

Deconfinement vs. chiral symmetry breaking

- Equation of state
- The phase diagram

Why thermal QCD?

Thermal QCD in nature

Thermal QCD in experiment

heavy ion collision experiments at RHIC, LHC, GSI....

Phase boundary from hadron freeze-out?

- At fixed collision energy \sqrt{s} , abundances well fitted by Boltzmann distribution (T, μ_B)
- T (freeze-out) $\leq T_c$ but very close ?

Braun-Munzinger et al

Statistical mechanics reminder

System of particles with conserved number operators N_i , i = 1, 2, ...in contact with heat bath at temperature T

canonical ensemble: exchange of energy with bath, volume V, numbers N_i fixed grand canonical ensemble: exchange of energy and particles with bath

density matrix and partition function

thermodynamic properties

$$\rho = e^{-\frac{1}{T}(H-\mu_i N_i)}$$

$$Z = Tr \rho = Z(V, T, \mu_1, \mu_2, ...; \text{ particle props.})$$

observables: $\langle O \rangle = Z^{-1} \operatorname{Tr}(\rho O)$

$$F = -T \ln Z$$

$$P = \frac{\partial (T \ln Z)}{\partial V}$$

$$N_i = \frac{\partial (T \ln Z)}{\partial \mu_i}$$

$$S = \frac{\partial (T \ln Z)}{\partial T}$$

QCD at finite temperature and density

Grand canonical partition function

$$Z(V,T,\mu;g,N_f,m_f) = \operatorname{Tr}(\mathrm{e}^{-(\mathrm{H}-\mu\mathrm{Q})/\mathrm{T}}) = \int \mathrm{DA}\,\mathrm{D}\bar{\psi}\,\mathrm{D}\psi\,\,\mathrm{e}^{-\mathrm{S}_{\mathrm{g}}[\mathrm{A}_{\mu}]}\mathrm{e}^{-\mathrm{S}_{\mathrm{f}}[\bar{\psi},\psi,\mathrm{A}_{\mu}]}$$

Action

$$S_{g}[A_{\mu}] = \int_{0}^{1/T} dx_{0} \int_{V} d^{3}\mathbf{x} \frac{1}{2} \operatorname{Tr} F_{\mu\nu} F_{\mu\nu}$$
$$S_{f}[\bar{\psi}, \psi, A_{\mu}] = \int_{0}^{1/T} dx_{0} \int_{V} d^{3}\mathbf{x} \sum_{f=1}^{N_{f}} \bar{\psi}_{f} \left(\gamma_{\mu} D_{\mu} + m_{q}^{f} - \mu\gamma_{0}\right) \psi_{f}$$

quark number $N_q^f = \bar{\psi}_f \gamma_0 \psi_f$

Parameters

 $g^2, m_u \sim 3 \text{MeV}, m_d \sim 6 \text{MeV}, m_s \sim 120 \text{MeV}, V, T, \mu = \mu_B/3$ $N_f = 2 + 1$

Two problems of perturbation theory

- $g(300 \mathrm{MeV}) \sim 1$
- finite T infrared problem for non-abelian theories:

gauge boson self-coupling: at finite T

strong coupling

$$\frac{g^2}{e^{E/T} - 1} \stackrel{E,p \ll T}{\sim} \frac{g^2 T}{m}$$

Linde

 \rightarrow infrared divergent for m = 0, e.g. QCD, symmetric phase electroweak theory

resummation generates magnetic mass scale $m \sim g^2 T$ $rac{1}{2}$ convergence??

finite T QFT has no solid perturbative definition, even for weak coupling!

Requirements for and constraints from the lattice:

correlation length ξ : lightest gauge invariant (hadronic?) mass scale

low T (confined) phase: $m_{\pi} \gtrsim 250 \text{MeV}$ lighter just beginning...high T (deconfined) phase: $m_{\pi} \sim T, \xi \sim 1/T$ \checkmark $\frac{1}{N_t} \ll 1 \ll \frac{L}{N_t}$ $T \lesssim 5T_c$

QCD in two important limits: I. the quenched limit

I. infinitely heavy quarks: pure gauge theory with static sources

static quark propagator:

Polyakov loop
$$L_{\mathbf{x}} = \prod_{x_0=1}^{N_t} U_{n,0}$$
, $n \equiv (x_0, \mathbf{x})$

global Z(3) symmetry:

 $S_g[U]$ invariant under $U_0(\mathbf{x},t) \to z_n U_0(\mathbf{x},t), \quad z_n = e^{i2\pi n/3} \in \mathbb{Z}(3)$

static sources transform non-trivially: $L_{\mathbf{x}} \rightarrow z_n L_{\mathbf{x}}$

free energy of a static quark in a plasma:

$$\langle \operatorname{Tr} L_{\mathbf{x}} \rangle \sim \mathrm{e}^{-F_q/T}$$
 McLerran, Svetitsky

• order parameter for confinement: $\langle L \rangle \begin{cases} = 0 \Leftrightarrow \text{ confined phase}, & T < T_c \\ > 0 \Leftrightarrow \text{ deconfined phase}, & T > T_c \end{cases}$

free energy of static quark anti-quark pair:

(= static potential + Boltzmann weighted thermal excitations)

$$\exp\left(-\frac{F_{\bar{q}q}(r,T)}{T}\right) = \langle \mathrm{Tr}L_{\mathbf{x}}\mathrm{Tr}L_{\mathbf{y}}^{\dagger}\rangle \quad , \quad r = |\mathbf{x} - \mathbf{y}|$$

deconfinement transition: spontaneous breaking of global Z(3) symmetry at high T

The static quark free energy in the quenched limit Bielefeld

 $T < T_c$

 $\frac{\sigma(T)}{\sigma(0)} = a\sqrt{1 - b\frac{T^2}{T_c^2}}$

 $T > T_c$

II. The chiral limit of QCD

massless quarks:

 S_f invariant under global chiral transformations $U_A(1) \times SU(N_f)_L \times SU(N_f)_R$

spontaneous symmetry breaking: $SU(N_f)_L \times SU(N_f)_R \rightarrow SU(N_f)_V$

 \blacktriangleright $N_f^2 - 1$ massless Goldstone bosons, pions

order parameter: chiral condensate $\langle \bar{\psi}\psi \rangle = \frac{1}{L^3 N_t} \frac{\partial}{\partial m_q} \ln Z$

$$\langle \bar{\psi}\psi \rangle \begin{cases} > 0 \Leftrightarrow \text{symmetry broken phase,} & T < T_c \\ = 0 \Leftrightarrow \text{symmetric phase,} & T > T_c \end{cases}$$

chiral transition: spontaneous restoration of global $SU(N_f)_L \times SU(N_f)_R$ at high T

But: chiral limit cannot be simulated!!

Physical QCD

.....breaks both chiral and Z(3) symmetry explicitly

.....but displays confinement and very light pions

no order parameter no phase transition necessary!

if there is a p.t.: are there two distinct transitions?

- if there is just one p.t.: is it related to chiral or Z(3) dynamics?
- if there is no phase transition: how do the properties of matter change?

Equation of state: ideal (non-interacting) gases

partition fcn. for one relativistic bosonic/fermionic d.o.f.:

$$\ln Z = V \int \frac{d^3 p}{(2\pi)^3} \ln \left(1 \pm e^{-(E(p)-\mu)/T} \right)^{\pm 1}, \qquad E(p) = \sqrt{\mathbf{p}^2 + m^2}$$

equation of state for g d.o.f., two relevant limits:

Stefan-Boltzmann

Relativistic Boson, $m \ll T$ × (Fermion) No $p_r = g \frac{\pi^2}{90} T^4$ $(\frac{7}{8})$ p_n $\epsilon_r = g \frac{\pi^2}{30} T^4$ $(\frac{7}{8})$ ϵ_n

Non-relativistic,
$$m \gg T$$

 $p_{nr} = gT \left(\frac{mT}{2\pi}\right)^{\frac{3}{2}} \exp(-m/T)$
 $\epsilon_{nr} = \frac{m}{T} p_{nr} \gg p_{nr}$

$$p_r = \epsilon_r/3, \qquad p_{nr} \simeq 0$$

The QCD equation of state

Task: compute free energy density or pressure density

$$f = -\frac{T}{V} \ln Z(T, V)$$

all bulk thermodynamic properties follow:

$$p = -f,$$
 $\frac{\epsilon - 3p}{T^4} = T \frac{\mathrm{d}}{\mathrm{d}T} \left(\frac{p}{T^4}\right),$ $\frac{s}{T^3} = \frac{\epsilon + p}{T^4},$ $c_s^2 = \frac{\mathrm{d}p}{\mathrm{d}\epsilon}$

Technical problem: partition function in Monte Carlo normalized to 1.

Z, p, f not directly calculable, only $\langle O \rangle = Z^{-1} \operatorname{Tr}(\rho O)$

Integral method:

$$\left. \frac{f}{T^4} \right|_{T_o}^T = \left. -\frac{1}{V} \int_{T_o}^T \mathrm{d}x \; \frac{\partial x^{-3} \ln Z(x,V)}{\partial x} \right|_{T_o}$$

modify for lattice action:

$$\frac{f}{T^4}\Big|_{\beta_o}^{\beta} = -\frac{N_{\tau}^3}{L^3} \int_{\beta_o}^{\beta} \mathrm{d}\beta' \left(\left\langle\frac{\partial\ln Z}{\partial\beta}\right\rangle - \left\langle\frac{\partial\ln Z}{\partial\beta}\right\rangle_{T=0}\right)$$

N.B.: lower integration constant not rigorously defined, but exponentially suppressed

$$\frac{f}{T^4}(\beta_0) \sim \mathrm{e}^{-\mathrm{m}_{\mathrm{glueball}}/\mathrm{T}} \approx 0$$

cut-off effects in the high temperature, ideal gas limit: momenta $\sim T \sim \frac{1}{a}$

$$\frac{p}{T^4}\Big|_{N\tau} = \frac{p}{T^4}\Big|_{\infty} + \frac{c}{N_{\tau}^2} + \mathcal{O}(N_{\tau}^{-4}) \qquad \text{(staggered)}$$

Numerical results on the equation of state

Bielefeld

5 p_{SB}/T^4 p/T⁴ 4 compare with ideal gas: 3 $\frac{\epsilon_{SB}}{T^4} = \frac{3p_{SB}}{T^4} = \begin{cases} 3\frac{\pi^2}{30} & , \ T < T_c \\ (16 + \frac{21}{2}N_f)\frac{\pi^2}{30} & , \ T > T_c \end{cases}$ 3 flavour 2 2+1 flavour 2 flavour pure gauge 1 T [MeV] 0 200 300 400 100 500 600

 $T > T_c$: more degrees of freedom, but significant interaction!

sQGP or `almost ideal' gas....?

staggered p4-improved, $N_{\tau} = 4$

Equation of state for physical quark masses

Figure 10: The pressure normalized by T^4 as a function of the temperature on $N_t = 6, 8$ and 10 lattices. The Stefan-Boltzmann limit $p_{SB}(T) \approx 5.209 \cdot T^4$ is indicated by an arrow. For our highest temperature T = 1000 MeV the pressure is almost 20% below this limit.

Figure 9: The trace anomaly $I = \epsilon - 3p$ normalized by T^4 as a function of the temperature $N_t = 6, 8, 10$ and 12 lattices.

Budapest-Marseille-Wuppertal 10

Phase transitions and phase diagrams

- phase transitions: singularities in free energy $F \Rightarrow$ zeroes in partition function Z only in thermodynamic limit! (Lee, Yang)
- first order: jump in order parameter, latent heat, phase coexistence
- second order: diverging correlation length
- crossover smooth, analytic transition

Example 1: water

Example 2: ferromagnetism

Ising model, Z(2) symmetry

spins with nearest neighbour interaction

$$E = -\sum_{ij} \epsilon_{i,j} s_i s_j - H \sum_i s_i$$

Universality of 2.o. phase transitions, critical exponents:

Correlation length diverges: microscopic dynamics unimportant, only global symmetries specific heat $C \sim |t|^{-\alpha}$, magnetization $M \sim |t|^{\beta}, \ldots$ $t = \frac{T - T_c}{T_c}$ exponents the same for all systems within one universality class!

Critical endpoint of water shows 3d Ising universality, Z(2)!

The QCD phase diagram established by experiment:

Nuclear liquid gas transition, Z(2) end point

The conjectured QCD phase diagram

No first principles calculations before 2001: sign problem

Expectation based on models: NJL, NJL+Polyakov loop, linear sigma models, random matrix models, ...

Approaching the thermodynamic limit

different definitions (e.g. scanning in different directions, different observables etc.)

Order of transition: finite volume scaling

 $(\beta_0(V) - \beta_0(\infty)) \sim V^{-\sigma}$

$\sigma = 1$	1st order
$\sigma < 1$	2nd order
$\sigma = 0$	crossover

Monte Carlo history, plaquette

Distribution:

first-order

Finding the phase transition: the critical temperature

Measuring the `order parameter' as function of lattice coupling (viz.T)

$$\beta = \frac{2N_c}{g^2(a)} \qquad T = \frac{1}{aN_t}$$

here: $N_f = 2$

Susceptibilities: $\chi = V N_t (\langle \mathcal{O}^2 \rangle - \langle \mathcal{O} \rangle^2) \Rightarrow \chi_{max} = \chi(\beta_0) \Rightarrow T_0$

 $T_{deconf} \approx T_{chiral}$

Quark mass dependence of the critical temperature

0.65

0.60

0.55

0.50

0.45

0.40

0.35

0.0

1.0

2.0

T_c/√σ

SU(3) pure gauge : $T_c/\sqrt{\sigma} = 0.637 \pm 0.005$ $T_c = (271 \pm 2) \text{ MeV}$

3.0

4.0

5.0

6.0

7.0

8.0

9.0

continuum extrapolated!

$$N_t = 4, a \sim 0.3 \mathrm{fm}$$

The order of the p.t., arbitrary quark masses $\mu = 0$

deconfinement p.t.: breaking of global Z(3)

chiral p.t. restoration of global $SU(2)_L \times SU(2)_R \times U(1)_A$ anomalous

The nature of the transition for phys. masses

...in the staggered approximation...in the continuum...is a crossover!

Aoki et al. 06

The 'sign problem' is a phase problem

$$Z = \int DU \left[\det M(\mu)\right]^f e^{-S_g[U]}$$

importance sampling requires positive weights

Dirac operator: $D (\mu)^{\dagger} = \gamma_5 D (-\mu^*) \gamma_5$

 $\Rightarrow \det(M) \text{ complex for SU(3), } \mu \neq 0$ $\Rightarrow \text{real positive for SU(2), } \mu = i\mu_i$ $\Rightarrow \text{real positive for} \quad \mu_u = -\mu_d$

N.B.: all expectation values real, imaginary parts cancel, but importance sampling config. by config. impossible!

Same problem in many condensed matter systems!

I dim. illustration

Finite density: methods to evade the sign problem

Taylor expansion:

$$\langle O \rangle(\mu) = \langle O \rangle(0) + \sum_{k=1} c_k \left(\frac{\mu}{\pi T}\right)^{2k}$$

coeffs. one by one, convergence?

Imaginary $\mu = i\mu_i$: no sign problem, fit by polynomial, then analytically continue

$$\langle O \rangle(\mu_i) = \sum_{k=0}^{N} c_k \left(\frac{\mu_i}{\pi T}\right)^{2k}, \qquad \mu_i \to -i\mu$$

requires convergence for anal. continuation

All require $\mu/T < 1$!

The good news: comparing $T_c(\mu)$

de Forcrand, Kratochvila 05

 $N_t = 4, N_f = 4$; same actions (unimproved staggered), same mass

Comparison with freeze-out curve

Endrödi et al. I I hotQCD 11

Much harder: is there a QCD critical point?

Two strategies: **1** follow vertical line: $m = m_{phys}$, turn on μ **2** follow critical surface: $m = m_{crit}(\mu)$

Some methods trying (1) give indications of critical point, but systematics not yet controlled

On coarse lattice exotic scenario: no chiral critical point at small density

Weakening of p.t. with chemical potential also for:

-Heavy quarks

-Light quarks with finite isospin density

-Electroweak phase transition with finite lepton density Gynther 03

Fromm, Langelage, Lottini, O.P. 11

Kogut, Sinclair 07

Curvature of the chiral critical surface

 $N_f = 3$

 $N_f = 2 + 1, m_s = m_s^{\text{phys}}$

consistent
$$8^3 \times 4$$
 and $12^3 \times 4$, $\sim 5 \times 10^6$ traj.

$$\frac{m_c(\mu)}{m_c(0)} = 1 - 3.3(3) \left(\frac{\mu}{\pi T}\right)^2 - 47(20) \left(\frac{\mu}{\pi T}\right)^4 - \dots$$
8th derivative of P

 $16^3 \times 4$, Grid computing, $\sim 10^6$ traj. $\frac{m_c^{u,d}(\mu)}{m_c^{u,d}(0)} = 1 - 39(8) \left(\frac{\mu}{\pi T}\right)^2 - \dots$

de Forcrand, O.P. 08,09

On coarse lattice exotic scenario: no chiral critical point at small density

Weakening of p.t. with chemical potential also for:

-Heavy quarks

-Light quarks with finite isospin density

-Electroweak phase transition with finite lepton density Gynther 03

Fromm, Langelage, Lottini, O.P. 11

Kogut, Sinclair 07

References and Sources

- O.Philipsen, "Introduction to Quantum Field Theory"
- M.Walzl and G.Münster, "Introduction to Lattice Gauge theory"
- I have copied smaller and larger bits and pieces from publicly available lecture slides of:
 D. Gütersloh, F. Krauss, J.Heitger, U.Husemann, H.-J.Pirner and H.-C. Schultz-Coulon, H.Wittig