Exercise 1: Zassenhaus Formula (10 points)

Consider two operators A and B, with $[A,[A, B]]=[B,[A, B]]=0$.
i) Derive the Baker-Campbell-Hausdorff formula

$$
\begin{equation*}
e^{A+B}=e^{A} e^{B} e^{-\frac{1}{2}[A, B]} \tag{1}
\end{equation*}
$$

For this purpose show

$$
\begin{equation*}
\left[A^{n}, B\right]=n A^{n-1}[A, B] \tag{2}
\end{equation*}
$$

first and then derive the following differential equation by definining $f(t)=e^{t A} e^{t B}$

$$
\begin{equation*}
\frac{d f}{d t}=(A+B+t[A, B]) f(t) \tag{3}
\end{equation*}
$$

Find another solution of this differential equation.
Hint: Calculating the commutator $\left[e^{t A}, B\right]$ will be of great use.
ii) If the relations $[A,[A, B]]=[B,[A, B]]=0$ do not hold, the formula can be extended to general cases. This extension is known as Zassenhaus formula and given by

$$
\begin{equation*}
e^{A+B}=e^{A} e^{B} e^{-\frac{1}{2}[A, B]} e^{-\frac{1}{6}(2[B,[B, A]]+[A,[B, A]])} e^{Z_{3}} e^{Z_{4}} \ldots, \tag{4}
\end{equation*}
$$

where Z_{3}, Z_{4}, \ldots contain higher powers of the operators A and B. Use this formula to show the following relation for the Hamilton operator $H=H_{0}+V$

$$
\begin{equation*}
e^{-\mathrm{i} \epsilon H}=e^{-\mathrm{i} \epsilon\left(H_{0}+V\right)}=e^{-\mathrm{i} \epsilon V / 2} e^{-\mathrm{i} \epsilon H_{0}} e^{-\mathrm{i} \epsilon V / 2}+\mathcal{O}\left(\epsilon^{3}\right), \tag{5}
\end{equation*}
$$

with small parameter $\epsilon>0$.
Exercise 2: Lie-Trotter Formula (5 points)
A useful formula in the derivation of Feynman's path integral is the Lie-Trotter formula

$$
\begin{equation*}
e^{X+Y}=\lim _{m \rightarrow \infty}\left(e^{\frac{X}{m}} e^{\frac{Y}{m}}\right)^{m} \tag{6}
\end{equation*}
$$

In case of the path integral, X and Y represent operators acting on the Hilbert space, but nevertheless the formula also holds if X and Y are $n \times n$ complex matrices.
Prove the formula by making use of the Taylor expansion of the matrix logarithm

$$
\begin{equation*}
\log (\mathbb{1}+A)=A+\mathcal{O}\left(\|A\|^{2}\right) . \tag{7}
\end{equation*}
$$

Exercise 3: Functional derivative - chain rule (5 points)

Recall the definition of the functional derivative

$$
\begin{equation*}
\delta F[x]=\int \frac{\delta F[x]}{\delta x(s)} \delta x(s) d s \tag{8}
\end{equation*}
$$

Consider the following functional

$$
\begin{equation*}
F[g(f)]=\int g(f(x)) d x, \quad \text { with } \quad g(f)=\left(\frac{d}{d x} f(x)\right)^{n} \tag{9}
\end{equation*}
$$

i) Calculate the derivative using

$$
\begin{equation*}
\frac{\delta F[g(f)]}{\delta f(y)}=\int \frac{\delta F[g(f)]}{\delta g(f(s))} \frac{\delta g(f(s))}{\delta f(y)} d s . \tag{10}
\end{equation*}
$$

ii) Calculate the derivative using

$$
\begin{equation*}
\frac{\delta F[g(f)]}{\delta f(y)}=\left.\frac{d}{d s} F[g(f(x)+s \delta(x-y))]\right|_{s=0} . \tag{11}
\end{equation*}
$$

