Nuclear Matter between Heaven and Earth: The QCD Phase Diagram

Owe Philipsen

- Introduction to QCD and lattice simulations
- Phase diagram: the many faces of QCD
- Computational difficulties: we are still at the very beginning

supported by

Bundesministerium für Bildung und Forschung

Deutsche Forschungsgemeinschaft

QCD according to Google...

Application: QCD

Category: Audio brings the user a huge arsenal of quality features, and uses simplicity as its decoy. QCD is truly the most unique player available.

• The EOS 20D has a rear QCD (Quick Control Dial) which can be used to set exposure compensation, flash compensation, shutter speed or aperture

Quantum Chromodynamics, theory of strong interactions

$$\mathcal{L}_{\text{QCD}} = \frac{1}{4g^2} \operatorname{Tr} F_{\mu\nu} F_{\mu\nu} + \sum_{i=1}^3 \bar{\psi}_i [\gamma_\mu D_\mu + m_i] \psi_i$$

 $m_u \sim 3 {
m MeV}, \quad m_d \sim 6 {
m MeV}, \quad m_s \sim 120 {
m MeV} \implies N_f pprox 2+1$

weak vs. strong coupling:

QED
$$(p^+)$$
 $M_p = 938 \text{ MeV}$
 $M_p = 938 \text{ MeV}$
 $E_{bind} = 13.6 \text{ eV}$
hydrogen (e.m. force)
QCD (u) (u)

Running coupling + asymptotic freedom

energy scale of physical process

Lattice gauge theory + Monte Carlo method

Light fermions expensive,
$$\operatorname{cost}(\det M) \sim \frac{1}{m_q^n}$$

Simulate with different quark masses, extrapolate to physical point

Lattice gauge theory + Monte Carlo method

Simulate with different quark masses, extrapolate to physical point

Nuclear matter as we know it: light hadron spectrum from the lattice

BMW collaboration (Budapest, Marseille, Wuppertal) 2010

QCD is correct theory for strong interactions also at low energy!

QCD at high temperature/density: change of dynamics

asymptotic freedom $\alpha_s(p \to \infty) \to 0$

chiral condensate, Cooper pairs

The QCD phase diagram established by experiment:

Nuclear liquid gas transition with critical end point

QCD phase diagram: theorist's view (science fiction)

Until 2001: no finite density lattice calculations, sign problem!

Expectation based on simplifying models (NJL, linear sigma model, random matrix models, ...)

Check this from first principles QCD!

Zero and nearly zero baryon density

μ

QCD in the early universe

Expansion: pressure of photons + matter particles

• Pressure from non-interacting particles with g degrees of freedom:

Relativistic Boson, $m \ll T$ × (Fermion) Non-relativistic, $m \gg T$ $p_r = g \frac{\pi^2}{90} T^4$ $\left(\frac{7}{8}\right)$ $p_{nr} = gT \left(\frac{mT}{2\pi}\right)^{\frac{3}{2}} \exp(-m/T)$

• Pressure from interacting particles:

Define effective numbers of d.o.f. for energy & entropy densities:

$$\rho = \frac{\pi^2}{30} g_{\text{eff}}(T) T^4, \quad s = \frac{2\pi^2}{45} h_{\text{eff}}(T) T^3,$$

⇒Calculate from Quantum Field Theory

The QCD equation of state: deconfinement

Continuum extrapolation with physical quarks in progress

SM degrees of freedom with lattice QCD-EoS

Full line: free particles

Dashed line: corrected for QCD interactions

Important for relic densities of WIMPS

Weakly Interacting Massive Particles: dark matter candidates!

Energy density of WIMPs depends on g_{eff}, h_{eff} of Standard Model

 \rightarrow

increase of WIMPs by ~2-3% from QCD corrections

Hindmarsh, O.P. 05

Planck satellite promises to constrain relic densities to better than 1%!

The calculable region of the phase diagram $\mu < T$

Upper region: equation of state, screening masses, quark number susceptibilities etc. under control

Here: phase diagram itself, most difficult!

Thermal QCD in experiment

heavy ion collision experiments at RHIC, LHC, GSI.... have finite baryon density!

Deconfinement on Earth:

Free the Quarks!!!

Phase boundary from hadron freeze-out?

- At fixed collision energy \sqrt{s} , abundances well fitted by Boltzmann distribution (T, μ_B)
- T (freeze-out) $\leq T_c$ but very close ?

Braun-Munzinger et al

Theory: how to calculate p.t., critical temperature

Order of transition: finite volume scaling $\chi_{max} \sim V^{\sigma}$

The order of the p.t., arbitrary quark masses $\mu = 0$

Order of p.t., arbitrary quark masses $\mu = 0$

chiral critical line on $N_t = 4, a \sim 0.3 \text{ fm}$

de Forcrand, O.P. 07

The nature of the transition for phys. masses

...in the staggered approximation...in the continuum...is a crossover!

Aoki et al. 06

The 'sign problem' is a phase problem

$$Z = \int DU \left[\det M(\mu)\right]^f e^{-S_g[U]}$$

importance sampling requires positive weights

Dirac operator: $D (\mu)^{\dagger} = \gamma_5 D (-\mu^*) \gamma_5$

 $\Rightarrow \det(M) \text{ complex for SU(3), } \mu \neq 0$ $\Rightarrow \text{real positive for SU(2), } \mu = i\mu_i$ $\Rightarrow \text{real positive for} \quad \mu_u = -\mu_d$

N.B.: all expectation values real, imaginary parts cancel, but importance sampling config. by config. impossible!

Same problem in many condensed matter systems!

I dim. illustration

Finite density: methods to evade the sign problem

Taylor expansion:

$$\langle O \rangle(\mu) = \langle O \rangle(0) + \sum_{k=1} c_k \left(\frac{\mu}{\pi T}\right)^{2k}$$

coeffs. one by one, convergence?

Imaginary $\mu = i\mu_i$: no sign problem, fit by polynomial, then analytically continue

$$\langle O \rangle(\mu_i) = \sum_{k=0}^{N} c_k \left(\frac{\mu_i}{\pi T}\right)^{2k}, \qquad \mu_i \to -i\mu$$

requires convergence for anal. continuation

All require $\mu/T < 1$!

The good news: comparing $T_c(\mu)$

de Forcrand, Kratochvila 05

 $N_t = 4, N_f = 4$; same actions (unimproved staggered), same mass

Comparison with freeze-out curve so far

(But not yet extrapolated to continuum; in progress)

Much harder: is there a QCD critical point?

Much harder: is there a QCD critical point?

Two strategies: **1** follow vertical line: $m = m_{phys}$, turn on μ

Much harder: is there a QCD critical point?

Two strategies:

- **1** follow vertical line: $m = m_{phys}$, turn on μ
- **2** follow critical surface: $m = m_{crit}(\mu)$

Approach I: CEP from reweighting

 $N_t = 4, N_f = 2 + 1$ physical quark masses, unimproved staggered fermions

 $(\mu_E^q, T_E) = (120(13), 162(2)) \text{ MeV}$

abrupt change: physics or problem of the method? (entire curve generated from one point!)

Splittorff 05; Han, Stephanov 08

Approach 2: follow chiral critical line ----- surface

 $c_1 > 0$

 $c_1 < 0$

$$\frac{m_c(\mu)}{m_c(0)} = 1 + \sum_{k=1} c_k \left(\frac{\mu}{\pi T}\right)^{2k}$$

- 1. Tune quark mass(es) to $m_c(0)$: 2nd order transition at $\mu = 0, T = T_c$ known universality class: 3*d* Ising
- 2. Measure derivatives $\frac{d^k m_c}{d\mu^{2k}}|_{\mu=0}$:

Turn on imaginary μ and measure $\frac{m_c(\mu)}{m_c(0)}$

de Forcrand, O.P. 08,09

Finite density: chiral critical line \longrightarrow critical surface

Curvature of the chiral critical surface

 $N_f = 3$

 $N_f = 2 + 1, m_s = m_s^{\text{phys}}$

consistent
$$8^3 \times 4$$
 and $12^3 \times 4$, $\sim 5 \times 10^6$ traj.

$$\frac{m_c(\mu)}{m_c(0)} = 1 - 3.3(3) \left(\frac{\mu}{\pi T}\right)^2 - 47(20) \left(\frac{\mu}{\pi T}\right)^4 - \dots$$
8th derivative of P

 $16^3 \times 4$, Grid computing, $\sim 10^6$ traj. $\frac{m_c^{u,d}(\mu)}{m_c^{u,d}(0)} = 1 - 39(8) \left(\frac{\mu}{\pi T}\right)^2 - \dots$

de Forcrand, O.P. 08,09

On coarse lattice exotic scenario: no chiral critical point at small density

Weakening of p.t. with chemical potential also for:

-Heavy quarks

-Light quarks with finite isospin density

Kogut, Sinclair 07

de Forcrand, Kim, Takaishi 05

-Electroweak phase transition with finite lepton density Gynther 03

Towards the continuum: $N_t = 6, a \sim 0.2 \text{ fm}$

de Forcrand, Kim, O.P. 07 Endrodi et al 07

Cut-off effects stronger than finite density effects!

Preliminary: curvature of chiral crit. surface remains negative de Forcrand, O.P. 10

Un-discovering a critical point feels like...

Un-discovering a critical point feels like...

Recent model studies with similar results

Fukushima 08, Bowman, Kapusta 09

NJL-Polyakov loop model with vector-vector interaction, quark meson model

Qualitative behaviour similar to exotic lattice scenario Critical end point at higher density!

Others with more (and non-chiral) critical points...

NJL with vector interactions, Ginzburg-Landau approach for quark condensates, beyond mean field methods...

Zhang, Kunihiro, Fukushima 09 Baym et al. 06

Ferroni, Koch, Pinto 10

Outlook: what about high density physics?

Back to heaven: what are compact stars made of?

 ρ_0 : nuclear density

Radius ~ 10-12 km Mass ~ 1.2-1.5 x Solar Mass

• Superconductivity: Cooper pairing of fermions

free energy $\Omega = E - \mu N$

- no interactions: add fermion at $E = \mu$ without cost
- attractive interaction: add pair with gain
- pairs condense
 - \rightarrow superconductivity

This Bardeen-Cooper-Schrieffer (BCS) argument holds for electrons in metal, ³He atoms, ..., and quarks in quark matter at small coupling (infinite density)

What happens at realistic densities/couplings??

Effective theories!

Split problem in perturbative (analytical) and non-perturbative (numerical) part

Large densities:

perturbative; eff. theories for $\mu \to \infty\,$ exist, improve to NLO, discretise

Intermediate densities:

lattice, strong coupling expansion in $\frac{1}{\alpha_s}$ eff. theory for infinite coupling exists, can be evaluated numerically

Liquid-gas transition at infinite coupling, m=0 de Forcrand, Fromm 09

Deconfinement transition for heavy quarks Langelage, Lottini, O.P. 10

Perturbative refinement to large but finite couplings possible!

Conclusions

- QCD is verified fundamental theory of nuclear matter
- Hot/dense QCD important: nuclear, astro- and particle physics, heavy ion collisions
- \blacksquare Phase diagram: on coarse lattices no chiral critical point for ${}^{\mu} < T$
- Still at the beginning: large discretisation and quark mass dependence, high densities need new methods
- Uncharted territory: do QCD critical points exist?

