Exercise 1: Lamb shift $(4+6+6+4=20$ points $)$
In the following we want to calculate the first loop correction to the photon propagator in QED.
i) Use the QED Feynman rules in momentum space to calculate the quantity $-i \Pi_{2}^{\mu \nu}$ of the fermion loop correction to the photon propagator.

Hint: Write out the Dirac indices. You should obtain a trace over the product of γ-matrices.
ii) Calculate the trace, introduce Feynman parameters and change the integration variables the following way

$$
\begin{equation*}
k^{\mu} \rightarrow k^{\mu}+p^{\mu}(1-x) . \tag{1}
\end{equation*}
$$

To simplify the calculation, neglect all contributions $\sim p^{\mu}, p^{\nu}, p^{\mu} p^{\nu}$.
Comment: Neglecting terms $\sim p^{\mu}, p^{\nu}, p^{\mu} p^{\nu}$, leads to $\Pi_{2}^{\mu \nu}=g^{\mu \nu} \Pi_{T}\left(p^{2}\right)$ in the next step, instead of $\Pi_{2}^{\mu \nu}=\left(g^{\mu \nu}-\frac{p^{\mu} p^{\nu}}{p^{2}}\right) \Pi_{T}\left(p^{2}\right)=t^{\mu \nu}\left(p^{2}\right) \Pi_{T}\left(p^{2}\right)$, familiar from $Q C D$. Nevertheless for the determination of Z_{3}, it is sufficient to consider the term $\sim g^{\mu \nu}$ only.
iii) The remaining integral is divergent and needs to be regularized. Introduce a Wick rotation and use the procedure of dimensional regularization to calculate the integral.
Show that the result (after analytical continuation to Minkowski space) is given as

$$
\begin{equation*}
\Pi_{2}^{\mu \nu}=-8 \mu^{4-d} g^{\mu \nu} p^{2} \frac{e^{2}}{(4 \pi)^{\frac{d}{2}}} \Gamma\left(2-\frac{d}{2}\right) \int_{0}^{1} \frac{x(1-x)}{\left[m^{2}+p^{2}(1-x) x\right]^{2-\frac{d}{2}}} d x=g^{\mu \nu} \Pi_{T}\left(p^{2}\right) . \tag{2}
\end{equation*}
$$

Hint: The following identity is very useful

$$
\begin{equation*}
\int \frac{k^{\mu} k^{\nu}}{\left(k^{2}-\Delta\right)^{n}} \frac{d^{d} k}{(2 \pi)^{d}}=\frac{1}{d} g^{\mu \nu} \int \frac{k^{2}}{\left(k^{2}-\Delta\right)^{n}} \frac{d^{d} k}{(2 \pi)^{d}}, \tag{3}
\end{equation*}
$$

as well as the following integral

$$
\begin{equation*}
\int_{0}^{\infty} \frac{k^{d+1}}{\left[k^{2}+\Delta\right]^{2}} d k=\frac{d}{4} \frac{1}{\Delta^{1-\frac{d}{2}}} \Gamma\left(1-\frac{d}{2}\right) \Gamma\left(\frac{d}{2}\right) . \tag{4}
\end{equation*}
$$

iv) Use this result to calculate the Photon wavefunction renormalization $A_{R, \mu}=Z_{3}^{-1 / 2} A_{\mu}$ in the $\overline{M S}$ scheme via

$$
\begin{equation*}
Z_{3}=1-\Pi_{T}^{\prime}\left(p^{2}=0\right)+\mathcal{O}\left(e^{4}\right), \tag{5}
\end{equation*}
$$

as done in case of the gluon propagator in the lecture.

