Exercise 1: Dimensional regularization - tensor integrals ($4+4+4$ points)

In the lecture you calculated the following (Wick rotated) integral using dimensional regularisation

$$
\begin{equation*}
I=\int \frac{1}{\left[k^{2}+m^{2}\right]^{n}} \frac{d^{d} k}{(2 \pi)^{d}}=\frac{1}{(4 \pi)^{\frac{d}{2}}} \frac{1}{\left(m^{2}\right)^{n-\frac{d}{2}}} \frac{\Gamma\left(n-\frac{d}{2}\right)}{\Gamma(n)} . \tag{1}
\end{equation*}
$$

i) Use this result to calculate

$$
\begin{equation*}
I(p)=\int \frac{1}{\left[k^{2}+2 p \cdot k+M^{2}\right]^{n}} \frac{d^{d} k}{(2 \pi)^{d}} . \tag{2}
\end{equation*}
$$

Hint: Introduce a variable transformation.
ii) Calculate the integral (in euclidean space)

$$
\begin{equation*}
I_{\mu}(p)=\int \frac{k_{\mu}}{\left[k^{2}+2 p \cdot k+M^{2}\right]^{n}} \frac{d^{d} k}{(2 \pi)^{d}} . \tag{3}
\end{equation*}
$$

Hint: Take a derivative with respect to p_{μ}.
iii) Calculate the integral (in euclidean space)

$$
\begin{equation*}
I_{\mu \nu}(p)=\int \frac{k_{\mu} k_{\nu}}{\left[k^{2}+2 p \cdot k+M^{2}\right]^{n}} \frac{d^{d} k}{(2 \pi)^{d}} . \tag{4}
\end{equation*}
$$

Exercise 2: Dimensional regularization - vanishing integral (3+3+2 points)
We want to show that we can set

$$
\begin{equation*}
I=\int \frac{1}{k^{2}} \frac{d^{d} k}{(4 \pi)^{d}}=0 \tag{5}
\end{equation*}
$$

in the sense of dimensional regularization.
i) Replace the integral by

$$
\begin{equation*}
I_{\alpha}=\int \frac{1}{\left(-k^{2}\right)^{\alpha}} \frac{d^{d} k}{(2 \pi)^{d}}, \tag{6}
\end{equation*}
$$

perform a Wick rotation and show that it is given as

$$
\begin{equation*}
I_{\alpha}=\mathrm{i} \frac{1}{(4 \pi)^{\frac{d}{2}}} \frac{1}{\Gamma\left(\frac{d}{2}\right)} \int_{0}^{\infty} y^{\frac{d}{2}-\alpha-1} d y \tag{7}
\end{equation*}
$$

with $y=k^{2}$. Classify the occuring divercence for $d<2 \alpha, d>2 \alpha$ and $d=2 \alpha$.
ii) Split the integral into parts $y>\Lambda^{2}, y<\Lambda^{2}$ and integrate each part seperately, choosing appropriate $d_{1 / 2}$.
iii) Finally it is possible to perform an analytic continuation setting $d_{1}=d_{2}$. Do this continuation and show that the two parts you obtained from splitting the integral add exactly to 0 .

