Lecture III

Lattice QCD

Some numerical results on non-perturbative physics

Recall Euclidean path integral for scalar fields

$$\phi(\mathbf{x}, t)$$

$$\mathbf{x}$$

$$\prod_{t} \prod_{\mathbf{x}} d\phi(\mathbf{x}, t) \equiv \mathcal{D}\phi$$

$$S = \int dt \, d^3 x \, \mathcal{L}$$

$$\mathcal{L}(x) = \frac{1}{2} \left(\partial_{\mu} \phi \right) \left(\partial^{\mu} \phi \right) - \frac{m_0^2}{2} \phi^2(x) - \frac{g_0}{4!} \phi^4(x)$$

 $t = -i\tau$

no oscillatory integrand

$$G_{\mathrm{E}}(x_1,\ldots,x_n) = \frac{1}{Z} \int \mathcal{D}\phi \,\phi(x_1)\cdots\phi(x_n) \,\mathrm{e}^{-S_{\mathrm{E}}}$$

strongly fluctuating fields exp. suppressed

$$\mathcal{Z} = \int \mathcal{D} \phi \, \mathrm{e}^{-S_{\mathrm{E}}}$$

Lattice formulation of Euclidean QFT's

 $\mathbb{R}^4 \rightarrow x = \{x_\mu | \mu = 1, \dots, 4\} \in a\mathbb{Z}^4 \quad a : \text{ lattice spacing (or constant)}$

- $\phi(x)$: living on the lattice sites only
- partial derivatives \rightarrow finite differences:

$$\partial_{\mu}\phi \longrightarrow \Delta^{(*)}_{\mu}\phi(x) = \frac{\pm\phi(x\pm a\hat{\mu})\mp\phi(x)}{a}$$

 \Rightarrow forward & backward lattice derivatives

Rotation symmetry:
$$\int d^4 x \rightarrow \sum_x a^4 \qquad \mathcal{D}\phi \rightarrow \prod_x d\phi(x) \equiv \mathcal{D}[\phi]$$

 $SO(4) \longrightarrow D_h^4$

(infinite-dimensional) integration measure well defined on discrete system!

finite numbers on finite lattice!

Lattice action: $S = \sum_{x} a^{4} \left\{ \frac{1}{2} \sum_{\mu=1}^{4} \left[\triangle_{\mu} \phi(x) \right]^{2} + \frac{m_{0}^{2}}{2} \phi^{2}(x) + \frac{g_{0}}{4!} \phi^{4}(x) \right\}$

Fourier transform : $\tilde{\phi}(p) = \sum_{x} a^4 e^{-ipx} \phi(x)$ periodic

 \Rightarrow restrict momenta to Brillouin zone $-\pi/a < p_{\mu} \le \pi/a$

inverse Fourier transform:

$$\phi(x) = \int_{-\pi/a}^{\pi/a} \frac{\mathrm{d}^4 p}{(2\pi)^4} \,\mathrm{e}^{ipx}\,\tilde{\phi}(p) \quad \Leftrightarrow \quad \text{ultraviolet cutoff } |p_{\mu}| \leq \frac{\pi}{a}$$

 \Rightarrow field theories on a lattice are naturally regularized

boundary cond. (periodic)

finite volume $V = L^3 L_t$

coordinates
$$x_{\mu} = an_{\mu}, n_{\mu} = 0, 1, 2, \dots L_{\mu} - 1$$

momenta $p_{\mu} = \frac{2\pi}{aL_{\mu}} \times l_{\mu}, l_{\mu} = 0, 1, 2, \dots L_{\mu} - 1$
momentum integrations $\int \frac{d^4p}{(2\pi)^4} \rightarrow \frac{1}{a^4V} \sum_{l_{\mu}}$

Transfer matrix formalism

Euclidean time evolution operator over interval T:

$$e^{-\mathbb{H}T} = \lim_{\tau \to 0} \mathbb{T}^N \quad \Leftrightarrow \quad \mathcal{Z} = \lim_{\tau \to 0} \operatorname{Tr} \{\mathbb{T}^N\} \qquad \quad \tau = T/N$$

governs evolution of states:

$$|\Psi_{\tau+1}\rangle = \mathbb{T}|\Psi_{\tau}\rangle \qquad \Psi_{\tau+1}(\Phi) = \int \prod_{\mathbf{x}} d\phi'(\mathbf{x}) \, \mathbb{T}[\Phi, \Phi'] \Psi_{\tau}(\Phi')$$

Euclidean Green functions: $N_k = [x_0^{(k)} - x_0^{(k+1)}]/\tau$ $x_0^{(1)} \ge x_0^{(2)} \ge \cdots \ge x_0^{(n)}$

$$G_{\mathrm{E}}(x_1,\ldots,x_n) = \lim_{T\to\infty} \lim_{\tau\to0} \frac{\mathbb{T}^{N_0}\phi(\mathbf{x}_1,0)\mathbb{T}^{N_1}\phi(\mathbf{x}_2,0)\cdots\phi(\mathbf{x}_n,0)\mathbb{T}^{N_n}}{\mathrm{Tr}\,\{\mathbb{T}^N\}}$$

 $= \lim_{T \to \infty} \lim_{\tau \to 0} \langle \phi(x_1) \phi(x_2) \cdots \phi(x_n) \rangle$

 \Rightarrow the lattice Hamiltonian is defined by

$$\mathbb{H} = -\frac{1}{a}\ln\mathbb{T}$$

for physical theories, the transfer matrix is self-adjoint and positive

- provides connection between Euclidean path integral and Hamiltonian
- useful for spectral analysis of correlation functions

$$\alpha = 0, 1, 2, \dots \qquad \mathbb{T} |\alpha\rangle = \lambda_{\alpha} |\alpha\rangle \qquad \mathbb{T} = \sum_{\alpha=0}^{n} \lambda_{\alpha} |\alpha\rangle \langle \alpha|$$
$$\lambda_{0} \ge \lambda_{1} \ge \lambda_{2} \ge \dots \qquad E_{\alpha} = -\frac{1}{a} \ln \lambda_{\alpha}$$

Use in two-point euclidean Green function:

$$\begin{aligned} \langle \phi(\mathbf{x})\phi(\mathbf{y}) \rangle &= \sum_{\alpha=0}^{\infty} \sum_{\beta=0}^{\infty} e^{-(E_{\alpha}-E_{0})(T-t)} M_{\alpha\beta}(\mathbf{x}) e^{-(E_{\beta}-E_{0})t} M_{\beta\alpha}(\mathbf{y}) \\ &\xrightarrow{T \to \infty} \sum_{\beta=0}^{\infty} e^{-(E_{\beta}-E_{0})t} M_{0\beta}(\mathbf{x}) M_{\beta0}(\mathbf{y}) \end{aligned}$$

 $M_{\alpha\beta}(\mathbf{x}) = \langle \alpha | \phi(\mathbf{x}, 0) | \beta \rangle$: matrix elements

Extract low lying spectrum of the theory from exponential decay at large t (in momentum space, these are the poles of the propagators)

Formalism carries over to gauge theories!

The continuum limit

To be taken in a controlled way through series of simulations:

lattice spacing $a \rightarrow 0$ while physical (= renormalized) masses

should take *finite* limits line of constant physics in bare parameter space

a dimensionful	\Rightarrow	fix some mass scale m
CL: $am \rightarrow 0$	\Leftrightarrow	$\frac{1}{am} \equiv \xi \to \infty$
ξ	•	correlation length

thus: the CL is associated with a critical point of the theory

SU(N) gauge theory on a lattice

Gauge trafo: $\psi^g(x) = g(x)\psi(x)$, $U^g_\mu(x) = g(x)U_\mu(x)g^{\dagger}(x+\hat{\mu})$

Covariant derivative:

$$D_{\mu}\psi(x) \to a^{-1} \left(U_{\mu}(x)\psi(x+\hat{\mu}) - \psi(x) \right) + O(a)$$

 $\bigwedge U_{y}(x+4,y)$

 $\operatorname{Tr} U_C^g = \operatorname{Tr} U_C(x)$

Discretisation respects gauge invariance, independent of a!

 $U_x(x,y)$

 $U_y(x,y)$

(a)

smallest loop: "plaquette" $U_{\rm p}(x) \equiv U^{\dagger}(x, \mathbf{v})U^{\dagger}(x + a\hat{\mathbf{v}}, \mu)U(x + a\hat{\mu}, \mathbf{v})U(x, \mu)$

$$\Box \to 1 + ia^2 g F_{\mu\nu} - \frac{a^4 g^2}{2} F_{\mu\nu} F^{\mu\nu} + O(a^6) + \dots$$
$$U_{\mu}(x) = e^{-iagA_{\mu}(x)}$$

(b)

$$\Box \to 1 + ia^2 g F_{\mu\nu} - \frac{a^4 g^2}{2} F_{\mu\nu} F^{\mu\nu} + O(a^6) + \dots$$

Wilson action:

$$S_{g}[U] = \beta \sum_{p} \left\{ 1 - \frac{1}{N} \operatorname{Re} \left[\operatorname{Tr} U(p) \right] \right\} \qquad \sum_{p} = \sum_{x} \sum_{1 \le \mu < \nu \le 4}$$
$$\beta = \frac{2N}{g_{0}^{2}} \qquad \text{lattice gauge coupling}$$

reproduces SU(N) Yang-Mills in continuum limit; for finite a not unique!

- action gauge-invariant for any lattice spacing
- real, positive

Quantum theory:
$$\langle O \rangle = \frac{1}{Z} \int \mathcal{D}[U] O e^{-S_{g}[U]} \qquad Z = \int \mathcal{D}[U] e^{-S_{g}[U]}$$
$$\mathcal{D}[U] = \prod_{b} dU(b)$$

with Haar measure
$$\int_G f(U) dU = \int_G f(VU) dU = \int_G f(UV) dU$$
 $\int_G dU = 1$

Path integral exists: S_g[U] real positive, compact integration range, finite no. of integrations
 result finite

Integration requires no gauge fixing, except for doing perturbation theory

Observables in lattice pure gauge theory

area law = confinement

The static potential from the Wilson loop

- Euclidean correlator of gauge invariant meson operator
- Integrate out quarks in the limit $M \to \infty$

 $\langle \bar{\psi}(\mathbf{x},\tau) U(\mathbf{x},\mathbf{y};\tau) \psi(\mathbf{y},\tau) \bar{\psi}(\mathbf{y},0) U^{\dagger}(\mathbf{x},\mathbf{y};0) \psi(\mathbf{x},0) \rangle \longrightarrow e^{-2M\tau} W_E(|\mathbf{x}-\mathbf{y}|,\tau)$

Fermions on the lattice = headache

functional integral quantization: define fermionic path integrals

$$\langle 0|A|0\rangle = \frac{1}{Z} \int \mathcal{D}[\psi] \mathcal{D}[\overline{\psi}] A e^{-S_{\mathrm{f}}[\psi,\overline{\psi}]}$$

with

measure :
$$\mathcal{D}[\psi]\mathcal{D}[\overline{\psi}] = \prod_{x} \prod_{\alpha} d\psi_{\alpha}(x) d\overline{\psi}_{\alpha}(x)$$

free field action : $S_{f}[\psi,\overline{\psi}] = \int d^{4}x \,\overline{\psi}(x) \,(\gamma_{\mu}\partial^{\mu} + m) \,\psi(x)$

Grassmann variables:

$$\int \mathcal{D}[\psi] \mathcal{D}[\overline{\psi}] \exp\left\{-\int \mathrm{d}^4 x \,\overline{\psi}(x) Q \,\psi(x)\right\} = \det Q$$

Fermion determinant

Naive lattice action:

$$S_{\rm f}[\psi,\overline{\psi}] = \frac{1}{2} \sum_{x} \sum_{\mu} \overline{\psi}(x) (\gamma_{\mu} \triangle_{\mu} + m) \psi(x) + {\rm h.c.}$$

with momentum space propagator

$$\tilde{\bigtriangleup}(k) = \frac{-i\sum_{\mu}\gamma_{\mu}\sin k_{\mu} + m}{\sum_{\mu}\sin^{2}k_{\mu} + m^{2}}$$

physical pole at zero momentum

additional poles at $k_{\mu} = \pm \pi$ because of periodicity!

describes 16 instead of 1 particle: `fermion doubling' problem

Nielsen-Ninomiya theorem:

There exists no local, chiral fermion actions without doublers

Fixes: pick your poison

Wilson fermions

add irrelevant ops. (going away in CL) to make doublers very massive breaks chiral symmetry for non-zero a

staggered (Kogut-Susskind) fermions

distribute spinor components on different sites, reduces to 4 flavours take 4th root of determinant to get to one flavour, keeps reduced chiral symm. non-local operation, have to take CL before chiral limit, mixing of spin, flavour

domain wall fermions

introduce 5th dimension, fermions massive in that dim. and chiral in the other expensive

overlap fermions non-local formulation with modified chiral symmetry even for finite a two orders of magnitude more expensive than Wilson

Wilson fermions

• Add a term to D_{naive} which formally vanishes as $a \rightarrow 0$:

$$D_{\rm w} + m_f = \frac{1}{2} \gamma_\mu \left(\nabla_\mu + \nabla^*_\mu \right) + ar \nabla^*_\mu \nabla_\mu + m_f$$
$$\widetilde{D}_{\rm w}(p) = i\gamma_\mu \frac{1}{a} \sin(ap_\mu) + \frac{2r}{a} \sin^2\left(\frac{ap_\mu}{2}\right) \quad \text{(free theory)}$$

- \Rightarrow Mass of doubler states receives contribution $\propto r/a$: pushed to cutoff scale
- :-) Complete lifting of degeneracy

:-(Explicit breaking of chiral symmetry:

even for $m_f = 0$ the action is no longer invariant under

$$\psi(x) \to e^{i\alpha\gamma_5}\psi(x), \qquad \overline{\psi}(x) \to \overline{\psi}(x)e^{i\alpha\gamma_5}$$

Mostly acceptable, but makes things more complicated

Lattice perturbation theory

Classical vacuum:
$$A_{\mu} = 0 \rightarrow U_{\mu}(x) = 1$$

 $\Rightarrow expand$ $U(x,\mu) = exp \{ ig_0 a A^b_{\mu}(x) T_b \}$ in powers of the bare coupling g_0
 \Rightarrow $S_g[U] = \sum_x a^4 \{ L_2 + g_0 L_3 + g_0^2 L_4 + \cdots \}$
 \Rightarrow $\prod_{x,\mu} dU(x,\mu) = e^{-S_m[A]} \prod_{x,\mu,a} dA^a_{\mu}(x)$
 $S_m[A] = \sum_{x,\mu} \frac{N}{24} a^2 g_0^2 A^b_{\mu}(x) A^b_{\mu}(x) + O(A^4)$

propagators and vertices different from continuum, n-point self-interactions!

complicated and clumsy, but sometimes necessary for

-determination of RG functions

-matching of continuum and lattice renormalisation schemes

-determination of lattice cut-off effects

Strong coupling expansion for pure gauge theory

expand the Boltzmann factor in powers of $\beta \propto 1/g_0^2$ as

$$\exp\left\{\beta\frac{1}{N}\operatorname{Re}\left[\operatorname{Tr}U(p)\right]\right\} = 1 + \beta\frac{1}{N}\operatorname{Re}\left[\operatorname{Tr}U(p)\right] + \cdots$$

amounts to diagrammatic representation in terms of plaquettes 'famous' leading order predictions: Wilson 1974

$$\langle \operatorname{Tr} U(\mathcal{C}_{R,T}) \rangle \overset{R,T \to \infty}{\sim} C e^{-\sigma RT}$$
 with $\sigma = -\ln\beta + \cdots$
 $C_{\rm p}(t) \overset{t \text{ large}}{\sim} e^{-m_{\rm G}t}$ with $m_{\rm G} = -4\ln\beta + \cdots$

[SU(N) LGT is confining for all values of the gauge coupling]

Rewrite partition function as sum over sets of plaquettes

$$Z = \prod_{p} \int DU_{b} \exp(-S_{p})$$
$$= \prod_{p} c_{0}(\beta) \int DU_{b} \left\{ 1 + \sum_{r \neq 0} c_{r}(\beta) \chi_{r}(U_{p}) \right\} = c_{0}^{6\Omega} \sum_{G} \Phi(G)$$

Integration rule 1

Integration rule 2

$$\int dU\chi_r(U) = \delta_{r,0}$$

$$\int dU\chi_r(UV)\chi_s(U^{-1}W) = \delta_{rs}\frac{1}{d_r}\chi_r(VW)$$

Leading order graphs

Corrections

Monte Carlo evaluation

$$Z = \int D\bar{\psi}D\psi DU \,\mathrm{e}^{-S_g[U] - S_f[U,\bar{\psi},\psi]} = \int DU \prod_f (\det M) \,\mathrm{e}^{-S_g[U]}$$

Systematics: finite V,a effects

for hadron with m_H , $\xi \sim m_H^{-1}$ $a \ll \xi \ll aL$!

 \Rightarrow e.g. $30^4 \sim 10^6$ lattice points

every point \Rightarrow 4 U's, every $U \in$ SU(3) \Rightarrow 8 independent components \Rightarrow 10⁸-dimensional integral!

 \Rightarrow Monte Carlo integration, importance sampling

Markov process: ensemble $\{U_1\} \rightarrow \{U_2\} \rightarrow \{U_3\} \dots \{U_N\}$

$$\langle \mathcal{O} \rangle = Z^{-1} \int DU \det M \mathcal{O} e^{-S_g[U]} \approx \frac{1}{N} \sum_{n=1}^{N} (\det M \mathcal{O})[U]$$

 $\Rightarrow N$ "measurements" of \mathcal{O} \Rightarrow statistical error $\sim 1/\sqrt{N}$

Light fermions expensive:

$$\det M[U] = \lambda_1[U] \cdot \lambda_2[U] \cdot \lambda_3[U] \dots, \quad \operatorname{cost}(\det M) \sim \frac{1}{m_q^n}, \quad n > 2$$

Non-local: every eigenvalue depends on every link

Computing hadron masses

$$C(t) = \langle 0| \sum_{x} \mathcal{O}_{f}(\vec{x}, t) \mathcal{O}_{i}(0) | 0 \rangle = \sum_{n} \langle 0| \mathcal{O}_{f}|n \rangle \langle n| \mathcal{O}_{i}|0 \rangle e^{-E_{n}t}$$

glueball:
$$\mathcal{O}(x) = \text{Tr}F_{\mu\nu}^2 = \text{Tr}U_p(x)$$

PS-meson: $\mathcal{O}(x) = \bar{\psi}(x)\gamma_5\psi(x)$ pion, ...
V-meson: $\mathcal{O}(x) = \bar{\psi}(x)\gamma_\mu\psi(x)$ rho, ...

$$\tau \xrightarrow{\longrightarrow} \infty \langle 0 | \mathcal{O}_f | \pi \rangle \langle \pi | \mathcal{O}_i | 0 \rangle \ e^{-M_{\pi}\tau}$$

 \sum_x : zero momentum projection, $E_n \to M_n$

eff.mass $M_{\pi}(t) = -\ln[C(t+1)/C(t)]$

matrix elements related to f_{π}

Eliminating bare lattice parameters

- Bare parameters: $g_0, m_u, m_d, m_s, \ldots$
- Can freely choose bare quark mass m_q in simulations;
 Which value of m_q corresponds to m_u, m_d, ...?
- Obtain hadron masses as functions of m_q , e.g. $am_{PS}(m_{q_1}, m_{q_2})$
- Quark mass dependence of hadron masses:

 $m_{\rm PS}^2 \propto m_q, \quad m_{\rm V}, \, m_N \propto m_q$

• Eliminate the bare parameters in favour of hadronic input quantities:

$$g_0 \sim 1/\ln a: \quad a^{-1} \,[\text{GeV}] = \frac{Q \,[\text{GeV}]}{(aQ)}, \quad Q = f_\pi, m_N, \Delta_{1\text{P}-1\text{S}}^{\Upsilon}, \dots$$
$$\hat{m} = \frac{1}{2}(m_u + m_d): \quad \frac{m_{\text{PS}}^2}{f_\pi^2} \to \frac{m_\pi^2}{f_\pi^2}, \quad m_s: \quad \frac{m_{\text{PS}}^2}{f_\pi^2} \to \frac{m_{\text{K}}^2}{f_\pi^2}$$

Pure gauge theory: glueball spectrum

Glueball interpolating operators

• contamination of higher spin states;

e.g. 0^{++} can mix with 4^{++}

Matrix correlators:

 $C_{ij}(x_0) = \sum_{\vec{x}} \left\langle O_i(x) O_j(0) \right\rangle$

• $\{O_1,\ldots,O_n\}$:

basis of interpolating operators for given irrep. of the hypercubic group

 \rightarrow Recover a given spin-parity in the continuum limit

Pure gauge theory: glueball spectrum

Recovery of SO(4)!

Morningstar, Peardon PRD 99

The static potential

pure gauge theory

SU(2) gauge theory with matter fields

Alpha collaboration

QCD: the light hadron spectrum

CP-PACS 99

Budapest-Marseille-Wuppertal, LAT08

Nf=2+1, nearly physical, one lattice spacing

Running coupling from Schrödinger functional

Schrödinger functional: finite-volume renormalisation scheme

 \overline{g}_{SF}^2 runs with the box size: $\overline{g}_{SF}^2(L)$

Precision physics results!

HPQCD-MILC-FNAL

staggered u,d,s + NRQCD for c,b