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Abstract

Quantum chromodynamics is the theory of the strong interaction between quarks and gluons. Due to

Confinement, at lower energies quarks and gluons are bound into colorless states called hadrons. QCD is

also asymptotically free, i.e. at large energies or densities it enters a deconfined state, termed quark-gluon

plasma (QGP), where quarks and gluons are quasi-free. This transition occurs at an energy scale around

200 MeV where QCD cannot be treated perturbatively. Instead it can be formulated on a space-time

grid. The resulting theory, lattice quantum chromodynamics (LQCD), can be simulated efficiently on

high performance parallel-computing clusters. In recent years graphic processing units (GPUs), which

outperform CPUs in terms of parallel-computing and memory bandwidth capabilities, became very popular

for LQCD computations. In this work the QCD deconfinement transition is studied using CL2QCD, a

LQCD application that runs efficiently on GPUs. Furthermore, CL2QCD is extended by a Rational Hybrid

Monte Carlo algorithm for Wilson fermions to allow for simulations of an odd number of flavors Nf .

Due to the sign-problem LQCD simulations are restricted to zero or very small baryon densities,

where, in the limit of infinite quark mass QCD has a first order deconfinement phase transition associated

to the breaking of the global centre symmetry. Including dynamical quarks breaks this symmetry explicitly.

Lowering their mass weakens the first order transition until it terminates in a second order Z2 point.

Beyond this point the transition is merely an analytic crossover. As the lattice spacing is decreased, the

reduction of discretization errors causes the region of first order transitions to expand towards lower

masses. In this work the deconfinement critical point with Nf = 2 and 3 flavors of standard Wilson

fermions is studied. To this end several kappa values are simulated on Nτ = 6, 8, 10 (Nτ = 4) for Nf = 2

(Nf = 3) and various aspect ratios Ns/Nτ so as to extrapolate to the thermodynamic limit, applying finite

size scaling . For Nf = 2 an estimate is done if and when a continuum extrapolation is possible.

The chiral and deconfinement phase transitions at zero density for light and heavy quarks, respectively,

have analytic continuations to purely imaginary chemical potential µi, where no sign-problem exists and

LQCD simulations can be applied. At some critical value µi,c, the transitions meet the endpoint of the

Roberge-Weiss transition between adjacent Z3 sectors. For light and heavy quarks the transition lines

meet in a triple point, while for intermediate masses they meet in a second order point. At the boundary

between these regimes the junction is a tricritical point, as shown in studies with Nf = 2, 3 flavors of

staggered and Wilson quarks on Nτ = 4 lattices. Employing finite size scaling the nature of this point as a

function of the quark mass is studied in this work for Nf = 2 flavors of Wilson fermions with a temporal

lattice extent of Nτ = 6. Of particular interest is the change of the location of tricritical points compared

to an earlier study on Nτ = 4.
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Deutsche Zusammenfassung

Das Standard Modell der Teilchenphysik repräsentiert den heutigen Wissensstand über die Theorien zur

Beschreibung von drei der vier fundamentalen Wechselwirkungen der Natur, durch welche sich physikalis-

che Objekte (z.B. Felder, Teilchen oder Systeme von Teilchen) gegenseitig beeinflussen. Die durch das

Standardmodell beschriebenen Wechselwirkungen sind die elektromagnetische, die schwache und die

starke Wechselwirkung. Eine Beschreibung der vergleichsweise schwachen Gravitation, wie sie durch

die allgemeine Relativitätstheorie gegeben ist, konnte bisher durch keine Theorie in das Standardmodell

integriert werden. Das Standardmodell basiert auf Quantenfeldtheorien, deren fundamentale Objekte

Quantenfelder sind, welche in diskreten Schritten angeregt werden können. Diese Anregungen repräsen-

tieren, unter Verwendung der entsprechenden Darstellung, die elementaren Teichen. Die enthaltenen

Quantenfeldtheorien sowie die von ihnen beschriebenen Teilchen respektieren die Gesetze der speziellen

Relativitätstheorie. Einen hohen Grad an Akzeptanz erlangte das Standardmodell, als es 1970 möglich

wurde, die Existenz der sogenannten Quarks experimentell nachzuweisen. Bei diesen handelt es sich um

die fundamentalen Bausteine der Materie, welche neben der elektrischen Ladung auch eine sogenannte Far-

bladung tragen und mittels der starken Wechselwirkung miteinander wechselwirken. Diese wird durch die

im Standardmodell enthaltene Quantenfeldtheorie namens Quantenchromodynamik (QCD) beschrieben,

welche auch Gegenstand dieser Arbeit ist. Die Austauschteilchen der starken Wechselwirkung sind die

sogenannten Gluonen, welche ebenfalls eine Farbladung tragen. Die Besonderheit der Gluonen liegt darin,

dass sie aufgrund der nicht abelschen Natur der Eichgruppe der QCD nicht nur die starke Kraft zwischen

den Quarks vermitteln, sondern auch mit sich selbst wechselwirken. Diese Selbstwechselwirkung steht im

Zusammenhang mit einer besonderen, als color confinement bezeichneten Eigenschaft der QCD und führt

auf nicht-triviale Weise dazu, dass die anziehende Kraft zwischen zwei Quarks mit steigender Separation

zunimmt. Ab einer gewissen Distanz, wird es für das System energetisch gesehen günstiger, ein neues

Quark-Antiquark Paar aus der in dem gluonischen Bindungsfeld befindlichen Energie zu erzeugen. Dies

hat zur Folge, das Quarks und Gluonen bei niedrigen Energien stets in gebundene Zustände, sogenannten

Hadronen, konfiniert sind und somit nicht als freie Teilchen beobachtet werden können. Desweiteren

müssen gebundene Zustände aus Quarks stets in farbneutralen Zuständen auftreten. Andererseits besitzt

die QCD eine weitere besondere Eigenschaft, die als asymptotische Freiheit bezeichnet wird und zur

Folge hat, dass die anziehende Kraft nachlässt, sobald der Abstand der wechselwirkenden Quarks klein

wird und beziehungsweise oder deren Impulse groß sind. Die Stärke der Wechselwirkung zwischen

den Quarks lässt sich über eine laufenden Kopplung quantifizieren, die bei Energien, welche etwa der

intrinsischen Energieskala der QCD (ΛQCD = 200MeV) entsprechen, maximal, d.h. O(1) wird. Die dazu

korrespondierende Längenskala liegt im Femtometerbereich.

Aufgrund der starken Kopplung, ist die QCD in diesem Energiebereich nicht perturbativ, d.h. nicht

störungstheoretisch, behandelbar. Die derzeit effizienteste Methode in diesem Energiebereich (im Vakuum)
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stellt die numerische Untersuchung der QCD im Rahmen von Gittereichtheorien dar, indem die kon-

tinuierliche Raum-Zeit durch ein endliches Gitter diskretisiert wird, dessen Punkte durch einen endlichen

Abstand a separiert sind. Auf diese Weise konnten bereits Berechnungen zahlreicher Hadronenmassen

durchgeführt werden, die eine extrem genaue Übereinstimmung mit Experimenten liefern. Der dazu

verwendete Zugang zur QCD über den auf dem Prinzip der kleinsten Wirkung basierenden Pfadintegral-

formalismus ist besonders gut zur numerischen Behandlung mittels Computern geeignet, da sich das

Pfadintegral der Theorie, nach einer Wick-Rotation, d.h. nach analytischer Fortsetzung in den euklidischen

Raum, stochastisch durch Monte-Carlo-Simulationen approximativ lösen lässt. Durch diesen notwendigen

Übergang erhält man reelle (statt komplexe) Phasenfaktoren im Pfadintegral, die den Boltzmannfaktoren

in der statistischen Physik entsprechen. Um bei endlichen Rechenressourcen eine möglichst genaue

Approximation des hochdimensionalen Pfadintegrals gewährleisten zu können, findet die Methode des im-

portance sampling Anwendung, bei welcher mittels einer Wahrscheinlichkeitsverteilung größeres Gewicht

auf die wahrscheinlicheren Feldkonfigurationen des Phasenraums gelegt wird, also jene, die einen großen

Beitrag zum Pfadintegral liefern. Die Wahrscheinlichkeitsverteilung wird dabei durch die Phasen- bzw.

Boltzmannfaktoren dargestellt. Diese enthalten die QCD Wirkung, bei welcher zwischen einem reinen,

die Bosonen der Theorie beschreibenden Eichanteil und einem fermionischen Anteil unterschieden wird.

Diese Unterscheidung ist mit unter durch die chirale Symmetrie der Fermionen motiviert, die bei der

Konstruktion von Gitterwirkungen ein eigenes Problemfeld eröffnet.

Für die Konstruktion des fermionischen Anteils der Gitter-QCD Wirkung bestehen verschiedene

Möglichkeiten, solange diese für verschwindenden Gitterabstand a → 0 in die Kontinuumswirkung

übergehen. Heute gibt es eine Vielzahl an Gitterwirkungen, die auf verschiedene Weise das wohlbekannte

Dopplerproblem behandeln. Dieses hängt mit der Realisierung der chiralen Symmetrie der Fermionen auf

einem Gitter zusammen und tritt bei naiver Diskretisierung der Theorie auf, d.h. wenn die Ableitungen in

der Wirkungen einfach durch endliche Differenzen ersetzt werden. In letzterem Fall enthält die Theorie

sechzehn statt einem einzelnen Fermion. Insbesondere ist es nicht möglich Gitter-QCD Wirkungen zu

konstruieren, die zur gleichen Zeit dopplerfrei, lokal, translationsinvariant und chiral-symmetrisch sind.

Dieses Problem ist im Nielsen-Ninomiya-Theorem formuliert. Die älteste Form der Diskretisierung sind

Wilson-Fermionen. Dabei wird das Dopplerproblem gelöst, indem den unphysikalischen Fermionmoden

eine zusätzliche Masse verliehen wird, welche im Kontinuumslimes proportional zu 1/a divergiert,

wodurch sie von der Theorie entkoppeln. Allerdings wird bei diesem Vorgehen die chirale Symmetrie

explizit gebrochen. Ein weiterer Nachteil besteht darin, dass Diskretisierungsfehler bereits in führender

OrdnungO(a) auftreten. Aus diesem Grund werden für gewöhnlich verbesserte Wilson Diskretisierungen

verwendet, in welchen zusätzliche oder modifizierte Terme die führende Ordnung der Gitteartefakte

eliminieren. Beispiele dafür sind Clover- oder Twisted-Mass-Fermionen. Ein zu beachtender Aspekt

ist dabei allerdings, dass durch die zusätzlichen Terme eventuell unphysikalische Modifikationen nicht

ausgeschlossen werden können. Eine weitere, aufgrund der im Vergleich zu Wilson-Fermionen sehr

viel geringeren numerischen Kosten, sehr häufig verwendete Fermiondiskretisierung sind Staggered-

Fermionen. Bei diesen wird durch Spin Diagonalisierung der Dirac-Matritzen die Anzahl der Doppler auf

vier reduziert. Zur weiteren Reduktion der Fermionenanzahl auf eins findet das kontrovers diskutierte

rooting Verfahren Anwendung, dessen Auswirkungen auf die Physik noch nicht vollständig verstanden

sind. Weitere Möglichkeiten der Diskretisierung sind Overlap- oder Domain-Wall-Fermionen. Bei diesen

wird auf komplizierte Weise eine Variante der chrialen Symmetrie auf dem Gitter erhalten, allerdings
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besteht der Nachteil dieser Formulierungen in den hohen numerischen Kosten, aus welchem Grund diese

heute noch eher selten Anwendung finden.

Der fermionische Anteil der QCD Wirkung kann aufgrund der Grassmann-Natur der fermionis-

chen Felder exakt ausintegriert werden. Dadurch erhält man die Fermiondeterminante, die wiederum

als pseudofermionisches (Bosonen mit der gleichen Anzahl an Freiheitsgraden wie fermionische Vari-

ablen) Pfadintegral dargestellt werden kann, welches im Phasenfaktor die inverse Fermionmatrix enthält.

Die Wirkung der inversen Fermionmatrix auf die bosonischen Feldvariablen lässt sich effizient mittels

Krylov-Unterraum-Verfahren (Beispielsweise Conjugate-Gradient) lösen, da die inverse Fermionmatrix

dünnbesetzt ist. Unter anderem macht die Berechnung dieses algebraischen Systems die Gitter-QCD

zu einem der aufwändigsten Computerprobleme der heutigen Zeit, welches nur unter Verwendung von

Hochleistungs-Rechenclustern effizient behandelt werden kann. Die rechnerischen Kosten steigen dabei

umso stärker an, je kleiner die zu berechnende Fermionmasse ist, da die Konditionszahl der in den alge-

braischen Rechnungen zu verwendenden Fermionmatrix dadurch verschlechtert wird. Ein weiterer Faktor,

der die rechnerischen Kosten enorm steigen lässt, ist durch die Anforderungen an ein zu berechnendes

System gegeben, welches ausreichend groß sein soll, um endliche Volumeneffekte zu minimieren und sich

gleichzeitig dem Kontinuumslimes annähern soll, was durch einen kleinen Gitterabstand a realisiert wer-

den kann. Dies impliziert eine große Menge an zu berechnenden Gitterpunkten. Zu den Problemstellungen

dabei gehören die hohen Anforderungen an die benötigten Speicherbandbreiten sowie die effiziente Paral-

lelisierung. Daher erfreuen sich Graphics Processing Unit (GPU)-Lösungen zunehmender Beliebtheit, da

diese dafür optimiert sind, sehr häufig zu wiederholende Operationen auf enorme Datenmengen anzuwen-

den. Diese Fähigkeit, in welcher CPUs leistungsmäßig bei weitem von GPUs übertroffen werden, ist von

großer Wichtigkeit für Gitter-QCD Anwendungen, da in diesen das Gitter auf natürliche Weise auf die

Einheiten innerhalb einer GPU aufgeteilt werden kann. Dazu kommt, dass GPUs beim Erfüllen dieser

Aufgabe wesentlich strom- und kosteneffizienter sind als CPUs. Zu den bekanntesten Herstellern von

GPUs gehören NVIDIA und AMD. NVIDIA veröffentlichte zur Steuerung und Programmierung der

GPUs einen eigenen, vergleichsweise einfach zu verwendenden Standard namens CUDA, auf dem gegen-

wärtig viele Gitter-QCD Anwendungen basieren, welcher jedoch ausschließlich der Programmierung

von NVIDIA GPUs dient. Ein anderes, hardwareunabhängiges framework, welches im Allgemeinen die

Programmierung von heterogenen Computerarchitekturen erlaubt, ist der in Zusammenarbeit von AMD,

IBM, Intel, NVIDIA und Apple entworfene Standard OpenCL (Open Computing Language).

Für die für diese Arbeit durchgeführten Gitter-QCD Simulationen wurde die von der Gitter-QCD

Gruppe in Frankfurt entwickelte Software CL2QCD verwendet. Diese besteht aus einem C++ Hostpro-

gramm, welches für die algorithmische Logik sowie Lese- und Schreiboperationen der Daten zuständig

ist. Darüber hinaus kontrolliert das Hostprogramm die Gitter-QCD Funktionen, welche in OpenCL

geschrieben wurden und sowohl auf GPUs als auch auf CPUs ausgeführt werden können. Aufgrund

der Verwendung von OpenCL ist die Applikation hardwareunabhängig, d.h. sie kann sowohl auf AMD

als auch auf NVIDIA Grafikkarten betrieben werden. Die Anwendung ist auf Problemstellungen bei

endlicher Temperatur ausgelegt und verfügt über die Möglichkeit unverbesserte sowie verbesserte Wilson-

Fermionen, aber auch reine Eichtheorie, zu simulieren. Desweiteren ist kürzlich im Rahmen einer

Doktorarbeit in der Frankfurter Gitter-QCD Gruppe der Staggered-Formalismus und im Rahmen der

vorliegenden Arbeit die Möglichkeit zur Simulation der drei Quark-Flavor Theorie in der unverbesserten

Wilson-Formulierung implementiert worden. Im Allgemeinen wurde beim Design von CL2QCD auf
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Eigenschaften der Erweiterungsfähigkeit, Wartungsfreundlichkeit sowie Skalierbarkeit gesetzt, wobei im

Zusammenhang damit stark auf die Einhaltung der Clean Code Prinzipien geachtet wurde.

Gitter-QCD bei endlichen Temperaturen erfordert in vielen Fällen die größtenteils gleichzeitige

Durchführung hunderter Simulationen auf Computing-Clustern, um bei einer Vielzahl variierender Sim-

ulationsparameter thermale Phasenübergänge zu lokalisieren. Dies führt bei rein manuellem Vorgehen

unweigerlich zu einer großen Fehleranfälligkeit. Aus diesem Grund wurde zur effizienten und fehlerfreien

Bewältigung der Menge an Simulationen während dieser Arbeit in der Entwicklung einer auf der Unix-

Shell Bash basierende Software partizipiert. Diese bietet neben der Organisation und Strukturierung der

erzeugten Daten sowie fehlerfreien Durchführung, Verwaltung und Überwachung der Simulationen auch

die Möglichkeit entsprechende Informationen über letztere in einer Datenbank zu speichern und diese

zusammengefasst auszugeben. Diese als BaHaMas bezeichnete Software wurde bereits im Rahmen eines

Vortrags eines Gruppenmitglieds auf einer Konferenz präsentiert und wird künftig neben CL2QCD auf der

Entwicklungsplattform GitHub frei zur Verfügung stehen.

Die oben beschriebene Eigenschaft der asymptotischen Freiheit impliziert bei extrem großen Tem-

peraturen (≈ 1012)K und beziehungsweise oder Dichten (≈ 1015g/cm3) einen Übergang in eine Phase,

die als Quark-Gluon Plasma (QGP) bezeichnet wird. Diese Phase ist durch das Aufbrechen der Bindun-

gen zwischen Quarks und Gluonen charakterisiert, sodass diese nicht mehr in hadronischen Zuständen

konfiniert sind, sondern als quasi-freie Teilchen vorliegen. Die für den thermischen Übergang in diese

Phase notwendigen Temperaturen waren kurz nach der Entstehung des Universums vorhanden oder

entstehen auf mikroskopischem Raum während Schwerionen-Kollisionen, wie sie beispielsweise in ak-

tuellen Beschleuniger-Experimenten des Large Hadron Colliders (LHC) am Forschungsinstitut CERN,

der Europäischen Organisation für Kernforschung, durchgeführt werden. Der Übergang zum Quark-

Gluon Plasma über extrem hohe Dichten wird in der Natur im Inneren von Neutronensternen vermutet.

Darüber hinaus, werden bei noch größeren Dichten Übergänge in verschiedene, farbsupraleitende Phasen

erwartet, welche durch die Bildung von Quark-Cooperpaaren entstehen. Bei bestimmten Temperaturen

und Dichten wird durch theoretische Argumentation sowie Modellbetrachtungen ein Phasenübergang

erster Ordnung vermutet, was zur Zeit aufgrund oben genannter Probleme allerdings noch nicht belegt

werden kann. Dieser Phasenübergang erster Ordnung würde irgendwann bei kleineren Dichten und

höheren Temperaturen in einem Phasenübergangspunkt zweiter Ordnung der Z2 Universalitätsklasse

enden. Nach diesem Endpunkt wäre der Übergang analytischer Natur, d.h. nicht sprunghaft in den

thermodynamischen Ordnungsparametern oder deren Ableitungen. Ein solcher Übergang wird auch

als crossover bezeichnet. Klarheit über diesen Verlauf zu schaffen, ist gegenwärtig von sehr großem

Interesse und ist Ziel aufwändiger experimenteller sowie theoretischer Untersuchungen. Gegenwärtig und

künftig durchgeführte Beschleuiniger-Experimente decken dafür ein großes Spektrum an Strahlenergien

und Werten des chemischen Potentials ab. Zu diesen Experimenten gehören jene, die am LHC (enorm

große Energie bei kleineren Dichten), an der Facility for Antiproton and Ion Research (FAIR) (moderate

Energien bei höheren Dichten) bei der Gesellschaft für Schwerionenforschung (GSI) und am Relativis-

tic Heavy Ion Collider (RHIC) (Energie und Dichten etwa zwischen LHC und FAIR) stattfinden. Die

theoretische Untersuchung dieses Übergangs kann aufgrund der nicht-linearen Dynamik der QCD und

ihrer großen Kopplung in diesem Energiebereich nicht mit störungstheoretischen Methoden durchgeführt

werden. Untersuchungen mit Hilfe verschiedener Modelle sind zwar möglich, jedoch basieren diese

auf Annahmen und Näherungen. Die oben beschriebene Gitter-QCD hingegen stellt zwar eine Methode
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zur Untersuchung aus sog. first principles (ohne Annahmen oder Näherungen) dar, scheitert jedoch,

da die Fermiondeterminante bei endlichem chemischen Potential komplex wird und nicht mehr positiv

(semi-)definit ist. Dies sorgt für einen stark oszillierenden Integranden im Pfadintegral, sodass dessen

Bestandteile nicht mehr als Wahrscheinlichkeitsmaß (notwendig für das importance sampling in Monte

Carlo Simulationen) interpretiert werden können. Dieses Problem ist auch als Vorzeichenproblem bekannt.

Dadurch sind Gitter-QCD Simulationen faktisch auf verschwindendes oder sehr kleines chemisches

Potential µ beschränkt. Bei letzterem konnte allerdings mit Hilfe der Gitter-QCD verifiziert werden,

dass es sich tatsächlich um einen crossover Übergang handelt, der bei Temperaturen um 150-170 MeV

stattfindet.

Die Untersuchungen des Bereichs bei µ = 0 sind allerdings bei Weitem noch nicht abgeschlossen

und werfen zahlreiche Fragen auf. Beispielsweise sind einige Aspekte der Phasenstruktur in den Limites

verschwindender (mq → 0) und unendlich großer (mq →∞) Quarkmasse sowie die Bereiche dazwis-

chen ungeklärt. Neben der Quarkmasse hängt die Art des Phasenübergangs auch von der Anzahl der

Flavor Nf ab. Für die für den Phasenübergang relevanten Energiebereiche liefert nur die Dynamik der

zwei beziehungsweise drei leichtesten Quarks wichtige Beiträge. Aus diesem Grund werden auch in den

meisten Gitter-QCD Studien nur die zwei leichtesten Quarks, d.h. up und down Quark oder zusätzlich das

strange Quark inkludiert. Weiterhin kann die Masse der up und down Quarks näherungsweise als entartet,

d.h. als gleich schwer angenommen werden. In einigen Arbeiten, zu denen auch die vorliegende Arbeit

zählt, wird zusätzlich der Fall von drei entarteten Quarkmassen betrachtet, d.h. up, down und strange

Quark werden als gleich schwer angenommen. Die Untersuchung des Phasenübergangs im sogenannten

chiralen Limes für (mq → 0) ist von großem Interesse, da durch diesen indirekt Einblicke in die Natur

des Phasenübergangs bei µ > 0 gewonnen werden können. Es besteht die begründete Vermutung, dass in

diesem Limes inklusive kleiner (auch physikalischer) Quarkmassen die nötige Temperatur zum Übergang

zum QGP gleich oder sehr ähnlich zu jener ist, bei welcher die Wiederherstellung der chiralen Symmetrie

erfolgt. Der Ordnungsparameter, der letzteres signalisiert, ist das chirale Kondensat
〈
ψ̄ψ
〉
, welches

beim Übergang in die chiral-symmetrische Phase bei entsprechend hoher Temperaturen verschwindet.

Der Phasenübergang für Nf = 3 (drei entartete Quarkmassen) und mq → 0 ist erster Ordnung. Für

steigende Massen wird dieser Übergang abgeschwächt bis er in einem Punkt zweiter Ordnung der Z2

Universalitätsklasse endet und darüber hinaus bei mittleren Quarkmassen als crossover Übergang vorliegt.

Für Nf = 2 und mu,d → 0 werden aktuell zwei mögliche Szenarien diskutiert: Während das eine

Szenario die Möglichkeit für einen Übergang erster Ordnung beinhaltet, enthält das andere Szenario die

Möglichkeit eines Überganges zweiter Ordnung, welcher zur O(4) Universalitätsklasse gehört. Nur das

erste Szenario, mit der Möglichkeit eines Überganges erster Ordnung, würde für endliche Quarkmassen

mu,d > 0 einen sehr kleinen Bereich mit Übergängen erster Ordnung implizieren, welcher bei einer

bestimmten Quarkmasse in einem Z2 Punkt enden würde. Dieser Z2 Punkt wäre mit jenem der Nf = 3

Theorie über eine Linie solcher Punkte im Bereich variierender up, down Quarkmasse mu,d und strange

Quarkmasse ms (d.h. Nf = 2 + 1 Quarkflavors) verbunden. Im zweite Ordnung O(4) Szenario für

Nf = 2 und mu,d → 0 würde diese Linie, ausgehend vom Z2 Punkt bei Nf = 3, in einem trikritischen

Punkt bei bestimmten Massen 0 < ms <∞ undmu,d = 0 münden. Dieser trikritische Punkt repräsentiert

den Übergangspunkt zwischen den Linien zweiter Ordnung, die zu den Z2 und O(4) Universalitätsklassen

gehören. Das Hauptproblem bei der Unterscheidung beider Szenarien ist, dass diese sehr nahe beieinander

liegen und durch aktuelle Simulationen nur sehr schwer voneinander zu unterscheiden sind. Neben
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widersprüchlichen Ergebnissen aus Studien, die unterschiedliche Fermiondiskretisierungen verwenden,

kommt die Problematik der Diskretisierungsfehler hinzu, welche die kritischen Quarkmassen an den

Phasenübergangspunkten zweiter Ordnung betreffen: Bei Verwendung feinerer Gitter (d.h. Reduktion der

Diskretisierungsfehler), die allerdings wesentlich kostspieliger sind, wird eine Reduktion dieser Massen

hin zu kleineren, ebenfalls kostspieligeren Massen erwartet, wodurch das Problem der Unterscheidung

beider Szenarien weiter forciert wird.

In der vorliegenden Arbeit wird dieses Problemfeld bei µ = 0 jedoch nicht untersucht und wird daher

nicht tiefgehender diskutiert. Stattdessen liegt einer der Schwerpunkte auf dem Bereich um den Grenzfall

unendlich schwerer Quarkmassen mq → ∞, welcher reine Eichtheorie beschreibt und in dem ein mit

dem Bruch der Zentrums-Symmetrie assoziierter Phasenübergang erster Ordnung existiert. Bei endlichen

Quarkmassen (d.h. unter Beachtung dynamischer Fermionen) wird die Zentrums-Symmetrie explizit

gebrochen und der Übergang erster Ordnung wird hin zu kleineren Quarkmassen abgeschwächt bis er

schließlich bei unterschiedlichen Massen für Nf = 2, 3 und Nf = 2 + 1 in einem Z2 Punkt endet. Hier

stellt sich, ähnlich wie im chiralen Limes, die Frage, welche Werte die für die Z2 Punkte repräsentativen

kritischen Quarkmassen im Kontinuumslimes annehmen. Dabei wird beim Übergang zu kleinerem Gitter-

abstand eine Reduktion dieser Massen erwartet. Um diese Frage zu beantworten, muss eine Extrapolation

über die kritischen Massen, extrahiert von einer Reihe feiner werdender Gittern hin zu a→ 0, durchge-

führt werden. Aufgrund der Relation Tc = 1/a(βc)Nτ wird der Gitterabstand a hauptsächlich durch die

temporale Gitterausdehnung Nτ kontrolliert. Der Parameter β entspricht der inversen Gitterkopplung und

wird dazu verwendet, bei fixierter temporaler Ausdehnung Nτ die Temperatur zu kontrollieren. In dieser

Arbeit wurden die kritischen Massen von Gittern mit den temporalen Ausdehnungen Nτ = 6, 8 und 10

extrahiert für (unverbesserte) Wilson-Fermionen mit Nf = 2 Flavors. Dabei wurde erwartungsgemäß bei

steigender temporaler Ausdehung eine deutliche Reduktion des Gitterabstandes a festgestellt. Die Extrak-

tion der Z2 Punkte im thermodynamischen Limes (V →∞) unendlich großen Volumens erfolgte dabei

über finite size scaling Analysen, welche die Simulation von Gittern unterschiedlicher, ausreichend großer

räumlicher Ausdehnung Ns erfordern. Im Bereich schwerer Massen spielen fermionischen Freiheitsgrade

eine untergeordnete Rolle und das System wird hauptsächlich über gluonischen Freiheitsgrade bestimmt.

Aus diesem Grund ist der entsprechende Ordnungsparameter der Polyakovloop. Die finite size scaling

Analysen basieren daher auf geeigneten Observablen des letzteren. Das Ergebnis der Studie lässt vermuten,

dass Gitter der temporalen Ausdehnungen Nτ = 6, 8 und 10 noch nicht ausreichend sind, um über eine

Extrapolation die Position der Z2 Punkte im Kontinuum zu erhalten. Die Ergebnisse aus den Nτ = 6 und

8 Simulationen zeigen zwar deutlich den erwarteten Trend hin zu kleineren Massen, allerdings liefern die

Nτ = 10 Daten aufgrund der geringen Statistik und der dadurch implizierten großen Fehlern noch kein

klares Bild und sind nur als vorläufiges Ergebnis zu betrachten. Zur Identifikation der Z2 Punkte wurden

anstelle der Quarkmassen über Hadronenspektroskopie die leichtesten hadronischen Freiheitsgrade der

Theorie, bestimmt, welche die pseudoskalaren Mesonen, d.h. die Pionen der Theorie sind. Diese sind

vergleichsweise einfach zu berechnen und benötigen keine zusätzliche Renormierung. Für die Berech-

nungen derer Massen mPS wurden T = 0 Konfigurationen (erzeugt bei hinreichend großer temporaler

GitterausdehnungNτ ) verwendet, für deren Erzeugung bei Werten der Gitterkopplung simuliert wurde, die

an den entsprechenden Phasenübergängen in den Simulationen bei endlicher Temperatur bestimmt wurden.

Der Wert des Gitterabstandes a wurde über die Wilson-Flow Methode ermittelt. Die Auswertung der

Ergebnisse zeigte, dass der Gitterabstand a sowie die verwendeten räumlichen Gitterausdehnungen noch
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in Bereichen liegen, in welchen sowohl starke Diskretisierungseffekte als auch endliche Volumeneffekte

vorliegen. Dies äußerte sich beispielsweise durch die pseudoskalare Masse, die in Gittereinheiten noch

größer eins ist, d.h. amPS > 1 beziehungsweise a < 1/mPS. Die Ausdehnung des Teilchen, gegeben

durch die Compton-Wellenlänge λc = 1/mPS, kann also nicht durch den verwendeten Gitterabstand

a aufgelöst werden. Dadurch verlieren die extrahierten pseudoskalaren Massen an Aussagekraft. Es

zeigte sich jedoch, dass bei Gittern der temporalen Ausdehnung Nτ = 10 zunehmend Bereiche des

Gitterabstandes a erschlossen werden, in denen Diskretisierungseffekte erstmals milder werden, sodass

amPS ≈ 1. Ein Beispiel für nicht ausreichend große Volumina zeigte sich an den Resultaten der finite

size scaling Analysen, in welchen keine Fits an die Daten mit guten χ2
NDF Werten möglich waren. Dies

lässt sich durch die beobachteten endlichen Volumeneffekte erklären, welche die Observable, auf denen

die finite size scaling Analysen basieren, stark betrifft beziehungsweise verzerrt. Eine Verbesserung

brachte die Verwendung eines Korrekturterms, der die endlichen Volumeneffekte in den finite size scaling

Analysen zwar zu berücksichtigen scheinte, bei welchem allerdings nicht vollständig verstanden werden

konnte, ob dieser im untersuchten Parameterbereich tatsächlich physikalisch motiviert werden kann.

Auf Basis der simulierten Daten konnte in dem gegeben zeitlich Rahmen und mit den verfügbaren

Rechenressourcen zwar noch kein Kontinuumsergebnis gewonnen werden, jedoch lässt sich zusammen-

fassend sagen, dass ein solider Ausgangspunkt für ein solches gewonnen werden konnte. Desweiteren

schaffen die erhaltenen Daten Möglichkeiten zum Vergleich mit anderen Studien, die auf anderen Ver-

fahren beruhen oder andere Fermiondiskretisierungen verwenden. Zur Zeit werden in der Gitter-QCD

Gruppe in Frankfurt Simulationen durchgeführt, welche die vorläufigen von Nτ = 10 Gittern gewon-

nen Ergebnisse konsolidieren und neue Erkenntnisse von Nτ = 12 Gittern hinzufügen sollen. Der zu

erwartende Fortschritt könnte erstmals Abschätzungen über die Position der Z2 Punkte in der Kontinuum-

stheorie ermöglichen.

Die Studie wurde auf identische Weise für Nf = 3 Quarkflavors auf relativ groben Gittern mit

temporaler Ausdehnung von Nτ = 4 wiederholt. Dabei bestand die Absicht allerdings nicht in einer

Kontinuumsextrapolation, sondern vielmehr in einem Test des im Rahmen dieser Arbeit in die CL2QCD

Applikation implementierten und zur Simulation von Nf = 3 Flavors notwendigen Rational Hybrid

Monte Carlo Algorithmus für Wilson-Fermionen. Da kein durch die gleiche Methode gewonnener Ref-

erenzwert in der Literatur gefunden wurde, konnte das Ergebnis noch nicht abschließend verifiziert werden,

allerdings lässt der Vergleich mit dem Ergebnis aus einem strong coupling expansion Modell sowie einer

Gitter-QCD Simulation, in der eine Extrapolation durchgeführt wird, die auf einer hopping expansion

basierenden Approximation der Fermiondeterminante basiert, den Schluss auf einen erfolgreichen Test zu.

Desweiteren ist das Ergebnis konsistent mit der Erwartung, die aus der Betrachtung der Ergebnisse der

Simulationen der Nf = 2 Flavor Theorie entsteht.

Ein weiterer Fokus dieser Arbeit liegt auf der Untersuchung der QCD Phasenstruktur bei rein imag-

inärem chemischen Potential µi, welches eine analytische Fortsetzung der Theorie bei µ = 0 darstellt. In

diesem Fall besitzt die Theorie kein Vorzeichenproblem, da die Fermiondeterminante wieder reell wird,

sodass Simulationen bei endlichen Werten des rein imaginären chemischen Potentials problemlos ausge-

führt werden können. Als weitere Konsequenz aus der Verwendung eines rein imaginären chemischen

Potentials ergeben sich neue Symmetrien der Zustandssumme der Theorie. Zum einen ist diese nun reflex-

ionssymmetrisch in µi, zum anderen besitzt die Zustandssumme nun eine bestimmte Periodizität in µi.

Diese wird auch als Roberge-Weiss (RW) Symmetrie bezeichnet, und impliziert bei bestimmten kritischen
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Werten µi,c einen Übergang zwischen den Z3 Zentrumssektoren. Die Z3 Sektoren lassen sich anhand der

Phase des Polyakovloops unterscheiden. Die Übergänge zwischen den Sektoren zeichnen sich durch eine

besondere Phasenstruktur aus, die strukturell jener bei µ = 0 ähnelt und die ausgenutzt werden kann, um

indirekt Erkenntnisse über die Natur der Phasenübergänge bei endlichem, reellem µ ≥ 0 zu gewinnen.

Diese besondere Phasenstruktur ist ein Resultat des Zusammenkommens der Übergänge zwischen den Z3

Sektoren und den thermalen Phasenübergängen die sich von µ = 0 analytisch in den Bereich imaginären

chemischen Potentials fortsetzen. Für hohe Temperaturen handelt es sich bei den Übergängen zwischen

den Z3 Sektoren um Übergänge erster Ordnung, während die Übergänge bei niedrigen Temperaturen

analytischer Natur sind. Beide Bereiche sind durch einen Punkt verbunden, der auch als RW-Endpunkt

bezeichnet wird. Die Natur dieses Punktes ist eine Funktion der Masse und der Anzahl der Flavors. Im

Allgemeinen ist dieser Punkt bei kleinen sowie bei großen Fermionmassen ein Tripelpunkt, während er bei

mittleren Massen einen Übergang zweiter Ordnung der Z2 Universalitätsklasse darstellt. Die Tripelpunkte

kommen aufgrund der Übereinkunft dreier Übergänge erster Ordnung zustande: Die sich fortsetzenden

chiralen/deconfinement Übergänge erster Ordnung bei µ = 0 und die Übergänge erster Ordnung zwischen

den Z3 Sektoren. Die Z2 Punkte ergeben sich aus letzteren und den analytischen crossover Übergän-

gen, die sich von µ = 0 bei mittleren Massen zu µi,c fortsetzen, da der Verbindungspunkt zwischen

einem Übergang erster Ordnung und einem crossover Übergang ein Übergang zweiter Ordnung sein

muss. An den Verbindungspunkten zwischen den Bereichen der Tripelpunkte und der Z2 Punkte ist der

RW-Endpunkt ein trikritischer Punkt, in welchem die Koexistenz dreier unterschiedlicher Phasen endet.

Bei Betrachtung der Phasenstruktur unter Variation der Masse sowie der Anzahl der Flavors sind die

Tripelpunkte, so wie die Z2 Punkte bei µ = 0, kontinuierlich verbunden und stellen Linien dar, welche

die Bereiche der Tripelpunkte und der Z2 Punkte voneinander abgrenzen. Die Z2 Punkte bei µ = 0 sind

mit den trikritischen Punkten bei µi,c durch Z2 Linien zwischen µ = 0 und µi,c verbunden. Insbesondere

lässt sich, wie oben bereits angedeutet, die Tatsache ausnutzen, dass das Verhalten einer Z2 Linie, die

aus einem trkritischen Punkt hervorgeht beziehungsweise in einem solchen endet, durch trikritische

Skalierungsgesetze bestimmt ist. Das bedeutet, bei Kenntnis des trikritischen Punktes und eines Teils

der Z2 Linie zwischen µ = 0 und µi,c lässts sich mit Hilfe eines trikritischen Skalierungsgesetzes eine

Extrapolation bis hin zu reellem µ durchführen.

In der vorliegenden Arbeit liegt der Fokus auf der Lokalisierung der trikritischen Punkte für Nf = 2

Wilson-Fermionflavors sowohl im Bereich leichter als auch schwerer Fermionmassen. Die Strategie

basiert hier, wie auch bei µ = 0, zwar noch immer auf finite size scaling Analysen, allerdings unter-

scheiden sich letztere von denen bei µ = 0 signifikant. Der wesentliche Unterschied liegt darin, dass

in Simulationen bei µ = 0 der Parameter β zunächst auf den der kritischen Temperatur entsprechenden

Wert eingestellt werden muss, bei dem der thermische Übergang stattfindet, während in Simulationen

bei µi,c das System bei jedem Wert der inversen Kopplung β kritisch ist. Dies ist dadurch zu verstehen,

dass der RW-Endpunkt, an welchem sich das System bei µi,c befindet, den Übergang bzw. die Koexistenz

zwischen den Phasen darstellt, die den Z3 Sektoren zugeschrieben werden. Dies hat große Implikationen

für das strukturelle Vorgehen in den finite size scaling Analysen. Zur Unterscheidung der verschiedenen

Phasen wird hier der Imaginärteil des Polyakovloop verwendet, da sich dieser im Zusammenhang mit

der Phase des Polyakovloop bei einem bestimmten Wert von µi,c als geeigneter Ordnungsparameter

erweist. Die durchgeführte Studie bildet die Fortsetzung einer bereits zuvor in der Gitter-QCD Gruppe

in Frankfurt durchgeführten Studie. Dabei hat der Übergang von Gittern mit temporaler Ausdehnung
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Nτ = 4 zu feineren Gittern mit Nτ = 6 stattgefunden. Gleichzeitig wurde die Statistik im Vergleich

zur Vorstudie sowie die Methoden zur Untersuchung und Extraktion der Ordnung der Phasenübergänge

signifikant verbessert. Im Vergleich zeigt sich, das die qualitativen Erkenntnisse im wesentlich unverän-

dert sind, allerdings hat sich erwartungsgemäß aufgrund der durch die Verwendung der feineren Gitter

reduzierten Diskretisierungsfehler ein Versatz der trikritischen Linien hin zu kleineren Massen ergeben.

Weiterhin wurden im Zuge der Studie die auftretenden endlichen Volumeneffekte besser verstanden.

Die gewonnenen Daten eröffnen weiterhin der Vergleich mit Resultaten von Studien, die auf anderen

Fermiondiskretisierungen basieren.

xvii





Chapter 1

Introduction

At present the Standard Model constitutes our current knowledge of elementary particle physics. It

successfully describes the known elementary particles and, except for gravity, the interaction forces

between them, which are the electromagnetic, the weak and the strong interaction. Gravity only becomes

relevant at extremely high energies which are currently not accessible, and thus still can be neglected.

While many attempts are undertaken to include gravity into the Standard model success has yet to happen.

Through the standard model the interaction forces are formulated in terms of quantum field theories which

can be characterized by symmetry groups. The fundamental objects of these quantum field theories are

matter fields which can be classified into three families of quarks and leptons which can interact through

the mentioned forces. The electromagnetic and the weak interaction can be unified to the electroweak

interaction, characterized by a SU(2)× U(1) symmetry group. These forces are also related to the part

of the Standard Model required for the leptons and quarks to have a mass, namely the Higgs-sector [1, 2],

which could be experimentally verified by the discovery of the Higgs-boson in an experiment conducted

at the Large Hadron Collider (LHC) run by the European Organization for Nuclear Research (CERN)

in Genf [3, 4] in 2012. The Higgs-boson was postulated already in 1964 by Robert Brout and Francois

Englert [1] followed just a few days later by a similar but independent work by Peter Higgs [2]. In 2013,

just about two years after Robert Brouts passing away, Peter Higgs and Francois Englert were awarded

the Nobel prize for their works from 1964.

However, it is interesting to note that more than 95% of the mass of our visible universe is not explained

through the Higgs-mechanism but through the binding energy caused by the strong interaction, responsible

for the formation of hadronic bound states out of quarks and gluons as well as for the binding between

nucleons inside atomic nuclei. The strong interaction is described by quantum chromodynamics (QCD),

the quantum field theory of quarks, the fundamental constituents of atomic nuclei (protons and neutrons),

and gluons, the force carriers mediating the strong interaction between themselves and the quarks. QCD

is characterized by the non-abelian symmetry group SU(3). The quarks as fermionic particles are the

fundamental matter fields of QCD and come in six flavors: up (≈ 3MeV), down (≈ 5MeV), strange

(≈ 95MeV), charm (≈ 1.3GeV), bottom (≈ 4.3GeV), top (≈ 173GeV). QCD includes eight flavorless

gluons, the gauge bosons of the theory, which can be deduced from group theoretical considerations.

When the theory was formulated in the early seventies of the past century as a non-Abelian gauge field

theory [5–8], neither the existence of quarks nor of gluons was experimentally proven. Spectroscopy of

hadrons in 1964 led to first indications of quarks possibly being the constituents of the proton and neutron

which caused Murray Gell-Mann and Georg Zweig to independently formulate the quark hypothesis [9,
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10] which (roughly spoken) states that quarks in combinations of two or three are the building blocks of

all the observed hadrons.

Initially problems with the statistics of quarks were encountered but then later on resolved by the

introduction of an additional degree of freedom termed color [11], which is the analog of the electric charge

in the electromagnetic interaction, mediated by photons, the gauge bosons of quantum electrodynamics

(QED). The number of possible colors Nc corresponds to the order of the symmetry group, i.e. in case of

QCD which has a SU(3) symmetry, Nc = 3. Evidence for the number of colors present in QCD could

be found in electron-electron scattering experiments in which the measured cross-section is predicted by

perturbation theory to be proportional to the number of colors Nc. Moreover, the cross-section increases

as a function of energy each time the mass threshold for the production of another quark flavor is reached,

which allows to verify the number of flavors Nf . QCD exclusively concerns particles with color charge.

Quarks have three possible color charges, which are labeled by red, green and blue. Antiquarks carry the

corresponding anti-color. Quarks always come in color-neutral bound states (color singlets) which can be

realized for instance either by a combination of three quarks with (anti-)red, (anti-)green and (anti-)blue

which are (anti-)baryons or by a combination of two quarks carrying a color and the corresponding anti-

color which are the (anti-)mesons, the bosonic counterparts of baryons1. The charge of gluons consists of

a color and an anti-color implying a color change of the quarks exchanging the gluons. Moreover, the

color charge of the gluons causes self-interactions due to which, as a consequence, the attractive force

between quarks does not diminish as the distance between them is increased. Instead, the attractive force

rises and the potential energy of the binding between the quarks rises linearly with separation. At a certain

separation of the quarks, nature favors the creation of new quarks instead of allowing for a further increase

in the binding energy. In theory the gluonic field between the quarks is described to be confined in a

narrow region denoted as flux tube. The phenomenon is formulated in terms of the color confinement

hypothesis which says that only color-neutral states can exist, i.e. hadrons like the proton, neutron or pion,

but color-charged particles can never be isolated. Moreover, the self-interaction of the gluons implies the

possibility for the existence of states made up purely from gluons, so-called glueballs, which are subject

to actual research [13]. Quarks and Gluons interact at a length scale of O(1) which corresponds to the

QCD mass scale of ΛQCD = 200 MeV. At these energies the QCD coupling αs is ≈ 1 and perturbation

theory only becomes applicable if the energy involved in the process is E � ΛQCD. In the low energy

regime of hadrons QCD has to be treated with non-perturbative methods like lattice gauge theory. A

further important peculiarity about QCD, already mentioned above, is that the chromodynamic binding

energy between the quarks, i.e. the constituents of the nucleons (proton and neutron), makes up more than

95% of a nucleons mass due to the energy-mass equivalence. The binding energy of the gluonic field is

not solely responsible for the large chromodynamic binding energy, but also the kinetic energy carried by

the hadrons constituents. Note that the chromodynamic binding energy is very hard to investigate due to

the complex structure of hadrons which in total comprises valence quarks, sea quarks, gluons and virtual

particles.

However, experiments in 1968 involving high-energy, deep inelastic electron-nucleon scattering at

the Stanford Linear Accelerator Center (SLAC) [14, 15] showed indications for the existence of quarks

which was further strongly backed up by following experiments of scattering neutrinos and antineutrinos

on nucleons [16]. In these experiments the constituent’s momentum distribution was revealed as well as

1Exotic color singlets consisting of more than three quarks have been postulated, for instance tetraquarks or pentaquarks,
and are subject to current research [12]
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the angular dependence of the scattering which showed the spin of the constituents to be 1
2 . Comparison

between electron and neutrino scattering yielded the average squared electric charge of the constituents.

Overall the experimental results and analysis thereof were sufficient to justify the hypothesis about the

existence of quarks [17] which was further backed up in 1975 by increased energy and precision scattering

experiments involving charm spectroscopy. Around the same time Wilczek, Gross and Politzer [7, 8]

formulated the concept of asymptotic freedom (for which they received the Nobel prize in 2004), a

property which causes the coupling αs between quarks to become weaker as the energy is increased and

the distance between them is decreased. Experimental verification of asymptotic freedom followed soon

after from deep inelastic scattering experiments.

The only possibility to measure a direct signature of a quark was the observation of a jet, which is

a shower of hadrons into which a quark fragments and whose existence was still questionable at that

time. Again in 1975, evidence for jets was found from data recorded during experiments run at the

electron-positron collider SPEAR at SLAC [18, 19]. The process of interest was e+e− → qq̄ → jet + jet.

Since the jets were not directly visible by eye, an intricate analysis was carried out involving the so called

sphericity tensor [20] used to investigate the angular distribution of the jet axis with respect to the incident

beam.

Evidence for the existence of gluons2 was pursued with less interest at that time. One of the

reasons gluons are harder to detect is that they do not scatter leptons directly as quarks do. First signs

indicating their existence were found from the analysis of lepton nucleon scattering, which showed that

the momentum sum rule of nucleon structure functions could not be saturated by the quarks and antiquarks

contained in the nucleon. This led to the assumption that about half of a fast nucleon’s momentum must

be carried by flavorless constituents for which suited candidates were the gluons predicted by QCD.

Stronger indications were found by observing scaling violations in lepton nucleon scattering processes,

which became gradually more distinct over the years as the precision and the possible kinematic range

of the measurements increased. For the first time scaling violations compatible with QCD predictions

were observed in 1978. Further processes yielding increasing but still weak indications were lepton pair

productions in hadronic oscillations [22]. Though an effect that could clearly and definitely be explained

by gluons was not discovered and thus the task remained to either find clear evidence for the existence of

gluons or against it, invalidating QCD.

To summarize it briefly, the key steps in this process were taken in 1979 with experiments (starting in

1978) taking place at the electron-positron collider PETRA of the research facility Deutsches Elektronen-

Synchrotron (DESY), which was the first of its kind to reach e+e− center-of-mass energies in the 30

GeV range. In this year results showed first evidence that the QCD prediction about gluons was correct:

Multihadron states generated in e+e− collisions were analyzed, leading the TASSO collaboration to find

signatures of gluon jets generated by hard gluon Bremsstrahlung. In this electron positron collision an

intermediate photon is produced which itself turns into a quark-antiquark pair as it decays. Some of the

final state quarks sometimes would emit a gluon before it hadronizes. Among the final multihadron states

TASSO observed planar and three-jet configurations which were produced by this radiated gluon. A few

month later the spin 1 nature of hard gluons was verified, as well, followed by many more investigations

about the quark-gluon interaction strength, the gluon self-coupling and about properties of the gluon jets.

Overall the discovery of the gluon and consequently the verification of QCD is attributable to a tight and

2Initially the term “gluon” was introduced by Gell-Mann in 1962 (without using the notion of color) to denote a hypothetical
neutral vector field which strongly couples to the baryon current [21].

3



successful interplay of theory and experiment. A comprehensive summary about the discovery of the

gluon can for instance be found in [23]. Today QCD is widely accepted and strongly established since no

mismatch between QCD and experiment has been found. For an overview of experimental tests of QCD

see for instance [24].

Coming back to asymptotic freedom and confinement, these properties of QCD imply the existence

of a quark-gluon plasma (QGP) a state of hot and dense matter with a huge energy density, in which

quarks and gluons can virtually move freely. Such a state is assumed to have existed in the first tens of

microseconds of the onset of the universe. While today in nature such a state probably only exists in

the center of neutron stars, in a laboratory setting the creation of a QGP requires the use of heavy-ion

colliders. In heavy-ion collisions the colliding nuclei exhibit a large energy density and the partons

(quarks and gluons) interact through inelastic collisions until a thermal equilibrium is reached - the QGP.

Due to the pressure of the interior of the volume the QGP expands and thus cools down until a critical

temperature is reached at which hadronization of the partons sets in. An indication for the formation of a

QGP are the aforementioned jets: In heavy-ion collisions jets naturally occur in a large number. If the

energy-density is large enough for a QGP formation a smaller number of jets can be observed. This is due

to the particles being heavily slowed down within the QGP and thus lacking the necessary energy for the

creation of a jet. Such experiments are conducted at the Gesellschaft für Schwerionenforschung (GSI)

in Darmstadt, at CERN and at the Relativistic Heavy Ion Collider (RHIC) on Long Island, New York,

where the investigation of the phase transition from the confined state to the QGP is of particular interest.

Recent measurements at large energies but low densities indicate that this transition is rather a crossover

(an analytic, non-sharp or smeared out) transition type. If the nature of this transition would change from

a crossover to a real phase transition, i.e. a first order transition, further evidence for the existence of the

QGP would be found. Such a change would be marked by a second order critical point. The search for

such a transition is ongoing in present and upcoming experiments covering a wide range of energies at

moderate and larger baryo-chemical densities at the LHC, at RHIC and at the Facility for Antiproton and

Ion Research (FAIR) at GSI, as well [25].

Theoretical predictions about the nature of this phase transition are hampered due to a variety of

problems and thus up to date remain an extremely challenging field of research. Currently one of the

most efficient approaches is to treat the problem in a numerical setting with lattice gauge theory. The

advantage of this approach is that no assumptions whatsoever are needed, i.e. the equations of the full

theory are directly evaluated at any temperature from first principles by the means of high-end computers.

Not long ago, the technology of graphics processing units (GPUs) has been introduced to the field [26],

yielding a huge gain in computational performance, since GPUs are perfectly suited to parallel problems

(and come with a high memory bandwidth) as they are present in the case of the evaluation of LQCD

equations. At present the main supplier for GPUs in this field is NVIDIA which offers its framework

CUDA for programming the GPUs. An alternative is given by the OpenCL [27] standard, a framework

to program not only GPUs but in general heterogenic computing architectures and is developed by the

Khronos Working Group. The advantage is its vendor independency which allows the use of (for instance)

GPUs from AMD which in the past have been somewhat lower in cost compared to NVIDIA GPUs.

The software CL2QCD used in this thesis for lattice quantum chromodynamics computations consists of

two parts: The host part which is written in C++ and an OpenCL part, responsible for the performance

intensive computations.
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Using lattice quantum chromodynamics calculations the QCD crossover transition at a temperature

of 150-170 MeV at zero chemical potential could be verified already [28]. The drawback is that lattice

QCD calculations currently only work at zero or sufficiently small chemical potential (a measure for the

particle-antiparticle ratio), i.e. (roughly spoken) at small particle densities. At larger densities the sign

problem spoils the numerical evaluation of the lattice QCD path integral. Alternatively, a purely imaginary

chemical potential can be chosen for which there is no sign problem. Then, using lattice QCD calculations

as a basis, information about the area at real chemical potential can be obtained by intricate extrapolation

techniques like analytical continuation via truncated polynomials [29, 30]. Approximations are introduced

by the latter for which reason such techniques are only justified up to real chemical potentials about

(µ/T . 1) [31].

However, in the region where lattice QCD calculations can be carried out, i.e. at zero or small chemical

potential as well as purely imaginary chemical potential, the nature of the phase transition can be studied

as a function of the quark mass, which is one of the two main goals of this work. Doing so on the one

hand-side can help to obtain additional insights about the region at larger chemical potential. This is due

to the phase structure at unphysical quark masses which imposes certain constraints on the physical region.

On the other hand-side this problem is interesting in its own right and investigating it, important knowledge

and further understanding about the QCD phase structure can be gathered. Throughout this work I will

discuss these topics and explain how they relate to symmetries of QCD present in the limits of zero

and infinite quark masses. In lattice QCD additional complications are introduced by the discretization

of the space-time and by the finite volume. These complications manifest in terms of lattice artifacts

and finite size effects. Using an arbitrarily fine discretization and large volume is not possible due to

finite computational resources. The standard way of dealing with these effects is to simulate a series of

successively finer lattices and larger volumes and to perform continuum extrapolations and finite size

scaling analyses. These techniques will be elucidated in the course of this thesis. The second main goal of

this thesis is to lay the foundation for a continuum extrapolation of the phase structure of QCD at zero

chemical potential in the heavy quark mass region, which would be the first of its kind.

In chapter 2 lattice QCD is briefly introduced. Chapter 3 treats relevant theoretical aspects about

thermodynamics and lattice QCD thermodynamics which will be useful or even necessary for readers

unfamiliar with the topic. Moreover approaches will be discussed to study lattice QCD at non-zero baryon

density (non-zero chemical potential). This is followed by a discussion about the QCD phase diagram

and in particular the QCD phase structure at zero and imaginary chemical potential. In these sections I

will try to cover parts of the progress in this field to further motivate the subject of this thesis. Afterwards

in chapter 4 data analysis methods used for this work will be explained and algorithmic details will be

elucidated. In particular I will describe the Rational Hybrid Monte Carlo for simulating an odd number

of quark flavors, which was implemented into the CL2QCD simulation software. Furthermore a brief

presentation about CL2QCD and BaHaMAS, a Bash Handler to Monitor and Administrate Simulations,

will be given. Chapter 5 is divided into the presentation of the result achieved at zero and purely imaginary

chemical potential. Each part is preceded with an explanation about the strategy pursued to study the QCD

phase structure on lattices. Finally, chapter 6 closes this thesis by giving conclusions and perspectives

about this work.
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Chapter 2

Lattice Quantum Chromodynamics
(LQCD)

This chapter serves as a brief reminder and summary of the central equations of Quantum Chromody-

namics (QCD), the theory of strongly interacting particles and its discretized version, Lattice Quantum

Chromodynamics (LQCD). I will provide the minimal theoretical framework needed to make the work self

contained for which reason this chapter is not to be regarded as a lengthy and comprehensive introduction

into the complex topic of QCD. It mainly concentrates on providing the ingredients necessary for the

construction of its discretized version, LQCD, and hence will be restricted to the theoretical scope needed

for this work.

LQCD is formulated in Euclidean space-time, which is an imperative condition if Monte Carlo methods

are to be applied since in Minkowski space the Boltzmann factor used in the path integral, discussed in

section 2.2, would be complex and thus rapidly oscillating. In QCD the transition to Euclidean metric is

done via an analytic continuation based on the introduction of an imaginary time often referred to as Wick

rotation [32], for which the standard conventions are

tE = itM, LE = −LM, −SE = iSM, (2.1)

where the subscripts E and M refer to Euclidean and Minkowskian, respectively. As an implication the

relative minus sign between space and time components vanish, i.e. there is no discrimination between

them anymore. Here this transition is not further discussed. Instead, the starting point will be the theory

formulated in Euclidean space-time.

I will start by discussing the Euclidean correlation function, which is a major object in lattice field

theories in general. This allows me to subsequently make a natural link to the path integral, the central

quantity of LQCD, as it is a different way of writing the euclidean correlation function and at the same

time serves as a quantization prescription for QCD. The ensuing sections will focus on the components of

the path integral, which are the fields of the theory and the respective actions. The starting point will be

the continuous version of these quantities and afterwards I will show how to discretize them. Having done

this I will discuss the Polyakov loop, an important observable that was heavily employed to produce the

results for this work. The last topic of this chapter addresses renormalization and the link to the continuum

limit. Whenever it is not possible to strive into detail and the reader feels the need to fill in the gap, he is

referred to the respective literature [33–35] on which I based this chapter.
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Euclidean Correlation Functions

The Euclidean correlator is given by

〈O2(t)O1(0)〉 =
1

Z
Tr
[

e−(T−t)ĤÔ2 e−tĤÔ1

]
, (2.2)

On the right-hand side the quantities Ô1 and Ô2 are generic operators for the creation or annihilation

of particle states or for measuring observables. Note, t and T are Euclidean time distances and are

not to be interpreted as physical times since we are operating in Euclidean metric. In particular, T is a

formal maximal time distance and will be taken to infinity. The hermitian Hamiltonian operator Ĥ of the

system measures the energies of the system by acting on the corresponding eigentstates Ĥ|n〉 = En|n〉
and governs the time evolution. The partition function1 Z serves as a normalization factor and can be

evaluated by writing the trace in terms of a Basis of normalized physical eigenvectors |n〉

Z = Tr
[

e−T Ĥ
]

=
∑
n

〈n| e−T Ĥ|n〉 = e−TEn . (2.3)

The right-hand side of eq. (2.2) can be evaluated in the same fashion

〈O2(t)O1(0)〉 =

∑
m,n〈m|Ô2|n〉〈n|Ô1|m〉 e−t∆En e−(T−t)∆Em

1 + e−T∆E1 + e−T∆E2 + . . .
, (2.4)

where ∆En is the energy difference between En and the vacuum energy E0. Taking the limit T →∞
only the states |m〉 equal to the vacuum state |0〉 survive and the last expression becomes

lim
T→∞

〈O2(t)O1(0)〉 =
∑
n

〈0|Ô2|n〉〈n|Ô1|0〉 e−tEn , (2.5)

which is a central equation in lattice field theories and allows to compute the energy spectrum and matrix

elements of a theory. For instance the operators Ô2 and Ô1 can be chosen as Ôp(t
′) and Ô†p(0) so that

they create a specific particle state |p〉 at a time t = 0 and destroy it at a time t = t′. In order to extract the

ground state energy of this state one considers eq. (2.5) for large times t′ and obtains (T →∞ assumed)〈
Op(t

′)O†p(0)
〉

=
∣∣∣〈p|Ô†p|0〉∣∣∣2 e−tEp + . . . , (2.6)

where the the subleading terms are suppressed if t′ is large enough.

The LQCD Path Integral

There are several ways to quantize a theory. In conjunction with LQCD the path integral approach is used

for quantization, which can be used to express the Euclidean correlator from the previous section 2.1:

〈O2(t)O1(0)〉 =
1

Z

∫
DU DψDψ̄O2

[
ψ, ψ̄, U

]
O1

[
ψ, ψ̄, U

]
e−SF[ψ,ψ̄]−SG[U ], (2.7)

Z =

∫
DU DψDψ̄ e−SF[ψ,ψ̄]−SG[U ]. (2.8)

As before, Z is the partition function. The right-hand side of eq. (2.7) is a path integral and thus an

integration over all possible configurations of the classical fermion fields ψ, ψ̄ as well as gauge fields U ,
1The name is borrowed from the partition function in statistical mechanics, as it is structurally equivalent.
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which together constitute the degrees of freedom of LQCD. Here, all quantities contained in this path

integral are already quantized. This is not surprising since the path integral can be derived by replacing the

continuous space-timeby a discrete lattice, which at the same time serves as an ultraviolet regulator. Such a

regularization is essential in order to compute finite quantities in the framework of QCD2. Roughly spoken,

the path integral can be derived by algebraic manipulations like the introduction of small Euclidean time

steps from the right-hand side of eq. (2.2). For QCD this derivation is quite lengthy due to the notational

complexity and will not be given here3. While in eq. (2.2) there are still the field operators Ô, in eq. (2.7)

these field operators became functionals O
[
ψ, ψ̄, U

]
of the fields. These are in general complex numbers

for which reason the position within the path integral is unimportant. The transition takes place during the

derivation of the path integral, when the field operators act on the field states. The integration measure for

the fermion and gauge fields are given by

Dψ =
∏
x∈Λ

∏
f,α,c

dψ(f)(x)α
c

DU =
∏
x∈Λ

4∏
µ=1

dUµ(x). (2.9)

In fact the path integral measures constitute products of measures including all quark field components and

all gauge fields for every lattice site. Since the path integral is to be evaluated in a numerical simulation of

a finite lattice the boundary conditions imposed on it play an important role as they determine the topology

of the underyling manifold. In most applications translational invariance preserving toroidal boundary

conditions are chosen. In particular the gauge fields U are implemented with periodic for space and times

directions while fermionic fields are implemented with anti-periodic boundary conditions time direction,

i.e.

Uµ(x, t+ T ) = Uµ(x, t) ψ(x, t+ T ) = −ψ(x, t). (2.10)

The reason for this are the statistics that have to be obeyed by the different particle species, namely

Bose/Einstein statistics for the gauge fields and Fermi statistics for the fermion fields. The quantization of

QCD via the path integral can be summarized as follows:

• Discretization of the continuous space-time via a lattice. The degrees of freedom are given by the

classical fields in the path integral, which are solely defined on the lattice sites.

• The Euclidean action is discretized (see following sections). The continuum version has to result

from taking the limit a→∞.

• Operators in the Euclidean correlator become functionals of the classical fields in the path integral.

• Euclidean correlators can be computed by evaluation of the functionals and weighting them

according to the Boltzmann weight factor.

In general, lattice field theories and statistical mechanics are structurally equivalent for which reason

analytical and in particular numerical methods suited for statistical mechanics can be applied to lattice

field theories. This yields the possibility to compute the path integral with Monte Carlo methods which

will be picked up again in section 4.2.

2Outside of lattice field theory other means for regularization exist, for instance dimensional regularization, Paui-Villars or
the introduction of a momentum cutoff.

3The concepts can be easily learned from simpler theories like quantum mechanics or a scalar field theory. A detailed
derivation and discussion of the QCD path integral can be found in [36].
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As a last remark, note, that it cannot be clear a priori whether an action that is discretized in a certain

way and used in the path integral gives rise to expectation values of physical observables. In order to do

so, Euclidean correlators computed with the path integral must obey a certain set of axioms. Only then

the necessary quantum mechanical Hilbert space for the Minkowski theory can be reconstructed. For a

detailed treatment see [37, 38].

Continuum QCD

The constituents of the QCD action are the fundamental fields of the theory, the quarks and the gluons.

The quarks as matter fields are spin-1
2 fermion fields

ψ(f)(x)α
c
, ψ̄(f)(x)α

c
, (2.11)

whose components are Grassmann valued variables with space-timeargument x, a Dirac index α =

1, . . . , 4 and a color index c = 1, 2, 3. This is to be understood as 3 color components per Dirac

component and consequently each field has 12 components in total. The index f refers to the quark

flavor with f = 1, . . . , Nf . Note that ψ̄(f)(x) in the Euclidean path integral is an independent integration

variable. If the indices of the fields are omitted it means that matrix/vector notation is used. The gluons

are described by the gauge potential

Aµ(x)cd (2.12)

that carries a space-timeargument x, as well. These fields are Lie algebra elements of the non-abelian gauge

group of QCD which is SU(3) and thus represent traceless, hermitian 3× 3 matrices whose components

are indexed by the color indices c and d. Moreover they constitute vector fields with an orientation in

space-timecharacterized by the Lorentz index µ = 1, . . . , 4. The gluon field has an expansion in terms of

color components i = 1, . . . , 8

Aµ(x) =
8∑
i=1

Aiµ(x)Ti, (2.13)

where Ti are the generators of the algebra of SU(3) providing a basis for traceless hermitian 3×3 matrices.

The fermionic part of the QCD action is a bilinear functional in the fields ψ(f)(x), ψ̄(f)(x) and contains a

term coupling them to the gluonic field Aµ(x)cd. Written explicitly in all indices (Einstein summation

convention is assumed) it reads

SF[ψ, ψ̄, A] =

Nf∑
f=1

∫
d4x ψ̄(f)(x)α

c

(
(γµ)αβ(δcd∂µ + iAµ(x)cd) +m(f)δαβδcd

)
ψ(f)(x)β

d
. (2.14)

The expression contains a sum over all quark flavors taken into account which identically couple to the

gauge field Aµ. Aside from the mass m(f) the different flavors differ only in their electrical charge but

this is irrelevant for strong interactions. Here additionally the 4 different Euclidean Dirac 4× 4 γ-matrices

appear which mix the Dirac components of the fermion fields in a different way for each value of µ. In eq.

(2.14) the mass term is trivial in both Dirac and color space and thus the product of the quark fields is

equivalent to a simple vector product. The kinetic term containing the partial derivative is only trivial

in color space but since there is a contraction with γµ a mixing of the Dirac components takes place.
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The term coupling the quark fields to the gauge field is neither trivial in color nor in Dirac space as it is

contracted with γµ, as well. The term on the right-hand side of eq. (2.14) is expressed compactly as

SF[ψ, ψ̄, A] =

Nf∑
f=1

∫
d4x ψ̄(f)(x)α

c
D(x)αβcd ψ

(f)(x)β
d
. (2.15)

where D(x)αβcd (the part in the brackets in eq. (2.14)) represents the Dirac operator. In order for the

fermion action to be gauge invariant with respect to SU(3) rotations in color space

SF[ψ, ψ̄, A] = SF[ψ
′
, ψ̄
′
, A
′
], (2.16)

the quark and gauge fields are required to transform like

ψ(x)→ ψ
′
(x) = Ω(x)ψ(x)

ψ̄(x)→ ψ̄
′
(x) = ψ̄(x)Ω†(x)

Aµ(x) → A
′
µ(x) = Ω(x)Aµ(x)Ω†(x) + i(∂µΩ(x))Ω†(x).

(2.17)

The properties of Aµ(x) of being hermitian and traceless are preserved by this transformation.

The gluonic action of QCD is given by

SG[A] =
1

2g2

∫
d4x Tr[Fµν(x)Fµν(x)], (2.18)

with the field strength tensor

Fµν(x) = −i [Dµ(x), Dν(x)] = ∂µAν(x) − ∂νAµ(x) + i [Aµ(x), Aν(x)] , (2.19)

where Dµ(x) is the covariant derivative

Dµ(x) = ∂µ + iAµ(x). (2.20)

By construction the action is invariant under the last transformation of (2.17) and thus

SG[A
′
] = SG[A]. (2.21)

After rewriting the field strength tensor Fµν(x) with some lines of algebra in terms of the color components

of the gauge field Aµ, the action becomes

SG[A] =
1

4g2

8∑
i=1

∫
d4x F (i)

µν (x)F (i)
µν (x), (2.22)

where the expression for F (i)
µν (x) reads

F (i)
µν (x) = ∂µA

i
ν(x) − ∂νAiµ(x) − fijkAjµ(x)Akν(x). (2.23)

The last term on the right-hand side leads to terms being cubic and quadratic in the action (2.22) implying

self interactions of the gluons and thus inducing the phenomenon of color confinement.
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Discretization of QCD

The first step towards a discretized theory of QCD is the introduction of a 4D lattice Λ in which the

continuous space-timeis embedded

Λ = {n = (n1, n2, n3, n4) | n1, n2, n3 = 0, . . . , Nσ − 1;n4 = 0, . . . , NT − 1}. (2.24)

The lattice points labeled by n are separated by the lattice spacing a. The fermion fields now live on the

lattice points only and for notational convenience the space-timeargument x = an now can be replaced

by n:

ψ(n), ψ̄(n). (2.25)

The partial derivative acting on the fermion field is discretized symmetrically

∂µψ(x)→ ψ(n+ µ̂)− ψ(n− µ̂)

2a
, (2.26)

where µ̂ is a unit vector in direction µ. The space-timeintegral gets replaced by a sum over the lattice

points ∫
d4x→ a4

∑
n∈Λ

. (2.27)

A naive application of these prescriptions leads to terms in the fermion action like ψ̄(n)ψ(n+ µ̂) which

break the gauge invariance. This can be seen easily from applying a gauge transformation according to

(2.17) on this term. The gauge invariance can be preserved by the introduction of fields Uµ(n) with an

directional Lorentz index µ. They belong to the SU(3) gauge group and are required to transform in the

following way

Uµ(n)→ U ′µ(n) = Ω(n)Uµ(n)Ω†(n+ µ̂). (2.28)

The fields Uµ(n) are then attached to the fermion fields in the discretized partial derivative leading to

gauge invariant terms in the fermion action like ψ̄(n)Uµ(n)ψ(n+ µ̂). They can be thought of as living

on the links connecting the lattice points. For this reason the fields Uµ(n) are commonly referred to as

link variables. They take on the role of the gluon fields in the continuum. Note that in contrast to Uµ(n),

which are elements of SU(3), the continuum gluon fields Aµ(x) are elements of the algebra of SU(3).

The fields Uµ(n) are also called lattice gauge transporters and can be written in the form

Uµ(n) = exp (iaAµ(n)), (2.29)

where Aµ(n) are just the algebra valued lattice gauge fields of the continuum placed on discrete lattice

points n. In LQCD the link variables Uµ(n) are the fundamental fields to be integrated over in the path

integral formalism. These are all the prerequisites necessary to construct LQCD. In the following section

I will introduce Wilson’s lattice version of the gauge action, the first formulation of lattice gauge theory.

The Wilson Gauge Action

Simply put, the idea for the construction of the Wilson gauge or gluon action is to build and sum the

shortest possible closed loops of link variables on the lattice. Such a loop is given by the so called

plaquette

Pµν(n) = Uµ(n)Uν(n+ µ̂)U †µ(n+ ν̂)U †ν (n), (2.30)
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which is a product of link variables along a closed path of links connecting four adjacent lattice points.

The trace of the plaquette is a gauge invariant quantity. The Wilson gauge action is then given by [39]

SG[U ] =
β

3

∑
n∈Λ

∑
µ≤ν

ReTr [1− Pµν(n)] , (2.31)

where the trace is in the color space. The parameter β is the inverse lattice coupling and refers to the

lattice gauge coupling g via

β =
6

g2
. (2.32)

The action SG[U ] is positive and due to the trace gauge invariant under gauge rotations.

Wilson Fermion Discretization

Applying naively the discretization prescriptions listed in section 2.4 in order to obtain the fermion action

leads to an expression that on the lattice suffers from a problem named species doubling. A rigorous

analysis would be quite lengthy for which reason I will restrain from presenting one, although, the

important points can be summarized as follows: The common way to study the problem is to compute

and examine the momentum space quark propagator D̃−1(p) which reveals that it has 16 poles of which

15, the so called doublers, are unphysical. The implication is there are 16 degenerate flavors of the same

fermion in the continuum. These copies can be forbidden as asymptotic states but they still contribute in

loops as for instance it is the case for the renormalization group β function. A possible solution proposed

by Wilson is to add an extra term to the Dirac operator which takes care of the doublers in an elaborate

way. This term vanishes for the physical pole while for each unphysical pole it contributes 2/a leading to

a total mass of m+ 2l/a, where l is the number of momentum components causing the unphysical poles.

In the limit of a→ 0 the doubler contributions become very heavy and consequently decouple from the

theory. Implementing this term in the position space Dirac operator leads to the following action for Nf

fermion flavors

SF[ψ, ψ̄, U ] =

Nf∑
f=1

a4
∑
n,m∈Λ

ψ̄(f)(n)D(f)(n|m)ψ(f)(m), (2.33)

where D(f)(n|m) is Wilson’s complete Dirac operator [39] (often also referred to by Wilson fermion

matrix)

D(f)(n|m) =

(
m

(f)
0 +

4

a

)
δαβδabδnm −

1

2a

±4∑
µ=±1

(1− γµ)αβ Uµ(n)abδn+µ̂,m, (2.34)

written in a particularly compact way as the sum runs over negative µ values leading to terms γ−µ = −γµ.

Additionally it gets often rescaled by factoring out m(f)
0 + 4/a which leads to

C D′(f)(n|m) = C

δαβδabδnm − κ ±4∑
µ=±1

(1− γµ)αβ Uµ(n)abδn+µ̂,m

 , (2.35)

with D′(f)(n|m) being the rescaled version of the Wilson Dirac operator and

κ =
1

2(am
(f)
0 + 4)

, C = m
(f)
0 +

4

a
. (2.36)
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The real parameter κ is called hopping parameter 4 , used in Monte Carlo Simulations with Wilson

fermions to indirectly control the bare quark mass m0. Note that for free fermion fields, i.e. Uµ = 1, the

bare quark mass m0 equals the physical quark mass and setting m0 = 0 in eq. (2.36) leads to massless

fermions for a value of κ = 1/8. This does not hold if the fermions are in an external gauge field,

i.e. Uµ 6= 1. In this case the bare quark mass gets an additional mass renormalization due to quantum

corrections caused by the coupling to the external gauge field and massless fermions are obtained for

some negative value of m0 or κ ≥ 1/8, respectively. In the fermion action the fields ψ(f)(x) and ψ̄(f)(x)

are then typically rescaled, as well, in order to absorb the factor C and a4 (stemming from the discretized

space-timeintegral in the fermion action)

ψ(f)(n) → a2
√
Cψ(f)(n), ψ̄(f)(n) → a2

√
Cψ̄(f)(m). (2.37)

Thus the fermion action becomes

SF[ψ, ψ̄, U ] =

Nf∑
f=1

∑
n,m∈Λ

ψ(f)(n)D(f)(n|m)ψ̄(f)(m), (2.38)

with D(f)(n|m) and ψ(f)(n), ψ̄(f)(m) given by eqs. (2.35) and (2.37).

Symmetry Aspects

The price for having obtained a lattice formulation of the Dirac operator is the loss of many continuum

symmetries like translational or rotational invariance of which only discretized versions exist on the lattice,

though, these symmetries can be recovered in the continuum as a→ 0. Two other important symmetry

operations of the Wilson Dirac operator (for e.g. the construction of hadron interpolators) existing in the

continuum and on the lattice alike are charge conjugation C which transforms particles into antiparticles

and parity P transformations for reflections in euclidean space. Furthermore the Wilson Dirac operator

obeys a relation called γ5-hermiticity 5 , i.e.

D† = γ5Dγ5 ⇔ (γ5D)† = γ5D. (2.39)

This property establishes the hermiticity of D†D, which will turn out to be extremely important in the

context of Monte Carlo simulations (see section 4.2). Moreover γ5-hermiticity is not specific to the Wilson

Dirac operator. In fact almost all Dirac operators feature this symmetry. One of it’s characteristics is that

the Dirac operators eigenvalues are either real or come in complex conjugate pairs. As a last point I want

to address another problem of utmost significance, namely the explicit breaking of chiral symmetry on the

lattice. The Dirac operator as given in eq. (2.15) is, in the massless case, clearly invariant under chiral

rotations

ψ(x)→ ψ′(x) = eiαγ5ψ(x), ψ̄(x)→ ψ̄′(x) = eiαγ5ψ̄(x), (2.40)

since {γ5, D} = 0. In contrast, for the Wilson Dirac operator, eq. (2.34), this is not true anymore (m0 = 0

assumed) [43, 44]. What spoils the invariance is the additional diagonal term, as well as the unit matrix in

(1− γ5) which both do not commute with γ5 and are a consequence of the term added by Wilson in order

to overcome the aforementioned species doubling problem.
4The name hopping parameter originates from analysing Wilson fermions in the limit of heavy quark masses where κ is

small and thus serves as expansion parameter. From this analysis fermions are exposed to be paths of link variables referred to as
fermion lines [40–42]. Moreover the fermion determinant turns out to be interpretable as closed fermion lines or fermion loops.

5It is simple to prove this relation by multiplying γ5 from both sides to eq. (2.34). The diagonal term is unaffected whereas
in the second term there is a change from (1− γ5) to (1+ γ5). The sum over negative and positive µ values can be exploited to
recover (1− γ5) and together with the δ-function the position of the gauge field Uµ can be exchanged n↔ m.
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The Nielsen-Ninomiya Theorem and Chiral Symmetry Breaking

It is not possible to find a different expression to remove the doublers and to preserve chiral symmetry at

the same time. This fact is expressed in terms of the Nielsen-Ninomiya theorem [45–48]. Considering the

case of free fermions and a Dirac operator with translational invariance,

D eipxu = D̃(p) eipxu, (2.41)

(where D̃(p) is the momentum space propagator, given by a 4× 4 complex matrix, and u is a constant

spinor) a simplified version of the theorem states that one of the following properties has to be sacrificed:

1. D̃(p) is local, i.e. is analytic in the momentum components pµ with a period of 2π/a.

2. D̃(p) assumes its continuum form D̃(p) = i
∑

µ γµpµ +O(ap2) for apµ � π.

3. D̃(p) is invertible for all non-vanishing momentum components (mod 2π/a), i.e. there is no species

doubling.

4. Continuum chiral symmetry, i.e. {γ5, D}.

To obtain a sensible continuum theory the properties 1 and 2 can’t be relinquished. Neither can property 4,

as long as chiral symmetry ought to exist in its continuous form. This renders property 3, species doubling,

inevitable. If a theory is excepted to be non-chiral, as it is the case for QCD, there are three possibilities

for remedy:

1. Using Wilson fermions, i.e. having the Wilson term taking care of the doublers but breaking chiral

symmetry explicitly,

2. using staggered fermions which come in four copies but feature a U(1) chiral symmetry,

3. using Ginsparg-Wilson fermions which have no doubling problem and have a lattice-version of

chiral symmetry.

Regarding the last point there is no contradiction with the Nielsen-Ninomiya theorem since chiral

symmetry is realized in a different way than it has been originally assumed for proving the theorem [49].

I conclude this section by addressing another issue regarding the use of Wilson fermions, namely the

question whether the axial anomaly comes out correctly in the continuum limit. This has been extensively

studied and the answer turned out be positive (see for instance [50] and refs. therein).

Other Fermion Discretizations

The Wilson fermion discretization presented above was the first discretization discovered and represents

just one particular choice. Today it is still widely used in many studies since the computational costs

are moderate and they are fairly simple to implement and to use. Examples of alternatives include the

following:

Twisted Mass fermions [51] represent a doublet of unimproved Wilson fermions with a chirally twisted

mass term added. The doublet is then interpreted as the up/down isospin doublet. They have the advantage

that for spectral observables the leading discretization errors vanish under a certain choice of parameters.
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The drawback is that parity and isospin are violated by cut-off effects implying potentially undesirable

features, for instance a neutral pion with the quantum numbers of the vacuum.

Another variant of Wilson fermions are clover Wilson fermions [52], which add another term, the

Sheikholeslami-Wohlert term, to reduce the lattice actifacts to be O(a2). There are numerous individual

actions which differ mainly by the kind of links included in the discretized derivatives (and possibly into

the SW term). These links can be thin links guaranteeing certain properties like locality and positivity, or

variants of smeared links causing better statistical behavior of various observables.

Then there are Staggered fermions [53]. They reduce the number of doublers to four by a redistribution

of the degrees of freedom between the lattice sites. For this discretization smearing depicts an important

technique used to reduce the effect of high-momentum gluons whose exchange causes the interactions

mixing the different tastes of the remaining doublers. An advantage of the staggered discretization is

the preservation of a residual chiral symmetry. The disadvantage that triggered a lot of controversy in

the community in the past is the need to take the root of the determinant of the Dirac operator. Actions

currently used for this discretization are the asqtad and HISQ actions.

More sophisticated discretizations preserve lattice chiral symmetry but are computationally very

expensive. Examples are Domain-Wall and Overlap fermions [54–57].

Wilson and Polyakov Loops

In this section I will introduce two important gauge invariant observables of quantum fields - the Wilson

and Polyakov loop [58] which are closely linked to each other. I will briefly explain how to construct them

and provide a physical interpretation. The Polyakov loop will be further motivated in the context of finite

temperature QCD in section 3.2.2. Both of these observables are gauge invariant quantities constructed

purely from ordered products of link variables and allow to determine the potential between two static

color sources.

The Wilson Loop

As a starting point we consider a Wilson loop which is basically given by the trace over a product of link

variables along a closed circuit and can be expressed as

L[U ] = Tr

 ∏
n,µ∈L

Uµ(n)

. (2.42)

In this expression L indicates the closed loop along which the link variables Uµ are multiplied. The

simplest form of a Wilson loop is just a planar loop which is realized by a rectangle situated in the lattice

Λ such that it has a temporal and only one spatial component. Apparently the smallest planar Wilson

loop is the plaquette (see eq. (2.30)). These types of Wilson loops can generally be described in terms of

its four constituents which are two so-called Wilson lines S along a common spatial direction and two

temporal transporters T , i.e.

WL[U ] = Tr
[
S(m,n, nτ )T †(n, nτ )S†(m,n, 0)T (m, nτ )

]
. (2.43)

To proceed, we choose the temporal gauge Aµ = 0 which implies Uµ = 1 according to eq. (2.29). This

step is not necessary but simplifies the interpretation of the Wilson loop. The last equation then simply
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reads

WL[U ] = Tr
[
S(m,n, nτ )S†(m,n, 0)

]
. (2.44)

from which it becomes apparent that the Wilson loop is the correlator of two temporally separated Wilson

lines. Using the key equation (2.2) the expectation value of the Wilson loop can be computed. Comparing

the gauge transformation properties of the Wilson lines with those of a quark-antiquark pair expressed

as a product of fields ψ(m)ψ̄(n) (which are in fact the same) it can be reasoned that the states with

non-vanishing overlap involved in this correlator describe a static quark-antiquark pair sitting at m and n.

For a more rigorous reasoning it has to be shown using the definition of quark fields on the lattice that

the quark propagator reduces to the Wilson line S(m,n) in the heavy quark mass limit. However, for

sufficiently large times the expectation value can be extracted from the correlator as

〈WL〉 = C e−tEqq̄
(
1 +O

(
e−t∆E

))
. (2.45)

C is the amplitude and Eqq̄ is the ground state energy of the correlator corresponding to the static quark-

antiquark potential V (r) where r = a |m− n| is the distance between the quark and the antiquark. The

time argument is given by the product of lattice spacing and time slice, t = anτ . In the sub-leading terms

∆E is the exponentially suppressed difference to the first excited energy level of the quark-antiquark pair

including additional particle-antiparticle combinations with vacuum quantum numbers. It is worth noting

that using non-planar Wilson loops it is possible to compute the potential V (r) for non-integer multiples

of a since in this case the Wilson loop has more than one spatial component. This can be of importance

for instance if restoration of rotational invariance when approaching the continuum limit is to be studied.

Another point concerns the investigation of gluonic bound states (glueballs) for which Wilson loops can

be used as operators. This allows to calculate the mass spectrum of such states, see e.g. [59].

The Polyakov Loop

We consider again the product∏
n,µ∈L

Uµ(n) = S(m,n, Nτ )T †(n, Nτ )S†(m,n, 0)T (m, Nτ ), (2.46)

but this time nt assumes the value of Nτ , i.e. the temporal extent of the lattice. Instead of utilizing the

temporal gauge as before (which is not possible due to the periodic boundary conditions) a gauge is used

in which the spatial links are set to unity. Then the Wilson loop consists of two disconnected temporal

paths T †(n, Nτ )T (m, Nτ ) of opposite orientation winding around the temporal boundary of the lattice.

Taking the trace of each of the disconnected parts separately yields two gauge invariant quantities

P (n) = Tr

Nτ−1∏
j=0

U4(n, j)

 , (2.47)

which are named Polyakov loops. It can be used likewise to compute the static quark-antiquark potential

by repeating the same procedure as for the Wilson loop. The expression for the expectation value is then

given by the correlator of the Polyakov loops spatially separated by the distance r = a |m− n|

〈P (m)P (n)〉 = C e−aNτEqq̄
(
1 +O

(
e−aNτ∆E

))
. (2.48)
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It is important to remark, that the equality between the quark-antiquark potential as derived from the

Wilson loop and the Polyakov loop are not rigorously proven. There is only a proof that the string tension

of the quark-antiquark potential extracted from the Polyakov loop correlator is bounded from above by

the one of the Wilson loop correlator [60].

An alternative introduction of the Polyakov loop, as it is comprehensibly illustrated in [34] for QED

without dynamical fermions, is to start from the continuum theory with a partition function of a system

containing an infinitely heavy quark coupled to a fluctuating gauge potential. The field operator acting on

the states can be used together with the Dirac equation to derive the expression for the Wilson line in a

straight forward way. The QCD version is then given by

L(x) = Tr eP
∫ β
0 dx4A4(x,x4), (2.49)

which on the lattice translates to the Polyakov loop in eq. (2.47). The expectation value of the Polyakov

loop is an order parameter for the deconfinement phase transition of QCD without dynamical quarks. For

this reason I will continue the discussion and motivation about the Polyakov later in chapter 3.

Continuum Limit and Renormalization

In order for LQCD to describe QCD in the continuum the lattice action is required to transition into its

continuum counterpart in the limit a→ 0. However, this is only the naive continuum limit. In fact there is

an infinite number of lattice actions that reduce to the QCD action as a → 0 because there is a certain

freedom in the construction of a lattice action6. This requirement alone is insufficient in order to assure

the existence of a continuum limit that correctly describes QCD. The reason is that LQCD requires the

evaluation of a path integral whose results are observables Θ(g(a), a) which do non-trivially depend on

the lattice spacing a. For numerical calculations this implies the existence of a range of values of the

coupling g in which the correlation length ξ̂ (in lattice units) 7 of the system diverges, i.e. ξ̂(g) −→
g→g∗

∞.

This corresponds to a phase transition at which the physical scales become large in physical units in

contrast to the lattice which becomes successively finer. As the correlation length diverges the underlying

lattice structure looses its meaning. Only if the possibility for such a transition is given LQCD is able to

describe QCD in the continuum. An observable Θ with a mass dimension of d must approach a finite

value for a→ 0,

Θ(g(a), a) =

(
1

a

)d
Θ̂(g(a)) −→

a→0
Θphys, (2.50)

which assumes the corresponding lattice quantity Θ̂(g) to diverge. At the same time the lattice coupling

approaches its critical value, g → g∗. In order to keep physics constant, g has to be tuned to g∗ in a

particular way. This can be realized by fixing Θ(g(a), a) at its physical value Θphys and determining

g(a) = a(Θphys)
1/d as function of a 8.

A practical example in terms of LQCD is given by the phase diagram for Wilson fermions for which

the control parameters are the inverse lattice gauge coupling β = 6/g2 and the hopping parameter
6This allows for the construction of improved lattice actions which enable the extraction for physical results at larger lattice

spacings.
7The correlation length corresponds to the inverse of the smallest mass of the system, i.e. for QCD this is the pion mass mπ .
8The dependence of the coupling on a can be understood intuitively by considering successively finer lattices. To fix the

physical volume, the number of lattice sites and links must be increased by which the coupling has to be tuned accordingly to the
changing dynamics of the system.
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κ = 1/(2am+ 8), where m is the bare (i.e. non-renormalized) quark mass. In the limiting case of κ = 0

(infinitely heavy quarks) pure gauge theory with no dynamical fermions is obtained. In this limit the

Wilson and Polyakov loop act as true order parameters for the distinction between a confined phase at

β ≥ 0 and a deconfined phase in the limit of β →∞, separated by a phase transition occurring at some

critical value βc. Another limiting case is that of free dynamical lattice fermions at β = ∞ (g = 0).

Computing the quark propagators for the free theory, the correlation length can be shown to be given

by the inverse of the quark mass. Consequently the correlation length diverges for κ = 1/8. At β = 0,

results from strong coupling expansion calculations indicate that the quark mass vanishes at κ ≈ 1/4. The

points where the quark mass vanishes are also the points where the mass of the Goldstone modes (the

pions) of the system (associated with chiral symmetry breaking) vanishes. At finite values of β the quark

mass vanishes at some κ value 1/4 > κch(β) > 1/8, where κch(β) defines the so called chiral curve.

Consequently, fixing β and tuning κ from 0 to κch(β) the quark mass is decreased from∞ to 0. The

pion mass is reduced to 0 at κch(β), as well. The continuum limit can be approached in different ways.

One possibility for a mass-independent renormalization scheme is to follow the chiral curve given by

κch(β). Another, mass-dependent scheme is to use mass ratios like mπ/mρ which for a given β will

assume its experimental value at some value of k < κch(β). At this point the scale can be set (determining

the lattice spacing a) for which different scale-setting methods exist. This can be repeated for a series

of increasing values of β which yields a curve along which a decreases to zero and that terminates at

κch(β =∞) = 1/8. Note, that the lattice spacing a also depends on the dynamics of sea quarks and thus

is a function of β and κ, implying that lines of constant β are not lines of constant a. As a last remark,

note that this discussion is held on a rather qualitative level and only has the intention of showing that

establishing a true continuum result typically requires several LQCD simulations that subsequently have

to be subjected to a complex analysis.

The Renormalization Group Equation

The tuning described above is commonly referred to as the running of the bare parameters and can be

studied by means of the renormalization group theory. The corresponding renormalization group equation

to express this condition is

dΘ(g(a), a)

d ln a
=

(
∂

∂ ln a
+ β

∂

∂g

)
Θ(g(a), a) = O

((
a

ξ̂

)2

ln

(
a

ξ̂

))
, (2.51)

where

β =
∂g

∂ ln a
, (2.52)

is the renormalization group beta function9, which determines the lattice couplings dependency on a. For

small g it can be determined from perturbation theory and reads up to second leading order:

β(g) =− β0g
3 − β1g

5 +O
(
g7
)

β0 =
1

(4π)2

(
11

3
N − 2

3
Nf

)
β1 =

1

(4π)4

(
34

3
N − 10

3
N Nf −

N2 − 1

N
Nf

)
.

(2.53)

9Not to be mistaken for the inverse lattice gauge coupling.
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This can be used together with eq. (2.52) to find

a(g) =
1

ΛL
(β0g

2)
β1
2β2

0 e
− 1

2β0g
2
(
1 +O

(
g2
))
. (2.54)

The introduced energy scale ΛL is a result of the renormalization of the theory 10. It stems from solving

eq. (2.52) via separation of the integration variables and subsequent integration. Note, that ΛL depends on

the regularization scheme, i.e. different action lead to different values of ΛL whose ratios can be related

by tree-level perturbation calculation. The running coupling g(a) can be obtained by inversion:

g(a)−2 = β0 ln
(
a−2Λ−2

L

)
+
β1

β0
ln
(
ln
(
a−2Λ−2

L

))
+O

(
1

ln
(
a2Λ2

L

)) . (2.55)

As long as Nf < 11N/2 a decrease in the lattice spacing a leads to a decrease of the coupling g in a way

such that the physical observable in eq. (2.50) remains constant. This important property is referred to as

asymptotic freedom.

The True Continuum Limit a→ 0 & V →∞

As already indicated above, the inverse lattice coupling (c.f. eq. (2.32)) cannot simply be driven to

β → ∞ in order to arrive at the continuum limit a → 0 as it would also imply V → 0. Ideally before

approaching the continuum limit, the infinite volume limit is taken, i.e. Nσ →∞ and NT →∞. Taking

the infinite volume limit V →∞ and reducing the lattice spacing a to zero is also referred to as the true

continuum limit. Apparently in a numerical simulation neither one or the other is possible. Instead in

practice an extrapolation to a → 0 is performed by computing physical observables for several values

of β while keeping the physical volume L = aNσ, T = aNT fixed. Additionally the computations

have to be repeated for different physical volumes in order to allow for an extrapolation to the infinite

volume limit V →∞. Note, that finite temperature simulations of QCD (Nτ � Ns) introduce another (a

thermal) phase transition related to the critical temperature Tc, where QCD enters the deconfined phase

(the quark-gluon plasma ). This thermal phase transition will be topic later on, starting in section 3. For

the transitions discussed above the setting of zero temperature QCD was assumed, i.e. a large enough

temporal extent Nτ such that the system stays in the confined phase. However, in lattice simulations of

finite temperature QCD sometimes one has to cope with an interplay of the thermal transition and the

transitions discussed above which further complicates things.

10This property is referred to as dimensional transmutation. ΛL can be combined with a according to the standard b0
convention [61]: − ln

(
a2Λ2

L

)
= 1/(b0g

2) + b1/b0 ln(b0g
2) +O(g2)
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Chapter 3

LQCD Thermodynamics

From the modern renormalization-group approach we know that systems undergoing phase transitions

fall into universality classes, i.e. close to a critical point the behavior of the system only depends on

its dimensionalities, symmetries and range of interactions of the relevant order parameter. At finite

temperature and density the system under investigation is rather three-dimensional because we are

interested in its equilibrium statistical mechanics with three spatial dimensions. A temporal development

is not taking place. To put it on a more formal ground, we are considering the system with Euclidean

metric, where the temporal direction can be seen as a way to incorporate temperature into the systems

thermodynamics. The temporal direction Nτ = 1/(aT ) is fixed and small compared to the spatial size Ns

of the box. At present LQCD is used to study systems in equilibrium rather than the evolution and decay

dynamics of the system.

Keeping this in mind, in non-perturbative QCD at finite temperature and density we concern ourselves

with numerous questions addressing the phase transition from the hadronic phase to the QGP and its nature

predicted by QCD. In this work we are interested in the QCD phase transition at zero and at imaginary

chemical potential. In particular, we look at the QCD phase transition as a function of the quark mass

and investigate its nature mainly at heavy quark masses but at small quark mass, as well. This chapter

provides the necessary pieces of theoretical background for these studies. The first part of section 3.1

starts with a very qualitative reminder of the different possible types of thermal phase transitions. This is

followed by somewhat more technical passages about the theoretical means to detect phase transitions and

how to determine their nature. Additionally the important concept of critical exponents, universality and

the closely related topic of scaling laws will be discussed. The following sections 3.2 and 3.3 will enter

the field of LQCD at finite temperature and zero as well as non-zero density. There I will explain how the

QCD deconfinement and chiral transitions are related to the breaking of the center and chiral symmetries

in the heavy and light quark mass region. The switching on of a chemical potential and its implication,

the sign problem of QCD, will be explained as well as possible approaches to it, which includes a topic

central to this work: a purely imaginary chemical potential. As a natural way to proceed I chose to put a

brief and qualitative introduction about the notorious QCD phase diagram next in section 3.4. This serves

as a starting point for the last part of this chapter, which contains a more detailed treatment about the

phase structure of QCD on the lattice as a function of the quark mass while the chemical potential is fixed

at zero and at the critical value of the purely imaginary chemical potential, denoted as Roberge-Weiss

(RW) plane. The chapter is based on the presentations found in [33, 34, 50, 62–64] as well as on published

studies which will be cited at the appropriate places.
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Reminder: Phase Transitions in Statistical Mechanics

In a thermodynamic system matter can exist in different states. The possible forms of matter are fluid, vapor
1, solid and in some cases plasma. At specific values of thermodynamic quantities like temperature and

pressure phase transitions between the different states of matter take place. This leads to non-analyticities

in the free energy of the system as a function of thermodynamic parameters. A well known example

is H2O which has transitions between ice and water, water and vapor as well as vapor and ice. The

transitions are apparently accompanied by a drastic change of the properties of the substance. Depending

on the type of the transition this can happen in a continuous or discontinuous way. According to the

modern classification of phase transitions one distinguishes between two types of transition, motivated by

the Ehrenfest classification [65]:

• First order phase transition

If the temperature of the system is turned up until the point where it undergoes a phase transition,

the temperature remains constant for a while as latent heat is added. The system absorbs a specific

amount of energy per volume. During this process the two phases of the substance coexist which

means that in some regions the transition is complete while in others it is not. For instance, coming

back to the H2O example, at the first order transition between water and vapor the water is not

turned instantly into vapor but there is rather a turbulent mixture of water and vapor bubbles. For a

theoretical treatment one looks at order parameters showing a discontinuity at the transition. Their

values are zero in one phase and non-zero in another phase. Examples for such order parameters

are the net-magnetization in a ferromagnetic system or differences in the densities of a system at

liquid/gas transitions.

• Second order phase transition

Second order transitions are characterized by a divergence of the correlation length of the system

and other quantities like the heat capacity. Moreover power-laws can be found for correlations near

the critical point. The order parameter remains continuous. A typical example is a ferromagnetic

system for which the order parameter is the magnetization. It is zero above and non-zero below the

critical temperature. Much more can be said about second order phase transition. Some aspects are

discussed in section 3.1.2.

From a theoretical view, phase transitions are often related to symmetry breaking which gives rise to

order parameters. A distinction is made between spontaneous and explicit symmetry breaking. Roughly

speaking, the first happens due to the system spontaneously falling into a specific state for instance due to a

critical temperature that is reached. The latter one is temperature independent and depends on a quantity of

the system. For instance a magnetic background field breaks the symmetry in a magnetic system explicitly.

In many cases states of higher temperature (above the critical temperature) have larger symmetry content

in contrast to states with lower temperature (e.g. magnetization in a ferromagnet) but there are exceptions,

one of which I will discuss later in the context of QCD. Matter can change its properties rapidly in the

absence of singularities, as well. Such a transition is denoted by analytic crossover.

1For the sake of completeness and correctness, gas should be mentioned, as well, since there is a strict distinction between
the terms vapor and gas. For the sake of simplicity I will will not further discuss this distinction
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• Crossover

A rapid and drastic change of the physical properties of a system when a certain parameter is

changed. Some quantities like the specific heat reach their maximum but do not become non-

analytic. The system "crosses over" from one phase into another. A crossover is not unusual as

there exist many examples. For instance water displays this kind of transition in a certain region at

large temperature and pressure.

Note that according to the theorem of Lee and Yang [66, 67] non-analytic phase transitions can only occur

in the thermodynamic limit V → ∞ of infinitely many particles. In LQCD the partition function as a

functional integral over a compact group with a bounded exponential is a analytic function of temperature

T, chemical potential µ and the volume V . For this reason the identification of a true phase transition

can only be achieved by carrying out finite size scaling (FSS) analyses on a series of increasing and,

in particular, sufficiently large volumes. As a consequence, on finite volumes, where different phases

are connected by a smooth analytic transition, no specific temperature value Tc exists at which a phase

transition occurs. Instead, analytic transitions take place in a small range of temperature values. However,

of course it is still necessary and important to identify a single value of the temperature at which the

transition takes place. Such a temperature value for a smooth analytic transition is then referred to as

pseudo-critical.

Localization of Phase Transitions

The localization of a thermal phase boundary requires to adjust the parameters of the theory to their

critical values. For LQCD these parameters are the inverse lattice coupling β (controlling the temperature),

the quark mass mq and the chemical potential µ. In lattice simulations with finite volumes there are no

non-analytic phase transitions for which reason the critical values of the parameters are actually pseudo-

critical. A common approach to find the transition, two of these parameters can be kept constant and the

remaining one is varied. In this work the phase transition was located by tuning the temperature while

fixing a combination of quark mass and chemical potential. As the pseudo-critical values are approached

thermodynamic observables begin to change rapidly and exhibit strong fluctuations δO = O − 〈O〉. The

thermodynamic variables of interest are the ones giving the strongest signals at a phase boundary. In the

case of QCD these are typically the chiral condensate
〈
ψ̄ψ
〉

and the Polyakov loop P . The fluctuations

can be studied by statistical means and therefore one looks at quantities constructed from the central

moments µn = 〈(δO)n〉. The most important ones for investigating phase transitions include

µ2 =
〈
(δO)2

〉
, Bn =

µn

(µ2)
n
2

=
〈(δO)n〉
〈(δO)2〉n2

, with δO = O − 〈O〉 . (3.1)

where the second central moment µ2 is just the variance of O which reaches its maximum on the phase

boundary as the observable is constantly jumping between two phases. For the so-called standardized

central moments Bn there are in particular two interesting cases. Setting n = 3 gives the skewness which

is a measure for the lopsidedness of a distribution. Positively and negatively skewed data extends more

to the right and left, respectively. At a phase boundary the skewness is expected to vanish since there

the distribution of O is symmetric because the system equally visits all the phases. Setting n = 4 gives

the kurtosis which is a measure for the weight in the tails of a distribution. The kurtosis take on the

value 3 for a normal distribution whereas a value > 3 means that there is more weight in the tails than
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expected from a normal distribution. For instance, the kurtosis of the Polyakov loop P evaluated at the

deconfinement transition of QCD reaches its minimum which implies that the distribution of P has the

least weight in its tails. B4 is sometimes also referred to as the Binder cumulant [68] whose definition

differs trivially by subtraction and multiplication of constants but provides exactly the same information.

Here we will always use the definition of the kurtosis. In statistical mechanics the susceptibility χO takes

on the role of µ2 to which it is proportionally linked. The central moments µn are proportional to the n-th

order derivatives of the free energy of the system, which I will explain further below in section 3.1.3. The

quantities discussed above are used in this work to investigate the nature of the QCD phase transition on

the lattice and their practical application will be demonstrated in chapter 5 about the results of this work.

Identifying the Phase Transition Type

After having located the phase boundary the next step is to identify the nature of the transition. The

susceptibility χO diverges at a first and second order transition whereas it saturates for a crossover. The

kurtosis B4 takes on particular values that differ for a first or second order or a crossover-type transition.

This task turns out to be challenging since, as mentioned before, on finite volumes transitions are analytic

everywhere and thus a first or second order transition cannot be observed directly. Instead one examines

the behavior of the susceptibility χO as well as B4 which scale differently on a series of increasing

volumes for the different types of transitions. This procedure is called finite size scaling (FSS). The

remaining part of the section will be dedicated to this problem.

Remarks about the Susceptibility χO ∼
〈
(δO)2

〉
Susceptibilities come in many different forms. A general expression for susceptibilities in statistical

mechanics systems is given by the connected correlation function

χO =

∫
d3xd3y (〈O(x)O(y)〉 − 〈O(x)〉 〈O(y)〉) . (3.2)

If instead the spatial averages Ō are inserted translational invariance can be used to simplify χO to

χO = V
(〈
Ō2
〉
−
〈
Ō
〉2
)
. (3.3)

Note that the connected correlation function can typically be obtained from second order derivatives of

the free energy F of the system with respect to quantities of interest. This is particularly important when

finite size scaling studies are performed since the free energy carries the information needed to derive

scaling laws for quantities near a second order critical point. At such a point different theories share

something that is called a universality class (see section 3.1.2) which means they scale in the same way

with respect to the volume. This property can be used to learn something from simpler theories about the

finite size scaling of more complex theories. For instance in magnetic spin systems the susceptibility is

obtained from the second order derivative of the free energy F of the system with respect to the magnetic

field or the temperature. Since F is an extensive quantity in thermodynamics often the energy density

f = F/V is studied, where V is the volume. The magnetic susceptibility χh of the magnetization M can

then be defined as

χh = − 1

T

∂2f(h, t)

∂h2

∣∣∣∣
t

=
1

V

〈
(δM)2

〉
, (3.4)
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where h = B/T is the reduced magnetic field and t = |T − Tc| /Tc is the reduced temperature. The

definition is likewise given for χt. Note that in (3.3) spatial averages were used whereas for (3.4) extensive

quantities were used which implies different volume factors. Therefore caution should be exercised in

using the different definitions.

Critical Exponents and Universality

Critical exponents and universality are discussed most readily in the context of magnetic systems exhibiting

a second order transition that separates a paramagnetic from a ferromagnetic phase. A well known testing

ground to study magnetic spin systems is the two or three dimensional Ising model. Moreover, studying

these rather simple models helps to learn something about more complex theories. For instance, the 3D

Ising model and QCD (in a certain range of parameters) share the same universality class, a term I will

explain further below. In order to convey the main ideas about the behavior of systems at second order

transitions, it is enough to consider the simple 2D Ising model. The model possess a global Z2 symmetry,

i.e. the energy of the system is unchanged under a global interchange of up and down spins. Very similar

ideas also apply to quantum field theories. Moreover, QCD (in a certain range of parameters) and the 3D

Ising model share the same universality class, a term I will explain further below. For the 2D Ising model

the partition function encoding its thermodynamical properties and its Hamiltonian are given by

Z =
∑
c

e−βH(J,B), H = −J
∑
n,i

s(n)s(n+ i)−B
∑
n

s(n), (3.5)

where c is the index labeling the configurations and n is labeling the lattice sites. The Hamiltonian H , as

a function of the coupling J and an external magnetic field B, takes only into account nearest neighbor

couplings. β is the inverse temperature. The sum is over the number of configurations given by 2N with

the number of lattice sites N . The key quantities to study the thermodynamic properties and the phase

transition of this system are

F = −T lnZ, M =
1

N

∂F

∂B
, χ =

∂M

∂B
, C = −T ∂

2F

∂T 2
. (3.6)

F is the free energy which is the thermodynamic potential for this system. The magnetization M is a

function of the temperature T and the external magnetic field B. Evaluating the expression for M in eq.

(3.6) gives

M =

〈
1

N

N∑
n=1

s(n)

〉
. (3.7)

It serves as an order parameter to distinguish between the paramagnetic and ferromagnetic phase. For a

zero magnetic field B it gives a non-zero expectation value below a critical temperature Tc (the Curie

temperature in the Ising model) which spontaneously breaks the Z2 symmetry of the system. M vanishes

as the temperature is driven towards Tc. In the phase above Tc the Z2 symmetry is restored and the

magnetization remains zero. On the second level of derivatives of the free energy there are χ, the magnetic

susceptibility that measures the effect of the magnetic field on the spins, and the specific heat C that shows

how the system reacts to changes in the temperature. Evaluating the expression for χ in eq. (3.6) shows

that it is a sum over the spin-spin correlation function Γ(n) 2,

χ =
1

T

∑
n

Γ(n), Γ(n) = 〈s(n)s(0)〉 − 〈s(0)〉2 . (3.8)

2After computing the derivative χ = ∂M/∂B translational invariance was used to simplify the appearing spin sums.
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At a certain critical temperature Tc the net magnetization 〈s(0)〉 is expected to vanish so that the spin-spin

correlation function reduces to Γ(n) = 〈s(n)s(0)〉. As χ is a sum over the spin correlations, it can diverge

in the thermodynamic limit, if the dynamics of the system develop sufficient long range correlations.

Above Tc the correlation function falls of exponentially, i.e.

Γ(n) ∼ e−
|n|
ξ(T ) , for T > Tc. (3.9)

The spins might be disordered but the system may save energy by allowing spins in certain regions to

point into the same direction. In the relation above ξ(T ) is the correlation length which is a measure

for the spatial distance over which the spins are correlated (c.f fig. 3.1). Below Tc the magnetization is

non-zero and thus average fields have to be subtracted as it is done in eq. (3.8) but the behavior is still

described by eq. (3.9). The subtraction of the average fields shows the fluctuations away from perfect

order.

ξ

Figure 3.1: A ferromagnetic fluctuation of

length ξ.

It has been observed experimentally for magnetic systems

that all of the quantities in eq. (3.6) in the vicinity of a crit-

ical point Tc display power-law behavior as a function of the

temperature, i.e. they become free from any dependence on

a length scale like ξ. This implies that characteristic fluctu-

ations occur over all length scales, a property that applies to

many other systems as well. These powers are given in form

of the critical exponents α, γ, δ, β, ν and η. Typically the be-

havior is defined via the reduced temperature t = (T−Tc)/Tc.

The physical quantities are related to the critical exponents

as follows:

• magnetization M ∼ (−t)β ,

• susceptibility χ ∼ |t|−γ ,

• correlation function

Γ(n) ∼

 e−
|n|
ξ |n| � ξ

|n|−d+2+η |n| � ξ,

where d is the systems dimensionality,

• specific heat C ∼ |t|−α, and

• correlation length ξ ∼ |t|−ν .

The effect of an infinitesimal B field on the system at T = Tc is determined by δ:

• M,χ ∼ B1/δ, for both M and χ likewise.

The important piece of information is that at a critical point the correlation length diverges, leading to huge

fluctuations and singularities in some thermodynamic quantities even if the coupling of the system is short

ranged. The characteristic length scales disappear and the thermodynamic quantities follow scale-invariant

power laws determined by the critical exponents.
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Universality classes describe classes of systems that have the same power behavior at a critical point. In

some ferromagnets the behavior of thermodynamic quantities at a phase transition is determined by the

same critical indices as it is the case for some liquid crystals. Within a universality class the collective

behavior is characterized by

• the dimensionality of a system,

• the symmetries of the local variables in the energy of the system,

• the symmetries of the coupling between the local variables, and

• the range of couplings in the energy.

The universality classes are characterized by spin models as they can be solved analytically or inexpen-

sively by numerical means in contrast to more complicated theories like QCD. In fact, for QCD and many

other systems usually several universality classes are of relevance because in such systems the related

global symmetries are determined dynamically in the vicinity of a critical point.

Scaling Laws

Scaling of the Free Energy

A de facto standard framework for the description of universality classes and critical phenomena in

general is Wilsons renormalization-group approach that was introduced in 1974 and comprehensibly

presented in his detailed work [69]. The analysis relies on a variation of the length scale at which the

physics are investigated. Some time before the onset of Wilsons renormalization-group theory Widom

[70] proposed a hypothesis about the behavior of a magnetic system near a critical point. He assumed that

experimental findings might be explained if the free energy density (f = F/V ) has a certain form under

the transformation of the length scale. According to his hypothesis under a scaling of the length L→ bL

with an arbitrary factor b the singular part of the free energy density is expected to behave like

fs(t, h) = b−dfs(t
′, h′), t′ = bytt, h′ = byhh, (3.10)

with the reduced temperature t as before and the reduced field h = B/T . The so called temperature and

magnetic exponents yt and yh are yet to be determined. Eq. (3.10) and the relations between the free

energy and the thermodynamic observables like the magnetization, specific heat and susceptibility (c.f. eq.

(3.6)) can be used to write critical exponents in terms of yt and yh:

α = 2− d

yt
, β =

d− yh
yt

, γ =
2yh − d
yt

,

δ =
yh

d− yh
, ν =

1

yt
, η = 2 + d− 2yh.

(3.11)

The exponents yt and yh can be determined using the renormalization-group approach by seeing how the

fields t and h flow under renormalization. This then gives access to the critical exponents which can be

compared with experimental observations.
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Scaling Properties in QCD

In [71] it was proposed to study scaling properties of QCD with an effective Hamiltonian in analogy to

spin models,
Heff

T
= τE + hM, (3.12)

that controls the dynamics and the universal critical behavior in the vicinity of a second order point. E
andM are extensive energy-like and magnetization-like operators with their respective couplings1 τ

and h. In QCD finite values of the quark mass break all global symmetries explicitly for which reason

they are non-trivially related to the symmetries of Heff. Thus it can be expected that the QCD operators

O = {
〈
ψ̄ψ
〉
, P, . . .} and the relevant couplings β,mq are mixtures 2 of E ,M and τ, h, respectively.

Renormalization-group arguments show that the scaling hypothesis for the singular part of the free energy

density (c.f. eq. (3.10)) can be applied, i.e.

fs = b−dfs(b
ytτ, byhh). (3.13)

The arbitrary scale factor b can be set to b = LT = Ns/Nτ to give the spatial extent of the lattice in units

of inverse temperature.

Scaling of the Susceptibilities

Knowing the scaling form of the free energy density f the scaling of related quantities like the temperature

and magnetic field susceptibilities χτ and χh near a second order critical point can be deduced:

χτ ∼ b−d
∂2f(τbyτ , hbyh)

∂τ2
= b−d+2yτ f ′′(τbyτ , hbyh) = bα/νf ′′(τbyt , hbyh),

χh ∼ b−d
∂2f(τbyτ , hbyh)

∂h2
= b−d+2yhf ′′(τbyτ , hbyh) = bγ/νf ′′(tbyτ , hbyh).

(3.14)

In the last step the relations in (3.11) have been used. As the scaling factor b is arbitrary it can be set to the

linear extent L of the system. With the scaling factor b = Ns/Nτ chosen as before the following scaling

relation can be obtained:

χh/N
γ/ν
s = Φ(τN

1/ν
s ), (3.15)

where Φ is a scaling function proportional to the second derivative of the free energy density f . In the

previous paragraph I explained that the QCD operators are mixtures of energy-like and magnetization-like

operators. Therefore, if χ is constructed from QCD operators O = {
〈
ψ̄ψ
〉
, P, . . .}, its finite size scaling

behavior will be dominated by the larger of γ/ν or α/ν. For the universality classes of QCD, Z2, O(4)

and O(2), this is γ/ν. Thus, if χh/N
γ/ν
s is plotted against τN1/ν

s all curves from different volumes

labeled by Ns should coincide. It can be useful to rule out scenarios for the order of a phase transition by

inserting the respective values of the critical exponents. For instance in the crossover regime the curves

Φ(τN
1/ν
s ) for different Ns do not coincide for the second order value of γ/ν.

Scaling of the Kurtosis (B4)

For the kurtosis introduced in section 3.1.1 scaling relations can be derived likewise. As B4 is constructed

from moments of the fluctuations δO it can be written in terms of fractions of derivatives of the free
1In the case of the Ising models discussed above, τ and h are proportional to temperature and magnetic field.
2In [71] a thorough analysis and numerical study about the mixing of the LQCD observables has been done.
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energy 3. Following the presentation in [72] the expression for magnetization-like operators M is given

by derivatives with respect to h,

B4(τ, 0) =
F (4)(τ, h)

∣∣
h=0(

F (2)(τ, h)
∣∣
h=0

)2 =
N4yτ

s F (4)(Nyτ
s τ, 0)(

N2yτ
s F (2)(Nyτ

s τ, 0)
)2 =

F (4)(Nyτ
s τ, 0)(

F (2)(Nyτ
s τ, 0)

)2 , (3.16)

where

F (n)(τ, h) =
∂nF (τ, h)

∂hn
. (3.17)

In the second step of (3.16) the scaling of the free energy density was used, setting the scaling factor

b = Ns. Then B4(τ, 0) can be expanded around τ = 0 which corresponds to the critical point at which

the system undergoes a second order phase transition and obtain 4

B4(τ, 0, Nτ ) =
F (4)(0)(
F (2)(0)

)2 +AτN
1/ν
s +O

((
τN

1/ν
s

)3
)
, (3.18)

where yτ = 1/ν was used (see (3.11)). For τ > 0, B4(τ, 0, Nτ ) is volume dependent but at τ = 0 this

dependency vanishes and the curves B4(τ, 0, Nτ ) for different Nτ intersect, i.e. they share the common

value B4 = F (4)(0)/
(
F (2)(0)

)2
. This is no surprise as all the characteristic length scales of the system

loose their meaning close to a critical point and B4(τ, 0, Nτ ) is expected to take on its universal value B4

specific to the corresponding universality class. Therefore one can write

B4(τ, 0, Nτ ) = B4 +AτN
1/ν
s +O(N

2/ν
s ). (3.19)

This equation can be used to simultaneously fit LQCD Data describing the curves B4(τ, 0, Nτ ), sharing

the parameters B4 and A. This procedure is nothing but a finite size scaling analysis. In this context of

intersecting curves B4(τ, 0, Nτ ) the fitting procedure is sometimes referred to as intersection analysis of

B4 in the literature. In QCD the observables of interest are mixtures of energy-like and magnetization-like

operators and in this case the kurtosis should be constructed respectively. Therefore one considers mixed

derivatives of the free energy with respect to τ and h:

F (nm)(τ, h) =
∂n

∂τn
∂m

∂hm
F (τ, h). (3.20)

In this case B4 comes with an additional factor Nyτ−yh
s . To first order in Nyτ−yh

s the result is

B4(τ, 0, Nτ ) =
F 04(Nyτ

s τ)

(F 02(Nyτ
s τ))

2

(
1 +BNyτ−yh

s +O
(
N

2(yτ−yh)
s

))
, (3.21)

and the expansion around τ = 0 reads

B4(τ, 0, Nτ ) =
(
B4 +AtN

1/ν
s +O(N

2/ν
s )

)(
1 +BNyτ−yh

s +O
(
N

2(yτ−yh)
s

))
. (3.22)

The full derivation is given in A.1. Note that B4(τ, 0, Nτ ) is volume dependent even for τ = 0. However,

for the universality classes relevant for QCD the difference yτ − yh is negative and thus the additional

correction term (1 +BNyτ−yh
s ) becomes irrelevant for sufficiently large volumes.

3Note, that the free energy F was used instead of the free energy density f = F/V because the volume factors V simply
cancel out.

4The reason that there is no second order term is that the Z2 point represents an inflection point of B4.
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Summary of Exponents and Quantities Specific to Universality Classes and Transitions

Z2 Ising O(2) O(4) 1st order triple Tricritical Crossover

B4 1.604 | [73] 1.242(2) | [74] 1.092(3) | [75] 1.5 2 3

ν 0.6301(4) 0.6703(13) | [76] 0.7479(90) | [75] 1/3 1/2 –

α 0.1101(1) -0.011(4) | [76] -0.25 | [72] – – –

γ 1.2373(2) 1.3169(20) | [76] 1.477(18) | [75] 1 1 –

1/ν 1.5870(9) 1.4917(29) 1.337(16) | [75] 3 2 –

α/ν 0.1747(2) -0.0164(60) -0.3342(40) – – –

γ/ν 1.9637(13) 1.9646(50) 1.9746(38) | [75] 3 1/2 –

yt − yh -0.8944(6) -0.9905(38) -1.1546(100)

Table 3.1: Summary of critical exponents and B4 for universality classes Z2 Ising, O(2) and O(4) as well
as for 1st order triple, tricritical and crossover transitions. The values refer to the three-dimensional case.
The values in blue color are just computed from the available non-colored entries in the tables. For the
last row 1/2ν(α− γ) = yt − yh has been used.

Provided a reference for the values could be found in the literature, it is cited by the numbers [xx].

Table 3.1 summarizes the critical exponents for the three universality classes Z2 Ising, O(2) and O(4)

for the 3-dimensional case relevant for QCD. Values of the exponents for 1st order triple, tricritical and

crossover transitions are listed, as well. The values of the O(4) column have been determined (except

α an α/ν) in [75] with Monte Carlo simulations of the three-dimensional classical O(4) Heisenberg

model whose universality class is considered a candidate for the finite temperature transition in QCD

with two massless quark flavors. The estimated values present an update of the values obtained from the

4− ε expansion method with errors reduced to about the half. The 3D O(2) universality class is another

possible candidate for the finite temperature transition in QCD with two massless quark flavors. The

exponents have been determined in [76] for the N-vector model against the background of RG functions

(seven loop order) of the 3D φ4 field theory using techniques related to Borel summation techniques.

Finite Temperature LQCD at Zero Baryon Density

The partition function of a statistical thermal system, given by

Z = Tr
[

e−βH
]
, (3.23)

is equivalent to the partition function of the path integral formalism. In this expression β corresponds to

the inverse temperature, as it is the usual notation in statistical mechanics. In section 2.2 it was said that

the path integral partition function in eq. (2.8) can be derived from the general euclidean partition function

in eq. (2.3), where the factor T in the exponential is a formal maximal temporal extent. In LQCD this is

simply the temporal lattice extent given by the product aNτ of lattice spacing and number of temporal

lattice sites. The partition function can be obtained from the euclidean time transporter or transfer matrix
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e−aH that connects two temporal time slices:

Z =

∫ ∏
τ

(
DU i(τ,x, ) e−aH

)
= T̂r

[(
e−aH

)Nτ ]
= T̂r

[
e−aNτH

]
. (3.24)

A detailed derivation is presented in [50]. By comparing eq. (3.24) with eq. (3.23) it becomes apparent

that the inverse temperature can be identified with the temporal extent of the lattice

1

T
= aNτ (T =̂ Temperature). (3.25)

In a correlation function like in eq. (2.2) taking the limit ofNτ →∞ projects onto the vacuum expectation

value, i.e. the expectation value at zero temperature. Of course, in numerical lattice simulations Nτ is

always finite but if the intention is to study vacuum physics the temporal extent is chosen large enough

such that it can be considered to approximate the limit Nτ → ∞ sufficiently well. Accordingly, in

finite temperature simulations Nτ is chosen sufficiently small such that contributions from excited

energy states with Boltzmann weights e−aNτ∆E become significant. Small Nτ has further important

physical implications: If fields are Fourier transformed to change between momentum and position space

representation the associated Matsubara frequencies l2π/(aNτ ) for Bosons are discrete and limited to

(−π/a, π/a]. The value of l is restricted by −Nτ/2 + 1 ≤ l ≤ Nτ/2 and hence Nτ determines the

number of possible Matsubara frequencies. This practically means there are fewer and coarser energy

levels separated by 2π/(aNτ ). For fermions there is and additional shift π/(2aNτ ) which leads to odd

Matsubara frequencies. As the thermodynamic limit V →∞ is approached the Matsubara frequencies

stay discrete due to the compactified time dimension opposed to the spatial components of the Fourier

sum, which become continuous. This results in Feynman rules different from vacuum physics. For a

thorough treatment of the topic see [36]. A further complication shows up when studying exponential

decay properties in time direction of for instance particle propagators. At small Nτ there are only few time

steps that can be followed so that the exponential curve cannot be well resolved. A method introduced

in [77, 78] and discussed in detail in [50] suggests to deal with this problem by introducing different

lattice spacings a and aT in spatial and temporal direction, respectively. Then Nτ can be increased while

fixing the physical temporal extent LT and keeping L/LT large, without having to increase the number of

spatial lattice points N .

Controlling Temperature & Constraints on Lattice Paremeters

From eq. (3.25) it is apparent that the Temperature T is a function of the number of temporal lattice

sites Nτ and the lattice spacing a. Using Nτ the temperature can only be changed in discrete steps of

a size depending on a which in general is impractical. In contrast a allows for a continuous variation

of T . This for instance enables to scan precisely for the critical temperature Tc at which the system

undergoes a thermal transition. Using this property it should be kept in mind, that different values of a

imply different cut-off effects. The parameter a can only be controlled indirectly by the inverse lattice

coupling β(g(a)) (eq. (2.32)). The relation between the lattice coupling g and a is stated in eq. (2.54).

The snag with this relation is, that it is derived from perturbation theory which is not convergent for the

lattice spacings accessible in current finite temperature lattice simulations. However, the lattice spacing a

can be determined by different scale setting methods, one of which is the Wilson flow method (see for

instance [79]), which is used in this work.
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If systematic errors like finite volume and discretization effects are to be avoided there are several

conditions to be fulfilled. One such case for instance concerns discretization errors of hadron masses

in a low temperature regime. The extent of a hadron is given by its Compton wavelength that is the

inverse of the hadron mass. The Compton wavelength of the hadron should be significantly larger than the

lattice spacing, i.e. a� 1/mh or amh � 1, respectively. If this condition is not met, the extraction of

a hadron mass by means of a lattice calculation in a standard way will not yield a meaningful result. A

common way of speaking about this is to say "the hadron falls through the lattice". However, at present

there are situations, e.g. finite temperature simulations with heavy quarks, where it might not possible to

access sufficiently small lattice spacings to meet this criterion due to computational restrictions. In fact

often the lattice mass is amh ≈ 1 or even larger. If one desires to obtain a meaningful result in this case,

more elaborate methods have to be consulted, like extracting the mass in the framework of Heavy Quark

Effective Theory (HQET) or Non-Relativistic Quantum Chromodyanmics (NRQCD). However, note that

these are different theories and trying to employ HQET or NRQCD to solve or work around problems like

amh > 1 occuring in finite temperature LQCD simulations with e.g. Wilson fermions could turn out to a

be difficult - not to say impossible - task, since matching quantities in both theories might simply not be

possible. On the other handside the extent of the lightest degree of freedom should be small compared

to the spatial extent of the system, in order to avoid finite volume effects. Together with the previous

constraint this can be summarized as:

a� m−1
h � aNs. (3.26)

In simulations with large temperatures additional restrictions should be respected. As mentioned in the

last section the Boltzmann weights become noticeable at sufficiently small temporal extent. This implies

that screening masses scale like mh ∼ T = 1/aNτ . In conjunction with the right inequality of eq. (3.26)

this implies
1

T
= aNτ � aNs. (3.27)

The left inequality implies

1� amh ∼ aT =
1

Nτ
. (3.28)

In summary this combines to

N−1
τ � 1� NsN

−1
τ . (3.29)

The QCD Deconfinement Transition

In this section I will discuss aspects of the QCD deconfinement transition, i.e. the transition at which QCD

changes from the phase in which quarks and gluons are confined into the phase where they are deconfined

- the quark-gluon plasma . The starting point will be Yang-Mills (pure gauge) theory, i.e. the quenched

theory for which the quark determinant is set to unity implying infinitely heavy and thus static quarks.

Against this background I will meet the announcement from section 2.7 to further motivate the Polyakov

loop as an order parameter for the deconfinement transition As a natural follow up of the discussion I will

address the Z3 center symmetry of QCD as its breaking is associated to the deconfinement transition. I

will also address the case of leaving pure gauge theory through the inclusion of dynamical fermions.
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The Polyakov Loop as Order Parameter for the Deconfinement Transition

We consider Yang-Mills theory where the quark determinant is set to unity and which is referred to as

quenched QCD. This means the quarks are infinitely heavy and static. In section 2.7 it was shown that the

static quark-antiquark potential can be extracted from the correlator of two Polyakov loops situated at

spatial sites m and n. In the language of thermodynamics, the potential is simply the free energy between

a quark and an antiquark separated by r = a |m− n|, i.e.

〈P (m)P (n)〉 ∝ e−Fq̄q(r)/T . (3.30)

For large distances separating the quark and the antiquark the correlator factorizes and because of its

translational invariance can be expressed as the square of the absolute value of the Polyakov loop:

lim
r→∞

〈P (m)P (n)〉 = 〈P (m)〉 〈P (n)〉 = |〈P 〉|2 . (3.31)

Then |〈P 〉| represents the probability to observe a single static color charge with a purely timelike world

line. The actual expectation value is computed by averaging over the spatial box and is related to the free

energy needed to put an external static color source in the fundamental representation to the system:

e−Fq/T ∝ |〈P 〉| =
∣∣∣∣∣
〈

1

N3

∑
n∈Λ

P (n)

〉∣∣∣∣∣ . (3.32)

At low temperature the theory is expected to be in a phase where quarks are confined through flux

tubes. These create a linear confining potential implying an energy per unit length of the flux tube. In

this phase the Polyakov loop represents a heavy static quark impurity which requires an infinite free

energy Fq in order to be put into the system because it acts as the source of an "infinitely" long flux tube.

Another way of seeing it is to view Fq as the energy needed to remove a static quark to infinity. Doing so

would infinitely extent the flux tube between two color sources resulting in a infinitely large free energy.

Accordingly, in the thermodynamic limit, the expectation value |〈P 〉| must vanish. In contrast in a finite

box the free energy diverges as the linear spatial dimension of this box. As the system is heated a thermal

transition to a deconfined phase is expected to take place at a temperature Tc, consisting of a hot and dense

quark-gluon plasma in which the gluons Debye-screen the quarks color field. If a quark in the fundamental

representation of color SU(3) is inserted into the plasma its field gets screened exponentially and thus

is short-ranged. Moreover the string tension of the static quark-antiquark potential should vanish. Thus

also the free energy of a static quark put into or removed from the system remains finite. This implies

a non-vanishing expectation value |〈P 〉| in the deconfined phase. Fundamental works about this topic

are [80, 81]. It is also important to consider the two limiting cases of the theory in which the discussed

properties can be readily read off. In the limit of T → 0 of the low temperature phase e−Fq/T vanishes

and so clearly does the expectation value |〈P 〉|. The opposing limit T → ∞ in the large temperature

phase corresponds to infinitely large inverse lattice coupling, i.e. vanishing lattice coupling for which

U0 = 1. Accordingly, the expectation value of the Polyakov loop takes the value |〈P 〉| = 3 for SU(3).

The conclusion is that the Polyakov loop acts as an order parameter for pure gauge theory distinguishing

between a confined phase where free charges cannot exist and a deconfined phase where single charges

get screened and can be observed. This can be summarized as follows:

〈P 〉 = 0 confinement T < Tc Fq is infinite

〈P 〉 6= 0 deconfinement T > Tc Fq is finite
(3.33)
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The order parameter has been studied for an effective 3-dimensional spin model with a global Z3 symmetry

[82]. Universality arguments led to the suggestion for a first order transition in the limit of infinitely heavy

quark masses. This could be confirmed already some time ago by numerical simulations of quenched

QCD.

The Z3 Center Symmetry in the limit mq →∞

Of course, the phase transition needs to be associated to the breaking of a global symmetry group. The

Polyakov loop as an order parameter is a locally gauge invariant quantity so the question arises if there is

a global component related to SU(3) color rotations that leaves the Polyakov loop non-invariant. The

answer is yes such a transformation exists, namely the center transformation. A center transformation is a

gauge transformation with SU(3) matrices that are only periodic in time direction up to an additional

factor,

Ω(n, t+Nτ ) = c Ω(n, t), (3.34)

where c belongs to the center of the group consisting of the cubic roots5,

c = z1 ∈ Z(N) z = ei
2πn
N n ∈ {0, . . . , N − 1}. (3.35)

The SU(3) center elements are thus given by

c ∈ {1, ei
2π
3 1, e−i

2π
3 1}. (3.36)

The transformation is applied to all temporal links in a given temporal times slice n4 = t0. The gauge

action is invariant under such a transformation since it contains only trivially closed loops that go through

the specific plane n4 = t0 one time for each direction, i.e. they have as many center elements in one

direction as in the opposite. Since the center elements are proportional to the unit matrix they commute

with every other group element and simply cancel out in the closed loops. For instance the center

transformation of a plaquette in the time slice n4 = t0

Pµν(n) = Uµ(n, t0)Uν(n + µ̂, t0)U †µ(n + ν̂, t0 + 1)U †ν (n, t0), (3.37)

is given by

Pµν(n) −→ P ′µν(n) = Uµ(n, t0)zU4(n + µ̂, t0)U †µ(n + ν̂, t0 + 1)z†U †4(n, t0)

= Pµν(n),
(3.38)

which is invariant since zz† = 1. In contrast the Polyakov loop is sensitive to this transformation, since it

is not a trivially closed loop but winds around the compact temporal direction picking up a factor z when

a center transformation is applied. This factor is not canceled because no other part of the loop is going

5A complex exponential can be written alternately in terms of a root, for instance exp(−i2π/3) = − 3
√
−1.
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through the temporal boundary in the opposite direction. The transformation reads

P (n) −→ P ′(n) = Tr

[
Ω(n, t0)

(
Nτ−1∏
n4=t0

U4(n, n4)

)
Ω−1(n, Nτ )

]

= Tr

[
Ω(n, t0)

(
Nτ−1∏
n4=t0

U4(n, n4)

)
Ω−1(n, t0)c−1

]

= z∗Tr

[
Nτ−1∏
n4=t0

U4(n, n4)

]
= z∗P (n).

(3.39)

Considering again the two cases in eq. (3.33) it becomes apparent that the center symmetry breaks

spontaneously above a critical temperature Tc where the Polyakov loop develops a ground state expectation

value [83]. In the thermodynamic limit 〈P 〉 is settled in one of the center sectors given by the cubic roots.

In finite temperature LQCD simulations the finite volume leads to tunneling between the three sectors

located at the points corresponding to the cubic roots in the complex plane, spoiling a reliable estimation

of 〈P 〉. Simulating larger volumes suppress this tunneling but the systematic error is not under control.

Instead 〈|P |〉 can computed which, in the thermodynamic limit, coincides with the quantity of interest,

|〈P 〉| (c.f. eq. (3.32)) 6.

Dynamical Fermions and Z3 Symmetry

Including dynamical fermions implies having finite quark mass, i.e. leaving the quenched case where

quarks are infinitely heavy and static. The quark mass is then controlled via the corresponding parameter.

For instance for the Wilson discretization of fermions (see section 2.6) this parameter is the so called

hopping parameter κ. In section section 2.2 it was already explained that fermions require anti-periodic

boundary conditions in time. Under a center transformation

ψ(n, Nτ )→ ψ′(n, Nτ ) = Ω(n, Nτ )ψ(n, Nτ )

= −c Ω(n, t0)ψ(n, t0),
(3.40)

the only allowed value for the center element is c = 1. Thus taking into account dynamical fermions

breaks the center symmetry explicitly. Another way of viewing it is to remember that the fermion

determinant can be written as the exponential of a sum over all possible closed loops of gauge links

including the ones winding non-trivially around the compactified time direction, i.e. Polyakov loops.

Therefore the QCD action is not invariant anymore under a multiplication of the temporal gauge links in a

time slice. Physically the pair production of the quarks screens the confining force which leads to string

breaking of the potential between two quarks and therefore Fq is always finite. In other words, the flux

tube created by a color source represented by the Polyakov loop gets always terminated by the dynamical

quarks in the system. An important implication is that a non-analytic phase transition as function of

temperature is not necessary anymore. The confined and deconfined regions can be analytically connected

by a crossover transition. It will be discussed later on that for large quark masses (small values of κ

for Wilson fermions) the deconfinement transition remains non-analytic in the thermodynamic limit but

that it weakens and turns into a crossover as the quark masses are decreased. The Polyakov loop has a
6For V →∞ the distribution P(|P |) approaches a δ-distribution.
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non-vanishing expectation value for all values of the temperature and hence is not a true order parameter

anymore. If a true order parameter is desired one has to seek for alternatives. One such alternative is

investigated in [84] where a gauge invariant two-point function is studied that can be used to distinguish

between phases of gauge theories with matter fields. However, the Polyakov loop still serves to determine

the deconfinement transition by studying its distribution. The methods for doing so will be explained in

the upcoming sections.

Chiral Symmetry and Deconfinement in the Light Quark Mass Region

Lets move away from heavy quark masses all the way to the opposite limit of vanishing quark masses

where chiral symmetry properties of QCD become relevant. At zero quark mass the classical QCD

Lagrangian is invariant under chiral rotations which are characterized by the symmetry group

UA(1)× SUL(Nf )× SUR(Nf ), (3.41)

consisting of the anomalous UA(1) that is broken down to Z(Nf ) by quantum corrections and SUL(Nf )×
SUR(Nf ) that is spontaneously broken to SUV (Nf ), generating N2

f − 1 Goldstone bosons which are the

pions (π+, π0, π−) for Nf = 2. The order parameter for distinguishing between a chirally broken and a

chirally symmetric phase is the quark chiral condensate〈
ψ̄ψ
〉

=
1

N3
s Nτ

∂

∂m(f)
lnZ, (3.42)

which assumes a non-zero value at a temperature T < Tch where chiral symmetry is spontaneously broken

and a zero value at a temperature T > Tch where chiral symmetry is unbroken, i.e.〈
ψ̄ψ
〉

= 0 chirally broken phase T < Tc〈
ψ̄ψ
〉
6= 0 chirally symmetric phase T > Tc

(3.43)

The order of the phase transition in the limit mq → 0 can be either of first or second order and depends

heavily on the number of flavors and their respective quark masses, about which I will tell more later

in section 3.5.2. In the case of non-zero quark mass the chiral symmetry gets broken explicitly and the

chiral condensate is
〈
ψ̄ψ
〉
6= 0 for all values of T . Then a non-analytic phase transition is possible but

not necessary anymore, i.e. the two phases can be connected by a smooth crossover transition. As it is

the case for 〈P 〉 the chiral condensate is no longer an order parameter in the strict sense but using it to

study the phase transition is still perfectly legitimate. In LQCD chiral symmetry can be broken even for

vanishing quark masses by the discretization, e.g. Wilson fermions (see section 2.6), or have a reduced

version of chiral symmetry, as in the case of staggered fermions with a U(1) chiral symmetry. There

is an argument by A. Casher that relates chiral-symmetry breaking to the formation of bound states as

well as to confinement. At the deconfinement transition the connections between the quarks break up

and then naturally the question arises whether the temperatures Tch and Tc coincide. This is a non-trivial

problem because the forces between a quark and an antiquark do not simply vanish in the quark-gluon

plasma phase and may still cause q̄q condensation. From numerical simulations it could be observed that

the deconfined phase is entered at about the same temperature at which chiral symmetry is restored and

thus the screened forces between quarks in the fundamental representation seem not to be sufficient to

produce q̄q condensation. This problem received a lot attention and led to many controversies in the past.

See for instance [85–87] where Tch has been determined for physical masses of mu,d and ms to be about

36



150MeV using
〈
ψ̄ψ
〉

and Tc has been determined from observables of 〈P 〉 with a stronger signal at the

deconfinement transition that resulted in a value of about 25-30MeV > Tch. However, the findings of

the past suggest that gluonic forces responsible for bound-state formation, confinement and flux tube

formation do also give rise to chiral symmetry breaking.

Finite Temperature LQCD at Non-Zero Baryon Density

In the previous section I discussed lattice QCD at zero chemical potential which describes a system at

balance between matter and antimatter. An example for a system that can be described with zero or almost

zero chemical potential is the early universe where there was only a very small difference between matter

and antimatter. In order to address problems such as heavy ion collisions or neutron stars the effect of

non-zero baryon density has to be taken into account, which can be realized by an implementation of a

non-vanishing chemical potential into the QCD partition function.

Introducing a Chemical Potential

In order to implement a chemical potential into the continuum theory we extent its grand canonical

partition function by adding to the action the chemical potential µ times the Quark number Q:

Z(T, µ) = Tr e−(H−µQ)/T . (3.44)

The quark numberQ is related to the baryon number viaQ = 3B since If nq and nq̄ denotes the number of

quarks and antiquarks, respectively, the baryon number is given by B = 1/3(nq − nq̄). Correspondingly

the net number of baryons can be expressed in terms of the relation between the baryon number and the

quark number, Q = 3B. The quark chemical potential is related to the baryon chemical potential via

µ = µB/3. The quark number Q is given by the spatial integral over the temporal content of the four

current ψ̄γµψ:

Q =

∫
d3xψ̄(x)γ4ψ(x) =

∫
d3xψ̄†(x)ψ(x). (3.45)

Under charge conjugation (turning particles into antiparticles) the quark number changes sign,

QC =

∫
d3xψ̄C(x)γ4ψ

C(x)

=

∫
d3x(−ψ̄(x)γ4ψ(x))

= −Q

(3.46)

which corresponds to flipping the sign of the chemical potential in the partition function. Thus a positive

chemical potential represents a net particle number and a negative chemical potential represents a net

antiparticle number. Charge conjugating the partition function leads to the symmetry

Z(µ) = Z(−µ). (3.47)

Implementing the chemical potential on the lattice in a naive way, i.e. by adding a term like ψ̄(x)γ4ψ(x)

to the Dirac operator multiplied by µ, leads to the following behavior of the energy density,

lim
a→0

(ε(µ)− ε(0)) ∼
(µ
a

)2
, (3.48)
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which apparently diverges as the continuum is approached. The renormalization of the zero temperature

theory must also be sufficient for finite temperature and density theory. The reason is that the microscopic

short distance regime should be unaffected by the introduction of macroscopic quantities like baryon

chemical potential or temperature. This clearly doesn’t hold for a naive lattice implementation of the

chemical potential. Considering the continuum theory sheds light on the situation [88]: The quark number

is the conserved charge of the U(1) global symmetry and being multiplied by µ it can be written in the

form

µQ = −ig
∫

d3xA4j4, A4 = i
µ

g
, j4 = ψ̄(x)γ4ψ(x). (3.49)

Here µ is written in terms of an external U(1) gauge field coupling to the temporal component of the

fermion current j4. This expression can be absorbed into the covariant derivative of the Dirac operator

where it gives rise to the U(1) symmetry of the quark fields and A0 and protects against divergences.

This symmetry gets broken by a naive lattice implementation. A solution is to implement the chemical

potential as additional temporal link variable which acts as an external U(1) gauge field, i.e.

U0 = e−aµ = eiagA0 . (3.50)

Consider for instance the Dirac operator given in (2.34). In order to implement the chemical potential in

this way the temporal part of the sum gets modified in the following way:

− 1

2a

∑
n∈Λ

(
eaµ (1− γ4)αβ U4(n)abδn+4̂,m

+ e−aµ (1+ γ4)αβ U
†
4(n− 4̂)abδn−4̂,m

)
.

(3.51)

This implementation features the following properties:

• At µ = 0 the original action is recovered.

• If the exponential is expanded µ appears linearly in the leading order of a term and thus reproduces

the density term.

• Time reflection invariance is fulfilled.

The particle-antiparticle asymmetry is introduced by favoring propagation forward in time by exp (aµ)

while disfavoring propagation backward in time by exp (−aµ). Note that the fermion determinant can

be interpreted as a sum over closed loops. In such loops the factors exp (aµ) cancel with the factors

exp (−aµ) unless a loop closes non-trivially in the compact time direction. In this case the chemical

potential contributes with exp (aµ)nNτ where n is the winding number of the loop. A practical point to

remark is that it is sufficient to multiply all timely links in one single time slice with exp (aµ)Nτ instead

of modifying all timely links with exp (aµ). From the factor

eaµNτ = e
µ
T (3.52)

it becomes apparent that the chemical potential enters again in the form µ/T as it is the case in (3.44). The

chemical potential causes the Dirac operator to loose its γ5-hermiticity, which is easy to verify. Consider

the hopping portion of the Dirac operator with the chemical potential implemented:

D(U) = − 1

2a

±4∑
±1

(1− γµ)αβ Uµ(n)abδn+µ,m exp
(
sgn(µ) aµq δ|µ|,4

)
. (3.53)
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Here I denoted the chemical potential with µq to avoid confusion with the directional index µ of the link

variables. The sgn-function and the Kronecker-δ assure that the factor exp (aµ) appears correctly in the

respective terms. Complex conjugation of this relation is just

D†(U, µ) = − 1

2a

±4∑
±1

(1− γµ)αβ U
†
µ(n)abδn+µ,m exp

(
sgn(µ) aµq δ|µ|,4

)
. (3.54)

Multiplying D(U) by γ5 from the left and right gives:

γ5D(U, µ)γ5 = − 1

2a

±4∑
±1

(1+ γµ)αβ Uµ(n)abδn+µ,m exp
(
sgn(µ) aµq δ|µ|,4

)
,

= − 1

2a

±4∑
±1

(1− γµ)αβ U−µ(n)abδn−µ,m exp
(
−sgn(µ) aµq δ|µ|,4

)
,

= − 1

2a

±4∑
±1

(1− γµ)αβ U
†
µ(n)abδn+µ,m exp

(
−sgn(µ) aµq δ|µ|,4

)
.

(3.55)

From the first to the second it was used that negative µ can be considered like wise since the sum runs

over positive and negative values. One just has to make to sure to change the sign for every occurrence of

µ. From the second to the third γ−µ = −γµ was used and that the complex conjugate of the link variables

corresponds to its opposite directed counterpart. Then the lattice site index n was renamed n ↔ m.

Comparing the relations (3.54) and (3.55) shows that

γ5D(U, µ)γ5 6= D†(U, µ). (3.56)

Instead a modified relation holds:

γ5D(U, µ)γ5 = D†(U,−µ). (3.57)

Note that this is not an invariance operation anymore. Together with the fact that Sg[U †] and DU † = DU

we observe that the property Z(µ) = Z(−µ) holds likewise on the lattice.

The Sign Problem

The spoiling of the γ5-hermiticity leads to the problem that the fermion determinant potentially looses its

reality. Consider

det [D(µ)] = det ∗ [D(−µ∗)] , (3.58)

which follows from (3.57) and shows that the fermion determinant is only real if Re(µ) = 0. If µ has a

non-vanishing real part then the fermion determinant is complex which prevents an evaluation of the path

integral by Monte Carlo methods, since the fermion determinant is part of the joint probability weight used

for the importance sampling. If it is complex it cannot be interpreted anymore as probability weight. The

integrand becomes complex and thus highly oscillatory in this case which makes it numerically extremely

hard to evaluate. The positive and negative contributions to the path integral nearly cancel. To accurately

obtain the difference between both would require an evaluation of the integral with extremely high

precision which is unfeasible. The described condition is commonly referred to as the “sign-problem” and

the problem posed by it becomes more severe the larger Re(µ) is. One should not be deceived about this
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term because there is nothing wrong with the theory at non-zero density. The nature of the sign-problem

is simply inherent to systems containing particles and antiparticles and thus is part of the physics. Note

that in theory all thermodynamic functions are real after the evaluation of the path integral because the

imaginary parts of the fermion determinant cancel each other out. The complex determinant only becomes

a problem in terms of the numerical evaluation of the path integral by Monte Carlo methods.

Possible Approaches

In the past a variety of techniques have been developed and explored in order to overcome the sign-

problem. There are essentially two possibilities: Either one still uses Monte Carlo methods and tries

to indirectly gather information about the theory at non-zero density by extrapolation techniques from

regions where the sign-problem is absent or sufficiently mild, or one tries to use a conceptually new

approach. In the following I will briefly address some of them.

Indirect Methods

The first kind of methods where one tries to learn something about the theory at finite chemical potential

with extrapolation techniques. Note that all of these methods introduce additional systematic errors in one

way or another and moreover break down for µ/T ≥ 1. These methods include the following:

Reweighting

Reweighting techniques are often used to interpolate between or to extrapolate from data produced in

Monte Carlo Simulations. The essential idea is to produce an ensemble of configurations at specific values

of a set of parameters and to perform measurements on this ensemble with respect to a different ensemble,

corresponding to different values of the parameters. This is done by computing a reweighting factor

which accounts for the difference between the two ensembles on each of the produced configurations. The

reweighting factor is given by the ratio between the probability weights corresponding to the two different

ensembles. In the context of the sign problem reweighting can be used for instance in the following two

ways:

• Consider an estimate of some observable O at some finite real value µ′ of the chemical potential:

〈O〉(µ′) =

〈
O detM(µ′)

detM(0)

〉
(0)〈

detM(µ′)
detM(0)

〉
(0)

. (3.59)

The estimate is measured on an ensemble produced at µ = 0. The ratio detM(µ)/detM(0) is the

reweighting factor and accounts for the difference between the ensemble at µ = 0 and µ′ and allows

to measure the estimate of O at µ′ 6= 0. Ref. [89] gives an introduction on the topic by studying

reweighting in the d=2 ferromagnetic q=3 Potts model and the d=2 antiferromagnetic Ising model.

• The complex fermion determinant can be written in terms of its modulus times a complex phase

factor, |detM | exp(iφ). The modulus is still used as part of the joint probability weight for the

importance sampling while the complex phase factor is moved into the expectation value, i.e.

〈O〉 =

〈
O eiφ

〉
pq

〈 eiφ〉pq
, (3.60)
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where pq denotes “phase quenched”. Although the spirit of the reweighting may not be obvious in

this case, it is still a reweighting since the expectation value is taken with respect to the so called

phase quenched weight |detM |. Unsurprisingly the approach has its limitations. See for instance

[90] for a detailed and comprehensive study about the validity of phase quenched QCD.

While the procedures are mathematically sound the practical application turns out to be very costly. In

the first case this is due to the configuration-wise evaluation of the reweighting factor given by the ratio

of determinants. In both cases the signal to noise ratio worsens exponentially because of the ratio of the

partition functions appearing in the expressions, containing the difference of the free energies which are

extensive quantities, F = V f :
Z

Z ′
= eΩ∆f , (3.61)

with Ω = V/T and ∆f denotes the difference in the free energy densities. The second important

problem is the overlap problem. It addresses the overlap between the probability functions of the different

ensembles, for instance at µ = 0 and µ′ 6= 0, which has to be sufficiently large in order for reweighting to

work. A possible way to increase the overlap is to reweight in multiple parameters [91]. In section 4.1.2 I

will discuss and explain reweighting in more detail because it is used a lot in the data analysis done in this

work.

Isospin Chemical Potential

A possibility to run Monte Carlo simulations at finite density is to consider two mass degenerate flavors

with opposite chemical potential,

µI ≡ µu = −µd, (3.62)

where µI is the chemical potential linked to isospin [92]. The corresponding term in the Euclidean

continuum Lagrangian reads µI(ūγ4u − d̄γ4d). For this choice of the chemical potential The Dirac

operators are block diagonal Consider the block diagonal structure of the Dirac operators(
D(µI 0

0 D(−µI)

)
=

(
D(µI 0

0 γ5D
†(µI)γ5

)
, (3.63)

where on the right-hand side the modified γ5-hermiticity relation (eq. (3.57)) has been used. As a

consequence a real positive determinant is obtained:

det [D(µI)] det
[
γ5D

†(µI)γ5

]
= det [D(µI)] det

[
D†(µI)

]
= |det [D(µI)]|2 . (3.64)

Even though isospin is not conserved in the real world due to electroweak interactions it is still relevant

as such a situation could possibly occur in for instance heavy ion collisions. Moreover, interesting finite

density effects like charged pion condensation can be studied for isospin chemical potentials larger than

the pion mass [93].

Taylor Expansion

In this approach the philosophy is again to produce an ensemble of configurations at zero density and to

expand the partition function in parameters causing the sign problem, i.e. the chemical potential µ. Such a

Taylor expansion of the partition function can only range up to the next non-analyticity which is given by
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a phase transition. Since true phase transitions do not exist on finite volumes (in simulations of LQCD)

[66, 67] the partition function is analytic everywhere. The Taylor expansion of some observable O is

given by

O(T, µ) =
∞∑
n=0

cn(T )
(µ
T

)n
, cn =

1

n!

∂nO

∂
( µ
T

)n
∣∣∣∣∣
µ=0

. (3.65)

Due to the reflection symmetry of the partition function in µ the powers n are depending on the observable

either n = 2k or n = 2k + 1. In order to compute the coefficients cn in Monte Carlo simulations, the

derivatives ∂ 〈O〉 /∂µ have to be evaluated, containing expressions like ∂ ln detM/∂µ. Higher order

derivatives turn out to be rather complex expressions hard to evaluate numerically. A discussion of this

problem can be found for instance in [94].

Imaginary Chemical Potential

Simulations at purely imaginary chemical potential are a central topic of this work. For this reason I

will only give a brief description here for completeness but I will provide a detailed discussion below in

section 3.3.4. Using a purely imaginary chemical potential µ = iµi in eq. (3.58) yields

det [D(iµi)] = det ∗ [D(iµi)] , (3.66)

and thus renders the fermion determinant real, allowing to simulate at finite values of µi. Moreover

the Dirac operator gets back its γ5-hermiticity. Afterwards the Monte Carlo data can for instance be

used again in conjunction with a Taylor expansion as described above by (3.65) followed by analytic

continuation. An alternative is to exploit the phase structure at imaginary chemical potential in order to

use universal scaling relations as they govern the behavior of the critical surfaces that can be followed into

the region at real µ.

Canonical Partition Function from Imaginary Chemical Potential

The grand canonical ensemble and the canonical ensemble coincide in the thermodynamic limit and the

grand canonical partition function, (3.44), can be obtained from the canonical one by an expansion in a

power series of the fugacity variable z = exp(µ/T ),

Z(T, µ, V ) =
∑
Q

(
e
µ
T

)Q
ZQ(T, V ). (3.67)

Using a purely imaginary chemical potential the fugacity expansion is Fourier sum [95, 96] with a

periodicity of 2π in µi/T and reads

Z(T, iµi, V ) =
∑
Q

(
e
iµi
T

)Q
ZQ(T, V ).. (3.68)

Inversion yields the canonical partition function at a fixed quark number Q:

ZQ(T, V ) =
1

2π

∫ π

−π
d
(µi
T

)
e
iµiQ

T Z(T, iµi, V ). (3.69)

Computing Z(T, iµi, V ) in Monte Carlo simulations with purely imaginary chemical potential and using

them in (3.69) allows to determine the partition functions ZQ which in turn can be used in the fugacity
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expansion in (3.67), see [97]. Note that the integrand of the Fourier integral in (3.69) is increasingly

oscillating for larger quark number Q. This requires a larger number of samples in the interval [−π, π]

to reliably estimate the integral. Approaching the thermodynamic limit requires Q → ∞. In practice

this means that large Q are necessary in this approach which quickly turns into a problem for the needed

statistics of the Monte Carlo simulations. Even though the sign problem cannot be circumvented in this

way the approach offers an interesting alternative. Attempts have been done to deal with the oscillating

integrand by using combinations of multi-histogram reweighting and other involved methods, see e.g. [98,

99] and references therein.

Direct Methods

The second way to study QCD at finite density includes techniques aiming at solving or bypassing the

sign problem and to simulate directly at real finite values of the chemical potential. As this is not the topic

of this work in the following I will only provide a rather incomplete list of these methods including the

most popular options together with references.

Effective theories aim at eliminating or reducing the sign problem by truncation or by integrating out

degrees of freedom linked to the sign problem. Well known approaches are for instance PNJL, sigma,

Polyakov loop + quark meson models or theories involving strong coupling and hopping expansions. They

typically have the zthree and/or chiral symmetry in common with QCD. Examples for discussions of

these approaches are given in [100–103]. There are approaches starting straightly from QCD involving

Dyson-Schwinger equations [104] or functional renormalization-group (FRG) methods [105]. Note that a

general difficulty consists in the determination and control of systematic errors introduced when using

these kind of theories.

43



Imaginary Chemical Potential and Restoration of the Z3 Center Symmetry

The sign problem which was explained in section section 3.3.2 arises when a chemical potential with

<(µ) 6= 0 is turned on because the fermion determinant becomes complex. For a purely imaginary

chemical potential the fermion determinant becomes real again and the γ5-hermiticity of the Dirac

operator is restored. In this case standard Monte Carlo methods can be applied without any further

problem. A purely imaginary chemical potential has further important consequences [106]: The partition

function

Z(T, µ) = Tr e−(H−µQ)/T , (3.70)

and thus thermodynamic functions become periodic in µi/T . In section 3.3.1 I explained that the chemical

potential is equivalent to an external U(1) field (c.f. eq. (3.50)) that can be moved to the final time slice

contributing with (c.f. eq. (3.52))

eiaµiNτ = ei
µi
T , T =

1

aNτ
. (3.71)

Thus the imaginary chemical potential term can be attached to the fermionic field modifying its boundary

condition. The fermion determinant in the partition function is then effectively evaluated at µ = 0 and the

fermion fields come with an additional phase factor as they wind through the boundary:

Z(iµi/T ) =

∫
DU detD(µ = 0) e−SG , ψ(x, t+ T ) = − ei

µi
T ψ(x, t). (3.72)

In section section 3.2.2 I explained that including dynamical fermions break the Z3 center symmetry

explicitly because they require anti-periodic boundary conditions which under a center transformation only

permits the trivial center element (see eq. (3.40)). However, with an imaginary chemical potential term

attached any Z3 transformation can be undone by a respective shift in the imaginary chemical potential.

To see this consider the center transformations discussed in section 3.2.2,

Ω(n, t+Nτ ) = ei
2πn

3 Ω(n, t). (3.73)

Applying such a transformation leaves the partition function in (3.72) invariant but the fermion fields

receive an additional factor

Z(iµi/T + i2πn/3) =

∫
DU detD(µ = 0) e−SG , ψ(x, t+ T ) = − ei

2πn
3 ei

µi
T ψ(x, t). (3.74)

Hence eq. (3.74) is the result of a center transformation on eq. (3.72) and thus describes equivalent

physics. The important observation here is that the resultant new symmetry, sometimes referred to as

extended center symmetry,

Z
(
i
µi
T

)
= Z

(
i
µi
T

+ i
2πn

3

)
, (3.75)

shows a 2π/3 periodicity of the partition function. In a way the center symmetry can be considered

restored. Apparently the interval [0, 2π) can be separated into three sectors which correspond to the

three Z3 center sectors that can be distinguished by the phase of the Polyakov loop, c.f. eq. (3.39). For

µi/T = 0 the expectation value of the Polyakov loop above the critical temperature Tc settles in the trivial

vacuum, where 〈P 〉 ∼ 1. For µi/T = 2π/3 and µi/T = 4π/3 it settles in rotated vacua, where 〈P 〉 ∼ z
and 〈P 〉 ∼ z2, respectively. The partition function exhibits reflection symmetry,

Z(µi) = Z(−µi), (3.76)
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with respect to critical values of the imaginary chemical potential µi,c/T = 2π/3(n + 1/2). At these

values there are transitions between the Z3 sectors, commonly referred to as Roberge-Weiss (RW) transi-

tions. At large temperatures these are first order transitions. Reducing the temperature, at some critical

value Tc the first order transition ends in the so called RW-endpoint. Below this point at T < Tc the

transition is an analytic crossover. This has been verified in numerical studies [29, 30]. From µ = 0 the

chiral/deconfinement transition analytically continues to purely imaginary values µi and meet the RW

transitions in their endpoint, as shown schematically in fig. 3.2 for a fixed quark mass mq. The nature

of the chiral/deconfinement transition and the RW-endpoint is a function of Nf ,mq and µi,c/T , Around

the chiral and heavy quark mass limits the chiral/deconfinement transition is of first order and the RW

endpoint is a triple point. At intermediate masses the chiral/deconfinement transition is a crossover and

the RW endpoint is second order Z2 point. For certain masses chiral/deconfinement transition changes its

nature as a function of µi/T . Note, that there is a third possibility for the RW endpoint: For certain values

of the quark mass it becomes a tricritical point, which separates mass regions where the RW endpoint is a

triple point from those where it is a second order Z2 point.

As mentioned above, the phase of the Polyakov loop distinguishes the Z3 sectors which is indicated

by the three-pointed star shapes, plotted in the different Z3 sectors in fig. 3.2. At (µi,c/T )/(π/3) = 3,

where its phase points up-left in one sector and down-left in the other, the imaginary part Im(P ) of the

Polyakov loop is suitable as an order parameter to identify the different phases as well as the nature of the

RW endpoint, as depicted in the right panel of fig. 3.2. A detailed explanation is given in the caption of

fig. 3.2. The discussion will be continued in section 3.5.
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Figure 3.2: Left panel: shows the chiral/deconfinement and Z3 transitions in the plane of temperature
and imaginary chemical potential. Vertical lines represent the Z3 transitions (colored solid lines for first
order and blurred lines for crossover transitions). Dashed lines represent the analytic continuation of the
chiral/deconfinement transitions. Right panel: qualitatively shows the expected shapes of the distribution
of the imaginary part of the Polyakov loop at (µi,c/T )/(π/3) = 3. At large T > Tc, where the RW
transition is of first order, Im(P ) shows a two peak structure characteristic for a two phase coexistence.
At low T < Tc, where the RW transition is a crossover, Im(P ) shows a one peak structure characteristic
for a smooth, analytic transition. At Tc, where the RW transition ends in the RW endpoint, the shape of
Im(P ) additionally depends on the quark mass. For light/heavy quark masses, the RW endpoint a triple
point where three phases coexist: The deconfined/chirally-symmetric phase in the left sector at T > Tc,
the deconfined/chirally-symmetric phase in the right sector at T > Tc and the confined/chirally-broken
phase at T < Tc. Thus Im(P ) shows a three peak structure. At intermediate quark masses, the RW
endpoint is a second order Z2 point. Consequently there is only a two phase coexistence consisting of
the deconfined/chirally-symmetric phase in the left sector at T > Tc and deconfined/chirally-symmetric
phase in the right sector at T > Tc. At temperatures T < Tc the confined/chirally-broken phase is
reached through an analytic crossover. In this case Im(P ) shows a two peak structure. Note, that in
LQCD simulations the peak structure of the distributions of Im(P ) becomes more distinct as the volume
is increased, which is indicated through the different shapes, lying on top of each other.
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The QCD Phase Diagram

One possibility to clearly represent thermodynamic properties of matter are phase diagrams whose axes

correspond to thermodynamic control parameters. In a phase diagram different forms of matter can be

found in different regions which can be separated by lines of phase or thermal transitions on which the

different forms of matter coexist, i.e. are in equilibrium. Moreover, there can be critical points in which

lines of phase transitions terminate or meet. A well know example for such a phase diagram is the one

of H2O, in which the control parameter pressure P is plotted against the temperature T . H2O has three

distinct phases: Water, ice and vapor. Between ice and water, water and vapor as well as between vapor

and ice there are first order phase transitions. Furthermore H2O features the aforementioned critical

points. One of these points is a triple point at which the three lines of first order transitions meet for a

particular value of the temperature T and pressure P . At this point the three phases exist at the same

time. A further critical point is the endpoint at which the line of first order transitions between vapor

and water terminate. This point represents a second order transition belonging to a Z2 universality class.

Beyond this point the transition is merely a rapid, continuous transformation between the two forms of

H2O, denoted as crossover. A conjectured phase diagram with similar properties exists for QCD, which I

will discuss in the following on a very qualitative level. There the thermodynamic control parameters

are temperature T and baryochemical potential µB . The QCD phase diagram is still understood only

to a small extent but there is much effort to change this situation which led to the onset of many new

research fields. The established structure of this phase diagram is largely conjectured, supported by

model calculations, arguments regarding symmetries and first principle calculations. Furthermore, many

theoretical investigations consider only three quarks: Two mass-degenerate light quarks (up and down)

and one heavier quark (strange). This setting serves as a very good approximation to real physics since

the dynamics of the quarks with much larger mass (charm, bottom and top) are negligible with respect to

the quark sea. A schematic representation of how the QCD phase diagram might look like is shown in fig.

3.3. This illustration can be divided roughly into three sections: In the complete upper half, corresponding

to extremely large temperatures, due to the asymptotic freedom of QCD a deconfined phase is expected

termed as quark-gluon plasma. As the name suggests, in this state the dominant degrees of freedom are

quarks and gluons. This is also a chirally-symmetric phase, i.e. where the chiral condensate vanishes,〈
ψ̄ψ
〉

= 0. In lower left part of the phase diagram at vanishing T and µB there is the vacuum, where the

chiral symmetry is broken, signalled by a non-vanishing chiral condensate,
〈
ψ̄ψ
〉
6= 0. If the reader is

interested to read more about the chiral symmetry-breaking nature of the vacuum he is referred to the

comprehensively written article about the QCD phase diagram by S. Hands [107]. At low T and µB , QCD

is dominated by a gas of bound states, namely hadrons. Increasing µB while keeping T small corresponds

to increasing the number of quarks in the system, since antiquarks do not exist at low temperatures. At

some point a region is entered in which at a chemical potential of about µB ≈ 900MeV a transition to

nuclear matter is expected. This transition corresponds to ordinary atomic matter. Droplets of nuclear

matter are surrounded by vacuum. At even larger values of µB one ends up on the right side of the lower

half of the phase diagram where there is at unknown values of µB a transition to quark matter. To be

more precise, diverse states of quark matter are conjectured, for instance a color-flavor-locked (CFL)

phase at extremely large values of µB . This is also termed as color superconducting quark matter. Before

this area, at smaller µB values, there could be other phases referred to as non-CFL quark liquid whose

properties are unknown at present. Hypotheses suggest these are other color superconducting phases.
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The transition at low values of µB at extraordinarily large temperatures T ≈ 150MeV or ≈ 1012K is

characterized by the breaking up of the hadrons (mostly pions) and creation of a gas consisting of quarks,

antiquarks and gluons but also photons, electrons and positrons. Subsequently the gas condenses more

and more until the onset of the QGP. The temperatures at the transition between hadronic matter and QGP

could only be realized in two situations so far: Shortly after the big bang in the first tens of microseconds

as well as in high energy collision between heavy nuclei. For this reason this area is subject to intense

experimental studies. These include ALICE at CERN or such conducted at the Relativistic Heavy Ion

Collider (RHIC) at Brookhaven National Laboratory in New York, marked in fig. 3.3 in the respective

areas. The described area including (especially) lower temperatures due to its non-perturbative nature can

hardly be studied by purely analytic treatments of QCD and LQCD is currently probably the most efficient

theoretical research method. LQCD calculations showed that the transition to the QGP is a crossover [28].

From lattice studies, indirect methods based on the latter and model calculations it was observed that

the critical temperature Tc at which the transition occurs decreases for larger values of µB . Moreover,

indications were found that along the transition a critical endpoint of a line of first order transitions

could exist [91, 108] which consequently represents a second order point. Unfortunately due to the sign

problem the possibility for LQCD calculations declines already at small values of µB . For this reason

the investigations are restricted mainly to the vertical T = 0 axis. While the curvature of the transition

line can already be determined reliably by indirect methods like analytic continuation [109–113], it is

still a long way to confirm or deny the existence of the critical endpoint. Many approaches are being

developed which rather aim at solving the sign problem and to study the QCD phase diagram directly

at finite µB . These include Lefschetz thimbles [114, 115], complex Langevin simulations [116, 117],

density of state methods [118, 119] as well as canonical approaches [120, 121]. Following the transition

line to smaller Tc and µB eventually the lower half of the phase diagram is reached where the meaning

of the transition changes from a transition between hadronic matter and QGP to a transition between

hadronic matter and quark matter. The nature of the transition in this region is still an open question, for a

review about the progress and an explanation about different possible scenarios see for instance [122].

However, the thermal transition at µB = 0 is still subject of intensive theoretical research. This is not

only due to its relevance for the study of the early universe but also because it offers a vast abundance of

opportunities to establish a deep theoretical understanding of this area. One of these opportunities consists

in exploring the properties of this transition as well as identifying what influences its nature. For instance

from thermodynamic arguments it is apparent that the nature of the thermal transition is a function of the

quark mass. Moreover, theoretical considerations of QCD revealed a dependence on the number of flavors

taken into account, e.g. only the two mass degenerate up and down quarks or additionally the heavier

strange quark. It shall be for LQCD to identify the nature of the transition for given quark masses and

number of flavors. As expected, this brings about new challenges. One of the main problems in LQCD

consists in controlling discretization effects which, as it is well known for some time (c.f. [123] an refs.

therein), significantly influence the position of the endpoints of the lines of phase transitions. Until this

very day, a precise treatment leading to final conclusions about the location of these endpoints in the

continuum theory, i.e. for vanishing lattice spacing a→ 0, remains a challenge. The remaining part of the

chapter will be devoted to the question about the nature of the transition at µB = 0 and how it changes

as a function of the quark mass, the number of flavors and the lattice spacing. Moreover the analytic

continuation to purely imaginary values of µ will be discussed, where QCD possesses an even richer
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phase structure. Principally, there the same questions apply as for µ = 0 and trying to answer them can

indeed help to restrict the phase diagram at µ = 0.

T

µB

path
ofthe

early
universe

LHC RHIC energy scan
FAIR at GSI

vacuum

nulcear matter

1 st
order phase transition

critical point

〈
ψ̄ψ
〉
6= 0

〈
ψ̄ψ
〉

= 0

neutron stars

Color Superconducting
phases

hadron gas
confined/chirally-broken phase

quark-gluon plasma
deconfined/chirally-symmetric phase

Figure 3.3: Schematic illustraition of a possible phase structure of Nf = 2 + 1 flavor QCD in the
(T, µB)-plane.

The QCD Phase Structure at Zero and Imaginary Chemical
Potential from the Lattice

The nature of the thermal phase transition as a function of the quark masses at a fixed value of the chemical

potential µ can be most readily presented in a quark mass diagram, as shown in fig. 3.5 for µ = 0, where

the masses of the up and down quarks, mu,md are considered degenerate and thus are plotted as mu,d

over the strange quark mass ms. In contrast to the (T, µB)-diagram (fig. 3.3) there is no temperature axis.

Instead the critical temperature at which the system undergoes a transition can be thought of as projected

into the mu,d−ms plane, i.e. every point is considered at the respective critical temperature of the system.

The order of the transition depends on the particular values of mu,d,ms. The heavy limit mu,d,ms →∞
that corresponds to the fully quenched theory is included in the diagram and is represented by the top

right corner. The upper horizontal axis conforms to the Nf = 2 theory in the ms →∞ limit whereas the

right vertical axis conforms to the Nf = 1 theory in the mu,d →∞ limit. On the diagonal line all quark

masses are degenerate and hence this line represents the Nf = 3 theory. Every point in the diagram that

does not belong to one of these three cases is included in the Nf = 2 + 1 theory, where the masses mu,d

and ms are finite (or zero) and different. Of course there are also the limits ms → 0 and mu,d → 0 which

are commonly referred to as the chiral limit of the respective theory. The diagrams of this type displayed

throughout this work are not exact but rather schematic illustrations of the phase structure reflecting the
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current status as it is observed or indicated from recent lattice studies. The reason for not showing a plot

with exact values is that there is simply not enough data currently available. In fact for some parts of the

diagram the situation is unclear and conflicts between results of different studies still have to be resolved.

In the following section I will briefly address the effect of discretization errors on the phase structure.

Afterwards I am going to discuss the phase structure of this diagram for µB = 0 and finally I will motivate

the use of a purely imaginary chemical potential as some kind of analytic continuation from µB = 0 and

discuss the more complicated and richer phase structure there. I will also point out how it can help to

study the structure at µB ≥ 0.

The phase diagrams presented in the following sections use color conventions that we fixed in our

working group in order to have a uniform style throughout our publications. The legend listing all the

relevant names denoting the respective nature of the transitions including the chosen colors is plotted in

table 3.2.

Discretization and Finite Volume Effects on the Phase Structure

In order to obtain a continuum result from lattice calculations in general it is necessary to remove the

systematic error introduced by the discretization of the theory by an extrapolation to vanishing lattice

spacing a→ 0. As expected, this problem concerns the phase structure, as well. In case of the quark mass

diagram the discretization effects affect the position of the Z2 second order phase transition lines. The

location of the latter for instance can be identified by the value of the respective quark mass mq,Z2 or by

the equivalent specification of a pseudo scalar meson mass mPS,Z2 computed at the corresponding value

of the lattice coupling βc in a T = 0 simulation. Depending on the fermion discretization the computed

value has a systematic error of some order of a. In the case of Wilson’s formulation the leading order of

Description Color RGB-code

Physical point (0,30,150)

Tricritical line (255,0,0)

Z2 line (0,102,255)

Z2 region (128,179,255)

1st order line (255,128,0)

1st order region (255,255,150)

O(4) line (255,0,200)

O(4) region (255,215,255)

1st order triple line (0,180,0)

1st order triple region (170,255,204)

1st order quadruple line (170,0,212)

Crossover region (240,240,240)

Table 3.2: Phase diagram color legend.
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Figure 3.4: The figure shows qualitatively how the discretization error could possibly affect the phase
structure. A positive coefficient c1 in the leading order of a term in eq. (3.77) leads to an expansion of the
first order region around the heavy mass limit and a shrinking of the first order region around the chiral
limit at small masses. The bottom axis corresponding to the continuum limit a→ 0 shows a possible but
unconfirmed scenario (see discussion in section 3.5.2) where the first order transition in the chiral limit
completely vanishes.

the discretization error is linear in a. In general this can be expressed as

mq,Z2(a) = mq,Z2(0) +
∞∑
k=1

cka
k. (3.77)

Assuming for simplicity that only the leading order O(a) is significant then the direction of the shift of

mq,Z2(a) relative to mq,Z2(0) only depends on the sign of c1 (see fig. 3.4 for an example). While an

analytical treatment of this problem turns out to be very complicated LQCD studies indicate a positive sign

for c1. A rather qualitative argumentation can be deduced from analyzing the pole of the quark propagator

in the free theory. Reading off the mass from the pole suggests a positive sign for c1. Approaching the

continuum limit a→ 0 requires to simulate successively larger temporal lattice extents Nτ because of the

relation Tc = 1/ (a(βc)Nτ ): When the temporal lattice extent gets increased, the lattice spacing a has

to be decreased in order to keep the system at the transition temperature Tc. Remember that the lattice

spacing a(β) is indirectly controlled by the inverse lattice coupling β which is explained in section 3.2.1.

The Nature of the Phase Transition at µ = 0

Following up the discussion from the beginning of section 3.5 I will describe the nature of the thermal QCD

phase transition as a function of the quark masses mu,d and ms as it is illustrated in fig. 3.5. In the limit of

infinitely heavy quark masses, i.e. excluding dynamical quarks, QCD has a first order deconfinement phase

transition associated to the spontaneous breaking of the center symmetry above a critical temperature at

about Tc = 270 MeV. Including dynamical quarks, i.e. going to finite quark masses, breaks the center

symmetry explicitly. This has been discussed in section 3.2.2. Independent of the number of flavors the

phase transition remains first order as long as the quark masses are sufficiently large. Decreasing the
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quark masses weakens the transition until at some critical value mheavy
q,Z2

it ends in a Z2 second order point

(the deconfinement critical point). For intermediate quark masses mq with mlight
q,Z2

< mq < m
heavy
q,Z2

the

QGP and the hadronic phase are analytically connected by a crossover transition. As mq is representative

for mu,d,ms which span the plane of the diagram, in fact, there is a whole region of first order phase

transitions that is separated from the crossover region by a line of Z2 second order transitions which is

commonly termed as deconfinement critical line. Starting from the opposite direction in the chiral limit at

vanishing quark masses, a similar but somewhat more complex picture can be found. For mu,d,ms = 0

there is a first order transition associated to the spontaneous breaking of the chiral symmetry. The chiral

symmetry is explicitly broken at non-vanishing quark masses but the associated transition remains first

order as long as mu,d and ms are sufficiently small. If mu,d,ms are increased the region of first order

transition at some point terminates in a line of Z2 second order transitions, called the chiral critical line.

At larger values of ms but small mu,d there are different possible scenarios illustrated by the left and right

side of fig. 3.5: As shown on the left-hand side there could be a small stripe of first order transitions

extending all the way up to the limit ms →∞. The alternative, illustrated on the right-hand side is that

this region completely vanishes as ms grows large. In this case the transitions in the limit mu,d at some

point become second order transitions with different possibilities for universality classes. Furthermore,

note, that at the left edge (mu,d = 0) of the diagrams there is a line of first order triple transitions, where

three phases coexist: The high temperature phase where chiral symmetry is present which implies a

vanishing chiral condensate
〈
ψ̄ψ
〉

= 0, and two chirally-broken phases at low temperature with a non

vanishing chiral condensate
〈
ψ̄ψ
〉
6= 0, separated by the sign (+/-) of

〈
ψ̄ψ
〉
. Finally, note that at the

bottom edge (ms = 0) of the diagrams the first order transitions at small values of mu,d do not terminate

in a tricritical point. This is simply explained by the fact, that there is no chiral symmetry present with

only one massless quark. For the same reason there is no first order phase transition in the right lower

corner of the diagrams.

In the following I will discuss the different limits of light and heavy quark masses separately and in

more detail.

The Heavy Quark Mass Region

The limit mq →∞ (top right corner of fig. 3.5) is better understood than the light counterpart but going

to finite quark masses still offers many problems to be dealt with as all the problems linked to simulations

of dynamical quarks and heavy quark masses enter. Since the quark masses in this area are academically

heavy, so far less focus has been put on this region by the research community compared to the chiral limit.

However, partially successful attempts have been made to understand and map out the phase structure

of this region. One of the most important questions still to be clarified is where the endpoint of the first

order transition, i.e. the Z2 point settles in the continuum and if there is a consequence for the physical

value of the quark mass (indicated by mq,phys in fig. 3.5). One could imagine that the region of first

order transitions in the heavy limit drastically expands and engulfs the physical point. This scenario has

been rather ruled out by studies using the staggered fermion discretization, e.g. [28], but a continuum

limit extrapolation employing Wilson fermions is not available which would be a valuable crosscheck.

Moreover, the studies carried out so far took place on rather coarse lattices such that large discretization

errors have to be assumed. Section 3.5.1 discusses the influence of discretization errors on the location

of the Z2 point. In the following I report on some selected results from the literature of the past decade.
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Figure 3.5: Shown are schematics of the quark mass diagram with first order transitions in the light (heavy)
quark mass limit mq → 0 (mq →∞) associated to the breaking of the chiral (center) symmetry. L.h.s.:
Illustrates the first order scenario quark mass diagram, where the region of first order transitions in the
light quark mass region extends all the way up to ms →∞. R.h.s.: Illustrates the second order scenario,
where the region of first order transitions in the light quark mass region terminates in a trcritical point at
some finite value of ms and mu,d = 0.

In some earlier study [124] a hopping parameter expansion was done to obtain an effective theory that

was used to determine the Z2 point on Nτ = 4 lattices. The result is listed in table 3.3. A few years later

in a study by our group [103] a combined strong coupling and hopping parameter expansion was used

to derive an effective three-dimensional theory from lattice QCD with heavy Wilson quarks that shares

the center symmetry and its breaking in and away from the pure gauge sector with QCD. It posseses a

sign problem at non zero chemical potential that is mild enough to perform simulations even at large

values of the chemical potential. In the reference the order of the expansion allowed them to simulate up

to Nτ ∼ 6 lattices. They determined the endpoint of the first order deconfinement transition as a function

of the quark mass for Nτ = 4 lattices for Nf = 1, 2, 3 flavors. For the results see table 3.3. In different

studies which took place about the same time [125, 126] the probability functions of the plaquette and

the Polyakov loop were examined for changes with respect to the type of transition in order to find the

Z2 point. They simulated SU(3) pure gauge theory on Nτ = 4 lattices and subsequently performed

a hopping parameter expansion together with a reweighting extrapolation to finite κ values in order to

investigate the mass dependence of the distribution functions. Their results are listed in table 3.3. Finally

the results obtained from this work for Nτ = 4(Nf = 3) and Nτ = 6, 8, 10(Nf = 2) are listed in the last

column of table 3.3. In contrast to studies listed before in this work no expansion whatsoever has been

done. The results have been obtained from simulating the full theory which could be an explanation for

the discrepancy between the different values in the last row of table 3.3. Note that all of the studies cited

use standard Wilson fermions without improvement. For this reason the κZ2 values listed in table 3.3 can

be compared. In such studies where a transition point is identified by values of the hopping parameter κ it

is common to compute the quark mass or a corresponding pseudo-scalar meson mass at zero temperature
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at the transition point, as well. This turns out to be a notoriously hard problem since in the heavy mass

region the Compton-wavelength of particles is very small so that generally very fine lattices are required to

resolve them. Section 3.2.1 addresses this topic. In this work pseudo-scalar meson masses were computed

at the critical couplings for all Nτ but the requirement am ≤ 1 is not met. For a detailed discussion see

the results section 5.3 of this work.

Nf Nτ κZ2 [103] κZ2 [125] κZ2 [124] κZ2 (this work)

1 4 0.0822(11) 0.0783(4) ∼0.08

2

4 0.0691(9) 0.0658(3)

6 0.0939(14)

8 0.1167(12)

10 0.1229(10)

3 4 0.0625(9) 0.0595(3) 0.0553(7)

Table 3.3: The table shows a summary of the values κZ2 found in different studies for Nf = 1, 2 and 3
flavors and several temporal lattice extents.

The Light Quark Mass Region

Universality arguments [127] and numerous numerical studies on rather coarse lattices (just to name

a few of them) with unimproved [128–132](staggered) and improved [71, 132–134](staggered), [135]

(Wilson) actions give rise to certainty about a region of first order phase transitions around the chiral

limit for Nf = 3 QCD (lower left corner in fig. 3.5). The question remains open on the position of the

chiral critical line in the continuum limit as no or only partially successful attempts for a continuum

extrapolation exist so far. Pseudoscalar meson masses To identify the location of the Z2 point in terms of

a physical quantity, pseudoscalar meson masses have been computed 7 in several studies which produced

conflicting results. The reason is that different discretization schemes and lattice spacings have been used.

The computed values range from ∼ 50MeV to ∼ 300MeV [136]. A rather recent study in which highly

improved staggered quarks (HISQ) on Nτ = 6 lattices were simulated produced an upper bound for the

pion mass at the critical point of 50MeV [137]. Another study that simulated non-perturbatively O(a)

improved Wilson-Clover fermions on up to Nτ = 10 lattices claims to find a continuum value for the pion

mass of ∼ 100MeV [72]. However, there seems to be a growing agreement from the more recent studies

that the region of chiral first order phase transitions could be very small and is of less relevance for real

world thermodynamics [136].

The situation in the Nf = 2 chiral limit (top left corner in fig. 3.5) is even less clarified and considered

to be more relevant for thermodynamics at the physical point. The lack of clarity about this area stems from

the huge computational costs of simulating very small quark masses with currently available computer

technology. Of course researchers in the field do not simply wait for faster computers but work hard to

explore possibilities to circumvent the given computational limitations. The global chiral symmetry group
7Of course, pseudoscalar masses have been computed at zero temperature (large Nτ � Ns) but at same simulation

parameters at which the Z2 point was extracted in finite temperature simulations.
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of the action is SU(2)R × SU(2)L ×UA(1) where UA(1) is anomalous. Since the chiral phase transition

is linked to symmetry breaking a crossover transition can be excluded. This implies there are two possible

scenarios currently considered:

1. The UA(1) symmetry is broken which implies a second order phase transition belonging to the

universality class of a classical four component Heisenberg antiferromagnet, i.e. 3d O(4) spin

models (left-hand side fig. 3.5).

2. The UA(1) symmetry gets restored at the transition which allows for a first order phase transition

[127] (right-hand side fig. 3.5).

In the second case of a restored UA(1) symmetry theoretical studies led to yet another alternative: In

[138] a high-order field-theoretical perturbative study of the renormalization-group (RG) flow of the

corresponding three-dimensional multiparameter Landau-Ginzburg-Wilson φ4 theory with the same

symmetry-breaking pattern was carried out and in [139] the chiral linear sigma model in the presence of

the axial anomaly was studied in the local-potential approximation of the Functional Renormalization

Group (FRG). Both support the possibility for a second order transition belonging to the O(2)× O(4)

universality class. In another study it was shown for a model with same chiral symmetries as Nf = 2

QCD that turning on the UA(1) anomaly weakens the first order transition until it vanishes at a critical

anomaly strength [140]. In the case of a second order scenario in the Nf = 2 chiral limit the region of

first order transitions at small values of mu,d and ms has to vanish at some point at larger values of ms,

i.e. the chiral critical line bounding the first order region terminates at mu,d = 0 and some finite value

mtric
s in a tricritical point as illustrated in the right-hand side schematic of fig. 3.5. The system at such a

point would exhibit 3d mean field exponents [141] and permits to exploit tricritical scaling relations. In

general the strategy is to perform simulations for several values of the quark masses and to test if scaling

relations apply which describe the data properly in the vicinity of a critical point. A common approach to

investigate the chiral limit is to examine the magnetic equation of state (MEoS) M/h1/δ = fG(t/h1/βδ)

(M is the magnetic order parameter) that is governed by a single scaling function fG. The magnetic field

h and the reduced temperature t describe the proximity to the critical window and β, δ are universal

critical exponents. In this context typically the quark mass dependence of M and its susceptibilities are

studied so as to gather insights about the chiral transition in Nf = 2 QCD. The difficulty with these

kinds of approaches lies in the extraction of the critical indices whose values are very close for which

reason they often can’t be determined reliably within the errors of a fit of the functional scaling form.

Numerous studies employing both Wilson and staggered fermions following this and different approaches

are listed in [136]. The author of this reference points out a more recent study [142] of his own using the

described approach and reports a value of mtric
s < ms,phys, i.e. below the physical value of the strange

quark mass. He cites other recent studies, e.g. [143] where simulations with improved Wilson quarks have

been performed and which support his conclusion putting the second order transition in the Nf = 2 chiral

limit into the O(4) universality class. The author also cites contradicting studies with standard staggered

[144] and unimproved Wilson fermions [145] employing an imaginary chemical potential approach and

suggesting a first order transition in the Nf = 2 chiral limit. Table 3.4 gives an overview of studies

supporting the first or second order scenario. Finally I want to point out the importance of the second order

chiral critical line because together with the curvature of the Z2 surface that emerges from switching on a
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chemical potential in the mu,d −ms − µ space the position or even the existence of the critical endpoint

in the QCD phase diagram (c.f. fig. 3.3) can be influenced - a problem I will discuss in section 3.5.3.

year pro 1st order pro 2nd order

1996 [146](O(4),Wilson)

2003 [147](no LQCD)

2006 [148](O(4),staggered),
[149] (O(4),staggered)

2008 [150](staggered)

2009 [151](O(4),staggered)

2013 [152](overlap)

2014 [144](staggered)

2016 [145](Wilson) [143](O(4), improved Wil-
son)

Table 3.4: The table (without claiming to be exhaustive) gives an overview of studies pro and contra a
first/second order scenario in the Nf = 2 chiral limit.

Fractional Number of Flavors

Another very interesting approach to determine the nature of the transition in the chiral limit is currently

being explored by members of our group (F. Cuteri, O. Philipsen, A. Sciarra)[153] and involves using

a continuous number of flavors in the path integral. After integrating out the fermionic action the path

integral for Nf mass degenerate flavors of fermions has the form

Z(m,µ,Nf ) =

∫
DU det [M (U ,m, µ)]Nf e−SG . (3.78)

For a fractional Nf this can be simulated for instance with a rational hybrid Monte Carlo algorithm

(section 4.2 explains the rhmc). The idea in this approach is that a Z2 transition exists for Nf = 3 flavors

(c.f. previous section about the light mass region) but non for Nf = 1. Consequently thinking in terms of

a continuous Nf the Z2 transition has to end at some point between Nf = 1 and Nf = 3. Since there

is a line of first order triple transitions starting in the Nf = 3 chiral limit at mu,d,s = 0 extending along

the ms axis (bottom left corner of fig. 3.5) the Z2 transition must end between Nf = 1 and Nf = 3 in a

tricritical point we denote as N tric
f . The big question is whether N tric

f < 2, N tric
f = 2 or N tric

f > 2. The

schematics of fig. 3.6 should give a better idea of the problem. What was just explained can be intuitively

understood in these diagrams from comparing the colored dashed framings in the mq −Nf diagram with

the corresponding ones in the adjacent mu,d,ms diagram. Note that at Nf = 0, i.e. quenched QCD there

are first order transitions everywhere. This is no surprise as it describes the heavy mass limit mq →∞
(top right corner in the mu,d −ms phase diagrams in fig. 3.6) with only infinitely heavy and static quarks.

The vertical mass axis has no meaning for Nf = 0 for which reason it should be considered “out of the

diagram”. The strategy in this approach consists in using the fact that scaling laws apply in the vicinity of
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the tricritical point N tric
f from which the Z2 line emanates. The functional form of the Z2 line is given by

m
2
5
q,Z2

(Nf ) = C(Nf −N tric
f ). (3.79)

The Z2 line can be mapped out starting from Nf > 2 where the simulations are feasible. Subsequently

the functional form can be fitted to the data to check whether it terminates before or if it extends beyond

Nf = 2. The preliminary results produced in [154] currently support a first order scenario for the Nf = 2

chiral limit with a value of N tric
f = 1.75(32). It should be remarked that the approach introduces the

problem of non-locality at non-integer Nf which implies a quantum field theory that is not well defined

in the continuum limit a→ 0. However, since the goal is just to find the two integer numbers between

which N tric
f is located, the non-locality presents no problem.
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Figure 3.6: On the right-hand side the QCD phase transitions at µ = 0 are plotted in a mq −Nf diagram
for two different scenarios. There are first order phase transitions in the heavy mass limit each Nf . For
small Nf � 1 the region of first order transitions extents all the way down towards the limit mq → 0.
There is another region of first order transitions in the chiral region starting around Nf ≈ 2 extending
to larger masses as the Nf grows. The two regions of first order transitions are separated by an area
of crossover transitions from which they are separated by Z2 lines. The diagram on the top shows a
scenario where the Z2 line in the chiral region terminates in a tricritical point N tric

f at Nf < 2 supporting
the possibility for a region of first order transitions in the Nf = 2 chiral limit (c.f. the discussion in the
previous section). The bottom diagram depicts the case in which the Z2 line terminates already at Nf > 2
which implies a second order transitions in the Nf = 2 chiral limit.
On the left-hand side are plotted the corresponding quark mass phase diagrams, The corresponding
quark mass diagrams are plotted on the left-hand side. Comparing the left- and right-hand side the
corresponding subspaces in the diagrams on both side are identified by equally colored dashed framings.
For instance consider the blue colored dashed framing in the left-hand side diagrams which corresponds to
Nf = 2 flavor QCD for all values of quark masses. An equally colored dashed framing showing the same
parameter subspace can be found in the right-hand side phase diagram at Nf = 2 parallel to the mq axis.
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The Nature of the Phase Transition at Imaginary µ

Following on from the discussion in section 3.3.4 here I will further discuss the QCD phase structure at

purely imaginary chemical potential. As explained before, choosing a purely imaginary chemical potential

QCD features interesting and useful properties: There is no sign problem at imaginary chemical potential,

the partition function is periodic in µi/T and the Z3 center symmetry is present despite the inclusion of

dynamical quarks in the theory. In section 3.3.4 I discussed the transitions in the QCD phase diagram as a

function of the temperature and the purely imaginary chemical potential by means of fig. 3.2. The points

that are of particular interest are the transitions between the Z3 sectors at critical values of the chemical

potential µi,c/T in the partition function eq. (3.75) with n = k + 1/2 and k ∈ N. At these values a quark

mass phase diagram that corresponds to the Z3 endpoint as a function of the quark masses and flavors,

analogous to the one at zero density can be plotted which is shown in fig. 3.7 (right). Next to it is again

plotted the one at zero density (left) so as to contrast both diagrams. In the new diagram at µi,c/T the

tricritical points are assumed to be connected to tricritical lines, as it the case for the Z2 points at µ = 0.

Due to the absence of the sign problem this can be checked with numerical simulations. Comparing both
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Figure 3.7: Roberge-Weiss.

diagrams several changes in the nature of the phase transitions can be observed:

• First order regions −→ first order triple regions,

• Z2 lines −→ tricritical lines,

• crossover region −→ Z2 region,

• first order triple line −→ quadruple line.

These changes seem natural given that at µi,c/T there is a confluence of the chiral/deconfinement

phase transition and the transition between the Z3 sectors. For instance a tricritical point represents the

confluence of two critical points which is given by the critical point of the chiral/deconfinement transition

fusing into the endpoint of the transition between the Z3 sectors. The same is true for the confluence of
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points in the regions with a different nature. Since the theory at µ/T = 0 is analytically connected to

the theory at µi,c/T both diagrams in fig. 3.7 can be combined in a three-dimensional phase diagram

via a third axis that is represented by the squared chemical potential. This is done in fig. 3.8, where the

resulting diagram is plotted from (µ/T )2 > 0 to the Roberge-Weiss value (iµi,c/T )2 = −(π/3)2. In

( µ
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Figure 3.8: The figure shows a qualitative schematic (O(4) scenario) of the extended Columbia plot
((mu,d,ms, µ)-diagram) between (µ/T )2 > 0 and (µ/T )2 = −(π/3)2 (Roberge-Weiss plane), where
the plane at (µ/T )2 = 0 and the Roberge-Weiss plane are plotted explicitly . The Z2 lines become Z2

surfaces terminating in tricritical lines in the Roberge-Weiss plane, while the tricritical points extend to
lines. At the Roberge-Weiss value of (µi,c/T )2 = (π/3)2 the chiral/deconfinement transition fuses into
the transition between the Z3 sectors (c.f.fig. 3.9) which is, as it can be seen in the diagram, a function
of the quark mass and the number of flavors Nf , thus promoting the transitions there from crossover to
Z2, from first order to first order triple and so forth. Note, that this schematic illustrates the possibility
of a second order transition in the Nf = 2 chiral limit. In the alternative of a small region of first order
transitions for mu,d < mu,d;Z2 at (µ/T )2 = 0 the chiral Z2 surface would cover the whole mu,d = 0
backplane at least up to (µ/T )2 = 0. The filled circles mark critical and tricritical points that have been
mapped out in numerical studies.

this case the Z2 lines at zero chemical potential extend surfaces which terminate in the Roberge-Weiss

plane in tricritical lines. This diagram, commonly referred to as the extended Columbia plot, can be
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used to qualitatively complement the information about the nature of the chiral/deconfinement line that

analytically continues from zero to imaginary µ, represented by the dashed lines in fig. 3.2. I plotted this

diagram again in fig. 3.9 for different values of mq with the frames colored equal to the arrows placed

in fig. 3.8 on the Nf = 3 diagonal. For instance consider the green arrow (second one from the right

hand-side) in fig. 3.8 starting in the crossover region at µ = 0. Following this arrow down to negative

values of (iµi/T )2 at some point it passes through a critical point on the Z2 surface entering the region of

first order phase transitions until it finally ends on the Roberge-Weiss plane in the region of first order

triple transitions. This translates to the behavior of the deconfinement line in the top right diagram with a

green frame in fig. 3.8. There the deconfinement line analytically continues from µ = 0 to imaginary µ

until its nature becomes first order after passing through a Z2 point. Subsequently it joins the Z3 endpoint

which in this case is a first order triple point. The remaining diagrams can be read in the same fashion.
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Figure 3.9: Same diagrams as in fig. 3.2, with the difference that the nature of the chiral/deconfinement
line and the RW endpoint is made explicit for different values of the quark mass. The left diagram
is corresponds to very large (light) quark masses mq > m

heavy
q,Z2

(mq < m
light
q,Z2

). The middle diagram

corresponds to large (light) quark masses mheavy
q,Z2

< mq < m
heavy
q,tric (mlight

q,tric > mq > m
light
q,Z2

). The right

diagram corresponds to intermediate masses mlight
q,tric < mq < m

heavy
q,tric . Note, that in the right diagram the

RW endpoint would be a tricritical point for mq = m
light
q,tric or mq = m

heavy
q,tric .

An important observation is that the first order regions at µ = 0 are strengthened with growing purely

imaginary µ (larger negative values of (µ/T )2) but weakened with growing real µ. For both the chiral

region [149, 155] as well as the deconfinement region [103, 126] this has been studied numerically. This is

contrary to what one would expect given the conjectured QCD phase diagram, fig. 3.3, for which the first

order region would expand to larger mass as µ is increased. Thus this might have important consequences

for the possible existence of a critical endpoint in this diagram. I will comment on this problem in the

following section. However, this property can be utilized to gain insights about the Nf = 2 chiral critical

point at µ = 0 from simulations at purely imaginary µ. At purely imaginary µ the chiral critical points

extend to larger masses, for which LQCD simulations are less costly compared to simulations near the

chiral critical point at µ = 0. The Z2 line as a function of µi terminates in a tricritical point located in the

Roberge-Weiss plane. The behavior of a Z2 line in the vicinity of such a point is governed by tricritical

scaling relations. Once several Z2 points at different values µi have been found one can use these scaling

laws in order to extrapolate the Z2 line towards the chiral limit at µ = 0, c.f. fig. 3.10 (l.h.s). This can be
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done by a fit of a functional form which for Nf = 2 is given by

mq,Z2(µ2)

T
=
mq,Z2(0)

T
+ C

[
π

3

2
+
µ

T

2
] 2

5

. (3.80)

This has already been tested successfully some time ago for the deconfinement transition in the heavy

quark mass region [103, 156] where data was produced in the context of an effective three-dimensional

theory based on a combined strong coupling and hopping parameter expansion for imaginary and real

values of the chemical potential. The fit of the functional form eq. (3.80) could describe the data perfectly

well up to large real values of the chemical potential. Somewhat later this has been repeated in a numerical

study of the Nf = 2 chiral region with staggered fermions [144] where a first order transition was

observed. Note that the study was performed on relatively coarse Nτ = 4 lattices corresponding to a

lattice spacing of a ∼ 0.3 fm. The result of another more recent study [145] performed in our group

for which Wilson fermions were used supports the first order scenario. In this study the approach was a

similar one with the difference that studying tricritical scaling was not necessary since the chiral Z2 line

between µi,c/T and µ/T = 0 was found at values of mq,Z2 which were still feasible to simulate, i.e. the

sensitivity of mq,Z2 with respect to µi turned out to be relatively small within the given discretization.

Note that the lattices simulated in this study have a temporal extent of Nτ = 4 and are hence relatively

coarse with a ∼ 0.25− 0.3 fm, as well. The result of the study is shown in fig. 3.10 by the red data points

with error bars, denoted as mZ2,Wilson
π in the plot legend. As one can see from the data points, the mapped

out Z2 line starts from a tricritical point in the Roberge-Weiss plane at (µi,c/T )2 = −(π/3)2 denoted

by mtric,Wilson
π at a mass of about 900MeV and extends up to (µi,c/T )2 = 0 where it ends at a mass of

about 550MeV. The authors compare their findings to the result from another study, performed with the

staggered discretization, which places the critical point at a lower pion mass of about 12% of the one found

with Wilson fermions (see fig. 3.10). They state that this comparison, provided that both discretizations

are fundamentally correct and have the same continuum limit, suggests that the discretization errors on

the critical point found with Wilson fermions at a lattice spacing of a ≈ 0.25 are of O(100%).

Furthermore, briefly coming back to the region at µ = 0, fig. 3.10 includes results from studies using

O(a) improved Wilson fermions on much finer lattices (Nτ = 12[157] and Nτ = 16[158]) which found

a crossover transition at the simulated points and can serve as an upper bound for the critical point within

Wilson discretizations. In a recent study [159] (part of the present work) the Z2 point obtained simulating

Wilson fermions on Nτ = 6 lattices was found at a value of about 70% of the Nτ = 4 value. Considering

the improved and unimproved results altogether, the authors of [145] plausibly conclude that on the coarse

Nτ = 4 lattices the O(a) cut-off effects seem to be far from dominant. The qualitative behavior of a

shrinking Z2 region for finer lattices observed throughout different studies using different discretizations

remains consistent.
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Figure 3.10: L.h.s.: Schematic showing the tricritical scaling between two tricritical points in the Nf = 2
backplane. The left schematic shows how the Z2 line ends in a tricritical point below µ = 0 implying a
second order transition in the Nf = 2 chiral limit while in the schematic on the right-hand side the Z2 line
extends into the region of real chemical potential at µ > 0 implying a region of first order transition in the
Nf = 2 chiral limit. R.h.s.: The plot is taken and shows actual data from [145](Wilson, Nτ = 4) where
the Z2 line was completely mapped out. Further results with staggered [144], Wilson [145](Nτ = 4),
Wilson [159](Nτ = 6, results as part of this work), O(a) improved Wilson Twisted mass [157](Nτ = 12),
O(a) improved Wilson-Clover [158](Nτ = 16) fermions are included in the plot.
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From zero and Imaginary to Real Chemical Potential

In the previous section 3.5.3 I indicated that the curvature of the chiral Z2 surface is of utmost importance

for the nature of the phase transition at finite µ. The physical point is located in the crossover region of

the µ = 0 quark mass diagram (c.f. fig. 3.5). The current conjecture of the (T, µ) QCD phase diagram

suggests that at some value µE the crossover turns into a first order transition after passing through a

second order point. A possible realization of this suggestion requires the Z2 line in the (mu,d) plane to

move to larger masses as a function of µ and to cross the physical point at µE , i.e. the contrary to what is

depicted in fig. 3.8. Though the schematic is drawn in this way for a specific reason: The change of the Z2

line under the influence of µ was studied extensively by means of Taylor series and analytic continuation

and strong indications were found that it moves to smaller masses. This for instance can be calculated by

fixing a value of ms (e.g. its physical value) and writing down the Taylor expansion of mu,d

mu,d;Z2(µ)

mu,d;Z2(0)
= 1 + c1

(
µ

πTc

)2

+ c2

(
µ

πTc

)4

+O
((µ

T

)6
)
, (3.81)

where the expansion parameter comes only in even powers due to CP-Symmetry. The task then is to

compute the coefficients c1, c2, · · · . Here I only want to roughly sketch this method and to make it short,

I am being imprecise by leaving out a further step in which on the lattice the critical parameters in this

equation have to be replaced by the pseudo-critical lattice couplings that again can be expanded around

the critical quark mass at zero density. The interested reader can find the details in in [155]. However

the coefficients in these lattice couplings can be obtained from employing the kurtosis B4 introduced in

section 3.1.1 and further discussed in section 3.1.2. B4 behaves discontinuously when passing from a first

order transition to a crossover through a second order critical point. On a finite volume this continuity is

smeared out and B4 can be expanded around the critical point as a function of the lattice couplings via

B4(am, aµ) = 1.604 +
∑
i,j=1

bijL
i+j
ν (amu,d;Z2(µ)− amu,d;Z2(0))i(aµ)2j . (3.82)

The coefficients in (3.81) can apparently be related to the ones appearing in B4 by formulating and

evaluating derivatives like

d(amu,d;Z2(µ)

d(aµ)2
) = − ∂B4

∂(aµ)2

(
∂B4

∂(amu,d)

)−1

(3.83)

and higher orders respectively. Once the coefficients are computed from these expressions they can be

related to the ones of the continuum couplings which is a non-trivial task. In [155] this calculation was

performed and the coefficients in eq. (3.81) were found to be negative implying a shift of the Z2 line to

smaller masses as µ is increased. Consequently if there is no rapid change in this behavior at some finite

value of µ, the critical endpoint in the QCD phase diagram does either not exist or belongs to a different

transition unknown so far.
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Chapter 4

Numerical Methods and Algorithmic
Details

In section 4.1 I will discuss the methods used to analyze the data obtained from LQCD simulations. These

will cover the error analysis techniques Jackknife and Bootstrap applied to complex observables (including

the Γ-method for the autocorrelation time) but also the multiple-histogram reweighting technique which

allows to efficiently interpolate between simulated ensembles in order to precisely extract observables at

specific, non-simulated values of the inverse lattice coupling β. In particular the combination of error

analysis and multiple-histogram reweighting poses an interesting challenge. Finally in this section the

algorithm will be discussed used to filter enormous amounts of fits with respect to specific criteria which

allows to filter for fits not only having good values of χ2
NDF and Q but also satisfy the criteria related to

the underlying fitting model. In section 4.2 the Rational Hybrid Monte Carlo algorithm will be addressed

which allows for simulations of odd numbers of fermion flavors Nf and which has been implemented for

the Wilson fermion discretization into the LQCD application CL2QCD. The latter will be briefly described

in the subleading section 4.3. The chapter will be concluded by a presentation of a Bash Handler to

Monitor and Administrate Simulations (BaHaMAS) in section 4.4.

Data Analysis Methods

Error Analysis

The expectation value of an observable is estimated from a series of measurements of the observable taken

on configurations produced in Markov chain Monte Carlo simulations. A necessary step in the numerical

analysis of Monte Carlo data is to compute the error on the estimated value of the observable. The error is

given by the standard deviation which in turn is obtained from taking the square root of the variance with

respect to the expectation value of an observable. Of course the variance can only be an estimate itself

since it has to be based on the estimate of the expectation value. The result for some estimated value of an

observable is then quoted as

Ô ± σ, with Ô =
1

N

N∑
i=1

and σ =

√
1

N
2τint,Oσ̂2

O. (4.1)
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In this expression Ô and σ̂2
O are the well known unbiased estimators for the expectation value 〈O〉 and the

variance σ2
O =

〈
O2
〉
− 〈O〉2. The integrated autocorrelation time τint,O takes into account correlations

between the measurements which are intrinsic to Monte Carlo simulations and if ignored lead to an

underestimation of the error. It relates the total number of measurements to the effectively independent

data by Nindep = N/(2τint,O). The size of the autocorrelation time depends on the algorithm as well as

on the parameters of the simulation. For instance in lattice gauge theories τint,O is expected to grow like

τint,O ∼ (ξO)z , where ξO is the correlation length of O which is defined by the exponential decay of

correlation functions between observables separated by some distance on the lattice. z is some dynamical

critical exponent of the system depending on the algorithm. Close to phase transitions, i.e. critical points, ξ

diverges implying the computational effort to grow with the lattice extension to the power of the exponent,

Lz . There are numerous resources on how to compute and analyze these quantities, for instance [33, 160,

161]. Using (4.1) might suffice for the error analysis of primary quantities, i.e. observables which can be

measured configuration-wise, for instance the Polyakov loop. For more complex observables like derived

quantities which are (in general non-linear) functions of primary observables, using (4.1) will not suffice

anymore. Error propagation for derived quantities, depending on the underlying observable and theory,

can become very difficult or even impossible. An examples is given by B4 which is constructed out of

moments of fluctuations of an observable O:

B4 =

〈
(O − 〈O〉)4

〉
〈(O − 〈O〉)2〉2

=

〈
O4
〉
− 4

〈
O3
〉
〈O〉+ 6

〈
O2
〉
〈O〉2 − 3 〈O〉4

(〈O2〉 − 〈O〉2)2
(4.2)

In such cases resampling methods like the Jackknife or the Statistical Bootstrap procedures are usually

consulted which have a straightforward application and provide a simple way to estimate the observable

as well as its variance. For the statistical analysis of the data produced in the context of this work the

Jackknife procedure was used for the error computation of the raw simulated data and functions thereof.

For interpolated data obtained by multiple histogram reweighting, discussed in section 4.1.2, the Statistical

Bootstrap procedure was employed.

Before I proceed to the methods used for the error analysis lets introduce some notation borrowed

from [162]: The term replica means independent Markov chains produced at the same values of the

parameters of the system and are typically simulated in parallel in order to a) gather statistics faster

and b) obtain more control over the statistics and related error analysis as illustrated in fig. 4.1. The

difference is simply that the respective simulations are started from different points in the phase space

by choosing different initial random numbers. Error analysis methods like the so called Γ-method by

U.Wolff [162] explicitly employ replica in order to cancel biases occurring in the error analysis due to the

way certain estimators for observables and functions thereof are defined. In the following I will use Oα to

denote the exact statistical mean value of a primary observable where α identifies the specific observable

(e.g. |P | or ImP ). For a Monte Carlo estimate of a primary observable I will use oi,rα where i labels the

measurements and r denotes the replicum. In the following I will exemplify the error computation for B4

using the Jackknife method. Later, in the section 4.1.2 about reweighting, I will explain how the error

on reweighted quantities was calculated using Statistical Bootstrap. For a thorough discussion of both

methods I recommend [161]. At the end of this section I will also briefly introduce the Γ-method and

compare the results obtained from Jacknife and Bootstrap to the Γ-method which involves an explicit

estimation of the autocorrelation function.
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Figure 4.1: Analysis of the skewness (B3) measurements at κ = 0.1100 on Nτ = 6, Ns = 42 with
successively increasing statistics. The bar charts included in the lower part of the plots are intended as
a guidance to judge on the statistics. nσ at each β is the number of standard deviations by which the
two most different chains are compatible. The numbers placed above the bars are the average numbers
of independent events collected at the respective β. The colors have been chosen in order to reflect the
amount of the statistics. Green color indicates that statistics are high enough while red indicates that
statistics should be increased. Both nσ and the number of independent events have to be monitored to
decide when to stop increasing statistics.

Analyzing Data Using Jackknife

Consider a data set consisting of N uncorrelated measurements oiα (for simplicity here I omit the index r

labeling replica) of Oα. The Jackknife estimator fJαof a function f(Oα) is given by

fJα =
1

N

N∑
i=1

f(ōJnα ), with ōJnα =
1

N − 1

N∑
j 6=n

ojα. (4.3)

Note that in the equation on the right in the calculation of the mean value ōJnα the nth element is left out.

Thus the estimate f(ōJnα ), conveniently abbreviated as fJnα , of the function f(Oα) is based on N − 1

measurements. The variance with respect to fJα reads

σ2(fJa ) =
N

N − 1

N∑
n=1

(
fJnα − fJα

)2
. (4.4)

Note that a possible bias, if desired, can be canceled. An estimate of a possible bias is obtained from

comparing fJα with f(Oa) as

B̂ = (N − 1)
(
fJα − f(Oα)

)
. (4.5)
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Replacing f(Oα) by f(Oα) − (N − 1)
(
fJα − f(Oα)

)
gives an estimator free of or with reduced bias.

Coming back to the example of B4 given by eq. (4.2) one observes to have four different primary

observables Oα given by the moments of On with n=1,. . . ,4. Thus we denote On by Oα, i.e. n = α.

In order to compute the Jackknife estimators in this case, the procedure has to be generalized which is

straightforward. The function for an arbitrary number of observables is f(Oα) = f(O1, O2, · · · ). The

Jackknife estimator with the nth element discarded now is f(ōJn1 , ōJn2 , . . .), i.e. for all observables Oα
the function depends on, the same measurement with respect to the Monte Carlo history is discarded

simultaneously. In the case of B4 the estimate is obtained by computing

BJ
4 =

1

N

N∑
i=1

B4

(
ōJn1 , ōJn2 , ōJn3 , ōJn4 )

)
. (4.6)

The variance eq. (4.4) is computed accordingly. It was already indicated that the data subjected to this

procedure must be uncorrelated to obtain correct results. This means that the autocorrelation time has

to be determined in advance, which in this work was done using the Γ-method by U. Wolff which I will

address further below. The data then can be made uncorrelated by dividing it into blocks or bins of length

2τint,O and building the average for each of these blocks. Then the Jackknife procedure is not applied

anymore to the original data but to the averages made out of the data blocks of length 2τint,O, i.e. instead

of obtaining f(ōJnα ) by leaving out the nth data element now the nth data block is discarded. Considering

a quantity like B4 that depends on different observables, the largest autocorrelation time τint,α is used.

Note that dividing data of length N into blocks of length 2τint,α implies that some of the data might have

to be discarded if 2τint,α does not divide into N without a reminder. Thus if one desires to use as much of

the data as possible the bin size should be chosen such that it divides into N with only a small reminder.

This in some cases implies to choose the bin size smaller or larger than 2τint,α and as consequence slightly

under- or conservatively overestimating the error, where clearly the latter should be preferred. Another

practical issue addresses the production of replica. In the resampling procedure these replica are typically

sewed together to one chain of data. Then it is important to have produced replica of at least approximately

equal length, since in the resampling procedures no weighting whatsoever of the single replicas is done.

Sewing together replica of considerably different length results in erroneous results since replica with

lower statistics are treated equally like replica with larger statistics. In the following I briefly outline the

Γ-method so as to compare the computed errors with those obtained from Jackknife.

Analyzing Data Using The Γ-method

I will only state the central quantities of the method and refrain from presenting it in detail since it was

solely used to estimate the autocorrelation time of our data and to crosscheck the errors we computed using

resampling methods. For the reader interested in details I recommend reading the comprehensive article

[162]. The strength of this method lies in the analysis of derived quantities, i.e. (in general nonlinear)

functions of primary expectation values, and autocorrelation functions which, as the authors of [162]

state, is advantageous compared to popular binning or resampling methods where autocorrelations are

only treated implicitly. To outline the method I need to make some more definitions: Estimates for the

exact statistical mean values Oα of primary observables are given by ōα (per replicum) and ¯̄oα (weighted

average of ōα),

¯̄oα =
1

N

R∑
r=1

Nrōα, , ōα =
1

Nr

Nr∑
i=1

oαi,r. (4.7)
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A derived quantity and its estimators are defined as

F ≡ f(O1, O2, · · · ) = f(Oα), ¯̄F = f(¯̄oα), F̄ =
1

N

R∑
r=1

Nrf(ōα). (4.8)

A central quantity to the method is the autocorrelation function

δrsΓαβ(j − i) =
〈

(oi,rα −Oα)((oj,sβ −Oβ)
〉
. (4.9)

which continuously appears in the analysis of eq. (4.8) by Taylor expansions in the deviations δ̄rα =

ōα −Oα and ¯̄δrα = ¯̄oα −Oα. From a Taylor expansion of ¯̄F and F̄ involving the autocorrelation function

Γ a bias can be deduced (unless f is linear),〈
¯̄F − F

〉
' 1

R− 1

〈
F̄ − F

〉
, (4.10)

which, if necessary, can be canceled by replacing ¯̄F → (R ¯̄F − F̄ )/(R−1). The derivation of the variance

σ2
F is based on a Taylor expansion, as well and reads

σ2
F =

〈
( ¯̄F − F )2

〉
' 1

N

∑
αβ

fαfβ

+∞∑
−∞

Γαβ(t), (4.11)

where fα is a derivative of f with respect to the primary observable labeled by α. The variance σ2
F can be

rewritten in terms of the integrated autocorrelation time τint,F ,

σ2
F =

2τint,F

N
vF , with τint,F =

1

2vF

+∞∑
−∞

∑
αβ

fαfβΓαβ(t) (4.12)

and is estimated in terms of estimates of Γαβ(t) given by

¯̄Γ =
1

N −Rt
R∑
r=1

Nr−t∑
i=1

(ai,rα − ¯̄oα)(ai+t,rβ − ¯̄oα), (4.13)

which has a leading bias of 〈
¯̄Γ
〉
− Γαβ(t) ≈ −

∑+∞
−∞ Γαβ(t)

N
. (4.14)

Truncation of the infinite sum as
∑W

t=1 in the previous expressions leads to another bias ∼ exp(W/τ).

The summation window W should be chosen large compared to the decay time τ to reduce the systematic

error but small enough to not include excessive noise contributions. For the computation of the derivatives

fα which is non-trivial the authors of [162] prefer a numerical treatment and introduce a natural scale

hα =

√
¯̄Γαα(0)

N
(4.15)

extracted from the data to estimate fα by

¯̄f ≈ 1

2hα
[f(¯̄o1, ¯̄o2, · · · , ¯̄oα + hα, · · · )− f(¯̄o1, ¯̄o2, · · · , ¯̄oα − hα, · · · )] (4.16)

for which the numerical errors are of order O(h2
α) ∼ 1/N . The Γ-method is undoubtedly a complicated

method and much more things can be said. For instance the authors also derive equations for the error of the
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error and furthermore derive an algorithm to automatically determine the summation windowW . Moreover

they give a quantitative comparison to binning methods and thoroughly analyze the biases occurring in both

methods. For the computation of the autocorrelation time of the data produced in the context of this work

a publicly available implementation of the method was used which can for instance be found at https:

//www-zeuthen.desy.de/alpha/public_software/index.html. This implementation

was used to analyze some data sets for a comparison with the error obtained from the resampling methods

Jackknife and Statistical Bootstrap. The results are summarized in table 4.1. An example plot of the

autocorrelation time obtained from this implementation is shown in fig. 4.2.

κ β Raw/Γ-Method Raw/Jackknife Rew./Bootstrap τint,B4

0.0750
5.8870 4.3(9) 4.4(2) 3.9(5) 2000(500)
5.8900 2.5(7) 2.54(11) 2.3(3) 4600(1600)

0.0850
5.8832 1.56(10) 1.67(3) 1.83(14) 2200(400)
5.8860 2.5(4) 2.56(8) 3.6(3) 4300(1100)

0.0900
5.8750 5.0(7) 4.8(5) 5.3(9) 300(60)
5.8800 1.66(8) 1.67(2) 1.67(8) 2600(500)
5.8850 9.0(3.0) 8.0(3.0) 8.9(1.3) 700(90)

0.1000
5.8650 3.6(3) 2.79(8) 2.84(17) 350(30)
5.8700 2.77(13) 3.6(1) 3.6(3) 1150(160)

0.1100
5.8400 3.24(16) 3.21(14) 3.1(2) 127(9)
5.8450 2.58(6) 2.57(5) 2.57(10) 181(14)
5.8500 3.03(11) 3.03(10) 3.07(17) 201(16)

Table 4.1: Comparison of estimates and errors between the Γ and resampling methods obtained for B4

from simulations of Nτ = 6, Ns = 42 lattices. The Rew./Bootstrap column refers to the interpolated
estimates obtained from the multiple histogram method discussed in section 4.1.2 and thus do not describe
the raw data obtained from the simulations. The errors are always comparable between the different
methods though not identical due to the latter being conceptually different. The deviations in the estimates
of B4 can be explained by data that had to be discarded during the binning of the data. For the Γ method
no binning exists and thus the different Markov chains do not get and on top are weighted with respect to
their length.

Reweighting

The analysis of the data produced for this work heavily employed reweighting, for which reason I will

discuss this technique more in detail. I will base the discussion on the representations given in [33, 62, 126,

160]. When simulating LQCD by means of Monte Carlo algorithms it is sometimes not possible or just to

costly to access certain regions or specific values of parameters the observable of interest depends on due

to a variety of reasons. In the context of finite density physics a well know example for such a situation is

the sign problem, described in section 3.3.2, which prevents simulations from being carried out at real

finite values of the chemical potential. Another example is given by the situation described in section

5.2.2, where the task is to precisely locate βc, i.e. the critical value of the inverse lattice gauge coupling β

at which a thermal transition takes place. This is done by searching for the value of β at which B3(β) = 0.
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Figure 4.2: The normalized (right) and integrated (left) autocorrelation time of B4 at Nτ = 6, κ =
0.11, β = 5.8450.

Using only LQCD simulations for this search there are essentially two approaches. The first one is to start

many simulations concurrently with a high resolution in β where a larger desired statistical precision of

βc implies a higher resolution in β. This could require a huge number of concurrent simulations per set

of parameters of interest (quark mass mq, lattice extents Nτ , Ns, etc.)! In terms of computational costs

this is extremely inefficient. The second one is to start simulations at just a few values of β. As soon as

the statistics are enough to decide whether B3(β) < 0 or > 0 some kind of bisection procedure could

be used to track down βc. Since LQCD simulations at relevant parameter values are very costly in terms

of time and resources (e.g. close to a thermal transition at βc where suppression of tunneling and huge

autocorrelations start to set in) this again would be overly inefficient. In such situations just described it

would be desirable to have facilities to reliably perform extrapolations from more accessible parameter

regions (e.g. in the case of the sign problem) or interpolations from already available data (e.g. in the case

of precisely locating βc). This is made possible by the reweighting technique, a standard tool widely used

in conjunction with Monte Carlo simulations of not only LQCD but statistical physics systems in general.

The idea of this method is to use the probability weight for generating a Markov chain of configurations as

a reweighting factor as illustrated for LQCD in the following. The expectation value of some observable

O with respect to certain parameter values of κ, µ, β is formally given by the path integral

〈O〉 =
1

Z(β)

∫
DU OdetM (κ, µ) e−Sg , (4.17)
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which can be rewritten in terms of a probability weight for different values of the parameter set κ′, µ′, β′,

namely

〈O〉(β,κ,µ) =
1

Z(β)

∫
DU O detM (κ, µ) e−Sg

detM (κ′, µ′) e−S
′
g

detM
(
κ′, µ′

)
e−S

′
g

=
Z(β′)

Z(β)

〈
O eS

′
g−Sg detM (κ, µ)

detM (κ′, µ′)

〉
(β′,κ′,µ′)

=

〈
O eS

′
g−Sg detM(κ,µ)

detM(κ′,µ′)

〉
(β′,κ′,µ′)〈

eS
′
g−Sg detM(κ,µ)

detM(κ′,µ′)

〉
(β′,κ′,µ′)

.

(4.18)

The expectation value of O at κ, µ, β is now extracted with respect to an ensemble generated at κ′, µ′, β′,

whereby the success of this attempt crucially depends on the distance between the parameter values, which

can be quantified in terms of the overlap of the different ensembles. Depending on certain factors, like the

volume or the choice of the parameters in which to reweight, the numerical evaluation of this expectation

value can turn out to be very hard. However, from here on I will restrict the discussion to the case of

relevance for this work which is rather simple in terms of numerical evaluation which is reweighting only

in the inverse gauge coupling β. Then κ′, µ′ = κ, µ and the determinant reweighting factor drops out of

eq. (4.18) and we are left with eS
′
g−Sg . Practical realizations of these methods are given by the single and

the multiple histogram method described in the following.

The Single Histogram Method

The single histogram method, originally introduced in [163], is included here just for the sake of com-

pleteness as it can be seen as the predecessor of the conceptually different and more elaborate multiple

histogram method. It basically reflects eq. (4.18) and represents a tool to perform extrapolations to

nearby parameter values. Let’s start by considering a discrete series of measurements of an observable O

performed in a Monte Carlo simulation. The estimator ON of an expectation value 〈O〉 reads 1

ON =

∑N
i=1Oip

−1
i e−βPi∑N

j=1 p
−1
j e−βPj

, (4.19)

where P is the β−independent part of the gauge action (c.f. eq. (2.31)). Generating the gauge configura-

tions with importance sampling according to the probability

pi =
1

Z
e−βPi (4.20)

we end up with the sum over the measurements Oi divided by the total number of measurements N ,

ON =
1

N

N∑
i=1

Oi. (4.21)

If instead we define the pi to be Boltzmann probabilities of some different inverse gauge coupling, say β0,

the estimator reads

ON =

∑N
i=1Oi e(β0−β)Pi∑N
j=1 e(β0−β)Pj

, (4.22)

1If a reminder is needed on why to write the numerical expectation value in exactly this way I recommend reading sections
2.1 and 2.2 of [160].
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which is already the central equation of the method and is ready to be used. As already stated above the

method quickly breaks down if the parameter values of simulated ensemble are too far away from the

ones at the ensemble of interest. Note that the method owes its name to the original formulation in terms

of histograms which is legitimate for models with discrete values of the observable O, as it is for instance

the case for the total energy E in the Ising model or if memory requirements are an issue. Otherwise

summarizing Monte Carlo data in histogram bins and thus producing more inaccuracies can and should

be avoided. For more details about this and a discussion about practical matters like implementation and

validity the reader is referred to [160].

The Multiple Histogram Method

The Multiple Histogram Method, introduced in [164] just one year after the invention of its predecessor,

is based on the observation that overlapping ensembles of sets of states, sampled from simulations at

close values of the parameters, can be combined to achieve a significant improvement in the precision of

an interpolation or extrapolation. Consider the case in which data has been produced in simulations at

close values β1 and β2 of the inverse gauge coupling but an estimate of 〈O〉 (β′) at a value β′ ∈ [β1, β2]

is desired. Then the information from the overlapping ensembles of both states sampled at β1 and β2 can

be combined in an elaborate way to predict an estimate of 〈O〉 (β′). But how much of an overlap should

be there between the ensembles and how can it be quantified? We will come back to this question and

other issues later, but first I will give a description of the method and a summary of its most important

equations.

We are interested in the expectation value of some observable O(X;β,~κ, ~µ) depending on a set of

physical quantities X = (Xi) and parameters (β,~κ, ~µ). The LQCD partition function of the system reads

Z(β,~κ, ~µ) =

∫
DU

Nf∏
f=1

detM(κf , µf ) e−SG . (4.23)

Since I will only present the method with respect to reweighting in β the fermion determinant detM

will be omitted for convenience. Furthermore I will write the gauge action as SG = βP where P is the

β-independent part of the gauge action (c.f. eq. (2.31)), i.e. the plaquette including some additional factors.

The partition function can be rewritten as an integral over the possible states of the physical quantities X:

Z(β) =

∫
dX
∫
DU

∏
i

δ(Xi − X̂i) e−βP . (4.24)

Moreover we can choose P as one of these physical quantities, i.e. P = Xj ∈ (Xi). In this way we can

write Z(β) as

Z(β) =

∫
dXρ(X) e−βP , (4.25)

where ρ(X) is the density of states. Using ρ(x) we define the probability distribution function of X ,

p(X,β) = Z−1(β) ρ(X) e−βP . (4.26)

The expectation value of O(X) can be written in terms of p(X,β),

〈O〉 (X̂, β) =

∫
dXO(X)p(β,X). (4.27)
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Now the essential idea of the method is that the density of states ρ(X) which does not depend on β is

solely a function of the system. Consequently the partition function Z(β) and the expectation value of O

can be computed for any β if ρ(X) is known. Of course there is no access to the true ρ(X) but according

to eq. (4.26) it can be estimated with high precision by combining data from Monte Carlo simulations at

different couplings βi. Each ρi(X) obtained from a simulation at βi is an estimate for the true density of

states ρ(X). In order to combine the estimates ρi(X) we sum up probability distribution functions from

simulations at several βi weighted by the number of measurements ni,∑
i

ni p(X,βi) =
∑
i

ni Z
−1(βi) ρi(X) e−βiP

≈ ρ̃(X)
∑
i

ni Z
−1(βi) e−βiP ,

(4.28)

where in the second line we made use of the fact that for infinite statistics the density of states does

not depend anymore on the simulation point βi and thus can be removed from the sum - of course, it is

not possible to gather infinite statistics and thus the second line is only an approximate equality (whose

precision increases with growing statistics) where ρ̃(X) represents the combined estimate for ρ(X), i.e.

ρ̃(X) ≈
∑

i ni p(X,βi)∑
j nj Z

−1(βj) e−βjP
. (4.29)

Note that nip(X,βi) can be interpreted as a histogram counting the occurrences of X at βi. Then∑
i ni p(X,βi) are multiple histograms combined over all simulations i. Inserting the estimate ρ̃(X) into

the partition function given by (4.25) gives

Z(βk) =

∫
dX

∑
i ni p(X,βi)∑

j nj Z
−1(βj) e−βjP

e−βkP . (4.30)

This equation can be rearranged to form an expectation value,

Z(βk) =
∑
i

ni

∫
1∑

j nj Z
−1(βj) e−(βj−βk)P

p(X,βi)dX

=
∑
i

ni

〈
1∑

j nj Z
−1(βj) e−(βj−βk)P

〉
βi

.

(4.31)

The right-hand side of the second line is the sum of the fraction over all configurations of all simulations

and can thus be written as

Z(βk) =
∑
i,s

1∑
j nj Z

−1(βj) e−(βj−βk)Pis
, (4.32)

where the index s labels the configuration number and Pis refers to P measured on configuration number

s of simulation i. This equation has to be solved iteratively for Z(βk) for each simulated βk. Finally, the

reweighted estimate OR(X,β) for an expectation value of some observable O(X) is obtained from

OR(X,β) =
1

Z(β)

∑
i

ni

〈
O(X̂)∑

j nj Z
−1(βj) e−(βj−βk)P

〉
(βi)

, (4.33)

where again the sum times the expectation value on the right-hand side is a naive sum over all configura-

tions of all simulations and can be written as

OR(X,β) =
1

Z(β)

∑
i,s

ois(X)∑
j nj Z

−1(βj) e−(βj−βk)Pis
, (4.34)
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where ois are the measurements of O(X,β) on every configuration s and simulation i at βi. An important

question mentioned in the beginning is, how close should be the values βi of the different simulations in

order to obtain reliable interpolation result. This and further practical matters including error analysis will

be briefly touched in the following.

Practical Matters and Error Analysis

The implementation of this method involves overcoming some numerical obstacles, in particular

• avoiding over- or underflow of the partition function Z by introducing a normalization factor or

working with its logarithm,

• choosing the starting values for the iterative equation eq. (4.32) and

• deciding the number of iterations.

For the discussion of these issues I refer the reader to [160]. In the following I want to come back

to the question about how close the values of the simulation parameters should be in order to obtain

accurate interpolation results. As already mentioned above this depends on the overlap of the ensembles

generated at different values of the parameters. Considering an interpolation in the inverse lattice coupling

β the overlap can be checked graphically by inspecting the overlap of histograms of P = SG/β for the

simulated values of β as shown in fig. 4.3. There B3(β) is interpolated between three β values using the

multiple histogram method. The figure shows how the accuracy of the interpolation decreases if the middle

β value is left out and how this can be understood from looking at the overlap between the ensembles of

the different β values. In [160] the ensemble overlap for the single histogram method is analyzed for the

2D Ising model and the author suggests for a reliable extrapolation to respect the following the criterion

(translated to the case considered here),

|M(SG/βi)−M(SG/βj)| ≤ σ, (4.35)

where M(SG/βi) denotes the mean value of the distribution. To say it in words, the difference between

the mean values of the distribution of SG/βi and SG/βj should not be larger than their standard deviation.

Doing this analysis for the case shown in fig. 4.3 the difference between the mean values of the distribution

at β = 5.8500 and β = 5.8450 is ≈ 2250. The standard deviation of the distribution at β = 5.8500 is

σ ≈ 676. Thus extrapolating from β = 5.8500 to β = 5.8450 as demonstrated in the top row of fig. 4.3

should be avoided. In most of the cases such an analysis was not performed in this work but it was always

assured that the overlap between the ensembles was at least as large as the overlap of the ensembles

shown in the bottom row of fig. 4.3 causing the error of the interpolated data to be of a similar size as

the error on the measured data. A further point to be mentioned, which should not come as a surprise,

concerns the relation between the overlap and the simulated spatial volume: assuming that all parameters

are kept fixed, two ensembles which exhibit a certain overlap on a given volume will have less overlap

on a larger volume. The Gaussian-like distribution of SG/β approaches a δ-function as the volume is

increased towards the infinite volume limit. Thus when increasingly larger volumes are simulated one

should expect that the distance between the β values needs to be decreased.

A further important point about the reweighting procedure concerns the application of the method on

derived quantities and the computation of errors on the interpolated data. The kurtosis B4(β) shall serve
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Figure 4.3: The figure shows measured (blue) and reweighted (red) B3(β) data for the parameter set
Nf = 2, κ = 0.11, Nτ = 6, Ns = 42. Top Row: (L.h.s.) The figure shows an extrapolation from
β = 5.8500 to β = 5.8450 for which the ensembles at β = 5.8400, 5.8450 are not taken into account.
From B3(βc) ≈ 0 a critical coupling of βc = 5.8469 is extracted. (R.h.s.) Shown is the overlap of the
ensembles of β ∈ {5.845, 5.850} in terms of histograms of SG/β. Middle Row: (L.h.s.) The reweighting
of B3 in β = {5.8400, . . . , 5.8500} is performed with a resolution of 0.0001 in β taking into account the
ensembles at β = {5.8400, 5.8500} while β = 5.845 was left out. From B3(βc) ≈ 0 a critical coupling
of βc = 5.8464 is extracted. (R.h.s.) The overlap between the ensembles of β ∈ {5.840, 5.850} is really
small and the errors on the interpolated data are still large but significantly reduced compared to the
extrapolation above and the interpolation point at β = 5.8450 is slightly adjusted towards the measured
point. Bottom Row: In the reweighting procedure the ensemble at β = 5.8450 was added. The curve is
slightly adjusted and the errors are significantly reduced to the order of the errors of the measured data
points. In this case from B3(βc) ≈ 0 a critical coupling of βc = 5.8462 is extracted.

as an example for a derived quantity:

B4 =

〈
(O − 〈O〉)4

〉
〈(O − 〈O〉)2〉2

=

〈
O4
〉
− 4

〈
O3
〉
〈O〉+ 6

〈
O2
〉
〈O〉2 − 3 〈O〉4

(〈O2〉 − 〈O〉2)2
. (4.36)
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Remember that the moments On are the primary observables measured configuration-wise which I denote

by Oα. Assume we have two estimates B4(β1) and B4(β2) extracted from simulated ensembles with an

sufficient overlap to interpolate between them. Furthermore we are interested in B4 evaluated at some

value of β, say β′, with β1 < β′ < β2. Then the reweighting procedure is applied on all measurements

oα,i(βj) of Oα (with j = 1, 2) to obtain the estimate ōRα (β′), where the superscript R indicates that it is

obtained through reweihting. I.e. the reweighting procedure can be considered a functional R acting on

all measurements oα,i(βj), such that

ōRα (β′) = R[oα,i(βi)] (4.37)

Subsequently B4 can be evaluated according to eq. (4.36) with the estimates ōRα (β′) so as to obtain

BR
4 (β′). It is as simple is that. Somewhat more involved is the determination of the errors of BR

4 (β′)

which will be discussed in the following.

In section 4.1.1 I announced to discuss the Statistical Bootstrap method separately in this section since

the method is used for the error analysis of reweighted data. I will explain the reason for preferring this

method for reweighting over the Jackknife shortly but at first I will give a brief description of the method.

Consider a set of uncorrelated measurements oα,i with i = 1, . . . , N . This data set gets resampled M

times, each time randomly drawing N data out of the original data set with repetition, yielding M new

data sets oBjα,i with i = 1, . . . , N and j = 1, . . . ,M . This drawing with repetition implies that the new

sets will include some identical data. For each of these new M data sets oBjα,i one builds the mean value

ō
Bj
α =

1

N

N∑
i=1

o
Bj
α,i (4.38)

which are the Bootstrap estimators. Bootstrap estimators of derived quantities are then given by functions

evaluated using ōBjα , i.e. f(ō
Bj
α ) = f

Bj
α . To estimate the standard deviation of a derived quantity, at first

the mean value over the bootstrap estimators fBjα is formed which yields

fB =
1

M

M∑
j=1

f
Bj
α . (4.39)

The estimated standard deviation is then given by

σ =

√√√√ 1

M

M∑
i=1

(
f
Bj
α − fBα

)2
. (4.40)

Now in order to obtain the standard deviation of a reweighted estimate of a derived quantity - lets resume

with the example of BR
4 (β′) - the reweighting procedure is applied on each of the M newly sampled data

sets oBjα,i to obtain ōR,Bjα = R[o
Bj
α,i]. These are then used to evaluate B4 to obtain a reweighted Bootstrap

estimator BR,Bj
4 (β′) which corresponds to fBjα . The estimator corresponding to fB is then again the

average over all BR,Bj
4 (β′), i.e.

BR,B
4 (β′) =

1

M

M∑
j=1

B
R,Bj
4 (β′) (4.41)

and the standard deviation via

σ =

√√√√ 1

M

M∑
j=1

(
B
R,Bj
4 (β′)−BR,B

4 (β′)
)
. (4.42)
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Remember that both the Bootstrap procedure and the Jackknife require uncorrelated data which can

be obtained by rearranging the data in blocks of size of at least 2τint to end up with K = N/(2τint)

blocks of data. The Bootstrapping procedure is then applied on the whole blocks instead of the single

data. With the exception of this step, the analysis remains as described above. There is a practical

complication, though. The reweighting procedure has to be applied on M resampled data sets oBjα,i which

is of the order of multiple hundreds of times. If the data set is large, say O(106), this implies huge

computational costs. For this reason we alter the Bootstrap analysis slightly by taking a shortcut. We still

form K = N/(2τint) blocks of data but we do not resample the whole blocks and feed the resampled

data set into the reweighting procedure. Instead from each block k with k = 1, . . . ,K only one data

is drawn randomly. The K drawn data represent the new data set which is fed into the reweighting to

obtain the reweighted Bootstrap estimator. On the one hand-side this de-correlates the data and the time

to reweight the data set decreases significantly but on the other hand-side this reduces the information

content due to the decreased statistics which leads, in the worst case, to an overestimation of the error. In

practice, however, this turns out not to be a problem which can be seen from table 4.1. The table shows

that the estimated error on B4 is always comparable to the error computed with the Γ-method. This is

also supported by figures 5.4 and 4.3 (bottom, left) where one can clearly see that the errorbars of the

reweighted data points are of a similar size like the errorbars of the pure data.

Now let me give a reason for preferring Statistical Bootstrap over Jackknife. The reason is similar to

what was just explained. If we end up with K = N/(2τint) blocks of data, in the Jackknife procedure

these K blocks are resampled K-times, each time leaving out one block, without repetition. Now if

the number K of blocks is large and if the Monte Carlo history is large, as well, say O(106), then the

reweighting procedure, which has to be applied on all of the K resampled blocks, would not be feasible in

terms of computational resources anymore.

As a final remark, note that in a real application we distribute the data set on multiple Markov chains.

The data orα,i, where r labels the replica, is then sewed together to one single history before the reweighting

and Bootstrap methods are applied. In this regard it is important that the replica are approximately equally

long, otherwise they would have to be weighted with their respective length (as it is done in the Γ-method)

which, if possible at all, would certainly imply a much more involved resampling procedure. Another

point concerning a history sewed together from replica is autocorrelation. If data is to be de-correlated by

blocking methods, the breaks of autocorrelation at the boundaries of the replica is simply neglected.

Reweighting Distributions

In the section about the multiple-histogram method I stated eq. (4.27) from which the expectation value of

some observableO depending on some physical quantityX is obtained. Sometimes it can be interesting or

necessary to investigate the distribution function of an Observable O rather than computing its expectation

value. Let us assume for simplicity that O(X) = X , i.e.〈
X̂
〉
β

=

∫
dXXp(β,X). (4.43)

Then if we substitute X → δ(X − X ′) in this expression we trivially obtain the probability function

p(β,X ′),

p(β,X ′) =

∫
dXδ(X −X ′)p(β,X). (4.44)
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The same step can be done to obtain the probability pR(β,X ′) from equation eq. (4.33) and eq. (4.34)

accordingly. In the case of eq. (4.34) where we have a sum over all sampled states s the δ-distribution

gets replaced by Kronecker-δ,

pR(β,X ′) =
1

Z(β)

∑
i,s

δxis,x′∑
j nj Z

−1(βj) e−(βj−βk)Pis
. (4.45)

The application of this equation could be very impractical since the right-hand side of this equation has to

be evaluated for every measurement x′ of X which could potentially be hundreds thousands of times or

more. Therefore it is helpful to think in terms of histograms. A measured value xis of X is sorted into a

bin of width ∆X if X ′ < xis < X ′ + ∆X . Consequently, instead of a Kronecker-δ we actually have to

use a heaviside function:

pR(β,X ′) =
1

Z(β)

∑
i,s

θ
[
(xis − (X ′ − ∆X

2 ))(X ′ + ∆X
2 − xis)

]∑
i ni Z

−1(βi) e−(βi−βk)Pis
. (4.46)

With regard to the continous version of this expression one realizes that due to the heaviside function an

additional factor ∆X is obtained. This can be seen from the following consideration: The probability

function p(β,X ′) as is given by

p(β,X ′) =

∫ ∞
−∞

θ

[(
xis −

(
X ′ − ∆X

2

))(
X ′ +

∆X

2
− xis

)]
p(β,X)dX. (4.47)

We expect to obtain 1 from integrating p(β,X ′) from −∞ to∞ but due to the heaviside function we

instead obtain,∫ +∞

−∞
p(β,X ′)dX ′ =

∫ ∞
−∞

∫ ∞
−∞

θ

[(
xis −

(
X ′ − ∆X

2

))(
X ′ +

∆X

2
− xis

)]
p(β,X)dXdX ′

=

∫ +∞

−∞

∫ X′+ ∆X
2

X′−∆X
2

p(β,X)dXdX ′

≈
∫ +∞

−∞
p(X ′)∆XdX ′

≈∆X

(4.48)

Hence in order to obtain a normalized probability distribution function the result has to be divided by

∆X . In words, the reason for obtaining the additional factor ∆X is that we put states of a theory with a

continuous spectrum into bins of a finite size. For a theory with a discrete spectrum, like the 2D Ising

model, for which the reweighting method can be completely formulated in terms of histograms, such a

consideration is not necessary.

Filtering Algorithm for χ2 Fits

The two well-known key quantities to measure the quality of a fit are the reduced chi-square χ2
NDF and Q,

the goodness of a fit2. Besides considering these quantities, fitting of data often requires to use knowledge

about the underlying model or theory, as well, since the latter usually imposes further mathematical and
250% is considered the optimal value for Q. For a comprehensive introduction on the goodness of a fit and to chi-square

fitting in general, see for instance [165].
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physical constraints on a fit. If these are ignored, there is no guarantee that a fit result with good values of

χ2(≈ 1) and Q (≈ 50%) is indeed the best result possible. The fitting algorithm used for the fits of the

fitting form of the kurtosis B4 in section 5.3 (study at µ = 0) and 5.4 (study at µi,c) serves exactly this

purpose. Note, that here I will restrict the discussion on the application of the algorithm on the fitting

form of B4 at µ = 0. The only difference between the fitting forms at µ = 0 and µi,c is in the scaling

variable, which for µ = 0 is x = (κ− κZ2)N
1/ν
s while for µi,c it is x = (β − βc)N

1/ν
s . The application

and criteria of the fitting-algorithm are completely analogous at purely imaginary chemical potential at

µi,c. In section 5.3 finite size scaling analyses are performed by fitting

B4(βc, κ,Ns)(µ=0) =
(
B4(βc, κZ2 ,∞)(µ=0) + a1x+ a3x

3
)

(1 +BN
1/ν
s ) (4.49)

to B4 data, obtained from Monte Carlo simulations, in order to extract κZ2 in the infinite volume limit,

i.e. the κ value where the first order transitions change to crossover transitions. While the parameters

B4(βc, κZ2 ,∞)(µ=0) and ν are usually fixed to their universal values, the parameters to be extracted

are κZ2 , a1, B. Technically this is a fit in two variables (κ,Ns). An alternative approach, pursued in

this work, is to treat the fit as a simultaneous or shared parameter fit of the parameters κZ2 , a1, B to

sets of points ( κ , B4(βc(κ)) )Nsi
that are different for each temporal extent Nsi . I.e. the data points

( κ , B4(βc(κ)) )Ns1
belonging to Ns1 describe a different curve (with a steeper slope) compared to the

data points ( κ , B4(βc(κ)) )Ns2
belonging to Ns2 < Ns1 . An important observation here is, that the

fitting range in x = (κ− κZ2)N
1/ν
s can be different for each set of points ( κ , B4(βc(κ)) )Nsi

and thus

varying the fit interval in x yields a multitude of possible fits (depending on the number of data points,

≈ O(10) to O(105) fits) with differing results from which the “good” ones have to be chosen. This is

complicated by the fact that changing the fitting range in κ influences the fitted value of κZ2 , i.e. causes a

non-trivial shift of the interval in x, which is only known a posteriori.

In the following, criteria are imposed on the choice of the good fits which are in accordance with the

fitting form given by (4.49).

1. Extrapolation is forbidden, i.e. all fitting intervals are placed such that

κZ2 ∈ I =
[
κmin, κmax

]
. (4.50)

2. Since the scaling variable is x ≡ (κ− κZ2)N
1/ν
s , the scaling region in κ shrinks with growing Ns.

Thus, for the fitting intervals I1, . . . , In of the data with Ns1 < . . . < Nsn , we require

I1 ⊇ · · · ⊇ In . (4.51)

3. On the reduced chi-square the following condition is imposed

1− δ ≤ χ2 ≤ 1 + δ, with δ ≈ 0.2 .

4. The fitting range in x should ideally be the same for all volumes included. The intervals In are

mapped to intervals

Ĩn ≡
[
xmin
n , xmax

n

]
.

For two intervals A = [a1, a2] and B = [b1, b2], we define an overlap percentage as

Ω ≡


0 if a2 < b1 ∨ b2 < a1

100 ·
(

1− |b1 − a1|+ |b2 − a2|
a2 − a1 + b2 − b1

)
otherwise

. (4.52)
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We then require Ω ≥ 80%.

5. Since the scaling region is based on Taylor expansion, it should be symmetric around xc,

Iscaling =
[
−x̄, x̄

]
,

with x̄ and the size of the region only known after the fit. Given an interval J = [−a, b] with a and

b non-negative and a+ b fixed, we define a symmetry percentage as

Ξ ≡ 100 ·
(

1−
∣∣∣∣ 2a

a+ b
−1

∣∣∣∣
)

= 100 ·
(

1−
∣∣∣∣ 2b

a+ b
−1

∣∣∣∣
)
. (4.53)

Clearly, Ξ = 0% (maximally asymmetric interval) for a = 0 or b = 0 and Ξ = 100% (maximally

symmetric interval) for a = b. Among possible fits we choose the one with maximal Ξ.

While in practice these criteria work fairly well for the fits performed in the study at µi,c, for the fits

in the study at µ = 0 the criteria will be somewhat relaxed since there the finite size effects are more

severe and seem to shift the scaling regions significantly (c.f. discussion in section 5.3). This means that

in particular also smaller overlap and symmetry percentages of ≥ 50% will be considered. An example is

given in fig. 4.4, which shows one of the fits presented in section 5.3.2.
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Figure 4.4: Fit of B4 according to (4.49) at µ = 0 and Nτ = 8 with χ2
NDF = 0.62, NDF=9, Q = 78, a

minimal overlap of Ωmin = 66% and a minimal symmetry of Ξmin = 64% in x = (κ− κZ2)N
1/ν
s . The

l.h.s. shows the fit for three data sets belonging to Ns = 32, 40 and 48. The r.h.s. visualizes the fitting
intervals in x, for which the minimal symmetry (64%) is in the fitting interval of Ns = 48 and the minimal
overlap (66%) is between the fitting intervals of Ns = 32 and 48. Note, that the values on the y-axis serve
as labels for the different fitting intervals corresponding to different Ns.

Rational Hybrid Monte Carlo (RHMC)

For simulations of LQCD involvingNf = 2 flavors (or integer multiples of 2) of standard Wilson fermions

the de-facto method is the Hybrid Monte Carlo algorithm. For an uneven number of flavors, e.g. Nf = 3,

in the Hybrid Monte Carlo algorithm the usual inverse quark matrix kernel is replaced by a rational

approximation leading to the Rational Hybrid Monte Carlo algorithm . In the following I will very briefly

recapitulate the Hybrid Monte Carlo algorithm [166] and starting from this I will explain the Rational

Hybrid Monte Carlo algorithm for Wilson fermions. I will base this section on [167, 168].
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To start with, let me write down the path integral, discussed in section 2.2, after the Grassmann-valued

quark fields have been integrated out,

〈O〉 =
1

Z

∫
DU O

[
ψ, ψ̄, U

]
[detM(U)]α e−SG[U ], (4.54)

in which α = Nf/2 (for Wilson fermions) and M = D†D with D the Wilson fermion matrix (c.f. eq.

(2.34)) in its discretized form. The fermion determinant detM is represented as a pseudofermion Gaussian

functional integral, i.e.

detM =

∫
Dφ†Dφ e−φM

−1φ

=

∫
Dφ†Dφ e−SPF

(4.55)

For a reminder about pseudofermions see for instance [33]. The form of the LQCD path integral is suited

for the application of importance sampling, i.e. in a Monte Carlo simulation of LQCD the gauge field

configurations are sampled according to the probability distribution

P [U ] =
1

Z
e−SG [detM(U)]α. (4.56)

Note, being a part of the probability distribution P [U ] the fermion determinant detM(U) must be real

and non-negative. The reality is guaranteed by γ5-hermiticity (see section 2.6). A negative fermion

determinant can be ruled out by assuming mass degenerate quark masses. This is physically justified

for the case of Nf = 2 flavor simulations for which the up and the down quark are assumed to be mass

degenerate. For the Hybrid Monte Carlo algorithm a fictitious momentum field π is introduced and

included in the Hamiltonian which then reads

H =
1

2
Trπ2 + SG + SF. (4.57)

The fictitious field π allows to evolve the gaugefields by integrating Hamilton’s equations of motion

in a fictitious discretized time dimension labeled by τ . This is also referred to as molecular dynamics

integration. The momentum and the pseudofermion fields are periodically updated by a heatbath which

ensures ergodicity. The integration of Hamilton’s equations along τ with a step size δτ introduces an error

of O(δτk), where k is the order the integration scheme used. At the end of every Hybrid Monte Carlo

step a Metropolis acceptance test is done which stochastically corrects for this error. A requirement for

the Metropolis acceptance test is detailed balance condition for which the integration scheme used must

be reversible and area preserving. This is fulfilled by symmetric symplectic integrators for which the most

popular example is the second order leapfrog integrator.

These ingredients make the Hybrid Monte Carlo algorithm an exact algorithm which produces results

that are independent of the step size. Of course the step size should be chose such that the rate of Hybrid

Monte Carlo steps accepted (referred to as acceptance rate) is a reasonable one. If the step size is large,

the integration speed is large as well but the acceptance rate will drop, leading to many Hybrid Monte

Carlo steps being rejected. In this case the previous configuration will be stored. This implies that the

phase space is being explored slowly and that correlations in the data are larger. In contrast, if the step

size is small the integration speed is lower, as well but the data has a smaller autocorrelation time. In

practice a compromise is chosen, i.e. the step size is typically chosen such that an acceptance rate between

68% is 85% is obtained.

One Hybrid Monte Carlo step consist of the following parts:
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• Momentum refreshment heatbath
(
P (π) ∝ e−π∗π/2

)
,

• pseudofermion heatbath
(
φ ∝ D†χ, where P (χ) ∝ e−χ∗χ

)
,

• molecular dynamics trajectory consisting of τ/δτ number of steps,

• Metropolis acceptance test with Pacc = min
(
1, e−δH

)
.

If the reader is unfamiliar with these steps he is referred to [33] in which a more detailed summary of the

steps and discussion thereof can be found. Repetition of this Hybrid Monte Carlo step builds a Markov

chain collecting the most important states of the system. The computational cost of the Hybrid Monte

Carlo strongly increases if the fermion mass is decreased. This happens due to the following two reasons:

1. During the Hybrid Monte Carlo step D−1 has to be applied to a vector which can be done using

a Krylov solver for which a popular example is conjugate gradient (for a very comprehensively

written article see [169]). The cost of such a solver goes up rapidly for small fermion masses due to

the increase of the condition number of D.

2. In the integration of Hamilton’s equations of motion the fermion force acting on the gauge fields

increases as the fermion mass is decreased. Then the acceptance rate can only be kept constant if

the step size is reduced which implies an increase of cost.

In the last years a lot of progress has been made which consists in improvements to the Hybrid Monte Carlo

algorithm to considerably reduce the computational cost such that simulating small quark mass, in particu-

lar physical quark masses starts to become feasible. Among others these include mass preconditioning

[170] and multi-timescale mass preconditioning [171–173].

These are the most important points to mention about the Hybrid Monte Carlo algorithm. Full

descriptions and lengthy discussions about the topic can be found in textbooks like [33, 160].

For the Hybrid Monte Carlo algorithm the parameter α in eq. (4.54) is required to take integer values,

i.e. only an even number of flavors can be simulated. If an uneven number of flavors is desired, say

Nf = 3, the parameter α has to assume non-integer values. In the standard Hybrid Monte Carlo algorithm

there is no way to directly evaluate the action or its variation with respect to the gauge field, needed

to compute the force. One possibility for simulating uneven Nf is the Rational Hybrid Monte Carlo

algorithm which is at present the best algorithm for this task and is superior to two other algorithms

capable of this task, the R-algorithm and Polynomial Hybrid Monte Carlo algorithm [167, 174].

The basic idea of the Rational Hybrid Monte Carlo algorithm is to replace the kernel M−α in the

bilinear in the first row of eq. (4.55) with a rational approximation ,

detM =

∫
Dφ†Dφ e−φr

2(M)φ, (4.58)

where r(x) = x−α/2. The rational approximations can be written in partial fraction form, i.e.

r(x) = a0 +
m∑
k=1

αk
x+ βk

, (4.59)

Optimal rational approximations with respect to the coefficients αk and βk can be obtained with the

Remez algorithm [175] for which the roots and poles are in general real. For a detailed discussion see
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[176]. The poles are positive for |a| < 1, as well. This case is important when Nf = 2 + 1 flavors are

simulated, which represents a combination of Hybrid Monte Carlo forNf = 2 and Rational Hybrid Monte

Carlo for Nf = 1.

Now the question is how to apply a rational approximation to a matrix. The ordinary way to compute a

function f(A) of a hermitian matrixA (which is the case forM ) is to find a matrix U and a diagonal matrix

D such that M = UDU−1, with D = diag[λ1, . . . , λN ] where λ1, . . . , λN are the eigenvalues of D. The

function f(A) can then be computed by f(A) = Uf(D)U−1, where f(D) = diag[f(λ1), . . . , f(λN )].

In the case of the rational approximation it turns out that the matrix U and its inverse are not needed 3 , i.e.

one has

r(A) = a0 +

m∑
k=1

αk(A+ βk)
−1. (4.60)

As already mentioned above, in the Hybrid Monte Carlo algorithm expressions similar to (A+ βk)
−1χ

have to be evaluated which can be done using a conjugate gradient solver. The sum in eq. (4.60) contains

many of these terms which can be solved altogether at a stroke using a multi-shift conjugate gradient

solver [177], also referred to as CG-M. In this way the cost of evaluating a rational approximation is very

similar to a single matrix inversion and moreover in leading order the cost is independent of the desired

precision.

Other than the replacement of the fermion kernel in the Hybrid Monte Carlo algorithm by a rational

approximation nothing changes and thus the procedure is the same like with a Hybrid Monte Carlo

algorithm up to corresponding modifications in the pseudofermion heatbath, the molecular dynamics part

and the Metropolis acceptance test which I will cover in the following.

Before I start with the pseudofermion refreshment heatbath part, I make two remarks: An important

component of the (Rational) Hybrid Monte Carlo algorithm is the computation of the pseudofermion force

which imperatively should be conducted in combination with even/odd preconditioning of the fields. Even

though it is important to be familiar with it, I will not discuss the fermion force computation with even/odd

preconditioning at this point since it is not strictly necessary for the discussion of the Rational Hybrid

Monte Carlo algorithm and furthermore it is quite technical and lengthy. However, it might be important

if the reader intends to work on or modify the CL2QCD code, since identifying equations in an actual

code is not always trivial. For this reason I include the computation of the pseudofermion force in the

appendix section A.2. The second remark regards the notation I will use from now on, which I orient on

the implementation of the Hybrid Monte Carlo and Rational Hybrid Monte Carlo algorithm in CL2QCD.

The reason is again that if the reader intends to read the CL2QCD code, the following equations related

to the Hybrid Monte Carlo and Rational Hybrid Monte Carlo algorithm can easily be identified. This

notation allows to easily switch between the Wilson and the Twisted-Mass Wilson fermion discretization,

which is not important for the discussion here but could be important for working with CL2QCD. The

3Showing this a simple exercise which starts from inserting into f(A) = Uf(D)U−1 the rational approximation for f(D)
according to eq. (4.60).
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notation consists simply in defining Q = γ5D. Using this definition together with the γ5-hermiticity of D(
DD†

)†
= D†D

γ5-herm.
= (Dγ5Dγ5)†

= γ†5D
†γ†5D

†

= γ5D
†γ5D

†

γ5-herm.
= DD†

(4.61)

one can write

D†D = DD† = QQ, (4.62)

which can be used to write the pseudofermion action as SPF = φ†(QQ)−1φ

For the pseudofermion refreshment heatbath where a field χ is created randomly according to the

distribution P (χ) = exp(−χ ∗ χ) we consider the SPF for a general α = Nf/2,

φ†(QQ)−αφ = φ†(QQ)−
Nf
2 φ

= φ†(QQ)−
Nf
4︸ ︷︷ ︸ (QQ)−

Nf
4 φ︸ ︷︷ ︸

= χ† χ,

(4.63)

in which φ is obtained via via

φ = (QQ)+
Nf
4 χ. (4.64)

In order to evaluate eq. (4.64) a rational approximation is applied according to eq. (4.60):

(QQ)+
Nf
4 −→

[
α0 +

m∑
i=1

αi (QQ+ βi)
−1

]
, (4.65)

which, substituted into eq. (4.64), yields

φ =

[
α0 +

m∑
i=1

αi (QQ+ βi)
−1

]
χ. (4.66)

At this point a multi-shift conjugate gradient solver can be applied to evaluate αi (QQ+ βi)
−1 χ for

i = 1, . . . ,m.

The next relevant part for the Rational Hybrid Monte Carlo algorithm is the molecular dynamics

integration. To be more precise, only the computation of the pseudofermion force in this part is important.

The total force is given by the derivative of the action

F [U, φ] =
∂

∂V
S [U, φ] , S [U, φ] = SG [U ]− φ† (QQ)−α φ. (4.67)

where ∂/∂V is to be understood as derivative in the algebra direction Ti, i.e.

∂/∂V =
∑
i

Ti∇i with ∇i = ∂/∂ωi. (4.68)
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Let us start with the evaluation of the fermionic part of the force for the case of Nf = 2 flavors, i.e. α = 1

to subsequently easily extent it to an arbitrary Nf : 4

∇(i)
(
φ†(QQ)−1φ

)
= −φ†(QQ)−1

(
∇(i)QQ

)
(QQ)−1φ

= −
(
(QQ)−1φ

)†( ∂Q

∂ω(i)
Q+Q

∂Q

∂ω(i)

)(
QQ)−1φ

)
.

(4.69)

For an arbitrary uneven Nf we start from

∇(i)
(
φ†(QQ)−αφ

)
, with α =

Nf

2
. (4.70)

Note that here a different rational approximation is needed since the exponent α is different compared

to the pseudofermion refreshment heatbath. and substitute (QQ)−α with its rational approximation and

proceed like in eq. (4.69):

∇(i)

(
φ†(QQ)−

Nf
2 φ

)
−→∇(i)φ†

α0 +

m∑
j=1

αj (QQ+ βj)
−1

φ
cf.(4.69)

= −
m∑
j

αj φ
† (QQ+ βj)

−1
(
∇(i)QQ

)
(QQ+ βj)

−1 φ

=−
m∑
j=1

αj

[
φ† (QQ+ βj)

−1
(
∇(i)Q

)
Q (QQ+ βj)

−1 φ

+ φ† (QQ+ βj)
−1Q

(
∇(i)Q

)
(QQ+ βj)

−1 φ

]

=−
m∑
j=1

αj

[
X†j

(
∇(i)Q

)
Yj + Y †j

(
∇iQ

)
Xj

]
=−

m∑
j=1

αj

[
X†j

(
∇(i)Q

)
Yj +

(
X†j

(
∇(i)Q

)
Yj

)†]
,

(4.71)

where we defined

Xj = (QQ+ βj)
−1 φ, Yj = QXj , (4.72)

where again a multi-shift conjugate gradient is applied to obtain the solution for Xj . Having obtained

Xj the field Yj can be obtained by a simple application of Q. Note, that the extension to the case of

even/odd-preconditioned fields is straightforward since the rational approximation can be applied to eq.

(A.26) (third line) in exactly the same way as above.

The last part of the Hybrid Monte Carlo algorithm relevant for the construction of the Rational Hybrid

Monte Carlo algorithm is the Metropolis accept-reject step in which the new value of the action, obtained

from the refreshment heatbaths and molecular dynamics integration, is compared to the old one. To be

more precise, the newly created configuration is accepted if

r < exp
(

Tr[π2]− Tr[π2
new] + SG[U ]− SG[Unew] + φ†

(
(QQ)−α − (QQ)−αnew

)
φ
)
, (4.73)

where r is a random number with r ∈ [0, 1). Here apparently the fermion part enters again for which

reason another rational approximation has to be applied but this time it is the same procedure as eq. (4.70)

since the exponent α = Nf/2 to be approximated is the same.
4 Remember the definition of the group elements of SU(3): U = exp

[
i
∑8
i=1 ω

(i)Ti
]
. For details see [33].

86



At this point we are not done yet since a few more very important remarks have to be made which are

the following: The rational approximation of f(A) has a range of validity. This range must be within the

interval I = [λmin, λmax] with λmin and λmax being the minimal and maximal eigenvalues ofA respectively.

There different algorithms to find these eigenvalues numerically. In our code CL2QCD the power method

is employed for this task. A description of this method be found for instance in [178]. This directly

directly relates to the question if the rational approximation coefficients ak and bk (c.f. eq. (4.60)) have to

be computed anew employing the Remez algorithm for every Rational Hybrid Monte Carlo step. This

would be very costly and cause the Rational Hybrid Monte Carlo algorithm to become unfeasible in terms

of computational time. Fortunately the answer is no and there is a better way explained in the following.

Assume to have calculated the rational approximation of f(y) = yα which is

yα ' a0 +

m∑
k=1

ak
x+ bk

, (4.74)

valid for y ∈ [xmin, 1] where xmin is known. Now the rational approximation of f(x) = xα is needed

which is required to be valid in the interval I = [λmin, λmax]. The functions f(x) and f(y) can be related

by the following consideration:

f(x) = xα =

(
λmax

λmax
x

)α
= λαmax

(
x

λmax

)α
≡ λmaxy

α. (4.75)

Then the rational approximation of f(x) can be written as

f(x) ' λαmax

[
a0 +

m∑
k=1

ak
x
λmax

+ bk

]

= λαmaxa0 +
m∑
k=1

λα+1
max ak

x+ λmaxbk

= a′0 +
m∑
k=1

a′k
x+ b′k

,

(4.76)

which is clearly valid for x ∈ [xminλmax, λmax]. Now if

xmin ≤
λmin

λmax
, (4.77)

then x is valid in I = [λmin, λmax]. This means that the rational approximation coefficients a′0, a
′
k, b
′
k of

f(x) can be obtained by rescaling the ones of f(y) by

a′0 = λαmaxa0, a′k = λα+1
max ak, b′k = λmaxbk. (4.78)

In case the condition by eq. (4.77) is not fulfilled, a new rational approximation has to be computed.

To conclude the section I make some final. The first important remark concers the precision of the

rational approximation, for which there are two sources of numerical errors - the rational approximation

coefficients a0, ak, bk and the order of the rational approximation expansion given by the number of terms

in the sum in eq. (4.74). Since the rational approximation coefficients usually only have to be evaluated

once at the beginning of the Rational Hybrid Monte Carlo simulation they should be computed with a high

precision, i.e. machine precision which is typically ≈ 10−15. For the order of the rational approximation

expansion in contrast, which determines how well a function f(A) is approximated, such a precision
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would be too high since in each Rational Hybrid Monte Carlo step all the terms in the sum have to be

evaluated using the multi-shift conjugate gradient solver. A too large number of terms then increases

the computational cost considerably since the number of linear algebra operations like matrix-vector

multiplication increases significantly, as well. Fortunately it is enough to choose the number of terms

such that the precision by which f(A) is approximated is just higher than the precision of the solver used.

In the case of the molecular dynamics part a lower precision can be chosen, since the numerical errors

occurring there are corrected for by the Metropolis acceptance test. Of course, a too low precision also

implies a decrease of the acceptance rate [179]. The precision of the pseudofermion refreshment heatbath

as well as the Metropolis test affect the fixed point of the Markov process for which reason it is imperative

to use a high precision. The second important remark is about a comment made in [180] which states

that with the Rational Hybrid Monte Carlo algorithm the measure
√

det 2D is sampled. This can be a

problem when very small masses in the Wilson formulation of fermions are simulated since the these

detD may become negative for some background gauge fields. However, this happens only for a small

number of ensembles that goes to zero in the continuum limit and thus does not affect the continuum

limit of the lattice results. If desired this can be corrected by computing the sign of the determinant and

multiplying the corresponding configurations by −1. The sign of the determinant can for instance be

computed using the Arnoldi method, described in [178]. This has not been implemented in CL2QCDdue

to temporal constraints on the project but the simulations with Nf = 3 flavors so far have been conducted

in the heavy quark mass region only (c.f. section 5) where this phenomen is probably not an issue.

The CL2QCD Software in a Nutshell

CL2QCD is a Monte Carlo simulation code for LQCD that was used for all simulations performed for this

work. In this section I will give a brief description of CL2QCD without attempting to discuss the code or

its performance results in detail. Attempting to do so leads beyond the scope of this work since CL2QCD

is a large project which originated around 2011 when it was developed by Dr. M. Bach, Dr. C. Pinke and

others [181]. In the meanwhile CL2QCD has grown, more developers contributed and many features, e.g.

a Rational Hybrid Monte Carlo algorithm implementation, were added. A quite recent description of the

code can be found in [182] in which the structure of code is depicted graphically and a discussion about

the performance is available. Moreover, the code is publicly available and can be found online together

with more information on [183].

The code is based on OpenCL (Open Computing Language) [27] which is hardware indepen-

dent and enables CL2QCD to run on heterogeneous computing platforms, i.e. it can make use of central

processing units (CPU’s) and graphics processing units (GPU’s) at the same time. LQCD computations

are mainly limited by memory bandwidth. Moreover LQCD functions are local, which makes them well

suited for parallel computations. In both points GPU’s surpass CPU’s for which reason GPU’s have

become very popular for the environment of LQCD. An example for the memory bandwidth problem is

given by the inversion of the fermion matrix φ = D−1χ which is computationally the most expensive part

of LQCD simulations and is performed using Krylov solvers like conjugate gradient. The method involves

computing the product Dφ many times employing a large number of linear algebra operations. This

computation is heavily limited by the available memory bandwidth. This can be seen from for instance

considering the Wilson /D operator (the derivative part of D), which is part of this computation, requires
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to read and write 2880 Bytes per lattice site for each call of the operator while it only performs 1632

FLOPs per site. This implies a relatively low numerical density (FLOPs per Byte) of ρ = 0.57.

OpenCL applications consist of a host program and an OpenCL part. While the OpenCL part consti-

tutes the so-called kernel functions responsible for the performance critical bulk parallel computations

like Dφ, the host program which runs solely on CPUs conducts the execution of kernels and takes over

algorithmic logic involving if-else conditions and all computations which are not well suited for a parallel

treatment. The way parallel GPU programming works can be well compared to parallel programming

of CPUs. A kernel, executed on a GPU, can be thought of as a function of which many instances are

launched concurrently and is mapped to so called work-groups consisting of work-items. The

work-items are then executing the kernel in parallel. For instance a kernel that contains an algorithm to

compute a vector product (e.g. vi, ui, i = 1, . . . , N ) also contains the information about the ID of the

work-item by which it is currently executed. This ID can be mapped to the components i of the vectors

which are then multiplied by the specific work-item. This process is done in parallel until all N vector

entries have been multiplied, in order to be added up subsequently by another work-item. In general the

work-groups together with their work-items are arranged such that they can be mapped on linear algebra

operations easily.

The host program of CL2QCD is written in C++ and uses mainly the C++11 standard but utilizes some

features specific to newer standards, as well. Since it is based on OpenCL it can also be executed solely on

CPUs, if desired. Initially it solely focused on Wilson fermions and was the first of its kind with respect to

this discretization [184]. From the beginning on, an implementation of twisted mass Wilson fermions

was provided, as well, and more recently a Rational Hybrid Monte Carlo implementation for staggered

fermions was added. Now it also has an Rational Hybrid Monte Carlo implementation for Wilson fermions

allowing us to simulate odd Nf , which was added in the present work. Moreover, improved gauge actions,

standard inversion and integration algorithms are implemented and ILDG-compatible I/O as well as the

RANLUX Pseudo-Random Number Generator (PRNG) [185] are available. The design of CL2QCD puts

emphasis on Maintainability, portability and the inclusion of unit tests (BOOST[186] and CMake) for

which reason during its development the rules of Test Driven Development [187] and Clean Code [188]

were strictly respected.

BaHaMAS Framework for Administrating Simulations

BaHaMAS stands for Bash Handler to Monitor and Administrate Simulations. As the name suggests

it is a Bash command-line program (or script) to monitor and administrate simulations which we use

in our group for running LQCD simulations. At present it consists of ≈13k lines of code. Since it is

completely written in Bash, there is no compilation or installation involved whatsoever, but of course,

some user specific files have to be set up. As a co-developer I decided to include a brief description of this

program in this work since a non-negligible amount of my time as a PhD-student was used to build it and

because it is the reason for being able to efficiently run and administrate hundreds of LQCD simulations

on high-perfomance computing clusters (LOEWE-CSC in Frankfurt am Main and L-CSC in Darmstadt)

effortlessly without committing errors.

The tool was programmed with the following motivation: LQCD simulations can be characterized by

a variety of parameters and their values which one has to decide on. Usually codes simulating LQCD

read these parameters from input files which have to be provided respecting certain formats. If the code

89



is run on a computing cluster the execution of the code is done via a job script which is processed in a

queueing system like SLURM. Such a job script needs certain parameters, as well, in order to decide how

the operations of the code are distributed over CPU/GPU nodes or in case parallel instances of the codes

are run, how these instances are distributed among the nodes. Once the code runs reliably on the compute

cluster one has to deal with the question on how to structure and organize the data constantly produced by

the code. A further important point to consider is how to deal with the different phases of the simulation,

i.e. how to treat the thermalization phase - is the thermalization phase separated from the real run or is

this done during the analysis? Another question to think about is, what is a good way to monitor the

statistics of the run, i.e. number of trajectories and other characteristic numbers like the acceptance rate of

configurations and the associated change in the action, physics and numeric parameters per simulation

- basically every number that helps to decide whether to continue a run or do something else. If a run

has to be stopped for whatever reason, often adjustments have to be done in order to continue the run.

For instance if the simulation is to be continued from a specific trajectory of the past, what happens to

the more actual data? Is it simply overridden or are some cleaning operations to be done. Sometimes a

node on the compute cluster simply crashes. How can such interruptions be handled efficiently? If newer

technologies are used like OpenCL, errors in the computation can occur which are not necessarily related

to the simulation code but rather to the software controlling the hardware (e.g. the graphical processing

unit). How can such errors be spotted at the right time before the simulation produces erroneous results?

In case many simulations are run in a larger project, it could be helpful to have database capabilities to

output information about all simulations in a summarized format.

This might not appear to be an impressive list for somebody experienced in lattice simulations and

one might ask for which reason software has to be written in order to complete it. For sure, if simulations

are conducted occasionally over a very limited time span it could be feasible doing this by hand. But if

these task are constantly executed over a couple of years for many simulations, doing this manually is a

daunting, time inefficient and extremely error-prone task. I try to explain this more precisely using an

example. In the project I discuss in section 5.3 at zero chemical potential I simulated Nf = 2 flavors of

Wilson fermions with 3 temporal extentsNτ . For each value ofNτ 5-6 different κ values were chosen. For

each value of κ 3-4 spatial extents Ns were needed to be able to perform finite size scaling analyses. For

each value of Ns simulations at 2-4 values of the coupling β were conducted. This is roughly an amount

of 150 simulations. Additionally I simulated Nf = 3 flavors of Wilson fermions with one temporal extent

Nτ and 10 values of κ, each with 1-3 spatial extents Ns with about 2-4 values of β. This makes roughly

another 70 simulations. In total this is an amount of about 220 simulations. Let us assume that only 35%

of them are run in parallel, i.e. about 77 simulations, which is a realistic, even conservative number. Each

of these simulations can have a run-time of several month or more until a reasonable amount of statistics

has accumulated. This implies that the tasks I listed above have to be done for 77 simulations concurrently.

Some of them need to be done only once per simulation but many others are repetitive and thus have to be

completed over and over again over the duration of the project which is of order of years. I even made a

crucial simplification here, by not mentioning the possibility for simulating different replica per β which

is actually a very common thing to do. In our simulations we use four replica per β by default. This then

would multiply the number of simulations to supervise by a factor 4. This should be a pretty convincing

rationale on why it can be extremely beneficial to automatize some of these tasks which has been realized

with BaHaMAS.
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I will refrain from explaining in detail how the program completes all of the tasks mentioned above

since this is beyond the scope of this work and would unnecessarily prolong this section. Instead I will

briefly give a practical example to illustrate just a few features.

The data that is produced by a simulation code like CL2QCD is organized in a directory structure

where the tree of directories contains the information about the values of the parameters of the simulation.

Therefore one starts by creating a directory structure like

pa th−to−p r o j e c t−d i r e c t o r y / Nf2 / mui0 / k1000 / n t 6 / ns42

and navigates into the top level directory (/ns42) in order to invoke BaHaMAS from there. Trying to

invoke the program from elsewhere or having wrongly specified parameters or parameter values in the

path, results in an error message output by BaHaMAS, explaining the user where he went wrong. The

prefixes in the path correspond to the simulation parameters, i.e. (in this order) Nf , µ, κ, Nτ , Ns, which

are read out by BaHaMAS and used for the input file of the simulation code. In the top level directory

the user creates a file (we call it betas file) that contains information about further simulation parameters

not contained in the directory structure. The most important ones are the information about which values

of β and how many replica per β should be simulated. Furthermore the number of integration steps per

trajectory of the different molecular dynamics time scales is put in this file. This file can be created

partially automatically with the help of BaHaMAS, thus greatly reducing the chance of wrong user input.

If the user runs simulations at a specific β for the first time, he can tell BaHaMAS to start a thermalization

run. The difference is simply that the simulation data is stored in a specific folder for the length of the

thermalization run. The different possible folders BaHaMAS creates are the following ones:

b5 .8800 _s8800_ the rma l i zeF romHot

b5 .8800 _s8800_ the rma l i zeF romConf

b5 .8800 _s8800_cont inueWithNewChain

The details are not important. Just note that the postfixes _thermalizeFromHot and

_thermalizeFromConf refer to thermalization simulations while _continueWithNewChain

refers to a simulation which is already thermalized. The postifx b5.8800_s8800_ contains the

information about the value of β (prefix b) and about the random number (prefix s) used to initialize the

run. The random number specification is important if multiple replica are run per value of β since they

are, of course, treated as independent simulations to be stored in separate directories. Without wanting

to go into details I just remark that BaHaMAS detects and separates between unfinished and completed

thermalization runs. Depending on the state of thermalization run, BaHaMAS reacts accordingly to

attempts of the user to start/continue a thermalization run. The setting up of the simulation code input file,

the creation of the job script and the submission of the latter is then carried out by BaHaMAS for each of

the specified simulations.

During the run of the simulations the database included in BaHaMAS takes record of a variety of

statistics related to the run. The database can be invoked with a simple option. Then BaHaMAS reads

out again the simulation parameters of the directory to show to the user only the information about the

simulations related to the current directory. An example is shown in fig. 4.5. If one desires to obtain a

summary about all simulations on the compute cluster currently being tracked by the BaHaMAS database,

independent on the directory one is currently in, another option exists to do exactly this. For an example

see fig. 4.6.
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Figure 4.5: Shows a typical example of a database output from a call to BaHaMAS invoked from a
directory tree which contains the following parameters Nf = 2, µ = 0, κ = 0.0900, Nτ = 6 and
Ns = 36, shown in the first five columns. The subsequent columns contain the β value of the simulation
and the s-number referring to the random number used to start the respective replicum as well as the
information about whether it is a thermalization simulation or not (beta_chain_type), the current
trajectory or configuration number of the simulation (trajNo), the current acceptance rate taking into
account all configurations (acc), the same just with the last 1k configurations (accLast1K), the maximal
change of the action (maxDS), the current status of the simulation, e.g. running or waiting in the queue
(status) and the column (l.T.[s]) contains the information about how many seconds have past since
the last configuration. In the example shown here no simulations were running at the time for which
reason the information content is somewhat limited. In the column acc and accLast1K different colors
are used to indicate whether the acceptance rate is optimal or below/above optimal. Similarly colors are
used in the column beta_chain_type where red color indicates that the simulation might be broken
due to an I/O error on the computing node. In the column maxDS the color changes accordingly to red
if the change in the action jumps to an suspiciously large value, which would not be expected if the
simulation runs fine without being affected by errors like I/O errors. Of course for thermalization runs this
threshold is large since there in contrast large changes in the action are expected. The column l.T.[s]
is especially useful to spot simulations that got stuck due to some failure on the computing node. In this
case the expired time since the last trajectory would grow infinitely and thus the erroneous simulation can
be easily identified.

Here I will stop the description and refer the interested reader to other references like [189] which is a

talk about BaHaMAS given at the Lattice 2017 conference in Granada or [190] which is the PhD thesis of

my colleague A. Sciarra who is mainly developing BaHaMAS. He also has setup a GitHub repository

[191] about the project which contains a very well written, continuously growing documentation. In these

references the reader can also find information about how general BaHaMAS is written, i.e. how it can be

applied to other codes than CL2QCD.
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Figure 4.6: Shows a summary of the most important parameters related to all simulations on a cluster
being tracked by the database. The first row shows whether a simulation is running on a GPU that might
be broken and produces erroneous output. The second to sixth row classifies the simulations by their
acceptance rate and prints the respective numbers. The subsequent rows are self-explanatory up to the last
rows which contains the information about how many data output files (containing the measurements of
observables) of simulations have to be cleaned, which is the case if identical measurements appear twice
in a output data file. This can be the case when a simulation was stopped and continued from some earlier
trajectory.
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Chapter 5

Simulations, Results and Discussion

In this chapter I present the physics results obtained in the course of my work as well as the pursued

approaches and strategies. These concern the exploration of the extended Columbia plot discussed in

section 3.5.3. The physics represented by this diagram were studied using the standard Wilson fermion

discretization at two different values of the chemical potential:

• At µ = 0 in the heavy quark mass region of the

– Nf = 2 theory on Nτ = 6, 8, 10 lattices,

– Nf = 3 theory on Nτ = 4 lattices,

• and at the Roberge-Weiss value µi,c = πT/3 of imaginary chemical potential (the Roberge-Weiss

endpoint of the Z3 transition) in the heavy and light quark mass region in the

– Nf = 2 theory on Nτ = 6 lattices.

While the Nf = 2 flavor QCD simulations were carried out with an existing Hybrid Monte Carlo (HMC)

algorithm, the Nf = 3 theory was simulated with a Rational Hybrid Monte Carlo (RHMC) whose

implementation into the simulation code CL2QCD has been achieved as part of this work. The RHMC

algorithm is presented in section 4.2. To give a visual overview I plot the simulation region listed above in

the respective quark mass phase diagrams in fig. 5.1.

To start with in section 5.1 I will state the numerical setup of the theories that were simulated.

Subsequently, the numerical determination of phase transitions and the different methods that were used

at µ = 0 and µi,c = πT/3 will be addressed in section 5.2. Finally, in sections 5.3 and 5.4 the outcome of

the simulations at the respective values of the chemical potential will be presented and discussed followed

by a summary and a discussion of each section.

To handle the vast amount of simulations conducted for this work over the years it became necessary

to have tools in order to efficiently administrate and bookmark the many different simulations on the

computing clusters on which they were run. This led me to take part in the development of a Bash-

framework named BaHaMAS, which I concisely describe in section 4.4.

Before starting, two more remarks should be made: Even though I present the results in an order that

seems natural to me (first µ = 0, second imaginary chemical potential) the chronological order is reversed,

i.e. the project at imaginary chemical potential started first. As insights were gained over the course of

time, practices and approaches were slightly improved. This implies that some insights gained during the
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Figure 5.1: The arrow symbols in the quark mass diagrams at µ = 0 (l.h.s.) and µi,c = πT/3 (r.h.s.)
indicate the regions where simulations have been performed in order to locate the Z2 points in terms of
the hopping parameter κ.

µ = 0 project could not be applied retroactively anymore to the imaginary chemical potential project due

to the complexity and temporal restrictions of the projects. Whenever this information is relevant I will

make a remark about this. The second remark concerns the project at imaginary chemical potential. This

project was worked out in a team of three persons, sometimes in a team of four persons and the results

have been published already in [159].
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Numerical Setup

For the gauge and fermionic sector the unimproved version of the Wilson gauge and fermion action were

used which I discussed in sections 2.5 and 2.6. For convenience here I write them down once again

consicely as

SG =
β

3

∑
n

∑
µ≤ν

ReTr [1− Pµν(n)] , SF = a4
∑
Nf

∑
n,m

ψ̄(f)(n)D(f)(n|m)ψ(f)(m) (5.1)

where D(n|m) denotes the Wilson fermion matrix

D(n|m) = δnm − κ
4∑
i=1

[
(1− γi) eaµδ|i|,0 sgn(i)U±i(n)δn+î,m

]
. (5.2)

The fermion mass is controlled via the hopping parameter κ = 2(amf + 4)−1 and the temperature is

indirectly tuned via the lattice coupling β and is defined as T = (a(β)Nτ )−1, All numerical simulations

have been performed using the publicly available OpenCl [27] based code CL2QCD [182–184] that was

developed in our group and designed to efficiently run on graphic processing units (GPUs). The code was

run on the LOEWE-CSC [192] cluster at Goethe-University Frankfurt and on the L-CSC [193] cluster in

Darmstadt. In section 4.3 I give a brief overview about CL2QCD.

Note, that no O(a)-improvement has been used for the simulations. The reason is to rule out any

unphysical modifications of the phase structure by adding extra terms to the action. Furthermore if cut-off

effects on the pseudoscalar mass at the Z2 or tricritical point are to be studied in a quantitative way and

finally removed by an extrapolation, it is necessary to see and control the transition as a function of the

lattice spacing a. Moreover, if improved versions of the Wilson discretization are used, the available

computational resources of the near future might be insufficient to simulate the very small masses marking

the critical points on increasingly finer lattices, needed to perform a continuum extrapolation (c.f. the

discussion at the end of section 3.5.3 and fig. 3.10).

Numerical Analysis of Phase Transitions

Identifying the Order of a Phase Transition

In order to map out the diagrams along the arrow symbols shown in fig. 5.1 the nature of the phase

transition has to be identified for the points (mu,d,ms) along these arrows. Generally this is done by

evaluating suited observables O and functions F (O) of the latter at the critical couplings at which the

system undergoes a phase transition. Then O and F (O) are expected to behave in a specific way or

assume particular values indicating the nature of a transition. Here the main quantity will be the kurtosis

(see sections 3.1.1 and 3.1.3)

B4(O;α1, · · · , αn) =

〈
(δO)4

〉
〈(δO)2〉 4

2

, with δO = O − 〈O〉 . (5.3)

where δO, as the fluctuations of O and 〈O〉, refers to an ensemble average of configurations produced

in a Monte Carlo lattice simulation. The parameters αi are the respective couplings of the system. In
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Figure 5.2: The schematic shows how the step function B4 (black curve, B4(y< 0) = 1, B4(y> 0)=3)
becomes an analytic function away from the thermodynamic limit and how the step function is approached
by the analytic curves for a series of increasing volumes V > V > V . The analytic curves can be expanded
around y = 0, where all curves intersect at a common value of B4 characteristic to the universality class.
The value of B4 indicated by “?” at this points assumes specific values depending on µ,Nf and κ.

LQCD the parameters relevant for this work are the inverse lattice coupling β, the quark mass mq and the

chemical potential µ. Remember that in the thermodynamic limit V →∞ the kurtosis B4 assumes the

values 1 at a first order transition and 3 at a crossover. At a second order critical point, e.g. where a first

order transition ends and turns into a crossover it assumes a value specific to the universality class of the

system. Thus if B4 is evaluated at the critical values of the couplings αi, i.e. along a phase boundary of a

set of points (mu,d,ms) on which the phase transition changes from first order to crossover by passing

through a critical point, it behaves as a step function jumping from 1 to 3 which makes it well suited

to locate the change from a first order transition to a crossover. On a finite volume no non-analyticities

exist and thus there are no real phase transitions. Consequently the B4 step function becomes smoothed

out to an analytic curve whose slope increases with the volume. Close to the thermodynamic limit, i.e.

for sufficiently large volumes the B4 curves belonging to different volumes all share the same universal

value at the critical point where they intersect. This is illustrated schematically in fig. 5.2. B4 then can be

Taylor-expanded in the couplings around the critical point, as it was discussed in section 3.1.3 and will

be done later for the specific situations, and the expansion can be fitted to simulated data so as to extract

the critical point where the curves intersect. The choice of the expansion variable and scaling variable

x = (α− αc)N1/ν
s respectively depends on the parameter space being explored. Since for this work only

simulations at fixed chemical potentials were carried out, at zero chemical potential the expansion will be

in κ which controls the quark mass and at the Roberge-Weiss value of imaginary chemical potential it will

be in β which controls the temperature for reasons that will be explained further below. These properties

are used in the following to find the critical and tricritical points in the (mu,d,ms) diagrams at µ = 0 and

µi,c = πT/3, respectively.
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Strategy in the Heavy Quark Mass Region at µ = 0

The study at µ = 0 focuses solely on the heavy quark mass region. The Polyakov loop 〈|P |〉

〈|P (n)|〉 =

〈∣∣∣∣∣13TrC

[
Nτ−1∏
n0=0

U0(n0,n)

]∣∣∣∣∣
〉
, (5.4)

is an order parameter for the deconfinement transition in the limit mu,d,ms →∞ (c.f. section 3.2.2) and

thus gives the strongest signal when used as an observable to study the phase transitions in the heavy

quark mass region by looking at its distribution as well as functions of it like B4. The distribution of |P |
will change from a distinct two peak structure signalling a two phase coexistence in a region of first order

transitions to a Gaussian-like shape in the crossover region if the quark mass is changed from large to

intermediate while the system is kept critical, see fig. 5.3 left.
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Figure 5.3: Plots created from HMC simulations of Nf = 2 QCD on Nτ = 6, Ns = 42 lattices and three
values of κ. L.h.s - The distribution of |P | at the pseudo-critical coupling βc as a function of κ: The two
peaks expected for a transition that for V →∞ becomes first order merge and end up as one Gaussian-like
peak as the crossover region is entered. R.h.s - The distribution of |P | at κ = 0.0900 as a function of
β. The system goes from a confined state (β = 5.8750) over into a deconfined state (β = 5.8850). At
β = 5.8798 the system is at the transition between the two states. Note that the red curves in both pictures
are the same.

The pseudo-critical coupling βc at which the system undergoes the deconfinement transition can be

identified by the vanishing of the Skewness B3

B3(βc) =

〈
(δ |P |)3

〉
〈(δ |P |)2〉 3

2

= 0, (5.5)

i.e. the third standardized moment that was discussed in section 3.1.1. In practice, in order to find βc for

a given value of the quark mass mu,d or value of κ, respectively, several simulations are performed at

a series of values of the coupling β1, · · · , βn for each of which B3(βi) is evaluated. This procedure is

carried out until a crossing of the zero of B3(βi) can be observed. To pin down βc the data points B3(βi)

are densely interpolated using multiple histogram reweighting, which I discuss in section 4.1.2. Then βc

is extracted by determining the B3(βi) value closest to zero.

The procedure is illustrated in fig. 5.4, which shows how, as β is tuned, the system undergoes a phase

transition from a confined state at lower values of β (lower temperature) into a deconfined state (larger

temperature), which is reflected by the distribution of |P |. The curve of the skewness B3 precisely reflects

the behavior of the distribution of |P | shown in fig. 5.3 (right): B3 > 0 in the confined state where the
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distribution is skewed to the left (β = 5.8750) and B3 < 0 in the deconfined state where the distribution

is skewed to the right (β = 5.8850). For B3 = 0 at βc = 5.8798 the distribution is two-peaked.
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Figure 5.4: L.h.s: B3 data. R.h.s.: B4 data. Both obtained from simulation at Nf = 2, Nτ = 6, κ =
0.9, Ns = 36. The blue data points represent the real data while the red points represent the interpolated
data by multi-histogram reweighting.

B4 (βi) is evaluated according to eq. (5.3) and gets interpolated by multiple histogram reweighting,

as shown in fig. 5.4 (right). From the interpolated curve B4 is extracted at βc obtained from B3(βc) = 0.

At this point B4 is expected to assume its minimum. Close to a first order transition and provided that the

volume is sufficiently large this happens according to

B4(βc) = −2 +
c

Nd
s

+O
(

1

N2d
s

)
, (5.6)

where c is a constant and d is the dimension of the system [194]. For each simulated value of κ the

described procedure is repeated on different volumes. The B4(βc) data points obtained in this way are

then plotted against κ for each spatial lattice extent Ns. As an analytic function on finite volumes B4 can

be expanded as a series in the scaling variable x = (κ− κZ2)N
1/ν
s (it scales with Ns to the power of 1/ν)

around x = 0, i.e. κ = κZ2 ,

B4(βc, κ,Ns)(µ=0) = B4(βc, κZ2 ,∞)(µ=0) + a1x+ a3x
3 + · · · , (5.7)

which can then be fitted to the B4(βc) data points, as shown in fig. 5.5. Actual examples will be shown

later on in the results sections 5.3 and 5.4.

A similar expression was derived in section 3.1.3 where the scaling variable x = a1τN
1/ν
s was defined

in terms of the reduced temperature τ . However the above expansion can be reasoned in a similar way.

Following the discussion in 3.1.1 to 3.1.3 and keeping in mind that near a critical point the correlation

length diverges like ξ ∼ r−ν , with r being the distance to this point in the respective parameter space,

it can be argued that B4 is a function of the dimensionless ratio (L/ξ)1/ν . Since β is kept at its critical

value βc and µ is fixed to µ = 0, the distance to the critical point is given by r = κ− κZ2 and thus B4

is solely a function of the scaling variable x = (κ − κZ2)L1/ν , yielding the expansion written above.

The QCD second order deconfinement transition point belongs to the Z2 universality class for which

B4(βc, κZ2 ,∞) = 1.604, which can be fixed in the expansion for the fit. The critical exponent ν is known

for this universality class, as well and can be fixed to ν = 0.6301. Thus the parameters to be fitted are the

slope of the curve a1 (and a3 if required) and the kappa value κZ2 which represents the intersection point
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Figure 5.5: The figure schematically illustrates a finite size scaling analysis (FSS) of B4(βc(κ), V ) which
is plotted against κ for a series of increasing volumes V1 > V2 > V3. The B4 data is fitted by eq. (5.7),
from which the intersection point κZ2 is obtained. On each side (heavy and intermediate) the B4 data
approaches the values (one and three) characteristic for the respective transition (1st order and crossover).
The left and the right panel of the diagram schematically show curves of B4(β) at a given value of κ
(c.f. r.h.s. of fig. 5.4) and how they get narrower as the volume increases. Moreover, a shift to smaller
B4 values and larger β can be observed in the 1st order region, whereas the opposite is the case in the
crossover region. The figure also indicates how the shape of the distribution of |P | is expected to look like
in the different regions.

of the curves, i.e. the Z2 point between the crossover and the first order transition region. Since eq. (5.7)

is an expansion, fitting it to data certain criteria should be respected.

The fits done in this work were performed using a sophisticated procedure which takes into account

that the fit should be symmetric with respect to the fitted Z2 point. Moreover, the ranges in which the

data belonging to different Ns are fitted should be equal, i.e. they should overlap maximally. Of course in

practice, depending on the quality and the ranges of the available data, this rarely can be fully respected.

However, for the fits performed in the present work attention was paid to these criteria and they were

respected as much as possible. The procedure is explained in detail in section 4.1.3.

The B4 finite size scaling analysis can be complemented by studying the scaling of the susceptibility

of χ(|P |). Plotting χ(|P |)/Nγ/ν
s against ((β − βc)/βc)N

1/ν
s and testing if the curves of different Ns

coincide for first or second order critical exponents can help to discriminate between different scenarios.

A discussion is provided in section 3.1.3. Examples will be shown in sections 5.3 and 5.4.

The whole procedure described above is carried out at a fixed value of Nτ , i.e. at a range of finite

values of the lattice spacing a which (assuming the system is kept critical, i.e. at βc(κ)) changes as a

function of κ 1 . To find the continuum value of κZ2 , i.e. for a→ 0, the procedure has to be repeated on a

series of lattices with an increasing temporal extent Nτ as explained in section 3.5.1. Once κZ2(Nτ ) has

been extracted for several values of Nτ it can be extrapolated to vanishing lattice spacing a→ 0. Such a

project is usually carried out over long terms (order of years) and has huge computational demands. Of

course, the same is true for this work for which reason it represents only a part of our groups project,

1Note, since for a given Nτ the lattice spacing a barely changes in a small region around κZ2 , often people familiar to such
studies roughly use Nτ and a synonymously. For instance, by saying simulating at three different lattice spacings a what is
really meant is simulating at three different Nτ .
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aiming at a continuum extrapolation.

Strategy at Imaginary Chemical Potential µi,c (Roberge-Weiss plane)

For the next project at imaginary chemical potential also the chiral transitions were studied for which,

as an order parameter for chiral symmetry breaking, the observable of choice is naturally the chiral

condensate

O = ψ̄ψ = NfTrD−1. (5.8)

In the previous section B4 was Taylor-expanded around the point κZ2 making it solely a function of

the scaling variable x = (κ − κZ2)N
1/ν
s . Then, while β was kept at its critical value via B3(βc) = 0,

B4(βc, κ,Ns) was evaluated along the arrow symbol in fig. 5.1(left) in the (mu,d,ms)-plane.

For the study of the Nf = 2 chiral and deconfinement region of the Roberge-Weiss plane (see arrow

symbols in fig. 5.1(right)) a somewhat different strategy has to be pursued. For the reader unfamiliar with

the phase structure of the Roberge-Weiss plane it could be instructive to read the sections 3.3.4 and 3.5.3

beforehand.

The phase structure at µi,c = πT/3 is slightly more complex as it represents the boundary between

two Z3 center sectors (c.f. fig. 3.2 and 3.9). This means that the coupling β is pseudo-critical everywhere

at µi,c and thus B3(β) = 0 is expected for all β, irrespective of the value of κ. Consequently the β value

at which the system undergoes the chiral/deconfinement transition has to be found in a different way.

Tuning β for a given κ value interpolates between the crossover (low β) and the first order transition

(high β) between the Z3 sectors (c.f. fig. 5.6 (middle panel)). In-between at some value of β, denoted in

the following as βc,E, the endpoint of the first order transition is found at which the chiral/deconfinement

transition joins the Z3 transition and whose nature depends on Nf and the quark masses. It is exactly the

nature of this endpoint we are interested in, which is schematically plotted in fig. 5.1(right) for each point

(mu,d,ms). In the thermodynamic limit an evaluation of B4 along the phase boundary between the Z3

sectors, as shown in fig. 5.6, yields B4 = 3 in the crossover region, B4 = 1 on the first order line and

at the endpoint the kurtosis assumes the value B4 = 1.5 for a triple point, B4 = 2 for a tricritical point

and B4 = 1.604 at a Z2 point. Of course in finite volumes the transitions are analytic everywhere and

this step function behavior is smoothed out again. Hence, analogously to the case of µ = 0 the nature of

the endpoint can be extracted from a finite size scaling analysis of B4 by Taylor-expanding it around the

endpoint βc,E of the transition between the Z3 sectors,

B4(βc, κ,Ns)(µi,c) = B4(βc,E, κ,∞)(µi,c) + a1(β − βc,E)N
1/ν
s + · · · , (5.9)

making B4 solely a function of the scaling variable x = (β − βc,E)N
1/ν
s while the hopping parameter κ

and thus the quark mass is held fixed. The reasoning for this expansion has been given in the previous

section as well as in section 3.1.3. The B4 curves of different volumes labeled by Ns intersect at βc,E

which is extracted as a fit parameter. Note that in practice only a couple of measurements of B4 along the

phase boundary are performed. Since B4 is expanded in β these measurements can be interpolated with

multi-histogram reweighting as it was done in the previous section.

Consider that, compared to the µ = 0 study, here the fit parameter B4(βc,E, κ,∞)µi,c is not known

a priori since it assumes different values depending on the nature of the Z3 endpoint. Together with

the value of the critical exponent ν, the value of B4(βc,E, κ,∞)µi,c represents the most important piece

of information to be extracted from the fit needed to determine the nature of the phase transition at the
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respective point in the quark mass phase diagram.The critical exponent ν yields an equivalent information

for the determination of the order of a transition (c.f. table 3.1) because it assumes specific values

depending on the nature of the endpoint, as well. The extraction of B4(βc,E, κ,∞)µi,c by a fit turns out to

be difficult since it is very prone to finite volume effects, which will be discussed later on in sections 5.3

and 5.4. The critical exponent ν is less affected by finite volume effects and thus in practice one rather

focuses on the value of ν.

The fitted value of ν should be checked for consistency by using scaling relations of functions of the

order parameter. An example related to the scaling relations, that was discussed in the previous section

and in section 3.1.3, are collapse plots of the susceptibility χ. The same is possible for the expansion of

B4 that can be plotted against its scaling variable x = (β − βc,E)N1/ν , leading to the collapse of different

curves corresponding to different Ns if the correct value of ν is inserted. Examples of these so-called

collapse plots will be shown later on in the results section. However, this is just a consistency check

and not to be considered as a way to obtain a definite answer since there are certain caveats about this

technique that will become apparent during the presentation of the results.

Another important quantity to look at is the distribution of the imaginary part of the Polyakov loop

since, due to its phase separating between different Z3 sectors, it can be used as an order parameter for the

deconfinement transition at µi,c = πT/3 (c.f. section 3.3.4). Thus it is the natural choice to be used for

the evaluation of B4 according to eq. (5.3) (setting O = ImP ) in the heavy quark mass region. For heavy

and light masses it develops a three peak structure at the Z3 endpoint βc,E (c.f. fig. 5.6) which in this case

would be a first order triple point. This three peak structure becomes more distinct the stronger the first

order transition is. Note that the imaginary part of P is symmetric with respect to zero, i.e. 〈ImP 〉 = 0,

which is an important information to be used in the evaluation of functions of the fluctuations.

Once the critical exponent ν is extracted from a fit of eq. (5.9) to the actual B4 data for each simulated

value of κ, it can be plotted against κ. In the thermodynamic limit V →∞ a picture like fig. 5.7 would

be expected. On finite volumes this step function behavior is smeared out again. An actual example will

be shown later in the results section 5.4.1.
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B4(βc, Ns)=B4(βc,E,∞)+a1yN
1/ν
s

B4(βc,E,∞)

3

1
y=β−βc,E0

crossover region

1st region

T

µiµi,c

B4 =3

B4 =1

T (βc,E)

1st order

crossover

Distribution of ImP

1st triple Z2

Figure 5.6: The figure sketches the method for the extraction of B4 and ν by a finite size scaling analysis.
The middle panel shows the transition at µi,c between the Z3 center sectors in the (T, µi)-diagram with
its endpoint marked by the red circle and T (βc,E). The chiral/deconfinement transition (dotted lines)
joins the Z3 transition in its endpoint whose nature depends on the quark mass or κ respectively. B4

is evaluated along the vertical dashed line, i.e. along the phase boundary between the Z3 sectors for a
series of increasing volumes V > V > V . Subsequently in a finite size scaling analysis, shown in the
left panel, the B4 data is fitted according to eq. (5.9) (or top of left panel). From the fit B4(βc,E,∞) and
ν are extracted whose values indicate the nature of the endpoint. The expected shapes of distributions
of ImP are depicted in the right panel: If the chiral/deconf. transition is 1st order (heavy/light quarks),
the endpoint will be 1st order triple and the respective distribution will show three peaks at βc,E . If the
chiral/deconf. transition is a crossover (intermediate quark masses), the distribution will show a slight two
peak structure at βc,E .

1/3

0.6301

1/2

ν

κ

1st order triple 1st order tripleZ2 second order

κ
heavy
tric κ

light
tric

Figure 5.7: The figure shows a schematic (ν, κ)-diagram as it is expected for V →∞. For quark masses
corresponding to values of κ < κ

heavy
tric (heavy) or κ > κ

light
tric (light) the critical exponent ν is expected

to assume the value 1/3 characteristic to 1st order triple transitions, while for intermediate values of
κ

heavy
tric < κ < κ

light
tric it assumes 0.6301 corresponding to Z2 second order transitions. The change from 1st

order triple to Z2 is marked by tricritical points for which ν = 1/2.
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Simulations at Zero Chemical Potential

At chemical potential µ = 0 the temporal lattice extents Nτ = 6, 8 and 10 with Nf = 2 flavors and

Nτ = 4 with Nf = 3 flavors respectively, were simulated. For each Nτ a scan for the critical κZ2 at the

Z2 point is performed in the heavy quark mass region (c.f. fig. 5.1) in a range of κ values listed in table

5.1. To carry out a finite size scaling analysis, for each κ value 3 to 4 spatial lattice extents Ns have been

simulated corresponding to aspect ratios 3 to 7. The scans in temperature to locate the pseudo-critical

coupling typically involved simulations at 2-3 different values of β each with 450k to 1.15M HMC steps

at Nτ = 6, 330k to 1.1M HMC steps at Nτ = 8, about 200k HMC steps at Nτ = 10 for Nf = 2 and

1.2M to 3.2M HMC steps at Nτ = 4 for Nf = 3, all of unit length and with a thermalization range of 5k

trajectories in advance. Further details are listed in tables A.1, A.3, A.5 and A.8.

To accumulate statistics faster and to have a better control on the statistical errors the same parameter

set was simulated on four different Markov chains per β. This helped with making the decision about when

the gathered statistics were enough, for which the strategy was to run the replica until B3 is compatible

within at least three standard deviations between all of them. This analysis has been discussed in section

4.1.1 and an example for B3 is shown in fig. 4.1. For all runs the configuration acceptance rate was held

between 75% and 85% for each Markov chain.

Scale-setting was done using the Wilson flow parameter ω0/a, determined and converted to physical

scales using the publicly available software described in [79]. To this purpose for each κ about 400

(approximately) zero temperature configurations have been produced at or close to the value of the

critical coupling βc on 163 × 32 (N3
s × Nτ ) lattices. In order to provide a physical quantity for the

identification of the determined critical point (identified by κZ2) the pseudo scalar meson mass mPS has

been computed on the same configurations using an implementation for the computation of pseudo scalar

masses which is part of the CL2QCD code. A detailed description about the implementation is provided in

[195]. The findings for the lattice spacings a, the pseudo scalar mass mPS and the critical temperature Tc

are summarized in table 5.1 for each value of κ and Nτ . Note, that mPS has not been computed for the

Nf = 3 flavor theory due to temporal and computational limitations.

The approach to locate κZ2 has been discussed in detail in section 5.2.2. The method of the finite size

scaling analysis, that consists in taylor-expandingB4 (eq. (5.7)) in the scaling variable x = (κ−κZ2)N
1/ν
s

and fitting it to the data points B4(βc, κZ2 , Ns), is based on the assumption that the system is close to the

thermodynamic limit. If this requirement is not fulfilled, i.e. if the spatial lattice extents Ns are too small,

the data will be affected by finite volume effects which manifest in too large values of the B4 data, causing

a shift and distortion of the intersection point of the B4 curves. This has been observed in various studies

already, for instance [159, 196], and poses a problem in this work, as well. Due to this, the data points

cannot be fitted properly anymore by eq. (5.7) with the parameter B4(βc, κZ2 ,∞) fixed to its true value

1.604, resulting in a large value of χ2
NDF. However, eq. (5.7) can be modified by a correction discussed in

section section 3.1.3, which is adopted for this work. The modified equation reads

B4(βc, κ,Ns)(µ=0) =
(
B4(βc, κZ2 ,∞)(µ=0) + a1x+ a3x

3
)
C(Ns), (5.10)

with C(Ns) = (1 +BN
1/ν
s ), where B is a free parameter to be extracted from a fit. Including the term

C(Ns) will relax the situation as it corrects for a larger B4 value by the volume dependent factor BN1/ν
s

and renders eq. (5.7) volume dependent, even at κ− κZ2 = 0. Moreover the curves are no longer forced

to intersect at a common point (κ − κZ2 = 0, B4(βc, κZ2 ,∞) = 1.604) anymore. Furthermore, after
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having extracted the parameter B from the fit, the finite volume effects on the data can be quantified as a

function of Ns by evaluating BN1/ν
s .

Alternatively, instead of using this correction term, the critical exponents B4 and ν could simply be

left free parameters of the fit. On the one hand-side allowing deviations from their true values would then

correct for the finite volume effects but on the other hand-side important information about universality

will be contaminated and there is no guarantee that this leads to a proper extraction of κZ2 because the B4

curves will still be forced to intersect at a common point. In contrast, including the correction term C(Ns)

offers a systematic and theoretically motivated approach to include finite volume corrections in the fit.

In our numerical evaluation of the data we estimate the autocorrelation time of the observables using a

Python implementation of the Γ-method [162]. Afterwards the data is summarized in bins of size 2τint to

remove the autocorrelation in functions of the observables, c.f. section 4.1.1.

Before I continue with the finite size scaling analysis of B4, the following remarks about the computed

pseudo scalar meson masses (see table 5.1) shall be added: Note, that the values for Nτ = 6 are between

∼ 2.2 to ∼ 3.5 in lattice units, i.e. much larger than one and thus large discretization errors are expected.

For this reason the corresponding physical values in the sixth column of table 5.1 have to be taken with

great care. A reduction of the discretization errors on mPS,Z2 by increasing Nτ (i.e. decreasing a) is

associated with a shift of κZ2 to smaller masses (c.f. section 3.5.1). Consequently if Nτ is increased the

problem is reduced as shown in the table for Nτ = 8 and 10 lattices. Aside from reducing Nτ there are

not many things that can be done about this problem. A possible way to get an idea about the severeness

of the discretization effects is to analyze the kinetic mass [197] by an expansion of the dispersion relation

in the momentum variable p. An example for such an analysis can be found in [198]. Here, however, I

do not try to quantify the discretization errors due to temporal constraints of the project and instead just

use the computed masses to identify the Z2 points keeping in mind the caveat about the possibly large

discretization errors.
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Nf |Nτ κ βc amPS a[fm] mPS[MeV] T [MeV]

2 | 6

0.0750 5.8888 3.4709(3) 0.1175(6) 5910(30) 284(1)

0.0850 5.8841 3.1081(3) 0.1180(8) 5270(40) 282(2)

0.0900 5.8798 2.9309(3) 0.1199(5) 4890(20) 278(1)

0.1000 5.8674 2.5823(4) 0.1195(7) 4320(30) 279(2)

0.1100 5.8462 2.2411(3) 0.1232(5) 3638(15) 271(1)

2 | 8

0.1100 6.0306 2.1310(6) 0.0882(4) 4830(20) 283(1)

0.1150 6.0186 1.9490(3) 0.0886(3) 4400(15) 282(1)

0.1200 6.0012 1.7673(3) 0.0892(4) 3963(18) 280(1)

0.1250 5.9777 1.5866(3) 0.0908(3) 3495(12) 275(1)

0.1300 5.9461 1.4073(4) 0.0922(7) 3050(20) 271(2)

0.1350 5.9026 1.2325(4) 0.0960(8) 2570(20) 260(2)

2 | 10

0.1150 6.1685 1.8734(3) 0.0690(10) 5430(80) 290(4)

0.1200 6.1499 1.6838(3) 0.0697(10) 4830(70) 287(4)

0.1250 6.1368 1.4871(3) 0.0697(12) 4270(70) 287(5)

0.1300 6.1071 1.2943(4) 0.0696(8) 3720(40) 287(3)

0.1350 6.0648 1.1031(5) 0.0722(14) 3060(60) 277(5)

0.1400 5.9899 0.9284(5) 0.0762(11) 2440(40) 262(4)

3 | 4

0.0495 5.6871 – 0.1857(4) – 269(1)

0.0520 5.6856 – 0.1861(5) – 269(1)

0.0545 5.6844 – 0.1867(5) – 268(1)

0.0570 5.6827 – 0.1873(4) – 267(1)

0.0580 5.6820 – 0.1876(5) – 267(1)

0.0595 5.6808 – 0.1875(6) – 267(1)

0.0620 5.6787 – 0.1888(3) – 265(0)

0.0650 5.6758 – – – –

Table 5.1: The table lists for each Nτ the simulated values of κ including the extracted values of βc, amPS,
a, mPS and Tc. Further details about the spatial edge lengths L of the simulated lattices as well as about
the accumulated statistics can be found in tables A.1 to A.8.
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Nf = 2, Nτ = 6

The fits of eq. (5.7) are performed using a procedure in which the fits get repeated with many different

fit ranges κ per Ns. Subsequently the fit results are filtered for the largest minimal symmetry Ξmin

(minimal regarding the comparison between the data ranges of the different Ns) of the fitting range around

the extracted value of κZ2 and/or the largest minimal overlap Ωmin between the included data ranges

corresponding to the different Ns. The method is explained in detail in section 4.1.3, where definitions of

Ξmin and Ωmin are given, as well.

Fit Ns κZ2 a1 a3 B χ2
NDF NDF Q[%] Ωmin Ξmin

linear fits

l.1.1 30,36,42 0.093(3) 0.084(15) − 1.7(1.2) 1.38 4 24 74 29

l.1.2 30,36,42 0.0885(12) 0.097(11) − − 1.72 5 13 80 0

l.2 30,36,42 0.091(4) 0.065(12) − 1.2(1.0) 0.87 4 48.21 67 16

linear + cubic fits

c.1.1 30,36,42 0.0939(14) 0.02(4) 0.017(18) 1.7(6) 1.00 2 37 74 78

c.1.2 30,36,42 0.087(3) 0.07(4) 0.000(1) − 1.57 3 19 57 0

c.2 30,36,42 0.0912(18) 0.03 0.02 0.0037(19) 1.7(1.2) 1.47 6 18.26 80 50

Table 5.2: Shown are the results of the fits of eq. (5.7) to B4 data. The parameters Ωmin and Ξmin
describe the minimal overlap observed between the data ranges belonging to different Ns and the minimal
symmetry of the fitting ranges with respect to κZ2 among all data ranges of the different Ns, respectively.
The fits are labeled by x.y.z where x = l(c) indicates linear (linear + cubic) fits. y = 1, . . . labels fits
differing in the filter-criteria with respect to (χ2

NDF, Q), Ωmin and Ξmin. A colored field indicates the best
fit with respect to the parameter of the respective column while two colored fields mean either the best
compromise between both parameters, chosen to be max(0.8<Ωmin/Ξmin<1.2), or that both parameters
were the maximum found. y = 1 always represents the optimal fit for which the choice always is the best
compromise between Ωmin and Ξmin unless a fit is found for which there is a gain in one of the parameters
beyond the best compromise. y > 1 are alternatives to check for the stability of the fit with respect to κZ2 .
z = 1(2) (if present) indicates use of same data ranges including (excluding) the correction term C(Ns).

The best fits obtained from this procedure are listed in table 5.2. The numbering convention as well as

the criteria used to choose the fits are explained the table caption. The fits considered optimal, labeled in

the table by x.1.z, have been repeated under exclusion of the correction term (z=2) to see how the quality

of the fit changes.

From the table it becomes apparent that at Nτ = 6 the parameter B, despite exhibiting a large fit-error,

is significant in all fits. Comparing fits x.y.1(2) in which the correction term is included (excluded), χ2
NDF

as well as the goodness-of-fit value Q are improved when the correction is included and the value of κZ2

is slightly increased. What is more, in the absence of the correction term (see fits l.1.2 and c.1.2) the

criterion for a good symmetry of the fitting ranges with respect to κZ2 can not be fulfilled anymore and the

symmetry decreases to zero. The reason can be understood from looking at fig. 5.8, where the fits l.1.1(2)

(left) and c.1.1(2) (right) are shown: Without the correction term (z=2), the ordinate of the intersection

point of the fitted lines is decreased and forced to be at B4(βc, κZ2 ,∞) = 1.604. As a consequence, its

abscissa, given by κZ2 , is reduced as well, implying a shift of the intersection point and thus a decreased
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symmetry with respect to the fitting range. The intersection point can be even shifted completely out of the

fitting range, as it is shown in fig. 5.8. Throughout all fits including the correction term, the κZ2 value is

consistent. The value κZ2 extracted from fit c.1.1 is quoted as the final result including the corresponding

pseudoscalar meson mass,

κZ2(Nτ = 6) = 0.0939(14) mPS,Z2(Nτ = 6) = 4670(180)MeV. (5.11)

As announced before, this result is qualitatively crosschecked by collapse plots of the susceptibilities
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Figure 5.8: Linear (left) and cubic (right) fits of B4 including (top) and excluding (bottom) the correction
term given by eq. (5.10).

χ(|P |) which are shown in fig. 5.9 for three simulated values of the hopping parameter, κ ∈{0.075,0.09,0.11}.

For κ = 0.0750 χ(|P |) clearly collapses when scaled with first order exponents, confirming that in the

thermodynamic limit the transitions in this region would be of first order. At κ = 0.1100 χ(|P |) is

neither collapsing for inserting first order exponents nor for second order exponents, indicating a crossover

transition. The value κ = 0.0900 is inbetween and quite close to the extracted value of κZ2 . Thus

the collapse of χ(|P |) could show a tendency towards second order exponents. Though, the situation

turns out to be somewhat ambiguous. Inserting first order exponents make the curves of lattice extents

Ns = 30 and 36 collapse while second order exponents cause the curves at Ns = 36 and 42 to collapse.

This conflict can probably resolved by noting that the correction parameter B extracted from the fits

(table 5.2) was not-vanishing and thus indicating that the data at these volumes still suffers from finite
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volume effects. Though, Ns = 42 must be less affected by finite volume effects than Ns = 30 which

suggests that the collapse under the second order exponent is more trustworthy. This is consistent with

the result of κZ2 obtained from the fit, which suggests that κ = 0.0900 is already very close to the

Z2 point. Let us now examine the available B4 data to further study the finite volume effects. All
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Figure 5.9: Collapse plots of χ(|P |) at κ = 0.075 (top), κ = 0.09 (middle) and κ = 0.11 (bottom) for
first (left) and second order (right) critical exponents.

B4 data available are shown in fig. 5.10, where the data belonging to different Ns are plotted sepa-

rately in fig. 5.10a to fig. 5.10c and all at once in fig. 5.10d. Normally, in the first order region for

small κ values B4 is expected to approach its value characteristic for first order transitions, B4 = 1.

In these plots the B4 data seem to reach a plateau for κ < 0.1 at significantly larger B4 values than
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(d) Plot of B4 of Ns = 30, 36, 42.

Figure 5.10: B4 data

the expected first order value. To check if B4 does not decrease anymore even for very small values

of κ, another simulation for Ns = 30 was carried out at κ = 0.03 which has a considerable distance

to the κ values for which B4 starts to approach the plateau. As expected, even for a very small value

κ = 0.03 the kurtosis value remains B4 ≈ 1.7. The plateaus appear to decrease as Ns is increased, i.e.

B4(κ → 0, Ns = 30) > B4(κ → 0, Ns = 36) > B4(κ → 0, Ns = 42). Moreover, the smaller Ns the

larger the κ value at which the plateau is approached, i.e. at Ns = 30 it seems to be reached at κ . 0.1

while at Ns = 36 this seems to happen at around κ . 0.9. The data of Ns = 42 seems to approach

the plateau at about κ . 0.85. From Intuition we would rather expect the opposite situation. The same

observation can be made for Nτ = 8, as it will be shown in the following, as well.

Altogether this implies that on small Ns the inflection point of the B4 curve (which is the Z2 point for

V →∞) is not only shifted vertically but also horizontally to larger values of κ. In this case, a behavior

of the B4 curves as approximately illustrated by the schematic in fig. 5.11 (left) would be expected.

This behavior is a systematic effect caused by too small volumes. A possible explanation is given in

the following: The distribution P (|P |) of |P | at βc should show indications for the shifted first order

values B4(κ→ 0, Ns). In fig. 5.11 (right) P (|P |) is plotted for all simulated values κ at Ns = 30. From

looking at the distributions one can see that the minimum between the two peaks at smaller values of

κ < 0.1 saturates and does not decrease anymore. This is an effect of the volumes being small which

smoothens out the boundary between both phases. Then the tunneling between the phases is very frequent

and the area between the two peaks is visited by the system many times. This causes the two Gaussian-like
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distributions to have effectively more weight in their tails at the point where they merge. Since B4 is a

measure for the weights in the tails of a distribution, this causes a large value of B4. Only if the two peaks

are strongly separated can B4 assume smaller values, which is the case for large volumes. In contrast

such an effect plays no role in the crossover region where there is only one Gaussian-like distribution.

Consequently there is no reason to assume that B4 does not reach its crossover-value which is B4 = 3.

Having this in mind we remark that the correction eq. (5.10) we are using in the fits to the B4 data has no

κ dependence and thus causes a total shift of B4 everywhere.

B4

1.604

κκZ2

Horizontal + vertical

shift of 1st order plateau

Horizontal + vertical

shift of inflection point
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Figure 5.11: L.h.s: Schematically shows the behavior of B4 at increasingly smaller volumes as observed
from the data (c.f. fig. 5.10a to fig. 5.10a). The 1st order plateau as well as the inflection point of the
curves which coincides with the Z2 point at V →∞ is shifted vertically and horizontally. R.h.s.: The
distribution P (|P |) Nτ = 6, Ns = 30 at βc for all simulated values of κ. Even at a very small value
κ = 0.03 P (|P |) stays roughly the same.
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Nf = 2, Nτ = 8

As expected, forNτ = 8 a significant reduction in the lattice spacings a relative toNτ = 6 can be observed,

which have shifted from a range of a={0.1180(8),. . . ,0.1232(5)} atNτ = 6 to a={0.0886(3),. . . ,0.0960(8)}

at Nτ = 8 as well as in the lattice masses of the pseudo scalar meson which have shifted from a range of

amPS = {2.2411(3), . . . , 3.1081(3)} at Nτ = 6 to amPS = {1.2325(4), . . . , 1.9490(3)} at Nτ = 8 (c.f.

table 5.1). The the lattice masses are now much closer to amPS = 1

The fit results are listed in table 5.3 in the same fashion as for Nτ = 6. The correction parameter B

extracted from the fits is considerably more significant compared to the fits at Nτ = 6, indicating larger

finite volume effects which are due to the smaller physical volumes L3 simulated at Nτ = 8 (c.f. tables

A.2 to A.6). Even though larger spatial lattice extents Ns have been used (Ns = 32, 40, 48 at Nτ = 8

compared to Ns = 30, 36, 42 at Nτ = 6), the physical volumes are effectively decreased due to the

smaller lattice spacings. The larger finite volume effects are confirmed by examining the B4 data for

Fit Ns κZ2 a1 a3 B χ2
NDF NDF Q[%] Ωmin Ξmin

linear fits

l.1.1 32,40,48 0.117(3) 0.049(8) − 3.7(7) 0.62 9 78 66 64

l.1.2 32,40,48 0.1068(17) 0.072(10) − − 2.33 10 1 87 24

l.2 32,40,48 0.117(4) 0.050(12) − 3.6(9) 0.88 6 51 53 67

l.3 32,40,48 0.1149(26) 0.056(9) − 3.2(8) 0.88 10 55 82 49

l.4.1 24,32,40,48 0.117(2) 0.04(1) − 3.8(3) 0.68 14 79 52 58

l.4.2 24,32,40,48 0.084(11) 0.040(13) − − 9.96 15 0 0 −

l.5 24,32,40,48 0.1168(18) 0.044(9) − 3.8(3) 0.76 16 73 24 91

l.6 24,32,40,48 0.1169(23) 0.050(11) − 3.8(3) 0.87 17 61 60 25

linear + cubic fits

c.1.1 32,40,48 0.1167(12) 0.038(14) 0.0028(10) 3.7(5) 1.04 11 41 72 54

c.1.2 32,40,48 0.1091(11) 0.092(13) 0.0(0) − 3.87 12 0 70 6

c.2 32,40,48 0.1176(18) 0.041(16) 0.0034(16) 3.9(6) 1.06 10 39 83 35

c.3 32,40,48 0.1165(13) 0.040(15) 0.0027(11) 3.7(5) 1.13 10 34 54 52

c.4.1 24,32,40,48 0.1171(7) 0.028(11) 0.0035(8) 3.90(15) 0.77 20 75 36 42

c.4.2 24,32,40,48 0.097(4) 0.080(13) 0.0(0) − 10.07 21 0 0 −

c.5 24,32,40,48 0.1168(8) 0.03(1) 0.0026(7) 3.82(13) 0.52 17 95 21 68

c.6 24,32,40,48 0.1173(9) 0.027(11) 0.0037(10) 3.91(16) 0.77 20 76 45 31

Table 5.3: Same structure as table 5.2.

Ns = 24, 32, 40 and 48 plotted in fig. 5.13 for which the plateaus of the different Ns in the first order

region are overall shifted to slightly larger values of B4 compared to Nτ = 6. At the smallest spatial

extent Ns = 24, for which we determined a physical box length of merely L = 2.117(10) fm at the

smallest value of κ = 0.11, we only simulated in a range of κ = {0.112, . . . , 0.125} which assumably

falls on the first order plateau since there the B4 data points lie on a horizontal. The fits were done
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Figure 5.12: Linear (top) and linear + cubic (bottom) fits of B4 to volumes Ns = (24, )32, 40, 38 (left)
right.

including and excluding Ns = 24 (see fig. 5.12). Even though the Ns = 24 plateau is at a large value of

B4 (≈ 2), the fits using the correction term are impressively stable with respect to quality and extracted

κZ2 when Ns = 24 is added. We check again the effect of excluding the correction term which results in a

spoiled fit, see fits l.1.2, l.4.2 and c.1.2, c.4.2. For the cubic fits overall the number of degrees of freedom

increases because the fitting range is increased (under consideration of the criteria regarding symmetry

and overlap of the fitting ranges imposed on the fits, c.f. section 5.3.1). The value κZ2 extracted from fit

c.1.1 is quoted as the final result including the corresponding pseudoscalar meson mass,

κZ2(Nτ = 8) = 0.1167(12) mPS,Z2(Nτ = 8) = 4240(190)MeV. (5.12)

Here additionally I take a look again at the respective susceptibilities χ(|P |) plotted in fig. 5.14 as a

consistency check for two simulated values of the hopping parameter, κ ∈{0.115,0.12}. Note, that the

extracted κZ2 value is between these two values. For κ = 0.115 the different curves χ(|P |)/Nγ/ν
s have

a slightly larger spread when first order exponents are inserted which implies that κ = 0.115 is in fact

close zu the Z2 point. The situation is clearer for κ = 0.12 where insertion of first order exponents does

not seem to cause a collpase at all, while for second order exponents the curves collapse within the error

indicating the vicinity to the Z2 point again. .

In this section I complement the study by examining plots of an effective potential of the Polyakov
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loop for which I used the definition suggested in [125],

Veff(|P | , β, κ) = − lnP (|P |)β,κ , (5.13)

which is really nothing but a different way of looking at the distribution function P (|P |) of the (pseudo)

order parameter |P |. The effective potential should develop a parabola shape at the Z2 point while it

exhibits two neighboring minima in the first order region equivalent to the two peak-structure of P (|P |)
shown in fig. 5.11 (right). The effective potentials were examined for fixed spatial extents as functions of

κ as shown in figures 5.15a to 5.15d as well as for fixed values of κ as functions of Ns as shown in figures

5.15e to 5.15h. Note that I refrained from including error bars so as not to clutter the plots. The errors have

been checked and are always comparable to the errorbars in fig. 5.15d. The plots 5.15a to 5.15d confirm

what was observed from the analysis of the previous section about Nτ = 6. The moment at which the

curves B4(βc, κ,Ns) reach a plateau in the first order region their respective distributions and thus also the

effective potentials do not change shape anymore, c.f. fig. 5.11. Consider for instance the B4(βc, κ,Ns)

curve of Ns = 32 in fig. 5.13a: It appears to reach the upwards shifted first order plateau at a κ value

. 0.12. Now, looking at the potential belonging to Ns = 32 in fig. 5.15b, one can see that the shape of

the potential is roughly constant from κ = 0.12 on. Staying for a moment with this example, note, that
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(a) B4 data of Ns = 32.
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(b) B4 data of Ns = 40.
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(c) B4 data of Ns = 48.
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(d) Plot of B4 of Ns = 24, 32, 40, 48.

Figure 5.13: The figure shows the B4 data for which fits are shown in fig. 5.12.

the fitted value of κZ2 is κZ2 = 0.1167(12) which is < 0.12. Thus one would expect the two minima of

the effective potential to fuse into one minimum at values of κ > 0.1167(12). Instead, at κ = 0.12 and

even at κ = 0.125 the two minima are still clearly distinct and only merge at κ ≈ 0.13. This can again
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Figure 5.14: Collapse plots of χ(|P |) at κ = 0.115 (top) and κ = 0.12 (bottom) for first (left) and second
order (right) critical exponents.

be explained with the behavior described by fig. 5.11: Lets assume for a moment that the fitted value

κZ2 = 0.1167(12) represents in fact the true Z2 point at V →∞, i.e. κZ2(V =∞) = 0.1167(12). The

beginning of the first order plateau of the curve B4(βc, κ,Ns = 32) is shifted (relatively to the B4 curve

at V →∞) vertically to values of B4 > 1 and horizontally to values of κ > 0.1167(12). Consequently

the system with an extent of Ns = 32 still appears to have a first order transition at κ values at which in

the thermodynamic limit there would already be a crossover transition. Thus also the effective potential

displays a shape characteristic to a first order transition.

Changing the perspective and inspecting the effective potential at a fixed κ value as a function of Ns

gives more information about how the situation changes for increasing volume: Close to the thermody-

namic limit the minima of the effective potentials should settle and not change anymore irrespective of

the spatial extent Ns considered. Looking at the plots unsurprisingly reveals that this state has not been

reached so far, although, for instance considering fig. 5.15e, it seems like the distance between the minima

between the different Veff(|P | , β, κ,Ns) decreases as Ns is increased.

However, this represents merely a qualitative analysis and thus is adequate to identify trends and make

instructive observations. Note that strictly speaking the comparison between the effective potentials at a

fixed Ns but at different values of κ is flawed since the lattice spacing slightly varies with κ which implies

different volumes at each κ (c.f. table A.4) an thus somewhat different finite volume effects, as well. To

draw a conclusion one should probably not use this method solely for the attempt to identify the Z2 point

κZ2 but consulting the distribution or the effective potential can shed additional light on the situation.
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(e) κ = 0.1150, Ns = 24, 32, 40, 48
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(g) κ = 0.1250, Ns = 24, 32, 40, 48
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Figure 5.15: Effective potentials of |P | plotted for fixed values of Ns (5.15a)-5.15d and for fixed values of
κ (5.15e-5.15h). Note that the system is always kept critical, i.e. at the pseudo-critical coupling βc.
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Nf = 2, Nτ = 10

For the study of Nτ = 10 lattices, only the initial steps have been taken so far, meaning that the simulated

volumes are very small (L = {1.66(2), . . . 3.05(4)} fm) and on top the accumulated statistics on the

volumes are rather low. Therefore the data shown in this section is in a very preliminary state. However

this state can serve as a testing ground for the insights gathered from what was presented in the preceding

sections on Nτ = 6 and 8 lattices. As expected, at this temporal extent the lattice spacings have decreased

even further and are now found in a range of a = {0.0690(10), 0.0762(11)}. Also the pseudo scalar

masses in lattice units are shifted to smaller values. At the largest simulated value of the hopping parameter

with κ = 0.1400 the lattice mass dropped below one for the first time with amPS = 0.9284(5).

The B4 data was analyzed again by fits listed in table 5.4. Due to the small volumes the correction

parameter B extracted from the fits further increased compared to the fits of the Nτ = 8 data. The value

κZ2 extracted from fit c.1.1 is quoted as the final result including the corresponding pseudoscalar meson

mass,

κZ2(Nτ = 10) = 0.1229(10) mPS,Z2(Nτ = 10) = 4500(400)MeV. (5.14)

To summarize the findings, the values of mPS,Z2 found in the studies at Nτ = 6 and 8 as well as the

preliminary value for Nτ = 10 are plotted over the lattice spacing in fig. 5.17.

Fit Ns κZ2 a1 a3 B χ2
NDF NDF Q[%] Ωmin Ξmin

linear fits

l.1.1 30,40,50 0.125(9) 0.034(13) − 5.3(1.4) 0.081 8 60 62 47

l.1.2 30,40,50 0.1066(35) 0.072(13) − − 2.24 9 2 53 -

l.2 30,40,50 0.126(11) 0.025(12) − 5.2(1.3) 0.68 7 69 55 52

linear + cubic fits

c.1.1 30,40,50 0.1229(10) -0.000(12) 0.003(10) 5.1(3) 0.36 8 94 78 63

c.1.2 30,40,50 0.1055(42) 0.085(23) 0.0(0) − 2.56 9 1 44 -

c.2 30,40,50 0.1227(9) -0.007(16) 0.0038(16) 5.0(3) 0.39 7 91 79 62

Table 5.4: Same structure as table 5.2.
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Figure 5.16: Linear (left) and cubic (right) fits of B4 including the correction term given by eq. (5.10).
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Discussion

For Nf = 2 QCD with zero chemical potential the Z2 point of the heavy quark mass region has been

determined by finite size scaling analyses of B4 on lattices with temporal extents Nτ = 6, 8 and 10.

The results are summarized altogether in table 5.5. The extraction of the Z2 points was complicated

by finite volume effects which prevent B4 to assume the value characteristic for first order transitions

(B4(βc, κ < κZ2) = 1) even at very small values of κ. Instead, at some value of κ, B4 reaches and

remains at a value > 1, which is further increased as the volume is decreased. Moreover, this “new first

order plateau” is reached at increasingly larger κ values at smaller volumes. This causes a positive vertical

and horizontal shift of the inflection points of each individual curve B4(βc, κ,Ns), which represent the

Z2 point at B4 = 1.604 in or close to the thermodynamic limit, to values B4 > 1.604 (and even κ & κZ2

below a certain volume). The effects can be understood from examining the distribution P(|P |) of the

(pseudo) order parameter |P |. In particular the larger B4 values are caused by the lack of separation of

the two peaks characterizing the distribution at a first order transition. Further investigations could help

to better understand and quantify the problem, for instance by means of the model that was developed

in our group to explain the findings in [159] which were also caused by effects of small volumes on the

distributions. However, the shifted inflection points spoil attempts to fit the B4 data according to the well

know expansion given by eq. (5.7), with the parameters B4(βc, κ, V = ∞) and ν fixed to the values

characteristic to the Z2 universality class. For this reason a correction term given by eq. (5.10), suggested

in [72], was included in this expansion. This term corrects for the finite volume effects by introducing an

additional volume dependence according to a specific critical exponent. Taking into account this correction

permits successfully fitting the B4 data points affected by finite volumes effects with the parameters

B4(βc, κ, V =∞) and ν fixed to their true values. The correction term is motivated by the fact that the

QCD (pseudo) order parameters are mixtures of magnetic and energy-like observables [71], as discussed

in section 3.1.3. Note, that the authors of [72] used the correction for finite size scaling analysis of B4

in the region of small quark masses. In contrast, the present study takes place in the region of heavy

quark masses. In view of this different setting, what yet needs to be understood is whether this mixing of

magnetic and energy-like observables is what causes the finite volumes effects observed in the present

study at small Ns or if there is no theoretical connection at all and the correction term coincidentally acts

as a makeshift.

The values of mPS,Z2 listed in table 5.5 are based on masses in lattice units > 1 for which reason

large discretization errors are expected. At the largest simulated value of κ with κ = 0.14 on Nτ = 10

lattices the mass assumed a value in lattice units < 1. This can be seen to imply that advances to temporal

extents Nτ & 12 will put forth masses in lattice units . 1 at the Z2 point, allowing to more reliably

extract pseudo scalar meson masses.

The results of the study on Nτ = 10 lattices are, as explained before, in a very preliminary state at

the present time but the work on the project is ongoing in our group and over a period of 1 or 2 years

will presumably yield a more reliable estimate of κZ2 and mPS,Z2 . Furthermore, simulation of Nτ = 12

lattices have been started in our group, as well.

Keeping in mind all the caveats about present finite volume effects and discretization errors, the results

presented in the last section about Nτ = 6, 8 and 10 are summarized in fig. 5.17. The left plot is rather

inconclusive but the value of mPS,Z2(Nτ = 10) as well as its error is expected to decrease as the quality

of the data improves and the spatial lattices extents included in the study are increased. In contrast the
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right plot in which 1/κZ2 is plotted vs the lattice spacing a shows a promising trend. Remember that κ is

defined as κ = 1/(4amq + 8) and thus 1/κZ2 is expected to approach 8 as a→ 0. Of course, this plot is

specific to the standard Wilson discretization. For fig. 5.17 the lattice spacing at the respective κZ2(Nτ )

and mPS,Z2(Nτ ) values were obtained by a fit to the data listed in table 5.1.

Somewhat surprising are the transition temperatures listed in table 5.5. For Nτ = 6 with the largest

value of mPS,Z2 the smallest value of Tc is found which is rather unexpected. An explanation could be

found in the uncertainties that propagate into the computation of Tc via the relation T = 1/(a(βc)Nτ ).

Remember that βc is defined by B3(βc) = 0. First of all, B3 has a statistical error which causes

uncertainties in the extraction of βc. Furthermore, βc extracted in this way will shift at larger volumes until

the system is close to the thermodynamic limit. As we have observed, the volumes that have been used in

the analysis, at least for Nτ = 8 and 10, still suffer considerably from finite volumes effects and thus βc is

expected to slightly change as the volumes are increased. This could also add to problems in determination

of B4 since, strictly speaking, it is not extracted at Tc(∞). The further process of determining the lattice

spacing a involves employing the Wilson-flow method in which the produced T = 0 configurations have

to be flowed. Due to the computational and time demands required by the Wilson flow method, the number

of configurations flowed at each κ is rather small (≈ 20) and thus a higher precision in the lattice spacing

a can be achieved by simply increasing this number. Taking into account all of these sources of errors

suggests that the errors of the temperatures listed in table 5.1 are probably underestimated.

Nτ κZ2 mPS,Z2 [MeV] Tc[MeV](approx.)
6 0.0939(14) 4670(180) 278
8 0.1167(12) 4240(190) 282
10 0.1229(10) 4500(400) 287

Table 5.5: Summary of the determined values of κZ2 by finize size scaling analyses of B4.
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Nf = 3, Nτ = 4

The study of phase transitions on lattices with temporal extent Nτ = 4 in the Nf = 3 theory of QCD

just presents the first step of a larger set of simulations at multiple values of Nτ , aiming at determining

the Z2 point with the same strategy as presented in the previous sections. It uses the Rational Hybrid

Monte Carloimplementation for Wilson fermions in CL2QCD described in section 4.2 and section 4.3. The

results are compared to a study presented in [125]. Note, that at Nτ = 4 we work on coarse lattices with

lattice spacings around a ≈ 0.19 (see table 5.1). Due to the large lattice spacings smaller spatial lattice

extents with Ns = 16, 20, 24 are sufficient to obtain effectively a similar physical volume compared the

studies of Nτ = 6 and 8 lattices. The physical edge lengths L of the simulated volumes are in range a of

L ∈ {2.971, . . . , 4.531} fm (see table A.7) which is very similar to the study of Nτ = 8. The fits, which

were performed according to the procedure described in the beginning of the section about Nτ = 6, are

listed in table 5.6. All fits including a cubic order gave cubic coefficients which were consistent with zero

within their error for which reason they are not listed in the table. Surprisingly, the parameter B of the

correction term given by C(Ns) = (1 + BN
1/ν
s ) has been observed to be insignificant, i.e. consistent

with zero within its error, for basically all fits performed. Since the simulated volumes are comparable to

the volumes of the Nτ = 8 study, rather large finite volume effects would be expected. Instead, excluding

the correction in the fits (see fit l.1.2) produces a qualitatively equal result. The minimal symmetry Ξmin

with respect to the fitted κZ2 and the minimal overlap Ωmin of the fitting ranges of the different Ns hardly

changes under exclusion of the correction. However, one should not be tempted to airily conclude that the

finite volume effects are small. The simulations have been carried out in a rather narrow range of κ values

and on top the statistical errors of the B4(βc, κ,Ns) data points are still quite large which causes the data

to overlap within the error. Hence statistical errors would have to be decreased and the range in κ should

be extended to obtain a more conclusive picture. From table 5.2 the value κZ2 extracted from fit l.1.1 is

quoted as the final result,

κZ2(Nf = 3, Nτ = 4) = 0.0553(7). (5.15)

The authors of [125] find κZ2 = 0.0595(3) which has a 4.2σ discrepancy to the result presented here.

Fit Ns κZ2 a1 a3 B χ2
NDF NDF Q[%] Ωmin Ξmin

linear fits

l.1.1 16,20,24 0.0553(7) 0.220(15) − 0.05(19) 1.08 17 37 58 49

l.1.2 16,20,24 0.0550(3) 0.221(13) − − 1.02 18 43 46 57

Table 5.6: Same structure as table 5.2.

To explain this discrepancy between the results not only the points already mentioned above should

be considered but also the fact that in the cited study no finite size scaling is performed but only the

distribution and the effective potential respectively of the plaquette is considered to deduce the κZ2 value.

To this end the quark determinant is expanded by a hopping parameter expansion to first order in κ around

the simulation point κ = 0. Subsequently a reweighting to finite values of κ is performed. First of all have

we previously learned from the presentation about Nτ = 8 that the distribution functions can be heavily

affected by finite volume effects. Second, the extrapolation that is used in [125] possibly introduces

non-negligible systematics.
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Examining the effective potential of |P | plotted in fig. 5.19 one can see that the two minima only

disappear at a κ value of κ = 0.0650 implying a value κZ2 = 0.0650 which is much larger than the κZ2

value extracted from the finite size scaling analysis of B4. Since the κZ2 value extracted in either way

should be comparable for sufficiently large volumes one can conclude that the volumes considered here

are affected by finite volumes effects despite the contrary impression one obtains from the vanishing of

the finite volume correction parameter B in the fits.
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Discussion

The rational hybrid Monte Carlo Algorithm has been implemented in CL2QCD so as to simulate at uneven

values of Nf which opens up the possibility to start studying the nature of the phase transition of QCD

for Nf = 3 flavors in the Columbia phase diagram. As a test for this a first step has been successfully

taken on coarse lattices with temporal extent Nτ = 4 in the heavy quark mass region. The result was

compared to another study [125] and was consistent within 4.2 standard deviations. Possible reasons for

the discrepancy have been discussed. To further test the correctness of the implemented algorithm another

reference study is needed in which full simulations with unimproved Wilson fermions are carried out.

Moreover, for the data presented in this section the statistics as well as the volumes should be increased in

order to further study the finite volume effects at work.

Simulations at Imaginary Chemical Potential

The results presented in this section have already been published in [159] from where the content and all

the figures were taken over correspondingly and adapted to fit the context of this work. To acquire the

results the strategy presented in section 5.2.3 has been employed. Any further steps in the analysis not

explained there will be given during the discussion when necessary.

Nf = 2, Nτ = 6, (µi,c/T =π/3)

For this project 9 values of κ have been simulated between and including κ = 0.1 and κ = 0.165 on

Nτ = 6 lattices with an imaginary chemical potential value of aµi,c = π/6. For each of these κ values the

kurtosis B4 was evaluated as a function of βc on three to four spatial lattices sizes with Ns ≥ 16 (except

for κ = 0.1625 where Ns = 12 was used additionally), giving a minimal aspect ratio of ∼ 3. For every

Nτ about 6 up to 30 values of β have been simulated with between 40k-500k standard HMC steps of unit

length each after 5k thermalization steps. For each trajectory the acceptance rate was tuned to and held at

∼ 75%. In each step after the thermalization ReP and ImP were measured. At large values of κ ≥ 0.16

the Hasenbusch trick [170] for the integration of Molecular Dynamics equations has been employed in

order to reduce the integrator instability causing large drops in the acceptance rate and which is generated

by isolated low modes of the Dirac operator [199]. Subsequently fits to the measured data were performed

according to eq. (5.9) from which the parameters B4(βc,E, V =∞), a1, βc,E and ν were extracted using

an intricate procedure (the method is explained in 4.1.3). Examining the change in ν as a function of κ

allows to locate the tricritical points. The fitting procedure and the extraction of parameters is particularly

delicate and requires to understand at which point the gathered statistics are sufficient. For this reason the

HMC steps were equally distributed on four different Markov chains per β on which the observables were

evaluated with analysis techniques discussed in section 4.1. Scale-setting was done using the Wilson flow

parameter ω0. For this purpose T = 0 simulations at or close to the value of the critical coupling βc,E(κ)

of O(400) configurations have been carried out on 163 × 32 lattices at vanishing chemical potential. In

order to provide a physical quantity for the identification of the tricritical point κtric the pseudo scalar

meson mass, here denoted by mPS, has been computed on the same configurations. More details about the

simulations are given in section A.4.1.

To get an idea about the nature of the phase transition at each value of κ collapse plots of the

susceptibilities χ of |L| were produced according to eq. (3.15) where the different possible values for
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(b) κ = 0.1, second order coefficients.
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(d) κ = 0.13, second-order coefficients.
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Figure 5.20: Example of collapse plots of the B4 of the imaginary part of the Polyakov loop. (All figures
taken from [159])

the ratio of the critical exponents γ/ν (first or second order values) help to exclude one of the scenarios.

However, remember that the susceptibility collapse plots can be inconclusive, especially for small Ns, and

thus are complemented with the equivalent information from kurtosis collapse plots for which ImP was

used. In fig. 5.20 examples of kurtosis collapse plots are shown for κ = 0.1, κ = 0.13 and κ = 0.165

with first order coefficients inserted in the left column and second order coefficients inserted in the right

column. In each the overlap of the different curves clearly prefers either the first or the second order

coefficients. It can be observed that κ = 0.1 belongs to the region of first order deconfinement transitions.
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Figure 5.21: Critical exponent ν as function of κ. The horizontal colored lines are the critical values of ν
for some universality classes. Note the different scale on the κ-axis. Due to the much higher numerical
cost, not all the κ values simulated for Nτ = 4 have been considered for Nτ = 6. Refer to Figure 5.22a
for a more direct comparison.(Figure taken from [159])

The phase transition at κ = 0.165 seems to be of first order, as well, but belongs to the chiral region as κ

corresponds to rather small quark masses. The value of κ = 0.13 in contrast is found to be in the second

order region.

Note that at κ = 0.165 and κ = 0.1 the kurtosis unexpectedly assumes values > 3. This phenomenon

was investigated in our group with a model introduced in [159] and discussed in detail in [190]. The

model uses the definition of B4 given by eq. (5.3), for which analytic expressions are inserted for the

expectation values in the numerator and the denominator, namely

B4 [P(x)] =

∫ +∞
−∞ x4P(x)dx[∫ +∞
−∞ x2P(x)dx

]2 . (5.16)

The distribution P is then constructed to be a sum of three Gaussians with respective weights. This models

the situation in the chiral/deconfinement region of the Roberge-Weissplane where the distribution of ImP

at the end point (which is a triple point there) of the Z3 transition displays a three peak structure signalling

a three phase coexistence. Imposing proper conditions on the model and further algebraic evaluation

shows that in fact B4 can assume values > 3 for small volumes and thus allowing to conclude that the

findings of our study can be explained by finite volume effects. However, I will not go into further detail

as this model is not part of this work. The interested reader is referred to the references cited above.

Coming back to the discussion of the results, the method of collapsing curves is, as mentioned before

already, only self-consistent and serves to make instructive observations. To actually extract the critical

exponent ν from the data of B4 it must be fitted by eq. (5.9). Since the B4 data points were interpolated

by multi-histogram reweighting the fitting procedure involves many data points such that the fitting ranges

can be heavily varied. Thus in order to choose fitting ranges by objective criteria the same intricate

procedure, explained in section 4.1.3, was used as for the µ = 0 project. The outcome of the fits are

shown in fig. 5.21(a) where ν is plotted as a function of κ. The plot shows the expected change from first

order values of ν at small values of κ (large quark mass) to second order values at intermediate κ values

and back again to first order values at large values of κ (small quark mass). The behavior of ν shows a

smeared out version of the step function expected in the thermodynamic limit, illustrated by the schematic
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in fig. 5.7. The reason for not extracting the values of ν corresponding to V →∞ despite performing a

finite size scaling analysis is presumably that the volumes are still to small. The finite slope of the ν-curve

implies that ν can take any value between the universal ones in the vicinity to the tricritical points which

is a complication in the determination procedure of ν. Producing a collapse plot based on the critical

exponent ν could be rather inconclusive in this region which again is a hint that collapse plots should only

be used as a supplemental technique. However, as already discussed in section 5.2.3, the critical exponent

ν is less prone to finite size effects and stays confined between its first and second order values compared

to B4(βc,E, V = ∞). In contrast, B4(βc,E, V = ∞) extracted from the fit gave values that are slightly

larger than true universal values for which reason no plot is shown here. This is in agreement with what

was found in previous studies with both Wilson [196] and staggered [156] fermions and can be explained

by finite size effects (c.f. the discussion in section 3.5.1). From the analysis of the data the two tricritical

values of κ bordering the Z2 region are determined as

κ
heavy
tric = 0.11(1), κ

light
tric = 0.1625(25) (5.17)

The comparison with results of a former study [196] on Nτ = 4 lattices (fig. 5.21(b)) shows the expected

shift of κtric to smaller values of the bare mass on Nτ = 6, i.e. on the finer lattice for both the chiral

and deconfinement region which is explained by discretization errors (c.f. section 3.5.1). As mentioned

above the pseudo scalar meson masses have been computed at the corresponding couplings βc,E for all κ

values. Table 5.7 summarizes the findings for the lattice spacing a, the critical temperature Tc and mPS.

From the table it can be clearly seen that the lattice coarsens (larger a) as the mass is lowered which is

κ β # confs w0/a amPS a {fm} mPS {MeV} Nτ T {MeV}

0.0910 5.6655 1600 0.9161(6) 3.0107(2) 0.192(2) 3101(32)

4

258(3)
0.1000 5.6539 1600 0.9017(12) 2.7285(2) 0.195(2) 2766(29) 253(3)
0.1100 5.6341 1600 0.8789(10) 2.4250(3) 0.200(2) 2396(25) 247(3)
0.1575 5.3550 400 0.7104(3) 1.1426(17) 0.247(3) 913(9) 200(2)

0.1000 5.8698 1600 1.4650(20) 2.5793(6) 0.120(1) 4248(44)

6

275(3)
0.1100 5.8567 1600 1.4594(18) 2.2302(2) 0.120(1) 3659(38) 273(3)
0.1200 5.8287 1200 1.4333(20) 1.8862(4) 0.122(1) 3040(31) 269(3)
0.1600 5.4367 200 1.1248(14) 0.6045(15) 0.156(2) 764(8) 211(2)
0.1625 5.3862 200 1.0700(17) 0.5559(23) 0.164(2) 669(8) 201(2)
0.1650 5.3347 200 1.0082(13) 0.5184(27) 0.174(2) 588(7) 189(2)

0.1300 5.9590 1600 1.9357(44) 1.3896(2) 0.091(1) 3024(32) 8 272(3)

Table 5.7: Results of the scale setting (T = 0 simulations performed on Nτ = 32, Ns = 16 lattices). The
number of independent configurations used is reported in the third column (# confs). w0/a has been
determined and converted to physical scales using the publicly available code described in [79]. For the
pion mass determination, eight point sources per configuration have been used. The table also contains
the lattice spacing, the pion mass and the temperature of the corresponding finite temperature ensemble in
physical units.(Table taken from [159])

no surprise since β decreases. As expected, comparing the lattice spacings of Nτ = 4 with the ones of

Nτ = 6 shows a significant decrease of a. Finite size effects with respect to the pseudo scalar mesons are

negligible since mPSL ≥ 6 for all parameter sets. The estimates for of mPS at the tricritical points are

mdeconf
PS,tric = 3659+589

−669MeV, mchiral
PS,tric = 669+95

−81MeV (5.18)
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Figure 5.22: Direct comparison between Nτ = 4 and Nτ = 6 results and comparison of Nτ = 4, 6, 8
results in terms of mπ. In the latter case, the value of mchiral

PS,tric from [200] has been included as well. For
the sake of clarity, not all the Nτ = 4 points have been included. The vertical coloured bands highlight
the position of the tricritical masses. A shift toward small masses (i.e. bigger κ) is evident as Nτ is
increased.(Figure taken from [159])

In the deconfinement region the value of the pseudo scalar mass in lattice units is about amdeconf
PS,tric ≈ 2.7 for

Nτ = 4 and amdeconf
PS,tric ≈ 2.2 for Nτ = 6 This implies large systematic errors and prevents a quantitative

statement about the shift in physical units. In contrast in the chiral region the mass in lattice units is

about amchiral
PS,tric ≈ 1.1 for Nτ = 4 while for Nτ = 6 it is even already significantly below one with

amchiral
PS,tric ≈ 0.55. This values represent an acceptable range for a quantitative statement about the shift

which is around 35% from Nτ = 4 with mchiral
PS,tric ≈ 910MeV to Nτ = 6 with mchiral

PS,tric ≈ 670MeV.

Note that the corresponding critical temperature Tc hardly changes with Nτ and stays roughly around

200MeV. A different study with Wilson-Clover fermions [135] of the Nf = 3 chiral region found a

similar magnitude of shifts in the pseudo scalar meson masses at the tricritical points. Interestingly a

comparison of the results of this work with the ones of a study with staggered fermions [200] shows that

the Wilson value of mchiral
PS,tric for Nτ = 6 is still larger than the staggered value for Nτ = 4(≈ 400MeV).

These observations suggest that the region where linear cut-off effects dominate the standard Wilson

action is not reached at Nτ . 6. Hence it can be concluded that much larger Nτ are needed for both

Wilson and staggered fermions. This is supported by studies about the equation of state where different

fermion discretizations start to agree at Nτ & 12 only. An overview can be found for instance in [201]. As

an initial advance towards finer lattices at the Roberge-Weiss value of the chemical potential simulations

of κ = 0.13 at Nτ = 8 with spatial extents of Ns = 16, 24, 32, 40 were included in this study, i.e.

aspect ratios of 2-5 (simulation details are shown in table A.9). As expected significantly increased

computational costs are experienced leading to lower statistics especially at Ns = 40 compared to the

previous simulations. Thus the critical exponent ν was computed from the three lower aspect ratios

yielding a value of ν = 0.47(1) which is close to the tricritical value of ν = 0.5 and thus suggests that

κ = 0.13 at Nτ = 8 is close to the tricritical point. The lattice spacing at these parameters decreased

to a ≈ 0.09. Calculation of the pseudo scalar meson mass corresponding to the tricritical point yielded

mdeconf
PS,tric = 3024(23). Setting aside possible issues with a large value in lattice units (amdeconf

PS,tric ≈ 1.4) this

result again shows a large shift of the tricritical points towards smaller masses. The critical temperature Tc

at the tricritical points again stays at about the same value when advancing from Nτ = 6 to 8. The results
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of this study are summarized in fig. 5.22b where the tricritical regions of the different Nτ are compared.

The value of mchiral
PS,tric from the study with staggered fermions [200] mentioned above is included, as well.

From the figure it becomes apparent that certainly much larger Nτ are required to approach the continuum

limit.

Discussion

Previous studies about the nature of the Roberge-Weiss transition of Nf = 2 QCD at imaginary chemical

potential on Nτ = 4 lattices were progressed to Nτ = 6 and for one κ value even to Nτ = 8 whereby

standard Wilson fermions were used. Large amounts of data were produced in order to perform a sound

finite size scaling analysis. A model (not part of this work) introduced in [159] helped to understand the

reason why the kurtosis assumes values larger than the expected ones in the region where the Roberge-

Weiss endpoint is a first order triple point. The observation can be explained by finite size effects related

to the merging of a three peak distribution as a function of the lattice coupling. The determined phase

structure qualitatively reproduces the one on coarser Nτ = 4 lattices but the tricritical points were found

to shift considerably to larger κ values, i.e. to smaller masses on finer lattices both in the chiral as well as

in the deconfinement region. Although discretization effects could be decreased in magnitude, the findings

suggest that even much finer lattices are required for the phase structure to settle at its continuum values.

Linking Results from µ = 0 and µi,c

The information about the critical points that has been acquired in the heavy quark mass region at µ = 0

and µi,c can be compared and shown to be consistent with previously established expectations: Estimates

for κZ2 at µ = 0 and κheavy
tric at µi,c on Nτ = 6 have been produced. For Nτ = 8 now an estimate of κZ2 is

available, as well and at µi,c a value of κ < κ
heavy
tric has been found which can be assumed to be very close

to κheavy
tric . On Nτ = 6 the findings are κZ2 = 0.0939(14) at µ = 0 and κheavy

tric = 0.11(1) at µi,c, with a

difference of ∆κ,Nτ=6 = 0.016(10), which confirms a strengthening of the first order transition as the

imaginary chemical potential is turned on. On Nτ = 8 lattices the difference between κZ2 = 0.1167(12)

and κ = 0.13(1) (close to κheavy
tric ) is ∆κ,Nτ=8 = 0.013(10) which is consistent with ∆κ,Nτ=6. Of course

this comparison is very rough since κheavy
tric was not used for Nτ = 8 but a value κ < κ

heavy
tric just close to it.

A comparison between the pseudo scalar masses in lattice units at the Z2 point at µ = 0 and the

tricritical point at µi,c shows a significant difference. ForNτ = 6 this difference is≈ 20% (amPS,Z2 ≈ 2.8

at µ = 0 and amPS,tric = 2.23 at µi,c) and for Nτ = 8 it is ≈ 25% (amPS,Z2 ≈ 1.86 at µ = 0 and

amPS,tric = 1.38 at µi,c), c.f. table 5.8. The point in noting this difference can have the following possible

implications for the strategy pursued in the future steps of the project:

1. The smaller pseudo scalar mass in lattice units at the tricritical point at µi,c implies a smaller

discretization error and hence a more reliable extraction of the mass in physical units. For instance

if a similar shift of the pseudo scalar mass in lattice units between the Z2 point at µ = 0 and

the tricritical point at µi,c occurs on Nτ = 10, a value amPS,tric ≈ 1 could be expected at µi,c.

Consequently one could consider continuing the study in the Roberge-Weiss plane and, once a

continuum extrapolation is available, use tricritical scaling relations, discussed in section 3.5.3, to

find the corresponding continuum value at µ = 0.
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2. At larger values of κ the transition temperature Tc is lower, which implies an increase of the lattice

spacing a. A larger lattice spacing a) is less costly to simulate in terms of computational resources

and b) leads effectively to a slightly larger physical volume which helps with finite volume effects.

3. In the Roberge-Weiss plane the order parameter is not |P | anymore but ImP . Remember that at

µ = 0 there is the problem, that B4(|P |) does not assume the value characteristic for a first order

transition, i.e. B4 = 1, but a value that is positively shifted relative to the first order value (c.f.

section 5.3.1). In contrast in the Roberge-Weiss plane it has been shown (c.f. fig. 5.20) that B4

approaches one, even at much smaller volumes compared to the ones used at µ = 0! This is related

to the fact that the distribution of ImP exhibits a two/three peak structure with a more distinct

separation of the peaks. Thus the kind of finite volume effects experienced at µ = 0 with respect to

the first order value of B4 are not present at µi,c.

Of course, one should not forget about the larger computational expenses implied by the smaller quark

masses at the tricritical point at µi,c compared to the quark masses at the Z2 point at µ = 0.

Nτ 6 8 10

amPS κc amPS κc amPS κc

µ = 0 2.8 0.0939(14) 1.86 0.1167(12) 1.6 0.1229(10)

µi,c 2.23 0.11(1) 1.38 0.13

Table 5.8: The critical κ values (κc = κZ2 for µ = 0 and κc = κ
heavy
tric for µi,c) of the heavy quark mass

region are summarized. Next to the κc values are the respective pseudo scalar meson masses in lattice
units. As expected, the κc values increase from µ = 0 to µi,c. This implies smaller pseudo scalar masses
which have smaller values in lattice units.
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Chapter 6

Conclusions and Perspectives

The presented LQCD study of the chiral and deconfinement phase transitions of QCD by numerical

means of (rational) hybrid Monte Carlo simulations, using the CL2QCD software, represents an important

contribution to the exploration of the Columbia plot at µ = 0 (l.h.s. fig. 5.1) and µi,c (r.h.s. fig. 5.1).

In particular the study about the phase transitions for two degenerate light quark flavors in the Roberge-

Weiss plane at µi,c provided a further component in the never ending debate (c.f. table 3.4) about the

nature of the phase transition in the Nf = 2 chiral region. In this context valuable knowledge about the

numerical methods and strategies used for the localization of phase transitions and the identification of

the respective nature as well as about about finite volume and discretization effects was obtained. This

lays the foundation for efficient future studies aiming at a continuum extrapolation of the tricritical points,

separating the regions of first order triple transitions from the region of Z2 transitions. Furthermore,

now a large amount of data is available to compare findings to other studies using the same or different

fermion discretizations as well as to use the data to employ scaling relations and analytic continuation to

investigate the phase structure at µ = 0. A discussion and a summary about this part is given in section

5.4.2.

These points were also achieved in the study of the Nf = 2 deconfinement region at µ = 0 as well as

at µi,c. Though, at both values of the chemical potential there are different and serious problems due to

an interplay of the finite (still to large) lattice spacing, the large quark masses used at the respective Nτ

and the finite (still to small volumes) that need to be dealt with differently. An example is given by the

finite volume effects affecting B4 at µ = 0 and µi,c in different ways. In the first case a shift of the first

order value and in the latter case a larger value in the crossover region was observed and understood. For

a discussion see section 5.4.2 and section 5.3.4.

Most of the time the research community is interested in answering the question about the nature

of the phase transition in the chiral regions for which reason only few finite temperature and density

projects with heavy quark masses are launched but exploring this region is important for many intents

and purposes: Up to date it is unknown to which degree the first order transitions surrounding the limit

mq →∞ are strengthened as the continuum limit is approached. In section 3.5.2 I already explained that

a scenario in which a reduction of the discretization errors causes the critical point (κZ2 at µ = 0 and

κ
heavy
tric at µi,c) to move so far to smaller masses such that it crosses the physical point is ruled out almost

with certainty. Nevertheless it is interesting and important in its own right to quantify the change of the

Z2 point. Furthermore the data obtained by simulations in this region can serve for input or as crosscheck

for theories using Langevin or strong coupling expansion. Using this as a motivation the decision was
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met to start a long term project at µ = 0 to find the continuum position of the Z2 point in the heavy

quark mass region. This work presents the first promising steps that have been successfully taken in this

direction on lattices with temporal extents of Nτ = 6, 8 and 10 using the Wilson fermion discretization.

On Nτ = 6 and 8 the value of κZ2 was successfully determined while for Nτ = 10 a preliminary estimate

was produced. The findings are discussed altogether in section 5.4.2.

Simulating on lattices with increasingly larger temporal extent will not only allow in some time

(∼ 2− 3 years) to locate the continuum location of the Z2 points, but, since unimproved Wilson fermions

haven been used, to also precisely quantify how the Z2 point moves as function of the lattice spacing

a. Moreover, possible unphysical modifications by adding extra terms to the action as it is done in the

case of using improvements are excluded with certainty. From the numerical simulations presented here

the expectations could be confirmed: A clear reduction of the lattice spacing a is achieved as the study

progressed from Nτ = 6 over 8 to 10. This reduced the discretization errors on the Z2 point which,

in terms of the bare mass parameter κ, moved to smaller masses implying an expansion of the first

order region around the heavy quark mass limit. To have a physical correspondence to κ, pseudo scalar

masses haven been computed, as well. These still suffer too heavily from discretization effects to make

quantitative statements. Though, the reduction in the pseudo scalar mass in lattice units from Nτ = 6 over

8 to 10 allows to assume, that at temporal extents Nτ & 12 discretization errors will have decreased to an

extent by which pseudo scalar masses . 1 in lattice units will become accessible and thus allow to make

quantitative statements about the shift of the Z2 point in terms of physical quantities. The conclusions of

the results of Nτ = 6, 8 and 10 (c.f. section 5.4.2) are that a continuum result is within reach. I assume

this could possibly be established with simulations of lattices with temporal extents Nτ = 12, 14 and 16.

The required computational resources will be available within one to two years. A lot of work still needs

to be done but if this project can be successfully brought to an end within a couple of years it represents

the first LQCD project to achieve the goal of a continuum extrapolation in the heavy quark mass region.

Due to the implementation of the Rational Hybrid Monte Carlo algorithm in CL2QCD the first step

in a possible series of investigations of the chiral/deconfinement transitions in the Nf = 3 theory has

been done, as well. For reasons of temporal and computational resource limitations as well as for testing

purposes of the newly implemented code the study was conducted on computationally cheap lattices with

temporal extents of Nτ = 4 which implies coarse lattices.

In the course of this work many different problems and open issues occurred, which could not be

further treated given the temporal limitations. In the following these problems will be addressed.

One of the problems of great relevance, in my opinion, is the computation of physical quantities to

identify the Z2 and tricritical points, respectively, in the Nf = 2 part of the project. Stating their position

in terms of the bare parameter κ is of very limited informative value. Computing the pseudo scalar mass

mPS is, in the heavy quark mass region, accompanied by values of the mass in lattice units > 1. What

could be tested is to compute the masses of the constituents of the pseudo scalar meson, i.e. mu,d. These

masses are expected to be smaller in physical as well as in lattice units. At the same time the kinetic mass

of mPS could be computed and analyzed which possibly allows to make a rather quantitative statement

about the severeness of the discretization effects on mPS. This possibility was briefly addressed in section

5.3. Regarding the Nf = 3 simulations, attempts to compute physical quantities like mPS have not been

done at all. The simulations should be progressed to finer lattices before this issue is approached, taking

into account what was learned in the Nf = 2 simulations and analysis thereof.
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In section 5.3 the kurtosis equation used for finite size scaling analyses was extended by a correction

term [72], discussed in section 3.1.3, which led to a significant improvement of the finite size scaling

analyses carried out to determine the Z2 points. It remained unclear whether the origin of this term can

be connected to the finite size effects on B4 at µ = 0. This should be checked in a further theoretical

analysis. Alternatively, it could be checked whether the model used to explain the kurtosis bump [159,

190] briefly addressed in section 5.4.1) could be adapted to investigate the finite size effects on B4 at

µ = 0, as well. Currently this model is based on symmetries specific to the Roberge-Weiss plane (µi,c)

and thus cannot simply be used for the situation at µ = 0.

Another approach that could be further pursued in this project to see if the finite size effects on B4 at

µ = 0 can be circumvented is to use tricritical scaling, starting from tricritical points at µi,c. Moreover at

this value of the chemical potential the pseudo scalar and quark masses at the tricritical points are smaller

compared to the respective masses at the Z2 points at µ = 0 which might act as a workaround to the

problem with the masses in lattice units > 1, addressed above. This possibility was discussed in section

5.5.

Having the facilities for simulating the Nf = 2 and 3 theory, one of the next steps definitely could

be to extend the CL2QCD software for simulations of more realistic physics with Nf = 2 + 1 flavors.

This would be effectively a combination of the Hybrid Monte Carlo, used for two degenerate flavors

representing the up and down quark, and the Rational Hybrid Monte Carlo algorithm, used for one flavor

representing the strange quark.

Again, due to temporal limitations a proper analysis of the performance of the Rational Hybrid Monte

Carlo algorithm in CL2QCD could not be carried out. This however, is a minor step and should be done in

order to quantify a variety of factors like how well it runs on the hardware being used, its scalability, how

different fermion discretizations compare in terms of performance and how it compares to algorithmically

improved codes.

Before using the Rational Hybrid Monte Carlo algorithm of CL2QCD for simulations in the region

of lighter quark masses, the Arnoldi method, suited to check the sign of the determinant, should be

implemented. Towards smaller quark masses, this becomes increasingly important as explained in section

4.2.

There are numerous algorithmic improvements of paramount importance waiting to be implemented in

order to keep CL2QCD competitive among other software for simulating LQCD in the near future. These

include the following. The probably most straightforward method, which is currently being implemented

into the staggered part of CL2QCD by members of our group, is the multiple pseudo fermions approach for

small fermion masses. It brings integrator instabilities under control and vastly reduces the computational

cost to generate gauge field configurations with light fermions, which represents the most costly part of

lattice quantum chromodynamics computations [168]. Another approach for simulations at small quark

masses are low-mode deflation techniques like domain-decomposed deflation subspaces for propagation

along the HMC field trajectories. The quark forces then can be computed using a deflation-accelerated

solver for the lattice Dirac operator. This leads to a significantly reduced computer time for the simulations

as well as to an improved scaling behavior with respect to the quark mass [202]. Another candidate

method for implementation in CL2QCD and widely used nowadays to reduce critical slowing down in

simulations with very small quark masses is the multigrid approach which, roughly spoken, works with

smoothening and discretization on successively coarser lattice grids to accelerate the solution finding
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process. An example is the adaptive multigrid algorithm for lattice QCD [203]. Apart from the algorithmic

improvements another natural choice for an improvement would be to implement the possibility for

multi-gpu parallelization. At the time of writing this is only possible for the temporal direction. If

simulations with larger lattices are to be carried out efficiently in the future, a multi-gpu parallelization for

the spatial direction is a necessity.

As last point it is worthwhile to mention the BaHaMAS software described in section 4.4. Its

development helped significantly to avoid comitting errors in the management and structuring process

of the hundreds of simulations conducted to obtain the results of this work. Certainly a large amount of

time was invested into its development but this time was made up for easily by saving it later on in all the

necessary steps involved in the process of running simulations.
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Appendix A

Additional

The Kurtosis Correction Term

In the following the starting point for the derivation of the correction term ((A.1)-(A.7)) is based on the

presentation in [72]. As discussed in section 3.1.3, in finite size scaling theory the free energy as a function

of the reduced temperature τ , the external magnetic field h and the inverse of the linear lattice size N−1
s

has the following scaling behavior when scaled by an arbitrary factor b,

F (τ, h,N−1
s ) = F (τbyτ , hbyh , N−1

s b), (A.1)

where yh and yτ are the magnetic and temperature exponents, respectively. Setting b = Ns,

F (τ, h,N−1
s ) = F (τNyτ

s , hNyh
s , 1), (A.2)

the free energy becomes independent of the spatial extent of the system. In the following we will use the

abbreviation

F (τNyτ
s , 0, 1) = F (τNyτ

s ). (A.3)

For the next steps, we define the mixed derivatives with respect to the reduced temperature and external

magnetic field,
∂n

∂τn
∂m

∂hm
F (τ, h,N−1

s ) = Fnm(τ, h,N−1
s ), (A.4)

which, setting h = 0, evaluates to

∂n

∂τn
∂m

∂hm
F (τ, h,N−1

s )

∣∣∣∣
h=0

= Nnyτ+myh
s Fnm(τNyτ

s ). (A.5)

For an obsersable that is a mixture of energy E and magnetization M one can write

O = cEE + cMM −→ cE
∂

∂τ
+ cM

∂

∂m
(A.6)

Then the kurtosis for h = 0 is given by

K(τ, 0, N−1
s ) =

(
cE

∂
∂τ + cM

∂
∂m

)4
F (τ, h,N−1

s )
∣∣∣
h=0[(

cE
∂
∂τ + cM

∂
∂m

)2
F (τ, h,N−1

s )
∣∣∣
h=0

]2 (A.7)
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This can be expressed in terms of the binomial theorem (for readability F (τNyτ
s ) = F )

K(τ, 0, N−1
s ) =

4∑
k=0

(
4
k

)
c4−k
E ckMN

(4−k)yτ+kyh
s F 4−k,k

2∑
l,m=0

(
2
l

)(
2
m

)
c4−l−m
E cl+mM N

(4−l−m)yτ+(l+m)yh
s F 2−l,lF 2−m,m

(A.8)

In the next step the factorization yields the same term as in the last step of eq. (3.16),

K(τ, 0, N−1
s ) =

F 04(τNyτ
s )

(F 02(τNyτ
s ))

2 ·


1 +

3∑
k=0

(
4
k

)
c4−k
E ckMN

N(k)
s

F 4−k,k

F 04

1 +
2∑

l,m=0
l,m6=(2,2)

(
2
l

)(
2
m

)
c4−l−m
E cl+mM N

D(l,m)
s

F 2−l,lF 2−m,m

(F 02)2

 , (A.9)

where for the exponents of Ns in the numerator and denominator of the second term in (A.9) we defined

N(k) = (4− k)yτ + kyh − 4yh

D(l,m) = (4− l −m)yτ + (l +m)yh − 4yh.
(A.10)

To obtain a correction term that is of leading order in Nyτ−yh
s we have to find the corresponding values of

k, l,m for N(k) and D(l,m), i.e.

N(k) = (4− k)yτ + kyh − 4yh
!

= yτ − yh −→ k = 3, (A.11)

and

D(l,m) = (4− l −m)yτ + (l +m)yh − 4yh
!

= yτ − yh −→ l,m = (1, 2), (2, 1). (A.12)

Writing the terms of sum with the above values of k, l,m explicitly reads:

K(τ, 0, N−1
s ) =

F 04(τNyτ
s )

(F 02(τNyτ
s ))

2

·


1 + 4 cEcMN

yτ−yh
s

F 13

F 04 +
2∑

k=0

(
4
k

)
c4−k
E ckMN

N(k)
s

F 4−k,k

F 04

1 + 4 cEcMN
yτ−yh
s

F 11

F 02 +
2∑

l,m=0
l,m6=(2,2),(1,2),(2,1)

(
2
l

)(
2
m

)
c4−l−m
E cl+mM N

D(l,m)
s

F 2−l,lF 2−m,m

(F 02)2

 .

(A.13)

Using the expansion (1 + y)/(1 + x) = (1 + y)(1− x) +O(x2) the fraction in (A.13) can be expanded

as:

K(τ, 0, N−1
s ) =

F 04(τNyτ
s )

(F 02(τNyτ
s ))

2

(
1 + 4

cE
cM

Nyτ−yh
s

F 13

F 04
+

2∑
k=0

(
4

k

)
c4−k
E ckMN

N(k)
s

F 4−k,k

F 04

)

·
(

1− 4
cE
cM

Nyτ−yh
s

F 11

F 02
+O

(
N

2(yτ−yh)
s

))
=

F 04(τNyτ
s )

(F 02(τNyτ
s ))

2

(
1 + 4

cE
cM

Nyτ−yh
s

(
F 13

F 04
− F 11

F 02

)
+O

(
N

2(yτ−yh)
s

))
=

F 04(τNyτ
s )

(F 02(τNyτ
s ))

2

(
1 +BNyτ−yh

s +O
(
N

2(yτ−yh)
s

))
,

(A.14)
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where in the last step we defined

B = 4
cE
cM

(
F 13

F 04
− F 11

F 02

)
. (A.15)

Expanding the first term in the last step of (A.14) around τ = 0, as it is done in (3.22), yields:

K(τ, 0, N−1
s ) =

(
F 04(0)

(F 02(0))2 + cKτN
1/ν
s

)(
1 +BNyτ−yh

s +O
(
N

2(yτ−yh)
s

))
(A.16)

Fermion Force Computation with Even/Odd Preconditioning

For the computation of the pseudofermion force δSPF which is needed for the Rational Hybrid Monte

Carlo algorithm discussed in section 4.2 it will be necessary to perform matrix inversions using the

multi-shift conjugate gradient solver. In this process computational expenses can be considerably reduced

by employing even/odd preconditioning and factorization of the Wilson-Dirac operator. In this way the

problem size can be cut into half hence reducing significantly the number of floating point operations.

The following presentation is based partially on the presentation in [204]. For the following discussion we

will use the hermitian two flavor operator

Q ≡ γ5D =

(
Q+

Q−

)
. (A.17)

The matrices Q± can be written in terms of even/odd preconditioning:

Q± = γ5

(
D±ee Deo

Doe D±oo

)
=

(
1± iµ̃γ5 Deo

Doe 1± iµ̃γ5

)
(A.18)

where D±ee and D±oo are defined for the case of twisted mass fermions by including the twisted mass

parameter µ̃. The standard Wilson-Dirac operator can be recovered from simply setting the twisted mass

parameter to zero. The reason for starting from this notation is again (c.f. section 4.2) the implementation

of twisted mass fermions in CL2QCD. If the reader intents to work on CL2QCD the equations presented

here can be indentified in the code. The implementation is such that, if standard Wilson fermions are

used the operators Q+ and Q− simply become Q = Q+ = Q−. The block matrices Dee and Doo are

site-diagonal and only mix colors and spin. The block matrices off the diagonal, Deo and Doe, obey

γ5-hermiticity: D†eo = γ5Doeγ5. A possible Schur decomposition based on whether the matrix elements

connect even or odd sites reads:

Q± =

(
1 Deo (D±oo)

−1

0 1

)(
γ5

(
D±ee −Deo (D±oo)

−1
Doe

)
0

0 Doo

)(
1 0

(D±oo)
−1
Doe 1

)
(A.19)

The fermion determinant written in terms of pseudo fermion fields is given by

detQ = detQ+Q− =

∫
DφDφ† exp(−SPF), (A.20)

SPF = φ†
(
Q+Q−

)−1
φ. (A.21)

The determinant factorizes and is proportional to the determinant of the submatrices:

detQ+Q− = detQ+detQ− ∝ det Q̂+det Q̂−, (A.22)
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where we defined

Q̂± = γ5

(
M±ee −Meo(M

±
oo)
−1Moe

)
, (A.23)

which is only defined on the even sites of the lattice. Due to rel. (A.22) the pseudo fermion determinant

and action can be written in terms of pseudo fermion fields φe:

det Q̂+Q̂− =

∫
DφeDφ†e exp(−SPF), (A.24)

SPF = φ†e

(
Q̂+Q̂−

)−1
φe. (A.25)

The pseudo fermion force is given by the variation of the pseudo fermion action with respect to the gauge

fields. Using the identity 1 it follows:

δSPF =−
[
φ†e

(
Q̂+Q̂−

)−1 (
δQ̂+

)
Q̂−

(
Q̂+Q̂−

)−1
φe+

φ†e

(
Q̂+Q̂−

)−1
Q̂+

(
δQ̂−

)(
Q̂+Q̂−

)−1
φe

]
=−

[
X†eδQ̂

+Ye + Y †e δQ̂
−Xe

]
,

(A.26)

where we defined

Xe =
(
Q̂+Q̂−

)−1
φe, Ye = Q̂−Xe (A.27)

Evaluating δQ̂± gives

δQ̂± = γ5

(
−δMeo(M

±
oo)
−1Moe −Meo(M

±
oo)
−1δMoe

)
. (A.28)

Inserting this into eq. (A.26) yields

δSPF =−
[
−X†eγ5δMeo(M

+
oo)
−1MeoYe︸ ︷︷ ︸

(1)

−X†eγ5Meo(M
+
oo)
−1δMoeYe︸ ︷︷ ︸

(2)

−Y †e γ5δMeo(M
−
oo)
−1MoeXe︸ ︷︷ ︸

(3)

−Y †e γ5Meo(M
−
oo)
−1δMoeXe︸ ︷︷ ︸

(4)

] (A.29)

In the following we rearrange the terms (1)-(4) in eq. (A.29) and define fields on the odd sites of the

lattice, indicated by the colored terms.

(1) =−X†eγ5δMeo(M
+
oo)
−1MeoYe (3) =− Y †e γ5δMeo(M

−
oo)
−1MoeXe

=X†eγ5δMeo

(
−
(
M±oo

)−1
MoeYe

)
=Y †e γ5δMeo

(
−
(
M−oo

)−1
MeoXe

)
(A.30)

=X†eγ5δMeoYo =Y †e γ5δMeoXo.

In (2) and (4) we additionally use the properties M †oe = γ5Meoγ5 and M †oe = γ5Meoγ5:

(2) =−X†eγ5Meo(M
+
oo)
−1δMoeYe (4) =− Y †e γ5Meo(M

−
oo)
−1δMoeXe

=−X†eγ5Meoγ5γ5

(
M+
oo

)−1
δMoeYe =− Y †e γ5Meoγ5γ5

(
M−oo

)−1
δMoeXe

=−X±e M †oe
(
M±oo

)−1
γ5δMoeYe =− Y †eM †oe

(
M−oo

)−1
γ5δMoeXe (A.31)

=
(
−
(
M−oo

)−1
MoeXe

)†
γ5δMoeYe =

(
−
(
M+
oo

)−1
MoeYe

)†
γ5δMoeXe

=X†oγ5δMoeYe =Y †o γ5δMoeXe.

1 δ
(
M−1M

)
= δ

(
M−1

)
M +M−1 (δM) = 0 ⇒ δ

(
M−1

)
= −M−1 (δM)M−1.

In the case of (A.24), M = Q̂+Q̂−
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Using the definitions of Xo and Yo the force can be written as

δSPF = −
[
X†eγ5δMeoYo +X†oγ5δMoeYe + Y †e δMeoXo + Y †o γ5δMoeXe

]
. (A.32)

Furthermore we can define fields X and Y for the full lattice:

X =

(
Xe

Xo

)
=

(
Xe

− (M−oo)
−1
MoeXe

)
, Y =

(
Ye
Yo

)
=

(
Ye

− (M+
oo)
−1
MoeYe

)
. (A.33)

Using the variations δQ± which are given by

δQ± = γ5δ

(
M±ee Meo

Moe M±oo

)
= γ5

(
0 δMeo

δMoe 0

)
, (A.34)

(the variation of the constant terms M±ee and M±oo with respect to the gauge fields vanish, δM±ee = 0) and

the definitions of the fields X and Y the force δSPF can be written in a more compact way:

δSPF =−
(
X†δQ+Y + Y †δQ−X

)
=−

(
X†δQ+Y +

(
X†δQ−Y

)†)
.

(A.35)
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Simulation Statistics, µ = 0

Nf = 2, Nτ = 6

κ β range
Tot. stats. per Ns | # of simulated β values

30 36 42

0.0750 5.8870-5.8900 1.6M | 2 1.4M | 2 0.9M | 2

0.0850 5.8832-5.8860 2.0M | 2 2.3M | 2 1.6M | 2

0.0900 5.8750-5.8850 1.9M | 3 2.8M | 3 2.2M | 3

0.1000 5.8650-5.8700 1.8M | 2 1.9M | 2 2.1M | 2

0.1100 5.8400-5.8500 2.1M | 3 2.4M | 3 2.2M | 3

Table A.1: Statistics overview of Nτ = 6.

κ
aNs[fm]

a30 a36 a42

0.0750 3.525(18) 4.23(2) 4.94(3)

0.0850 3.54(2) 4.25(3) 4.96(3)

0.0900 3.597(15) 4.316(18) 5.04(2)

0.1000 3.59(2) 4.30(3) 5.02(3)

0.1100 3.696(15) 4.435(18) 5.17(2)

Table A.2: Physical box lengths for Nτ = 6.
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Nf = 2, Nτ = 8

κ β range
Tot. stats. per Ns | # of simulated β values

24 32 40 48

0.1100 6.0200-6.0350 – 2.9M | 4 2.3M | 3 1.8M | 3

0.1120 6.0160-6.0260 1.2M | 3 – – –

0.1130 6.0192-6.0297 1.5M | 3 – – –

0.1140 6.0166-6.0216 1.4M | 3 – – –

0.1150 6.0131-6.0250 1.6M | 3 2.0M | 3 2.5M | 3 1.9M | 3

0.1160 6.0108-6.0208 1.3M | 3 – – –

0.1170 6.0125-6.0175 1.4M | 2 – – –

0.1180 6.0000-6.0200 1.4M | 3 – – –

0.1190 6.0000-6.0150 1.3M | 3 – – –

0.1200 5.9990-6.0150 3.0M | 3 3.2M | 4 2.5M | 3 1.4M | 3

0.1250 5.9710-5.9810 2.5M | 3 2.2M | 4 1.6M | 2 1.0M | 3

0.1300 5.9400-5.9500 0.6M | 3 4.3M | 4 1.7M | 2 1.2M | 3

0.1350 5.8950-5.9150 3.0M | 5 2.0M | 3 –

Table A.3: Statistics overview of Nτ = 8.

κ
L[fm]

a24 a32 a40 a48

0.1100 2.117(10) 2.822(13) 3.528(16) 4.234(19)

0.1150 2.126(7) 2.835(10) 3.544(12) 4.253(14)

0.1200 2.141(10) 2.854(13) 3.568(16) 4.282(19)

0.1250 2.179(7) 2.906(10) 3.632(12) 4.358(14)

0.1300 2.213(17) 2.950(20) 3.690(30) 4.430(30)

0.1350 2.304(19) 3.070(30) 3.840(30) 4.610(40)

Table A.4: Physical box lengths for Nτ = 8.
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Nf = 2, Nτ = 10

κ β range
Tot. stats. per Ns | # of simulated β values

30 40 50

0.1150 6.1620-6.1750 0.7M | 3 2.6M | 5 0.8M | 4

0.1200 6.1450-6.1750 1.4M | 6 300k –

0.1250 6.1325-6.1725 1.0M | 3 – –

0.1300 6.1050-6.1250 2.4M | 5 1.7M | 6 146k | 4

0.1350 6.0590-6.0840 1.1M | 4 – –

0.1400 5.9873-5.0023 0.9M | 3 0.4M | 4 –

Table A.5: Statistics overview of Nτ = 10.

κ
aNs[fm]

a30 a40 a50

0.1150 1.66(2) 2.21(3) 2.76(4)

0.1200 1.67(2) 2.23(3) 2.79(5)

0.1250 1.67(3) 2.23(4) 2.79(5)

0.1300 1.67(2) 2.23(4) 2.78(3)

0.1350 1.73(3) 2.31(5) 2.89(6)

0.1400 1.83(3) 2.44(4) 3.05(4)

Table A.6: Physical box lengths for Nτ = 10.
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Nf = 3, Nτ = 4

κ
aNs[fm]

a16 a20 a24

0.0495 2.971(6) 3.714(8) 4.457(10)

0.0520 2.978(8) 3.722(10) 4.466(12)

0.0545 2.987(8) 3.734(10) 4.481(12)

0.0570 2.997(6) 3.746(8) 4.495(10)

0.0580 3.002(8) 3.752(10) 4.502(12)

0.0595 3.000(10) 3.750(12) 4.500(14)

0.0620 3.021(5) 3.776(6) 4.531(7)

Table A.7: Physical box lengths for Nτ = 4.

κ β range
Tot. stats. per Ns | # of simulated β values

16 20 24

0.0495 5.6800-5.6900 1.6M | 2 2.2M | 3 2.4M | 4

0.0520 5.6800-5.6900 1.6M | 2 2.2M | 3 2.2M | 3

0.0545 5.6792-5.6892 1.3M | 2 2.1M | 3 1.7M | 3

0.0550 5.6792-5.6892 – – 1.4M | 3

0.0560 5.6792-5.6892 – – 1.1M | 3

0.0570 5.6800-5.5850 1.6M | 2 2.5M | 3 2.5M | 3

0.0580 5.6760-5.6860 – – 1.9M | 4

0.0595 5.6750-5.6850 2.4M | 3 3.2M | 3 3.2M | 4

0.0620 5.6730-5.6830 1.6M | 3 – 2.5M | 3

0.0650 5.6700-5.6800 1.2M | 3 2.4M | 3 2.2M | 3

Table A.8: Statistics overview of Nτ = 4.

143



Simulation Statistics, (µi,c/T =π/3)

Nf = 2, Nτ = 6

Table A.9 is adopted from our publication [159] and provides an overview over the statistics gathered

for the study of the Roberge-Weiss plane at purely imaginary chemical potential. The kurtosis B4 is a

numerically straightforward but computationally expensive observable since it requires large amounts of

statistics and has large autocorrelations. The moments {Oi}, {O2
i }, . . . , {Oni } of a generic observable

O have different integrated autocorrelation times τint,1, τint,2, . . . , τint,n which we estimated using the

Wolff algorithm [162] (c.f. section 4.1.1). To obtain the number of independent measurements of a given

observable, the number of HMC trajectories has to be divided by the respective autocorrelation time.

We simulated long enough to obtain at least 30 independent events per run of a given parameter set for

B4(ImP ). The gathered statistics are in most cases distributed on four independent equally long Markov

chains For the simulation In most cases the simulations were distributed on four independent, equally

long Markov chains (replica) and run long enough until B4(ImP ) was compatible within three standard

deviations between all of the chains. An examples is presented in fig. A.1 for a simulation of Ns = 18

lattices at κ = 0.1625, showing the compatibility of B4(ImP ) between the replica for 25%, 50%, 75%

and 100% of the total statistics. For the finite size scaling analysis the replica were merged to a single

HMC history and analyzed as discussed in section 4.1.1.

Nτ κ β range
Total statistics per spatial lattice size Ns

(
# of simulated β values | # of chains

)
16 18 20 24 30 32 12 36 40

6

0.1000 5.846-5.902 6.11M (24 | 2) 4.36M (16 | 2) 4.30M (16 | 2) - -
0.1100 5.840-5.866 - 3.81M (26 | 4) 1.49M (14 | 4) 4.05M (18 | 4) 1.92M (13 | 4)
0.1200 5.818-5.845 5.28M (10 | 4) 3.89M ( 9 | 4) 3.23M ( 9 | 4) 2.19M ( 8 | 4) -
0.1300 5.776-5.798 - 3.94M (25 | 4) 3.76M (23 | 4) 3.56M (16 | 4) -
0.1550 5.521-5.542 1.40M (30 | 1) 1.04M (23 | 1) 1.12M (24 | 1) 0.76M ( 9 | 4) -
0.1575 5.475-5.493 0.59M ( 7 | 4) - 0.92M ( 7 | 4) 1.40M ( 7 | 4) -
0.1600 5.433-5.443 0.52M ( 6 | 4) - 0.86M ( 6 | 4) 1.12M ( 6 | 4) -
0.1625 5.380-5.393 0.92M (12 | 4) - 1.12M ( 8 | 4) - 1.38M (7 | 4)
0.1650 5.326-5.337 1.99M (16 | 4) 1.09M (11 | 4) 1.71M (12 | 4) - -

8 0.1300 5.940-5.980 3.69M (9 | 4) - 5.40M (9 | 4) 2.00M (5 | 4) 1.00M (5 | 4)

Table A.9: The table gives an overview of the total statistics accumulated in all the simulations (Nτ = 6
and µi = π/6) for each Ns. Additionally, the number of simulated β values per range and the number
of replica is specified in parenthesis next to the number of trajectories. Given the number of replica,
the length of each chain on average can be estimated. Note, that close to the transition at the critical
temperature higher statistics were needed than in the (de)confined phase.
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Figure A.1: The figure shows an analysis of the Kurtosis B4(ImP ) with successively increasing statistics
from simulations on Ns = 18 lattices at κ = 0.1625. The bar charts included in the lower part of the plots
are intended as a guidance to judge on the statistics. nσ at each β is the number of standard deviations by
which the two most different chains are compatible. The numbers placed above the bars are the average
numbers of independent events collected at the respective β. The colors have been chosen in order to
reflect the amount of the statistics. Green color indicates that statistics are high enough while red indicates
that statistics should be increased. Both nσ and the number of independent events have to be monitored to
decide when to stop increasing statistics.
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