Exercise 1: Gaussian integrals II (10 points)

Prove the following Gaussian integrals
i) Let $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$ be a n-dimensional vector and $A \in \mathbb{R}^{n \times n}$ be a real, symmetric matrix, with positive eigenvalues $\lambda_{i}>0$, that can be diagonalized. Prove that

$$
\begin{equation*}
\int e^{-\frac{1}{2} x^{T} A x} d^{n} x=\sqrt{\frac{(2 \pi)^{n}}{\operatorname{det}(A)}} \tag{1}
\end{equation*}
$$

Hint: Diagonalize the matrix A (recall the spectral theorem).
ii) In the same manner prove that

$$
\begin{equation*}
\int e^{-\frac{1}{2} x^{T} A x+J^{T} x} d^{n} x=\sqrt{\frac{(2 \pi)^{n}}{\operatorname{det}(A)}} e^{\frac{1}{2} J^{T} A^{-1} J} \tag{2}
\end{equation*}
$$

iii) Consider a real constant $a>0$. Prove the following one-dimensional integral of Gaussian type

$$
\begin{equation*}
\int_{-\infty}^{\infty} e^{\mathrm{i} a x^{2}} d x=\sqrt{\frac{\mathrm{i} \pi}{a}} . \tag{3}
\end{equation*}
$$

Hint: Use the theorem of Cauchy for the given contour

$$
\oint_{C} e^{i a z^{2}} d z=0
$$

$$
\frac{2 \alpha}{\pi} \leq \sin \alpha \leq \alpha, \quad 0 \leq \alpha \leq \frac{\pi}{2}
$$

Exercise 2: Vacuum expectation value for the harmonic oscillator (4 points)
In the lecture you found the following euclidean generating functional for the one-dimensional harmonic oscillator

$$
\begin{equation*}
Z_{E}[j]=\exp \left(\frac{1}{4 m \omega} \iint j\left(\tau_{1}\right) e^{-\omega\left|\tau_{1}-\tau_{2}\right|} j\left(\tau_{2}\right) d \tau_{1} d \tau_{2}\right) \tag{4}
\end{equation*}
$$

Calculate the vacuum expectation value of

$$
\begin{equation*}
\langle 0| x(\tau) x\left(\tau^{\prime}\right)|0\rangle, \tag{5}
\end{equation*}
$$

using $Z_{E}[j]$.

Exercise 3: The Schrödinger equation and path integrals (6 points)
Recall the time dependent, one-dimensional Schrödinger equation

$$
\begin{equation*}
\mathrm{i} \frac{\partial \psi(x, t)}{\partial t}=H(x) \psi(x, t) \tag{6}
\end{equation*}
$$

with time independent Hamilton operator $H(x)$.
The Schrödinger equation can be recovered from the path integral representation of the quantum mechanical transition amplitude. To show this, first recall the infinitesimal form of the transition amplitude

$$
\begin{equation*}
\langle x| W(\epsilon)\left|x^{\prime}\right\rangle=\sqrt{\frac{m}{2 \pi \mathrm{i} \epsilon}} \exp \left(\mathrm{i} \epsilon\left[\frac{m}{2}\left(\frac{x-x^{\prime}}{\epsilon}\right)^{2}-V\left(\frac{x+x^{\prime}}{2}\right)\right]\right) . \tag{7}
\end{equation*}
$$

Use it in the propagation of the wave function

$$
\begin{equation*}
\psi(t+\epsilon, x)=\int_{-\infty}^{\infty}\langle x| W(\epsilon)\left|x^{\prime}\right\rangle \psi\left(t, x^{\prime}\right) d x^{\prime} \tag{8}
\end{equation*}
$$

and introduce $\eta=x^{\prime}-x$.
Argue that the dominant contribution to the integral is given for

$$
\begin{equation*}
0 \leq|\eta| \leq \sqrt{\frac{2 \pi \epsilon}{m}} \tag{9}
\end{equation*}
$$

and use this result to Taylor expand the integrand up to order ϵ. Solve the remaining integral and take the limit $\epsilon \rightarrow 0$.
Hint: The integral of Exercise 1 iii) and the derivative of it with respect to a will be of great use.

