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A Notation and conventions



When I became a student of Pomeranchuk
in 1950 I heard from him a kind of joke
that the Book of Physics had two volumes:
vol.1 is “Pumps and Manometers”, vol.2
is “Quantum Field Theory”

Lev Okun

0 Prologue

The development of Quantum Field Theory is surely one of the most important achieve-

ments in modern physics. Presently, all observational evidence points to the fact that

Quantum Field Theory (QFT) provides a good description of all known elementary parti-

cles, as well as for particle physics beyond the Standard Model for energies ranging up to

the Planck scale ∼ 1019 GeV, where quantum gravity is expected to set in and presumably

requires a new and different description. Historically, Quantum Electrodynamics (QED)

emerged as the prototype of modern QFT’s. It was developed in the late 1940s and early

1950s chiefly by Feynman, Schwinger and Tomonaga, and is perhaps the most successful

theory in physics: the anomalous magnetic dipole moment of the electron predicted by

QED agrees with experiment with a stunning accuracy of one part in 1010!

The scope of these lectures is to provide an introduction to the formalism of Quantum

Field Theory, and as such is somewhat complementary to the other lectures of this school.

It is natural to wonder why QFT is necessary, compelling us to go through a number

of formal rather than physical considerations, accompanied by the inevitable algebra.

However, thinking for a moment about the high precision experiments, with which we

hope to detect physics beyond the Standard Model, it is clear that comparison between

theory and experiment is only conclusive if the numbers produced by either side are

“water-tight”. On the theory side this requires a formalism for calculations, in which

every step is justified and reproducible, irrespective of subjective intuition about the

physics involved. In other words, QFT aims to provide the bridge from the building

blocks of a theory to the evaluation of its predictions for experiments.

This program is best explained by restricting the discussion to the quantum theory

of scalar fields. Furthermore, I shall use the Lagrangian formalism and canonical quan-

tisation, thus leaving aside the quantisation approach via path integrals. Since the main

motivation for these lectures is the discussion of the underlying formalism leading to the

derivation of Feynman rules , the canonical approach is totally adequate. The physically

relevant theories of QED, QCD and the electroweak model are covered in the lectures by

Nick Evans, Sacha Davidson and Stefano Moretti.

The outline of these lecture notes is as follows: to put things into perspective, we shall

review the Lagrangian formalism in classical mechanics, followed by a brief reminder of

the basic principles of quantum mechanics in Section 1. Section 2 discusses the step from

classical mechanics of non-relativistic point particle to a classical, relativistic theory for

non-interacting scalar fields. There we will also derive the wave equation for free scalar

fields, i.e. the Klein-Gordon equation. The quantisation of this field theory is done is

Section 3, where also the relation of particles to the quantised fields will be elucidated.

The more interesting case of interacting scalar fields is presented in Section 4: we shall



introduce the S-matrix and examine its relation with the Green’s functions of the theory.

Finally, in Section 5 the general method of perturbation theory is presented, which serves

to compute the Green functions in terms of a power series in the coupling constant. Here,

Wick’s Theorem is of central importance in order to understand the derivation of Feynman

rules.

1 Introduction

Let us begin this little review by considering the simplest possible system in classical

mechanics, a single point particle of mass m in one dimension, whose coordinate and

velocity are functions of time, x(t) and ẋ(t) = dx(t)/dt, respectively. Let the particle be

exposed to a time-independent potential V (x). It’s motion is then governed by Newton’s

law

m
d2x

dt2
= −∂V

∂x
= F (x), (1.1)

where F (x) is the force exerted on the particle. Solving this equation of motion involves

two integrations, and hence two arbitrary integration constants to be fixed by initial

conditions. Specifying, e.g., the position x(t0) and velocity ẋ(t0) of the particle at some

initial time t0 completely determines its motion: knowing the initial conditions and the

equations of motion, we also know the evolution of the particle at all times (provided we

can solve the equations of motion).

1.1 Lagrangian formalism in classical mechanics

The equation of motion in the form of Newton’s law was originally formulated as an

equality of two forces, based on the physical principle actio = reactio, i.e. the external

force is balanced by the particle’s inertia. The Lagrangian formalism allows to derive the

same physics through a formal algorithm. It is formal, rather than physical, but as will

become apparent throughout the lectures, it is an immensely useful tool allowing to treat

all kinds of physical systems by the same methods.

To this end, we introduce the Lagrange function

L(x, ẋ) = T − V =
1

2
mẋ2 − V (x), (1.2)

which is a function of coordinates and velocities, and given by the difference between the

kinetic and potential energies of the particle. Next, the action functional is defined as

S =

∫ t1

t0

dt L(x, ẋ). (1.3)

From these expressions the equations of motion can be derived by the Principle of least

Action: consider small variations of the particle’s trajectory, cf. Fig. 1,

x′(t) = x(t) + δx(t), δx/x¿ 1, (1.4)

with its initial and end points fixed,

x′(t1) = x(t1)

x′(t2) = x(t2)

}
⇒ δx(t1) = δx(t2) = 0. (1.5)
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Figure 1: Variation of particle trajectory with identified initial and end points.

The true trajectory the particle will take is the one for which

δS = 0, (1.6)

i.e. the action along x(t) is stationary. In most systems of interest to us the stationary

point is a minimum, hence the name of the principle, but there are exceptions as well

(e.g. a pencil balanced on its tip). We can now work out the variation of the action by

doing a Taylor expansion to leading order in the variation δx,

S + δS =

∫ t2

t1

L(x+ δx, ẋ+ δẋ) dt, δẋ =
d

dt
δx

=

∫ t2

t1

{
L(x, ẋ) +

∂L

∂x
δx+

∂L

∂ẋ
δẋ+ . . .

}
dt

= S +
∂L

∂ẋ
δx

∣∣∣∣
t2

t1

+

∫ t2

t1

{
∂L

∂x
− d

dt

∂L

∂ẋ

}
δx dt, (1.7)

where we performed an integration by parts on the last term in the second line. The

second and third term in the last line are the variation of the action, δS, under variations

of the trajectory, δx. The second term vanishes because of the boundary conditions for

the variation, and we are left with the third. Now the Principal of least Action demands

δS = 0. For the remaining integral to vanish for arbitrary δx is only possible if the

integrand vanishes, leaving us with the Euler-Lagrange equation:

∂L

∂x
− d

dt

∂L

∂ẋ
= 0. (1.8)

If we insert the Lagrangian of our point particle, Eq. (1.2), into the Euler-Lagrange

equation we obtain

∂L

∂x
= −∂V (x)

∂x
= F

d

dt

∂L

∂ẋ
=

d

dt
mẋ = mẍ

⇒ mẍ = F = −∂V
∂x

(Newton’s law). (1.9)



Hence, we have derived the equation of motion by the Principal of least Action and

found it to be equivalent to the Euler-Lagrange equation. The benefit is that the latter

can be easily generalised to other systems in any number of dimensions, multi-particle

systems, or systems with an infinite number of degrees of freedom, such as needed for

field theory. For example, if we now consider our particle in the full three-dimensional

Euclidean space, the Lagrangian depends on all coordinate components, L(x, ẋ), and all

of them get varied independently in implementing Hamilton’s principle. As a result one

obtains Euler-Lagrange equations for the components,

∂L

∂xi

− d

dt

∂L

∂ẋi

= 0. (1.10)

In particular, the Lagrangian formalism makes symmetries and their physical conse-

quences explicit and thus is a convenient tool when constructing different kinds of theories

based on symmetries observed (or speculated to exist) in nature.

For later purposes in field theory we need yet another, equivalent, formal treatment,

the Hamiltonian formalism. In our 1-d system, we define the ’conjugate momentum’ p by

p ≡ ∂L

∂ẋ
= mẋ, (1.11)

and the Hamiltonian H via

H(x, p) ≡ pẋ− L(x, ẋ)

= mẋ2 − 1
2
mẋ2 + V (x)

= 1
2
mẋ2 + V (x) = T + V. (1.12)

The Hamiltonian H(x, p) corresponds to the total energy of the system; it is a function

of the position variable x and the conjugate momentum1 p. It is now easy to derive

Hamilton’s equations
∂H

∂x
= −ṗ, ∂H

∂p
= ẋ. (1.13)

These are two equations of first order, while the Euler-Lagrange equation was a single

equation of second order. Taking another derivative in Hamilton’s equations and substi-

tuting one into the other, it is easy to convince oneself that the Euler-Lagrange equations

and Hamilton’s equations provide an entirely equivalent description of the system. Again,

this generalises obviously to three-dimensional space yielding equations for the compo-

nents,
∂H

∂xi

= −ṗi,
∂H

∂pi

= ẋi. (1.14)

1.2 Quantum mechanics

Having set up some basic formalism for classical mechanics, let us now move on to quantum

mechanics. In doing so we shall use ’canonical quantisation’, which is historically what

was used first and what we shall later use to quantise fields as well. We remark, however,

that one can also quantise a theory using path integrals.

1It should be noted that the conjugate momentum is in general not equal to mẋ.



Canonical quantisation consists of two steps. Firstly, the dynamical variables of a

system are replaced by operators, which we denote by a hat. For example, in our simplest

one particle system,

position: xi → x̂i

momentum: pi → p̂i = −i~ ∂

∂xi

Hamiltonian: H → Ĥ =
p̂2

2m
+ V (x̂) = −~2∇2

2m
+ V (x̂). (1.15)

Secondly, one imposes commutation relations on these operators,

[x̂i, p̂j] = i~ δij (1.16)

[x̂i, x̂j] = [p̂i, p̂j] = 0. (1.17)

The physical state of a quantum mechanical system is encoded in state vectors |ψ〉, which

are elements of a Hilbert space H. The hermitian conjugate state is 〈ψ| = (|ψ〉)†, and the

modulus squared of the scalar product between two states gives the probability for the

system to go from state 1 to state 2,

|〈ψ1|ψ2〉|2 = probability for |ψ1〉 → |ψ2〉. (1.18)

On the other hand physical observables O, i.e. measurable quantities, are given by the

expectation values of hermitian operators, Ô = Ô†,

O = 〈ψ|Ô|ψ〉, O12 = 〈ψ2|Ô|ψ1〉. (1.19)

Hermiticity ensures that expectation values are real, as required for measurable quantities.

Due to the probabilistic nature of quantum mechanics, expectation values correspond to

statistical averages, or mean values, with a variance

(∆O)2 = 〈ψ|(Ô −O)2|ψ〉 = 〈ψ|Ô2|ψ〉 − 〈ψ|Ô|ψ〉2. (1.20)

An important concept in quantum mechanis is that of eigenstates of an operator, defined

by

Ô|ψ〉 = O|ψ〉. (1.21)

Evidently, between eigenstates we have ∆O = 0. Examples are coordinate eigenstates,

x̂|x〉 = x|x〉, and momentum eigenstates, p̂|p〉 = p|p〉, describing a particle at position

x or with momentum p, respectively. However, a state vector cannot be simultaneous

eigenstate of non-commuting operators. This leads to the Heisenberg uncertainty relation

for any two non-commuting operators Â, B̂,

∆A∆B ≥ 1

2
|〈ψ|[Â, B̂]|ψ〉|. (1.22)

Finally, sets of eigenstates can be orthonormalized and we assume completeness, i.e. they

span the entire Hilbert space,

〈p′|p〉 = δ(p − p′), 1 =

∫
d3p |p〉〈p|. (1.23)



As a consequence, an arbitrary state vector can always be expanded in terms of a set

of eigenstates. In particular, the Schrödinger wave function of a particle in coordinate

representation is given by ψ(x) = 〈x|ψ〉.
Having quantised our system, we now want to describe its time evolution. This can

be done in different quantum pictures.

1.3 The Schrödinger picture

In this approach state vectors are functions of time, |ψ(t)〉, while operators are time

independent, ∂tÔ = 0. The time evolution of a system is described by the Schrödinger

equation,

i~
∂

∂t
ψ(x, t) = Ĥψ(x, t). (1.24)

If at some initial time t0 our system is in the state Ψ(x, t0), then the time dependent state

vector

Ψ(x, t) = e−
i
~

Ĥ(t−t0)Ψ(x, t0) (1.25)

solves the Schrödinger equation for all later times t.

The expectation value of some hermitian operator Ô at a given time t is then defined

as

〈Ô〉t =

∫
d3xΨ∗(x, t)ÔΨ(x, t), (1.26)

and the normalisation of the wavefunction is given by
∫
d3xΨ∗(x, t)Ψ(x, t) = 〈1〉t. (1.27)

Since Ψ∗Ψ is positive, it is natural to interpret it as the probability density for finding

a particle at position x. Furthermore one can derive a conserved current j, as well as a

continuity equation by considering

Ψ∗ × (Schr.Eq.) − Ψ × (Schr.Eq.)∗. (1.28)

The continuity equation reads
∂

∂t
ρ = −∇ · j (1.29)

where the density ρ and the current j are given by

ρ = Ψ∗Ψ (positive), (1.30)

j =
~

2im
(Ψ∗∇Ψ − (∇Ψ∗)Ψ) (real). (1.31)

Now that we have derived the continuity equation let us discuss the probability interpre-

tation of Quantum Mechanics in more detail. Consider a finite volume V with boundary

S. The integrated continuity equation is
∫

V

∂ρ

∂t
d3x = −

∫

V

∇ · j d3x

= −
∫

S

j · dS (1.32)



where in the last line we have used Gauss’s theorem. Using Eq. (1.27) the lhs. can be

rewritten and we obtain
∂

∂t
〈1〉t = −

∫

S

j · dS = 0. (1.33)

In other words, provided that j = 0 everywhere at the boundary S, we find that the time

derivative of 〈1〉t vanishes. Since 〈1〉t represents the total probability for finding the par-

ticle anywhere inside the volume V , we conclude that this probability must be conserved:

particles cannot be created or destroyed in our theory. Non-relativistic Quantum Me-

chanics thus provides a consistent formalism to describe a single particle. The quantity

Ψ(x, t) is interpreted as a one-particle wave function.

1.4 The Heisenberg picture

Here the situation is the opposite to that in the Schrödinger picture, with the state vectors

regarded as constant, ∂t|ΨH〉 = 0, and operators which carry the time dependence, ÔH(t).

This is the concept which later generalises most readily to field theory. We make use of

the solution Eq. (1.25) to the Schrödinger equation in order to define a Heisenberg state

vector through

Ψ(x, t) = e−
i
~

Ĥ(t−t0)Ψ(x, t0) ≡ e−
i
~

Ĥ(t−t0)ΨH(x), (1.34)

i.e. ΨH(x) = Ψ(x, t0). In other words, the Schrödinger vector at some time t0 is defined

to be equivalent to the Heisenberg vector, and the solution to the Schrödinger equation

provides the transformation law between the two for all times. This transformation of

course leaves the physics, i.e. expectation values, invariant,

〈Ψ(t)|Ô|Ψ(t)〉 = 〈Ψ(t0)|e
i
~

Ĥ(t−t0)Ôe−
i
~

Ĥ(t−t0)|Ψ(t0)〉 = 〈ΨH |ÔH(t)|ΨH〉, (1.35)

with

ÔH(t) = e
i
~

Ĥ(t−t0)Ôe−
i
~

Ĥ(t−t0). (1.36)

From this last equation it is now easy to derive the equivalent of the Schrödinger equation

for the Heisenberg picture, the Heisenberg equation of motion for operators:

i~
dÔH(t)

dt
= [ÔH , Ĥ]. (1.37)

Note that all commutation relations, like Eq. (1.16), with time dependent operators are

now intended to be valid for all times. Substituting x̂, p̂ for Ô into the Heisenberg equation

readily leads to

dx̂i

dt
=

∂Ĥ

∂p̂i

,

dp̂i

dt
= −∂Ĥ

∂x̂i

, (1.38)

the quantum mechanical equivalent to the Hamilton equations of classical mechanics.



1.5 The quantum mechanical harmonic oscillator

Because of similar structures later in quantum field theory, it is instructive to also briefly

recall the harmonic oscillator in one dimension. Its Hamiltonian is given by

Ĥ(x̂, p̂) =
1

2

(
p̂2

m
+mω2x̂2

)
. (1.39)

Employing the canonical formalism we have just set up, we easily identify the momentum

operator to be p̂(t) = m∂tx̂(t), and from the Hamilton equations we find the equation of

motion to be ∂2
t x̂ = −ω2x̂, which has the well known plane wave solution x̂ ∼ exp iωt.

An alternative path useful for later field theory applications is to introduce new

operators, expressed by the old ones,

â =
1√
2

(√
mω

~
x̂+ i

√
~

mω
p̂

)
, â† =

1√
2

(√
mω

~
x̂− i

√
~

mω
p̂

)
. (1.40)

Using the commutation relation for x̂, p̂, one readily derives

[â, â†] = 1, [Ĥ, â] = −~ωâ, [Ĥ, â†] = ~ωâ†. (1.41)

With the help of these the Hamiltonian can be rewritten in terms of the new operators,

Ĥ =
1

2
~ω
(
â†â+ ââ†

)
=

(
â†â+

1

2

)
~ω. (1.42)

With this form of the Hamiltonian it is easy to construct a complete basis of energy

eigenstates |n〉,
Ĥ|n〉 = En|n〉. (1.43)

Using the above commutation relations, one finds

â†Ĥ|n〉 = (Ĥâ† − ~ωâ†)|n〉 = Enâ
†|n〉, (1.44)

and from the last equation

Ĥâ†|n〉 = (En + ~ω)â†|n〉. (1.45)

Thus, the state â†|n〉 has energy En +~ω, and therefore â† may be regarded as a “creation

operator” for a quantum with energy ~ω. Along the same lines one finds that â|n〉 has

energy En − ~ω, and â is an “annihilation operator”.

Let us introduce a vacuum state |0〉 with no quanta excited, for which â|n〉 = 0,

because there cannot be any negative energy states. Acting with the Hamiltonian on that

state we find

Ĥ|0〉 = ~ω/2, (1.46)

i.e. the quantum mechanical vacuum has a non-zero energy, known as vacuum oscillation

or zero point energy. Acting with a creation operator onto the vacuum state one easily

finds the state with one quantum excited, and this can be repeated n times to get

|1〉 = â†|0〉 , E1 = (1 +
1

2
)~ω, . . .

|n〉 =
â†√
n
|n− 1〉 =

1√
n!

(â†)n|0〉 , En = (n+
1

2
)~ω. (1.47)



The root of the factorial is there to normalise all eigenstates to one. Finally, the ”number

operator” N̂ = â†â returns the number of quanta in a given energy eigenstate,

N̂ |n〉 = n|n〉. (1.48)

Problems

1.1 Starting from the definition of the Hamiltonian,

H(x, p) ≡ pẋ− L(x, ẋ),

derive Hamilton’s equations

∂H

∂x
= −ṗ, ∂H

∂p
= ẋ.

[Hint: the key is to keep track of what are the independent variables]

1.2 Using the Schrödinger equation for the wavefunction Ψ(x, t),
{
−~2∇2

2m
+ V (x)

}
Ψ(x, t) = i~

∂

∂t
Ψ(x, t),

show that the probability density ρ = Ψ∗Ψ satisfies the continuity equation

∂

∂t
ρ+ ∇ · j = 0,

where

j =
~

2im
{Ψ∗∇Ψ − (∇Ψ∗) Ψ} .

[Hint: Consider Ψ∗× (Schr.Eq.) – Ψ× (Schr.Eq.)*]

1.3 Let |ψ〉 be a simultaneous eigenstate of two operators Â, B̂. Prove that this implies

a vanishing commutator [Â, B̂].

1.4 Let Ô be an operator in the Schrödinger picture. Starting from the definition of a

Heisenberg operator,

ÔH(t) = e
i
~

Ĥ(t−t0)Ôe−
i
~

Ĥ(t−t0),

derive the Heisenberg equation of motion

i~
dÔH

dt
= [ÔH , Ĥ].

1.5 Consider the Heisenberg equation of motion for the momentum operator p̂ of the

harmonic oscillator with Hamiltonian

Ĥ =
1

2

(
p̂2

m
+mω2x̂2

)
,

and show that it is equivalent to Newton’s law for the position operator x̂.



2 Classical Field Theory

2.1 From N-point mechanics to field theory

In the previous sections we have reviewed the Lagrangian formalism for a single point

particle in classical mechanics. A benefit of that formalism is that it easily generalises to

any number of particles or dimensions. Let us return to one dimension for the moment but

consider an N -particle system, i.e. we have N coordinates and N momenta, xi(t), pi(t), i =

1, . . . N . For such a system we get 2N Heisenberg equations,

−∂H
∂xi

=
dpi

dt
,

∂H

∂pi

=
dxi

dt
. (2.1)

To make things more specific, consider a piece of a guitar string, approximated by N

coupled oscillators, as in Fig. 2. Each point mass of the string can only move in the

��
�� ��

��
�	


� �

N → ∞

xi(t)

φ(x, t)

Figure 2: From N coupled point masses to a continuous string, i.e. infinitely many degrees
of freedom.

direction perpendicular to the string, i.e. is a particle moving in one dimension. This

approximation of a string gets better and better the more points we fill in between the

springs, and a continuous string obtains in the limit N → ∞. The displacement of the

string at some particular point x along its length is now given by a field coordinate φ(x, t).

Going back to the N -point system and comparing what measures the location of a point

and its displacement, we find the following “dictionary” between point mechanics and

field theory:

Classical Mechanics: Classical Field Theory:

x(t) −→ φ(x, t)

ẋ(t) −→ φ̇(x, t)

i −→ x

L(x, ẋ) −→ L[φ, φ̇] (2.2)

In the last line we have introduced a new notation: the square brackets indicate that

L[φ, φ̇] depends on the functions φ(x, t), φ̇(x, t) at every space-time point, but not on the

coordinates directly. Such an object is called a “functional”, as opposed to a function

which depends on the coordinate variables only.



Formally the above limit of infinite degrees of freedom can also be taken if we are

dealing with particles in a three-dimensional Euclidean space, for which there are N three-

vectors xi specifying the positions. We then obtain a field φ(x, t), defined at every point

in space and time.

2.2 Relativistic field theory

Before continuing to set up the formalism of field theory, we want to make it relativistic

as well. Coordinates are combined into four-vectors, xµ = (t, xi) or x = (t,x), whose

length x2 = t2 − x2 is invariant under Lorentz transformations

x′µ = Λµ
νx

ν . (2.3)

A general function transforms as f(x) → f ′(x′), i.e. both the function and its argument

transform. A Lorentz scalar is a function which is the same in all inertial frames,

φ′(x′) = φ(x) for all Λ. (2.4)

On the other hand a vector function transforms as

V
′µ(x′) = Λµ

νV
ν(x). (2.5)

An example is the covariant derivative of a scalar field,

∂µφ(x) =
∂φ(x)

∂xµ

, ∂µφ(x) =
∂φ(x)

∂xµ
, (2.6)

whose square evaluates to

(∂µφ)(∂µφ) = (∂0φ)2 − (∇φ)2. (2.7)

2.3 Action for a scalar field

We are now ready to write down the action for a relativistic scalar field. According to

our dictionary, the action from point mechanics, Eq. (1.3), should go into

S =

∫
dt L[φ, φ̇]. (2.8)

However, for a relativistic theory we require Lorentz invariance of the action, and this

is not obvious in the current form. The integration is over time only, rather than over

the Lorentz-invariant four-volume element d4x = dt d3x, and so the non-invariance of the

integration measure has to cancel against that of the Lagrange function in order to have

an invariant action. Similar reasoning applies to the arguments of the Lagrangian. In

order to have the symmetries manifest, we instead rewrite

S =

∫
d4x L[φ, ∂µ], L[φ, φ̇] =

∫
d3x L[φ, ∂µφ]. (2.9)

Now everything is expressed in covariant quantities, and the action is Lorentz-invariant

as soon as the newly defined Lagrangian density L is.



We now follow the same procedure as in point mechanics and apply the Hamiltonian

principle by demanding δS = 0. For the variation of the field and its derivative we have

φ→ φ+ δφ, ∂µφ→ ∂µφ+ δ∂µφ, δ∂µφ = ∂µδφ. (2.10)

Using the rule for functional differentiation, δφ(x)/δφ(y) = δ4(x− y), the variation of the

action then is (to first order in a Taylor expansion)

δS =

∫
d4x

{
δL
δφ
δφ+

δL
δ(∂µφ)

δ(∂µφ)

}

=
δL

δ(∂µφ)
δφ

∣∣∣∣
︸ ︷︷ ︸

=0 at boundaries

+

∫
d4x

{
δL
δφ

− ∂µ
δL

δ(∂µφ)

}
δφ. (2.11)

Again the integrand itself must vanish if δS = 0 for arbitrary variations of the field, δφ.

This yields the Euler-Lagrange equations for a classical field theory:

δL
δφ

− ∂µ
δL

δ(∂µφ)
= 0, (2.12)

where in the second term a summation over the Lorentz index µ is implied.

Let us now consider the specific Lagrangian

L = 1
2
∂µφ∂µφ− 1

2
m2φ2. (2.13)

The functional derivatives yield

δL
δφ

= −m2φ,
δL

δ(∂µφ)
= ∂µφ, (2.14)

so that

∂µ
δL

δ(∂µφ)
= ∂µ∂

µφ = ¤φ. (2.15)

The Euler-Lagrange equation then implies

(¤+m2)φ(x) = 0. (2.16)

This is the Klein-Gordon equation for a scalar field. It is the simplest relativistic wave

equation and can be deduced from relativistic energy considerations. Here we have derived

it from the Lagrange density following our canonical formalism, in complete analogy to

point mechanics. Relativistic invariance of the equations of motion is ensured because we

started from an invariant Lagrange density. This is the power of the formalism.

In keeping the analogy with point mechanics, we can define a conjugate momentum

π through

π(x) ≡ ∂L(φ, ∂µφ)

∂φ̇(x)
=
∂L(φ, ∂µφ)

∂(∂0φ(x))
= ∂0φ(x). (2.17)

Note that the momentum variables pµ and the conjugate momentum π are not the same.

The word “momentum” is used only as a semantic analogy to classical mechanics. Further,

we define the Hamilton function and a corresponding Hamilton density,

H(t) =

∫
d3x H[φ, π], H[φ, π] = πφ̇− L. (2.18)



For the Lagrangian density we considered, this gives

H =
1

2

[
π2(x) + (∇φ(x))2 +m2φ2(x)

]
. (2.19)

2.4 Plane wave solution to the Klein-Gordon equation

Let us consider real solutions to Eq. (2.16), characterised by φ∗(x) = φ(x). To find them

we try an ansatz of plane waves

φ(x) ∝ ei(k0t−k·x). (2.20)

The Klein-Gordon equation is satisfied if (k0)2 − k2 = m2 so that

k0 = ±
√

k2 +m2. (2.21)

If we choose the positive branch of the square root then we can define the energy as

E(k) =
√

k2 +m2 > 0, (2.22)

and obtain two types of solutions which read

φ+(x) ∝ ei(E(k)t−k·x), φ−(x) ∝ e−i(E(k)t−k·x). (2.23)

The general solution is a superposition of φ+ and φ−. Using

E(k)t− k · x = kµkµ = kµk
µ = k · x (2.24)

this solution reads

φ(x) =

∫
d3k

(2π)3 2E(k)

(
eik·xα∗(k) + e−ik·xα(k)

)
, (2.25)

where α(k) is an arbitrary complex coefficient. From the general solution one easily reads

off that φ is real, i.e. φ = φ∗.

2.5 Symmetries and conservation laws

Symmetries play such a fundamental role in physics because they are related to conser-

vation laws. This is stated in Noether’s theorem. In a nutshell, Noether’s theorem says

that invariance of the action under a symmetry transformation implies the existence of a

conserved quantity. For instance, the conservation of 3-momentum p is associated with

translational invariance of the Lagrangian, i.e. the transformation

x → x + a, a : constant 3-vector, (2.26)

while the conservation of energy comes from the invariance under time translations

t→ t+ τ, τ : constant time interval. (2.27)



Let us apply this to our relativistic field theory and consider four-translations, xµ →
xµ + εµ. The variation of the Lagrangian is

δL = =
δL
δφ

∂φ

∂xν
εν +

δL
δ(∂µφ)

∂(∂µφ)

∂xν
εν

=
∂

∂xµ

[
δL

δ(∂µφ)

∂φ

∂xν
εν
]
, (2.28)

where we have made use of the Euler-Lagrange Eqs. (2.12), to get to the last expression.

If the action is to be invariant under such translations, its variation has to vanish for

arbitrary εν , which leads to

∂

∂xµ

[
δL

δ(∂µφ)
∂νφ− gµνL

]
= 0. (2.29)

The quantity in square brackets is called the energy-momentum tensor Θµν , and thus we

have

∂µΘµν ≡ ∂0Θ0ν − ∂jΘjν = 0, (2.30)

i.e. four conservation laws (one for every value of ν). Let us look in more detail at the

components of the energy-momentum tensor,

Θ00 =
∂L

∂(∂0φ)
∂0φ− g00L = π(x)(∂0φ(x)) − L,

Θ0j =
∂L

∂(∂0φ)
∂jφ− g0jL = π(x)∂jφ. (2.31)

The first line is nothing but the Hamiltonian density, and integrating it over space will

thus be the Hamiltonian, or the energy. Its conservation can then be shown by considering

∂

∂t

∫

V

d3xΘ00 =

∫

V

d3x ∂0Θ00

=

∫

V

d3x ∂jΘj0 =

∫

S

dSj · Θ0j = 0, (2.32)

where we have used Eq. (2.30) in the second line. The Hamiltonian density is a conserved

quantity, provided that there is no energy flow through the surface S which encloses the

volume V . In a similar manner one can show that the 3-momentum pj, which is related

to Θ0j, is conserved as well. It is then useful to define a conserved energy-momentum

four-vector

Pµ =

∫
d3x Θ0µ. (2.33)

In analogy to point mechanics, we thus see that invariances of the Lagrangian density

correspond to conservation laws. An entirely analogous procedure leads to conserved

quantities like anguluar mometum and spin. Furthermore one can study so-called inter-

nal symmetries, i.e. ones which are not related to coordinate but other transformations.

Examples are conservation of all kinds of charges, isospin, etc.

We have thus established the Lagrange-Hamilton formalism for classical field theory:

we derived the equation of motion (Euler-Lagrange equation) from the Lagrangian and

introduced the conjugate momentum. We then defined the Hamiltonian (density) and

considered conservation laws by studying the energy-momentum tensor Θµν .



Problems

2.1 Given the relativistic invariance of the measure d4k, show that the integration mea-

sure
d3k

(2π)3 2E(k)

is Lorentz-invariant, provided that E(k) =
√

k2 +m2.

[Hint: Start from the Lorentz-invariant expression

d4k

(2π)3
δ(k2 −m2) θ(k0)

and use

δ(x2 − x2
0) =

1

2|x|(δ(x− x0) + δ(x+ x0)).

What is the significance of the δ and θ functions above? If you’re really keen, you

may prove the relation for δ(x2 − x2
0).]

2.2 Verify that

φ(x) =

∫
d3k

(2π)3 2E(k)

{
eik·xa(k) + e−ik·xb(k)

}

is a solution of the Klein-Gordon equation. Show that a real scalar field φ∗(x) = φ(x)

requires the condition b(k) = a∗(k).

2.3 Show that the Hamiltonian density H for a free scalar field is given by

H =
1

2

{
(∂0φ)2 + (∇φ)2 +m2φ2

}
.

Derive the components P̂0, P̂ of the energy-momentum four-vector P̂ µ in terms of

the field operators φ̂, π̂.

3 Quantum Field Theory

After many preparations, we have finally arrived at the proper subject of the lecture. In

this section we shall apply the canonical quantisation formalism to field theory.

3.1 Canonical field quantisation

To lighten notation, let us follow common practice in quantum field theory and set ~ =

c = 1. Our starting point is the Lagrangian density for the free scalar field,

L = 1
2
∂µφ∂µφ− 1

2
m2φ2, (3.1)

which led to the Klein-Gordon equation in the previous section. We have seen that in field

theory the field φ(x) plays the role of the coordinates in ordinary point mechanics, and



we defined a canonically conjugate momentum, π(x) = δL/δφ̇ = φ̇(x). We then continue

the analogy to point mechanics through the quantisation procedure, i.e. we now take our

canonical variables to be operators,

φ(x) → φ̂(x), π(x) → π̂(x). (3.2)

Next we impose equal-time commutation relations on them,
[
φ̂(x, t), π̂(y, t)

]
= iδ3(x − y),

[
φ̂(x, t), φ̂(y, t)

]
= [π̂(x, t), π̂(y, t)] = 0. (3.3)

As in the case of quantum mechanis, the canonical variables commute among themselves,

but not the canonical coordinate and momentum with each other. Note that the commu-

tation relation is entirely analogous to the quantum mechanical case. There would be an

~, if it hadn’t been set to one earlier, and the delta-function accounts for the fact that we

are dealing with fields. It is one if the fields are evaluated at the same space-time point,

and zero otherwise.

After quantisation, our fields have turned into field operators. Note that within the

relativistic formulation they depend on time, and hence they are Heisenberg operators.

3.2 Causality and commutation relations

In the previous paragraph we have formulated commutation relations for fields evaluated

at equal time, which is clearly a special case when considering fields at general x, y. The

reason has to do with maintaining causality in a relativistic theory. Let us recall the

light cone about an event at y, as in Fig. 3. One important postulate of special relativity

states that no signal and no interaction can travel faster than the speed of light. This has

important consequences about the way in which different events can affect each other.

For instance, two events which are characterised by space-time points xµ and yµ are said

to be causal if the distance (x− y)2 is time-like, i.e. (x− y)2 > 0. By contrast, two events

characterised by a space-like separation, i.e. (x− y)2 < 0, cannot affect each other, since

the point x is not contained inside the light cone about y.

In non-relativistic Quantum Mechanics the commutation relations among operators

indicate whether precise and independent measurements of the corresponding observables

can be made. If the commutator does not vanish, then a measurement of one observable

affects that of the other. From the above it is then clear that the issue of causality must

be incorporated into the commutation relations of the relativistic version of our quantum

theory: whether or not independent and precise measurements of two observables can be

made depends also on the separation of the 4-vectors characterising the points at which

these measurements occur. Clearly, events with space-like separations cannot affect each

other, and hence all fields must commute,
[
φ̂(x), φ̂(y)

]
= [π̂(x), π̂(y)] =

[
φ̂(x), π̂(y)

]
= 0 for (x− y)2 < 0. (3.4)

This condition is sometimes called micro-causality. Writing out the four-components of

the time interval, we see that as long as |t′ − t| < |x − y|, the commutator vanishes in



y

space

time

(x− y)2 < 0, space-like

(x− y)2 > 0, time-like

(x− y)2 = 0, light-like

Figure 3: The light cone about y. Events occurring at points x and y are said to be
time-like (space-like) if x is inside (outside) the light cone about y.

a finite interval |t′ − t|. It also vanishes for t′ = t, as long as x 6= y. Only if the fields

are evaluated at an equal space-time point can they affect each other, which leads to

the equal-time commutation relations above. They can also affect each other everywhere

within the light cone, i.e. for time-like intervals. It is not hard to show that in this case
[
φ̂(x), φ̂(y)

]
= [π̂(x), π̂(y)] = 0, for (x− y)2 > 0

[
φ̂(x), π̂(y)

]
=

i

2

∫
d3p

(2π)3

(
eip·(x−y) + e−ip·(x−y)

)
. (3.5)

3.3 Creation and annihilation operators

After quantisation, the Klein-Gordon equation we derived earlier turns into an equation for

operators. For its solution we simply promote the classical plane wave solution, Eq. (2.25),

to operator status,

φ̂(x) =

∫
d3k

(2π)3 2E(k)

(
eik·xâ†(k) + e−ik·xâ(k)

)
. (3.6)

Note that the complex conjugation of the Fourier coefficient turned into hermitian con-

jugation for an operator.

Let us now solve for the operator coefficients of the positive and negative energy

solutions. In order to do so, we invert the Fourier integrals for the field and its time

derivative,
∫
d3x φ̂(x, t)eikx =

1

2E

[
â(k) + â†(k)e2ik0x0

]
, (3.7)

∫
d3x

˙̂
φ(x, t)eikx = − i

2

[
â(k) − â†(k)e2ik0x0

]
, (3.8)

and then build the linear combination iE(k)(3.7)−(3.8) to find
∫
d3x

[
iE(k)φ̂(x, t) − ˙̂

φ(x, t)
]
eikx = iâ(k), (3.9)



Following a similar procedure for â†(k), and using π̂(x) =
˙̂
φ(x) we find

â(k) =

∫
d3x

[
E(k)φ̂(x, t) + iπ̂(x, t)

]
eikx,

â†(k) =

∫
d3x

[
E(k)φ̂(x, t) − iπ̂(x, t)

]
e−ikx. (3.10)

Note that, as Fourier coefficients, these operators do not depend on time, even though

the right hand side does contain time variables. Having expressions in terms of the

canonical field variables φ̂(x), π̂(x), we can now evaluate the commutators for the Fourier

coefficients. Expanding everything out and using the commutation relations Eq. (3.3), we

find
[
â†(k1), â

†(k2)
]

= 0 (3.11)

[â(k1), â(k2)] = 0 (3.12)[
â(k1), â

†(k2)
]

= (2π)3 2E(k1)δ
3(k1 − k2) (3.13)

We easily recognise these for every k to correspond to the commutation relations for the

harmonic oscillator, Eq. (1.41). This motivates us to also express the Hamiltonian and

the energy momentum four-vector of our quantum field theory in terms of these operators.

This yields

Ĥ =
1

2

∫
d3k

(2π)32E(k)
E(k)

(
â†(k)â(k) + â(k)â†(k)

)
,

P̂ =
1

2

∫
d3k

(2π)32E(k)
k
(
â†(k)â(k) + â(k)â†(k)

)
. (3.14)

We thus find that the Hamiltonian and the momentum operator are nothing but a contin-

uous sum of excitation energies/momenta of one-dimensional harmonic oscillators! After

a minute of thought this is not so surprising. We expanded the solution of the Klein-

Gordon equation into a superposition of plane waves with momenta k. But of course a

plane wave solution with energy E(k) is also the solution to a one-dimensional harmonic

oscillator with the same energy. Hence, our free scalar field is simply a collection of in-

finitely many harmonic oscillators distributed over the whole energy/momentum range.

These energies sum up to that of the entire system. We have thus reduced the problem of

handling our field theory to oscillator algebra. From the harmonic oscillator we know al-

ready how to construct a complete basis of energy eigenstates, and thanks to the analogy

of the previous section we can take this over to our quantum field theory.

3.4 Energy of the vacuum state and renormalisation

In complete analogy we begin again with the postulate of a vacuum state |0〉 with norm

one, which is annihilated by the action of the operator a,

〈0|0〉 = 1, â(k)|0〉 = 0 for all k. (3.15)

Let us next evaluate the energy of this vacuum state, by taking the expectation value of

the Hamiltonian,

E0 = 〈0|Ĥ|0〉 =
1

2

∫
d3k

(2π)3 2E(k)
E(k)

{
〈0|â†(k)â(k)|0〉 + 〈0|â(k)â†(k)|0〉

}
. (3.16)



The first term in curly brackets vanishes, since a annihilates the vacuum. The second can

be rewritten as

â(k)â†(k)|0〉 =
{[
â(k), â†(k)

]
+ â†(k)â(k)

}
|0〉. (3.17)

It is now the second term which vanishes, whereas the first can be replaced by the value

of the commutator. Thus we obtain

E0 = 〈0|Ĥ|0〉 = δ3(0)
1

2

∫
d3k E(k) = δ3(0)

1

2

∫
d3k

√
k2 +m2 = ∞, (3.18)

which means that the energy of the ground state is infinite! This result seems rather

paradoxical, but it can be understood again in terms of the harmonic oscillator. Recall

that the simple quantum mechanical oscillator has a finite zero-point energy. As we have

seen above, our field theory corresponds to an infinite collection of harmonic oscillators,

i.e. the vacuum receives an infinite number of zero point contributions, and its energy

thus diverges.

This is the first of frequent occurrences of infinities in quantum field theory. Fortu-

nately, it is not too hard to work around this particular one. Firstly, we note that nowhere

in nature can we observe absolute values of energy, all we can measure are energy differ-

ences relative to some reference scale, at best the one of the vacuum state, |0〉. In this

case it does not really matter what the energy of the vacuum is. This then allows us to

redefine the energy scale, by always subtracting the (infinite) vacuum energy from any

energy we compute. This process is called “renormalisation”.

We then define the renormalised vacuum energy to be zero, and take it to be the

expectation value of a renormalised Hamiltonian,

ER
0 ≡ 〈0|ĤR|0〉 = 0. (3.19)

According to this recipe, the renormalised Hamiltonian is our original one, minus the

(unrenormalised) vacuum energy,

ĤR = Ĥ − E0

=
1

2

∫
d3k

(2π)3 2E(k)
E(k)

{
â†(k)â(k) + â(k)â†(k) − 〈0|â†(k)â(k) + â(k)â†(k)|0〉

}

=
1

2

∫
d3k

(2π)3 2E(k)
E(k)

{
2â†(k)â(k) +

[
â(k), â†(k)

]
− 〈0|

[
â(k), â†(k)

]
|0〉
}
.(3.20)

Here the subtraction of the vacuum energy is shown explicitly, and we can rewrite is as

ĤR =

∫
d3p

(2π)3 2E(p)
E(p)â†(p)â(p)

+
1

2

∫
d3p

(2π)3 2E(p)
E(p)

{[
â(p), â†(p)

]
− 〈0|

[
â(p), â†(p)

]
|0〉
}
.

=

∫
d3p

(2π)3 2E(p)
E(p) â†(p)â(p) + Ĥvac (3.21)

The operator Ĥvac ensures that the vacuum energy is properly subtracted: if |ψ〉 and |ψ ′〉
denote arbitrary N -particle states, then one can convince oneself that 〈ψ ′|Ĥvac|ψ〉 = 0.

In particular we now find that

〈0|ĤR|0〉 = 0, (3.22)



as we wanted. A simple way to automatise the removal of the vacuum contribution is to

introduce normal ordering. Normal ordering means that all annihilation operators appear

to the right of any creation operator. The notation is

: ââ† : = â†â, (3.23)

i.e. the normal-ordered operators are enclosed within colons. For instance

: 1
2

(
â†(p)â(p) + â(p)â†(p)

)
: = â†(p)â(p). (3.24)

It is important to keep in mind that â and â† always commute inside : · · · :. This is true

for an arbitrary string of â and â†. With this definition we can write the normal-ordered

Hamiltonian as

: Ĥ : = :
1

2

∫
d3p

(2π)3 2E(p)
E(p)

(
â†(p)â(p) + â(p)â†(p)

)
:

=

∫
d3p

(2π)3 2E(p)
E(p) â†(p)â(p), (3.25)

and thus have the relation

ĤR =: Ĥ : +Ĥvac. (3.26)

Hence, we find that

〈ψ′| : Ĥ : |ψ〉 = 〈ψ′|ĤR|ψ〉, (3.27)

and, in particular, 〈0| : Ĥ : |0〉 = 0. The normal ordered Hamiltonian thus produces a

renormalised, sensible result for the vacuum energy.

3.5 Fock space and particle number representation

After this lengthy grappling with the vacuum state, we can continue to construct our basis

of states in analogy to the harmonic oscillator, making use of the commutation relations

for the operators â, â†. In particular, we define the state |k〉 to be the one obtained by

acting with the operator a†(k) on the vacuum,

|k〉 = â†(k)|0〉. (3.28)

Using the commutator, its norm is found to be

〈k|k′〉 = 〈0|â(k)â†(k′)|0〉 = 〈0|[â(k), â†(k′)]|0〉 + 〈0|â†(k′)a(k)|0〉
= (2π)32E(k)δ3(k − k′), (3.29)

since the last term in the first line vanishes (â(k) acting on the vacuum). Next we compute

the energy of this state, making use of the normal ordered Hamiltonian,

: Ĥ : |k〉 =

∫
d3k′

(2π)3 2E(k′)
E(k′)â†(k′)â(k′)â†(k)|0〉

=

∫
d3k′

(2π)3 2E(k′)
E(k′)(2π)32E(k)δ(k − k′)â†(k)|0〉

= E(k)â†(k)|0〉 = E(k)|k〉, (3.30)



and similarly one finds

: P̂ : |k〉 = k|k〉. (3.31)

Observing that the normal ordering did its job and we obtain renormalised, finite results,

we may now interpret the state |k〉. It is a one-particle state for a relativistic particle of

mass m and momentum k, since acting on it with the energy-momentum operator returns

the relativistic one particle energy-mometum dispersion relation, E(k) =
√

k2 +m2. The

a†(k), a(k) are creation and annihilation operators for particles of momentum k.

In analogy to the harmonic oscillator, the procedure can be continued to higher states.

One easily checks that

: P̂ µ : â†(k2)â
†(k1)|0〉 = (kµ

1 + kµ
2 )â†(k2)â

†(k1)|0〉, (3.32)

and so the state

|k2,k1〉 =
1√
2!
â†(k2)â

†(k1)|0〉 (3.33)

is a two-particle state (the factorial is there to have it normalised in the same way as the

one-particle state), and so on for higher Fock states.

At the long last we can now see how the field in our free quantum field theory is

related to particles. A particle of momentum k corresponds to an excited Fourier mode of

a field. Since the field is a superpositon of all possible Fourier modes, one field is enough

to describe all possible configurations representing one or many particles of the same kind

in any desired momentum state.

Let us investigate what happens under interchange of the two particles. Since

[â†(k1), â
†(k)] = 0 for all k1,k2, we see that

|k2,k1〉 = |k1,k2〉, (3.34)

and hence the state is symmetric under interchange of the two particles. Thus, the

particles described by the scalar field are bosons.

Finally we complete the analogy to the harmonic oscillator by introducing a number

operator

N̂(k) = â†(k)â(k), N̂ =

∫
d3k â†(k)â(k), (3.35)

which gives us the number of bosons described by a particular Fock state,

N̂ |0〉 = 0, N̂ |k〉 = |k〉, N̂ |k1 . . .kn〉 = n|k1 . . .kn〉. (3.36)

Of course the normal-ordered Hamiltonian can now simply be given in terms of this

operator,

: Ĥ :=

∫
d3k

(2π)3 2E(k)
E(k)N̂(k), (3.37)

i.e. when acting on a Fock state it simply sums up the energies of the individual particles

to give

: Ĥ : |k1 . . .kn〉 = (E(k1) + . . . E(kn)) |k1 . . .kn〉. (3.38)

This concludes the quantisation of our free scalar field theory. We have followed the

canonical quantisation procedure familiar from quantum mechanics. Due to the infinite



number of degrees of freedom, we encountered a divergent vacuum energy, which we had

to renormalise. The renormalised Hamiltonian and the Fock states that we constructed

describe free relativistic, uncharged spin zero particles of mass m, such as neutral pions,

for example.

If we want to describe charged pions as well, we need to introduce complex scalar

fields, the real and imaginary parts being necessary to describe opposite charges. For

particles with spin we need still more degrees of freedom and use vector or spinor fields,

which have the appropriate rotation and Lorentz transformation properties. Moreover, for

fermions there is the Pauli principle prohibiting identical particles with the same quantum

numbers to occupy the same state, so the state vectors have to be anti-symmetric under

interchange of two particles. This is achieved by imposing anti-commutation relations,

rather than commutation relations, on the corresponding field operators. Apart from

these complications which account for the nature of the particles, the formalism and

quantisation procedure is the same as for the simpler scalar fields, to which we shall stick

for this reason.

Problems

3.1 Using the expressions for φ̂ and π̂ in terms of â and â†, show that the unequal time

commutator
[
φ̂(x), π̂(x′)

]
is given by

[
φ̂(x), π̂(x′)

]
=
i

2

∫
d3p

(2π)3

(
eip·(x−x′) + e−ip·(x−x′)

)
.

Show that for t = t′ one recovers the equal time commutator

[
φ̂(x, t), π̂(x′, t)

]
= iδ3(x − x′).

3.2 Being time-dependent Heisenberg operators, the operators Ô = φ̂(x, t), π̂(x, t) of

scalar field theory obey the Heisenberg equation

i
∂

∂t
Ô = [Ô, Ĥ].

In analogy to what you did in problem 1.5, demonstrate the equivalence of this

equation with the Klein-Gordon equation.

3.3 Express the Hamiltonian

Ĥ =
1

2

∫
d3x

{
∂0φ̂)2 + (∇φ̂)2 +m2φ̂2

}

of the quantised free scalar field theory in terms of creation and annihilation oper-

ators and show that it is given by

Ĥ =
1

2

∫
d3p

(2π)3 2E(p)
E(p)

{
â†(p)â(p) + â(p)â†(p)

}
.



3.3 Prove the commutator relation
[
: P̂ µ :, â†(k)

]
= kµâ†(k)

to show that

: P̂ µ : â†(k2)â
†(k1)|0〉 = (kµ

1 + kµ
2 ) â†(k2)â

†(k1)|0〉. (3.39)

Interpret the physics of this result.

3.4 Prove by induction that

∫
d3p

(2π)3 2E(p)
â†(p)â(p) |k, . . . ,k〉︸ ︷︷ ︸

n momenta

= n |k, . . . ,k〉︸ ︷︷ ︸
n momenta

.

[Hint: induction proceeds in two steps. i) show that the statement is true for some

starting value of n; ii) show that if the statement holds for some general n, then it

also holds for n+ 1.]

4 Interacting scalar fields

From now on we shall always discuss quantised real scalar fields. It is then convenient to

drop the “hats” on the operators that we have considered up to now. So far we have only

discussed free fields without any interaction between them, which we could solve exactly

in terms of plane waves. As this does not make for a very interesting theory, let us now

add an interaction Lagrangian Lint. The full Lagrangian L is given by

L = L0 + Lint (4.1)

where

L0 = 1
2
∂µφ ∂

µφ− 1
2
m2φ2 (4.2)

is the free Lagrangian density discussed before. The Hamiltonian density of the interaction

is related to Lint simply by

Hint = −Lint, (4.3)

which follows from its definition. We shall leave the details of Lint unspecified for the

moment. What we will be concerned with mostly are scattering processes, in which two

initial particles with momenta p1 and p2 scatter, thereby producing a number of particles

in the final state, characterised by momenta k1, . . . ,kn. This is schematically shown in

Fig. 4. Our task is to find a description of such a scattering process in terms of the

underlying quantum field theory.



p1

p2

k1

k2

kn

Figure 4: Scattering of two initial particles with momenta p1 and p2 into n particles with
momenta k1, . . . ,kn in the final state.

4.1 The S-matrix

The timescales over which interactions happen are extremely short. The scattering (in-

teraction) process takes place during a short interval around some particular time t with

−∞ ¿ t ¿ ∞. Long before t, the incoming particles evolve independently and freely.

They are described by a field operator φin defined through

lim
t→−∞

φ(x) = φin(x), (4.4)

which acts on a corresponding basis of |in〉 states. Long after the collision the particles

in the final state evolve again like in the free theory, and the corresponding operator is

lim
t→+∞

φ(x) = φout(x), (4.5)

acting on states |out〉. The fields φin, φout are the asymptotic limits of the Heisenberg

operator φ. They both satisfy the free Klein-Gordon equation, i.e.

(¤+m2)φin(x) = 0, (¤+m2)φout(x) = 0. (4.6)

Operators describing free fields can be expressed as a superposition of plane waves (see

Eq. (3.6)). Thus, for φin we have

φin(x) =

∫
d3k

(2π)3 2E(k)

(
eik·xa†in(k) + e−ik·xain(k)

)
, (4.7)

with an entirely analogous expression for φout(x). Note that the operators a† and a also

carry subscripts “in” and “out”.

We can now use the creation operators a†in and a†out to build up Fock states from the

vacuum. For instance

a†in(p1) a
†
in(p2)|0〉 = |p1,p2; in〉, (4.8)

a†out(k1) · · · a†out(kn)|0〉 = |k1, . . . ,kn; out〉. (4.9)

We must now distinguish between Fock states generated by a†in and a†out, and therefore we

have labelled the Fock states accordingly. In eqs. (4.8) and (4.9) we have assumed that

there is a stable and unique vacuum state:

|0〉 = |0; in〉 = |0; out〉. (4.10)



Mathematically speaking, the a†in’s and a†out’s generate two different bases of the Fock

space. Since the physics that we want to describe must be independent of the choice of

basis, expectation values expressed in terms of “in” and “out” operators and states must

satisfy

〈in|φin(x) |in〉 = 〈out|φout(x) |out〉 . (4.11)

Here |in〉 and |out〉 denote generic “in” and “out” states. We can relate the two bases by

introducing a unitary operator S such that

φin(x) = S φout(x)S
† (4.12)

|in〉 = S |out〉 , |out〉 = S† |in〉 , S†S = 1. (4.13)

S is called the S-matrix or S-operator. Note that the plane wave solutions of φin and φout

also imply that

a†in = S a†out S
†, âin = S âout S

†. (4.14)

By comparing “in” with “out” states one can extract information about the interaction –

this is the very essence of detector experiments, where one tries to infer the nature of the

interaction by studying the products of the scattering of particles that have been collided

with known energies. As we will see below, this information is contained in the elements

of the S-matrix.

By contrast, in the absence of any interaction, i.e. for Lint = 0 the distinction between

φin and φout is not necessary. They can thus be identified, and then the relation between

different bases of the Fock space becomes trivial, S = 1, as one would expect.

What we are ultimately interested in are transition amplitudes between an initial

state i of, say, two particles of momenta p1,p2, and a final state f , for instance n particles

of unequal momenta. The transition amplitude is then given by

〈f, out| i, in〉 = 〈f, out|S |i, out〉 = 〈f, in|S |i, in〉 ≡ Sfi. (4.15)

The S-matrix element Sfi therefore describes the transition amplitude for the scattering

process in question. The scattering cross section, which is a measurable quantity, is then

proportional to |Sfi|2. All information about the scattering is thus encoded in the S-

matrix, which must therefore be closely related to the interaction Hamiltonian density

Hint. However, before we try to derive the relation between S and Hint we have to take a

slight detour.

4.2 More on time evolution: Dirac picture

The operators φ(x, t) and π(x, t) which we have encountered are Heisenberg fields and

thus time-dependent. The state vectors are time-independent in the sense that they do

not satisfy a non-trivial equation of motion. Nevertheless, state vectors in the Heisenberg

picture can carry a time label. For instance, the “in”-states of the previous subsection are

defined at t = −∞. The relation of the Heisenberg operator φH(x) with its counterpart

φS in the Schrödinger picture is given by

φH(x, t) = eiHt φS e−iHt, H = H0 +Hint, (4.16)



Note that this relation involves the full Hamiltonian H = H0 + Hint in the interacting

theory. We have so far found solutions to the Klein-Gordon equation in the free theory,

and so we know how to handle time evolution in this case. However, in the interacting

case the Klein-Gordon equation has an extra term,

(¤+m2)φ(x) +
δVint(φ)

δφ
= 0, (4.17)

due to the potential of the interactions. Apart from very special cases of this potential, the

equation cannot be solved anymore in closed form, and thus we no longer know the time

evolution. It is therefore useful to introduce a new quantum picture for the interacting

theory, in which the time dependence is governed by H0 only. This is the so-called Dirac

or Interaction picture. The relation between fields in the Interaction picture, φI , and in

the Schrödinger picture, φS, is given by

φI(x, t) = eiH0t φS e−iH0t. (4.18)

At t = −∞ the interaction vanishes, i.e. Hint = 0, and hence the fields in the Interaction

and Heisenberg pictures are identical, i.e. φH(x, t) = φI(x, t) for t → −∞. The relation

between φH and φI can be worked out easily:

φH(x, t) = eiHt φS e−iHt

= eiHt e−iH0t eiH0tφS e−iH0t

︸ ︷︷ ︸
φI(x,t)

eiH0t e−iHt

= U−1(t)φI(x, t)U(t), (4.19)

where we have introduced the unitary operator U(t)

U(t) = eiH0t e−iHt, U †U = 1. (4.20)

The field φH(x, t) contains the information about the interaction, since it evolves over

time with the full Hamiltonian. In order to describe the “in” and “out” field operators,

we can now make the following identifications:

t→ −∞ : φin(x, t) = φI(x, t) = φH(x, t), (4.21)

t→ +∞ : φout(x, t) = φH(x, t). (4.22)

Furthermore, since the fields φI evolve over time with the free Hamiltonian H0, they

always act in the basis of “in” vectors, such that

φin(x, t) = φI(x, t), −∞ < t <∞. (4.23)

The relation between φI and φH at any time t is given by

φI(x, t) = U(t)φH(x, t)U−1(t). (4.24)

As t→ ∞ the identifications of eqs. (4.22) and (4.23) yield

φin = U(∞)φout U
†(∞). (4.25)



From the definition of the S-matrix, Eq. (4.12) we then read off that

lim
t→∞

U(t) = S. (4.26)

We have thus derived a formal expression for the S-matrix in terms of the operator U(t),

which tells us how operators and state vectors deviate from the free theory at time t,

measured relative to t0 = −∞, i.e. long before the interaction process.

An important boundary condition for U(t) is

lim
t→−∞

U(t) = 1. (4.27)

What we mean here is the following: the operator U actually describes the evolution

relative to some initial time t0, which we will normally suppress, i.e. we write U(t)

instead of U(t, t0). We regard t0 merely as a time label and fix it at −∞, where the

interaction vanishes. Equation (4.27) then simply states that U becomes unity as t→ t0,

which means that in this limit there is no distinction between Heisenberg and Dirac fields.

Using the definition of U(t), Eq. (4.20), it is an easy exercise to derive the equation

of motion for U(t):

i
d

dt
U(t) = Hint(t)U(t), Hint(t) = eiH0tHint e−iH0t. (4.28)

The time-dependent operator Hint(t) is defined in the interaction picture, and depends

on the fields φin, πin in the “in” basis. Let us now solve the equation of motion for U(t)

with the boundary condition lim
t→−∞

U(t) = 1. Integrating Eq. (4.28) gives

∫ t

−∞

d

dt1
U(t1) dt1 = −i

∫ t

−∞

Hint(t1)U(t1) dt1

U(t) − U(−∞) = −i
∫ t

−∞

Hint(t1)U(t1) dt1

⇒ U(t) = 1 − i

∫ t

−∞

Hint(t1)U(t1) dt1. (4.29)

The rhs. still depends on U , but we can substitute our new expression for U(t) into the

integrand, which gives

U(t) = 1 − i

∫ t

−∞

Hint(t1)

{
1 − i

∫ t1

−∞

Hint(t2)U(t2) dt2

}
dt1

= 1 − i

∫ t

−∞

Hint(t1)dt1 −
∫ t

−∞

dt1Hint(t1)

∫ t1

−∞

dt2Hint(t2)U(t2), (4.30)

where t2 < t1 < t. This procedure can be iterated further, so that the nth term in the

sum is

(−i)n

∫ t

−∞

dt1

∫ t1

−∞

dt2 · · ·
∫ tn−1

−∞

dtnHint(t1)Hint(t2) · · ·Hint(tn). (4.31)

This iterative solution could be written in much more compact form, were it not for the

fact that the upper integration bounds were all different, and that the ordering tn <



tn−1 < . . . < t1 < t had to be obeyed. Time ordering is an important issue, since one

has to ensure that the interaction Hamiltonians act at the proper time, thereby ensuring

the causality of the theory. By introducing the time-ordered product of operators, one

can use a compact notation, such that the resulting expressions still obey causality. The

time-ordered product of two fields φ(t1) and φ(t2) is defined as

T {φ(t1)φ(t2)} =

{
φ(t1)φ(t2) t1 > t2
φ(t2)φ(t1) t1 < t2

≡ θ(t1 − t2)φ(t1)φ(t2) + θ(t2 − t1)φ(t2)φ(t1), (4.32)

where θ denotes the step function. The generalisation to products of n operators is

obvious. Using time ordering for the nth term of Eq. (4.31) we obtain

(−i)n

n!

n∏

i=1

∫ t

−∞

dti T {Hint(t1)Hint(t2) · · ·Hint(tn)} , (4.33)

and since this looks like the nth term in the series expansion of an exponential, we can

finally rewrite the solution for U(t) in compact form as

U(t) = T exp

{
−i
∫ t

−∞

Hint(t
′) dt′

}
, (4.34)

where the “T” in front ensures the correct time ordering.

4.3 S-matrix and Green’s functions

The S-matrix, which relates the “in” and “out” fields before and after the scattering

process, can be written as

S = 1 + iT, (4.35)

where T is commonly called the T -matrix. The fact that S contains the unit operator

means that also the case where none of the particles scatter is encoded in S. On the other

hand, the non-trivial case is described by the T -matrix, and this is what we are interested

in. However, the S-matrix is not easily usable for practical calculations. As it stands

now, it is a rather abstract concept, and we still have to relate it to the field operators

appearing in our Lagrangian. This is achieved by establishing a general relation between

S-matrix elements and n-point Green’s functions,

Gn(x1, . . . xn) = 〈0|T (φ(x1) . . . φ(xn))|0〉. (4.36)

Once this step is completed, then for any given Lagrange density we may compute the

Green’s functions of the fields, which will in turn give us the S-matrix elements providing

the link to experiment. In order to achieve this, we have to express the ”in/out”-states in

terms of creation operators a†in/out and the vacuum, then express the creation operators

by the fields φin/out, and finally use the time evolution to connect those with the fields φ

in our Lagrangian.



Let us consider again the scattering process depicted in Fig. 4. The S-matrix element

in this case is

Sfi =
〈
k1,k2, . . . ,kn; out

∣∣∣p1,p2; in
〉

=
〈
k1,k2, . . . ,kn; out

∣∣∣a†in(p1)
∣∣∣p2; in

〉
, (4.37)

where a†in is the creation operator pertaining to the “in” field φin. Our task is now to

express a†in in terms of φin, and repeat this procedure for all other momenta labelling our

Fock states.

The following identities will prove useful

a†(p) = i

∫
d3x

{(
∂0 e−iq·x

)
φ(x) − e−iq·x (∂0φ(x))

}

≡ −i
∫
d3x e−iq·x

←→

∂0 φ(x), (4.38)

â(p) = −i
∫
d3x

{(
∂0 eiq·x

)
φ(x) − eiq·x (∂0φ(x))

}

≡ i

∫
d3x eiq·x

←→

∂0 φ(x). (4.39)

The S-matrix element can then be rewritten as

Sfi = −i
∫
d3x1 e−ip1·x1

←→

∂0

〈
k1, . . . ,kn; out

∣∣∣φin(x1)
∣∣∣p2; in

〉

= −i lim
t1→−∞

∫
d3x1 e−ip1·x1

←→

∂0

〈
k1, . . . ,kn; out

∣∣∣φ(x1)
∣∣∣p2; in

〉
, (4.40)

where in the last line we have used Eq. (4.4) to replace φin by φ. We can now rewrite

limt1→−∞ using the following identity, which holds for an arbitrary, differentiable function

f(t), whose limit t→ ±∞ exists:

lim
t→−∞

f(t) = lim
t→+∞

f(t) −
∫ +∞

−∞

df

dt
dt. (4.41)

The S-matrix element then reads

Sfi = −i lim
t1→+∞

∫
d3x1 e−ip1·x1

←→

∂0

〈
k1, . . . ,kn; out

∣∣∣φ(x1)
∣∣∣p2; in

〉

+i

∫ +∞

−∞

dt1
∂

∂t1

{∫
d3x1 e−ip1·x1

←→

∂0

〈
k1, . . . ,kn; out

∣∣∣φ(x1)
∣∣∣p2; in

〉}
.(4.42)

The first term in this expression involves limt1→+∞ φ = φout, which gives rise to a contri-

bution

∝
〈
k1, . . . ,kn; out

∣∣∣a†out(p1)
∣∣∣p2; in

〉
. (4.43)

This is non-zero only if p1 is equal to one of k1, . . . ,kn. This, however, means that the

particle with momentum p1 does not scatter, and hence the first term does not contribute

to the T -matrix of Eq. (4.35). We are then left with the following expression for Sfi:

Sfi = −i
∫
d4x1

〈
k1, . . . ,kn; out

∣∣∣∂0

{(
∂0e
−ip1·x1

)
φ(x1) − e−ip1·x1 (∂0φ(x1))

} ∣∣∣p2; in
〉
.

(4.44)



The time derivatives in the integrand can be worked out:

∂0

{(
∂0e
−ip1·x1

)
φ(x1) − e−ip1·x1 (∂0φ(x1))

}

= − [E(p1)]
2 e−ip1·x1 φ(x1) − e−ip1·x1 ∂2

0φ(x1)

= −
{((

−∇2 +m2
)

e−ip1·x1

)
φ(x1) + e−ip1·x1 ∂2

0 φ(x1)
}
, (4.45)

where we have used that −∇2e−ip1·x1 = p2
1 e−ip1·x1 . For the S-matrix element one obtains

Sfi = i

∫
d4x1 e−ip1·x1

〈
k1, . . . ,kn; out

∣∣∣
(
∂2

0 −∇2 +m2
)
φ(x1)

∣∣∣p2; in
〉

= i

∫
d4x1 e−ip1·x1

(
¤x1

+m2
) 〈

k1, . . . ,kn; out
∣∣∣φ(x1)

∣∣∣p2; in
〉
. (4.46)

What we have obtained after this rather lengthy step of algebra is an expression in which

the field operator is sandwiched between Fock states, one of which has been reduced to a

one-particle state. We can now successively eliminate all momentum variables from the

Fock states, by repeating the procedure for the momentum p2, as well as the n momenta

of the “out” state. The final expression for Sfi is

Sfi = (i)n+2

∫
d4x1

∫
d4x2

∫
d4y1 · · ·

∫
d4yn e(−ip1·x1−ip2·x2+ik1·y1+···+kn·yn)

×
(
¤x1

+m2
) (
¤x2

+m2
) (
¤y1

+m2
)
· · ·
(
¤yn

+m2
)

×
〈
0; out

∣∣∣T{φ(y1) · · ·φ(yn)φ(x1)φ(x2)}
∣∣∣0; in

〉
, (4.47)

where the time-ordering inside the vacuum expectation value (VEV) ensures that causality

is obeyed. The above expression is known as the Lehmann-Symanzik-Zimmermann (LSZ)

reduction formula. It relates the formal definition of the scattering amplitude to a vacuum

expectation value of time-ordered fields. Since the vacuum is uniquely the same for

”in/out”, the VEV in the LSZ formula for the scattering of two initial particles into n

particles in the final state is recognised as the (n+ 2)-point Green’s function:

Gn+2(y1, y2, . . . , yn, x1, x2) =
〈
0
∣∣∣T{φ(y1) · · ·φ(yn)φ(x1)φ(x2)}

∣∣∣0
〉
. (4.48)

You will note that we still have not calculated or evaluated anything, but merely rewritten

the expression for the scattering matrix elements. Nevertheless, the LSZ formula is of

tremendous importance and a central piece of QFT. It provides the link between fields in

the Lagrangian and the scattering amplitude S2
fi, which yields the cross section, measurable

in an experiment. Up to here no assumptions or approximations have been made, so this

connection between physics and formalism is rather tight. It also illustrates a profound

phenomenon of QFT and particle physics: the scattering properties of particles, in other

words their interactions, are encoded in the vacuum structure, i.e. the vacuum is non-

trivial!

4.4 How to compute Green’s functions

Of course, in order to calculate cross sections, we need to compute the Green’s functions.

Alas, for any physically interesting and interacting theory this cannot be done exactly,



contrary to the free theory discussed earlier. Instead, approximation methods have to

be used in order to simplify the calculation, while hopefully still giving reliable results.

Or one reformulates the entire QFT as a lattice field theory, which in principle allows to

compute Green’s functions without any approximations (in practice this still turns out

to be a difficult task for physically relevant systems). This is what many theorists do for

a living. But the formalism stands, and if there are discrepancies between theory and

experiments, one ”only” needs to check the accuracy with which the Green’s functions

have been calculated or measured, before approving or discarding a particular Lagrangian.

In the next section we shall discuss how to compute the Green’s function of scalar

field theory in perturbation theory. Before we can tackle the actual computation, we must

take a further step. Let us consider the n-point Green’s function

Gn(x1, . . . , xn) = 〈0 |T{φ(x1) · · ·φ(xn)}| 0〉 . (4.49)

The fields φ which appear in this expression are Heisenberg fields, whose time evolution

is governed by the full Hamiltonian H0 +Hint. In particular, the φ’s are not the φin’s. We

know how to handle the latter, because they correspond to a free field theory, but not the

former, whose time evolution is governed by the interacting theory, whose solutions we

do not know. Let us thus start to isolate the dependence of the fields on the interaction

Hamiltonian. Recall the relation between the Heisenberg fields φ(t) and the “in”-fields2

φ(t) = U−1(t)φin(t)U(t). (4.50)

We now assume that the fields are properly time-ordered, i.e. t1 > t2 > . . . > tn, so

that we can forget about writing T (· · ·) everywhere. After inserting Eq. (4.50) into the

definition of Gn one obtains

Gn = 〈0|U−1(t1)φin(t1)U(t1)U
−1(t2)φin(t2)U(t2) · · ·

× U−1(tn)φin(tn)U(tn)|0〉. (4.51)

Now we introduce another time label t such that t À t1 and −t ¿ t1. For the n-point

function we now obtain

Gn =
〈
0
∣∣∣U−1(t)

{
U(t)U−1(t1)φin(t1)U(t1)U

−1(t2)φin(t2)U(t2) · · ·

× U−1(tn)φin(tn)U(tn)U−1(−t)
}
U(−t)

∣∣∣0
〉
. (4.52)

The expression in curly braces is now time-ordered by construction. An important obser-

vation at this point is that it involves pairs of U and its inverse, for instance

U(t)U−1(t1) ≡ U(t, t1). (4.53)

One can easily convince oneself that U(t, t1) provides the net time evolution from t1 to t.

We can now write Gn as

Gn =
〈
0
∣∣∣U−1(t)T

{
φin(t1) · · ·φin(tn)U(t, t1)U(t1, t2) · · ·U(tn,−t)︸ ︷︷ ︸

U(t,−t)

}
U(−t)

∣∣∣0
〉
. (4.54)

2Here and in the following we suppress the spatial argument of the fields for the sake of brevity.



Let us now take t → ∞. The relation between U(t) and the S-matrix Eq. (4.26), as well

as the boundary condition Eq. (4.27) tell us that

lim
t→∞

U(−t) = 1, lim
t→∞

U(t,−t) = S, (4.55)

which can be inserted into the above expression. We still have to work out the meaning

of 〈0|U−1(∞) in the expression for Gn. In a paper by Gell-Mann and Low it was argued

that the time evolution operator must leave the vacuum invariant (up to a phase), which

justifies the ansatz

〈0|U−1(∞) = K〈0|, (4.56)

with K being the phase. Multiplying this relation with |0〉 from the right gives

〈0|U−1(∞)|0〉 = K〈0|0〉 = K. (4.57)

Furthermore, Gell-Mann and Low showed that

〈0|U−1(∞)|0〉 =
1

〈0|U(∞)|0〉 , (4.58)

which implies

K =
1

〈0|S|0〉 . (4.59)

After inserting all these relations into the expression for Gn we obtain

Gn(x1, . . . , xn) =
〈0|T {φin(x1) · · ·φin(xn)S} |0〉

〈0|S|0〉 . (4.60)

The S-matrix is given by

S = T exp

{
−i
∫ +∞

−∞

Hint(t) dt

}
, Hint = Hint(φin, πin), (4.61)

and thus we have finally succeeded in expressing the n-point Green’s function exclusively

in terms of the “in”-fields. This completes the derivation of a relation between the general

definition of the scattering amplitude Sfi and the VEV of time-ordered “in”-fields. The

link between the scattering amplitude and the underlying field theory is provided by the

n-point Green’s function.

Problems

4.1 Using the definition U(t) = eiH0t e−iHt, derive the evolution equation for U(t):

i
d

dt
U(t) = Hint(t)U(t),

where

Hint(t) = eiH0tHint e
−iH0t.



4.2 Given that φin is a free field, obeying the Heisenberg equation of motion

iφ̇in = [H0(φin, πin), φin] ,

show that φout is also a free field, which obeys

iφ̇out = [H0(φout, πout), φout] .

[Hint: use φout = S†φinS and πout = S†πinS. Keep in mind that the S-matrix has

no explicit time dependence.]

5 Perturbation Theory

In this section we are going to calculate the Green’s functions of scalar quantum field

theory explicitly. We will specify the interaction Lagrangian in detail and use an approx-

imation known as perturbation theory. At the end we will derive a set of rules, which

represent a systematic prescription for the calculation of Green’s functions, and can be

easily generalised to apply to other, more complicated field theories. These are the famous

Feynman rules.

We start by making a definite choice for the interaction Lagrangian Lint. Although

one may think of many different expressions for Lint, one has to obey some basic principles:

firstly, Lint must be chosen such that the potential it generates is bounded from below

– otherwise the system has no ground state. Secondly, our interacting theory should be

renormalisable. Despite being of great importance, the second issue will not be addressed

in these lectures. The requirement of renormalisability arises because the non-trivial vac-

uum, much like a medium, interacts with particles to modify their properties. Moreover,

if one computes quantities like the energy or charge of a particle, one typically obtains

a divergent result3. There are classes of quantum field theories, called renormalisable,

in which these divergences can be removed by suitable redefinitions of the fields and the

parameters (masses and coupling constants).

For our theory of a real scalar field in four space-time dimensions, it turns out that

the only interaction term which leads to a renormalisable theory must be quartic in the

fields. Thus we choose

Lint = − λ

4!
φ4(x), (5.1)

where the coupling constant λ describes the strength of the interaction between the scalar

fields, much like, say, the electric charge describing the strength of the interaction between

photons and electrons. The full Lagrangian of the theory then reads

L = L0 + Lint =
1

2
(∂µφ)2 − 1

2
m2φ2 − λ

4!
φ4, (5.2)

3This is despite the subtraction of the vacuum energy discussed earlier.



and the explicit expressions for the interaction Hamiltonian and the S-matrix are

Hint = −Lint, Hint =
λ

4!

∫
d3xφ4

in(x, t)

S = T exp

{
−i λ

4!

∫
d4xφ4

in(x)

}
. (5.3)

The n-point Green’s function is

Gn(x1, . . . , xn)

=

∞∑

r=0

(
− iλ

4!

)r
1

r!

〈
0

∣∣∣∣T
{
φin(x1) · · ·φin(xn)

(∫
d4y φ4

in(y)

)r}∣∣∣∣ 0
〉

∞∑

r=0

(
− iλ

4!

)r
1

r!

〈
0

∣∣∣∣T
(∫

d4y φ4
in(y)

)r∣∣∣∣ 0
〉 . (5.4)

This expression cannot be dealt with as it stands. In order to evaluate it we must expand

Gn in powers of the coupling λ and truncate the series after a finite number of terms. This

only makes sense if λ is sufficiently small. In other words, the interaction Lagrangian must

act as a small perturbation on the system. As a consequence, the procedure of expanding

Green’s functions in powers of the coupling is referred to as perturbation theory.

5.1 Wick’s Theorem

The n-point Green’s function in Eq. (5.4) involves the time-ordered product over at least

n fields. There is a method to express VEV’s of n fields, i.e. 〈0|T {φin(x1) · · ·φin(xn)} |0〉
in terms of VEV’s involving two fields only. This is known as Wick’s theorem.

Let us for the moment ignore the subscript “in” and return to the definition of

normal-ordered fields. The normal-ordered product : φ(x1)φ(x2) : differs from φ(x1)φ(x2)

by the vacuum expectation value, i.e.

φ(x1)φ(x2) = : φ(x1)φ(x2) : +〈0|φ(x1)φ(x2)|0〉. (5.5)

We are now going to combine normal-ordered products with time ordering. The time-

ordered product T{φ(x1)φ(x2)} is given by

T{φ(x1)φ(x2)} = φ(x1)φ(x2)θ(t1 − t2) + φ(x2)φ(x1)θ(t2 − t1)

= : φ(x1)φ(x2) :
(
θ(t1 − t2) + θ(t2 − t1)

)

+〈0|φ(x1)φ(x2)θ(t1 − t2) + φ(x2)φ(x1)θ(t2 − t1)|0〉. (5.6)

Here we have used the important observation that

: φ(x1)φ(x2) : = : φ(x2)φ(x1) :, (5.7)

which means that normal-ordered products of fields are automatically time-ordered.4

Equation (5.6) is Wick’s theorem for the case of two fields:

T{φ(x1)φ(x2)} = : φ(x1)φ(x2) : +〈0|T {φ(x1)φ(x2)} |0〉. (5.8)

4The reverse is, however, not true!



For the case of three fields, Wick’s theorem yields

T{φ(x1)φ(x2)φ(x3)} = : φ(x1)φ(x2)φ(x3) : + : φ(x1) : 〈0|T{φ(x2)φ(x3)}|0〉
+ : φ(x2) : 〈0|T{φ(x1)φ(x3)}|0〉+ : φ(x3) : 〈0|T{φ(x1)φ(x2)}|0〉 (5.9)

At this point the general pattern becomes clear: any time-ordered product of fields is

equal to its normal-ordered version plus terms in which pairs of fields are removed from the

normal-ordered product and sandwiched between the vacuum to form 2-point functions.

Then one sums over all permutations. Without proof we give the expression for the

general case of n fields (n even):

T{φ(x1) · · ·φ(xn)} =

: φ(x1) · · ·φ(xn) :

+ : φ(x1) · · · φ̂(xi) · · · φ̂(xj) · · ·φ(xn) : 〈0|T{φ(xi)φ(xj)}|0〉 + perms.

+ : φ(x1) · · · φ̂(xi) · · · φ̂(xj) · · · φ̂(xk) · · · φ̂(xl) · · ·φ(xn) :

× 〈0|T{φ(xi)φ(xj)}|0〉〈0|T{φ(xk)φ(xl)}|0〉 + perms.

+ . . .+

+〈0|T{φ(x1)φ(x2)}|0〉〈0|T{φ(x3)φ(x4)}|0〉 · · · 〈0|T{φ(xn−1)φ(xn)}|0〉
+ perms.. (5.10)

The symbol φ̂(xi) indicates that φ(xi) has been removed from the normal-ordered product.

Let us now go back to 〈0|T{φ(x1) · · ·φ(xn)}|0〉. If we insert Wick’s theorem, then we

find that only the contribution in the last line of Eq. (5.10) survives: by definition the VEV

of a normal-ordered product of fields vanishes, and it is precisely the last line of Wick’s

theorem in which no normal-ordered products are left. The only surviving contribution

is that in which all fields have been paired or “contracted”. Sometimes a contraction is

represented by the notation:

φ (xi)φ︸ ︷︷ ︸(xj) ≡ 〈0|T{φ(xi)φ(xj)}|0〉, (5.11)

i.e. the pair of fields which is contracted is joined by the braces. Wick’s theorem can now

be rephrased as

〈0|T{φ(x1) · · ·φ(xn)}|0〉 = sum of all possible contractions of n fields. (5.12)

Let us look at a few examples. The first is the 4-point function

〈0|T{φ(x1)φ(x2)φ(x3)φ(x4)}|0〉 = φ (x1)φ︸ ︷︷ ︸(x2)φ (x3)φ︸ ︷︷ ︸(x4)

+φ (x1)φ
︷ ︸︸ ︷
(x2)φ(x3)φ︸ ︷︷ ︸(x4) + φ(x1)φ

︷ ︸︸ ︷
(x2)φ(x3)φ(x4)︸ ︷︷ ︸ . (5.13)

The second example is again a 4-point function, where two of the fields are also normal-

ordered:

〈0|T{φ(x1)φ(x2) : φ(x3)φ(x4) :}|0〉 = φ (x1)φ︸ ︷︷ ︸(x2) : φ (x3)φ︸ ︷︷ ︸(x4) :

+φ (x1)φ
︷ ︸︸ ︷
(x2) : φ(x3)φ︸ ︷︷ ︸(x4) : +φ(x1)φ

︷ ︸︸ ︷
(x2) : φ(x3)φ(x4) :︸ ︷︷ ︸ . (5.14)



In this example, though, the contraction of : φ(x3)φ(x4) : vanishes by construction, so only

the last two terms survive! As a general rule, contractions which only involve fields inside a

normal-ordered product vanish. Such contractions contribute only to the vacuum. Normal

ordering can therefore simplify the calculation of Green’s functions quite considerably, as

we shall see explicitly below.

5.2 The Feynman propagator

Using Wick’s Theorem one can relate any n-point Green’s functions to an expression

involving only 2-point functions. Let us have a closer look at

G2(x, y) = 〈0|T{φin(x)φin(y)}|0〉. (5.15)

We can now insert the solution for φ in terms of â and â†. If we assume tx > ty then

G2(x, y) can be written as

G2(x, y) =

∫
d3p d3q

(2π)6 4E(p)E(q)

×
〈
0
∣∣(â†(p) eip·x + â(p) e−ip·x

) (
â†(q) eiq·y + â(q) e−iq·y

)∣∣ 0
〉

=

∫
d3p d3q

(2π)6 4E(p)E(q)
e−ip·x+iq·y

〈
0
∣∣â(p)â†(q)

∣∣ 0
〉
. (5.16)

This shows that G2 can be interpreted as the amplitude for a meson which is created at

y and destroyed again at point x. We can now replace â(p)â†(q) by its commutator:

G2(x, y) =

∫
d3p d3q

(2π)6 4E(p)E(q)
e−ip·x+iq·y

〈
0
∣∣[â(p), â†(q)

]∣∣ 0
〉

=

∫
d3p

(2π)3 2E(p)
e−ip·(x−y), (5.17)

and the general result, after restoring time-ordering, reads

G2(x, y) =

∫
d3p

(2π)3 2E(p)

(
e−ip·(x−y)θ(tx − ty) + eip·(x−y)θ(ty − tx)

)
. (5.18)

Furthermore, using contour integration one can show that this expression can be rewritten

as a 4-dimensional integral

G2(x, y) = i

∫
d4p

(2π)4

e−ip·(x−y)

p2 −m2 + iε
, (5.19)

where ε is a small parameter which ensures that G2 does not develop a pole. This cal-

culation has established that G2(x, y) actually depends only on the difference (x − y).

Equation (5.19) is called the Feynman propagator GF (x− y):

GF (x− y) ≡ 〈0|T{φ(x)φ(y)}|0〉 = i

∫
d4p

(2π)4

e−ip·(x−y)

p2 −m2 + iε
. (5.20)

The Feynman propagator is a Green’s function of the Klein-Gordon equation, i.e. it

satisfies (
¤x +m2

)
GF (x− y) = −iδ4(x− y), (5.21)

and describes the propagation of a meson between the space-time points x and y.



p1

p2

k1

k2

Figure 5: Scattering of two initial particles with momenta p1 and p2 into 2 particles with
momenta k1 and k2.

5.3 Two-particle scattering to O(λ)

Let us now consider a scattering process in which two incoming particles with momenta

p1 and p2 scatter into two outgoing ones with momenta k1 and k2, as shown in Fig. 5.

The S-matrix element in this case is

Sfi = 〈k1,k2; out|p1,p2; in〉
= 〈k1,k2; in|S|p1,p2; in〉, (5.22)

and S = 1 + iT . The LSZ formula Eq. (4.47) tells us that we must compute G4 in order

to obtain Sfi. Let us work out G4 in powers of λ using Wick’s theorem. To make life

simpler, we shall introduce normal ordering into the definition of S, i.e.

S = T exp

{
−i λ

4!

∫
d4x : φ4

in(x) :

}
(5.23)

Suppressing the subscripts “in” from now on, the expression we have to evaluate order by

order in λ is

Gn(x1, . . . , xn) (5.24)

=

∞∑

r=0

(
− iλ

4!

)r
1

r!

〈
0

∣∣∣∣T
{
φ(x1)φ(x2)φ(x3)φ(x4)

(∫
d4y : φ4(y) :

)r}∣∣∣∣ 0
〉

∞∑

r=0

(
− iλ

4!

)r
1

r!

〈
0

∣∣∣∣T
(∫

d4y : φ4(y) :

)r∣∣∣∣ 0
〉 .

Starting with the denominator, we note that for r = 0 one finds

r = 0 : denominator = 1. (5.25)

If r = 1, then the expression in the denominator only involves fields which are normal-

ordered. Following the discussion at the end of section 5.1 we conclude that these contri-

butions must vanish, hence

r = 1 : denominator = 0. (5.26)

The contribution for r = 2, however, is non-zero. But then the case of r = 2 corresponds

already to O(λ2), which is higher than the order which we are working to. Therefore

denominator = 1 to order λ. (5.27)



Turning now to the numerator, we start with r = 0 and apply Wick’s theorem, which

gives

r = 0 : 〈0|T{φ(x1)φ(x2)φ(x3)φ(x4)}|0〉
= GF (x1 − x2)GF (x3 − x4) +GF (x1 − x3)GF (x2 − x4)

+GF (x1 − x4)GF (x2 − x3), (5.28)

which can be graphically represented as

x3

x4

x1

x2

+

x3

x4

x1

x2

+

x3

x4

x1

x2

But this is the same answer as if we had set λ = 0, so r = 0 in the numerator does not

describe scattering and is hence not a contribution to the T -matrix.

For r = 1 in the numerator we have to evaluate

r = 1 : − iλ
4!

〈
0

∣∣∣∣T
{
φ(x1)φ(x2)φ(x3)φ(x4) :

∫
d4y φ4(y) :

}∣∣∣∣ 0
〉

= − iλ
4!

∫
d4y 4! GF (x1 − y)GF (x2 − y)GF (x3 − y)GF (x4 − y), (5.29)

where we have taken into account that contractions involving two fields inside : · · · : vanish.

The factor 4! inside the integrand is a combinatorial factor: it is equal to the number of

permutations which must be summed over according to Wick’s theorem and cancels the

4! in the denominator of the interaction Lagrangian. Graphically this contribution is

represented by

x3

x4

x1

x2

y
−iλ

∫
d4y

where the integration over y denotes the sum over all possible locations of the interaction

point y. Without normal ordering we would have encountered the following contributions

for r = 1:

x3

x4

x1

x2

+

x3

x4

x1

x2

+ . . .

Such contributions are corrections to the vacuum and are cancelled by the denomina-

tor. This demonstrates how normal ordering simplifies the calculation by automatically

subtracting terms which do not contribute to the actual scattering process.



To summarise, the final answer for the scattering amplitude to O(λ) is given by

Eq. (5.29).

5.4 Graphical representation of the Wick expansion: Feynman rules

We have already encountered the graphical representation of the expansion of Green’s

functions in perturbation theory after applying Wick’s theorem. It is possible to formulate

a simple set of rules which allow to draw the graphs directly without using Wick’s theorem

and to write down the corresponding algebraic expressions.

We again consider a neutral scalar field whose Lagrangian is

L =
1

2
∂µ φ∂

µφ− 1

2
m2φ2 − λ

4!
φ4. (5.30)

Suppose now that we want to compute the O(λm) contribution to the n-point Green’s

function Gn(x1, . . . , xn). This is achieved by going through the following steps:

(1) Draw all distinct diagrams with n external lines and m 4-fold vertices:

• Draw n dots and label them x1, . . . , xn (external points)

• Draw m dots and label them y1, . . . , ym (vertices)

• Join the dots according to the following rules:

– only one line emanates from each xi

– exactly four lines run into each yj

– the resulting diagram must be connected, i.e. there must be a continuous

path between any two points.

(2) Assign a factor − iλ
4!

∫
d4yi to the vertex at yi

(3) Assign a factor GF (xi − yj) to the line joining xi and yj

(4) Multiply by the number of contractions C from the Wick expansion which lead to

the same diagram.

These are the Feynman rules for scalar field theory in position space.

Let us look at an example, namely the 2-point function. According to the Feynman

rules the contributions up to order λ2 are as follows:

O(1): x1 x2
= GF (x1 − x2)

O(λ):
x1 x2y

“tadpole diagram”;
(cancelled by normal ordering)



O(λ2):

x1 x2y1

y2 “tadpole diagram”;
(cancelled by normal ordering)

O(λ2): x1 x2y1 y2

= C
(
− iλ

4!

)2 ∫
d4y1d

4y2 GF (x1 − y1) [GF (y1 − y2)]
3GF (y2 − x2)

The combinatorial factor for this contribution is worked out as C = 4 · 4!. Note that

the same graph, but with the positions of y1 and y2 interchanged is topologically distinct.

Numerically it has the same value as the above graph, and so the corresponding expression

has to be multiplied by a factor 2.

Another contribution at order λ2 is

O(λ2):

x1 x2

y1 y2 vacuum contribution;

not connected

This contribution must be discarded, since not all of the points are connected via a

continuous line.

Let us end this discussion with a small remark on the tadpole diagrams encountered

above. These contributions to the 2-point function are cancelled if the interaction term

is normal-ordered. However, unlike the case of the 4-point function, the corresponding

diagrams satisfy the Feynman rules listed above. In particular, the diagrams are connected

and are not simply vacuum contributions. They must hence be included in the expression

for the 2-point function.

5.5 Feynman rules in momentum space

It is often simpler to work in momentum space, and hence we will discuss the derivation

of Feynman rules in this case. If one works in momentum space, the Green’s functions

are related to those in position space by a Fourier transform

Gn(x1, . . . , xn) =

∫
d4p1

(2π)4
· · ·
∫

d4pn

(2π)4
eip1·x1+...+ipn·xn G̃n(p1, . . . , pn). (5.31)

The Feynman rules then serve to compute the Green’s function G̃n(p1, . . . , pn) order by

order in the coupling.

In every scattering process the overall momentum must be conserved, and hence

n∑

i=1

pi = 0. (5.32)



This can be incorporated into the definition of the momentum space Green’s function one

is trying to compute:

G̃n(p1, . . . , pn) = (2π)4δ4

(
n∑

i=1

pi

)
Gn(p1, . . . , pn). (5.33)

Here we won’t be concerned with the exact derivation of the momentum space Feynman

rules, but only list them as a recipe.

Feynman rules (momentum space)

(1) Draw all distinct diagrams with n external lines and m 4-fold vertices:

• Assign momenta p1, . . . , pn to the external lines

• Assign momenta kj to the internal lines

(2) Assign to each external line a factor

i

p2
k −m2 + iε

(3) Assign to each internal line a factor

∫
d4kj

(2π)4

i

k2
j −m2 + iε

(4) Each vertex contributes a factor

− iλ
4!

(2π)4δ4
(∑

momenta
)
,

(the delta function ensures that momentum is conserved at each vertex).

(5) Multiply by the combinatorial factor C, which is the number of contractions leading

to the same momentum space diagram (note that C may be different from the

combinatorial factor for the same diagram considered in position space!)

5.6 S-matrix and truncated Green’s functions

The final topic in these lectures is the derivation of a simple relation between the S-

matrix element and a particular momentum space Green’s function, which has its external

legs amputated: the so-called truncated Green’s function. This further simplifies the

calculation of scattering amplitudes using Feynman rules.

Let us return to the LSZ formalism and consider the scattering of m initial particles

(momenta p1, . . . ,pm) into n final particles with momenta k1, . . . ,kn. The LSZ formula



tells us that the S-matrix element is given by
〈
k1, . . . ,kn; out

∣∣∣p1, . . . ,pm; in
〉

= (i)n+m

∫ m∏

i=1

d4xi

∫ n∏

j=1

d4yj exp

{
−i

m∑

i=1

pi · xi + i

n∑

j=1

kj · yj

}

×
m∏

i=1

(
¤xi

+m2
) n∏

j=1

(
¤yj

+m2
)
Gn+m(x1, . . . , xm, y1, . . . , yn). (5.34)

Let us have a closer look at Gn+m(x1, . . . , xm, y1, . . . , yn). As shown in Fig. 6 it can

be split into Feynman propagators, which connect the external points to the vertices at

z1, . . . , zn+m, and a remaining Green’s function Gn+m, according to

Gn+m =

∫
d4z1 · · · d4zn+mGF (x1 − z1) · · ·GF (yn − zn+m)Gn+m(z1, . . . , zn+m), (5.35)

where, perhaps for obvious reasons, Gn+m is called the truncated Green’s function.

x1

x2

x3

G

z1

z2

z3

Figure 6: The construction of the truncated Green’s function in position space.

Putting Eq. (5.35) back into the LSZ expression for the S-matrix element, and using

that (
¤xi

+m2
)
GF (xi − zi) = −iδ4(xi − zi) (5.36)

one obtains
〈
k1, . . . ,kn; out

∣∣∣p1, . . . ,pm; in
〉

= (i)n+m

∫ m∏

i=1

d4xi

∫ n∏

j=1

d4yj exp

{
−i

m∑

i=1

pi · xi + i

n∑

j=1

kj · yj

}
(5.37)

×(−i)n+m

∫
d4z1 · · · d4zn+m δ4(x1 − z1) · · · δ4(yn − zn+m)Gn+m(z1, . . . , zn+m).

After performing all the integrations over the zk’s, the final relation becomes
〈
k1, . . . ,kn; out

∣∣∣p1, . . . ,pm; in
〉

=

∫ m∏

i=1

d4xi

n∏

j=1

d4yj exp

{
−i

m∑

i=1

pi · xi + i

n∑

j=1

kj · yj

}

× Gn+m(x1, . . . , xm, y1, . . . , yn)

≡ Gn+m(p1, . . . , pm, k1, . . . , kn), (5.38)



where Gn+m is the truncated n+m-point function in momentum space. This result shows

that the scattering matrix element is directly given by the truncated Green’s function

in momentum space. The latter can be obtained using the Feynman rules without the

expression for the external legs.

Problems

5.1 Verify that

: φ(x1)φ(x2) : = : φ(x2)φ(x1) :

Hint: write φ = φ++φ−, where φ+ and φ− are creation and annihilation components

of φ.

5.2 Verify that

GF (x− y) = i

∫
d4p

(2π)4

e−ip·(x−y)

p2 −m2 + iε

is a Green’s function of (∂µ∂µ +m2) as ε→ 0 (where ∂µ ≡ ∂/∂xµ).

5.3 Find the expressions corresponding to the following momentum space Feynman di-

agrams

Integrate out all the δ-functions but do not perform the remaining integrals.

6 Concluding remarks

Although we have missed out on many important topics in Quantum Field Theory, we got

to the point where we established contact between the underlying formalism of Quantum

Field Theory and the Feynman rules, which are widely used in perturbative calculations.

The main concepts of the formulation were discussed: we introduced field operators,

multi-particle states that live in Fock spaces, creation and annihilation operators, the

connections between particles and fields as well as that between n-point Green’s func-

tions and scattering matrix elements. Besides slight complications in accounting for the

additional degrees of freedom, the same basic ingredients can be used to formulate a quan-

tum theory for electrons, photons or any other fields describing particles in the Standard

Model and beyond. Starting from relativistic wave equations, this is discussed in the

lectures by Nick Evans at this school. Renormalisation is a topic which is not so easily

discussed in a relatively short period of time, and hence I refer the reader to standard

textbooks on Quantum Field Theory, which are listed below. The same applies to the

method of quantisation via path integrals.
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A Notation and conventions

4-vectors:

xµ = (x0,x) = (t,x)

xµ = gµν x
ν = (x0,−x) = (t,−x)

Metric tensor: gµν = gµν =




1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1




Scalar product:

xµxµ = x0x0 + x1x1 + x2x2 + x3x3

= t2 − x2

Gradient operators:

∂µ ≡ ∂

∂xµ

=

(
∂

∂t
,−∇

)

∂µ ≡ ∂

∂xµ
=

(
∂

∂t
,∇
)

d’Alembertian: ∂µ∂µ =
∂2

∂t2
−∇2 ≡ ¤

Momentum operator:

p̂µ = i~∂µ =

(
i~
∂

∂t
, −i~∇

)
=
(
Ê, p̂

)
(as it should be)

δ-functions:
∫
d3p f(p) δ3(p − q) = f(q)

∫
d3x e−ip·x = (2π)3δ3(p)

∫
d3p

(2π)3
e−ip·x = δ3(x)

(similarly in four dimensions)

Note:

δ(x2 − x2
0) = δ{(x− x0)(x+ x0)}

=
1

2x
{δ(x− x0) + δ(x+ x0)}


