
Lecture II

QCD and its basic symmetries

Renormalisation and the running coupling constant

Experimental evidence for QCD based on comparison with 
perturbative calculations



The road to QCD:  SU(3) quark model



Symmetry considerations: group theory

Hadron multipletts are product representations of the fundamental 
triplett representation

Analogous to spin, SU(2): 
1
2
⊗ 1

2
= 1,

1
2
⊗ 1

2
⊗ 1

2
=

3
2

Analogous to spin, SU(3):  quarks in fundamental rep., triplet and anti-triplet

3⊗ 3⊗ 3 = 1 + 8 + 8 + 10

3⊗ 3̄ = 1 + 8
ψ =




ψu

ψd

ψs







The need for colour

Contradiction with Pauli principle:
Total wave function must be anti-symmetric!

Cure: introduce new, unobservable, quantum number: colour

 Colour

Observable states must be colourless!

 Colour



3⊗ 3 = 3̄ + 6

Also explains absence of qq or qqqq states:

3⊗ 3⊗ 3 = 1 + 8 + 8 + 10 contains singlet

3⊗ 3̄ = 1 + 8 contains singlet

does not contain singlet!

etc.

Quark spinors now in colour triplet:

contains singlet

ψ =




ψr

ψg

ψb







QCD, theory of strong interactions

LQCD = −1
4
F a

µν(x)F a µν(x) +
Nc∑

c=1

Nf∑

f=1

ψ̄c,f (x) (iγµDµ −mf ) ψc,f (x)

Dµ = ∂µ − igT aAa
µ(x)Covariant derivative:

Quark fields: ψα,c,f (x)

spinor flavourcolour

α = 1, . . . 4 (spin up/down, particle/anti-particle)
c = 1, 2, 3 (red,blue,green)
f = u, d, s, c, b, t

Parameters: αs(q2) =
g2(q2)

4π
mu ≈ 3MeV, md ≈ 6MeV
ms ≈ 120MeV, mc ≈ 1.5GeV
mb ≈ 4.5GeV, mt ≈ 175GeV

Field strength tensor: F a
µν = ∂µAa

ν − ∂νAa
µ − gfabcA

b
µAc

ν



QCD, theory of strong interactions

gluon self-interaction!



Interaction dictated by gauge symmetry

Parameters: couplings and masses need to be determined by experiment

ψ̄iγµDµψ = ψ̄iγµ(∂µ − iqAµ)ψ

ψ̄iγµDµψ = ψ̄iγµ(∂µ − igsT
aGaµ)ψ



Feynman rules for perturbative QCD

LQCD = −1
4
F a

µν(x)F a µν(x) +
Nc∑

c=1

Nf∑

f=1

ψ̄c,f (x) (iγµDµ −mf ) ψc,f (x)

Dµ = ∂µ − igT aAa
µ(x)F a

µν = ∂µAa
ν − ∂νAa

µ − gfabcA
b
µAc

ν



Global symmetries: example isospin

ψ(x) =
(

ψu

ψd

)
ψ′ = Uψ, U ∈ SU(2), U U† = 1

ψ̄′(iγµDµ −m)ψ′ = ψ̄U†(iγµDµ −m)Uψ = ψ̄(iγµDµ −m)U†Uψ

mu = mdIf                   we can write                              

For non-degenerate masses this does not work!                              

ψ̄′ = ψ
′†γ0 = ψ†U†γ0 = ψ†γ0U† = ψ̄U†

ψ̄(x)iγµDµψ(x)−muψ̄u(x)ψu(x)−mdψ̄d(x)ψd(x)



Symmetries of the QCD Lagrangian

Local              transformationsSU(3)c ψ′
c(x) =

(
eiθa(x)T a

)

cc′
ψc′(x)

a = 1, . . . N2
c − 1

For degenerate quarks, 
global              transformations

mf1 = . . . = mfnf

SU(nf )
ψ′

f (x) =
(
eiθaT a

)

ff ′
ψf ′(x)

a = 1, . . . n2
f − 1

Global          transformations:U(1) ψ′(x) = eiθ ψ(x)

For massless quarks,                              =0:

Global axial              transformations

mf1 = . . . = mfnf

SU(nf ) ψ′
f (x) =

(
eiθaT aγ5

)

ff ′
ψf ′(x)

a = 1, . . . n2
f − 1

Global axial         transformations,
anomalous, broken by quantum effects

U(1) ψ′(x) = eiθγ5 ψ(x)



Symmetries for parameter values realised by nature

SU(3)c gauge symmetry, exact, only colour singlets observable

U(1)B baryon number, exact

SU(2)isospin approximate, O(few %), mu ≈ md

SU(3)flavour approximate, O(few 10 %),                                    (quark model!)mu ≈ md ∼ ms

SU(2)axial approximate mu ≈ md ≈ 0

approximate chiral symmetry 
= isospin+axial flavour symmetry combined

mu ≈ md ≈ 0SU(2)L × SU(2)R



Elementary perturbative processes in QCD



Higher order processes

Gluon self coupling:  besides quark loops also gluon loops can occur!

as in QED

do not exist in QED!



Higher order corrections and renormalisation

∼
∫

d4k

(2π)4
(p2µ + kµ)γµ + m

p2
2 + 2p2k + k2 −m2

(p1µ − kµ)γµ + m

p2
1 − 2p1k + k2 −m2

1
k2

p1 p2k

p1 − k p2 + k

k→∞−→
∫

d4k
k2

k6
∼ ln k →∞

Vertex correction:

Regularisation by momentum cut-off:
∫ Λ

d4k
k2

k6
∼ ln Λ finite

Altogether there are quadratic, linear and logarithmic divergencies from vacuum 
corrections to different n-point functions



Similar: correction to the mass

Remember Feynman propagator, free field

Pole mass: parameter from Lagrangian, mass of the non-interacting particle

(One) correction in the interacting theory:

∫
d4p

(2π)4
e−ipx

p2 −m2
0 + Σ(p2)

Pole of the propagator gets shifted! Correction to the mass:

p2 −m2
0 + Σ(p2) = 0, m2 = m2

0 + δm2

Full propagator:



Renormalisation

Observation: “bare” parameters from L do not correspond to physical couplings, masses 

Physical parameters: calculated from sum of all Feynman diagrams 

e0 = e0(e, m,Λ), m0 = m0(e, m,Λ)

m0 = Z1/2
m m

e0 = Z1/2
e e

OR(e, m) = lim
Λ→∞

Z(e, m,Λ)O(e, m,Λ)

not measurable!

e = e0

(
1 + a1e

2
0 ln

Λ
µ

+ . . .

)

m = m0

(
1 + b1e

2
0 ln

Λ
µ

+ . . .

) ...

...

O(e0, m0) = O(e, m,Λ)Observable

Renormalisation: absorb cut-off dependence in Z-factors, order by order



Running coupling constants: the vacuum as a medium

“Free electron’’:  idealisation, exists only in perturbation theory

Vacuum permits quantum fluctuations, 

Pair production of virtual electron-positron pairs

Physical electron in continuous interaction with vacuum, surrounded
by cloud of electrons, positrons, photons

Polarisation of virtual dipoles, screening! 



Effect of vacuum polarisation on the QED charge

Measure charge by scattering with 4-momentum transfer

Small       = large distance              small coupling

Large       = small distance              large coupling

Q2

Q2

Q2 α(Q2)

α(Q2)



Effect of vacuum polarisation on the QCD charge

Vacuum polarisation: quark anti-quark pairs 

Screening as in QED?  Yes, but....

Gluon loops in addition!

In total: colour charge mostly surrounded
by same charge gluonic cloud, anti-screening

Small       = large distance              large coupling

Large       = small distance              small coupling

Q2

Q2



Comparing calculation and experiment

QED QCD

Running much faster than in QED!



Confronting theory with experiment:

1. Perturbative high energy regime



Fragmentation (non-perturbative) and jets

Example e-p scattering

scattered quark

remainder of proton



Test for Flavours and Colours via a QED process

Qf = e

f

f̄

Fermion anti-fermion  production



Evidence for 3 colours per quark flavour



Evidence for 3 colours in pion and tau decay

c

Γ ∼M2 ∼ N2
c

Same principle: both processes sensitive to number of contributing quark states!



Evidence for gluons: 3-jet events

Discovery: PETRA storage ring (DESY Hamburg), 1979

Three-quark final state not possible with leading order QCD Feynman rules

One jet comes from a gluon!



The gluon spin from 3-jet events

Theta: angle between axis of highest energy jet and the direction of the other two jets
in their CMS



Strong coupling from 2-jet and 3-jet events



Evidence for quarks: Deep Inelastic Scattering



The difference to the quark model:



Confronting theory with experiment:

I1. Non-perturbative low energy regime



Non-relativistic QCD (NRQCD)

E = (!p2 + m2)1/2 = m

(
!p2

m2
+ 1

)1/2

= m

(
1 +

!p2

2m2
+ . . .

)

Consider Dirac eqn for free particle + plane wave solution:

(iγµ∂µ −m)ψ(x) = 0

(E −m)ϕ− σ · pχ = 0
(E + m)χ− σ · pϕ = 0

expansion in small v/c

χ ≈ σ · p
2m

ϕ negligible, only      left, two components (spin) ϕ

Wave equation:                   i
∂

∂t
ψ = −

#∇2

2m
ψ Schrödinger!       Generalises to interactions         



Bound states of heavy quarks

V (r) = −C
αs

r
Singlet: C =

4
3
, Octet: C = −1

3

Short distance part perturbative



Confinement, qualitative

dipole field colour electric fluc tube

Fields between charge and anti-charge:

Field energy in the QCD flux tube grows linearly with separation



At some point pair creation of light quarks is possible:

String breaking

Formation of heavy light mesons, saturation of the potential



Discovery of J/psi (1974)



Predictions for spectra of quarkonia

c,b,t quarks are non-relativistic             solve Schrödinger eqn with potential

c̄c charmonia b̄b bottomonia

V (r) =
4
3

αs

r
+ kr


