Exercise 1: Partition function of the harmonic oscillator (10 points)
Recall the Hamilton function of the 1 dimensional harmonic oscillator

$$
\begin{equation*}
H(p, x)=T+V=\frac{p^{2}}{2 m}+\frac{1}{2} m \omega^{2} x^{2} \tag{1}
\end{equation*}
$$

i) Use the Hamilton function to compute the partition function of the system

$$
\begin{equation*}
Z_{1}=\int e^{-\beta H} \frac{d p d x}{2 \pi} \tag{2}
\end{equation*}
$$

with $\beta=1 / T$.
ii) We can obtain a similar result from the quantum mechanical case. Recall the energies of the discrete spectrum of the quanum mechanical harmonic oscillator E_{n} and calculate

$$
\begin{equation*}
Z_{2}=\sum_{n} e^{-\beta E_{n}} \tag{3}
\end{equation*}
$$

iii) Finally another possibility to obtain the partition function is using the Mehler formula given by

$$
\begin{equation*}
\langle x| e^{-\beta H}|x\rangle=\sqrt{\frac{m \omega}{2 \pi \sinh (\beta \omega)}} \exp \left(-\frac{x^{2} m \omega}{\sinh (\beta \omega)}(\cosh (\omega \beta)-1)\right) . \tag{4}
\end{equation*}
$$

Calculate the partition function using

$$
\begin{equation*}
Z_{3}=\int\langle x| e^{-\beta H}|x\rangle d x \tag{5}
\end{equation*}
$$

iv) Calculate the free energy

$$
\begin{equation*}
F=-\frac{1}{\beta} \log (Z) \tag{6}
\end{equation*}
$$

for all three cases Z_{1}, Z_{2} and Z_{3} and discuss the limit $\beta \ll 1$ for F_{2} and F_{3}.

Exercise 2: Gaussian integrals (4 points)

Calculate the following Gaussian integrals
i) Calculate

$$
\begin{equation*}
\left\langle x^{2 n}\right\rangle=\sqrt{\frac{a}{2 \pi}} \int_{-\infty}^{\infty} x^{2 n} e^{-\frac{1}{2} a x^{2}} d x \tag{7}
\end{equation*}
$$

ii) Calculate

$$
\begin{equation*}
\left\langle x^{2 n}\right\rangle=\left.\left(\frac{d}{d J}\right)^{2 n}\left[\sqrt{\frac{a}{2 \pi}} \int_{-\infty}^{\infty} e^{-\frac{1}{2} a x^{2}+J x} d x\right]\right|_{J=0} \tag{8}
\end{equation*}
$$

Exercise 3: Euclidean path integral (6 points)
Following the same steps as in the lecture, derive the one dimensional, euclidean path integral

$$
\begin{equation*}
\left\langle x_{2}\right| U\left(\tau_{2}-\tau_{1}\right)\left|x_{1}\right\rangle=\int_{y\left(\tau_{1}\right)=x_{1}}^{y\left(\tau_{2}\right)=x_{2}} e^{-S_{E}[y]} D y \tag{9}
\end{equation*}
$$

with evolution operator (for imaginary time $\tau_{2}>\tau_{1}$)

$$
\begin{equation*}
U\left(\tau_{2}-\tau_{1}\right)=e^{-\left(\tau_{2}-\tau_{1}\right) H} \tag{10}
\end{equation*}
$$

with a time independent Hamilton operator $H=H_{0}+V=\frac{p^{2}}{2 m}+V$. The quantity $S_{E}[y]$ is the euclidean action

$$
\begin{equation*}
S_{E}[y]=\int\left(\frac{m \dot{y}^{2}}{2}+V\right) d \tau \tag{11}
\end{equation*}
$$

that needs to be identified in the derivation.

