
Lecture III

Putting the path integral on the lattice

Lattice QCD

Some numerical results on non-perturbative physics



Formal analogies:     (can established rigorously)

5

at this stage recourse to the following formal analogy that exists

between QM and QFT (and could also be worked out rigorously)

xi(t) ←→ !(x, t)

i ←→ x

"
t

3

"
i=1

dxi(t) ←→ "
t
"
x

d!(x, t) ≡ D!

S=
Z

dt L ←→ S=
Z

dt d3xL

most ‘pedagogical’ example:

the Langrangian density of a scalar field theory

L(x) =
1

2
(#µ!)(#µ!)−

m20

2
!2(x)−

g0

4!
!4(x) #= (d/dt,$)

with unrenormalized (= ‘bare’) parameters

m0 : mass g0 : coupling constant

⇒ Greens functions represented in terms of functional integrals:

〈0|!(x1)!(x2) · · ·!(xn)|0〉 =
1

Z

Z

D! !(x1)!(x2) · · ·!(xn)e iS

Z =
Z

D! e iS

as before:

to be understood as integral over all classical field configurations

however, one might still ask:

− where does the ground state projection come from?

− do the integrals converge despite their oscillating integrands?

these questions are answered in the context of . . .
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Integral over all field configurations!

Recall Euclidean path integral for scalar fields



Lattice formulation of Euclidean QFT’s

(infinite-dimensional) integration measure well defined on discrete system!

         finite numbers on finite lattice!

10

Lattice formulation of QFTs

the (infinite-dimensional) integration measure D! receives a con-

crete meaning by passing to the

lattice discretization

continuous (Euclidean) R4 → discretized space-time = lattice

typically chosen hypercubic : x= {xµ|µ= 1, . . . ,4} ∈ aZ4

a : lattice spacing (or constant)

obvious equivalences (still sticking to the notion of a scalar field)

• !(x) : living on the lattice sites only

• partial derivatives→ finite differences:

"µ! → #(∗)
µ !(x) =

±!(x±aµ̂)∓!(x)

a

⇒ forward & backward lattice derivatives
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• integrals→ sums
Z

d4x → !
x

a4

⇒ for instance, the action of discretized "4 theory reads

S=!
x

a4

{
1

2

4

!
µ=1

[#µ"(x)]
2+

m20
2
"2(x)+

g0

4!
"4(x)

}

• functional integral measure

D"→#
x

d"(x) ≡ D["]

runs over the lattice points x only, i.e. we have a discrete set of

integration variables (that is even finite if the lattice is)

⇒ suited for numerical evaluation by Monte Carlo methods

• the finite spacing a also gives rise to a momentum-space cutoff

Fourier transform : "̃(p) =!
x

a4 e−ipx"(x) periodic

⇒ restrict momenta to Brillouin zone −$/a< pµ≤ $/a

inverse Fourier transform:

"(x) =
Z $/a

−$/a

d4p

(2$)4
e ipx "̃(p) ⇔ ultraviolet cutoff |pµ|≤

$

a

⇒ field theories on a lattice are naturally regularized

in principle, a lattice calculation would now contain 3 basic steps

1. given: a (hypercubic) lattice of extensions L1 = L2 = L3 ≡ L in

space and L4 ≡ Lt in (Euclidean) time, finite volume V = L3Lt

⇒ coordinates xµ = anµ , nµ = 0,1,2, . . .Lµ−1
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SO(4) −→ D
4

h

Rotation symmetry:
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momenta pµ =
2!

aLµ
× lµ, lµ = 0,1,2, . . .Lµ−1

momentum integrations

Z

d4p

(2!)4
→

1

a4V
"
lµ

impose boundary conditions: standard choice = periodic

#(x) = #(x+aLµµ̂) µ̂ : unit vector

2. ... ‘computation of the quantities of interest’ ...

(still a black box for the moment, but some aspects and methods

will be discussed partly later and/or in other lectures)

3. to recover physics, 2 limits have eventually to be taken

infinite volume limit : L , Lt → $

continuum limit (CL) : a → 0

(remark: constructing the CL is highly non-trivial in general!)

important correspondence to statistical mechanics in d = 3+1

Euclidean field theory ⇐⇒ statistical mechanics

(lattice) action S ⇐⇒ Hamilton function

%H = H/(kBT ) , T : temperature

generating functional: ⇐⇒ partition function:

Z =
Z

D# e−S Z =" e−%H

lowest state’s mass m: ⇐⇒ inverse correlation length 1/&:

G∼ e−mt G∼ e−x/&

in particular:

the CL of a lattice field theory (am= 0) lies on a critical line, where

the system exhibits a 2nd order phase transition (&= $)

boundary cond. 
(periodic)



Transfer matrix formalism

Euclidean time evolution operator over interval T: 

e
−HT = lim

!→0
T
N ⇔ Z = lim

!→0
Tr

{
T
N
}

h != T/N

governs evolution of states:

|!"+1〉 = T|!"〉 !"+1(#) =
Z

$
x

d%′(x)T[#,#′]!"(#
′)

Euclidean Green functions:

GE(x1, . . . ,xn) = lim
T→!

lim
"→0

TN0#(x1,0)TN1#(x2,0) · · ·#(xn,0)TNn

Tr {TN}

= lim
T→!

lim
"→0

〈#(x1)#(x2) · · ·#(xn)〉

Nk = [x(k)
0

− x
(k+1)
0

]/! x
(1)
0

≥ x
(2)
0

≥ · · ·≥ x
(n)
0



24

with

Nk = [x(k)
0 − x

(k+1)
0 ]/! x

(1)
0 ≥ x

(2)
0 ≥ · · ·≥ x

(n)
0

interpretation in the spirit of the lattice discretization

!= a

transfer matrix T:

evolution operator for time step a between neighbouring timeslices

⇒ the lattice Hamiltonian is defined by

H = −
1

a
lnT

comments

• well defined: T is self-adjoint and positive

(theories with an operator representation with self-adjoint and

positive transfer matrix are called unitary)

• of central importance for Euclidean quantization via FIs

• T connects FIs and the Hamiltonian in lattice models

• spectral representation of correlation functions
→ QM interpretation of CFs and particle content, namely:

on a finite lattice the spectrum of T is purely discrete

|"〉 "= 0,1,2, . . . T|"〉 = #"|"〉

#0 ≥ #1 ≥ #2 ≥ · · · E" = −
1

a
ln#"

⇒ spectral decomposition:

T =
$

%
"=0

#"|"〉〈"|
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$
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for physical theories, the transfer matrix is self-adjoint and positive

provides connection between Euclidean path integral and Hamiltonian

useful for spectral analysis of correlation functions 
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from the FI formula for GE(x1, . . . ,xn) with n= 2 one arrives at

〈!(x)!(y)〉 =
"

#
$=0

"

#
%=0

e−(E$−E0)(T−t)M$%(x)e
−(E%−E0)tM%$(y)

T→"−→
"

#
%=0

e−(E%−E0)tM0%(x)M%0(y)

M$%(x) = 〈$|!(x,0)|%〉 : matrix elements

if E$ > E0 ∀ $≥ 1 (non-degeneracy of the ground state)
⇒ low-lying E$ by observing the exponential decay for large t

• final remark: the transfer matrix formalism also carries over

straightforwardly to lattice gauge theory (e.g. Wilson’s confine-

ment criterion can be rigorously justified in this framework)

Use in two-point euclidean Green function:

Extract low lying spectrum of the theory from exponential decay at large t

(in momentum space, these are the poles of the propagators)

Formalism carries over to gauge theories!



The continuum limit

To be taken in a controlled way through series of simulations:

41

⇒ Sf stays invariant provided GW is satisfied

• the flavour-singlet current reproduces the expected chiral anom-
aly, since the fermionic integration measure is not invariant un-

der these global transformations

• explicit solution of GW? — Neuberger’s operator:

DN =
1

a

[
1−A

(
A†A

)−1/2]
A= 1−aDW

• many nice implications for lattice QCD (as vector-like theory)

Continuum limit

important issue in any lattice computation:

perform the extrapolation to the continuum limit in a controlled way

what do we understand by this?

send lattice spacing a→ 0 while physical (= renormalized) masses

should take finite limits: moving along lines of constant physics

a dimensionful ⇒ fix some mass scale m

CL : am→ 0 ⇔
1

am
≡ !→ "

! : correlation length

thus: the CL is associated with a critical point of the theory

41

⇒ Sf stays invariant provided GW is satisfied

• the flavour-singlet current reproduces the expected chiral anom-
aly, since the fermionic integration measure is not invariant un-

der these global transformations

• explicit solution of GW? — Neuberger’s operator:

DN =
1

a

[
1−A

(
A†A

)−1/2]
A= 1−aDW

• many nice implications for lattice QCD (as vector-like theory)

Continuum limit

important issue in any lattice computation:

perform the extrapolation to the continuum limit in a controlled way

what do we understand by this?

send lattice spacing a→ 0 while physical (= renormalized) masses

should take finite limits: moving along lines of constant physics

a dimensionful ⇒ fix some mass scale m

CL : am→ 0 ⇔
1

am
≡ !→ "

! : correlation length

thus: the CL is associated with a critical point of the theory

41

⇒ Sf stays invariant provided GW is satisfied

• the flavour-singlet current reproduces the expected chiral anom-
aly, since the fermionic integration measure is not invariant un-

der these global transformations

• explicit solution of GW? — Neuberger’s operator:

DN =
1

a

[
1−A

(
A†A

)−1/2]
A= 1−aDW

• many nice implications for lattice QCD (as vector-like theory)

Continuum limit

important issue in any lattice computation:

perform the extrapolation to the continuum limit in a controlled way

what do we understand by this?

send lattice spacing a→ 0 while physical (= renormalized) masses

should take finite limits: moving along lines of constant physics

a dimensionful ⇒ fix some mass scale m

CL : am→ 0 ⇔
1

am
≡ !→ "

! : correlation length

thus: the CL is associated with a critical point of the theory 42

lattice spacing a serves as regulator of the theory

⇒ employ renormalization group (RG) techniques

question: how to vary the bare coupling(s) in order to reach a CL?

in pure gauge theory (and also QCD) the dimensionless bare coup-

ling g0 and a are not independent but related via a RG equation:

!lat(g0) ≡−a
"g0

"a
= −b0g30−b1g

5
0 + · · ·

b0 =
11− 2

3
Nf

(4#)2
b1 =

102− 38
3
Nf

(4#)4
(universal)

its solution yields the functional dependence of g0 on the regulator a

and at the same time generates a mass scale surviving in the CL

a = $−1
lat (b0g

2
0)

− b1

2b2
0 exp

{
−

1

2b0g
2
0

}
×

{
1+O(g20)

}

$lat : lattice $ parameter, fundamental low-energy scale

only dimensionful free parameter of (massless) lattice QCD

in the perturbative regime one infers:

since b0 > 0 for realistic Nf, the bare coupling decreases with am

⇒ CL : g0 → 0 ⇔ !→ %

line of constant physics in bare parameter space



SU(N) gauge theory on a lattice

Lattice Formulation: Variables

Euclidean space-time lattice L3 × Nt, lattice spacing a,

V = (aL)3, finite T: T = 1
aNt

Fermion fields: on sites, ψ(x)

Gauge fields: cf. continuum parallel transport

ψ(y) = P exp
[

ig
∫ y

x dzµAµ(z)
]

ψ(x)

Links=parallel transp. by a: Uµ(x) = e−iagAµ(x)

Gauge trafo: ψg(x) = g(x)ψ(x), Ug
µ(x) = g(x)Uµ(x)g†(x+ µ̂)

Two kinds of gauge invariant objects ⇒observables

4

Covariant derivative:

Lattice Formulation: Actions

Discrete derivative: f ′(x) = a−1(f(x + a) − f(x)) + O(a)

Dµψ(x) → a−1 (Uµ(x)ψ(x + µ̂) − ψ(x)) + O(a)

Gauge sector:

smallest loop: “plaquette”

! "

#
$
!

→ 1 + ia2gFµν −
a4g2

2
FµνF

µν + O(a6) + . . .

Wilson action

Sg =
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d4x FµνFµν →
6

g2
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(1 − ! "

#
$
!

)

Fermion sector, naive action: fermions ≡ problems

Sf =

∫

d4x ψ̄(D/ + mq)ψ →
∑

x

ψ̄(x)Mxy[U ]ψ(y)

16 flavors (doublers) in chiral limit ⇒Nielsen-Ninomiya theorem

no local, chiral fermion action without doublers

⇒different discretizations, different problems:

Wilson, staggered, domain wall, overlap....

6

16

solution:

take a path C from y to x and define a parallel transporter along C
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Z x

y
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µ
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P : path ordering of non-commuting Aaµ(z)Ta factors

designed to map vectors along curves (→ differential geometry)

⇒ transforms as desired and satisfies e.g. the decomposition rule

U (x,y;C ) =U (x,u;C1) ·U (u,y;C2) for C = C2 ◦C1
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Two kinds of gauge invariant objects              observables
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Lattice Formulation: Variables

Euclidean space-time lattice L3 × Nt, lattice spacing a,

V = (aL)3, finite T: T = 1
aNt

Fermion fields: on sites, ψ(x)

Gauge fields: cf. continuum parallel transport

ψ(y) = P exp
[

ig
∫ y

x dzµAµ(z)
]

ψ(x)

Links=parallel transp. by a: Uµ(x) = e−iagAµ(x)

Gauge trafo: ψg(x) = g(x)ψ(x), Ug
µ(x) = g(x)Uµ(x)g†(x+ µ̂)

Two kinds of gauge invariant objects ⇒observables

4

(b)(a)

U  (x,y)x

U  (x,y)y yU  (x+4,y)

xU  (x,y+3)

17

link variable

U(b) ≡U(x,µ) ∈ SU(N) : residing on 〈x+aµ̂,x〉

⇒U(x,µ) replaces the gauge field Aaµ(x), it transforms as

U(x,µ) → !−1(x+aµ̂)U(x,µ)!(x)

⇒ locally gauge invariant kinetic term in the lattice action

"
x,µ

#(x+aµ̂) ·U(x,µ)#(x)

moreover, the covariant lattice (forward) derivative

$µ#(x) =
1

a

[
U−1(x,µ)#(x+aµ̂)−#(x)

]

replaces the ordinary one,U−1(x,µ) =U†(x,µ) =U(x+aµ̂,−µ)

implications

• other intersting gauge invariant expressions on the lattice:

Tr {U(b1)U(b2) · · ·U(bn)} along closed C = bn ◦ · · ·b2 ◦b1

• in particular: plaquette = most elementary closed path

x x   a+ µ

+x   aν

U(p) ≡Up(x) ≡U†(x,%)U†(x+a%̂,µ)U(x+aµ̂,%)U(x,µ)

transforms adjoint:

U
g
C(x) = g(x)UC(x)g−1(x)

TrUg
C = TrUC(x)



Wilson action:

18

• the plaquette variable U(p) is the central object, out of which

K. Wilson derived his proposal for the lattice Yang-Mills action:

Sg[U ] = !"
p

{
1−

1

N
Re [TrU(p) ]

}

"
p

="
x

"
1≤µ<#≤4

⇒ Sg[U ] is gauge invariant and purely real by construction

! is fixed by requiring the standard Yang-Mills action to be re-

covered in the (naive) continuum limit a→ 0

U(x,µ) ≡ exp
{
ig0aA

b
µ(x)Tb

}

⇒ Sg[U ] =
!g20
8N
"
x

a4Fb
µ#(x)F

b
µ#(x) + O(a5)

⇒ !=
2N

g20

after using once more the Baker-Campbell-Hausdorff formula

(note: Aµ(x) = −ig0Abµ(x)Tb = Lie algebra valued vector field)

• for the quantum theory:→ perform functional integrals

〈O〉 =
1

Z

Z

D[U ] O e−Sg[U ] Z =
Z

D[U ] e−Sg[U ]

D[U ] =$
b

dU(b)

with dU(b) the invariant integration measure on the group man-

ifold (Haar measure) obeying for any compact group G (U,V :
Z

G

f (U)dU =
Z

G

f (VU)dU =
Z

G

f (UV)dU
Z

G

dU = 1

• remark: since on the lattice the volume of the gauge group is
unity, no ill defined gauge factor has to be devided out

⇒ no gauge fixing and introduction of Fadeev-Popov ghosts neces-

sary, except for purpose of perturbation theory
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lattice gauge coupling

reproduces SU(N) Yang-Mills in continuum limit; for finite a not unique!

action gauge-invariant for any lattice spacing

real, positive



Path integral exists:              real positive, compact integration range,
finite no. of integrations

Integration requires no gauge fixing, except for doing perturbation theory

Sg[U ]
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with Haar measure

result finite



Observables in lattice pure gauge theory

Plaquette correlation function:

Spectral analysis, large t:

Glueball: colour singlet, bound state of gluons

Wilson loop:

t

r

Spectral analysis, large t:  r t

area law = confinement 



The static potential at T=0:  Wilson loop

Euclidean correlator of gauge invariant meson operator

integrate out quarks in the limit                                                                                       

spectral decomposition,

lattice generalization to finite T not clear,                   on lattices short

M → ∞

〈ψ̄(x, τ)U(x,y; τ)ψ(y, τ)ψ̄(y, 0)U†(x,y; 0)ψ(x, 0)〉 −→ e−2MτWE(|x − y|, τ)

r = |x − y|

T → 0 WE(r, τ → ∞) −→ c2
01[U(x,y; 0)] e−V (r)τ

Nτ =
1

aT

U(x,y; 0) ≡ Ur(0)

energy of static quark-antiquark pair

 =static potential V (r) r→∞−→ σr

The static potential from the Wilson loop

Area law: signal for confinement!



Fermions on the lattice = headache

26

Fermions on the lattice

recall foundations of fermionic quantum fields in the continuum

Fermi statistics⇒ equal-time anticommutation relations

{!(x, t) , !(y, t)} = 0

⇒ start from classical fermionic fields that anticommute

⇒ complex algebra with Grassmann generators "i,"i satisfying

{"i , " j } =
{
"i , " j

}
=

{
"i , " j

}
= 0

integration :

Z

d"i (a+b"i) = b

the Dirac field then has Grassmann-valued field variables

!≡ !#(x) !≡ !#(x) #= 1, . . . ,4

functional integral quantization: define fermionic path integrals

〈0|A|0〉 =
1

Z

Z

D[!]D[!] Ae−Sf[!,!]

with

measure : D[!]D[!] =$
x
$
#

d!#(x)d!#(x)

free field action : Sf[!,!] =
Z

d4x !(x)(%µ&
µ+m)!(x)

Grassmannian FIs involving actions bilinear in the fermion fields are

formally simple to calculate, the integration rules yield:
Z

D[!]D[!] exp

{
−

Z

d4x!(x)Q!(x)

}
= detQ

→ fermion determinant, but difficult to evaluate for huge matrices Q

Grassmann variables:
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→ fermion determinant, but difficult to evaluate for huge matrices Q
Fermion determinant



Naive lattice action:

27

Fermion discretizations

try to discretize the free fermionic field configurations similarly to

the scalar case: let !(x) live just on the lattice points now

⇒ ‘naive’ lattice fermion action

Sf[!,!] =
1

2
"
x
"
µ

!(x)(#µ"µ+m)!(x) + h.c.

with momentum space propagator

"̃(k) =
−i"µ#µsinkµ+m

"µsin
2 kµ+m2

observation:

physical pole at small kµ plus — as consequence of the periodicity

of the denominator — additional unphysical ones near kµ = ±$ at
the corners of the Brillouin zone

⇒ describes 16 instead on 1 particle: fermion ‘doubling’ problem

• deeper origin: Dirac equation is of 1st order

• problem not tolerable in the interacting theory, since the extra

fermions influence the physical content non-trivially (additional

states can be pair-produced, appear e.g. in virtual loops)

• as it turns out, the important question to ask is:
what are the general conditions under which in a chirally sym-

metric lattice theory doublers show up?

answer is provided by

the Nielsen-Ninomiya theorem (to be stated later)
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physical pole at zero momentum

additional poles at               because of periodicity!
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• as it turns out, the important question to ask is:
what are the general conditions under which in a chirally sym-

metric lattice theory doublers show up?
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Nielsen-Ninomiya theorem:

There exists no local, chiral fermion actions without doublers

describes 16 instead of 1 particle: `fermion doubling’ problem



Fixes: pick your poison

Wilson fermions
add irrelevant ops. (going away in CL) to make doublers very massive
breaks chiral symmetry for non-zero a 

staggered (Kogut-Susskind) fermions
distribute spinor components on different sites, reduces to 4 flavours
take 4th root of determinant to get to one flavour, keeps reduced chiral symm.
non-local operation, have to take CL before chiral limit, mixing of spin, flavour

domain wall fermions
introduce 5th dimension, fermions massive in that dim. and chiral in the other
expensive

overlap fermions
non-local formulation with modified chiral symmetry even for finite a
two orders of magnitude more expensive than Wilson



Wilson fermions



Lattice perturbation theory

Classical vacuum: Aµ = 0 → Uµ(x) = 1

20

plaquette correlation function:

EV of the product of 2 spatial plaquettes p1, p2 separated by a time t

Cp(t) ≡ 〈Tr [U(p1) ] Tr [U(p2) ]〉c

2

t

p                                                                                                                 p
1 

in non-abelian lattice gauge theories one finds an exponential falloff

Cp(t)
t large∼ e−mGt

⇒ mG is the lowest particle mass in the theory: glueball mass

Some methods

basic task: evaluate (high-dimensional) FIs→ adopt approximations

only the main ideas will be sketched in the following ...

• perturbation theory (PT)
consider lattice gauge fields near the classical ‘vacuum’

U(x,µ) = 1, parameterize group elements according to

U(x,µ) = exp
{

ig0aAb
µ(x)Tb

}

and expand Wilson’s action in powers of the bare coupling g0

Sg[U ] =!
x

a4
{

L2+g0L3+g20L4 + · · ·
}

propagators & vertices different from continuum ones, gluon

self-interactions of all orders appear (not only 3– & 4–vertices)

expand
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also the Haar measure contributes to the total action:

!
x,µ

dU(x,µ) = e−Sm[A]!
x,µ,a

dAaµ(x)

Sm[A] = "
x,µ

N

24
a2g20A

b
µ(x)A

b
µ(x) + O(A4)

owing to gauge invariance, the saddle-point of the action to ex-

pand around is degenerate⇒ (covariant) gauge fixing necessary

typical examples for lattice PT applications:

– in general it often serves as valuable guide and check of non-

perturbative studies

– determination of renormalization group functions like

#lat(g0) = −a($g0/$a)

– matching between (renormalization schemes of) lattice and

continuum theories

• strong-coupling expansion
analogue of the high-temperature expansion known from statist-

ical mechanics:

expand the Boltzmann factor in powers of # % 1/g20 as

exp

{
#
1

N
Re [TrU(p) ]

}
= 1+#

1

N
Re [TrU(p) ] + · · ·

amounts to diagrammatic representation in terms of plaquettes

‘famous’ leading order predictions:

〈TrU (CR,T)〉
R,T→&∼ C e−'RT with '= − ln# + · · ·

Cp(t)
t large∼ e−mGt with mG = −4ln# + · · ·

[ SU(N) LGT is confining for all values of the gauge coupling ]

propagators and vertices different from continuum, n-point self-interactions!

complicated and clumsy, but sometimes necessary for
-determination of RG functions
-matching of continuum and lattice renormalisation schemes
-determination of lattice cut-off effects
......



Strong coupling expansion for pure gauge theory
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also the Haar measure contributes to the total action:

!
x,µ

dU(x,µ) = e−Sm[A]!
x,µ,a

dAaµ(x)

Sm[A] = "
x,µ

N

24
a2g20A

b
µ(x)A

b
µ(x) + O(A4)

owing to gauge invariance, the saddle-point of the action to ex-

pand around is degenerate⇒ (covariant) gauge fixing necessary

typical examples for lattice PT applications:

– in general it often serves as valuable guide and check of non-

perturbative studies

– determination of renormalization group functions like

#lat(g0) = −a($g0/$a)

– matching between (renormalization schemes of) lattice and

continuum theories

• strong-coupling expansion
analogue of the high-temperature expansion known from statist-

ical mechanics:

expand the Boltzmann factor in powers of # % 1/g20 as

exp

{
#
1

N
Re [TrU(p) ]

}
= 1+#

1

N
Re [TrU(p) ] + · · ·

amounts to diagrammatic representation in terms of plaquettes

‘famous’ leading order predictions:

〈TrU (CR,T)〉
R,T→&∼ C e−'RT with '= − ln# + · · ·

Cp(t)
t large∼ e−mGt with mG = −4ln# + · · ·

[ SU(N) LGT is confining for all values of the gauge coupling ]

Wilson 1974







Monte Carlo evaluation

Systematics:  finite V,a effects

QCD on the lattice

Euclidean space-time lattice L3 × Nt, lattice spacing a, V = (aL)3, T = 1
aNt

System with finite number of d.o.f, partition function:

Z =

∫

DU detM [U ] e−Sg[U ]

gauge fields U , fermions−→ detM [U ],⇒perform U -integration numerically

for hadron withmH , ξ ∼ m−1
H

a & ξ & aL !

←→
ξ

⇒e.g. 304 ∼ 106 lattice points

every point⇒4U ’s, everyU ∈ SU(3)⇒8 independent components ⇒108-dimensional integral!

Light fermions expensive:

detM [U ] = λ1[U ] · λ2[U ] · λ3[U ] . . . , cost(detM) ∼
1

mn
q

, n > 2

Non-local: every eigenvalue depends on every link

Systematic errors:

• finite volume V

• finite lattice spacing a

• fermions break chiral symmetry, introduce unwanted species,...only ok as a → 0

• accuracy of inversion algorithms

⇒Extrapolate to thermodynamic and continuum limit
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⇒e.g. 304 ∼ 106 lattice points

every point⇒4U ’s, everyU ∈ SU(3)⇒8 independent components ⇒108-dimensional integral!
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detM [U ] = λ1[U ] · λ2[U ] · λ3[U ] . . . , cost(detM) ∼
1

mn
q

, n > 2

Non-local: every eigenvalue depends on every link

Systematic errors:

• finite volume V

• finite lattice spacing a

• fermions break chiral symmetry, introduce unwanted species,...only ok as a → 0

• accuracy of inversion algorithms

⇒Extrapolate to thermodynamic and continuum limit

Monte Carlo evaluation

Z =

∫

Dψ̄DψDU e−Sg[U ]−Sf [U,ψ̄,ψ] =

∫

DU
∏

f

(detM) e−Sg[U ]

very peaked integrand!

⇒Monte Carlo integration, importance sampling

Markov process: ensemble

{U1} → {U2} → {U3} . . . {UN}

“→ ”: updating algorithm with associated probability,

ergodic

detM [U ]e−S[U ]

U

〈O〉 = Z−1

∫

DU detMO e−Sg[U ] ≈
1

N

N
∑

n=1

(detMO)[U ]

⇒N “measurements” ofO ⇒statistical error∼ 1/
√

N



Computing hadron masses

PS-meson:

V-meson:

O(x) = ψ̄(x)γ5ψ(x)

O(x) = ψ̄(x)γµψ(x)

O(x) = TrF 2

µν = TrUp(x)glueball:

∑

x: zero momentum projection, En → Mn

matrix elements related to fπ

C(t) = 〈0|
∑

x

Of(!x, t)Oi(0)|0〉 =
∑

n

〈0|Of |n〉〈n|Oi|0〉 e−Ent

−→
τ → ∞ 〈0|Of |π〉〈π|Oi|0〉 e−Mπτ

eff.mass Mπ(t) = − ln[C(t + 1)/C(t)]

a−1 [MeV ] =
Q [MeV ]

(aQ)
with Q= f!,m",mproton, . . .

from experiment

pion, ...
rho, ...



Eliminating bare lattice parameters



Pure gauge theory: glueball spectrum



Pure gauge theory: glueball spectrum

0.0 0.2 0.4 0.6 0.8

(a
s
/r
0
)
2

3

4

5

6

7

8

9

10

r 0
m
G

3
++

0
*++

2
++

0
++

A
1

++

E
++

T
2

++

A
1

*++

A
2

++

T
1

++

!! !! !! !!

"#

$

%

&

'

(

)$

)%

* $
+
,

!
""

#
""

$
""

#
!"

!
!"

#
%!"

&
"!

$
"!

!
"!

#
"!

&
!!
!
!!
$
!!

!
%!"

#
%""

$

)

%

-

&

+
,
./
,
0
1
2

r0 ≈ 0.5 fm

Morningstar, Peardon PRD 99

I. Pure Gauge Glueball Spectrum Morningstar, Peardon
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1600 MeV →

12

Recovery of SO(4)!

continuum extrapolation



The static potential

pure gauge theory SU(2) gauge theory with matter fields

Alpha collaboration



QCD: the light hadron spectrum
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Nf=2+1, nearly physical, one lattice spacing



Running coupling from Schrödinger functional

Capitani, Lüscher, Sommer, Wittig 99



Precision physics results!

HPQCD-MILC-FNAL staggered u,d,s + NRQCD for c,b


