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Abstract

Flares emitted by the supermassive black hole located at the center of our galaxy, Sagit-
tarius A*, have been consistently monitored for decades across radio, NIR and X-ray
wavelengths. Our knowledge about this phenomena is limited, nevertheless they could be
explained by an hotspot orbiting close to the event horizon. Such object can be idendified
as a plasmoid generated by magnetic reconnection. In this study, we employ ray traced
imaging at 230GHz using the BHOSS code. We simulate a spherical region in circular
orbit, where we modify the radiation coefficients. Additionally, we we investigate the
influence of both thermal and non-thermal electron distributions within the model to
account for the magnetic field responsible for plasmoid generation.

It is worth noting that our study is limited because we are not provided with obser-
vational data to compare our result aces limitations due to the absence of observational
data for direct comparison. However, our results strongly suggest that such a hotspot
should possess a radius of 2𝑀 and be situated at a distance of 6𝑀 from the black hole.
Furthermore, the emission coefficient should be eight times greater than that of the back-
ground, taking into consideration the magnetic contribution to the electron distribution.
This model presents a compelling explanation for the observed flare phenomena.
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Introduction

Our Galaxy, The Milky Way

Observing the night sky on a clear, dark night, one can discern a prominent band stretching
across the firmament. This celestial feature is none other than our own galaxy: the Milky
Way. In the state of the art, it has a diameter of 26.8 ± 1.1𝑘𝑝𝑐(Goodwin, Gribbin, and
Hendry 1998), a mass of 1.15 × 1012𝑀⊙(Kafle et al. 2012) and it contains 1 − 4 × 1011
stars(MW_nstars). For an extensive part of human history, the Milky Way was perceived
as the entirety of the universe, and to this day, it remains one of the most scrutinized
astrophysical entities. It wasn’t until the 18th century that humanity began gaining a
broader perspective on the cosmos, realizing that objects such as the Magellanic Clouds
were distinct and separate from our galaxy. However, the transformative moment in our
understanding occurred in the 1920s when Edwin Hubble revealed that the Milky Way is
just one among countless galaxies. Specifically, it belongs to the category of barred spiral
galaxies. As our observational capabilities advance, the Milky Way unfolds its mysteries,
captivating our quest for knowledge. Of particular intrigue is the heart of our galaxy: the
Galactic Center.

When we observe the Milky Way with the naked eye, the interstellar medium absorbs
much of its emitted light. However, using telescopes equipped to detect infrared and radio
waves reveals a luminous core at the galactic center. This becomes strikingly evident
when examining Figure 1, which illustrates observations in different wavelength bands.
At the top, we observe the galaxy in radio waves, while on the seventh and eighth place,
there are near-infrared optical bands. The radiant region corresponds to the center of our
galaxy, encompassing both its rotational and mass centers. It is widely accepted that a
supermassive black hole resides at the core of nearly every galaxy, including our own. In
our case, this entity is known as Sagittarius A* (Sgr A*).
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Figure 1: Image of the Milky Way in various wavelengths of light from top to bottom as
follows: radio at 408 MHz, atomic hydrogen 1.4 GHz, radio ind the range 2.4-2.7 GHz,
molecular hydrogen 115 GHz, composite mid and far infrared in 3 − 25 × 103 GHz, mid
infrared in the same range as the previous, near infrared (NIR) in 86 − 240 × 103 GHz,
optical 460 × 103 GHz, x-ray in 60 − 360 × 106 GHz, and gamma-ray > 2.4 × 1013 GHz.
These illustrates how different features are more prominent in different flavors of light.
Credit NASA.



Introduction 3

Evidence for a Black Hole at the galactic center

The center of our galaxy has interested many groups of scientist throughout the century
observing, it was first observed as a radio source in 1933 by Karl Jansky. However, it wasn’t
until the 1980s that this mysterious object was conclusively identified as a supermassive
black hole at the heart of our galaxy (see Genzel, Hollenbach, and Townes 1994). At that
time, its mass was estimated to be approximately 3 million times that of the Sun. This
estimation was grounded in the observation of stars within close proximity exhibiting
increased velocities, a strong indicator of a massive compact object, such as a black
hole. Significant advancements in measuring the mass of Sagittarius A* (Sgr A*) occurred
when scientists closely analyzed the motion of stars orbiting around it, aptly named
the S-stars. Specifically, it was studied the motion of the star S2 throughout its whole
orbit (with an estimated period of ∼ 15𝑦𝑟𝑠), measuring the near infrared emission due
to the reduced interstellar exintion. In 2002, it was reported that Sgr A* had a mass of
𝑀 = (4.1 ± 0.6) × 106𝑀⊙(Ghez et al. 2003) and in 2022 the precision has been increased
𝑀 = (4.297 ± 0.012)106𝑀⊙ (GRAVITY Collaboration, Abuter, R., et al. 2023). Yet, the
resolution needed to detect directly the central compact object (around dozens of 𝜇𝑎𝑠)
was beyond the available; in order to comply with this issue, it is needed a telescope
with the same diameter as the Earth. Furthermore the bolometric luminosity produced
by the surrounding gas is < 100 × 1036 𝑒𝑟𝑔

𝑠
(∼ 100 time the Sun luminosity), meaning

that if situated in an other galaxy, it would go easily undetected. Direct imaging of
this compact object remained elusive until the historic release of an image by the Event
Horizon Telescope collaboration (EHT) in 2022 (refer to EHT 2022a, and fig. 2), here it is
shown the result of 5 night of observation, the final image is obtained averaging between
various reconstruction method. This monumental achievement provided unequivocal
visual evidence of the existence of the compact object predicted by theoretical models
over a century ago (the more general Schwarzshild black hole model). Importantly, it’s
worth noting that the image of Sgr A* in 2022 was not the first image of a black hole. In
2019, the same collaboration (EHT) made headlines by capturing an image of the black
hole in M87, situated at the center of the Virgo A elliptic galaxy (often called M871) in the
Virgo clusterEHT et al. 2019. The mass of Sgr A* was reconstructed through relativistic
calculations based on the shadow of the black hole, which is the effective representation
observed through telescopes due to the bending of light. These calculations confirmed
the previous mass estimates, yielding a value of approximately ∼ 4 × 106𝑀⊙. The first
simulated image of a black hole was provided by Luminet 1979 and it is shown in fig.??.
To infer the black hole parameters from the observation, they performed numerical

1The name M87 identifies both the supermassive black hole and the specific galaxy, the latter represents
the main member of the Virgo cluster where it is situated. The cluster itself is the most massive component
of the Virgo super-cluster.



Figure 2: Black hole shadow and emission at 230 GHz EHT 2022a. The top images is an
average over various subsets taking the inserted white circle as a reference beam for the
reconstruction process. On the bottom, there are the averages taking similar morphologies
and their relative abundance inside the subsets. The color scale represents the specific
intensity in terms of temperature.
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Figure 3: First simulated image of a spherical black hole with thin accretion disk. The
system is seen from a great distance by an observer at 10° above the disk’s plane.



Figure 4: On the left the observation of Sgr A* from EHT 2022a, on the right M87 from
EHT et al. 2019.

simulations (see EHT 2022b) and concluded that Sgr A* is most likely a Kerr black hole
with strongly magnetized gas (MAD, magnetically arrested disk) which creates a jet. In
this scenario, the system should have inclination of 𝑖 = 30 respect to the plane of the
sky and spin parameter 𝑎 = 0.5 (see section 1.3 for details). These simulations do not
explain all the possible behaviour2 but represent a first approximation that allow for
further investigations. We will go through all the mathematical details in the next chapter.
This breakthrough opens up to whole new possibilities to understand the physics around
such compact objects; if we have a look to fig. 4 we can see the observation of Sgr A* on
the left and M87 on the right. The image obtained previously of M87 in EHT et al. 2019
showed smooth emission region, while for our protagonist it is immediate to notice the
presence of 3 regions more luminous than the rest. The issue is thought to be related to
the phenomena of flares and the presence of a "hotspot".

Evidence for Sagittarius A* flares

Sagittarius A* was first known as a radio source and, in the second half of the century,
scientists began to see unexpected events. In 1980s it was detected, by Brown and Lo
1982, a variation of the lightcurve at 2695𝑀𝐻𝑧 between 25% and 40% of over a few days.

Around the beginning of the 2000s, many measured simultaneous signals in various
wavebands (see Falcke et al. 1998, An et al. 2005, Eckart et al. 2006). Likewise, Falcke
et al. 1998 presented detections over two days ranging from radio to infrared; they found
the total flux of the source to be (2.9 ± 0.25) 𝐽𝑦 at 152.3 GHz, although the value at this
wavelength expected by their fit should have been ∼ 2𝐽𝑦, this may be due to its variability.
On the other side, detections of the variability were found also in X-ray (as in Baganoff

2It is not to our knowledge whether the theory of General Relativity holds in very strong field like in
the vicinity of a black hole event horizon, nevertheless all the numerical simulation are processed in this
framework. It is evident that the results, shown in EHT 2022b, do not replicate the morphology in fig.2.
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Figure 5: Simultaneous IR and X-ray light curves of Sgr A* (Boyce et al. 2019). Plotted
in gray/red is the excess flux density (𝑚𝐽𝑦) of the pixel containing Sgr A* from Spitzer
4.5𝜇𝑚. Chandra light curves of Sgr A* at 2–8 keV are plotted in purple with an offset
inserted. The orange line represent the most probable value to measure through the a
specific time interval The peaks are respectively the third and the fourth event observed
during the whole Chandra observation (meaning in x-ray).

et al. 2003), with a timescale about thousands of seconds. Only in 2019 it was confirmed
whether the events in infrared and X-ray could be considered simultaneous3(see Boyce
et al. 2019), this implies that the flares are physically connected.This that the events could
be actually caused from the same physical phenomena.

As shown in Maciek Wielgus et al. 2022 and in Chen et al. 2019, in the last 20 years we
have been constantly collecting datas on these flares, showing similar impulsive spectrum
also for millimiters wavelengths (Marrone et al. 2008, Eckart et al. 2006). A measurement
showed a total flux of the order of 2 − 4𝐽𝑦 and a variation ∼1𝐽𝑦 at 230GHz, while similar
behaviour was found for more energetic bands but on the order of𝑚𝐽𝑦. After analyzing
the also the polarization, (see Marrone et al. 2008,Dodds-Eden et al. 2009,Ponti et al. 2017)
it was confirmed that the emission is best fitted by to synchrotron emission with high
power law tail and engaged with a cooling mechanism (see Yuan, Quataert, and Narayan
2004,Yusef-Zadeh et al. 2006,Boyce et al. 2019, Dodds-Eden et al. 2009), this comes from
the already known cooling synchrotron system, meaning that with the radiation emission
the gas looses energy implying a net decrease of temperature. In fig. ?? is shown a
representative flare extracted from Boyce et al. 2019. It is evident how the two flares
presented visibly excess the noise both in x-ray and IR.

3The study takes count of multiple flares measured in infrared and x-ray respectively by Spitzer and
Chandra telescopes. The difference between the peaks of emission was always found to be around 10
minutes. Nevertheless, taking into account a 3𝜎 interval, the flare can be considered simultaneous.



Flares have been continuously measured over decades (Chen et al. 2019) but still there
is no evidence for a suitable explanation on how they are generated. Nowadays most
of the the dominant view is that the behaviour is caused by an hotspot. We will discuss
more about this topic in the next section.

Evidence for a hotspot

The most explored line of research is an object star-like orbiting around the black hole, a
hotspot. This would explain the strong flares, they could be due to relativistic effect of
gravitational lensing when the hotspot passes behind the compact object. Furthermore,
the type of emission is synchrotron, meaning that the hotspot is submerged in a strong
magnetic field and this could explain also how it could be created (see Aimar et al. 2023):
a plasmoid generated by magnetic reconnection. Such plasmoid can be thought as a
magnetic trap for the plasma that heats the particles inside, it can have various shape
its emission properties will depend on the gas and the magnetic field that generated it,
but an important contribution comes from the surroundings since the radiation will be
transported; moreover it can have various shapes like a torus or a star-fish (see Bostick
1957), although for astrophysical purposes the spherical shape it’s reasonable, see Aimar
et al. 2023)

Already 20 years ago, in Broderick and Loeb 2005, there were numerical simulations
on how it could appear such plasmoid around a black hole, it is indeed similar to what
has been developed for this thesis. Definitive reason to investigate the hotspot may come
from the following:

• In M. Wielgus et al. 2022 it is studied the polarization by ALMA at 229 GHz, they
compared it with a simulation having a spherical object at a finite temperature
orbiting around a black hole on the equatorial plane. It was found polatimetric loops
in the Q-U plane4. Their best model is an hotspot of ∼ 3𝑟𝑔 radii at 11𝑟𝑔 distance in
clockwise rotation with an inclination angle of 𝑖 ≤ 30◦.

• In 2020 GRAVITY collaboration published a study on the motion of the centroid of
these flares (see GRAVITY Collaboration, Bauböck, M., et al. 2020). They analyzed 3
events in 2017, so they computed the best fit for a circular orbit in a Kerr-Newmann
space-time (a charged rotating black hole). The conclusion was that the orbit have
to around 8M and 10M of distance from the center of the black hole with inclination
angle 120 < 𝑖 < 150, this also means clockwise rotation.

4The polarization can be identified with the Stokes indexes: I, Q, U, V. The first represents the total
intensity, the second and third are the linear polarization + and x, the last is the circular polarization. For
details see Jackson 1998.
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• In Aimar et al. 2023 is studied the production and the behaviour of a plasmoid by
magnetic reconnection using resistive GRMHD. They conclude that having viscous
systems is the only way to produce such an object, this can be created very close to
the ergosphere, it can have a radii of 1 − 3𝑟𝑔 situated at 5 − 10𝑟𝑔 from the black hole
(at the point where it stays in orbit).

Since the main candidate to represent the hotspot is the plasmoid, we will use also a
non-thermal electron distribution function to better simulate the strong interaction that
may lead to the plasmoid production. These results are consistent with each other and
combining them we come up with our toy model. We will simulate the presence of a
spherical region orbiting the black hole for ray tracing. This object will be in circular orbit
on the equatorial plane. We will study different values for emissivity and absortivity of
the gas inside, this way we do not change by hand the datas from the GRMHD simulation,
on the opposite we assigning a different physical property of the gas locally. This toy
model allow us to simulate trivially the interaction of the plasmoid with the surrounding
gas.

Going through the thesis the reader will learn the essentials about black holes and the
motion around them (chapter 1), then it will be necessary to learn how the electron behave
to generate emission in a thermal and non-thermal models and how this emission should
be transported out into the empty space (chapter 2). After the theoretical background
we will learn about the toy model, proposed in this thesis, and the workflow that has
been carried out (chapter 3) and we will show the results (chapter 4) with conclusions
(chapter 5) at the end. This thesis contains the theory essential of what the reader needs
to understand the project here presented. For whoever is particularly interested in some
topics I may suggest some books/paper I used: black holes Chandrasekhar 1992(detailed)
O’Neill 1995(more on the meaning of things) Rezzolla and Zanotti 2013 (essential), gas
structure around the black hole Rezzolla and Zanotti 2013 (detailed)Abramowicz and
Fragile 2013 (generally good to stard with), non-thermal distribution Marian Lazar and
Fichtner 2021 Livadiotis and McComas 2009(extensive and detailed for my purpose).





–1–
Black hole physics

Contents: 1.1 Pills of General Relativity. 1.2 How we define a black hole. 1.3 Kerr geometry.

1.4 Geodesic motion. 1.5 Geodesic motion for ray tracing. 1.6 Gas around a black hole.

The black hole is one of the most intriguing astrophysical object ever discovered, it
represents a region where the gravitational pressure it is so high that all the matter
collapses into a single point. Gravity can become so strong that, closer than a certain
distance, it is impossible to come back, even for light. We call this limit the event horizon,
this name stands because of the impossibility of observing events that happen beyond
it. In the following sections, we will get an idea of the building blocks of the theory and
the simplest black hole case (section 1.2), how to describe a rotating one (section 1.3),
how the particles move around it and how light travels before reaching our telescopes
(section 1.4). We observe the black hole through electromagnetic radiation, so we need to
understand about its radiation transport through the matter (section 2.1) and about the
emission and absorption properties (section 2.2).

1.1 Pills of General Relativity

The theory of General Relativity proposed by A. Einstein is a cornerstone of modern
scientific thought (see the original paper in Einstein 1915). It has revolutionized our
understanding of gravity and space-time, it has led to many important consequences in
physics and astronomy. One of its most famous discoveries is the black hole solution,
which has fascinated scientists and the public alike for decades. Understanding the
complexities of this theory is crucial for advancing our scientific knowledge and exploring
the mysteries of the universe. We will not go through all the details of the theory but just
the essential parts for our aim, for more see Misner, Thorne, and Wheeler 1973.
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The theory is based on the idea that we live in a 4-dimensional space called manifold,
this identifies what is commonly known as space-time. Such manifold can be imagined as
a surface that can bend and change shape arbitrarily. We will choose a particular shape
and symmetry to build our space-time (suitable to our problem) and when we talk about
a specific one, we refer to a solution to the Einstein field equations, as follows:

𝐺𝜇𝜈 = 𝜒𝑇𝜇𝜈 . (1.1)

On the left of this equation, there is the Einstein tensor 𝐺𝜇𝜈 which represents the ge-
ometrical contribution of the manifold, while on the other side, there is the constant1
𝜒 = 8𝜋𝐺

𝑐4 and the energy tensor 𝑇𝜇𝜈 that gives the contribution of the matter laying inside
the space-time. As J. Wheeler said, space-time tells matter how to move, matter tells
space-time how to curve (Misner, Thorne, and Wheeler 1973, Carroll 2019). The Greek
indexes 𝜇 and 𝜈 can vary from 0 to 3, where 0 stands for the time component while all the
other represents the space components. This index system is utilized for describing all
tensors and vectors in space-time, including the position 𝑥 𝜇 and velocity 𝑢𝜇 (for more see
Misner, Thorne, and Wheeler 1973, ). The way to formalize the shape of a space-time is to
describe how the distance is measured. In particular, we are interested in the infinitesimal
distance inside this 4-dimensional manifold defined as follows

𝑑𝑠2 = 𝑔𝜇𝜈𝑑𝑥
𝜇𝑑𝑥𝜈 . (1.2)

To solve the Einstein equations means finding the metric tensor 𝑔𝜇𝜈 in the formula just
shown and, once we know its shape, we can possibly tell everything about our space-time.
When using the diagonal form of a metric, the components have to be three of the same
sign and one of the opposite, and in this thesis, we will use the convention (-,+,+,+); this
describes a pseudo-Riemaniann manifold. These instruments are used to build space-times
with various shapes and properties and here, as one could expect, we are interested in the
black hole solution that we are going to explain briefly in the next section. To numerically
simulate the spacetime we need to implement the ADM 3+1 formalism. It consists to
foliate the spacetime in space hypersurface identified by the time coordinate, in this
framework the spacetime is described as follows:

𝑑𝑠2 = −(𝛼2 − 𝛽𝑖𝛽𝑖)𝑑𝑡2 + 22𝛽𝑖𝑑𝑥𝑖𝑑𝑡 + 𝛾𝑖 𝑗𝑑𝑥𝑖𝑑𝑥 𝑗 , (1.3)

where 𝛼 is the lapse function, 𝛽𝑖 is the shift vector and 𝛾𝑖 𝑗 is the spatial metric of the

1The theory of General Relativity improves the knowledge about gravity, nevertheless in the weak
field regime (also called Newtonian limit) it has to match the results from the classical mechanics. This
requirement allow to determinate this formulation of the constant 𝜒 (the Einstein equation for 𝜇 = 0 and
𝜈 = 0 matches the Poisson’s equation for the gravitational potential ∇2Φ = 4𝜋𝐺Φ).
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foliation (Rezzolla and Zanotti 2013).

1.2 How we define a black hole

In 1916, Karl Schwarzschild found the first exact solution of Einstein’s equations in vacuum
(see Schwarzschild 1916). It describes a stationary, static and spherically symmetric space-
time, where all the mass is concentrated in one point taken as the origin of our coordinate
system; this generates a singularity2. This black hole is defined only by its mass, which can
be measured by observing its event horizon dimensions. The latter is defined a spherical
surface of radius 𝑅𝑆 = 2𝐺𝑀

𝑐2 (called Schwarzschild radius) that surrounds the singularity.
Signals cannot exit this surface, meaning that we are not able to have information about
the region inside the event horizon, therefore its name.

To describe formally this space-time, we have to define the distance between the
points, so the line element is

𝑑𝑠2 = −
(
1 − 𝑅𝑆

𝑟

)
𝑑𝑡2 +

(
1 − 𝑅𝑆

𝑟

)−1
𝑑𝑟 2 + 𝑟 2𝑑Ω2, (1.4)

where Ω represents the solid angle, while 𝑡 is the time coordinate and 𝑟 is the radial
coordinate. Notice the signs (-,+,+,+) as the convention we are using. In this solution, as
𝑟 approaches 𝑅𝑆 , the first coefficient (𝑔𝑡𝑡 ) goes to zero, while the second coefficient (𝑔𝑟𝑟 )
diverges. This means that on the event horizon the space-time is infinitely "stretched"3
and, as a result, all signals will be affected becoming non-measurable: they will have
infinite wavelength (or null frequency). We refer to this effect as infinite redshift (see
Rezzolla and Zanotti 2013).

This is the most basic form of black hole space-time. However, a more complex and
real scenario involves rotation. In the following section, we will explore rotating black
holes.

1.3 Kerr geometry

The Schwarzshild solution have been useful for many reasons: it was the first solution
ever of the theory, it was used to infer for the first time the gravitational lensing and to
solve the famous problem of precession at the perielia of Mercury(see Misner, Thorne,

2By singularity, we mean a divergence of some quantity. We can distinguish the coordinate singularity,
which can be avoided with a coordinate transformation, and the physical singularity, which is intrinsic of
the space-time. In this particular case, we were referring to a physical singularity.

3This is from the point of view of a distant observer, like us from the Earth. Nevertheless nothing really
happens to any object passing through the event horizon. This represents a coordinate singularity, meaning
that it can be avoided adopting a trasformation (e.g. using Kruskal–Szekeres coordinate system).



and Wheeler 1973). Still, it represents an approximation: spherical symmetry do not allow
the object to have angular momentum but almost all astrophysical systems have angular
momentum in general. Nevertheless it is reasonable to think that a system with such
rotation will generate a black hole with the same property. The solution of describing
such objects was first found almost fifty years later the non-rotating case by Roy Kerr in
1963 (for more details, see Chandrasekhar 1992 and Abramowicz and Fragile 2013).

In order to solve the field equation we need to reduce the degrees of freedom; this is
because, up to now, a general solution is yet to be found. We expect that the space-time
of a rotating black hole should have axial symmetry, it should also be stationary to assure
the conservation over time; to obtain so, we require these properties from the general
line element (eq. 1.2) imposing e.g. the metric coefficient should be a function of only the
distance 𝑟 and the polar angle 𝜃 as 𝑔𝜇𝜈 (𝑟, 𝜃 ) . The full derivation formulation is not our
aim but the interested reader can have a look to Chandrasekhar 1992 for details. The line
element is

𝑑𝑠2 = −
(
1 − 2𝑀𝑟

𝜌2

)
𝑑𝑡2 − 2𝑀𝑎𝑟

𝜌2
𝑠𝑖𝑛2𝜃 𝑑𝑡 𝑑𝜙 + 𝜌

2

Δ
𝑑𝑟 2 + 𝜌2𝑑𝜃 2 + Σ

𝜌2
𝑠𝑖𝑛2𝜃 𝑑𝜙2, (1.5)

where

Δ := 𝑟 2 − 2𝑀𝑟 + 𝑎2, Σ := (𝑟 2 + 𝑎2)2 − 𝑎2Δ𝑠𝑖𝑛2𝜃,

𝜌2 := 𝑟 2 + 𝑎2𝑐𝑜𝑠2𝜃, 𝑎 =
𝐽

𝑀
. (1.6)

Here we used the spherical set of coordinate called Boyer-Lindquist, moreover from here
on we will take 𝑐 = 𝐺 = 1. The quantity that identifies the mass is𝑀 , while the angular
momentum will be represented by 𝐽 ; these are used to define spin parameter 𝑎 =

𝐽

𝑀
.

When 𝑎 = 0 it leads to the Schwarzshild geometry, while the case 𝑎 = 𝑀 is referred as the
maximally rotating black hole. Here we can distinguish the surface for infinite redshift
and event horizons, they are respectively determined by imposing 𝑔𝑡𝑡 = 0 and 𝑔𝑟𝑟 → ∞
(to recall the meaning, we say infinite redshift when a signal coming to this region will
be infinetly stretched becoming unmeasurable, while event horizon is the region where
no signal can escape to infinite distance). These surfaces merge together as we recover
the non-rotating case 𝑎 = 0. This being said, the condition for infinite redshift yields

𝑟𝑧± = 𝑀 ±
√
𝑀2 − 𝑎2𝑐𝑜𝑠2𝜃, (1.7)

and the other for the event horizon is

𝑟ℎ± = 𝑀 ±
√
𝑀2 − 𝑎2. (1.8)
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Figure 1.1: Representation on the x-z plane with 𝑎 = 0.95 and 𝑀 = 1of the internal
ergosphere 𝑟𝑧− (in blue), the external ergosphere 𝑟𝑧+ (in orange), the internal event horizon
𝑟ℎ− (in green) and the external event horizon 𝑟ℎ+ in red. In the x-y plane it would be, in
the same order, just concentric circles due to axis symmetry.

In this geometry there is a purely relativistic effect called frame dragging: the black
hole rotation warps the space-time so that any particle will be pushed to co-rotate. There
is a region where the effect is so strong that even photons are forced to rotate and no
static observer can exist, this is called ergoregion and it is situated inside 𝑟𝑧+ that defines
the ergosphere. It is straight forward to see that for 𝑎 = 0 the horizons converge to 𝑅𝑆 ,
for 𝑎 = 𝑀 they will both approach 𝑟ℎ± = 𝑀 = 𝑅𝑆/2.The existence of the ergoregion can be
demonstrated by using the ZAMO approach (Zero Angular Momentum Observer, for more
details see Abramowicz and Fragile 2013). This is done taking the angular momentum,
eq. 1.16, to be always zero, this implies that inside the ergosphere such observer will
become superluminal (meaning that its speed should be greater than light speed). A
representation of these surfaces it is shown in fig. 1.1. In the case |𝑎 | > 𝑀 we will not
see the event horizons and this will be called a naked singularity, so the existence of an
horizon forces the spin parameter to be |𝑎 | < 𝑀 . Moreover we can define the innermost
stable circular orbit (ISCO) as follows

𝑟ISCO =
𝐺𝑀

𝑐2
{3 + 𝑍2 − [(3 − 𝑍1) (3 + 𝑍1 + 2𝑍2)]

1
2 }, (1.9)



where 𝑍1 = 1 +
(
1 − 𝑎2∗

) 1/3 [(1 + 𝑎∗)1/3 + (1 + 𝑎∗)1/3
]
, 𝑍2 =

(
3𝑎2∗ + 𝑍 2

1
) 1/2 and 𝑎∗ = 𝑎

𝑀
. The

fig. 1.1 has been evaluated through a change of coordinate from B-L to cartesian, formally
as follows:

𝑥 =
√
𝑟 2 + 𝑎2 sin𝜃 cos𝜙,

𝑦 =
√
𝑟 2 + 𝑎2 sin𝜃 sin𝜙, (1.10)

𝑧 = 𝑟 cos𝜃 .

Kerr-Schild formulation

For numerical purposes it is more convenient to use other sets of coordinates like
Kerr-Schild coordinates which avoid coordinate singularities, for more details see Chan-
drasekhar 1992 or Rezzolla and Zanotti 2013. The divergences can be "cured" by defining

𝑑𝑡 ′ = 𝑑𝑡 + 2𝑀𝑟
Δ
𝑑𝑟, 𝑑𝜙′ = 𝑑𝜙 + 𝑎

Δ
𝑑𝑟 . (1.11)

This way the line element becomes

𝑑𝑠2 = − (1 − 𝐵)𝑑𝑡 ′2 − 2𝐵𝑎 𝑠𝑖𝑛2 𝜃 𝑑𝑡 ′𝑑𝜙′ + 2𝐵 𝑑𝑡 ′𝑑𝑟 − 2𝑎(1 + 𝐵)𝑠𝑖𝑛2 𝜃 𝑑𝑟 𝑑𝜙′+

+ (1 + 𝐵) 𝑑𝑟 2 + 𝜌2𝑑𝜃 2 + 𝐴𝑠𝑖𝑛
2𝜃

𝜌2
𝑑𝜙′2, (1.12)

where 𝐵 := 2𝑀𝑟
𝜌2 . The only physical singularity in both sets of coordinates it is a physical

one yielded by 𝜌 = 0, which means 𝑟 = 0 and 𝜃 = 𝜋
2 , so it will be a ring-singularity.

Now that we have an idea on how this space-time is shaped, we have to analyze how
the particles move inside it. We want to study the geodesic motion.

1.4 Geodesic motion

We recall that we want to simulate an object orbiting a black hole, here we want to
understand how a free particle should move in such manifold. The motion is subjected
only to the curvature of the space-time, hence the gravity; it is called geodesic motion.

In this geometry, the motion is defined by conserved quantities: the angular momen-
tum 𝐿, the energy 𝐸 and the Carter constant 𝑄 but we will need only the first two; it is
not the aim here to analyze the details of a general motion and its property but only a
stable one in the equatorial plane.
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Equatorial motion

A way to easily infer the equations of motion is to minimize the line element over the
proper time, this means applying the Euler-Lagrange equations4. A general way to write
the Lagrangian is simply

L =
1
2𝑔𝜇𝜈

𝑑𝑥 𝜇

𝑑𝜏

𝑑𝑥𝜈

𝑑𝜏
, (1.13)

which we remember to be the derivative of the line element respect to the affine parameter.
The latter is on directly the curve, moreover 𝜏 is generally known as the proper time. The
latter represents the time in the coordinate system solidal to the particle in motion, in this
system the particle is not moving so 𝑑𝑠2 = 𝑔00𝑑𝑡2 = 𝑑𝜏2. In our case the motion is planar
so we take 𝜃 = 𝜋

2 and ¤𝜃 = 0, it follows

2L =

(
1 − 2𝑀

𝑟

)
¤𝑡2 + 4𝑎𝑀

𝑟
¤𝑡 ¤𝜙 − 𝑟

2

Δ
¤𝑟 2 −

[ (
𝑟 2 + 𝑎2

)
+ 2𝑎2𝑀

𝑟

]
¤𝜙2. (1.14)

If we apply the equations in 𝜙 and 𝑡 we can find the constant of motion associated with
the axial symmetry and stationary requirement, explicitly their momenta are

𝑝𝑡 =

(
1 − 2𝑀

𝑟
¤𝑡 + 2𝑎𝑀

𝑟
¤𝜙
)
= 𝐸 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡, (1.15)

𝑝𝜙 =
2𝑎𝑀
𝑟

¤𝑡 −
[ (
𝑟 2 + 𝑎2

)
+ 2𝑎2𝑀

𝑟

]
¤𝜙 = 𝐿 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 . (1.16)

On the other hand the momenta in radial direction is not constant, as follows

𝑝𝑟 = −𝑟
2

Δ
¤𝑟 . (1.17)

The Carter constant is missing because it is null for the equatorial motion, as follows

Q = 𝑝2
𝜃
+ cos2 𝜃

[
𝑎2

(
𝑚2 − 𝐸2

)
+
(
𝐿𝜙

sin𝜃

)2]
= 0, (1.18)

4In classical Newtonian mechanics, these equation are equivalent to the second law of dynamics. In
general relativity they are equivalent to the geodesic equation 2.14. Here there are respectively the equations
and the generalized momenta:

𝜕L
𝜕𝑥𝜈

=
𝑑

𝑑𝜏

(
𝜕L
𝜕 ¤𝑥𝜈

)
, 𝑝𝜈 =

𝜕L
𝜕 ¤𝑥𝜈 .



where 𝑝𝜃 = 𝜕L
𝜕 ¤𝜃 , 𝑚 is the rest mass of the particle and 𝐿𝜙 is the angular momentum

along the axis of rotation of the black hole; since we imposed ¤𝜃 = 0, the lagrangian is
independent from it, so 𝑝𝜃 = 0. Rearranging the equation for 𝐸 and 𝐿 we find

¤𝑡 = 1
Δ

[(
𝑟 2 + 𝑎2 + 2𝑎2𝑀

𝑟

)
𝐸 − 2𝑎𝑀

𝑟
𝐿

]
, (1.19)

¤𝜙 =
1
Δ

[(
1 − 2𝑀

𝑟

)
𝐿 + 2𝑎𝑀

𝑟
𝐸

]
. (1.20)

these will be useful in a bit. Meanwhile we can write the Hamiltonian as

2H = 2
[
𝑝𝑡 ¤𝑡 + 𝑝𝜙 ¤𝜙 + 𝑝𝑟 ¤𝑟 − L

]
=

= 𝐸 ¤𝑡 − 𝐿 ¤𝜙 − 𝑟
2

Δ
¤𝑟 2 = 𝛿1 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡, (1.21)

this obviously has to be conserved throughout the motion. Now we can rearrange the
Hamiltonian to express explicitly as follows

𝑟 2 ¤𝑟 2 = 𝑟 2𝐸2 + 2𝑀
𝑟

(𝑎𝐸 − 𝐿)2 +
(
𝑎2𝐸2 − 𝐿2

)
− 𝛿1Δ, (1.22)

where we remember that Δ =
(
𝑟 2 − 2𝑀𝑟 + 𝑎2

)
. We are looking for timelike geodesics and

this means that we want a positive Hamiltonian, so we choose 𝛿1 = 1. If it was null, we
would have been looking for null geodesics. The equation can be expressed in a more
useful way by using the relation 𝑟 = 𝑢−1, so it becomes

𝑢−4 ¤𝑢2 = −
(
𝑎2𝑢2 − 2𝑀𝑢 + 1

)
+ 𝐸2 + 2𝑀 (𝑎𝐸 − 𝐿)2𝑢3 −

(
𝑎2𝐸2 − 𝐿2

)
𝑢2. (1.23)

To find the circular orbit we require the left hand to be null and the right hand to have
a double root (so that it will represent either a maximum or a minimum). This way we
can obtain

𝐸 =
1 − 2𝑀𝑢 ∓ 𝑎

√
𝑀𝑢3√︁

1 − 3𝑀𝑢 ∓ 2𝑎
√
𝑀𝑢3

(1.24)

𝐿 = ∓
√
𝑀√︂

𝑢

(
1 − 3𝑀𝑢 ∓ 2𝑎

√
𝑀𝑢3

) [
𝑎2𝑢2 + 1 ± 2𝑎

√
𝑀𝑢3

]
. (1.25)
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After some manipulation we write the angular velocity as follows

Ω =
¤𝜙
¤𝑡 =

𝑑𝜙

𝑑𝑡
=

𝐿 − 2𝑀𝑢 (𝐿 − 𝑎𝐸)
(𝑟 2 + 𝑎2) 𝐸 − 2𝑎𝑀𝑢 (𝐿 − 𝑎𝐸) =

∓
√
𝑀𝑢3

1 ∓ 𝑎
√
𝑀𝑢3

. (1.26)

For each chosen distance we can compute also the speed which will be

𝑣𝜙 =
∓
√
𝑀𝑢[

1 ∓ 𝑎
√
𝑀𝑢3

] √
Δ𝑢

[
1 + 𝑎2𝑢2 ± 2𝑎

√
𝑀𝑢3

]
, (1.27)

where Δ𝑢 = 𝑎2𝑢2 − 2𝑀𝑢 + 1. More details can be recovered on Chandrasekhar 1992. We
will make sure that the speed will not go superluminal. The effect of frame dragging
has a huge contribution to general geodesic motion. We define prograde and retrograde
motion, which means respectively that the orbital angular momentum of the test particle
is concorde or discorde to spin of the black hole. When there will be ± or ∓, the top sign
will indicate the retrograde and the bottom one the prograde. To carry out this project
we computed the retrograde motion, since the results from EHT 2022a suggest that the
black hole spin is positive (counter-clockwise), while M. Wielgus et al. 2022 that find the
motion to be clockwise.

1.5 Geodesic motion for ray tracing

A light ray generated by the source will be affected by the curvature of the space-time,
meaning that an observation of an astrophysical object may not reproduce the effective
shape of the body because it will be distorted through light bending. The reproduction of
this effect is called Ray Tracing.

Physically, the light generated is scattered in all the directions, so most of the rays will
will not head to out detector. In order numerically simulate the process, we will perform
a back integration generating the rays from the telescope heading to the source. Our aim
is to understand how a black hole with an accretion disk will be imaged.

The most general way is to integrate directly the full geodesic equation, that is formally
written as

𝑑2𝑥 𝜇

𝑑𝜆2
= −Γ𝜇

𝛼𝛽

𝑑𝑥𝛼

𝑑𝜆

𝑑𝑥𝛽

𝑑𝜆
, (1.28)

where 𝜆 is the affine paramiter of the curve, while the Christoffel symbols Γ𝜇
𝛼𝛽

identify
the space-time and the coordinate system we are using. These coefficient are generally



Figure 1.2: Ray tracing of null geodesics in the equatorial plane of a Schwarzshild space-
time (described in section 1.2). In black the rays captured inside the event horizon (the
black circle), while in red the rays not bounded. The rays are generated all parallel at
𝑥 = 200𝑀 , while −10𝑀 < 𝑦 < 10𝑀 . The black rays compose the shadow, with a radius
of 3

√
3𝑀 .

calculated by hand once we know the background space-time, the general formula reads:

Γ
𝜇

𝛼𝛽
=
1
2𝑔

𝜇𝜈
(
𝑔𝜈𝛼,𝛽 + 𝑔𝛽𝜈,𝛼 − 𝑔𝛼𝛽,𝜈

)
, (1.29)

where 𝑔𝜈𝛼,𝛽 ≡ 𝜕𝑔𝜈𝛼
𝛽
.

Now that we know the equations and how to compute them, we have to understand
the conditions: we simulate a camera situated at a large distance, then we generate as
many light rays as number of pixels we require for the image.

Fig. 1.2 shows a 2D ray tracing simulation for null geodesics in a more simple, but
representative, Schwarzshild space-time as an example. Here we have generated parallel
rays changing only the y coordinate in the initial conditions. The black circle represents
the event horizon of radius 𝑅𝑆 = 2𝑀[5]. We can interpetrate the initial value of the y
coordinate as an impact parameter. The black rays can have this parameter greater than
the horizon radius itself, this means that the effective size of the black hole in the telescope

5The mass unit represents the gravitational radius 𝑟𝑔 = 𝐺𝑀
𝑐2 , taking 𝑐 = 𝐺 = 1.
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will be the maximum value of the impact parameter. The effective image of the event
horizon seen by an external observer is shadow. For the Schwarzshild case, the shadow is
circular with a radius of 3

√
3𝑀 (see Chandrasekhar 1992).

Up to now we have considered the space to be empty, meaning that there would be no
radiation to measure; while a black hole can be surrounded by matter, treated in general
as a gas. The dynamics of gases around a black is not trivial, in the next section we are
going to have an idea on how the matter behaves in such situation.

1.6 Gas around a black hole

Observing a black hole means to measure the radiation generated by the gas flowing
around it. In our case, the matter (considered to be a fluid) does not contribute to the
shape of the space-time, that is only due to the rotating black hole. The matter energy
density is in general too little so the right hand of the Einstein equations 1.1 is taken null.

To get a first idea we can say that generally, when a star gets too close to a black hole,
it gets disrupted and some of the gas may stay in orbit, slowly closing the distance to the
event horizon. The motion of the particle can be arbitrarily complex and it can happen
that when going towards the black hole, it gets accelerated and launched in the direction
of the rotation axis. The matter orbiting the black hole forms and accretion flow/disk,
while the launched matter generates a relativistic jet.

Accretion flows were first derived mathematically in Weizsäcker 1948. It was thought
to be a laminar flow 6 but in order to the matter to infall the disk should loose gravitational
energy and angular momentum, although the overall angular momentum of the disk has
to be conserved; so it is needed a redistribution of such quantity. Later in the century, it
was discovered a physical process that could allow for such redistribution; the magnetic
fields could be the cause for instabilities and turbulence, slowing down the inner region
of the gas Balbus and Hawley 1991. In EHT 2022b it is shown how the observation of
Sgr A* is best fitted by a magnetically arrested disk (MAD) (Narayan, Igumenshchev, and
Abramowicz 2003). The MAD model describes an accretion flow with a strong poloidal
field 7, which can distrupt the flow in 2 concentrical parts where the internal is mostly
turbolent, at high fluid velocities. At this point the black hole will accrete through discrete
blobs or streams, making the accretion rate much slower that the free fall speed (see
Narayan, Igumenshchev, and Abramowicz 2003).

Often happens that accretion flows are followed by an other phenomena: Astrophysical
jets. There are highly collimated beams of particles and radiation, we can find them in

6A laminar flow is characterized by parallel sheets of fluid that do not allow for meshing or turbulences.
7A thick flow can be approximated to have a toroidal shape. On this structure we can define the toroidal

and poloidal angle. The first is essentially the azimuthal angle identifying a circular section, while the
second rotates on the torus identifying the point on the section.



systems like the one treated here, but they can be associated also to quasars, protostars,
neutron stars, pulsar and more. The origin of such object is not yet confirmed but they
are thought to be strongly related to the accretion disk. It is not well understood where
the particles take so much energy as the jets reveal, first it was believed that the black
hole alone could provide such energy, by an extraction process that takes energy from
the spin of the black hole (see Abramowicz and Fragile 2013). In Blandford and Znajek
1977 it is shown how the magnetic fields have a huge role because, once the particles get
closer to the ergosphere, the magnetic lines becomes so tight that provides a huge torque.
The interesting point is that this phenomena is dependent from the black hole spin, the
stronger it is, the more torque can be extracted by the magnetic interaction. In this theory
the accretion disk is only a sheet of current that provides the magnetic component.

Nowadays we know very little on these phenomena and how they are linked, maybe
numerical simulations (like the one provided for this thesis) may be the key. This brief
explanation is useful to understand the images shown in the results, we will notice that
the emission is provided by the base of the jet that is situated very close to the horizon
itself, while we will not be able to see the accretion disk because it will not generate
emission intense enough. Now that we get the idea on the structure and how they may
be connected, we can try to understand how radiation is influenced by this matter.



–2–
Radiation

To observe astrophysical objects, we rely on detecting their emissions, with a particular
focus on electromagnetic radiation. In the following sections, we will delve into the
process by which radiation escapes from evolving plasma. Specifically, we will rephrase
the classical equation in a covariant form. Subsequently, we will explore the electron
distribution function and the mechanisms underlying actual emissions.

2.1 Radiative transfer

When light is emitted from a specific point within a gas, it undergoes multiple scattering
events before eventually either reaching an observer on Earth or being absorbed once
more. This intricate process implies that not all of the gas present will actively contribute
to the observable emission detected from our vantage point. General relativistic formalism
provides the framework for formalizing and comprehending this intricate interplay be-
tween gravity and radiation. This includes considering the effects of gravitational lensing,
time dilation and the alteration of geodesic due to the intense gravitational field near
massive objects. The general relativistic treatment of radiative transfer is indispensable
in accurately modeling and interpreting the observed emissions from these extreme en-
vironments. It aids in understanding how light interacts with matter and gravity in a
strong gravity regime, shedding light on the nature of the emissions and the properties
of the astrophysical systems under investigation. Formalizing in a general relativistic
manner means that the overall shape of the equation will be conserved under coordinate
transformation. To obtain this formulation we re-trace the calculations in Younsi, Wu,
and Fuerst 2012.

The classical equation for the radiation transfer describes how electromagnetic radi-
ation propagates through a medium. It is commonly known as the Radiative Transfer
Equation (RTE) and can be expressed as follows:
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𝑑𝐼𝜈

𝑑𝑠
= −𝛼𝜈 𝐼𝜈 + 𝑗𝜈 , (2.1)

where 𝑠 is the path lenght, 𝐼𝜈 is the specific intensity of the radiation, therefore 𝑑𝐼𝜈/𝑑𝑠
represents the change in intensity of radiation at a specific frequency 𝜈 as it traverses
a differential path length 𝑑𝑠 . 𝛼𝜈 is the absorption coefficient indicating how strongly
the medium absorbs radiation at that specific frequency and 𝑗𝜈 represents the emission
coefficient signifying the rate at which radiation is emitted at that frequency per unit
volume. The RTE is a fundamental tool in various scientific fields, including astrophysics,
atmospheric science, and remote sensing, as it helps explain how radiation interacts
with and moves through different materials and environments. It plays a crucial role in
understanding phenomena like the behavior of light in stars, the Earth’s atmosphere, and
many other complex systems involving radiation.

We can define the optical depth

𝜏𝜈 =

∫ 𝑠

𝑠0

𝛼𝜈 (𝑠′) 𝑑𝑠′ =⇒ 𝑑𝜏𝜈 = 𝛼𝜈 (𝑠)𝑑𝑠, (2.2)

which tells us about the extend to which a light ray penetrates into a medium before it
is entirely absorbed or extinguished. In essence, it quantifies the cumulative absorption
experienced by the light along its path, providing insights into the material’s opacity and
the probability of absorption at various points along the ray’s trajectory. In astronomical
and atmospheric studies, understanding the optical depth is pivotal for interpreting
observations, such as the absorption of specific wavelengths by different gases in a
planet’s atmosphere or the opacity of a stellar interior. It plays a fundamental role in
characterizing the behavior of light in diverse environments and is a cornerstone concept
in radiative transfer theory. At this point we can reformulate the above equation (2.1) to
be

𝑑𝐼𝜈

𝑑𝜏𝜈
= −𝐼𝜈 + 𝑆𝜈 with 𝑆𝜈 =

𝑗𝜈

𝛼𝜈
, (2.3)

where 𝑆𝜈 is called the source term. This term is a crucial component of the radiative
transfer equation. It represents the emission of radiation at a specific frequency concerning
the equilibrium within the medium. More precisely 𝑆𝜈 quantifies the balance between
emission and absorption at that frequency. It signifies the rate at which radiation is
being actively generated or absorbed within the medium, providing a comprehensive
understanding of the radiative processes occurring at that specific frequency. While the
optical depth already is a Lorenz invariant because it is a 4-scalar, the specific intensity is
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not. To solve it, we can start from the definition phase space density

𝑓 (𝑥𝑖, 𝑝𝑖) = 𝑑𝑁
𝑑𝑉

. (2.4)

This expression defines the phase space density as the ratio of the change in the number
of particles 𝑑𝑁 to the corresponding change in phase space volume 𝑑𝑉 . It’s important to
note that this phase space density is an invariant quantity. This invariance arises because
the total number of particles is conserved within a given phase space volume. Using
Liouville Theorem, we can further establish that: 𝑑𝑉

𝑑𝜆
= 0. This assertion implies that the

phase space volume remains constant as it evolves along the affine parameter 𝜆. In other
words, as the system undergoes changes over its trajectory, the volume within phase
space, encompassing all possible particle positions and momenta, remains conserved. 1
This quantity can be written explicitly as

𝑓 (𝑥𝑖, 𝑝𝑖) = 𝑑𝑁
𝑑𝑉

=
𝑑𝑁

𝑑𝑥𝑖 · 𝑑𝑝𝑖 =
𝑑𝑁

𝑑𝐴𝑑𝑡 · 𝐸2𝑑𝐸𝑑Ω , (2.5)

where we have used 𝑐 = 1 to write the space element volume. For our purposes, we
remember the definition of specific intensity

𝐼𝐸 =
𝐸𝑑𝑁

𝐸2𝑑𝐸𝑑𝐴𝑑𝑡𝑑Ω
(2.6)

defined as the energy 𝐸 per unit time 𝑑𝑡 , per unit solid angle 𝑑Ω, per unit area 𝑑𝐴, and
per unit energy 𝑑𝐸. By combining these definitions, we can introduce a redefinition of
the phase space density (2.5) as follows:

I ≡ 𝑓 =
𝐼𝜈

𝜈3
=
𝐼𝐸

𝐸3
. (2.7)

This redefinition it can be used to rewrite the radiative transfer equation as:

𝑑I
𝑑𝜏𝜈

= −I + S with S =
𝜂

𝜒
=
𝑆𝜈

𝜈3
, (2.8)

where we have defined two crucial quantities: 𝜂 =
𝑗𝜈
𝜈2 which represents the invariant

rate of radiation emission per unit frequency and 𝜒 = 𝜈𝛼𝜈 which signifies the invariant
product of frequency and absorption coefficient. Since these are invariant quantities for
Lorentz transformations, the local rest frame, denoted by "0", will held2 𝜒 = 𝜈𝛼 = 𝜈0𝛼0𝜈

1This conservation of phase space volume is a fundamental concept in the study of dynamical systems
and has profound implications in various branches of physics, particularly in the context of Hamiltonian
mechanics and the preservation of particle trajectories.

2This invariance underlines the significance of these parameters in the context of radiative transfer and



and 𝜂 =
𝑗𝜈
𝜈3 =

𝑗0𝜈
𝜈3 . The best way to implement this equation in a code is to separate

the Lorentz invariant intensity and the optical depth into two equations, it is done by
introducing the affine parameter 𝜆. In doing so we will use the 4-momentum of a photon
in the comoving frame, denoted as 𝑣𝛼 defined by the equations:

𝑣𝛼 = 𝑘𝛼 + (𝑘𝛽𝑢𝛽)𝑢𝛼 . (2.9)

Here 𝑢𝛼 is the 4-velocity of the fluid and 𝑘𝛼 is the 4-momentum of the photon. We have
also introduced the projection tensor 𝑃𝛼𝛽 = 𝑔𝛼𝛽 +𝑢𝛼𝑢𝛽 , meaning that we are projecting our
vectors on the comoving coordinate system. Now, we can explicitly express the proceed
by explicitating the following derivative

𝑑𝑠

𝑑𝜆
= −||𝑣𝛼 | |𝜆𝑜𝑏𝑠 = −(𝑘𝛼𝑢𝛼 )𝜆𝑜𝑏𝑠 , (2.10)

where we have used that 𝑘𝛼𝑘𝛼 = 0 and 𝑢𝛼𝑢𝛼 = −1. Now if we remember that the
contraction 𝑝𝜇𝑢𝜇 = −𝐸, we can relate the above derivative to the relative energy shift, 𝛾−1,
which is given by

𝛾−1 =
𝜈0
𝜈𝑜𝑏𝑠

=
𝐸𝜆

𝐸𝜆𝑜𝑏𝑠
=

(𝑘𝛼𝑢𝛼 )𝜆
(𝑘𝛼𝑢𝛼 )𝜆𝑜𝑏𝑠

. (2.11)

If we normalize the observed energy as observed at infinity (𝐸 = 1) we get that the energy
shift is

𝛾−1 = −(𝑘𝛼𝑢𝛼 )𝜆𝑒𝑚𝑖𝑠𝑠
. (2.12)

Now we have the instruments to re-write the equation (2.8). First, we decouple the specific
intensity from the optical depth as follows:

𝑑𝜏𝜈

𝑑𝑠
= 𝛼𝜈 ,

𝑑I
𝑑𝑠

= 𝛼𝜈I + 𝑗𝜈

𝜈3
. (2.13)

After some algebraic manipulation, we can reformulate the equations as:

𝑑𝜏𝜈

𝑑𝜆
= 𝛾−1𝛼0𝜈 ,

𝑑I
𝑑𝜆

= 𝛾−1
(
𝑗0𝑥𝜈
𝜈3

)
𝑒−𝜏𝜈 . (2.14)

In these reformulated equations, we’ve effectively separated the effects of intensity and op-
tical depth, allowing for a more efficient computational implementation. These equations
are particularly useful when modeling radiative transfer processes in various physical
contexts.

their applicability across various physical scenarios, regardless of relativistic transformations.
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2.2 Thermal and non-thermal emission

In the pursuit of our scientific aim, it is essential to reiterate our overarching objective:
we endeavor to simulate a plasmoid formation, a phenomenon we hypothesize to be
generated through the intricate process of magnetic reconnection. To accurately represent
and understand this plasmoid’s behavior and its associated emissions, we must account
for the significant magnetic contributions that permeate the system and affect particle
dynamics. To address this magnetic influence effectively, we turn our attention to a
particle distribution model influenced by the magnetic field – the kappa distribution.
This distribution has garnered considerable attention and empirical support within the
realm of astrophysics. It has been extensively explored and validated in a variety of
astrophysical scenarios, including solar emissions (Vasyliunas 1968, Pierrard and M. Lazar
2010) and the complex dynamics of Earth’s magnetosphere (Eyelade et al. 2021). Notably,
the kappa distribution has found relevance in understanding emissions from extragalactic
sources as well. For instance, in the study by Fromm et al. 2022, researchers probed the
impact of non-thermal electron distributions, which are aptly described by the kappa
distribution, on the emissions emanating from the M87 supermassive black hole. A
similar exploration was undertaken in EHT 2022b, focusing on the emissions originating
from Sgr A*, the supermassive black hole located at the center of our Milky Way galaxy.
These investigations consistently demonstrated that the most accurate representations of
observed emissions often necessitate a combination of thermal and non-thermal electron
populations, highlighting the versatility and applicability of the kappa distribution in
diverse astrophysical contexts. In the specific context of this section of our research, our
objective is to delve into the phenomenon of synchrotron emission. Synchrotron emission
is a fundamental radiation mechanism prevalent in various astrophysical environments.
It manifests when charged particles, typically electrons, are set into spiraling motion
within magnetic fields, emitting copious amounts of electromagnetic radiation in the
process. Our approach is to incorporate both thermal and kappa-distributed electron
populations. This treatment is essential for capturing the complex interplay between
magnetic reconnection, particle distributions, and the subsequent radiation processes that
shape the emissions from the plasmoid. By pursuing this multifaceted approach, we aim
to construct a more comprehensive and realistic simulation of the plasmoid’s behavior
and emissions, thereby shedding light on the intricate astrophysical processes governing
these phenomena.

Plasma-𝛽: In the process of calculating emission characteristics, particularly within
the context of General Relativistic Magnetohydrodynamics (GRMHD) simulations, it is
often essential to determine the electron temperature. However, GRMHD simulations
primarily track proton dynamics, providing us with comprehensive data on parameters



such as temperature, density, and pressure pertaining to protons. To bridge the gap and
obtain the electron temperature, a conversion model is required, as proton temperature
and electron temperature are not inherently equivalent. In this regard, we have adopted
the widely employed plasma-𝛽 model, as detailed in Fromm et al. 2022 and Moscibrodzka,
Falcke, and Shiokawa 2015.

The plasma-𝛽 model stands as an alternative choice to the standard constant ratio
between electron temperature and proton temperature. This model has been successfully
used for solar atmospheric physics (see Gary 2001), it is able to better capture the influence
of the magnetic field on the electrons. The dimensionless electron temperature Θ𝑒 is the
key parameter that will be exploited in the simulation, it is defined as follows

Θ𝑒 =
𝑝

𝜌

𝑚𝑝𝑇𝑒

𝑚𝑒𝑇𝑝
,

𝑇𝑝

𝑇𝑒
=
𝑅𝑙𝑜𝑤 + 𝑅ℎ𝑖𝑔ℎ𝛽2

1 + 𝛽2 . (2.15)

Here 𝑝 represents the barionic pressure, 𝜌 is the barionic density„ 𝑚𝑝 and 𝑚𝑒 denote
the proton and electron masses, respectively, and 𝑇𝑒 and 𝑇𝑝 are the electron and proton
temperatures. The parameter 𝛽 = 𝑝𝑔𝑎𝑠/𝑝𝑚𝑎𝑔 = 2𝑝/𝑏2 is the ratio between gas and magnetic
pressure. The variable 𝑏2 represents the module of the magnetic field 4-vector 𝑏𝜇 , this is
defined as

𝑏𝑡 = 𝐵𝑖𝑢𝜇𝑔𝑖𝜇 𝑏𝑖 =
𝐵𝑖 + 𝑏𝑡𝑢𝑖
𝑢𝑡

,

where we call 𝐵𝑖 the 3-vector of the magnetic field and 𝑢𝑖 is the 4-velocity. The parameters
𝑅𝑙𝑜𝑤 and 𝑅ℎ𝑖𝑔ℎ represent respectively the ratio between proton and electron temperature
at 𝛽 = 0 (high magnetization) and 𝛽 → ∞ (low magnetization), they can be considered
boundary conditions for function. As shown by Fromm et al. 2022, 𝑅ℎ𝑖𝑔ℎ does not affect
the emission in high magnetized plasma, on the opposite it influences the disk making
the electron temperature lower, decreasing the Lorentz factor 𝛾 , making the disk dimmer.
On the other hand, 𝑅𝑙𝑜𝑤 has the role of establishing the electron temperature in the high
magnetization region, so the jet, meaning that an higher value implies for higher electron
temperature allowing for a longer and broader jet. In this study, these two parameter
are set at 𝑅𝑙𝑜𝑤 = 1 and 𝑅ℎ𝑖𝑔ℎ = 160, trying to force less energetic electrons. The plasma-𝛽
model, with its foundation on magnetization levels, is preferred in performing simulation
especially in scenarios where magnetic fields exert a significant influence.

Thermal electron distribution function: To characterize the thermal electron dis-
tribution function, we rely on the relativistic Maxwell-Juttner distribution, which is
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expressed as (Fromm et al. 2022):

𝑑𝑛𝑒

𝑑𝛾𝑒
=

𝑛𝑒

4𝜋Θ𝑒
𝛾𝑒
√︁
𝛾2𝑒 − 1

𝐾2(1/Θ𝑒)
𝑒𝑥𝑝

(
− 𝛾𝑒
Θ𝑒

)
, (2.16)

where 𝑛𝑒 is the electron density, 𝛾𝑒 is the Lorentz factor of the electron, 𝐾2 is the Bessel
function of 2nd kind. Here the electron temperature is classically defined as Θ𝑒 = 𝑘𝐵𝑇𝑒

𝑚𝑒𝑐
2 ,

where 𝜅𝐵 is the Boltzmann constant, 𝑇𝑒 is electron temperature,𝑚𝑒 is the electron mass,
and 𝑐 is the speed of light. The relativistic Maxwell-Juttner distribution serves as a
special-relativistic extension of the classical Maxwell distribution function. It is partic-
ularly valuable in scenarios involving high-energy electrons, where relativistic effects
become significant. Notably, this distribution function exhibits convergence in the low-
temperature limit (𝑇 ≪ 𝑚𝑒𝑐

2/𝑘𝐵), demonstrating its versatility and applicability across a
wide range of temperature regimes. By employing the electron temperature defined within
the plasma-𝛽 model, we ensure that our distribution function remains consistent with
the broader astrophysical framework, enabling a comprehensive description of thermal
electron behavior in a relativistic context.

Non-thermal electrons, Kappa distribution function: The kappa distribution func-
tion here described is the maximum for the Tsallis non-extensive entropy (Livadiotis
and McComas 2009). This distribution function provides a robust representation of
non-thermal electron populations characterized by power-law tails. It is expressed as:

𝑑𝑛𝑒

𝑑𝛾𝑒
=
𝑁

4𝜋𝛾𝑒
√︃
𝛾2𝑒 − 1

(
1 + 𝛾𝑒 − 1

𝜅𝑤

)−(𝜅+1)
. (2.17)

Here, 𝑁 is a normalization factor (more details in Pandya et al. 2016), 𝜅 is related to a power
law exponent characterizing the distribution. The energy content of this distribution is
determined by the width𝑤 , encompasses contributions from both thermal energy and a
fraction 𝜖 of the magnetic energy. Readly, the width is

𝑤 := 𝜅 − 3
𝜅

Θ𝑒 +
𝜖

2
[
1 + tanh

(
𝑟 − 𝑟𝑖𝑛 𝑗

) ] 𝜅 − 3
6𝜅

𝑚𝑝

𝑚𝑒

𝜎,

in which we indicate as 𝑟𝑖𝑛 𝑗 the distance where we start to inject electrons with magnetic
contributions. The magnetic component is accounted for by the parameter 𝜎 = 𝑏2/𝜌 which
is the plasma magnetisation. The variable 𝜅 is defined as

𝜅 := 2.8 + 0.7 · 𝜎−1/2 + 3.7 · 𝜎−0.19tanh(23.4𝜎0.26𝛽). (2.18)



Figure 2.1: Representation from Fromm et al. 2022. Comparison between the Maxwell-
Juttner distribution function (in black), a power low 𝑑𝑛𝑒/𝑑𝛾𝑒 =∝ 𝛾−𝑠𝑒 (in blue) and the kappa
distribution (dashed lines in yellow and red).

It is worth noting that the choice of 𝜅 significantly influences the shape of the distribution
(see fig. 2.1). A larger value of 𝜅 such as 𝜅 = 106 closely approximates the exponential
decay characteristic of a thermal distribution. In contrast, the general behavior of the
kappa distribution tends to produce flatter distributions, allowing for a broader range for a
broader range of the Lorentz factor 𝛾𝑒 to be included in the emission. The versatile kappa
distribution is particularly well-suited for describing non-thermal electron populations
in various astrophysical contexts, offering a flexible framework to capture the complex
interplay between particle dynamics, magnetic fields, and emission processes. This
distribution allows us to model scenarios where non-thermal electron contributions
are significant and offers valuable insights into the spectral properties of the emitted
radiation. For further visual clarity, please refer to Figure 2.1 for a visual representation
of the distribution characteristics.

Emissivity and absorbtivity: In the realm of astrophysical emissions, it is essential to
consider the polarization of radiation. Normal bremsstrahlung emission, which occurs
when charged particles are accelerated within a plasma, typically results in randomly
polarized radiation. This randomness arises from the stochastic nature of the particle ac-
celerations, leading to emissions that exhibit no preferred polarization direction. However,
observations often reveal highly polarized emissions, indicative of a different physical pro-
cess at play. This departure from random polarization hints at the presence of synchrotron
emission. Synchrotron radiation exhibits a distinct polarization signature because it arises
from the motion and acceleration of relativistic particles within a magnetic field. In syn-
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chrotron emission, the polarization direction aligns with the orientation of the magnetic
field. This is a consequence of the fact that all scattering events, responsible for emitting
synchrotron radiation, occur in the presence of the same magnetic field. As a result, the
emitted radiation exhibits a preferred polarization direction. The presence of polarization
in observed emissions serves as a key indicator of the underlying emission mechanism. We
are not yet able to provide polarization transport with the available sources, nevertheless
we study the intensity of the emission.

The emission and absoption coefficients are computed as in Pandya et al. 2016. In
the context of synchrotron emission in a vacuum, these processes exhibit a universal
mathematical form. To characterize this emission, we define 𝜈𝑐 = 𝑒𝐵

2𝜋𝑚𝑒𝑐
that represents

the characteristic synchrotron frequency. The constants 𝑒 and𝑚𝑒 are respectively the
electron charge and mass, while 𝐵 is the module of the magnetic field and 𝑐 is the light
speed. Two key parameters, 𝑗𝑆 and 𝛼𝑆 , can be expressed as:

𝑗𝑆 =
𝑛𝑒𝑒

2𝜈𝑐
𝑐

𝐽𝑆

(
𝜈

𝜈𝑐
, 𝜃

)
, 𝛼𝑆 =

𝑛𝑒𝑒
2

𝑚𝑒𝜈𝑐
𝐴𝑆

(
𝜈

𝜈𝑐
, 𝜃

)
. (2.19)

Here 𝑗𝑆 represents the intensity of the synchrotron emission,𝛼𝑆 denotes the absorptivity
of the emitted radiation, and the adimensional functions𝐴𝑆 and 𝐽𝑆 are functions of various
parameters including the electron temperature Θ𝑒 and the 𝑤 , 𝜅 (for the kappa model).
The index 𝑆 is particularly relevant when considering polarization, but in our context,
we are primarily interested in the first index, 𝑆 = 𝐼 which represents the intensity of the
emission. It is worth noting that the full computation of these quantities using the general
formula can be computationally expensive. Hence, we often rely on approximated fitting
formulas based on research by Pandya et al. 2016 and Leung, Gammie, and Noble 2011. If
we introduce the variable 𝑋 = 𝜈

𝜈𝑐
we can write the a adimensional function in 2.19 as

𝑗𝑇ℎ𝑒𝑟𝑚𝑎𝑙 = 𝑒
−1/3 2𝜋

27 sin𝜃
[
𝑋

1
2 + 2

11
12𝑋

1
6
]2
, (2.20)

𝑗𝑘𝑎𝑝𝑝𝑎 =

(
𝐽−3𝜅

−3/2

𝐼 ,𝑙𝑜
+ 𝐽−3𝜅−

3/2

𝐼 ,ℎ𝑖

) 1
3𝜅−3/2 , (2.21)

respectively for thermal and kappa distribution. In the latter, the two addends corresponds
respectively for low and high frequency, explicitly

𝐽𝐼 ,𝑙𝑜 = 𝑋
1/3
𝜅 sin𝜃 4𝜋Γ(𝜅 − 4/3)

3 7
3 Γ(𝜅 − 2)

, (2.22)

𝐽𝐼 ,ℎ𝑖 = 𝑋
−𝜅−2

2
𝜅 sin𝜃 3

𝑘−1
2
(𝜅 − 2) (𝜅 − 1)

4 Γ(𝜅4 − 1
3 )Γ(

𝜅

4 + 4
3 ). (2.23)

Here𝑋𝜅 = 𝑋/(𝑤𝜅)2 and Γ(𝑥) is the gamma function. Detailed expressions for these functions



are provided in equations (2.22) and (2.23). It’s important to note that these formulas
capture the essence of synchrotron emission across a range of frequencies and magnetic
field strengths, making them invaluable tools for characterizing astrophysical emissions.
The absorptivity 𝛼𝜈 for the thermal case is calculated straightforwardly as 𝛼𝜈 = 𝑗𝜈/𝐵𝜈 ,
where 𝐵𝜈 represents the black body emission according to Kirchhoff’s law. For the kappa
distribution, the absorptivity is similar to the emissivity (equation 2.21), with adjustments
to the exponents and functions for low and high frequencies, as detailed in reference
Pandya et al. 2016 equations (39-42). These formulas provide a robust framework for
modeling and understanding synchrotron emissions in astrophysical contexts.
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3.1 The toy model

In this project, we have developed a simplified model to simulate a plasmoid orbiting a
black hole. The plasmoid is represented as a spherical object positioned at a distance 𝑟ℎ𝑝
from the black hole center, with a maximum radius of 𝑅 = 2.5𝑀 , where M is the black
hole’s mass. We are interested in modeling the emission of this plasmoid concerning the
surrounding gas. The computation of the absorptivity (𝛼ℎ𝑝 ) and emissivity ( 𝑗ℎ𝑝 ) consists
of a Gaussian profile cutted at the maximum radius 𝑅 as follows:

𝛼ℎ𝑝 = 𝛼𝑔𝑎𝑠 · 𝐴 · 𝑒−
|®𝑟−®𝑟ℎ𝑝 |2

2𝜎2 Θ(𝑅 − |®𝑟 − ®𝑟ℎ𝑝 |) for absorptivity, (3.1)

𝑗ℎ𝑝 = 𝑗𝑔𝑎𝑠 · 𝐴 · 𝑒−
|®𝑟−®𝑟ℎ𝑝 |2

2𝜎2 Θ(𝑅 − |®𝑟 − ®𝑟ℎ𝑝 |) for emissivity, (3.2)

where𝛼𝑔𝑎𝑠 represents the absorptivity and 𝑗𝑔𝑎𝑠 represents the emissivity of the surrounding
gas, A is a constant factor, |®𝑟 − ®𝑟ℎ𝑝 | denotes the relative distance to the plasmoid center ®𝑟ℎ𝑝 ,
𝜎 controls the spatial distribution of the Gaussian, and Θ(𝑅 − |®𝑟 − ®𝑟ℎ𝑝 |) is the Heaviside
step function ensuring that the computation is restricted to within the plasmoid radius R.

It’s important to note that these computations are performed exclusively within the
hotspot1, as indicated in the formulation. To perform the simulation, we employed the
BHOSS code to compute the ray-traced images, allowing us to visualize the emission
characteristics of the plasmoid near the black hole.

1Out of completeness, the shape of the hotspot is arbitrary (astrophysical plasmoids, simulated numeri-
cally, have been found to have a stable configuration in a spheroidal shape Aimar et al. 2023).
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3.2 Ray tracing

Ray tracing is a computational technique employed to trace the paths of electromagnetic
signals back to their sources. In this context, it plays a pivotal role in the observation and
analysis of black holes. The fundamental equation governing the process is denoted as
1.28. When a ray encounters the event horizon of a black hole or manages to escape to
infinity without being absorbed, the corresponding pixel in the image is represented as
black. However, a ray can also be absorbed by the gas that surrounds the black hole, and
this absorption phenomenon hinges on the optical depth of the gas, a critical parameter
described in (2.14). For a more comprehensive understanding of optical depth, please refer
to Section 2.1.

The resulting image is generated to get a specific frequency of detection, in our case,
fixed at 230GHz. Nevertheless, the light ray at the emission will have the same frequency
due to the gravitational redshift. In order to find the emission frequency, we use the
energy shift𝛾−1 calculated in equation 2.12; we can clearly see that this way, the frequency
of emission will be

𝜈𝑒𝑚𝑖𝑠𝑠 = 𝜈𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 · 𝛾−1. (3.3)

Once we have the emission frequency, we can compute the intensity as shown in section
2.2, where the other parameters are either set by the user as initial condition or computed
directly from the General Relativistic Magneto Hydrodynamics (GRMHD) data.

Once the initial intensity is calculated, we have to integrate eq. 2.8 along the geodesic
in order to infer its value at the camera position.

3.3 Initial conditions of the simulations

Regarding the ray tracing parameters, the camera is set to be fixed at a distance of 2000𝑀
with an angle of 30𝑜 with respect to the axis of symmetry. This way, we set a long distance
to imitate ours while the angle reflects the angle of the equatorial plane with the plane
of the sky. The values 𝑅ℎ𝑖𝑔ℎ = 160, 𝑅𝑙𝑜𝑤 = 1 and 𝜎𝑐𝑢𝑡 = 1 where the latter allows us to
neglect the very high magnetization (the jet), saving some computational resources. On
the model, we forced the maximum radius of the hotspot to be 2.5𝑀 because of previous
work that constrains the dimensions of such an object and because it may be unreasonable
to have such a big object that almost crosses the ergosphere.
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3.4 Workflow
In our pursuit of exploring the parameter space within our toy model, we must embark on
a well-structured journey, starting with some crucial considerations. The paramount goal
is to ensure that each simulation run genuinely represents a physical scenario, adhering
as closely as possible to the limits of our model. This endeavor is particularly pertinent
as we aim to harmonize the observable quantities derived from our simulations with
real-world observations. To achieve this alignment, we employ a systematic approach:

1. Normalization of Emission: The cornerstone of our journey begins with aligning
our simulated results with actual observations. We need to adjust a pivotal parameter
known as the mass accretion rate 2 ¤𝑀 to ensure that our average emission matches
observations, aiming for a target of 𝑆𝑡𝑜𝑡 = 2.4𝐽𝑦. Themass accretion rate signifies the
amount of gas accreting onto the black hole per unit of time. In our model, it plays
a central role in calculating and re-normalizing the electron number density used in
emission and absorption functions. The adjustment is made using a straightforward
bisection method, ceasing the process when the difference Δ𝑆𝑡𝑜𝑡 between simulated
and observed emission falls below 10−7.

2. High-Resolution Simulations: Once we have determined the appropriate mass
accretion rate, we proceed with high-resolution simulations. These simulations
employ a grid consisting of 200 pixels per side. The high resolution allows us to
perform a qualitative comparison with actual observations, essential for accurately
computing light curves. or the evolution, we also computed images with a Gaussian
filter to simulate the resolution of EHT (that is 25𝜇𝑠)

3. Resolution Considerations: We meticulously consider the influence of image
resolution in our computational workflow. While high-resolution simulations yield
finer details, they also demand more computational resources. It is essential to
ensure that the overall flux received remains consistent across different resolutions.
On average, increasing the resolution by a factor of 5 results in approximately a
∼ 1.6% increase in the average flux, with a variance of 0.15% of the average. This is
deemed an acceptable variation for our study and reaffirms that our estimations of
¤𝑀 can be confidently made at lower resolutions without compromising the study’s
overall results.

4. Parameter Exploration: Having established a solid foundation with accurate
¤𝑀 estimations, we delve into the exploration of the four free parameters in our

2The mass accretion rate ¤𝑀 represents the amount of gas that is accreting the black hole. In our model, it
is used to calculate and re-normalize the electron number density that the emission and absorption function
takes as input, see eq (2.19). In these terms, it quantifies the amount of the gas relative to the mass of the
black hole. The gas is mostly made from protons, so it allows the conversion into it into electron density.



model: 𝜎, 𝑟𝑝ℎ, 𝐴 and 𝜀. These parameters are systematically varied and studied,
with the ensuing results comprehensively detailed in the following chapter. To
further our understanding of our toy model and its alignment with real-world
observations, we must assess the model’s capability to reproduce variability akin
to natural astrophysical phenomena. To study the impact of the hotspot on this
variability, we compute differences in light curves with and without the hotspot,
defining the variability as indicated by Equation (??). This measure allows us to
scrutinize the influence of the hotspot parameter on the observed variability. The
initial phases of our workflow entail substantial computational demands, primarily
due to the iterative nature of the algorithm, which requires multiple simulations
until convergence is achieved. Consequently, these initial runs are conducted at
lower image resolutions and with a reduced frequency of snapshots (1 out of every
3). However, it is crucial to emphasize that the flux received remains consistent
across different resolutions. While the average flux experiences an increase of ap-
proximately 1.6%with higher resolutions, this effect is considered acceptable for our
study, as it does not compromise the overall results. Moreover, considering the four
parameters under examination and assessing the variance in the mean across cases,
which amounts to 0.15% of the average, we establish that estimating ¤𝑀 at lower
resolutions is a valid approach, especially given its independence from the hotspot
parameter and its minimal interference with the study’s objectives. Subsequently,
armed with a calibrated model, we embark on high-resolution simulations.
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Results

In this Chapter, we present and delve into the results of our analysis. Let’s begin by
summarizing the primary objectives of our study:

1. Toy Model Overview: Our approach involves employing a toy model to simulate
various aspects, including near-infrared (NIR) flares Marrone et al. 2008, Eckart
et al. 2006, images generated by the Event Horizon Telescope (EHT) collaboration
EHT 2022a, and astrometric data provided by the GRAVITY collaboration GRAVITY
Collaboration, Bauböck, M., et al. 2020, wherever possible. We aim to investigate
how different parameters within our toy model influence both the light curve and
the resulting image.

2. Light Curve Characteristics: Our ideal light curve exhibits maximum variation,
preferably around 1𝐽𝑦, within the time range of approximately 200𝑀 (which equates
to roughly one hour because 1𝑀 ∼ 20𝑠 ). Additionally, we anticipate observing
variability on shorter timescales, inspired by observations in Maciek Wielgus et al.
2022, where an overarching pattern is followed by smaller-scale fluctuations.

3. Resemblance to Observations: We also seek snapshots that can effectively en-
capsulate the time-averaged observations for Sgr A*.

Before delving into the specifics, it’s essential to introduce a concept that will prove
instrumental in our subsequent discussions. We’ve observed that the brightness of the
hotspot has a direct impact on the variability of light curves. This relationship arises
because the plasmoid’s brightness depends on the surrounding background gas, making
it position-dependent. Furthermore, we’ve implemented an algorithm to maintain the
average total flux, whichmeans that as the hotspot’s contribution to the total flux increases,
the contribution from the background gas decreases due to the lower mass accretion rate.
Consequently, when the influence of the gas is diminished, we witness a flux that becomes
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highly dependent on the plasmoid itself, resulting in greater variability. Conversely, a
substantial contribution from the background gas leads to a more stable flux over shorter
timescales. This intriguing interplay between the hotspot’s brightness, the background gas,
and the mass accretion rate offers valuable insights. These considerations will be central
to our subsequent analysis, shedding light on the intricate dynamics of the plasmoid-black
hole system and its manifestations in observations.

In the following panels (e.g. fig.4.1) are shown comparisons between each simulation.
Each simulation will be presented, followed by the blurred counterpart, while on the
bottom, there will be shown the total flux over the image through time. The hotspot will
be highlighted as a brighter region on the top of the black hole. The figures will show
snapshots at different times to maximize the visualization of the hotspot to the reader.
The proper analysis has been carried out by physical consideration and maximizing either
the brightness or the ability to highlight the hotspot region. The blurred snapshots are
equipped with level lines at 10−2𝐽𝑦 (in blue) and 1.6 × 10−2𝐽𝑦 (in yellow) to highlight the
overall structure of the visualized radiation and the brighter spots, respectively.

Effective width - 𝜎

In fig. 4.1, we show the impact of different values of the 𝜎 parameter (which we will call
effective width) on the simulation. For this analysis, we held other parameters constant,
specifically 𝑟𝑔 = 5𝑀 (representing the gravitational radius), 𝐴 = 2.0, and employed a
thermal electron distribution function. We found that the effective width, unsurprisingly,
has the most significant impact as it increases in magnitude. As one might intuit, larger
values of 𝜎 tend to exert a more pronounced emission. In particular, we observed that
a value of 𝜎 = 2𝑀 shows the clearest hotspot; for this reason, it will be the fixed value
for the following simulation. Moreover, it’s worth noting that the variability in the
simulation clearly escalates with increasing values of the effective width. These results
underscore the critical role of the effective width parameter in shaping the outcomes
of our simulation. The careful selection of this parameter can substantially affect the
simulation’s ability to replicate observed images and variability patterns. This insight
informs our ongoing quest for a comprehensive understanding of the plasmoid-black hole
system and its manifestations in observed data.

Distance - 𝑟ℎ𝑝
So, we fixed 𝜎 = 2.0𝑀 and analyzed the impact of the distance parameter. We also
increase the intensity to be 𝐴 = 8.0 because, in this phase of the study, we want to
emphasise the effect to better distinguish the cases. Before choosing the values, we have
to understand how close to the black hole we can push this object without intersecting
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Figure 4.1: In this plot, we visually show the influence of varying effective width values
on the simulation outcomes. The set of 2D images displayed from left to right comprises
scenarios with different configurations: one without the hotspot, 𝜎 = 1𝑀 ,𝜎 = 1.5𝑀 , and
𝜎 = 2𝑀 . For each of these cases, we provide both the image and its counterpart, which
has been purposefully blurred to emulate the resolution limitations of the telescope. The
hotspot is situated on the top side of each image. To complete this representation, the
lower section of the image presents the corresponding light curves for each of these
scenarios.

with the ergosphere. To see this, we plot we use the formula 1.7 obtaining that on the
equatorial plane 𝑟𝑧+(𝑎 = 0.5𝑀) ∼ 1.86𝑀 . This means we cannot place the hotspot closer
to ∼ 5𝑀 . Still, we can consider a limit case of 4𝑀 because the effective width we chose
is 2𝑀 . We analyzed many values for the radius from 4M all the way to 12M, but in the
figure, we show only the cases 4M, 6M, and 8M that seem to be the most representative
to study. This is shown in fig 4.2. Here, it is not clear how this parameter influences the
light curve. To have an insight, we can look at 4.3. We can clearly distinguish the various
cases since the variability due to the hotspot is isolated. As predicted by the reasoning at
the beginning of this chapter, the variability increases as the brightness of the hotspot
with respect to the gas. In the case 𝑟ℎ𝑝 = 4𝑀 , the hotspot has very high variability. In 2



Figure 4.2: This image shows different values of the distance from the black hole. Regarding
the 2D images, from left to right there is shown the case without the hotspot, 𝑟ℎ𝑝 =

4𝑀 ,𝑟ℎ𝑝 = 6𝑀 ,𝑟ℎ𝑝 = 8𝑀 . Each case represents the direct image and the blurred one,
simulating the resolution of the telescope. The hotspot is located on the right side for the
case of 4𝑀 , on the top side for the case of 6𝑀 and on the bottom (although not visible).
On the bottom, it is shown the light curve for each case.

following snapshots, the contribution can change up to ∼ 15% of the total flux. We prefer
a more continuous signal like the case of 8M, but with this value, we notice from the
images that the hotspot almost disappears, so we take the value 6M to run. We expect
that lowering the amplitude will also lower the short-term variability to have a more
continuous signal. To understand why the hotspot disappears, we look at a side image
of the simulation without the hotspot in Fig. 4.4, in this view, the equatorial plane is
complanar to the vertical axes of the image. The distance of 8𝑀 corresponds to ∼ 40𝜇𝑠
(1𝑀 ∼ 5𝜇𝑠 , see EHT 2022a), so the plasmoid will be in the middle between the black and
the coloured region (at the initial ). This is why the hotspot will slowly disappear when
we get far from the black hole. This pattern repeats also with other types of emission, so
we choose the value 𝑟ℎ𝑝 = 6𝑀 that is in the middle of staying too close or too far.
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Figure 4.3: Here it is shown, the time in minutes on the x-axis and the variability.

Figure 4.4: Side image of the black hole simulation at inclination 𝑖 = 80𝑜 . Here, it is shown
only the detecting frequency 230GHz.



Figure 4.5: On the top side, from left to right, there is shown the case without the hotspot,
𝐴 = 4,𝐴 = 8,𝐴 = 12. Each case represents the direct image and the blurred one, simulating
the resolution of the telescope. The hotspot is situated on the top side of each image. On
the bottom, it is shown the light curve for each case.

Amplitude - A

Here, we explore the influence of amplitude while keeping 𝜎 = 2𝑀 , 𝑟ℎ𝑝 = 6𝑀 and utilizing
the thermal electron function. We expect that amplitude will play a significant role in both
the variability and visibility of the image, much like the effective width. As depicted in Fig.
4.5, it is noticeable that the greater the amplitude, the more pronounced the visibility of the
hotspot in relation to its surroundings and the higher the expected variability. Considering
the blurred image designed to simulate observations made by the EHT, we expect the
hotspot to contribute nearly as prominently as the bright regions in the surroundings.
Among the cases considered, it stands out as the most favourable. It is the only case where
it becomes possible to discern three distinct bright points.
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Magnetic fraction - 𝜀

We now delve into the examination of a crucial parameter that exerts an influence on the
emission not only from the hotspot but also from the entire gas region: 𝜀, representing the
magnetic fraction. This parameter signifies the portion of magnetic energy incorporated
within the electron fraction. Specifically, we refer to the kappa electron distribution
function 2.17, characterized by a power law tailed where𝑤 represents the width of the
distribution peak. The formula is 2.18 as follows:

𝑤 := 𝜅 − 3
𝜅

Θ𝑒 +
𝜖

2
[
1 + tanh

(
𝑟 − 𝑟𝑖𝑛 𝑗

) ] 𝜅 − 3
6𝜅

𝑚𝑝

𝑚𝑒

𝜎.

The magnetic fraction 𝜀 augments the magnetization contribution arising from 𝜎 and
integrates it with the width of the peak. In the final model selection, his function will
undoubtedly take precedence over the thermal component. This is because a plasmoid’s
generation necessitates the interaction of a magnetic field with matter, necessitating the
inclusion of magnetic energy in the emission production. Regarding the hotspot, we have
set the parameters as follows: 𝜎 = 2𝑀 , 𝑟ℎ𝑝 = 6𝑀 and 𝐴 = 8. It is clear from the fig. 4.6
that introducing magnetic energy produces a clearer overall image, revealing more of the
gas. The light curves for the case 𝜀 = 0.5 and 𝜀 = 1 are almost identical, with the only
noticeable difference being the relative luminosity of the hotspot in comparison to other
regions, which appears to be slightly higher in the latter case for certain snapshots (as
depicted here). The case 𝜀 = 0 differs from the other but retains the same overall shape,
differing only in amplitude. The main difference with the standard case is due to the
hotspot and not the distribution function. Considering all factors, we opt for 𝜀 = 0.5 in this
case, as it yields a brighter object. Overall, a robust magnetic contribution is imperative
for generating the plasmoid.

Final Result
The final simulation parameters are as follows: 𝐴 = 8, 𝜎 = 2𝑀 , 𝑟ℎ𝑝 = 6𝑀 and 𝜀 = 1. In fig.
4.7, we present the most optimal scenario achieved using this simplified toy model. For
completeness, we also include the co-rotating case, keeping the same parameter values.
We did not delve deeper into the co-rotating case, as it has been extensively studied in
previous studies (see GRAVITY Collaboration, Bauböck, M., et al. 2020 M. Wielgus et al.
2022). However, the comparison remains valid since a plasmoid generated by perturbation
should ideally conserve the orbital angular momentum of the surrounding gas. Within
the same figure, we depict a snapshot featuring two hotspots—one on the top left side
and another on the top right side relative to the black hole. This is a useful comparison to
the observation, although the latter is a time averaged image.



Figure 4.6: Impact of magnetic fraction using the Kappa distribution function. From left
to right, the case thermal with no hotspot, then 𝜀 = 0.0,𝜀 = 0.5,𝜀 = 1.0. Each case is
represented the direct image and the blurred one, simulating trivially the resolution of
the telescope. The hotspot is situated on the top side of each image. On the bottom, it is
shown the light curve for each case.



Chapter 4 - Results 45

Figure 4.7: On the left, we have the counter-rotating case that we have been analyzing
thus far. On the right, we observe the co-rotating case. These represent distinct snapshots
respectively at 𝑡𝑐𝑜𝑢𝑛𝑡𝑒𝑟 = 250𝑀 and 𝑡𝑐𝑜 = 110𝑀 . Contour lines are utilized to identify the
plasmoid located in the top left in both images. These contour lines delineate regions
with emissions exceeding 1.55 × 10−2 𝐽𝑦/𝑝𝑖𝑥𝑒𝑙.



Figure 4.8: The simulation shows two hotspots, 60𝑜 apart, one on the top left and one on
the top right of the image.



–5–
Conclusions

Sgr A*, the supermassive black hole at the center of our Milky Way galaxy, has been
a subject of intense study in recent decades. Despite the progress made, there remain
intriguing mysteries waiting to be unraveled. Flare phenomena originating from this
enigmatic celestial object have been widely observed, yet a definitive explanation has
remained elusive.

One plausible hypothesis, which we delve into here, posits the existence of a hotspot
in orbit around the black hole—a hotspot commonly believed to be a plasmoid generated
through the process of magnetic reconnection. In this study, we investigate the potential
impact of this object on the emission from Sgr A*, and to facilitate this exploration, we
have developed a model that introduces modifications to the absorption and emission
coefficients. Given that the genesis of the plasmoid is intimately connected with the
magnetic field, it becomes imperative to incorporate magnetic effects into the emission
model. In a broader sense, our model assumes the accretion disk to be magnetically domi-
nated (MAD), indicating that the behavior of matter within it is significantly influenced
by magnetic fields. To faithfully represent the magnetic contribution to the emission
process, we leverage the kappa electron distribution function. Conversely, we compare
this distribution with a relativistic thermal distribution (Maxwell-Juttner), wherein the
magnetic component is solely associated with synchrotron emission and does not exert
influence over the behavior of electrons.

Our results reveal that non-thermal particles have a substantial impact on the overall
flux, although their influence on the plasmoid itself is less pronounced. In cases with a
negligible magnetic contribution, the plasmoid becomes more distinguishable, mainly
due to the kappa distribution yielding a flatter intensity profile. However, the ultimate
model must align with the physical constraints and demands, suggesting that the optimal
scenario involves a partial magnetic influence.

Furthermore, we have conducted an analysis of specific hotspot properties, including
its size, distance from the black hole, and the amplitude of its effect within the hotspot. Our
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results suggest that an ideal hotspot scenario comprises a diameter of 4𝑀 , positioned at a
distance of 6𝑀 from the black hole. This finding indicates that the emission is significantly
influenced by the jet base region, as indicated by our simulations. Additionally, the
amplitude of the effect within the hotspot is approximately eight times greater than the
background emission, suggesting that the gas within the hotspot possesses considerably
higher energy levels than its surroundings, lending support to the plasmoid hypothesis.

It is essential to clarify that our aim is not to definitively establish the presence of
a plasmoid in a stable circular orbit. Instead, we propose that the observed effects may
be more accurately explained by a continuous production of plasmoids, giving rise to
the observed flares. This concept is supported by previous research, such as Nathanail
et al. 2020, which demonstrates the possibility of generating and ejecting plasmoids
continuously. The hotspot model remains an area ripe for further investigation and
discovery, offering a plausible explanation for the observed phenomena. In this study,
we explore a simplified model to gain initial insights, recognizing that it provides a
valuable approximation to assess the feasibility of the hotspot concept and justify the
allocation of resources for more advanced and resource-intensive General Relativistic
Magnetohydrodynamics (GRMHD) simulations.

Limits

With regard to the model employed in this study, a key consideration is that we did not
analyze the time-averaged image derived from our simulations. This decision was based
on the understanding that the hotspot contributes most significantly to a region where
the flux is already consistent. Consequently, averaging over multiple revolutions would
result in a brighter region at the bottom of the image without any discernible hotspot.
A future improvement could involve modeling an ejection process to better replicate
time-averaged observations.

Another limitation of this study is that we exsplored only one model: a spherical
plasmoid with a Gaussian profile in a circular Keplerian orbit. Moreover, both the absorp-
tion and the emission coefficients were uniformly affected by model the parameters. To
solve addres this limitation, we implemented also a Lorentzian profile, an independend
variation of the coefficient, a rotating ellissoidal plasmoid and a quasi-circular orbit on
the equatorial plane. However, all these implementation seemed to have minimal impact
on the results and were subsequently discarded due to the computational complexity
involved. We focused our efforts on the primary parameters that exhibited the most
significant contributions.

Lastly, but by no means less important, it is worth noting that we did not have access
to official observational data from the Event Horizon Telescope. All of our analyses had
to be carried out qualitatively, lacking objective testing to confirm our hypotheses.
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