 GeV, mH = 150 GeV, light-like approximation.

cf. Sec. 5.6.4. The results agree with the results from [ABB11, p. 19]. Hence, it can be
assumed that the procedure for calculating σh and σψ works. Only these parameters could
be checked, since no other calculations for dΓ̃/ d3p was done in [ABB11]. A discussion of
the results can be found in [ABB11] and is not performed here, since the results are of
no further relevance. All further calculations in this section are done with the physical
Higgs mass mH = 125.09 GeV and without the light-like approximation for the Majorana
neutrino.
In order to justify the approximations for the lepton number matrix in Sec. 6.2, the

fully resummed as well as the tree-level thermal widths Γp have been calculated for M =
1010 GeV with T = 2 · 1010 GeV and T = 1011 GeV, and for M = 107 GeV with T =
2 · 107 GeV and T = 108 GeV as sample sets. The results can be found in Figs. 7.2
and 7.3. Note that for M = 1010 GeV with T = 2 · 1010 GeV, the tree-level thermal
width is constantly zero. A drop in the tree-level rate, which goes to zero for every set
of parameters except for M = 107 GeV with T = 108 GeV, can be observed for all sets
of parameters. This drop is connected to the fact the tree-level Majorana neutrino self-
energy is suppressed for these temperatures above a certain p, cf. Secs. 5.6.6 and 7.3.2.
Furthermore, the tree-level thermal width is smaller than the fully resummed one for all
calculated values. It is evident that, no matter whether the tree-level or the fully resummed
result is used, Γp � ωp, which has been assumed before, holds.
For further justification of the approximations, σh(p0, p), σψ(p0, p), σtreeh (p0, p), and

σtreeψ (p0, p) have been calculated for p0 ∈ [ωp − 107 · Γp, ωp + 107 · Γp] for the parameter
sets M = 1010 GeV with p = T = 2 · 1010 GeV and p = T = 1011 GeV for the fully
resummed case, and M = 107 GeV with p = T = 108 GeV for both, the fully resummed
and the tree-level cases. The results normalized by the on-shell values can be found in
Figs. 7.4 and 7.5. They show that the dependence on p0 is negligible within the peaks
of the integrand. Outside the peaks on the other hand, the rest of the integrand for the
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lepton number matrix after the integrations over t1, t2, and t3 is significantly less than
at the peaks, cf. Sec. 6.2.2. It is therefore justified to assume a very small width for the
peaks, since the width is given by multiples of Γp, and to assume that σh and σψ are
constant in these peaks. Hence, the approximations made in Sec. 6.2 are well motivated
and supported by the results presented here.
Furthermore, σh(ωp, p), σψ(ωp, p), σtreeh (ωp, p), and σtreeψ (ωp, p) have been calculated for

M = 1010 GeV with T = 1011 GeV andM = 107 GeV with T = 108 GeV to illustrate their
dependence on p. The results can be found in Figs. 7.6 and 7.7. Also here, one observes
that the tree-level σtreeh and σtreeψ are smaller than their fully resummed counterparts for
almost all values considered. This is further discussed in Secs. 7.3.4 and 7.4.3. Only for
the σψ with p < 1.1 · 107 GeV and M = 107 GeV, T = 108 GeV this does not hold.

7.3. Results for the Lepton Number Matrix for M = 1010

GeV

All calculations for M = 1010 GeV have been performed with mH = 125.09 GeV.

7.3.1. Cross-Check of Different Algorithms

In order to cross-check different integration algorithms, for T = 1011 GeV simulations have
been performed using the Vegas and the Cuhre algorithms from the CUBA library as well
as the algorithm qagi from the GSL library. The results can be found in Figs. 7.8, 7.9,
and 7.10. For the Vegas and Cuhre calculations, a maximal relative error of 0.05 has been
chosen, whereas for the qag calculation a maximal relative error of 0.01 for the p-integration
has been chosen with a maximal relative error of 10−3 for σh and σψ. Note that however,
for the first two algorithms the completely thermalized result has been calculated during
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every calculation, since it is obtained by omitting the part proportional to exp(−Γpt) in
the integrand and the CUBA library offers the possibility of multidimensional integrands.
Therefore, the value for limt→∞ Lii(t, t)/εii for the Vegas and Cuhre algorithms is obtained
as an average value of all corresponding results. Hence, the error is very small. With qag,
this value has only been calculated once with a maximal relative error of 0.01.

All algorithms show that the lepton number matrix thermalizes as expected, where
thermalization is reached around t & 1/GeV, which corresponds to 1/Γp for the relevant
region in p. This is further discussed in Sec. 7.3.4. As for all results later on, Lii(t, t) is
always negative, which means that there is an abundance of anti-leptons. This is expected,
since the purpose of Leptogenesis is to create an abundance of baryons by creating a lepton
asymmetry, which is then converted into a baryon asymmetry via sphaleron processes.
Equilibrium is reached when a fraction of asph = 28/79 of NB − NL is converted into a
baryon asymmetry [see KS88; HT90] [as cited in BDP05, p. 4], i.e. NB = asph(NB −NL),
see Eqs. (2.12) and (2.13). Therefore, NL < 0 is needed in order to create NB > 0.

The different algorithms show good agreement within the error boundaries, which one
can see explicitly from the limit t → ∞. For computational simplicitly, in all following
calculations the qagi algorithm will be used, since σh and σψ have to be evaluated anyhow
for every evaluation of the integrand because they are needed for Γp. For the calculations
using algorithms from the CUBA library, Γp has been calculated on a grid with a maximal
relative error of 0.001 for each value and a maximum of relative difference of 0.05 between
two neighboring values in advance. Therefore, only an interpolation has been performed for
each integration point in the actual computation of Lii. However, simulating at different
T and M would mean that for every set of these two parameters, a new grid would have
to be calculated. This would be unfeasible.
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7.3.2. Results for Infinite Time: Thermalized Results

In order to estimate the effect of gauge corrections on the lepton number matrix, it is useful
to consider the limit as t→∞, i.e. the completely thermalized lepton number matrix from
Eq. (6.38). For this purpose, calculations have been performed using the fully resummed
self-energy, i.e. including all leading-order gauge and other SM corrections, and the tree-
level self-energy, which only contains thermal masses for the Higgs boson and the leptons,
i.e. no soft gauge corrections, but only hard gauge and other SM corrections [cf. ABB11,
pp. 15-16]. The results can be found in Figs. 7.11 and 7.12, where there are also the
results for the light-like calculation, i.e. explicitly entering the light-like approximation
for the Majorana neutrino p‖ + ωp ' 2p and ωp − p ' M2/(2p) in the calculation for its
self-energy. Note that errorbars have been left out due to smallness (max. 0.01 relative
error except for light-like calculation with T < 1010 GeV, where max. 0.1 relative error)
and the number of calculated points.
First, the results in Fig. 7.11 are discussed. These show that as for the production

rate Γ̃ computed in [ABB11], gauge corrections (explicitly soft gauge interactions) have
a large impact on the thermalized lepton number matrix for T & M . For T < M , the
effect becomes negligible. Note however that the fully resummed self-energy as well as the
tree-level one are computed using the approximation that all particles are ultrarelativistic.
This approximation becomes questionable for T . M . Another possibility is to use the
result from [Ani+11] without gauge corrections, which has been done in [Hal17].
As in [ABB11] for the production rate, a region from T ≈ 1.7MN = 1.7 · 1010 GeV to

T ≈ 17M = 1.7 · 1011 GeV is found, where the tree-level lepton number matrix is much
smaller than the fully resummed one. Note that it does not drop to zero, since the light-
like approximation has not been put into the calculation for σh and σψ. When this is used,
in the corresponding region, the on-shell contributions to the self-energy and the lepton
number matrix are zero as it can be seen in Fig. 7.12, since a decay or inverse decay of the
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Majorana neutrino into a Higgs boson and a lepton is kinematically forbidden [see ABB11,
15 ff.], cf. Sec. 5.6.6. If one does not explicitly plug in the light-like approximation, these
processes are allowed for small ωp < T . The resummed lepton number matrix however
keeps the same order of magnitude, which corresponds to the finding in [ABB11] for the
production rate that gauge corrections compensate for the fact that the tree-level result
is suppressed due to kinematic reasons.
Summarizing, one finds that for T < M , soft gauge corrections are negligible due

to the fact that the tree-level and the fully resummed results are almost equal. For
T & M , these corrections increase the resulting lepton asymmetry and compensate for
the suppression of the tree-level asymmetry because of kinematic reasons. This behavior
is expected, since soft gauge interactions have been found to be important for T & M
in [ABB11]. For temperatures higher than the kinematically suppressed region, the tree-
level result increases again, but stays smaller than the fully resummed result by a factor
of approximately 0.7. In general, one finds that the generated lepton asymmetry grows
for increasing temperatures apart from the kinematically suppressed region for the tree-
level result. This finding is analogous to the finding for the solution of the Boltzmann
equation (4.9), where the generated asymmetry is strongly suppressed for T < M .
Comparing the results from the light-like calculation to the non-light-like calculation in

Fig. 7.12, one notices that the differences in general decrease for increasing temperature
except for the kinematically suppressed region in the tree-level calculations. This is ex-
pected, since for higher temperatures, higher momenta p contribute to the integral and in
this region, the light-like approximation is satisfied better. For T = 0.1M = 109 GeV, the
light-like results are larger than the non-light-like results by almost a factor of 1500. At
T ≈ M this is reduced to a factor of around 1.3. In the kinematically suppressed region,
the light-like result for the tree-level calculation is exactly zero because in this case, small
momenta do not contribute as before. Apart from this region for the tree-level result, the
full as well as the tree-level results become almost equal for T > M . Note that the lines
are on top of each other at the highest temperatures considered. This discussion illustrates
that due to the fact that collinearity with the inner loop momenta is assumed and these are
approximated to be light-like in the calculation, all results only have controlled errors for
T &M . Nevertheless, it is instructive to see that the full and the tree-level results agree for
T < M , which means that soft gauge corrections are not important for these temperatures.

7.3.3. Results for Finite Time

For finite time, simulations with different temperatures T and different times t for each T
have been performed for the tree-level as well as the fully resummed results for the lepton
number matrix. All calculations have been performed without the light-like approximation
for the Majorana neutrino, since apart from the fact that the drop in the kinematically
suppressed region is to zero, no major differences can be found for T > M . The fully
resummed results with soft and hard gauge corrections can be found in Figs. 7.13 and 7.14,
the tree-level results can be found in Figs. 7.15 and 7.16, and the complete resummed as
well as tree-level results can be found again in Fig. 7.17.
As already seen for the fully resummed lepton number matrix in Sec. 7.3.1, the fully

resummed and the tree-level lepton number matrix thermalize as expected within a time
t ∼ 1/Γp ∼ O(g−2T−1), i.e. the contribution of the exp(−Γpt)/Γp part, cf. Eq. (7.9),
become smaller with larger t. This part is the difference from the completely thermalized
limt→∞ Lii(t, t). Note that in the plots, the −-sign in front exp(−Γpt)/Γp is always ex-
cluded so that it is negative. Also, the thermalization time scales as expected, i.e. it gets
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Figure 7.13.: Fully resummed Lii(t, t) for different t and T , complete result Lii(t, t) and
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Figure 7.15.: Tree-level Lii(t, t) for different t and T , complete Lii(t, t) and exp(−Γpt)/Γp
contribution, M = 1010 GeV.
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Tree-level: Complete result

105 106 107 108 1091010101110121013
t
[(

109 GeV
)−1] 101

102

103

T
[
109 GeV

]
10−410−2100102104106108

−
L
ii

(t
,t

)/
ε i
i

[ ( 10
9
G
eV
) 3]

Figure 7.17.: Fully resummed and tree-level Lii(t, t) for different t and T , complete Lii(t, t),
M = 1010 GeV.

smaller when T gets larger5. This is visible in Figs. 7.13 and 7.15 from the intersection
line of the red (complete result) and blue (exp part) surfaces. The thermalization time is
discussed further in Sec. 7.3.4.
The tree-level results behave similarly to the thermalized tree-level results in Sec. 7.3.2.

The complete result as well as the exp(−Γpt)/Γp contribution have a region, where they
drop approximately two to six orders of magnitude. The explanation is the same as
before: Only regions with small ωp < T contribute to the integral, since the leading-order
contribution is kinematically not allowed. This effect is visible for all times as the time
only enters in the argument of the exponential function. Note that in this temperature
region, thermalization occurs very quickly, since only small p contribute and Γp is large
for these6, cf. Sec. 7.3.4.
Also, the comparison between the resummed and the tree-level results is very similar to

the results from Sec. 7.3.2 and does not depend qualitatively on the time. For small tem-
peratures T ≈M , both results are approximately equal. Then, the soft gauge corrections
cause the fully resummed result to be larger than the tree-level result and compensate for
the kinematic suppression in the corresponding temperature region.

7.3.4. Thermalization Times

The results for ttherm of the fully resummed and the tree-level lepton number matrix
that were read off from the results in Figs. 7.13 and 7.15 using the infinite time results
from Fig. 7.11 can be found in Fig. 7.18 together with fits of the thermalization times to
functions a/T with a = const. This is the expected behavior, cf. Sec. 7.1.2. In the fits,
only points with high temperatures T ≥ 3 · 1011 GeV have been included, since then, the
form of the fitted function and the results agree well for the fully resummed and tree-level

5Note that of course, the kinematically suppressed region for the tree-level result falls out of this scaling.
6For the p, where Γp = 0 one has that the integrand is zero, see Sec. 6.2.3.
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Figure 7.18.: Thermalization times and fits to functions a/T with a = const for T ≥
3 · 1011 GeV, χ2/NDOF = 1.18 for fully resummed and χ2/NDOF = 1.87 for
tree-level, M = 1010 GeV.

calculations. Since it is a double logarithmic plot, all lines parallel to the fitted functions
also have the form a/T with a = const. Therefore, one can also estimate the scaling of the
thermalization times simply by estimating whether or not the connecting line is parallel
to a fitted function.
For the fully resummed calculation, one notices that for high temperatures, the scaling is

as expected. For lower temperatures T < 1011 GeV, first, ttherm even increases, then drops
faster than 1/T , but slowly approaches a function∼ 1/T . The fit has a value of χ2/NDOF =
1.18, which illustrates the good agreement with the scaling for high temperatures T ≥
3 · 1011 GeV.
In the results for the tree-level calculation, one clearly sees a drop in the kinematically

suppressed region. This is due to the fact that only low momenta p contribute to the
generated asymmetry and Γp is large for these low momenta. Apart from that, the general
behavior is as for the results of the fully resummed calculation. One should also note that
for T = M = 1010 GeV, the thermalization times for both calculations are equal. For the
fit, one finds a value of χ2/NDOF = 1.87 again showing good agreement with the expected
scaling for high temperatures T ≥ 3 · 1011 GeV. Apart from the kinematically suppressed
region, the thermalization times are larger in the tree-level calculation compared to the
fully resummed one for T > M . This can be connected to the fact that the tree-level
lepton number matrix is smaller than the fully resummed one, cf. Fig. 7.11, since Γp
depends linearly on σh and σψ, whereas, apart from the exponential function, the self-
energies enter in the lepton number matrix via σh · σψ/Γp. More explicitly, the tree-level
σtreeh and σtreeψ are smaller than the fully resummed ones in the region of p that mostly
contributes to the integral, cf. Fig. 7.6, and hence, ttherm ∼ 1/Γp is larger. Also, in [ABB11,
p. 19], a similar behavior was found for the production rate Γ̃. The tree-level result for it
was found to be smaller than the fully resummed result.
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Figure 7.19.: Non-light-like results for limt→∞ Lii(t, t); M = 107 GeV.

7.4. Results for the Lepton Number Matrix for M = 107

GeV

7.4.1. Results for Infinite Time: Thermalized Results

The results for M = 107 GeV with mH = 125.09 GeV and mH = 150 GeV can be found in
Fig. 7.19 for non-light-like calculations and Figs. 7.20 and 7.21 for non-light-like and light-
like calculations. The non-light-like results are qualitatively very similar. For both Higgs
boson masses, a region, where the tree-level result is suppressed due to kinematic reasons,
exists as discussed in Sec. 7.3.2. The position of the suppressed region for mH = 150 GeV,
which is 1.4M = 1.4 · 107 GeV . T . 5.8M = 5.8 · 107 GeV, is in very good agreement
with the corresponding region for the production rate Γ̃ from [ABB11, p. 18]. This is
obvious, since they exist due to the same reasons. The light-like results in Fig. 7.21 further
support this statement. For the physical mH = 125.09 GeV, the region, where the lepton
asymmetry is suppressed is located at 1.5M = 1.5 · 107 GeV . T . 9.5M = 9.5 · 107 GeV.
For higher T , the tree-level result gets larger and is no longer kinematically suppressed,
but still is smaller than the fully resummed result for mH = 125.09 GeV by a factor of
around 0.9. For mH = 150 GeV, the tree-level result even grows larger than the fully
resummed result by a factor of around 1.02 at T = 102M = 109 GeV. Note that this is,
however, almost within error boundaries. For T . M , all non-light-like results assume
similar values.
To summarize the non-light-like calculations, one has similar behavior as in Sec. 7.3.2.

For small T . M , the fully gauge corrected and the tree-level lepton number matrix
are approximately equal. For larger T , soft gauge corrections enhance the generated
lepton asymmetry and compensate for the kinematically suppressed region. Only for the
unphysical Higgs boson mass mH = 150 GeV, the tree-level result grows larger than the
fully resummed result, but by a small factor. As for M = 1010 GeV, the generated lepton
asymmetry grows with T apart from the kinematically suppressed region for the tree-level
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Figure 7.20.: Non-light-like and light-like results for limt→∞ Lii(t, t);M = 107 GeV, mH =
125.09 GeV.
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Figure 7.21.: Non-light-like and light-like results for limt→∞ Lii(t, t);M = 107 GeV, mH =
150 GeV.
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Figure 7.22.: Fully resummed Lii(t, t) for different t and T , complete Lii(t, t) and
exp(−Γpt)/Γp contribution, M = 107 GeV.

result.
Since there are little or no qualitative differences, and the quantitative ones are reason-

ably small for the fully gauge corrected result, only calculations for mH = 125.09 GeV
with finite time are presented in Sec. 7.4.2. The results for mH = 150 GeV show a similar
behavior. The fact that the tree-level result gets a little larger than the fully resummed
one for the larger Higgs mass is not important.

The comparison between non-light-like and light-like results is very similar to Sec. 7.3.2
for both Higgs boson masses. The differences between corresponding results decrease with
increasing temperature apart from the kinematically suppressed region for the tree-level
result. Also, the tree-level light-like results drop to zero in the kinematically suppressed
region due to the reasons discussed before.

7.4.2. Results for Finite Time

As for M = 1010 GeV, calculations with different temperatures and times have been
performed for the tree-level and the fully resummed Lii without entering the light-like
approximation for the Majorana neutrino to study the thermalization of the lepton number
matrix. Only the results for mH = 125.09 GeV are presented as discussed before. The
fully resummed results can be found in Figs. 7.22 and 7.23, the tree-level results can be
found in Figs. 7.24 and 7.25, and the complete resummed as well as tree-level results can
be found in Fig. 7.26.

One finds a similar behavior as for M = 1010 GeV. The gauge corrected as well as
the tree-level lepton number matrix thermalize within the expected times t ∼ 1/Γp ∼
O(λ−2T−1), i.e. the contribution from the exp(−Γpt)/Γp parts become smaller with larger
t (note the sign of this part in the plots as discussed in Sec. 7.3.3). Similarly to M =
1010 GeV, also the scaling of the thermalization time can be seen in Figs. 7.22 and 7.24 from
the intersection line of the blue and red surfaces with the exception of the kinematically
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Figure 7.26.: Fully resummed and tree-level Lii(t, t) for different t and T , complete Lii(t, t),
M = 107 GeV.
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Figure 7.27.: Thermalization times and fits to functions a/T with a = const for T ≥
2.5 · 108 GeV, χ2/NDOF = 1.23 for fully resummed and χ2/NDOF = 1.30 for
tree-level, M = 107 GeV.

suppressed region in the tree-level result. The scaling is discussed further in Sec. 7.4.3.
One again finds the kinematically suppressed regions in the tree-level result with fast

thermalization. The reasons for this stay the same.
The comparison between the tree-level and the gauge corrected results is similar to

Secs. 7.3.3 and 7.4.1. For small temperatures T . M , both results are approximately
equal. Going to higher T , the soft gauge corrections cause the fully resummed result to
be larger than the tree-level result for all times, cf. Fig. 7.26. Note the kinematically
suppressed region in the tree-level result.

7.4.3. Thermalization Times

The thermalization times for M = 107 GeV can be found in Fig. 7.27 together with fits
to functions a/T with a = const, where only points with T ≥ 2.5 · 108 GeV have been
considered, since they agree well with the form of the fitted functions.
The results are very similar to the results for M = 1010 GeV in Fig. 7.18. The results

from the fully resummed calculation first increase, then decrease faster than 1/T for T <
108 GeV. For higher temperatures, the scaling approaches the expected 1/T and the fit
has a value of χ2/NDOF = 1.23 showing a good agreement with the expected scaling.
In the result from the tree-level calculation, one can see the drop in the kinematically
suppressed region. For T = M , both results, i.e. the ones from the fully resummed and
tree-level calculations, are equal. The fit has a value of χ2/NDOF = 1.30 again showing
good agreement with the expected scaling for high temperatures T ≥ 2.5 ·108 GeV. Apart
from the kinematically suppressed region, the tree-level results’ thermalization times are
larger. This can be connected to the fact that the tree-level σtreeh and σtreeψ are smaller
than the fully resummed results, cf. Sec. 7.3.4 and Fig. 7.7.



7.5. Discussion 83

7.5. Discussion
The results presented in this chapter show that soft and hard gauge corrections have a
strong effect on thermal leptogenesis for temperatures higher than the Majorana neutrino
mass. By only including hard gauge and other SM corrections, one generates asymptotic
masses of the Higgs boson and lepton that give a temperature region, where the gener-
ated lepton asymmetry is strongly suppressed due to kinematic reasons. The inclusion
of corrections due to interactions with soft gauge bosons compensates for this kinematic
suppression. This finding is analogous to the finding for the production rate in [ABB11].
For the physical Higgs mass, it enhances the generated lepton asymmetry at all T > M .
Only for the unphysical mH = 150 GeV, the tree-level result grows larger than the fully
resummed result at very high temperatures for M = 107 GeV.
With and without soft gauge corrections, the lepton number matrix thermalizes as

expected, which is in very good agreement with the solution of the Boltzmann equa-
tion (4.9). The scaling of the thermalization times is also approximately as expected,
since ttherm ∼ 1/Γp ∼ O(λ−2T−1) is approached and found for high T . Furthermore, the
generated lepton asymmetry grows for increasing temperatures apart from the kinemati-
cally suppressed region in the tree-level result. This is in accordance with the finding for
the solution of the Boltzmann equation that the generated lepton asymmetry is strongly
suppressed for T < M .
Comparing the two considered Majorana neutrino masses, no qualitative differences can

be seen. Quantitatively, the generated lepton asymmetry is around nine orders of mag-
nitude smaller for the smaller M = 107 GeV compared to the larger M = 1010 GeV.
Note that however, the physical scenario described in Sec. 4.1, for which the initial lep-
ton asymmetry is calculated, only applies for the larger Majorana neutrino mass. One
should always keep in mind that the calculations carried out in the context of this thesis
are performed in a setting, where the temperature of the thermal bath does not change.
Therefore, every temperature considered corresponds to a calculation, where one starts
with zero Majorana neutrino abundance, then generates an abundance due to the interac-
tions with the thermal bath of SM particles, and thereby generates a lepton asymmetry.
All of this happens at a constant temperature.
A comparison to the result without any gauge and other SM corrections from [Ani+11]

is performed in [Hal17] and therefore not considered here.





8. Conclusions and Research Perspectives

In this thesis, the effect of soft and hard gauge corrections, i.e. corrections due to inter-
actions with gauge bosons of soft and hard momenta, on thermal leptogenesis has been
studied systematically. Besides, corrections because of interactions with other standard
model particles with hard momenta have been considered. This has been done assuming
hierarchically ordered Majorana neutrino masses so that the two heavier ones could be
integrated out giving an effective theory. Furthermore, a physical scenario, where the ex-
pansion of the universe and washout terms could be neglected, has been regarded. After
a presentation of the results needed from [Ani+11] and [ABB11], an expression for the
lepton number matrix systematically including all leading order gauge and other standard
model corrections via a resummed Majorana neutrino self-energy has been derived follow-
ing [Hüt13]. Soft gauge corrections can explicitly be excluded in this expression to study
the effect of hard gauge corrections as well as other hard standard model corrections. As
the lepton number matrix is derived in the framework of Kadanoff-Baym equations, it in
principle contains all quantum effects, i.e. off-shell and memory effects. It has been further
studied and approximated for numerical evaluation.
The approximations require that the thermal width of the Majorana neutrino is very

small compared to its energy, which leads to strong peaks around the on-shell values.
Furthermore, the Majorana neutrino self-energy is assumed to not depend strongly on the
zeroth component of the four-momentum around the on-shell value. These assumptions
have been verified numerically. Using the approximations, one essentially restricts the
integral around on-shell values and hence neglects off-shell effects. Thereby, one finds the
same time-dependence as the solution of the Boltzmann equations in the physical scenario
considered. This is similar to the findings in [Ani+11], where for a small thermal width of
the Majorana neutrino and when thermal widths for the standard model lepton and Higgs
boson fields are included, this time-dependence was found.
The numerical evaluation showed the relevance of soft and hard gauge corrections for

thermal leptogenesis when the temperature of the thermal bath of standard model particles
is greater than or similar to the Majorana neutrino mass. When only interactions with hard
gauge bosons and other standard model particles are included, a temperature region, where
the generated lepton asymmetry is suppressed due to kinematic reasons, has been found.
The inclusion of soft gauge corrections compensates this kinematic suppression. This is
analogous to the finding in [ABB11] for the Majorana neutrino production rate. Soft gauge
corrections enhance the generated lepton asymmetry for all values with the physical Higgs
mass. A comparison to the result without any gauge corrections is performed in [Hal17].
Summarizing, this thesis shows the effect of soft and hard gauge corrections on thermal

leptogenesis, thus expanding the temperature regime considered in [Ani+11]. It can hence
be stated that also with the inclusion of all leading order gauge corrections, a lepton
asymmetry can be generated successfully. This asymmetry can be converted into a baryon
asymmetry using standard model sphaleron processes.
Working in the framework of Kadanoff-Baym equations, there are different effects that

need to be considered in order to arrive at a "theory of leptogenesis" [see Buc01, p. 10]
[as cited in Ani+11, p. 42], which include the following research perspectives [cf. Men10;
Hüt13]:
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• Expansion of the universe: The expansion of the universe should be included in
order to arrive at a more realistic calculation, where the temperature is not kept
constant. This involves solving the Kadanoff-Baym equations in the Friedmann-
Lemaître-Robertson-Walker metric. These equations have been considered for a
scalar particle in [HKL08].

• Inclusion of washout terms: Only the two-loop diagrams of the lepton self-energy
contributing to a CP-violation at zero chemical potential, e) and f) in Fig. 4.2, have
been considered in this thesis following [Ani+11]. However, the washout terms a)
- d) in Fig. 4.2 violate CP when a chemical potential is introduced [see Men10,
pp. 75-76]. Hence, they can become important.

• Inclusion of more than one heavy Majorana neutrino: This thesis assumes that two
Majorana neutrinos are much heavier than the other one. By not doing so, a broader
range of physical scenarios becomes accessible, e.g. resonant leptogenesis [see e.g.
PU04], where the Majorana neutrino masses are degenerate or quasi-degenerate.

By considering these effects, more scenarios for leptogenesis would become accessible for
a quantum field theoretical calculation from first principles.



A. Conventions and Feynman Rules

A.1. Conventions

All calculations in this thesis have been performed in natural units ~ = c = kB = 1.
For the Minkowski metric, the convention most common in high energy physics

(ηµν) = (ηµν) = diag(1,−1,−1,−1) (A.1)

has been used, which gives

x · y = xµηµνy
ν = xµy

µ = xµyµ = x0y0 − xy (A.2)

as the scalar product between two four-vectors x and y.
For the Dirac matrices, which fulfill the Clifford algebra

{γµ, γν} = 2ηµν14 , (A.3)

the Weyl basis has been chosen for all calculations. In this basis one has

γ0 =
(

0 12
12 0

)
, γk =

(
0 σk

σk 0

)
, γ5 = iγ0γ1γ2γ3

(
−12 0

0 12

)
(A.4)

with the Pauli matrices

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (A.5)

The Pauli matrices fulfill the relations

Tr[σiσj ] = 2δij , Tr[σi] = 0 . (A.6)

In the Weyl basis, one finds for the left- and right-handed projectors

PL = 14 − γ5

2 =
(
12 0
0 0

)
, PR = 14 + γ5

2 =
(

0 0
0 12

)
. (A.7)

A.2. Feynman Rules

The Feynman rules for the effective Lagrangian in Eq. (2.7) [see Ani+11, pp. 45-46], that is
used in this thesis as an effective theory for thermal leptogenesis, are given in the following,
where α, β and a, b, c, d are always spinor and SU(2) indices, respectively:

• Majorana neutrino

x2,β x1,α
Gαβ(x1, x2)N
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• Lepton doublet

x2,β,b,j x1,α,a,i
δijδabSαβ(x1, x2)l

• Higgs doublet

x2,b x1,a
δab∆(x1, x2)

φ

• Vertices

N

l

φ

β

i, α, a

b

iλ∗i1εab(PR)αβ

N

l

φ

β

i, α, a

b

iλi1(CPL)βαεab

l

l

φ

φ

i, α, a

j, β, b

c

d

iηij(εacεbd + εadεbc)(CPL)αβ

l

l

φ

φ

i, α, a

j, β, b

c

d

iη∗ij(εacεbd + εadεbc)(PRC)αβ



B. Details on the Resummation of the
Majorana Neutrino Self-Energy and
on the Lepton Number Matrix

B.1. Solving the Integral Equations

In this section, the method for solving the integral equations for f and for ψ, Eqs. (5.49)
and (5.50), which are needed in order to calculate the resummed Majorana neutrino self-
energy, is discussed. This procedure for the Majorana neutrino self-energy was first pre-
sented in [ABB11] and closely follows [AGZ02; Aur+02]. The details of this section are
however also taken from [Bes10; Hüt13].

B.1.1. From Integral Equations to Ordinary Differential Equations

Recall the integral equations

iε(p,k)f(k⊥)−
∫ d2q⊥

(2π)2C(q⊥)[f(k⊥)− f(k⊥ − q⊥)] = 2k⊥ , (B.1)

iε(p,k)ψ(k⊥)−
∫ d2q⊥

(2π)2C(q⊥)[ψ(k⊥)− ψ(k⊥ − q⊥)] = 1 , (B.2)

where

ε(p,k) = α(p0, p‖, k‖) + β(p‖, k‖)k2
⊥

= β(p‖, k‖)
(
M2

eff(p0, p‖, k‖) + k2
⊥

)
(B.3)

with

α(p0, p‖, k‖) = p0 − p‖ +
m2
φ

2(k‖ − p‖)
− m2

l

2k‖
, (B.4)

β(p‖, k‖) =
p‖

2k‖(k‖ − p‖)
, (B.5)

M2
eff(p0, p‖, k‖) :=

α(p0, p‖, k‖)
β(p‖, k‖)

. (B.6)

Meff is called effective mass. From now on, the arguments of α, β, andMeff are suppressed.
Performing Fourier transformations in k⊥ with the definitions

f(b) =
∫ d2k⊥

(2π)2 e
ik⊥bf(k⊥) , f(k⊥) =

∫
d2be−ik⊥bf(b) , (B.7)

ψ(b) =
∫ d2k⊥

(2π)2 e
ik⊥bψ(k⊥) , ψ(k⊥) =

∫
d2be−ik⊥bψ(b) , (B.8)
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one finds simple expressions for the results after perpendicular momentum integration [see
ABB11, p. 20] ∫ d2k⊥

(2π)2 Re k⊥f(k⊥) = lim
b→0

Im ∇f(b) , (B.9)∫ d2k⊥
(2π)2 Reψ(k⊥) = lim

b→0
Reψ(b) , (B.10)

which will be proven in Sec. B.2.2. Using the representation of the δ-distribution

δ2(b) =
∫ d2k⊥

(2π)2 e
ik⊥b (B.11)

and the relations ∫ d2k⊥
(2π)2 e

ik⊥bk2
⊥f(k⊥) = δbf(b) , (B.12)∫ d2k⊥

(2π)2 e
ik⊥bik⊥ = ∇bδ

2(b) , (B.13)

and analogously for ψ with the Laplace- and Nabla-operators ∆b and ∇b with respect to
b, one finds

−iβ(∆b −M2
eff)f(b)−K(b)f(b) = −2i∇bδ

2(b) , (B.14)
−iβ(∆b −M2

eff)ψ(b)−K(b)ψ(b) = δ2(b) , (B.15)

where

K(b) =
∫ d2q⊥

(2π)2

(
1− eiq⊥b

)
C(q⊥) . (B.16)

Recall that

C(q⊥) := T

[
C2(r)g2

W

(
1

q2
⊥
− 1

q2
⊥ +m2

D

)
+ y2

l g
2
Y

(
1

q2
⊥
− 1

q2
⊥ + (m′D)2

)]
(B.17)

so that integrals of the form

I(b) :=
∫ d2q

(2π)2

( 1
q2 −

1
q2 +m2

)(
1− eiqb

)
(B.18)

need to be calculated to find K(b). These to be renormalized due to divergences [see
Hüt13, p. 76]. In dimensional regularization, one finds for n = 2− 2ε, [Col84, cf.] [as cited
in Hüt13, pp. 76-77]∫ dnq

(2π)n
e±iqb

q2 =
Γ(n2 − 1)

4πn/2bn−2 , (B.19)∫ dnq
(2π)n

1
q2 = 0 , (B.20)∫ dnq

(2π)n
1

q2 +m2 =
Γ(1− n

2 )
(4π)n/2m2−n , (B.21)∫ dnq

(2π)n
e±iqb

q2 +m2 = b1−n/2

(2π)n/2
Kn

2−1(mb) n→2−−−→ 1
2πK0(mb) , (B.22)

(B.23)
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where K0(z) is the modified Bessel function of second kind. For the divergent terms, one
can use the expansions [see AS72, pp. 255-256]

Γ
(

1− n

2

)
= Γ(ε) = 1

ε
− γE +O(ε) , (B.24)

Γ
(
n

2 − 1
)

= Γ(−ε) = 1
ε
− γE +O(ε) , (B.25)

xε = eε ln(x) = 1 + ε ln(x) +O(ε2) , (B.26)

where γE = 0.57721566 . . . is the Euler-Mascheroni constant. Subtracting the poles in ε
and carrying out the limit ε→ 0, one finds∫ dnq

(2π)n

(
e±iqb

q2 + 1
q2 +m2

)
ε→0−−−−−−−−−−→

Poles subtracted
− 1

2π

(
γE + ln

(
mb

2

))
. (B.27)

In total, this gives

I(b) = 1
2π

(
γE + ln

(
mb

2

)
+K0(mb)

)
=: D(mb) (B.28)

so that

K(b) = T [C2(r)g2
WD(mDb) + y2

l g
2
YD(m′Db)] , (B.29)

where K only depends on b := |b|.
Therefore, using the ansatz f(b) = bh(b), one can use rotational invariance to rewrite

Eqs. (B.14) and (B.15) for b > 0 into the ordinary differential equations (ODEs) [see
Hüt13, p. 76]

−iβ
(
∂2
b + 3

b
∂b −M2

eff

)
h(b)−K(b)h(b) = 0 , (B.30)

−iβ
(
∂2
b + 1

b
∂b −M2

eff

)
ψ(b)−K(b)ψ(b) = 0 , (B.31)

where ∆bψ(b) = (∂2
b + 1

b∂b)ψ(b) and ∆bf(b) = b(∂2
b + 3

b∂b)h(b) have been used. Note
that due to the fact that only the limits for b→ 0 need to be considered numerically, it is
sufficient to regard b > 0, i.e. δ2(b) ≡ 0, as well as the boundary conditions presented in
the next section [see ABB11, p. 22].

B.1.2. Boundary Conditions

Due to the fact that the Fourier integrals have to converge, one has the conditions [see
ABB11, p. 21]

lim
b→∞

f(b) = 0 , (B.32)

lim
b→∞

ψ(b) = 0 , (B.33)

where the first condition implies that h(b) has to fall off faster than 1/b for b→ 0.
For b → 0, all terms without derivatives, which do not contain a δ-distribution, in

Eqs. (B.14) and (B.15) can be neglected due to the fact that K(b) ∼ b2 ln(b) [see ABB11,
p. 21], i.e.

−iβ∆bf(b) = −2i∇bδ
2(b) , (B.34)

−iβ∆bψ(b) = δ2(b) . (B.35)
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The solutions of these equations can be derived from the fundamental solution φ(b) =
ln(|b|)/(2π) of the Poisson equation ∆bφ(b) = v(b) [see Hüt13, pp. 77-78], which can be
obtained via the method of Green’s functions. The solutions are then given by [see Hüt13,
p. 77]

f(b) =
(
φ ∗

(
− 2
β∇bδ

2
))

(b) = 1
πβ

∫
d2t ln(|t|)∇b−tδ

2(b− t) , (B.36)

ψ(b) =
(
φ ∗

(
i

β
δ2
))

(b) = i

2πβ

∫
d2t ln(|t|)δ2(b− t) . (B.37)

Therefore, one finds the limiting behaviors [cf. ABB11, p. 11] [as cited in Hüt13, p. 78]

f(b) = cf
b
b2

+O(b)⇒ h(b) = cf
1
b2

+O(b0) , (B.38)

ψ(b) = cψ ln b+O(b0) , (B.39)

where

cf := 1
πβ

, (B.40)

cψ := i

2πβ . (B.41)

Note that here, only the dependence on b is considered. It becomes clear in Sec. B.1.4,
how a dimensionless argument in the logarithm is achieved. The limiting behaviors show
that divergences only occur in Reh(b) and Imψ(b), while Im h(b) and Reψ(b) stay regular
for b → 0 and therefore everywhere, since they can only occur for this value due to the
ODEs (B.30) and (B.31). Hence, the results for Eqs. (B.9) and (B.10) needed for the
resummed Majorana neutrino self-energies stays finite.

Also, the first corrections, that are given by the order estimates in Eqs. (B.38) and (B.39),
have to fulfill (∆b −M2

eff)f̃ = (h̃′′ + 3h̃′/b−M2
effh̃)b = 0 and (∆b −M2

eff)ψ̃ = ψ̃′′ + ψ̃′/b−
M2

effψ̃ = 0, respectively, since K(b) = b2 ln(b)→ 0 for b→ 0. The solutions give the order
estimates in Eqs. (B.38) and (B.39) as well as h̃′(b)→ 0 and ψ̃′(b)→ 0 for b→ 0, i.e. the
corrections in Eqs. (B.38) and (B.39) have a vanishing first derivative for b→ 0.

B.1.3. Numerical Procedure

In order to provide an overview, the procedure needed for the numerical evaluation of the
ODEs (B.30) and (B.31) is presented shortly in this section following [ABB11, pp. 22-23]
[as cited in Hüt13, pp. 78-79] with the modification that the numerical value for the limit
b → ∞ is chosen dynamically for better stability. Here, only the steps for ψ(b) and the
necessary modifications for h(b) are presented.

1. Split ψ(b) into a tree-level and a higher order part following ψ(b) = ψ0(b) + ψ1(b),
where ψ0(b) solves (B.30) with K(b) set to 0. Solve for ψ0(b) implementing the
boundary conditions from Eqs. (B.33) and (B.39).

2. Make an ansatz for the general solution of ψ1(b) = c1,ψψ
(1)
1 (b) + c2,ψψ

(2)
1 (b) +ψ

(p)
1 (b)

with a particular solution ψ(p)
1 (b) of the emerging inhomogeneous equation and the

linearly independent solutions ψ(1,2)
1 (b) of the corresponding homogeneous equation.
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3. Use the BCs from Eqs. (B.33) and (B.39) and appropriate initial conditions (ICs),
see next step, such that c1,ψ = 0 and∫ d2k⊥

(2π)2 Reψ(k⊥) = lim
b→0

Reψ(b) = Re c2,ψ = − lim
b→∞

Re
(
ψ

(p)
1 (b)
ψ

(2)
1 (b)

)
. (B.42)

4. Use the following algorithm to compute Re c2,ψ, where b0 and b∞ are the numerical
values for the limits b → 0 and b → ∞, whereas b∞,max is the maximum value for
b∞, and εmax > 0 is the maximum relative error:
1: Choose b0, b∞, b∞,max, and εmax.
2: bi ← b0 .
3: Solve homogeneous equation for ψ(2)

1 (b) with ICs ψ(2)
1 (b0) = 1, ψ(2)′

1 (b0) = 0 from
bi to b∞.

4: Solve inhomogeneous equation for ψ(p)
1 (b) with ICs ψ(p)

1 (b0) = i[ψ], ψ(p)′
1 (b0) = 0

from bi to b∞.
5: Calculate Re c2,ψ according to Eq. (B.42) with ψ(2)

1 (b∞) and ψ(p)
1 (b∞).

6: bi ← b∞ .
7: Increase b∞.
8: repeat
9: Solve homogeneous equation for ψ(2)

1 (b) from bi to b∞ with previous solution
at current bi as ICs.

10: Solve inhomogeneous equation for ψ(p)
1 (b) from bi to b∞ with previous solution

at current bi as ICs.
11: Re c2,ψ,old ← Re c2,ψ .

12: Calculate Re c2,ψ according to Eq. (B.42) with ψ(2)
1 (b∞) and ψ(p)

1 (b∞).
13: bi ← b∞ .
14: Increase b∞.
15: until |(Re c2,ψ,old − Re c2,ψ)/Re c2,ψ| < εmax or b∞ > b∞,max.

The same procedure can be used for h(b). Only the ICs for the particular solution have
to be changed to h(p)

1 (b0) = 1[h] and h(p)′
1 = 0 such that

lim
b→0

Im h(b) = Im c2,h = lim
b→∞

Im
(
h

(p)
1 (b)
h

(2)
1 (b)

)
. (B.43)

[ψ] = energy and [h] = (energy)3 denote the units of ψ(b) and h(b), respectively.

B.1.4. Modifying the ODEs for Numerical Evaluation

In this section, the steps needed to bring the ODEs (B.30) and (B.31) into a form that
can then be solved numerically, i.e. the steps 1. to 3. from the previous Sec. B.1.3, are
presented following [Hüt13, pp. 79-81]. Following this reference, the calculation for ψ is
presented first.
Recall the ODE (B.31) that needs to be solved for b > 0

−iβ
(
∂2
b + 1

b
∂b −M2

eff

)
ψ(b)−K(b)ψ(b) = 0 . (B.44)

The first step is to split the function into ψ(b) = ψ0(b) + ψ1(b), where ψ0(b) fulfills the
equation

−iβ
(
∂2
b + 1

b
∂b −M2

eff

)
ψ0(b) = 0 , (B.45)
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i.e. is the tree-level solution and ψ1(b). Eq. (B.45) is a Bessel differential equation with
the general solution [see AS72, p. 358], [see Hüt13, p. 79]

ψ0(b) = a1J0

(
±ib

√
M2

eff

)
+ a2Y0

(
±ib

√
M2

eff

)
, (B.46)

where Jn(z) and Yn(z) are the Bessel functions of first and second kind, respectively, and
a1, a2 ∈ C. The signs in the arguments are discussed later. Keeping in mind that

M2
eff =

2k‖(k‖ − p‖)(p0 − p‖) + k‖m
2
φ − (k‖ − p‖)m2

l

p‖
(B.47)

can become negative, one has to differentiate between the cases M2
eff ≥ 0 and Meff ≤ 0.

Starting with M2
eff ≥ 0 one uses the +-sign in both arguments in Eq. (B.46). Using

properties of the Bessel functions

J0(ix) = I0(x) , (B.48)

Y0(ix) = iI0(x)− 2
π
K0(x) (B.49)

with x ∈ R given in [AS72, p. 375], one can rewrite the solutions in terms of the modified
Bessel functions of first and second kind I0(x) and K0(x) of real arguments x. These have
the limiting forms [see AS72, p. 375]

I0(x) ∼ 1 , (B.50)
K0(x) ∼ − ln(x) (B.51)

for x→ 0. Comparison to Eq. (B.39) gives1

ψ0(b) =
(
a

(1)
1 −

1
4β

)
I0

(
b
√
M2

eff

)
− i

2πβK0

(
b
√
M2

eff

)
(B.52)

with a(1)
1 ∈ C. Since limx→∞ I0(x) = ∞ [cf. AS72, p. 377], any non-zero prefactor before

I0 would violate the boundary conditions for b → ∞. Therefore, one has a(1)
1 = 1/(4β)

and finds [cf. Hüt13, p. 80]

ψ0(b) = − i

2πβK0

(
b
√
M2

eff

)
for M2

eff ≥ 0 . (B.53)

ForM2
eff ≤ 0 one uses −-sign in both arguments in Eq. (B.46). In this case, the arguments

of J0 and Y0 are real. These have limiting forms for x→ 0 [see AS72, p. 360]

J0(x) ∼ 1 , (B.54)

Y0(x) ∼ 2
π

ln(x) . (B.55)

Comparison to Eq. (B.39) gives

ψ0(b) = a
(2)
1 J0

(
b
√
|M2

eff|
)

+ i

4πY0

(
b
√
|M2

eff|
)
. (B.56)

1The difference in the prefactor of I0 compared to [Hüt13, p. 79] is due to different signs in the arguments
of Eq. (B.46).
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To ensure a continuous transition from M2
eff ≤ 0 to M2

eff ≥ 0 [cf. Hüt13, p. 80], i.e. the
well-definedness at M2

eff = 0, the limiting forms have to be matched. This forces one to
choose a(2)

1 = 0 and therefore find [cf. Hüt13, p. 80]

ψ0(b) = i

4πY0

(
b
√
|M2

eff|
)

for M2
eff < 0 . (B.57)

The next step is to realize that the complete differential equation for ψ(b) is an inho-
mogeneous ordinary differential equation of second order. Therefore, ψ1(b) is given by the
sum of the superposition of the two linearly independent solutions ψ(1)

1 (b) and ψ(2)
1 (b) of

the homogeneous equation and a particular solution ψ(p)
1 (b) of the inhomogeneous equa-

tion, where the term occuring from the fact that ψ0(b) only is a tree-level solution with
K(b) set to zero is considered as an inhomogeneity, i.e.

c1,ψψ
(1)
1 (b) + c2,ψψ

(2)
1 (b) + ψ

(p)
1 (b) = ψ1(b) , (B.58)

−iβ
(
∂2
b + 1

b
∂b −M2

eff

)
ψ1(b)−K(b) (ψ0(b) + ψ1(b)) = 0 . (B.59)

Since the limiting behavior from Eq. (B.39) for b → 0 is already implemented in ψ0(b),
ψ1(b) is regular and ψ1(b)→ 0 for b→ 0. By choosing the initial conditions appropriately,
one can achieve [see Hüt13, p. 80]

ψ
(1)
1 ∼ cψ ln b (∼ K0(b)) ⇒ c1,ψ = 0 , (B.60)

ψ
(2)
1 ∼ regular (∼ I0(b)) ⇒ c2,ψ = − lim

b→∞

ψ
(p)
1 (b)
ψ

(2)
1 (b)

, (B.61)

where limb→∞ ψ1(b) = 0 has been used.
Since the ODEs have to be solved numerically from b → 0 to b → ∞, one has to

choose a small b0 and find a b∞ to achieve the limits numerically, where the latter can
be found during the calculation such that a certain accuracy is met. Details on how they
are chosen are given below. Solving the homogeneous ODE with ICs ψ1(b0) = 1[ψ] and
ψ′1(b0) = 0 then gives ψ(2)

1 (b) due to its regularity for b → 0, and c1,ψ = 0. Similarly, the
inhomogeneous ODE is solved with ICs ψ1(b0) = i[ψ] and ψ′1(b0) = 0 to obtain ψ

(p)
1 (b)

such that limb→0 Reψ(b) = Re c2,ψ. Splitting ψ(2)
1 (b), ψ(p)

1 (b), and ψ0(b) into a real and
an imaginary part according to ψ(2)

1 (b) =: ψ(2)
1,r (b) + iψ

(2)
1,i (b), and analogously for ψ(p)

1 and
ψ0(b), one now has to solve the real-valued coupled ODEs(

∂2
b + 1

b
∂b −M2

eff

)
ψ

(2)
1,r (b) + K(b)

β
ψ

(2)
1,i (b) = 0 , (B.62a)(

∂2
b + 1

b
∂b −M2

eff

)
ψ

(2)
1,i (b)− K(b)

β
ψ

(2)
1,r (b) = 0 , (B.62b)

and (
∂2
b + 1

b
∂b −M2

eff

)
ψ

(p)
1,r (b) + K(b)

β

(
ψ0,i(b) + ψ

(p)
1,i (b)

)
= 0 , (B.63a)(

∂2
b + 1

b
∂b −M2

eff

)
ψ

(p)
1,i (b)− K(b)

β
ψ

(p)
1,r (b) = 0 , (B.63b)

numerically with the ICs

ψ
(2)
1,r (b0) = 1 , ψ(2)′

1,r (b0) = 0 , (B.64a)

ψ
(2)
1,i (b0) = 0 , ψ(2)′

1,i (b0) = 0 , (B.64b)
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and

ψ
(p)
1,r (b0) = 0 , ψ(p)′

1,r (b0) = 0 , (B.65a)

ψ
(p)
1,i (b0) = 1[ψ] , ψ(p)′

1,i (b0) = 0 , (B.65b)
(B.65c)

where ψ0,r(b) ≡ 0 and K(b), β ∈ R have been used. Note that for ψ(2)
1 (b), no unit is

necessary as it is contained in c2,ψ.
Applying the same procedure to the ODE (B.30) with the analogous splitting into

h(b) = h0(b) + h1(b), where h0(b) is the tree-level part with K(b) set to 0, one finds [cf.
Hüt13, p. 81]

h0 = −a1
b
J1(±ib

√
M2

eff) + a2
b
Y1(±ib

√
M2

eff) , a1, a2 ∈ C (B.66)

for the general solution [cf. Hüt13, p. 81] with the same signs as before. Using again
properties of the Bessel functions [see AS72, pp. 360, 375-378], the limiting behavior from
Eqs. (B.32) and (B.38), and the argument of continuity, one finds [see Hüt13, p. 81]

h0(b) =

√
M2

eff

πβb
K1(b

√
M2

eff) for M2
eff ≥ 0 , (B.67)

h0(b) = −

√
|M2

eff|
2βb Y1(b

√
|M2

eff|) for M2
eff ≤ 0 . (B.68)

Continuing with the separation h1(b) = c1,hh
(1)
1 (b) + c2,hh

(2)
1 (b) + h

(p)
1 (b), where h1(b) is

regular and h1(b)→ 0 for b→ 0 as before, one finds with an appropriate choice of ICs

c1,h = 0 , c2,h = − lim
b→∞

h
(p)
1 (b)
h

(2)
1 (b)

. (B.69)

With the same conventions for the real and imaginary parts, one now has to solve the
real-valued coupled ODEs [cf. Hüt13, p. 81](

∂2
b + 3

b
∂b −M2

eff

)
h

(2)
1,r (b) + K(b)

β
h

(2)
1,i (b) = 0 , (B.70a)(

∂2
b + 3

b
∂b −M2

eff

)
h

(2)
1,i (b)−

K(b)
β

h
(2)
1,r (b) = 0 , (B.70b)

and (
∂2
b + 3

b
∂b −M2

eff

)
h

(p)
1,r (b) + K(b)

β

(
ψ0,i(b) + h

(p)
1,i (b)

)
= 0 , (B.71a)(

∂2
b + 3

b
∂b −M2

eff

)
h

(p)
1,i (b)−

K(b)
β

h
(p)
1,r (b) = 0 , (B.71b)

numerically with the ICs

h
(2)
1,r (b0) = 1 , h(2)′

1,r (b0) = 0 , (B.72a)

h
(2)
1,i (b0) = 0 , h(2)′

1,i (b0) = 0 , (B.72b)
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and

h
(p)
1,r (b0) = 1[h] , h(p)′

1,r (b0) = 0 , (B.73a)

h
(p)
1,i (b0) = 0 , h(p)′

1,i (b0) = 0 , (B.73b)
(B.73c)

where h0,i(b) ≡ 0 and K(b), β ∈ R have been used. Note that for h(2)
1 (b), no unit is

necessary as it is contained in c2,h. The ICs are chosen such that

lim
b→0

Im h(b) = Im c2,h (B.74)

as Im h0(b→ 0) = 0, Im h
(p)
1 (b→ 0) = 0, and h(2)

1 (b→ 0) ∈ R.

B.1.5. Numerical Details for Solving the ODEs

As mentioned in the last Sec. B.1.4, the coupled ODEs (B.62), (B.63), (B.70), and (B.71)
with the ICs (B.64), (B.65), (B.72), and (B.73) have to be solved numerically. In order to
do so, they get rewritten into ODEs of first order using

y
(2)
ψ (b) :=


y

(2)
ψ,1(b)
y

(2)
ψ,2(b)
y

(2)
ψ,3(b)
y

(2)
ψ,4(b)

 :=


ψ

(2)
1,r (b)
ψ

(2)
1,i (b)

ψ
(2)′
1,r (b)
ψ

(2)′
1,i (b)

 , y
(p)
ψ (b) :=


y

(p)
ψ,1(b)
y

(p)
ψ,2(b)
y

(p)
ψ,3(b)
y

(p)
ψ,4(b)

 :=


ψ

(p)
1,r (b)
ψ

(p)
1,i (b)

ψ
(p)′
1,r (b)
ψ

(p)′
1,i (b)

 (B.75)

so that the ODEs

∂by
(2)
ψ (b) =


y

(2)
ψ,3(b)
y

(2)
ψ,4(b)

M2
effy

(2)
ψ,1(b)− K(b)

b y
(2)
ψ,2(b)− 1

by
(2)
ψ,3(b)

M2
effy

(2)
ψ,2(b) + K(b)

b y
(2)
ψ,1(b)− 1

by
(2)
ψ,4(b)

 (B.76)

and

∂by
(p)
ψ (b) =


y

(p)
ψ,3(b)
y

(p)
ψ,4(b)

M2
effy

(p)
ψ,1(b)− K(b)

b (ψ0,i(b) + y
(p)
ψ,2(b))− 1

by
(p)
ψ,3(b)

M2
effy

(p)
ψ,2(b) + K(b)

b y
(p)
ψ,1(b)− 1

by
(p)
ψ,4(b)

 (B.77)

with ICs

y
(2)
ψ (b0) :=


1
0
0
0

 , y
(p)
ψ (b0) :=


0

1[ψ]
0
0

 , (B.78)

and analogously for h(2)
1 (b) and h(p)

1 (b) have to be solved numerically. In total, one now has
two systems of four coupled ODEs of first order for each, Re c2,ψ and Im c2,h. A Bulirsch-
Stoer algorithm is well suited for this problem as it provides high accuracy solutions with
minimal computational effort by applying a modified midpoint method with the number
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of substeps varied in a special sequence [SB13] [as cited in Hüt13, p. 82]. In the context of
this thesis, the implementation of the Bulirsch-Stoer algorithm of the odeint library from
Boost is chosen. The program itself is written in C++.
As described in Sec. B.1.3 the ODEs have to be solved starting from b0. A good choice

for this is b0 = 10−5/T [see ABB11, p. 22]. In contrast to this reference, however, it was
observed that in order to have a stable program over a broad range of p0, p‖, and k‖, one
has to choose the value for b∞ dynamically. This is done using the algorithm described
in Sec. B.1.3. Explicitly, the values b∞ − b0 = 0.2/T, 0.4/T, 0.6/T, 2.6/T, 4.6/T, . . . have
proven to give very stable results in the context of this thesis. b∞,max = 104T has shown
to be sufficient for all sets of parameters giving a relevant contribution to the thermal
width and the lepton number matrix. For each b∞, the solutions of the homogeneous and
inhomogeneous ODEs for ψ(b) or h(b), respectively, are computed with the solutions of
the previous b∞ or the given values at b0 as ICs. Using these, one computes

Re c2,ψ ' −Re
(
ψ

(p)
1 (b∞)
ψ

(2)
1 (b∞)

)
= −

ψ
(p)
1,r (b∞)ψ(2)

1,r (b∞) + ψ
(p)
1,i (b∞)ψ(2)

1,i (b∞)

(ψ(2)
1,r (b∞))2 + (ψ(2)

1,i (b∞))2
(B.79)

and

Im c2,h ' − Im
(
h

(p)
1 (b∞)
h

(2)
1 (b∞)

)
= −
−h(p)

1,r (b∞)h(2)
1,i (b∞) + h

(p)
1,i (b∞)h(2)

1,r (b∞)

(h(2)
1,r (b∞))2 + (h(2)

1,i (b∞))2
, (B.80)

respectively, for each b∞ until the relative error between the previous value and the cur-
rent one is less than εmax, i.e. |(Re c2,ψ,old − Re c2,ψ)/Re c2,ψ| < εmax and |(Im c2,h,old −
Im c2,h)/ Im c2,h| < εmax, respectively, or the next b∞ would be greater than b∞,max. In the
context of this thesis, εmax = 10−3 with absolute and relative accuracy of 10−9 and 10−6,
respectively, as settings for the Bulirsch-Stoer algorithm gave good results with acceptable
numerical effort. The result of this procedure is∫ d2k⊥

(2π)2 Reψ(k⊥) = lim
b→0

Reψ(b) = Re c2,ψ

' −
ψ

(p)
1,r (b∞)ψ(2)

1,r (b∞) + ψ
(p)
1,i (b∞)ψ(2)

1,i (b∞)

(ψ(2)
1,r (b∞))2 + (ψ(2)

1,i (b∞))2
, (B.81)

∫ d2k⊥
(2π)2 Re k⊥f(k⊥) = lim

b→0
∇f(b) = 2 Im c2,h

' −2
−h(p)

1,r (b∞)h(2)
1,i (b∞) + h

(p)
1,i (b∞)h(2)

1,r (b∞)

(h(2)
1,r (b∞))2 + (h(2)

1,i (b∞))2
(B.82)

with b∞ as discussed above.

B.2. Proofs

B.2.1. Lepton Propagator

Here, the relation

σ · k̃ = 2k‖η(k̃)η†(k̃) , (B.83)
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where

η(k̃) =
(

0
1

)
− σk̃⊥

2k̃‖

(
0
1

)
+
(
O(g2)

0

)
=

− k̃1−ik̃2

2k̃‖
+O(g2)

1

 , (B.84)

is shown. Recall that k̃ is assumed to be light-like, i.e. k̃2 = 0, and k̃3 = k̃‖. Then, one
finds using k̃1, k̃2 ∼ gT and k̃0 = k̃‖ +O(g2T ) ∼ T

2k̃‖η(k̃)η†(k̃) =
(

(k̃1)2 + (k̃2)2 +O(g3T ) −k̃1 + ik̃2 +O(g2T )
−k̃1 − ik̃2 +O(g2T ) 2k̃‖

)
. (B.85)

The relation

k̃2 = (k̃0)2 − (k̃1)2 − (k̃2)2 − k̃2
‖ = 0 (B.86)

gives

(k̃1)2 + (k̃2)2 = (k̃0)2 − k̃2
‖ = k̃+k̃− = 2k̃‖(k̃0 − k̃‖) +O(g4T 2) (B.87)

so that together with 2k̃‖ = k̃0 + k̃‖ +O(g2T ), one arrives at

2k̃‖η(k̃)η†(k̃) =
(

k̃0 − k̃‖ +O(g3T ) −k̃1 + ik̃2 +O(g2T )
−k̃1 − ik̃2 +O(g2T ) k̃0 + k̃‖ +O(g2T )

)
, (B.88)

which proves Eq. (B.83) to leading order in each component.

B.2.2. Perpendicular Momentum Integrations

In this section, the relations from Eqs. (B.9) and (B.10) with the continuations from
Sec. B.1.3 ∫ d2k⊥

(2π)2 Re k⊥f(k⊥) = lim
b→0

∇f(b) = lim
b→0

2 Im h(b) = 2 Im c2,h , (B.89)∫ d2k⊥
(2π)2 Reψ(k⊥) = lim

b→0
Reψ(b) = Re c2,ψ (B.90)

are proven following [Bes10, pp. 95-96] and using the representation of the δ-distribution
from Eq. (B.11) with the fact that δ2(−b) = δ2(b).
Starting with the second equation, one finds∫ d2k⊥

(2π)2 Reψ(k⊥) = Re
(∫ d2k⊥

(2π)2

∫
d2be−ikbψ(b)

)

= Re
(∫

d2bδ2(b)ψ(b)
)

= lim
b→0

Reψ(b)

= lim
b→0

Re
(
ψ0(b) + c2,ψψ

(2)
1 (b) + ψ

(p)
1 (b)

)
(B.91)

= Re c2,ψ , (B.92)

where the fact that Reψ(b) stays regular and continuous for b→ 0, cf. Eq. (B.39), as well
as the choice of ICs from Sec. B.1.4 have been used.
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For the first equation, a similar calculation gives

∫ d2k⊥
(2π)2 Re k⊥f(k⊥) = Re

(∫ d2k⊥
(2π)2

∫
d2b[f1(b)k1 + f2(b)k2]e−ikb

)

= Re
(∫ d2k⊥

(2π)2

∫
d2bi

[
f1(b) ∂

∂b1
+ f2(b) ∂

∂b2

]
e−ikb

)

= −Re
(∫

d2biδ2(b)
[
∂f1(b)
∂b1

+ ∂f2(b)
∂b2

])
= lim

b→0
Im ∇f(b) , (B.93)

where partial integration, ∂bif(b) → 0 , i = 1, 2, for b → ∞ due to the existence of the
Fourier transform, cf. Eq. (B.32), and the fact that Im ∇f(b) stays regular for b → 0, cf.
Eq. (B.38), have been used. With f(b) = h(b)b one has

∂fi(b)
∂bj

= δijh(b) + bibj
b
h′(b) , i, j = 1, 2 . (B.94)

Therefore, one finds

∫ d2k⊥
(2π)2 Re k⊥f(k⊥) = lim

b→0
Im(2h(b) + bh′(b))

= lim
b→0

2 Im h(b)

= lim
b→0

2 Im(h0(b) + c2,ψh
(2)
1 (b) + h

(p)
1 (b))

= 2 Im c2,h (B.95)

with Im h′(b)→ 0 for b→ 0, cf. Eq. (B.38), and the choice of ICs from Sec. B.1.4.

B.2.3. Imaginary Part of the Retarded Self-Energy

In this section, Eq. (5.53)

Im ΣR, ret
p‖

(p0) = −|λ|2d(r)
2

∫ d3k

(2π)3
F(p‖, k‖)
k‖ − p‖

(Re k⊥f
8k‖

0
0 Reψ

)
(B.96)

is proven. Starting with Eq. (5.52)

ΣR, ret
p‖

(p0) = −|λ|2 id(r)
2

∫ d3k

(2π)3
F(p‖, k‖)
k‖ − p‖

 (k1−ik2)(f1+if2)
8k2
‖

−k1−ik2

2k‖
ψ

−f1+if2
4k‖

ψ

 (B.97)

one has with the definition of the imaginary part of a matrix Eq. (3.69)

Im ΣR, ret
p‖

(p0) = −|λ|2d(r)
2

∫ d3k

(2π)3
F(p‖, k‖)
k‖ − p‖

Re k⊥f−k1 Im f2+k2 Im f1
8k2
‖

−k1−ik2

2k‖
ψ − f∗1−if

∗
2

4k‖

−f1+if2
4k‖

− k1+ik2

2k‖
ψ∗ Reψ

 .

(B.98)



B.2. Proofs 101

Using the rotational invariance of h(b) and

f(k⊥) =
∫

d2bh(b)be−ik⊥b

=
∫

d2bih(b)
(

e1
∂

∂k1 + e2
∂

∂k2

)
e−ik⊥b

= i

(
e1

∂

∂k1 + e2
∂

∂k2

)
h(|k⊥|)

= i

(
e1

k1

|k⊥|
+ e2

k1

|k⊥|

)
h′(|k⊥|) , (B.99)

where ei is the unit vector in i-direction, one can rewrite f(k⊥) = h̄(|k⊥|)k⊥. Hence,
−k1 Im f2 + k2 Im f1 ≡ 0.

Analogously to the calculations in Sec. B.2.2, one finds (i = 1, 2)

∫ d2k⊥
(2π)2 Im fi = lim

b→0
bi Im h(b) = 0 , (B.100)∫ d2k⊥

(2π)2ki Imψ = lim
b→0

bi
b

Reψ′(b) = 0 , (B.101)

where the limiting behavior, cf. Eqs. (B.38) and (B.39), has been used as well as Reψ′(b)→
0, which is clear from the discussion of the error estimates and the fact that Re cψ = 0.

The remaining off-diagonal terms contain
∫ d2k⊥

(2π)2 Re fi and
∫ d2k⊥

(2π)2ki Reψ, i = 1, 2. When
trying to apply the same procedure as in Sec. B.2.2 to these expressions, one notices that
the occuring h(b) ∼ 1/(πβb2) and ψ(b) ∼ i ln(b)/(2πβ) diverge for b→ 0. Therefore, these
integrals diverge. However, as mentioned in [Hüt13, pp. 56-57], the divergences occur in
the temperature independent part of the self-energy, since the only part directly dependent
on the temperature is F(p‖, k‖), which does not depend on k⊥. Furthermore, the limiting
behavior giving the divergence is not dependent on the temperature at all. Therefore, the
divergences get removed by the renormalization at T = 0 and one can omit the divergent
part, since only the temperature dependent parts are of interest for leptogensis [cf. Hüt13,
pp. 56-57]. It is also clear that the off-diagonal terms should at least be suppressed by
a factor of g compared to the diagonal ones due to the Dirac structure of the Majorana
self-energy, which is, cf. Eq. (5.21),

Im ΣR, ret
p (p0) = 1

2(ap(p0)12 + bp(p0)pσ) , (B.102)

giving the suppression due to the fact that they involve p1 and p2. The choice p⊥ = 0
and p3 = p‖ then even causes them to vanish.

In total, this gives

Im ΣR, ret
p‖

(p0) = −|λ|2d(r)
2

∫ d3k

(2π)3
F(p‖, k‖)
k‖ − p‖

(Re k⊥f
8k‖

0
0 Reψ

)
, (B.103)

what needed to be shown.
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B.3. Details for the Lepton Number Matrix

B.3.1. Evaluation of the t1, t2 and t3 Integrations

The integrals over t1, t2, and t3 in Eq. (6.29) can be carried out analytically. One finds
for the parts depending on the time variables, cf. Eq. (6.33):

∫ t

0
dt1

∫ t

0
dt2

∫ t2

0
dt3e−Γp t1+t3
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=
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(B.104)

B.3.2. Details for the Numerical Evaluation

All programs have been written in C++. Depending on the problem, the libraries GSL (for
numerical integration, algorithms qag (41-point Gauss-Kronrod rule as setting), qagi (15-
point quadrature rule for infinite integration intervals), qagiu (21-point Gauss-Kronrod
rule for semi-infinite integration intervals), and qagp (21-point Gauss-Kronrod rule for
integrals over regions containing singularities)), Boost (odeint for solving ODEs, Bulirsch-
Stoer algorithm), and CUBA (for multidimensional numerical integration, algorithms Ve-
gas (importance sampling) and Cuhre (degree-11 rule for three-dimensional quadrature
as setting)) have been used. For error settings refer to table B.1. Note that the maxi-
mal relative error of 10−1 for Lii with the qagiu algorithm is only used for the light-like
calculations with T < M . In all other cases, 10−2 is used as maximal relative error. All
calculations have been performed on personal computers of the Institute for Theoretical
Physics of the Goethe-University Frankfurt and on LOEWE-CSC.



B.3. Details for the Lepton Number Matrix 103

Quantity Algorithm Settings

Re c2,ψ and Im c2,h Bulirsch-Stoer see Sec. B.1.5
σψ and σh qagi and qag max. rel. error 10−3

σtreeψ and σtreeh qag and qagp max. rel. error 10−3

Lii qagiu max. rel. error 10−2 and 10−1

Lii Vegas max. rel. error 5 · 10−2

Lii Cuhre max. rel. error 5 · 10−2

Table B.1.: Numerical details.
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