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Abstract

The purpose of this Master’s thesis is to establish two effective approaches for
a 3 + 1 Lattice QCD theory: In the first place, an effective theory by strong
coupling and hopping parameter expansion up to O

(
κ2
)

and subsequently a
mean field ansatz will be applied for the order parameter Lx⃗ and the free energy
F as well. In particular, this study is conducted for the full Wilson-Dirac action
for Nf = 1 and Nf = 2 with the temporal lattice parameter Nτ = 10000, which
automatically corresponds to low temperature according to T ∝ [Nτ ]

−1. Further,
in the Nf = 2 case, the isospin µI and the baryonic chemical potential µB will be
also incorporated into the derived effective theory, where afterwards µI and µB
are modified as a combination. This leads to a novel phase diagram of (µI , µB),
which reveals an interesting insight about the rich phase structure of QCD.
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Chapter 1

Motivation

What is the universes really made of? What is truly fundamental in the real-
ity that we perceive? In 400 BC, Greek philosopher Democritus came up with
the idea of atoms (gr. ατoµζ, ”indivisible”) as being fundamental. He believed
that these were solid pieces of matter, which could not be divided any further.
2300 years later in in 1987 JJ Thompson discovered something smaller than an
atom, called the electron and in 1912 Ernest Rutherford discovered that atoms
had nuclei. Then we found that nuclei were composed of protons and neutrons,
these were thought to be the fundamental components that all objects are made
of, until the 1960s, when we found that neutrons and protons were composed
of even smaller things called quarks. Today everything that we can see around
us is thought to be made up of just these two particle species - electrons and
quarks. However the only problem with this view - it’s not true, and physicists
know that. These particles are not really fundamental. Nature is made of fields
and reality is fundamentally many of different fields. These objects which we
called particles are merely waves in the field, they are convenient representa-
tions that are not really the best understanding of the universe today. These
fields can be abstracted to fluid like substances that can be perturbed, vibrate
or excited. But what are now exactly fields? Mathematically, a field is some-
thing that takes a value at every point in space. The idea that fields are a better
representation that the original idea of particles lies on the key advantage that
fields eliminates the idea of action at the distance, where for example in
Newtonian gravity objects like the sun can somehow affects the earth, which is
in fact far away. It was Albert Einstein and General Relativity, who eliminated
the idea of action at a distance by replacing the conventional view of space,
with something called space-time, which provides the space with a gravita-
tional field. The problem that even Isaac Newton had was finally solved and
the basic concept of fields became more and more popular in physics.

On Fig. 1.1 the Standard Model (SM) of particles is demonstrated, where ba-
sically two kinds of fundamental particles exist: The fermions (left blue column)
and the bosons (right blue column). Fermions make up all the matter that we
are aware of and the bosons are responsible for three fundamental interactions
and the Higgs field. These are fundamental particles meaning in the current
state of physics, the scientific community doesn’t know anything smaller that
they could be made of. Ordinary matter for example that we experience around
us is just made of four of these particles: the up and down quarks, which make
up the protons and neutrons in the nuclei of atoms, electrons which form a
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cloud around the nucleus and the neutrino, which is created during the fusion
process in stars like the sun. Naturally, there are also other particles, but they
are rare and don’t typically exist in ordinary matter, because these particles
are created inside particles accelerators or from cosmic rays hitting the atoms
in the atmosphere of earth. The reason why they don’t exist in ordinary matter
lies on the fact that these particles are very unstable and decay in fractions of
a second (for example K+ particle lifetime: τK+ = (1.2380 ± 0.0020) · 10−8 s). A
good analogy for that are periodic table of the elements, where the heavy ele-
ments on the bottom of the table are also very rare because they tend to decay
very quickly.

Figure 1.1: Standardmodell of particle physics. Figure taken from [1].

But lets stick on Fig. 1.1, where the fermions (left side) can be further di-
vided into leptons and quarks. The biggest difference between quarks and lep-
tons is that quarks interact with the strong nuclear interaction, which binds
the nuclei of atoms together, whereas the leptons don’t. The bosons on the right
side are the interaction carriers: The photons γ carry the electromagnetic in-
teraction responsible for all electricity, magnetism and chemistry. The W+, W−

and Z0 particles carry the weak interaction, which are responsible for weak de-
cays (e.g. β+/β− decay) and the gluon g exhibits the strong nuclear interaction.
Lastly we have the Higgs boson H, which is important for giving mass to all
fundamental particles. The Standard Model is actually represented by a com-
plex set of equations, but we can simplify all this in one equation known as the
Standard Model Lagrangian

L =− 1

4
FµνFµν

+ iΨ̄γµDΨ

+DµΦ
†DµΦ− V (Φ)

+ Ψ̄LŶ ΦΨR + h.c..

Tab. 1.1 lists and explains selected properties about the known four fun-
damental interactions: Gravitation, electromagnetism, weak and strong inter-
action. In the current state of physics all this interaction, with the exception
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of gravitation, can be described with a quantum field theory (QFT), which is a
mathematical framework to integrate the basic idea of fields and connect clas-
sical physics, quantum mechanics and special relativity.

Lets focus on the strong interaction, because the corresponding theory, Quan-
tum Chromodynamics (QCD) is the fundamental theory of this work. The cor-
responding particles to QCD are the quarks (see Tab 1.1) and physicist Gell
Mann proposed that there were three types of quarks - up, down and strange
quark. The up quark has a charge of 2/3, whereas down and strange have a
charge of −1/3 and they all experience the strong force. A proton for example
is made of two up quarks and a down quark. The total charge is accordingly
Q = 2/3 + 2/3 − 1/3

!
= 1 and other combinations of these quarks build other

baryons like the neutron as well. The problem with this quark model is the fol-
lowing: According to quantum mechanics this should be impossible, because at
least two of them would have the same quantum property. The rule behind this
is the Pauli Exclusion Principle, where two or more identical fermions (like
the up or down quarks) cannot occupy the same quantum state within a quan-
tum system simultaneously. Finally the problem was solved in 1964, American
physicist Greenberg proposed that quarks must have an additional property,
which was not considered. This additional property is now called color and this
has nothing to do with color that we can see with our eyes. It is a metaphor
for a kind of charge, like the charge in the electromagnetic field, where just
positive and negative charge exists. So if we consider now this new charge, the
up quarks in the proton would not be identical, because all three quarks have
different color charge and thus they would not violate the Pauli exclusion prin-
ciple. Furthermore to get a ”neutral” charge, we have to combine colors just like
when we combine the visible colors red, green and blue to get a neutral white.

Table 1.1: The four fundamental interactions of nature.

Gravitation Weak Electromagnetic Strong

Mediating particles Not observed W+ ,W− and Z0 γ-Photon Gluons
Affected particles All particles Left-handed fermions Electrically charged Quarks, gluons
Acts on Mass energy Flavour Electric charge Color charge
Bound states formed Planets, Stars, galaxies - Atoms, molecules Hadrons
Affecting range [fm] ∞ < 2 · 10−3 ∞ < 1
Coupling constant αs 5.76 · 10−36 ≈ 1.01 · 10−5 αs ≈ 1

137.036 αs ∼ 1

.

After discussing the important property of color, the next astonishing prop-
erty of QCD is quark confinement to explain that quarks must be confined some-
how to within the nucleon. This implies that there must be something, which
strongly holding these quarks together within the nucleon. This particle was
called the gluon, because it acts like the glue that keeps the quarks together in
the nucleon.

QCD deals with color charges and the mediating particle (see Tab 1.1) for it,
which are the gluons. For comparison: In the electromagnetic interaction, the
interaction particle will be the photon, which is massless as well. The difference
between photons and gluons are that photons are electrically neutral so while
they transmit the electromagnetic force, they do not experience it, nor do they
interact with each other. The gluon, on the other hand, not only transmits the
strong interaction, but also has a color charge itself, so it experiences the strong
force as well.
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This thesis is organized as the following: In Chpt. 2 we start with a brief
overview over the QCD phase diagram, where we set our focus more on the
lattice QCD (LQCD) results. After that, the complete Chpt. 3 is dedicated to
the task to derive the effective theory, where especially the strong coupling limit
and the hopping parameter expansion will be used. Furthermore, important
expressions for the kinetic and static determinant are computed later in the
ongoing Chapter. Once, the tools for the effective theory are explicitly ready, in
Chpt. 4, those calculations will be extended with the mean field approach. The
last Chpt. 5 finally draws some conclusion and significance of the results, and
further gives an outlook on future research.



Chapter 2

QCD phase diagram

The aim of this chapter is to give a brief overview of the phase diagram of QCD,
which is one of the most discussed and active areas in modern physics. This
overview will rather focus on results of LQCD, which will also mean that due
to the sign problem, results can only be relied on for zero baryonic chemical
potential.

At first in Sec. 2.1, a brief overview about the conjectured QCD phase dia-
gram in the (µB, T ) plane will be disscued and after that the isospin chemical
potential µI will be also introduced as a third axis on the QCD phase diagram.
Then in Sec. 2.2 the QCD phase structure in the (mu,d,ms) plane will be also
considered in more detail, where results are only valid for µB = 0. Naturally,
there are more methods to analyze the QCD phase diagram, e.g. imaginary
chemical potential [2], but in this respect we will not go any further. For a
more detailed description, we refer the reader to the pedagogical introductions
of Refs. [3, 4, 5] and references therein.

2.1 Conjectured QCD phase diagram

The study of the phase structure of Quantum Chromodynamics (QCD) at finite
temperatures and baryon densities is one of the most important topics in mod-
ern physics. The importance for understanding the phase diagram comes from
the fact that we still have experimental phenomena which we can’t explain on
a solid theoretical foundation. Not well understood phenomena are for example
the expansion of the early universe, heavy-ion collisions in the Large-Hadron-
Collider (LHC) or the properties and structure of neutron stars.

First of all the current state of the art of the QCD phase diagram is not
well known, neither from a theoretical or experimental perspective. Despite
this poor starting position Fig. (2.1) summarizes the current understanding of
the QCD phase diagram, where the only important thermodynamic properties
are the baryonic chemical potential µB and the temperature T . Let’s start at
the origin of the phase diagram at T = 0 , µB = 0 and then increasing the
temperature (moving up vertically) slowly: In the beginning quarks will be still
confined and they create a gas of hadrons. After a certain temperature the
system reaches the crossover region to the quark gluon plasma, which is an
interacting plasma of quarks and gluons. The temperature at the crossover
is often refereed as the pseudo-critical line and is estimated to be in the range
Tpc ∼ (150−200)MeV [6, 7]. Furthermore, the early universe may also happened
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10 CHAPTER 2. QCD PHASE DIAGRAM

in this scale, where after the Big-Bang there was a very tiny preference between
matter and antimatter. The hadronic-quark-phase transition (T = µ = 0) has
been studied extensively on the lattice and the studies show for Nc = 3 and
Nf = 0 a first order deconfinement transition [8].

Figure 2.1: Schematic QCD phase based on the findings in chiral pertubation theory
SχB [9]. The different transitions and phases are described in the tex. Figure taken
from [5].

However, at finite densities µ the nature of the transition is not established
yet. From first-principle LQCD calculation there is no reliable evidence about
the critical endpoints of QCD. Despite this current state, they are chiral models,
which are suggesting that critical point exists and the chiral transition becomes
first order [10].

At m ≈ 939MeV and growing T there is the conjecture that a first order
transition occurs and ends up with a second order critical point (µc, Tc). This
transition is often called as the liquid-gas transition. Low energy HIC experi-
ments indicate this transition at Tc ∼ (15 − 20)MeV [11]. Another conjectured
phase structure of QCD is the colour superconductivity phase, which happens
when µ is asymptotically large. The idea behind this phase is that like for
Cooper-pairs in the BCS-theory the quark-quark will attract each other over
the gluon. For comparison: In the BCS-theory electron pairs attract each other
over phonons. Analogue to that the gluons with color-charge will gain mass,
whereby the gluons without color-charge remain mass less.

There are several approaches to study the QCD phase diagram and one well
established approach are Lattice-QCD (LQCD) simulations. In the limit of T ≥
0, µB = 0 the behavior of QCD can be calculated with standard perturbation
theory, because asymptotic freedom is a general feature of QCD, where quarks
interact weakly at high energies and this is the reason why perturbation theory
applies very good in this region [12].

However at finite chemical potential µR ̸= 0 the necessary Monte Carlo
techniques can’t be applied anymore, because these techniques have the goal
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to evaluate the Feynmann path integral numerically and unfortunately the
fermion determinant becomes a complex number at finite real µR. This is the
point where the sign problem appears. There are different methods suggested
to avoid the sign problem, but these methods are all restricted for a certain
limit (µR/T < 1) of the complex chemical potential (see Ref. [13] for more infor-
mation).

Figure 2.2: Schematic sketch of (µI, T )-plane of the QCD phase diagram. Figure taken
from Ref. [14].

Another approach will be to introduce a imaginary chemical potential θ ≡
ImµI/T to avoid the sign problem in a way that we still have the possibility
to return back to real chemical potential via analytical continuation. Further-
more the symmetry of the light up (u) and down (d) quarks will be quit useful, to
explore the phase structure of QCD in a different way. Fig. 2.2) shows the exten-
sion of the QCD-phase diagram with respect to the isospin chemical potential,
where the isospin is defined as µI = (µu − µd)/2 [14]. Of course at finite µB ̸= 0
the sign problem remains, but for µB = 0 we have no sign problem anymore
and standard Monte-Carlo simulations can be applied again. The resulting
phase-diagram in the (T, µI) sector delivers us new insights about the struc-
ture of QCD, especially at T = 0 and small µI the ”Silver-Blaze” phenomenon
appears [15]. This property has the consequence that all thermodynimcal ob-
servables are independent of the chemical potential in the range of µB < µc,
where µc = µB − ϵ (ϵ is the nuclear binding energy) is the threshold energy,
which is even needed to produce a baryon at rest. In addition to that, if the
system passes the chemical potential at mπ/2, charged pions arise and this will
lead to pion condensation, where the conjectured phase transition is expected
to be a second order phase transition [16].

2.2 The Columbia Plot

In the last section we summarized different aspects about the QCD phase dia-
gram, as a function of temperature and matter density. Furthermore, the study
was extended with the isospin chemical potential µI as well and new insights
about the QCD phase structure was revealed. Now, there is also the reason to
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still further extend the study with the up and downmu,d (considered as degener-
ate for simplicity) and strange ms quark masses for µB = 0. This consideration
is completely projected along the T -axis of the QCD phase diagram, which was
mentioned in Fig. 2.1.

The fact that recent lattice studies focused at µB = 0 lies due to challenging
field of QCD to solve or bypass the sign problem, because as we already know
the infamous sign problem makes numerical simulations impossible. According
to the current state of this studies, all of them can be more or less summarized
in Fig. 2.3, which is often refereed as the Columbia plot [17].

First of all, the Columbia plot, as already mentioned, describes in general
the masses of the up and down quark on the x-axis and on the y-axis the mass
of the strange quark. Furthermore, one special feature of the Columbia plot
is that the plot exhibits different flavor cases of the quarks: On the right axis
of Fig. 2.3, the Nf = 1 is considered and the masses for the degenerate up
and down quarks are mu,d = ∞, where on the upper axis for Nf = 2 the mass
for the strange quark goes to infinity. The last flavor case, namely Nf = 3,
is illustrated, if you directly move on the diagonal of the Columbia plot. The
Physical Point, however, is located on the special case for Nf = 2 + 1, where on
this case the mu,d and ms up posses different masses.

Nevertheless, strictly speaking the Columbia plot is not a phase diagram af-
ter all, because there are regions, which are not referring themselves as phases
of matter. The necessity that the Columbia plot becomes a phase diagram in a
way lies on the fact that the temperature axis is projected on the Columbia plot,
which automatically means that each point on the plot corresponds to a critical
value of the temperature. In general each color and position of the lines on the
Columbia plot are separating regions, which are all indicating possible order of
the phase transitions.

First we start with the infinity mass limit mu,d,ms → ∞ (upper right corner
of Fig. 2.3) and this is the point where the pure Yang-Mills theory is recovered:
However, in this case the global Z(3) symmetry breaks and the corresponding
order parameter is the absolute value of the Polyakov Loop ⟨|L|⟩. In the opposite
limit mu,d,ms → 0 (lower left corner of Fig. 2.3) along the diagonal, the chiral
limit takes place, because all masses are shrinking to zero and it is clear that
at some point the temperature will restore the global chiral symmetry, at least
for the subgroup SUL(Nf )× SUR(Nf ). It is known that an order parameter for
the chiral limit is the chiral condensate, which is defined as

〈
ψ̄, ψ

〉
. To conclude

with, in the chiral limit, things are more difficult as in the infinity mass limit,
because no simulation is possible. However, there are some methods to circum-
vent the problem, which are all based on analysis using the epsilon expansion
about ϵ = 1 applied to a linear sigma model in three dimensions [18].

Let’s still stick to the Columbia plot, because so far only two points in an
entire plane were discussed. Next, we take a close look to the chiral Z2 bound-
aries, which are the blue lines in Fig. 2.3 that are separating first order regions
from a much greater crossover regions. Here, we have reasons to believe that
the transition is first order for pure Yang Mills theory (upper right corner) as
according to the famous ”Svetitsky-Yaffe conjecture” [19], where the conjecture
predicts that a (d+ 1) dimensional pure gauge theory undergoes a deconfine-
ment transition, which is comparable to a d- dimensional statistical model with
an order parameter, which is also part of the center of the gauge group. Similar
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study was done in the chiral limit of three flavors Nf = 3, based on an analysis
by Ref. [20]. The other thing we know for sure is that a first order phase transi-
tion can not be isolated in a strict manner. This means that ”The Jump” of the
order parameter must be absorbed and becomes smaller in the long way and
finally goes to zero [21]. As a logical consequence, this will correspond to tuning
of the value of the corresponding symmetry breaking field, which is respectively
the mass.

Figure 2.3: The phase structure of Lattice QCD at zero chemical potential. Two different
scenarios for the Columbia plot, both plots are shown in the ms − mu,d plane. Figure
taken from Ref. [22].

Many aspects of Fig. 2.3 are studied with lattice simulations: One for ex-
ample is the width of the chiral phase order region, where the region grows as
a function with the number of fermionic species in the simulation [23]. It is not
yet clear if there is a finite size of the chiral region at Nf = 2 and an important
role could be played by the effective UA(1) restoration at Tc, because that tells
you how much symmetry the system has and whether we should expect to have
a first order or rather a second order transition [24].

Finally the Columbia plot is not based on continuum extrapolated results,
the only point which safely can be located is the physical point, where we know
that there is a crossover and not a true phase transition [25]. The physical point
corresponds to the quark masses found in nature and is the only point in the
Columbia plot, which is directly related to the QCD phase diagram (Fig. 2.1).
This point corresponds to µB = 0 and Tc ≈ 150MeV .

Another important remark is that up and down quark masses are very small
and therefore the question remains, where the physical point is affected by rem-
nants of the chiral universality class, especially if this region shrinks to zero.
This will lead then to a second order phase transition in which the universality
is in place. This discussion becomes relevant when we want to switch on a non
zero chemical potential and a symmetry between the density of matter and an-
timatter, where we you can build a three dimensional version of the Columbia
plot. Depending on the behavior of the blue line in the chiral limit in Fig. 2.3,
which bends surfaces in the 3d Columbia plot, we can argue about the exis-
tence or non existence of the second order critical endpoint, which is one of the
most important points for the characteristics of the QCD phase diagram in the
(T, µB) plane [26]. So we can clearly see that especially the 3d Columbia plot
can be very interesting to understand the QCD phase diagram, because it is
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also deeply connected to the QCD phase diagram via the chemical potential.
Overall the order of the chiral transition in the lower left corner of Fig. 2.3

for Nf = 1 and Nf = 3 are still under debate and many possible scenarios are
in discussion. Further, there are still two possible scenarios for the nature of
Nf = 2 chiral transition.



Chapter 3

Derivation of the Effective
Theory

LQCD is a non-perturbative approach to QCD based on a discretization of space-
time. It is a lattice gauge theory formulated on a grid or network of points in
space and time. On the theory side, one well established approach is pertur-
bation theory which, however, only works at high temperatures, where quarks
interact weakly due to the asymptotic freedom property of QCD. In the strongly
interacting regime, the phase diagram can be investigated by means of lat-
tice QCD simulations. The corresponding Monte Carlo techniques can only
be applied for zero (or purely imaginary) chemical potentials. For ReµB ̸= 0
the fermion determinant becomes complex and the so called sign problem ap-
pears. There are different methods suggested to circumvent the sign problem,
but most of these methods are restricted to work at µB/T ≥ 1 (see e.g. Refs.
[13, 27, 28] for reviews).

The aim of this chapter is now to derive an effective theory, which will de-
termine important properties of lattice QCD in a relevant parameter region
((µB, T ) region for example ) and to mitigate the infamous sign problem in the
best possible way, since numerical simulations do not work if the sign problem
still exists. Another important advantage that the effective theory reveals, is
the possibility to approach LQCD from an analytical standpoint, which was not
directly possible in advance. To see the advantage, we will first start deriving
the theory over the path integral formalism of Lattice QCD [29]:

ZLQCD =

Nf∏
f=1

∫
[dUµ] detQf [Uµ] e

−Sg [Uµ] . (3.1)

The above equation is the starting point of our theory, which is why it will
be important to understand all the components of this equation exactly.

• Sg[Uµ] is the lattice gauge action and is defined as

Sg[Uµ] =
β

2Nc

∑
P

Tr
(
UP + U †

P

)
.

The parameter β is the inverse lattice gauge coupling and takes form β =
2Nc
g2

, where Nc is the number of colors and g is the coupling constant. The

15
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Figure 3.1: Two dimensional lattice with the plaquette Pµν(x). Figure taken from [30].

expression UP is the simplest closed loop on the lattice, called plaquette
and has the form (cf. Fig. 3.1 for a visual representation).

UP ≡ Pµν = Uµ(x) Uν(x+ µ) U †
µ(x+ ν)U †

µ(x).

• detQf [Uµ] is the quark (or fermion) determinant and follows from the fact
that fermion fields are formulated in terms of Gassmann numbers and
integrating them out leads to the relation [29]

∫
dη†1dη1 . . . dη

†
NdηN exp

−∑
i,j

η†jAijηi

 !
= detA,

where the origin of the determinant in Eq. (3.1) becomes clear.

In addition, another very important quantity in Eq. (3.1) is the Wilson-Dirac
operator Q[U ], whose origin lies in the Wilson-Dirac action. To see this in more
detail, we start with the Wilson-Dirac action

SW
[
ψ,ψ, U

]
=

Nf∑
f=1

a4
∑
x,y∈λ

ψ
f
(x)

[(
mf +

4

a

)
δx,y (3.2)

− 1

2a

3∑
µ=0

[(1− γµ)Uµ(x)δx+µ̂,y + (1+ γµ)Uµ(x)δx,y+µ̂]

]
ψf (y).

For further calculation the hopping parameter κf =
[
2amf + 8

]−1 is intro-
duced, so the Wilson-Dirac action can be rewritten in
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SW
[
ψ,ψ, U

]
=
∑
f,x,y

a4
1

2aκf
ψf (x)

δx,y − κf
3∑

µ=0

[(1− γµ)Uµ(x)δx+µ̂,y + (1+ γµ)Uµ(x)δx,y+µ̂]

ψf
(x)

=

Nf∑
f=1

∑
x,y∈λ

a2√
2aκf

a2√
2aκf

ψf (x)
[
1− κfH(x, y)

]
︸ ︷︷ ︸

≡Qf (x,y)

ψf (y)

=

Nf∑
f=1

∑
x,y∈λ

ψf (x)Qf (x, y)ψ(y),

where

Qf (x, y) ≡ 1− κfH(x, y) (3.3)

is the mentioned Wilson-Dirac operator. Here, also the fact was exploited
that the Wilson-Dirac action contains the freedom of field normalization, there-
fore a2√

2aκf
ψf (x) → ψf (x) can be used. Moreover, the Wilson-Dirac operator

contains also the so called hopping matrix H(x, y), which takes the form

H(x, y) =

3∑
µ=0

[(1− γµ)Uµ(x)δx+µ̂,y + (1+ γµ)U−µ(x)δx,y−µ̂]. (3.4)

In the next step we will rewrite the partition function in Eq. (3.1) in order
to split the integral in temporal and spatial contributions.

Z =

Nf∏
f=1

∫
[dUµ] detQ

f e−Sg (3.5)

=

Nf∏
f=1

∫
[dU0]

∫
[dUi] detQ

fe−Sg (3.6)

⇒ Zeff =

∫
[dU0] e

−Seff , (3.7)

with the effective action

−Seff = ln

∫
[dUi]

[
detQf e−Sg

]
. (3.8)

Now, the advantage is that we can define
∫
[dU0] →

∫
[dL] as the inte-

gration measure, where L stands for the Polyakov-Loop and takes the form
L(x⃗) = TrW (x⃗) = Tr

∏Nτ−1
τ=0 U0(x⃗, τ). The above derived equation is now our

starting point for further calculations, where the fermion determinant and pure
gauge action will be expanded in a certain way and finally expressed with the
Polyakov-Loop.
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3.1 The Character Expansion

In the strong coupling limit lattice gauge theory corresponds to a statistical sys-
tem at high temperature, because as we already know from the last section, the
lattice gauge coupling constant takes the form β = 2Nc

g2
, which directly shows

the dependency between g2 ∝ 1
β . From this relation, one can conclude, if g → ∞

automatically β → 0 and finally the weight factor e−Sg → 1, which is just the
assumption of the so called strong coupling expansion. At this point, we will
not go into more detail (see Ref. [31, 32] for more information) and will directly
use the character expansion for the weight factor from Eq. (3.8). We start with

e−Sg = exp

[
β

1

2Nc

∑
P

(
TrUP + U †

P

)]
=
∏
P

exp [βχ(UP )]

=
∏
P

[
1 + βχ(UP ) +

β2

2
χ2(UP ) + . . .

]
where in the last step the series expansion was used. Next, the character

expansion comes into action, which is why we can reformulate the weight factor
in the following way [33]:

=⇒ e−Sg !
=
∑
r

drcr(β)χr(UP )

= c0(β)

1 +∑
r ̸=0

dr
cr(β)

c0(β)︸ ︷︷ ︸
=ar(β)

χr(UP )


= c0(β)

1 +∑
r ̸=0

drar(β)χr(UP )


where dr is the dimension of the representation, χr(U) character of a repre-

sentation and ar(β) the corresponding expansion parameter. Note that the sum∑
r ̸=0 extends over all nontrivial irreducible representation at this point. With

this result, the effective action in Eq. (3.8) can be reformulated in the following
way

−Sg
eff = ln

∫
[dUi]

∏
P

[
1 +

∑
r

drar(β)χr(UP )

]
(3.9)

Two different things are important here: First the coefficient c0(β) has been
factored out and neglected, because the coefficient is constant and second the
quark contribution has been ignored for this purpose, because it is possible to
handle the pure gauge action alone and then in the end to insert the emerging
result in the effective action. Now we only have to perform the spatial integra-
tion to finally get the result. Before doing so, the group integral
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∫
dUχr(XU) χs

(
U−1Y

)
=
δrs
dr
χr(XY ) (3.10)

must be utilized first [34]. Trough this integration, the final result for the
effective action is

−Sg
eff = ln

∏
⟨x⃗,y⃗⟩

[
1 +

∑
r

dr[ar(β)]
Nτχr(Wx⃗)χr

(
W †

y⃗

)]
. (3.11)

which is the nearest neighbour interaction between Polyakov-Loops in all
representations (note that the product

∏
P can be replaced by a product over

nearest neighbour sites
∏

⟨x⃗,y⃗⟩). Furthermore we also remark that the effective
action was reduced with functions of the Polyakov-Loop, which takes the form
L(x⃗) = TrWx⃗ ≡

∏Nτ
τ=1 U0(x⃗, τ).

The leading order of the pure gauge action is given by the fundamental and
anti-fundamental expression and the expansion parameter ar(β) ≡ u and the
effective coupling λ1 ≡ uNτ +O

(
β2
)
. So now, the nearest neighbour pure gauge

action only depends on functions of the Polyakov-Loop. This leads to

−Sg
eff =

∑
⟨x⃗,y⃗⟩

ln
[
1 + λ1

(
L⋆
x⃗Ly⃗ + Lx⃗L

⋆
y⃗

)]
. (3.12)

Higher orders of the strong coupling expansion for λ1 can be looked up in
the Appendix A.1 (cf. Eq. (A.3)).

3.2 The Hopping Parameter Expansion

After the effective theory in their pure gauge sector has been expanded in the
strong limit, the next step is to investigate the emerging quark determinant,
which is clearly the fermion contribution of the efffective theory. It is important
to mention, that we will expand the quark determinant around heavy quarks
(i.e. κf → 0) and the strong coupling expansion from last section is still valid.

To start with, the Wilson-Dirac operator from Eq. (3.3) will be reinserted in
the fermion determinant

detQf = det
[
1− κfH(x, y)

]
= expTr ln

[
1− κfH(x, y)

]
= exp

[
−

∞∑
n=0

(
κf
)n
n

TrHn(x, y)

]
,

where we have used the expansion of the logarithm and the trace-log iden-
tity

detA = expTr lnA. (3.13)
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For the expansion above, it is possible to say that due to the definition of
the hopping matrix H(x, y), every contribution comes along with a Kronecker
delta δy,x±µ̂ and this can be interpreted as a single hop on the lattice, where also
each hop has a regular spin factor of (1± γµ). However after tendering the sum
in the expansion, terms with the shape of (1− γµ)(1 + γµ) will vanish, because
no backtracing on the lattice is allowed. Therefore the expansion provides only
closed fermion loops with a length of n.

Now, after the framework is clear, the Wilson-Dirac operator from Eq. (3.3)
will be slightly modified in a way to also include the chemical potential µ into
the theory. Before doing so, the Wilson-Dirac operator will be splitted into tem-
poral and spatial parts:

Qf (x, y) = 1− κ
3∑

µ=0

[(1− γµ)Uµ(x)δx+µ̂,y + (1+ γµ)U−µ(x)δx,y−µ̂] (3.14)

= 1− κ

[
(1− γ0) U0 δx+0̂,y + (1+ γ0) U

†
0 δx,y+0̂

+
3∑

i=1

[
(1− γi) Ui δx+î,y + (1+ γi) U

†
i δx,y+î

]]
Here the fact was used that U−µ = U †. Next, to finally implement the chem-

ical potential µf into the equation, the transformation Uµ → exp
[
aµfδµ,0̂

]
Uµ

and U †
µ → exp

[
aµfδ−µ,0̂

]
U †
µ must be performed out (see e.g. Ref. [29] for more

information). Finally the Wilson-Dirac operator becomes:

Qf (x, y) = 1− κ

[
eaµ

f
(1− γ0) U0 δx+0̂,y + e−aµf

(1+ γ0) U
†
0 δx,y+0̂ (3.15)

+
3∑

i=1

[
(1− γi) Ui δx+î,y + (1+ γi) U

†
i δx,y+î

]]
.

After splitting the Wilson-Dirac Operator into the space-time hops and ex-
tending it with the chemical potential, the hopping matrix from Eq. (3.4) will
be also splitted in the spatial and temporal hops, because those quantities are
connected via (3.3). So, it follows

H(x, y) = T+
xy + T−

xy︸ ︷︷ ︸
≡T

+

3∑
i=1

S+
xy,i + S−

xy,i︸ ︷︷ ︸
≡S

, (3.16)

where the spatial S ≡ S+
x,y,i + S−

x,y,i and temporal T ≡ T+
x,y + T−

x,y hops were
introduced. Those hops are defined as

T+
x,y = eaµ(1+ γ0) U0(x) δy,x+0̂ (3.17)

T−
x,y = e−aµ(1− γ0) U

†
0(y) δy,x−0̂

S+
x,y = (1− γi) Ui(x) δy,x+î

S−
x,y = (1+ γi) U

†
i (x) δy,x−î.
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After all these considerations, we jump back to the fermion determinant,
which was first defined in Eq. (3.8) and rewrite the complete expression in the
following way

detQf = det [1− κ H(x, y)]

= det [1− κ T − κ S]

= det

[
(1− κ T )

(
1− κ S

1− κ T

)]

=⇒ detQf = det (1− κ T )︸ ︷︷ ︸
detQstat

det

(
1− κ S

1− κ T

)
︸ ︷︷ ︸

detQkin

. (3.18)

Note, that in the limit of static (or infinitely heavy quarks) only temporal
hops will contribute, whereby on the kinetic determinant also a spatial con-
tribution appears, which can be interpreted as a correction term. Since, those
quantities are important for further calculations, the next two sections will ad-
dress the question of how the Polyakov-Loop can be expressed into the static
and kinetic determinant as well.
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3.3 Static Quark Determinant

As we know by now, the determinant is composed of a kinetic and a static one.
In this chapter we look at the static determinant again more exactly, which is
defined according to equation Eq. (3.18). Or in other words, the goal is to ex-
press the determinant with Polyakov loops because they can be better computed
later.

detQstat ≡ det (1− κT )

= expTr log (1− κT )

= expTr

{ ∞∑
n=1

κn

n
Tn

}

= expTr

{ ∞∑
n=1

κn

n

(
T+ + T−)n}

Here we have used the relation in Eq. (3.13) to rewrite the determinant and
after that the series expansion log (1−A) =

∑∞
n=1

An

n of the logarithm. Due to
the fact that backtracking is not allowed and the mixed terms T+T− give no
contribution, the last expression in Eq. (3.19) (T+ + T−)

n ≈ (T+)
n
+ (T−)

n can
be simplified in the following way

=⇒ detQstat = exp

[
Tr

{ ∞∑
n=1

κn

n

(
T+
)n}]

exp

[
Tr

{ ∞∑
n=1

κn

n

(
T−)n}]

= det
[
1− κT+

]
det
[
1− κT−].

The identity in Eq. (3.13) was used again. Since our goal is to include the
Polyakov loops in the determinant, we need to insert the temporal hops from
Eq. (3.17) next, as these are necessary to then extract the Polyakov loops from
them. Thus we can write

detQstat =
∏
x⃗

det

[
1+

1

2
(2κ)Nτ eNτaµ(1+ γ0)Wx⃗

]
det

[
1+

1

2
(2κ)Nτ e−Nτaµ(1+ γ0)W

†
x⃗

]
(3.19)

=
∏
x⃗

det

1+ (2κ)Nτ eNτaµ︸ ︷︷ ︸
≡h(µ,Nτ )

Wx⃗


2

det

1+ (2κ)Nτ e−Nτaµ︸ ︷︷ ︸
≡h1(µ,Nτ )

W †
x⃗


2

(3.20)

=⇒ detQstat =
∏
x⃗

(
1+ h1Lx⃗ + h21L

†
x⃗ + h31

)2 (
1+ h1L

†
x⃗ + h

2
1Lx⃗ + h

3
1

)2
. (3.21)

To get Eq. (3.21) we used the Relation det (1+ αA) = 1+αTr (A)+α2Tr
(
A†)+

α3 for the special case when A ∈ SU(3) [35]. Afterwards the definition Lx⃗ ≡
L(x⃗) = TrW (x⃗) and L†

x⃗ ≡ L†(x⃗) = TrW †(x⃗) have been inserted. Important
quantities from Eq. (3.21) are
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h1(µ,Nτ ) ≡ (2κ)Nτ eNτaµ (3.22)

h1(µ,Nτ ) ≡ (2κ)Nτ eNτaµ,

which are the effective quark coupling of the effective theory. In the en-
tire effective theory, the quark coupling, which is defined above will describe
the quarks and anti-quarks, where for instance h1 represent the anti-quarks.
Furthermore, we remark that the integration for the static determinant will be
trivial, because spatial links have been neglected. Therefore we can write the
partition function as

Z =

∫
[dU0] exp

[∫
dUi Sstat

]
(3.23)

=

∫
[dU0]

{∏
x⃗

(
1+ h1Lx⃗ + h21L

†
x⃗ + h31

)2 (
1+ h1L

†
x⃗ + h

2
1Lx⃗ + h

3
1

)2}
.

Finally, the above partition function describes a system of static quarks con-
verging to full QCD with the limit κ → 0, which is the infinite quark mass
limit.
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3.4 Kinetic Quark Determinant to leading order

After we have discussed the static determinant in detail, the next major step is
to calculate the kinetic determinant. We set the starting point at Eq. (3.18) and
take a closer look at the right term:

detQkin = det

[
1− κS

1− κT

]
(3.24)

= det

[
1− κ(S+ + S−)

1− κ T

]
= det

[
1− κ S+

Qstat
− κ S−

Qstat

]
(3.25)

= expTr log [1− (P +M)] = expTr

[
−

∞∑
n=1

1

n
(P +M)n

]
(3.26)

= exp

[
−
∑
i

TrPiMi +O(κ4)

]
(3.27)

Here the static propagator is defined as

Q−1
stat = [1− κ T ]−1 (3.28)

and in addition to that the two quantities P ≡ κ S+

Qstat
and M = κ S−

Qstat
have

been defined. Moreover the identity in Eq. (3.13) and the series expansion of
the logarithm was used again. After expanding in leading order, the definitions
for P,M were put back in place. In the last step, the same argumentation as in
section 3.3 was used. Note that in the following the order O(κ4) will be omitted.
In Appendix A.3 the static propagator from Eq. (3.28) was explicitly calculated
and has the form

Q−1
x,y = A+

x,y +A−
x,y + γ0

(
B+

x,y −B−
x,y

)
≡ Ax,y + γ0Bx,y (3.29)

where A± and B± are expressions to summarize various terms. For deeper
understanding see Appendix A.3 and especially Eq. (A.29). Now that we have
explicitly calculated the static propagator, we will continue with the kinetic
determinant from Eq. (3.27). We reinsert the definitions for the quantities P
and M :

detQkin = exp

−κ2∑
x,y,i

Tr

{
S+
x,y+i

Qstat

S−
x+i,y

Qstat

}
= exp

−κ2∑
x,y,i

Tr
{
S+
x,y+i(Qstat)

−1S−
x+i,y(Qstat)

−1
}

= exp

−κ2∑
x,y,i

Tr
{
S+
x,y+i(Ax,y + γ0 Bx,y) S

−
x+i,y(Ax,y + γ0Bx,y)

}
= exp

−κ2∑
x,y,i

Tr
{
(Ax,y + γ0 Bx,y)(1 + γi) Ui(y)(Ax+i,y+i + γ0Bx+i,y+i)(1− γi) U

†(x)
}
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In the last step, the definitions for S±
x,y were inserted. Next: First multiply

out the whole term and then calculate the γ matrices at the end. The only term,
which will survive is the following

=⇒ detQkin = exp

−4κ2
∑
x,y,i

Tr
{
Bx,y Ui(y) Bx+i,y+i U

†(x)
}. (3.30)

Next, we can assume that we are on a single site link, which is why x = y.
Then we get the final result for the kinetic determinant:

detQkin = exp

−4κ2
∑
x,i

Tr
{
Bx,x Ui(x) Bx+i,x+i U

†(x)
}. (3.31)

Now that an expression for the kinetic determinant has finally been found,
the next step is to perform the spatial integration based on the path integral in
Eq. (3.7). For this reason we have to look at:

∫
[dUi] detQkin =

∫
[dUi] exp

−4κ2
∑
x,i

Tr
{
Bx,x Ui(x) Bx+i,x+i U

†(x)
}

≈
∫

[dUi]

1− 4κ2
∑
x,i

Tr
{
Bx,x Ui(x) Bx+i,x+i U

†(x)
}

= 1− 4κ2
∑
x,i

∫
[dUi] Tr

{
Bx,x Ui(x) Bx+i,x+i U

†(x)
}

In the second step we used the Taylor-Expansion to get rid of the exponential
function. The link variables, which are colored in blue in the above equation,
will be calculated with the group integral

∫
dU Uij U

†
kl =

1
Nc

δilδjk (see Ref. [36]
for more information). It follows

=⇒
∫

[dUi] detQkin = 1− 4κ2

Nc

∑
x,i

Tr {Bx,x Bx+i,x+i}

= 1− 4κ2

Nc︸︷︷︸
≡h2

∑
x,i

[
Tr
{
B+

x,x −B−
x,x

}
Tr
{
B+

x+i,x+i −B−
x+i,x+i

}]

where we first defined the nearest neighbor coupling h2(κ,Nτ ) ≡ κ2Nτ
Nc

and
we reinserted the expressions for Bx,x from the Appendix A.12. The next step
is to insert the expressions for B±

x,x (cf. Eq. (A.27)), so we finally get the result

∫
[dUi] detQkin = 1− h2

∑
x⃗,i

[
Tr

(
h1 Wx⃗

1+ h1Wx⃗

)
− Tr

(
h1 W

†
x⃗

1+ h1W
†
x⃗

)
(3.32)

× Tr

(
h1 Wx⃗+i

1+ h1Wx⃗+i

)
− Tr

(
h1 W

†
x⃗+i

1+ h1W
†
x⃗+i

)]
.
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From this equation it can be seen that in the leading order a nearest neigh-
bor interaction dominates. Physically, this means that this relation can arise
between two quarks, where one can list two anti-quarks or one quark and one
anti-quark as examples. Furthermore, we can also state that, as in the static
case, there are no temporal dependencies on the coordinates.

Since for the further proceeding it is important that all our terms are ex-
pressible by Polyakov loops, we note here that the terms Tr h1W

1+h1W
and Tr h1W †

1+h1W †

from the above equation, can be expressed with Polyakov-Loops (see Appendix
A.4 for more details).



Chapter 4

Analytic Treatment of the
Effective Theory

After the derivation of the effective theory in the last chapter, where our main
results were the pure gauge action (cf. Eq. (4.8)), the static determinant (cf.
Eq. (3.21)) and the kinetic determinant in leading order (cf. Eq. (3.32)). All
these results can be inserted into the partition function, which was mentioned
in Eq. (3.5), because in the end only the whole results have to be inserted into
the effective action. It follows

Z =

∫
dL

∏
⟨x⃗,y⃗⟩

log
[
1 + λ1

(
L⋆
x⃗Ly⃗ + Lx⃗L

⋆
y⃗

)]
︸ ︷︷ ︸

pure gauge

(4.1)

×
∏
x⃗

(
1 + h1Lx⃗ + h21L

†
x⃗ + h31

)2 (
1 + h1L

†
x⃗ + h

2
1Lx⃗ + h

3
1

)2
︸ ︷︷ ︸

static

×
∏
⟨x⃗,y⃗⟩

(
1− h2

[
Tr

h1Wx⃗

1+ h1Wx⃗
− Tr

h1Wy⃗

1+ h1Wy⃗

])(
1− h2

[
Tr

h1W
†
x⃗

1+ h1W
†
x⃗

− Tr
h1W

†
y⃗

1+ h1W
†
y⃗

])
︸ ︷︷ ︸

kinetic

.

In this equation, the first line is the pure gauge action, the second line is the
static determinant, and the last line is the leading order of the kinetic deter-
minant. This partition function has a weak sign problem and can be simulated
with different methods: Hence, it is possible to rely, on re-weighting techniques
or complex Langevin methods and since the effective couplings correspond to
power series of the expansion parameters, they are themselves small in the
range of plausibility. Hence, the effective theory can also be treated as a linked-
cluster expansion method known from statistical physics, with results for ther-
modynamic observables. An important insight here is that the original sign
problem is under control and we have an explicit expression to determine other
important physical properties [37].

One common feature that all of these results share is that they were all
finally expressed in terms of Polyakov loops. This is vastly important, because
the basic assumption was that we were looking at an effective theory, which of
course describes real physics. In doing so, we know that the Polyakov loop is a

27
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suitable order parameter, because its deconfinement and symmetry properties
fit it well. Either way, the goal of this chapter is to motivate the mean field
approach, where this approach is done for the Polyakov loop. Thereby for the
Polyakov-Loop the approach Lx⃗ = Lx⃗ + δLx⃗ and L⋆

x⃗ = Lx⃗ + δL⋆
x⃗ will be used.

4.1 Mean Field Theory

Mean field theory is a method used in statistical physics. The basic idea of
this theory is that instead of evaluating the entire microscopic theory, one ap-
proximates the interactions in the theory by a mean field, which is usually
the order parameter of the statistical system. This is much easier to evaluate
and also provides an analytical approach to the theory. Mean-field theory is a
good choice because since only a few lattice models can be solved explicitly, one
is interested in efficient approximation methods. A simple and universal ap-
proximation is the mean-field approximation, which gives qualitatively correct
results for many lattice systems [38].

4.1.1 Deriving a formula for Mean Field Free Energy

To begin with, we start with the mean field ansatz, which looks like

Fmf = Fss + F (4.2)

where the single site free energy is denoted with Fss = − log (Zss). The mean
field energy is therefore composed of the single site free energy and a mean field.
Here, F is not known and is calculated in the context by minimizing the entire
equation according to ∂Fmf

∂L

!
= 0. Accordingly, the whole Eq. (4.2) is now derived

after the mean field

∂Fmf

∂L
=
∂Fss

∂L
+
∂F
∂L

.

Since F is not known here and will be calculated later, we start the calcu-
lation by first calculating the emerging blue term, which follows after a short
calculation

∂Fss

∂L
= − ∂

∂L
ln (Zss) (4.3)

= − 1

Zss

∂

∂L
Zss

= − 1

Zss

∫
dL exp

{
∂Seff

∂L
L− ∂Seff

∂L
⋆ L

⋆

}[
∂2Seff

∂L
2 L− ∂2Seff

∂L∂L
⋆L

⋆

]
,

where the partition function takes the form

Zss =

∫
dL exp

{
∂Seff

∂L
L− ∂Seff

∂L
⋆ L

⋆

}
. (4.4)
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Here, Seff refers to the effective action, which is later implemented by the
effective theory, which was derived in the last chapter.

The result for the blue term calculated above in Eq. (4.3) is inserted back
into the mean field ansatz. Therefore it follows

0
!
=
∂Fmf

∂L
(4.5)

= − 1

Zss

∫
dL exp

{
∂Seff

∂L
L− ∂Seff

∂L
⋆ L

⋆

}[
∂2Seff

∂L∂L
⋆L− ∂2Seff

∂L∂L
⋆L

⋆

]
+
∂F
∂L

. (4.6)

Reordering this expression leads to

∂F
∂L

=− ∂2Seff

∂L
2

1

Zss

∫
dL exp

{
∂Seff

∂L
L− ∂Seff

∂L
⋆ L

⋆

}
L︸ ︷︷ ︸

⟨L⟩≡L

− ∂2SeffL

∂L∂L
⋆

1

Zss

∫
dL exp

{
∂Seff

∂L
L− ∂Seff

∂L
⋆ L

⋆

}
L⋆︸ ︷︷ ︸

⟨L⋆⟩≡L
⋆

=
∂2Seff

∂L
2 L− ∂2SeffL

∂L∂L
⋆ L

⋆

= −
[
∂

∂L

(
∂Seff

∂L

)
− ∂Seff

∂L

]
− ∂2Seff

∂L∂L
⋆L

⋆

= − ∂

∂L

(
∂Seff

∂L

)
+
∂Seff

∂L
− ∂2Seff

∂L∂L
⋆L

⋆
.

We can state that the identities of the expected values of the Polyakov-Loops
are written in the formula in which we also have the expected value of the
Polyakov-Loops. The claim is here that the expected values of the Polyakov-
Loop are the same as the values of the mean field, because the mean field ap-
proach satisfies the so called self-consistency equation. This assumption is jus-
tified by the fact that no Polyakov-Loop is unique and its expected value should
be the same as the mean field value of the surrounding spins.

Furthermore, in the further process of the calculation, the inverse product
rule was used and in the last step, the complete equation was integrated out
according to L. This leads to the final result

⇒ F = −∂S
eff

∂L
L− ∂Seff

∂L
⋆ + Seff . (4.7)

This equation provides an expression for the mean free field energy and can
be easily calculated if the effective action is known. For the continuation, this
effective action is known and adopted by the effective theory, where the results
for the effective action are all encoded in Eq. (4.1).
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4.2 Result: Pure Gauge Theory

After the derivation of the mean field formula in the last section, the next step
is to apply this formula to the pure gauge case. The aim of this chapter is
to show an example calculation with mean field, because the calculations are
straightforward and the same procedure has been used for other considerations.
First we will integrate the Polyakov-Loops and the associated mean field ansatz
into the pure gauge action and then, using the formula derived in Eq. (4.7), the
mean field free energy is calculated.

The aim of this section is to show an example calculation with mean field,
because the calculations are straightforward and the same procedure has been
used for other cases such as for the static and kinetic determinant. Since the
calculations for the static and kinetic determinant are very sprawling to show,
therefore, the calculation is discussed here in particular in order to have a bet-
ter understanding of the mean field approach.

For this reason we start with the pure gauge action (cf. Eq. (3.12)) and
integrate the mean field approach into the theory:

Sp.g.,NN =
∑
x⃗

S
(
Lx⃗, L

†
x⃗

)
= −

∑
x⃗

d∑
i=1

log
[
1 + λ1

(
Lx⃗L

†
x⃗+i + L†

x⃗Lx⃗+i

)]
(4.8)

= −
∑
x⃗

d∑
i=1

log
[
1 +

{(
Lx⃗ + δLx⃗

)(
L
⋆
x⃗+i + δL⋆

x⃗+i

)
+
(
L
⋆
x⃗ + δL⋆

x⃗

)(
Lx⃗+i + δLx⃗+i

)}]

= −
∑
x⃗

d∑
i=1

log
[
1 + λ1

(
Lx⃗ L

⋆
x⃗+i + L

⋆
x⃗ Lx⃗+i

)]
≈ −d

∑
x⃗

log
[
1 + 2λ1Lx⃗ L

⋆
x⃗

]
= −d

∑
x⃗

log
[
1 + 2λ1

∣∣Lx⃗

∣∣2]
Here we used the mean field approach for the Polyakov-Loop Lx⃗,i = Lx⃗+δLx⃗,i

and for the L⋆
x⃗,i = Lx⃗ + δL⋆

x⃗,i as well. Furthermore we used the periodicity
x⃗ → x⃗+ i for the nearest neighbor interaction.

Now that we have calculated the pure gauge action (cf. Eq. (4.8)), the next
step is to calculate the mean field free energy with use of Eq. (4.7).

F =
∂Sp.g.,NN

∂L
L−

∂Sp.g.,NN

∂L
⋆ L

⋆
+ Sp.g.,NN

=
4λ1d

∣∣L∣∣2
1 + 2λ1

∣∣L∣∣2 − d log
[
1 + 2λ1

∣∣L∣∣2]

=
2d
(
2λ1
∣∣L∣∣2+1− 1

)
1 + 2λ1

∣∣L∣∣2 − d log
[
1 + 2λ1

∣∣L∣∣2]

=
2d

��������(
2λ1
∣∣L∣∣2 + 1

)
������
1 + 2λ1

∣∣L∣∣2 − 2d

1 + 2λ1
∣∣L∣∣2 − d log

[
1 + 2λ1

∣∣L∣∣2]
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Finally it follows

=⇒ F = −2d

[
−1 +

1

1 + 2λ1
∣∣L∣∣2 +

1

2
log
(
1 + 2λ1

∣∣L∣∣2)]. (4.9)

The only missing part is the single site free energy, which is computed via
the partition function (cf. Eq. (4.4)). So we get

Zss =

∫
dL exp

[
−∂S
∂L

L− ∂S

∂L
⋆L

⋆

]
=

∫
dL exp

[
∂

∂L

[
−d log 1 + 2λ1

∣∣L∣∣2]L− ∂

∂L
⋆

[
−d log 1 + 2λ1

∣∣L∣∣2]L⋆

]

=

∫
dL exp

 2dλ1L
⋆

1 + 2λ1
∣∣L∣∣2︸ ︷︷ ︸

≡z1

L+
2dλ1L

1 + 2λ1
∣∣L∣∣2︸ ︷︷ ︸

≡z2

L⋆


=

∞∑
n=0

∞∑
m=0

zn1
n!

zm2
m!

∫
dL Ln(L⋆)m︸ ︷︷ ︸
≡I(n,m)

.

Here the series expansion of the exponential function was used. The in-
tegrals appearing in expression I(n,m) are calculated as in Appendix A.5 ex-
plained. In particular, the derived Eq. (A.39) will be a calculation rule for the
Polyakov-Loop integrals. At this point it should be mentioned again that the
integrals in I(n,m) always give a natural number as a contribution. Finally for
the single site free energy it follows

Fss = − log

[ ∞∑
n=0

∞∑
m=0

zn1
n!

zm2
m!

I(n,m)

]
. (4.10)

Now that all parts of the mean field free energy Fmf = Fss + F have been
calculated (cf. Eq. (4.9) and Eq. (4.10)), the next step is to plot these quantities
and to analyze them.

The first order nature of the transition is exhibited in Fig. 4.1, where the
mean field free energy is plotted against the real part of Polyakov-Loop. The
behavior of the free energy with pure gauge action shows that the figure con-
tains two degenerate minima (one in the origin and the other at ⟨L⟩ ≈ 0.6) for
the critical value of λc ∼ 0.152. We can observe here that for different λ a first
order phase transition occurs, because the symmetry breaks spontaneously for
a certain critical value of the coupling λ. The background to this symmetry
breaking lies in the fact that Polyakov-Loop has three different sectors in the
high temperature area, which is closely related to the coupling λ. To be even
more precise: We know that in leading order the effective coupling λ is some-
thing like λ ≈ u(β)Nτ , where u(β) is the fundamental character expansion coef-
ficient and β is the inverse coupling [34]. We also know that T = 1

aNτ
, so we can
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Figure 4.1: Mean-Field free energy Fmf as a function of the expectation value of the
Polyalov-Loop ⟨L⟩, with different values around the critical values of λ1.

conclude that when λ is increased automatically the temperature of the sys-
tem is also increased and the Polyakov-Loop is not anymore in the disordered
phase. In other words: The Polyakov-Loop will be non-zero anymore and this is
exactly the situation where the phase transition occurs. It is also well known
that the Polyakov loop is related to the exponential of the free energy Fq of a
static quark, connecting the expectation value of the Polyakov loop ⟨L⟩ to the
confinement and deconfinement properties of QCD [39].

To compare with: In Ref. [40] the authors used a series expansion, which
leads to a critical value of λc = 0.14. Furthermore in Ref. [41] the authors used
a quite similar approach with the spin model and they get a critical value for
λc = 0.134. We can conclude that our approach has a deviation by (7.7 ∼ 10.1)%.
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4.3 Result for Nf = 1: Static Determinant

In the previous section we studied the pure gauge case, where we considered the
pure gauge action with no quarks at all. We know from the calculation in Sec.
3.2 that the fermionic contribution comes along with the hopping expansion of
the Wilson-Dirac-Operator, or to be more precise with the effective coupling for
quarks h1 = eNτ (aµ+ln 2κ) and anti-quarks h1 = eNτ (−aµ+ln 2κ), where the masses
of the fermions are encoded in κ ∝ 1

mquark
.

However this is the reason why we extend our study of the effective theory
by including the static quark action as well, which is also part of the Eq. (4.1). It
is important to mention that the kinetic determinant is set to one, i.e. detQkin =
1, because this implies that infinitely heavy quarks become interesting for the
following process. Furthermore, our special interest is that there must be only
hops in the temporal direction. Beyond that only hops in temporal direction
are allowed, because we are dealing only with the single-site action Sss and the
static determinant.

The following strategy is intended for the subsequent process: We study the
effective theory for the µ = 0 case, which in turn implies that h1 = h1. This is
due to the fact how h1 and h1 are defined, because all terms are the same, ex-
cept for the chemical potential part (cf. Eq. (3.22)). Further this signifies that
the effective theory with the static determinant has only two free parameters,
which are in this case h1 and λ1. In the pure gauge case we observed that a
phase transition occurs when the effective gauge coupling λ1 was increased and
this corresponds to the deconfinemnet transition. The question is will this con-
nection also take place with the static determinant, when the efffective quark
coupling is also present. To verify this, the same procedure for the Mean Field
as in the last section will be used next. Here, only the static determinate ap-
pears as an additional expression, whereby the mean field approach of Eq. (4.2)
is also applied here.

Fig. 4.2 demonstrates the Mean Field free energy Fmf as a function of the
expectation value of the Polyakov-Loop ⟨L⟩ with the effective quark and as well
the gauge coupling. The mean field free energy is studied in a way that the
previous degeneracy of the minima will be investigated. However the way to
do this is to increase κ which automatically implies that h1 ∼ eln(2κ) ∼ κ and
because of κ ∝ 1/mq this will corresponds to lowering the masses of the quarks.

In the mentioned Fig. 4.2 we can observe that for increasing h1 and low-
ering gauge coupling λ1 we observe a first order phase transition. Especially
at h1 = 0.004 and λ = 0.1471 the system contains two degenerate minima like
in the pure gauge case. The symmetry breaks for increasing quark coupling
and the phase transition slowly vanishes and transforms itself to a second or-
der phase transition. The results from Fig. 4.2 are in accordance with Ref.
[40, 41, 42], which studied the phase transition from a different starting point.
The authors used a chiral spin model, which is conceptually simpler in its phys-
ical description. We can finally summarize that the Mean Field theory applied
on the effective theory gives us results, which are in accordance with the liter-
ature and furthermore it showed the direct connection between deconfinement
property of QCD.
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Figure 4.2: Mean-Field free energy Fmf as a function of the expectation value of the
Polyalov-Loop ⟨L⟩, with different values around the critical values of λ and the effective
quark coupling h.

4.4 Results for Nf = 2: Adding µI and µB into the Ef-
fective Theory

After applying the mean field theory for pure gauge and the static determinant
in the last two sections, it is now time to increase the complete partition func-
tion, which is defined in Eq. (4.1). We note again that the procedure for the
mean field approach does not change. As in the last sections described, we first
compute the action using the mean field approach for the Polyakov-Loops and
then finally the other quantities mentioned in Eq. (4.2).

4.4.1 Adding Isospin into the Theory

Apart from our mean field study, the next step is to extend the theory with
Nf = 2, or to be more precise we will next implement the isospin in the theory.
Since the last considerations were for the Nf = 1 case, we now have to look at
the partition function for multiple flavors. For Nf = 2 the partition function
from Eq. (3.5) becomes

Z =

∫
[dU0] detQu detQd e

−Sg , (4.11)

where each new flavor also introduces a new hopping parameter, which is
either κu or κd. The static partition function becomes then

Z =

∫
[dU0]

∏
x⃗

(
1 + h1,uLx⃗ + h21,uL

⋆
x⃗ + h31,u

)2(
1 + h1,dLx⃗ + h21,dL

⋆
x⃗ + h31,d

)2
.

(4.12)

Next we will take a closer look to the kinetic determinant
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detQkin = det [1− Pu −Mu] det [1− Pu −Mu] (4.13)

= exp

[
Tr

∞∑
n=1

[
− 1

n
(Pu +Mu)

n

]
+Tr

∞∑
n=1

[
− 1

n
(Pd +Md)

n

]]
. (4.14)

For degenerate quarks, thus κd = κu, the kinetic quark determinant can
also be written as

Q
Nf

kin = exp

[
Nf Tr

∞∑
n=1

[
− 1

n
(P +M)n

]]
. (4.15)

This case allows that all expressions stay the same, only the factor Nf has
been considered. Now that the theory has been verified for multiple flavors, the
next step is to introduce isospin. This is described in the literature as µI =
(µu − µd)/2 after which µu = −µd follows [14]. Accordingly, the only effort was
to insert the above defined isospin into the mean field free energy Fmf.

This relationship is described precisely by Fig. 4.3, which contains two plots.
In both plots, on the x-axis the real part of the Polyakov-Loop ⟨L⟩ is shown,
whereas on the y-axis the mean field free energy Fmf is demonstrated. These
simulations were performed with the lattice parameters for β = 5.7, Nc = 3
and Nτ = 10000. With Nτ , we are in the low temperature range, since due to
T ∝ 1

Nτ
this connection remains, whereby the more exact correlation with the

temperature will become clearer later in the next section.
The difference between the two plots is due to the fact, which parameter

is held, since in the upper plot κ is fixed and isospin chemical potential µI is
varied, while in the lower plot, the isospin chemical potential µI is held and
finally κ varied.

Both plots can clearly show that when the lattice parameters µI and κ are
changed, there is a continuous change for the global minima in the positive
direction of the expectation value of the Polyakov-Loop ⟨L⟩. This is a clear
indicator for the study of phase transitions, because this fact points to a second-
order phase transition, because if the order parameter, which is in our case ⟨L⟩
slowly changes from zero to a finite value.

Now that the isospin has been inserted, the analysis will be continued in the
next section, where the baryonic chemical potential µB will be inserted.
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Figure 4.3: Mean-Field free energy Fmf as a function of the expectation value of the
Polyakov-Loop ⟨L⟩ with respect to the isospin chemical potential and different κ. Lattice
Parameters: β = 5.7, Nc = 3 and Nτ = 10000.
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4.4.2 The (µI , µB) Phase Diagram

In the last section the mean field free energy with the isospin was considered
more exactly, whereby now the theory is extended with the baryonic potential.
The lattice parameters remain the same as in the last section, i.e. β = 5.7,
Nc = 3 and Nτ = 10000. This concept has been realized in 4.4, where again the
real part of the Polyakov-Loop ⟨L⟩ is shown on the x-axis and on the y-axis the
mean field free energy Fmf is illustrated. In this plot the lattice parameter κ
is fixed here and has the value κ = 0.0009, which corresponds to heavy quarks,
because of κ ∝ 1

mq
.

The interesting thing about Fig. 4.4 is that a phase transition can also be
identified here. More precisely, a first-order phase transition is visible at the
combination of µB = 0.125 and µI = 0.3 (see blue line in Fig. 4.4). Further-
more, a continuum shift of the global minima can be seen, whereby this shift
slowly smoothed out for further combinations of µI and µB. This connection was
already clear in the last chapter, where we identify a second order phase tran-
sition for the isospin chemical potential. To summarize, this figure shows that
two different phase transitions can be observed, which can both be explained as
follows: First, the pure phase transition at µI is related to a second-order phase
transition due to the breaking of isospin symmetry [14]. The first order phase
transition at the introduction of the baryonic chemical potential µB is explained
by the fact that we are at low temperature and locally at the Liquid-Gas tran-
sition line in the QCD phase diagram. At least here it is clear that it must be
a first order phase transition. The intriguing thing here is that these two find-
ings appear together, so it would be an interesting next step to plot the isospin
and baryonic chemical potential quantities as a function of the mean field free
energy.
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Figure 4.4: Mean-Field free energy Fmf as a function of the expectation value of the
Polyakov-Loop ⟨L⟩ with respect to the isospin and baryonic chemical potential for a
fixed κ. Lattice Parameters: β = 5.7, Nc = 3 and Nτ = 10000
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The consideration to map the isospin and baryonic chemical potential with
the mean field free energy is illustrated in Fig. 4.5. In this figure the isospin
chemical potential is plotted on the x-axis and the baryonic potential on the y-
axis, where the lattice parameters, i.e. β = 5.7, Nc = 3 and Nτ = 10000 stay the
same. Moreover the temperature and the baryonic chemical potential µB were
connected over

mB

T
=
amB

aT
= Nτ amB = −3Nτ log (2κ).

Here we used Nτ = 1
aT and amB = −3 log (2κ) in leading order. The exact

same procedure can also be done with the isospin chemical potential µI , where
the slight difference is that the pion mass mπ has to be considered. In the
effective theory, the pion mass in leading order is denoted as amπ = −2 log (2κ)
[43].

To understand this diagram, it is important to consider the temperature T
as the third axis, as it is usually added to the QCD phase structure. And here we
will consider two cases: On the one hand, the case when the temperature goes
to zero, which indicates that the study will be only valid in the low temperature
range and on the other hand, when the temperature is finite.

The former case is easier to explain, because at T → 0 it must be a phase
transition, because the symmetry is already broken. This can be explained
most simply with a condensate, because if a condensate is available, then there
is a medium and accordingly a preferred system. Due to the symmetry break-
ing, the Lorentz invariance will be broken and this corresponds with a phase
transition of first order. This fact, or more precisely this circumstance was also
shown in Fig. 4.4, where the combination of the isospin and the baryonic chem-
ical potentials were shown.
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Figure 4.5: Derived phase diagram from the mean field free energy at small tempera-
tures for different combinations of the isospin and baryonic chemical potential. Lattice
parameters: β = 5.7, Nc = 3 and Nτ = 10000.

However, the other case at finite temperature, its more complicated to de-
termine the phase transition. At first, it is possible to assume that since the
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Liquid-Gas transition has been a second order endpoint, which in turn also
means that a second order line exists, all lines converge to a tri-critical end-
point, where exactly the behavior of the curve in Fig. 4.5 takes place. Now, the
problem lies lies in the fact of the qualitative shape of the curve in Fig. 4.5, be-
cause for finite temperature the curve points not exactly in the same direction,
like the well known (µI , T ) phase diagram plot [14]).

A possible explanation could be that the mean-field theory is only an ap-
proximation to the true nature of the QCD phase structure and loses the neces-
sary accuracy in respect for the simplification of assumption, which mean field
clearly does. Nevertheless, the fact remains that the mean field theory is usu-
ally a good approach and provides basically correct results, as we have seen
from our previous results. A hypothesis that could also be put forward would
be the possibility to analyze in more detail the phase structure of the QCD in
the upper area of the (µI , T ) plot, whereby the possibility that no longer second-
order line exists can be considered. Therefore the qualitative shape of Fig. 4.5
could give a possible course of the behavior. However, further research is being
conducted in this direction.
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Chapter 5

Conclusion and Outlook

In this thesis, a three dimensional effective theory for Lattice-QCD was derived
by a strong coupling and hopping expansion in the heavy quark regime, where
the final path integral and its components have been treated analytically via a
mean field approximation. This approach was quite promising because mean
field theory is often a suitable approximation scheme for lattice systems, which
are generally difficult to solve and therefore this technique provides an useful
way to get at least qualitative results for the whole theory.

In this thesis mean field was applied for the order parameter Lx⃗ and the free
energy F of the system. Here, it was crucial that every Polyakov-Loop mean
field ansatz was correctly added into the prepared action. The kinetic and the
static action were evaluated with Mathematica, because in comparison to the
pure gauge action, the kinetic and static determinant were quite inflated, if the
mean field ansatz for the Polyakov-Loops was inserted (see e.g. Sec. 4.2 for
an example calculation). Due to F = − lnZ, the free energy and the partition
function are connected, why first the partition function was calculated and then
the single site free energy. After that, the only remaining quantity was F and
the calculation is straightforward done with Eq. (4.7).

The first consideration was the pure gauge case, where we have no fermions
at all. The result for this case was a spontaneous symmetry breaking, which
corresponds to a first order transition for the critical value of λc ≈ 0.152. Sub-
sequently the study was extended for the Nf = 1 and Nf = 2 case, where es-
pecially for the two flavor consideration, the isospin chemical potential µI was
used. This led to a novel phase diagram for the baryonic and isospin chemical
potential, where new insights about the QCD phase structure may be reveled.
This phase diagram is still under research, because there are still concerns
about the finite temperature case. Further research is being pursued in this
direction.

41
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Appendix

A.1 Corrections for the effective couplings

In this section, the correction terms for the effective couplings λ1, h1, h1 and h2
will be determined. First of all, we define [31]

u = ar(β) =
1

3

c3(β)

c1(β)
(A.1)

where

c3(β) =
1

6
β +

1

72
β2 +

1

216
β3 +

5

10368
β4 +

13

186624
β5 +

77

11197440
β6 +

139

201553920
β7

+
19

322486272
β8 +

23

4837294080
β9 +

319

9142485811220
β10 +

2629

109709829734400
β11

+
16133

10532143654502400
β12 +

17499

189578585781043200
β13

+
35531

6824829088117555200
β14 +O

(
β15
)
, (A.2)

and

c1(β) = 1 +
1

36
β2 +

1

648
β3 +

1

2592
β4 +

1

31104
β5 +

13

3359232
β6 +

11

33592320
β7

+
139

4837294080
β8 +

19

8707129344
β9 +

23

145118822400
β10 +

29

2742745743360
β11

+
2629

3949553870438400
β12

+
1241

31596430963507200
β13 +

17499

7962300602803814400
β14 +O

(
β15
)
.

Since this work concentrates exclusively on the Nτ = 2 case, the only rele-
vant correction for the nearest neighbor correction is

λ1(u) = uNτ exp

[
2

(
4u4 + 12u5 − 18u6 − 36u7 +

219

2
u9 +

830517

5120
u10
)]
. (A.3)
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For higher orders and its corrections we refer to Ref. [34]. For the effective
couplings of the fermion interaction, we get the correction terms [44]

h1(κ,Nτ ) = exp [Nτ (aµ+ log 2κ)] (A.4)

× exp

[
6Nτκ

2u(
1− uNτ−1

1− u
4u4 − 12κ2 + 9κ2u+ 4κ2u2 − 4κ4)

]
,

where for the anti-quark coupling h1 the same corrections will be applied. Fi-
nally the only missing part is the coupling of the O

(
κ2
)

action h2, which takes
the form

h2(κ,Nτ ) =
κ2Nτ

Nc

[
1 + 2

u− uNτ

1− u
+ 8u5 + 16κ3u4

]
. (A.5)

A.2 Static determinant: Proof of term det [1+ h1W ]

det (1+ h1W ) = exp [Tr log (1+ h1W )] (A.6)

= exp

[
Tr

∞∑
k=1

(−1)k+1

k
hk1 TrW

k

]
(A.7)

=
∞∏
k=1

exp

[
(−1)k+1

k
hk1 TrW

k

]
(A.8)

=
∞∏
k=1

∞∑
n=0

(−1)k+1

k
hkn1

(
TrW k

)n
(A.9)

First of all, the identity from Eq. (3.13) was used to rewrite the determinant.
In the further course the Mercator Series log(1 + x) =

∑
k

(−1)k+1

k xk was used
and finally the series representation of the exponential function.

A.3 Calculation of the static propagator

In this section we will take a closer look to the static propagator, which was
mentioned in Eq. (3.29). This calculation was also done in Ref. [45]. We will
start

Q−1
stat = (1− T )−1 (A.10)

=
∞∑
j=0

T j (A.11)

= 1+

∞∑
j=1

[(
T+
)j

+
(
T−)j], (A.12)

where we used the geometric series in the second step. At the end we have
inserted the temporal hops from Eq. (3.17). Before we go any further, let’s take
a closer look at T± and rewrite the terms in a different way
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T±(x, y) = z± P± U±(x⃗, tx) δtx⃗,ty⃗−1
δx⃗,y⃗ b

∓
ty . (A.13)

Where we have used shorter notations for

z± = 2e±aµ , P± =
1

2
(1± γ0) , U+0(x⃗, tx) = U0(x) , U−0(x⃗, tx) = U †

0(y)

and b−t =

{
−1, t = 0

1, t ̸= 0
, b+t =

{
−1, t = Nt − 1

1, t ̸= Nt − 1
.

Next, we consider our considerations only for T+, since the calculation for
T− is analogous. We continue with Eq. (A.12) and calculate (T+)

j

(
T+
)j

= δtx⃗,ty⃗−1
δx⃗,y⃗ z

j
+ P j

+ (U+(x⃗, tx))
j
(
b+ty

)j
(A.14)

= δtx⃗,ty⃗−1
δx⃗,y⃗ z

j
+ P+

[
j−1∏
i=0

U0(x⃗, tx + i) b−ty−i

]
. (A.15)

From the first to the second step we have exploited that the operator (U+)
j

is taken j-times with itself and this is equivalent to writing the operator as a
product (analogous for bty ). Furthermore because of the identity (1+ γ0)

2 =

2(1+ γ0), we can easily show that the relation (P+)
j !
= P+ is valid.

To continue, we need to consider Eq. (A.14) for two distinct cases: First for
tx = ty and then for tx ̸= ty, where the latter case also splits into tx > ty and
tx < ty. Note we can always assume that x⃗ = y⃗, which is exactly the static case.

So we start with the first case tx = ty:

(
T+
)j

= δtx⃗,ty⃗−1
δx⃗,y⃗ z

j
+ P j

+ (U+(x⃗, tx))
j
(
b+ty

)j
(A.16)

=⇒
(
T+
)jNt = P+h

j
1

[
Nt−1∏
i=0

U0(x⃗, tx + i)

]j
(−1)j (A.17)

= P+ hj1 W
j(x⃗, tx)(−1)j (A.18)

A couple of remarks here: In step two (T+)j was extended with the exponent
Nt. Then j and Nt were exchanged and after that we used the same argumen-
tation for the operator U0 like before. For the last step we used the definitions
h1 ≡ zNt

+ and W (x⃗, tx) ≡
∏Nt−1

i=0 U0(x⃗, tx + i).
For the second case tx ̸= ty we have to fulfill the condition ty − tx+ jNt > 0,

because now the time interval is not the same anymore and obviously discrete.
So we again use Eq. (A.14) and extend the exponent now with the above men-
tioned condition. This leads to

(
T+
)ty−tx+jNt = P+z

ty−txhj1

{
W (x⃗, tx, ty)W

j(x⃗, ty) (−1)j , tx < ty

W (x⃗, tx, ty)W
j−1(x⃗, ty) (−1)j , tx < ty

(A.19)
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with

W (x⃗, tx, ty) =

{∏ty−tx−1
i=0 U0(x⃗, tx + i) , tx < ty∏Nt−tx+ty−1
i=0 U0(x⃗, tx + i) , tx ≥ ty

. (A.20)

With the step function θ(0) = 0 all results can be summarized in one equa-
tion:

∞∑
j=1

(
T+
)j

= δx⃗,y⃗ P+

[
− δtx,tyh1W (x⃗, tx)(1+ h1W (x⃗, tx))

−1 (A.21)

+ zty−txW (x⃗, tx, ty)(1+ h1W (x⃗, tx))
−1[θ(ty − tx)− h1θ(tx − ty)]

]
(A.22)

It is noted that the same calculation also applies to T−, with the difference
that z+ → z− and W → W †. After discussing T± we finally can put all our
results in the static operator, which was first calculated in Eq. (A.12).

Q−1
stat(x, y) = δx⃗,y⃗

{
δtx,ty

[
1− P+

h1W (x⃗, tx)

1+ h1W (x⃗, tx)
− P−

h1W
†(x⃗, tx)

1+W †(x⃗, tx)

]
(A.23)

+ θ(ty − tx)

[
P+ z

ty−tx
+

W (x⃗, tx, ty)

1+ h1W (x⃗, ty)
− P−z

tx−ty
− h1

W †(x⃗, tx, ty)

1h1W †(x⃗, ty)

]
(A.24)

+ θ(tx − ty)

[
−P+ z

ty−tx
+ h1

W (x⃗, tx, ty)

1+ h1W (x⃗, ty)
+ P−z

tx−ty
−

W †(x⃗, tx, ty)

1h1W †(x⃗, ty)

]}
(A.25)

For comparison with the literature, the static propagator is also written in
the following way

Q−1
stat = A+

x,y +A−
x,y + γ0

[
B+

x,y −B−
x,y

]
, (A.26)

with

A+
x,y =

1

2

[
1− h1W

1+ h1W

]
+

1

2
δx⃗,y⃗h

ty−tx
Nt

1

W (tx, ty)

1+ h1W
[θ(ty − tx)− h1θ(tx − ty)]

A−
x,y =

1

2

[
1− h1W

†

1+ h1W †

]
+

1

2
δx⃗,y⃗h

ty−tx
Nt

1

W †(tx, ty)

1+ h1W †

[
θ(tx − ty)− h1θ(ty − tx)

]
and

B+
x,y = −1

2

h1W

1+ h1W
+

1

2
δx⃗,y⃗h

ty−tx
Nt

1

W (tx, ty)

1+ h1W
[θ(ty − tx)− h1θ(tx − ty)] (A.27)

B−
x,y = −1

2

h1W
†

1+ h1W † +
1

2
δx⃗,y⃗h

ty−tx
Nt

1

W †(tx, ty)

1+ h1W †

[
θ(ty − tx)− h1θ(tx − ty)

]
. (A.28)
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Finally we can determine the static propagator as

Q−1
stat(x, y) ≡ Ax,y + γ0 Bx,y (A.29)

with the definitions Ax,y ≡ A+
x,y +A−

x,y and Bx,y ≡ B+
x,y −B−

x,y.
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A.4 Expressing the terms Tr h1W
1+h1W

and Tr h1W
†

1+h1W † with
Polyakov-Loops

We start with:

Tr
h1W

1+ h1W
= Tr

[
h1W (1+ h1W )−1

]

= Tr

h1W
 1

1 + h1L+ h21L
⋆ + h31︸ ︷︷ ︸

≡ 1
Z

(
1 + h1L− h1W + h21W

†
)



=
1

Z

[
h1Tr (W ) + h21LTr (W )− h21Tr

(
W 2
)
+ h31Tr

(
W W †

)]
=

1

Z

[
h1L+ h21L

2 − h21Tr
(
W 2
)
+ 3h31

]
.

Here we used the identities WW † = 1 and L = TrW . Next we apply our
formula for the term W 2, which is W 2 = −Tr

(
W †)1+Tr (W )W +W † [46]. After

inserting this term into the equation and multiplying all terms out, we get the
result

Tr
h1W

1+ h1W
=

h1L+ 2h21L
⋆ + 3h31

1 + h1L+ h21L
⋆ + h31

. (A.30)

To get the other term from Eq. (3.32), we use exactly the same procedure
again, changing only L⋆ = TrW † and

(
W †)2 = −Tr

(
W †)1 + Tr (W )W +W †. It

follows

Tr
h1W

†

1+ h1W † =
h1L+ 2h

2
1L

⋆ + 3h
3
1

1 + h1L⋆ + h
2
1L+ h

3
1

. (A.31)
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A.5 Calculating SU(3) integrals

To calculate the static or kinetic determinant, it was necessary to use certain
integral techniques. Since we are dealing here with SU(3) integrals, this section
will deal with the calculation of these integrals. This calculation is based on Ref.
[29]. If we want to calculate integrals in the partition function, we typically
encounter integrals with the following generating functional

G(u, v) =

∫
dPeuTrP euTrP †

(A.32)

=

∞∑
n,m=0

un

n!

vm

m!
I(n,m). (A.33)

In the second step we used the series expansion of the exponential function,
namely expx ≡

∑∞
k=0

xk

k! . The expression I(n,m) stands for the moments of the
one link integral for G(u, v). Given from Ref. [47], we can use

G(u, v) =

∞∑
p,q=0

2

(p+ q + 1)!(p+ q + 2)!q!

(
3(p+ q + 1)

p

)
(uv)p(u3 + v3)q. (A.34)

With the standard binomial theorem (x+ y)n =
∑n

k=0

(
n
k

)
xn−kyk or more

precisely in the case (u3 + v3)q above and after organizing the terms after unvm

we obtain

G(u, v) =
∞∑

p,q=0

2

(p+ q + 1)!(p+ q + 2)!q!

(
3(p+ q + 1)

p

) q∑
j=0

(
q

j

)
up+3j vp+3q−3j

(A.35)

=
∞∑

n,m=0

un

n!

vm

m!

∞∑
p,q=0

q∑
j=0

2n! m! δn,p+3j δm,p+3j−3j

(p+ q + 1)!(p+ q + 2)!q!

(
3(p+ q + 1)

p

)(
q

j

)
.

(A.36)

Next we compare Eq. (A.36) with Eq. (A.33) and we find

I(n,m) =

∞∑
p,q=0

q∑
j=0

δn,p+3j δm,p+3q−3j
2n!m!

(p+ q + 1)!(p+ q + 2)!q!

(
3(p+ q + 1)

p

)(
q

j

)
(A.37)

Kronecker deltas reduce the expression in Eq. (A.36) to a finite sum. The
first Kronecker delta δn,p+3j implies the restriction for p = n−3j and since p ≥ 0
we find n ≥ 3j. This relation implies an upper bound for the sum by j ≤ ⌊n3 ⌋.
So we can apply the first Kronecker delta and we get

I(n,m) =
∞∑
q=0

⌊n
3
⌋∑

j=0

δm,n+3q−6j 2n! m!

(n− 3j + q + 1)!(n− 3j + q + 2)! q!

(
3(n− 3j + q + 1)

n− 3j

)(
q

j

)
.

(A.38)
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The remaining Kronecker delta in Eq. (A.38) written as δn−m,6j−3q which
implies the following conditions for I(n,m):

I(n,m) =

{̸
= 0 , if (n−m) mod 3 = 0

= 0 , else

This relation is also called the triality constraint. The Kronecker delta
δn−m,6j−3q implies also for q = 2j − n−m

3 , so the binomial factor is then
(
q
j

)
=(2j−n−m

3
j

)
. From the Kronecker delta we also obtain the resitriction for j, which

is j ≥ n−m
3 and since j must be non-negative, the lower bound must be j ≥

max
(
0, n−m

3

)
. Finally the last Kronecker delta can act on the sum now and we

get the final result

I(n,m) =

⌊n
3
⌋∑

j=max (0,n−m
3 )

T (n−m) 2n! m!
(3(n−j−n−m

3
+1)

n−3j

)(2j−n−m
3

j

)(
n− j − n−m

3 + 1
)
!
(
n− j − n−m

3 + 2
)
!
(
2j − n−m

3

)
!

(A.39)

with the triality function

T (n) =

{
1 , if n mod 3 = 0

0 , else

The final result in Eq. (A.39) calculates the moments of I(n,m) as finite
sums. In appendix of Ref. [47] are the lowest moments for n,m ≤ 10 evaluated.
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A.5.1 Some integrals over Polyakov-Loops

In this section, we list some integrals over Polyakov-Loop, which were impor-
tant for the analysis.

∫
dLL3 = 1∫
dLL6 = 5∫
dLL9 = 42∫

dL
(
L†
)3

= 1∫
dL
(
L†
)6

= 5∫
dL
(
L†
)9

= 42∫
dLL

(
L†
)
= 1∫

dLL2
(
L†
)2

= 2∫
dLL3

(
L†
)
= 6∫

dLL4
(
L†
)4

= 23∫
dLL5

(
L†
)5

= 103∫
dLL

(
L†
)4

= 3∫
dLL

(
L†
)7

= 21∫
dLL2

(
L†
)5

= 11∫
dLL2

(
L†
)8

= 98∫
dLL3

(
L†
)6

= 47∫
dLL4

(
L†
)1

= 3∫
dLL5

(
L†
)2

= 11∫
dLL6

(
L†
)3

= 47∫
dLL7

(
L†
)1

= 21∫
dLL8

(
L†
)2

= 98
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