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A B S T R AC T

The majority of the phase diagram of quantum chromodynamics (QCD), especially at non-
vanishing baryon densities, is not explored from the theoretical side. This is caused by the
non-applicability of perturbative methods, due to the strong coupling at all temperatures
T and quark chemical potentials µ, which are not asymptotically large, and numerical
lattice methods, which are valid only for µ/T < 1. A deeper theoretical understanding of
the QCD phase structure at intermediate baryon densities has direct implications for the
study of matter under extreme conditions, such as in heavy-ion-collisions and the interior of
neutron stars. In the absence of first-principle methods, investigations of the phase structure
at intermediate chemical potentials and temperature are carried out mostly using effective
models, that capture certain, essential features of QCD but not all of them.

This thesis explores mechanisms for the formation of regimes with spatially modulated,
chiral observables in QCD at non-vanishing µ using QCD-inspired theories. In particular,
we focus on two such regimes: a crystalline phase, the inhomogeneous phase (IP), where
the chiral condensate is non-uniform and periodically varying in space, and a liquid-like
phase, the quantum pion liquid (QπL), characterized by spatially oscillatory, intermediate-
range correlations of mesonic fields. Hints in the literature imply the possible existence of
spatially modulated regimes in QCD around the expected critical point (CP), which marks
the end of the chiral crossover transition at low and zero µ.

To incorporate new, relevant features of QCD in model studies, we employ renormal-
izable 2 + 1-dimensional four-fermion models and investigate the effects of these features
on the phase structure within the mean-field approximation, where bosonic quantum fluc-
tuations are suppressed. In a complementary approach, the influence of bosonic quantum
fluctuations on inhomogeneous condensates is investigated with lattice field theory (LFT)
simulations of a scalar O(N) model.

A key finding of this thesis is that the novel inclusion of scalar-vector meson mixing
induces spatially oscillating, exponentially damped mesonic correlation functions, i.e., a
QπL is observed in the phase diagram of the studied four-fermion model. This result aligns
with arguments in the literature expecting spatially modulated regimes from the emergent
combined symmetry of the model under charge conjugation and complex conjugation, which
is also present in QCD at µ ̸= 0. Moreover, the stability of homogeneous ground states
is proven within the phase diagram of all four-fermion models in two spatial dimensions.
We argue that this finding suggests the absence of IPs in these models with the mean-
field approximation and in the full quantum theories. Further, Monte-Carlo simulations
of a scalar O(N) model, which classically features an IP, reveal that bosonic quantum
fluctuations disorder inhomogeneous condensates in finite spatial volumes and, instead, a
QπL is observed.

The findings suggest that the scenario of a QπL is more likely to be realized in QCD
than an IP, since the presence of bosonic quantum fluctuations, mixing effects between
scalar and vector mesons, and emergent symmetries at µ ̸= 0 seem to favor the formation
of QπLs. A crucial next step to provide quantitative, theoretical predictions for the QCD
phase diagram is to incorporate the above mentioned effects in more sophisticated model
approaches as well as in functional computations.
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“ FA S T R E A D I N G ” G U I D E

The structure of this thesis allows to read only parts of the 163 pages of the main text and
still grasp the key findings of this work in the context of the research objectives (ROs). The
following guide is only recommended for experts in the field familiar with investigations of
QCD-inspired models and the mean-field approximation, since technical details as well as
detailed discussion of equations, data and figures are omitted. Also, one has to be aware
that many minor results of the respective research projects are skipped. The abbreviated
version of this thesis (roughly 50 pages) allows experienced readers to grasp the main results
and their implications by reading in the following order:

1. Chapter 1 provides the main motivations, the literature context and ROs of the thesis.

2. Sections 4.1, 4.4 and 4.5 gives context on the methodology for the investigation of
exotic regimes in the QCD-inspired models relevant for this thesis.

3. The introductory paragraphs and last sections of Chapters 5 to 7 summarize the main
findings of these chapters and discusses their implications with respect to the ROs.
Thereby, central results from the main body of the respective chapter are pointed
out to the reader for reference. Also, direct improvements and follow-up studies of
the respective results are discussed in these sections. Skimming over the used actions
provides more context on the respective modeled features of QCD.

4. Chapter 8 provides an overall interpretation of the main findings with respect to the
ROs, and a contextualization with existing literature.

The author considers the proposed structure a good starting point for people familiar with
the theoretical approaches in this thesis, who want to get an overview over the scientific
contributions of this thesis.

Readers, who are unfamiliar with the study of QCD-inspired models at non-vanishing
temperatures and densities, however, should find proper introductions to the theory and
methodology in Chapter 2 and Chapter 4 as well as a specific, in-depth literature review in
Chapter 3. Moreover, the reading of Chapters 5 to 7 in full length provides more technical
details, but also many minor results of the corresponding research projects.

For more details on the structure of this manuscript, the reader is referred to the following
table of contents and the outline section at the end of Chapter 1.
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1
I N T RO D U C T I O N

The strong interaction is one of the four established fundamental interactions in nature and
part of the Standard Model of particle physics. The latter contains all known elementary
particles and their interactions. The strong interaction was first observed indirectly as the
nuclear force responsible for the binding of protons and neutrons in the atomic nuclei, which
accounts for almost the entire mass of ordinary matter that makes up stars, planets, and
living organisms such as humans. Of our current understanding, quarks are the fundamental
building blocks of matter which are bound together by the strong interaction to form
hadrons [27–32]. These hadrons can be baryons, made up of three quarks such as the
protons and neutrons, or mesons, for example pions and kaons, which are made up of
a quark and an antiquark. Other, more exotic states, such as tetraquarks, are a topic
of present research, but are not relevant for this thesis. The strong force is mediated by
the massless gluons which are the gauge bosons of QCD, which is a non-abelian gauge
theory with gauge group SU(3) and is the quantum field theory (QFT) describing the
strong interaction between quarks and gluons [32–35]. Gluons can be understood as the
QCD analogue of photons that mediate the electromagnetic force described by quantum
electrodynamics (QED). Quarks are massive fermions with spin-1/2 and carry a color
charge with possible “values” red, green, and blue, an analogue to the electric charge in
QED. Antiquarks carry the corresponding anticolors (for example “antired”). Although
the term “color” is used to discuss properties of QCD, it is important to note that this
is only a concept to illustrate the mathematical structure of the underlying SU(3) gauge
group (there is no overlap with the colors visible to the human eye). Due to the non-
Abelian gauge group, gluons carry color charge themselves resulting in self-interactions
of gluons and the short-range of the strong interaction – features that are not present in
the Abelian QED where photons are chargeless. This property makes the computations of
observables in strongly interacting systems rather complicated, as QCD is strongly coupled
at energy scales of order 1 GeV and below relevant for the understanding of, e.g., nuclear
matter. For illustration, in natural units, where kb = h̄ = c = 1, the mass of the proton is
1 GeV = 1000 MeV and a temperature of 1 MeV corresponds to 1010 K in SI units, which
is three orders of magnitude hotter than the core of our sun.

One peculiar feature of QCD at low energy scales is the phenomenon of confinement
which means that only color neutral states such as baryons (a combination of three valence
quarks with different color charges) and mesons (a combination of a quark and an antiquark
with the corresponding color and anticolor) are observed in nature. For example, in a
quark-antiquark system the color neutrality is guaranteed by the linear rising potential
between the quark-antiquark pair at large distances such that at some point the energy
for the separation of the pair is so large that it is energetically favored to create another
quark-antiquark pair from the vacuum, such that the overall system remains color neutral.

1
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Asymptotic freedom explains how the strong coupling of color charged quarks at the low
energy scales of nuclear matter decreases with increasing energy scales (or momentum
transfer), i.e., the quarks are expected to behave as free particles at asymptotically large
energy scales [36, 37] where confinement should not be observed anymore.

chiral symmetry breaking Another important feature of QCD is spontaneous
chiral symmetry breaking. Chiral symmetry is a global symmetry of massless fermion fields
and is a direct consequence of the Poincaré symmetry of the free Dirac action. It allows the
transformation of the fermion fields according to their chirality or handedness. There exist
left- and right-handed fermion fields, represented by so-called Weyl spinors, that transform
under different representations of the Poincaré group. In the massless QCD action, the
chiral symmetry transformations can be written as independent transformations of left- and
right-handed quarks in flavor space. In reality, quarks are, however, not massless as they
acquire a current mass through the Higgs mechanism [38–40]. Compared to the relevant
energy scales of QCD matter or, more intuitive, to observed hadron masses of order ∼ GeV
the masses of the two light quark flavors (up and down, respectively) are relatively light,
with mup ≈ 2.16 MeV and mdown ≈ 4.7 MeV [41].1 Thus, these masses are often neglected
and one speaks of an approximate “two-flavor” chiral symmetry, or of a small explicit
breaking of the chiral symmetry. This approximate symmetry is, however, spontaneously
broken at low energy scales, which is called spontaneous chiral symmetry breaking [42,
43]. Due to this mechanism, the nucleon masses are almost 1 GeV while the bare up and
down quarks have masses of only a few MeV such that roughly 99% of the nucleons mass
are dynamically generated by the QCD interactions, a highly non-perturbative effect. The
breaking of chiral symmetry can be understood as the formation of a chiral condensate ⟨ψ̄ψ⟩,
which is spatially homogeneous in the vacuum and acts as an effective mass contribution
to each of the constituent quarks in the nucleon, through the QCD interaction. In the
discussion, we limit ourselves to the two lightest quark flavors such that the bilinear ψ̄ψ can
also be understood as an antiquark-quark condensate of the lightest quarks. The breaking
of a continuous symmetry leads to the appearance of massless Goldstone bosons [44, 45],
which there should be three of in the case of the spontaneous breaking of the axial SU(2)
symmetry of the QCD action for two flavors [46]. This beautifully explains the existence
of the pions, also called the “pseudo-Goldstone modes of QCD”, as the lightest mesons in
the hadron spectrum, which are much lighter than the other hadrons [41], but not exactly
massless since chiral symmetry is only approximate in QCD.2

1.1 the qcd phase diagram – a literature overview

As described above, the non-Abelian, non-perturbative nature of QCD makes the study
of strongly-interacting system extremely challenging. Yet, the behavior of QCD at non-
vanishing temperatures and densities is of great interest for the understanding of the early

1 Ref. [41] gives the above mentioned values of current quark masses for up and down quarks at a renormal-
ization scale of 2 GeV in the minimal subtraction scheme. Thus, the light quark mass value is less than 1%
of the renormalization scale.

2 The strange quark mass of roughly 95MeV is often also considered to be low enough compared to other
energy scales such as, e.g., the hadron masses. The breaking of the resulting SU(3) chiral symmetry gives
rise to eight pseudo-Goldstone bosons, the pions, the kaons as well as the eta meson which all are relatively
light compared to other hadrons. This thesis focuses on QCD-inspired models that maximally contain two
different quark flavors, such that the author decided to keep the discussion simple by focusing on the
two-flavor case.
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universe as well as the extreme conditions in astrophysical applications like neutron stars,
their mergers or the core of supernovae [47–49]. An important experimental tool, besides
indirect access by the study of neutron star (mergers)3, for the investigation of the QCD
phase diagram are collider experiments, most prominently the Brookhaven National Labo-
ratory’s Relativistic Heavy Ion Collider (RHIC), the Large Hadron Collider (LHC) and the
Facility for Antiproton and Ion Research (FAIR), that are able to create extreme conditions
by colliding nuclei with each other to reach a large enough energy density [50, 51].

In this thesis, we restrict ourselves to strongly-interacting systems in equilibrium, i.e.,
we are interested in the thermodynamic properties of QCD. Thereby, we are particularly
interested in the conditions of non-vanishing temperatures T as well as baryon densities,
where typically the baryon chemical potential µB is used to enforce a mean baryon number
density in the system. At non-zero T , the baryon density increases monotonically with
µB, such that most of the phase diagram looks similar. We refer to Ref. [52] for a nice
presentation of the phase diagram using the baryon density as a parameter.4 The phase
diagram of QCD in the (µB,T ) plane is expected to have a complex and rich structure
that is neither fully understood theoretically nor explored experimentally. We start the
discussion on the relatively well-understood regions of the phase diagram and then move
on to conjectures about possibly realized phases or phenomena.

Figure 1.1 is used for visual orientation to guide the discussion in the following, but it
should be noted that it represents a sketch. Thus, Fig. 1.1 incorporates a lot of simplifica-
tions and conjectures, which are often not based on first-principle calculations. However,
the three colored regions in the sketch (a phase made of a gas of hadrons, the quark gluon
plasma and color-superconducting phases) represent relatively well-established literature
findings on phases of QCD, especially in certain limits of either T or µB being asymptot-
ically large or near the vacuum. Moreover, the nuclear liquid-gas transition (the magenta
line) is unquestionably realized at zero and low temperatures. Besides this, all features of
the sketch are (some more, others less) speculative. Especially, the regimes at intermediate
temperatures and densities are not well understood and are the focus of this thesis.

quark gluon plasma From the theoretical side, the QCD phase diagram at µB = 0
can be investigated using first-principle lattice simulations, which are based on the dis-
cretization of the QCD action on a finite Euclidean space-time lattice, see Ref. [58] for a
review and Ref. [59] for beginner’s introduction to LFT. At low or vanishing temperatures
and chemical potential, we know that there is a hadronic phase simply from computations
and experimental observations of the hadron spectrum. In this region the thermodynamics
of QCD is incredibly well described by statistical models of hadrons, such as the hadron
resonance gas. At sufficiently high temperatures, c.f. the red region in Fig. 1.1, as obtained
for example in the early universe shortly after the big bang, however, one obtains a so-called
quark-gluon plasma which is a deconfined phase of free quarks and gluons, i.e., confinement
is lost in this regime. This was already expected from the discovery of asymptotic free-
dom from the nobel prize winning work of Gross, Politzer, and Wilczek in 1973 [36, 37]:
the interactions between quarks and gluons becomes weaker at higher energy scales such
that they behave like free particles at very high energy scales. The quark-gluon plasma

3 Astrophysical constraints on strongly-interacting matter are currently gaining more relevance due to ad-
vances in the precision of gravitational wave detection. However, we are not making any contact with astro-
physical observables in this thesis such that a more detailed discussion of these experimental constraints is
omitted for brevity.

4 See also the reviews [53–56] for a more detailed discussion of the QCD phase diagram.
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Figure 1.1: Sketch incorporating evidence regarding the phase structure of QCD phase diagram in
the (µB ,T ) plane. The sketch is inspired by Refs. [55, 56] and from private communica-
tions [57]. The sketch serves to illustrate general features of the phase diagram, such as
the quark gluon plasma, the hadronic phase or color superconductivity. These are the
three regimes, that are established (in addition to the existence of nuclear matter) at
least deep within the respective colored regions. In the intermediate density and tem-
perature region, there exist only conjectures from the community and there is a lot of
uncertainty regarding the phase structure. The possibility of exotic, chiral regimes are
deliberately not discussed in the main text, as they will be further elaborated upon in
Section 1.2. Note that the axes do not necessarily scale linearly.

is the realization of asymptotic freedom in nature through extremely high temperatures
and/or densities [60, 61], as in the early universe. In the laboratory, collision experiments
are suitable to create such conditions, and hot QCD matter was created for example at
RHIC by Au-Au collisions [62]. The most direct approach to the thermodynamics of the
quark gluon plasma such as, e.g., the pressure at high temperatures is through perturbation
theory which can be performed up to sixth order in the coupling constant [63, 64]. The
expansion, however, converges badly and, even with improvements through resummations
schemes such as the hard-termal-loop expansion, is reliable only at temperatures of the
order of multiple GeV, c.f. Section 4 of Ref. [53] for a review.

finite temperature phase transition Logically, there must be a phase tran-
sition between the hadronic phase and the quark gluon plasma regime at some critical
temperature. An indication of such a phase transition in terms of a break-down of the
statistical hadronic description of matter was already found in 1965 [65] (before the formu-
lation of QCD in its present form) where a divergence of the partition function of hadrons
at a certain temperature is observed. Lattice-QCD simulations reflect this transition by a
steep rise in the pressure at a certain temperature [66, 67] and it is by now well-established
that the phase transition is a crossover [68]. However, there is still a lot of ongoing research
to understand the nature of the transition, especially about the relation of the chiral phase
transition and deconfinement. Transitions associated to deconfinement and (approximate)
restoration of the chiral symmetry are expected when the system changes from a hadronic
regime to a quark-gluon plasma. Currently, it is established from lattice-QCD that the
quark condensate decreases from its vacuum value to almost zero at temperatures between
120 and 180MeV with a pseudo-critical temperature of the crossover at Tpc ≈ 155MeV
[69, 70]. In earlier investigations of the Polyakov-loop observable, an order parameter for
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center symmetry in pure gauge theory5, it was believed that the deconfinement transition
occurs simultaneously the chiral crossover. This is revised in later works [71, 72] using an
appropriately renormalized Polyakov-loop observable that does not show any sign of de-
confinement. Moreover, LFT simulations around the pseudo-critical temperature show no
evidence of deconfinement from the Polyakov-loop either [73, 74]. Since the center symme-
try is not a symmetry of QCD but only of pure gauge theory, there is still no reliable order
parameter for deconfinement (and, thus, one can argue that a proper theoretical definition
of deconfinement is lacking, see Refs. [75, 76] for research on this). Thus, the established
phase transition at Tpc is a chiral crossover, i.e., one observes a transition from a phase
with heavy constituent quarks from dynamical chiral symmetry breaking below Tpc to an-
other state with light quarks (where essentially only the bare quark masses from the Higgs
mechanism are observed). An important ingredient for the understanding of the relation
between the chiral crossover and the deconfinement mechanism is a proper definition of
deconfinement in QCD and its relation to chiral symmetry breaking.

chiral spin symmetry Only a few year ago it was suggested that above Tpc there
would still exist a confining regime with hadron-like degrees of freedom [77] that would be
characterized by a chiral spin symmetry of QCD correlation functions, see Ref. [78] for a
review. However, first indications of hadron-like degrees of freedom above Tc are already
discussed for decades [79, 80]. Chiral spin symmetry is a symmetry of the temporal part of
the QCD Dirac operator. Measurements of temporal and spatial correlators [81, 82] suggest
that between Tc and 3Tc this symmetry is approximately realized by the color-electric quark-
gluon interaction, mediated by the temporal component of the gluon fields, dominating the
color-magnetic interaction and the kinetic Dirac terms, see Ref. [78] for details. See figure 1
in Ref. [83] for a qualitative sketch of the “stringy fluid” regime in the QCD phase diagram.
The realization of chiral spin symmetry implies that besides the hadron gas phase and the
quark-gluon plasma, there is a third regime of matter at intermediate temperatures with
distinctly different symmetry – the regime of chiral spin symmetry – where QCD behaves
more like a “stringy fluid” and chirally symmetric quarks are bound by confining color-
electric fields. Evidence for the realization of this symmetry comes further from screening
mass analysis at temperatures above Tpc which are inconsistent with a quark gluon plasma
description [78] as well as from hadron-like degrees of freedom in the pseudoscalar spectral
function that demonstrate a distinct pion-like state [84].

color superconductivity At asymptotically large densities and low tempera-
tures, one expects a color superconducting phase of quark matter [53, 85–89]. Therein,
quarks form a degenerate Fermi gas with a condensate of Cooper pairs near the Fermi
surface, as can be obtained from weak-coupling calculations [90, 91]. This is rather natural
because the color interaction between quarks is attractive in the anti-symmetric channels
and at low temperature a Fermi surface manifest in the quark distribution such that the
quarks can form pairs, according to Cooper’s theorem. The most attractive pairing chan-
nel is antisymmetric in both color and flavor implying that the Cooper pairs consists of
pairs with unequal color charge and flavor number. The condensation can occur in different
pairing channels, for example the color-flavor locked phase where all three colors and the
three lightest quark flavors are paired [92], while in the two-flavor superconducting phase

5 In pure gauge theory, the center symmetry of the gauge group is broken at high temperatures through a
non-zero Polyakov loop expectation value and, thus, the Polyakov loop is understood as an order parameter
for deconfinement in pure gauge theory.
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only up and down quarks condense in a diquark condensate. The former is favored in the
weak-coupling limit of QCD with three light quark flavors. At lower densities, however,
non-perturbative effects become more important such that this regime is still subject of
investigations and the favored pairing mechanism is not settled. In this regime, one mostly
relies on effective model calculations [93–100] or functional methods [101, 102] where dif-
ferent pairing mechanisms can occur. Further, crystalline, i.e., spatially dependent order
parameters for color superconductivity are discussed [103–107].

nuclear liquid-gas transition In a proper introduction to the QCD phase
diagram, we want to briefly discuss the nuclear phase transition, although nuclear matter
is not a central topic of this thesis. Since the nucleon mass is roughly 939 MeV and its
binding energy is around 16 MeV, the onset of a non-vanishing density of nuclear matter
is at µB ≈ µNM = 923 MeV at zero temperature. Thus, increasing µB from µB = 0
towards µB = µNM one obtains a first-order phase transition from a hadron gas, which
consists of equal shares of matter and anti-matter, towards a nuclear liquid phase made up
predominantly of baryons, forming ordinary nuclear matter as we know it, but also mesons
and possibly glueballs. This transition is called the nuclear liquid-gas transition and is well
established both from experiment and theory [108]. Directly at this threshold, the density
varies from zero to the normal nuclear density of n0 = 0.16 fm−3. In a phase diagram
with the spatially averaged nuclear density n̄ and temperature as parameters, nuclear
matter would be distributed into droplets of density n0 when 0 < n̄ < n0. At non-zero
temperatures, the first-order transitions weakens for increasing T and turns second-order
at TLG ≈ 15 − 20 MeV and µB = µLG ≈ µNM. Model investigations for nuclear matter [109,
110] share certain technical similarities with the models for chiral symmetry breaking used
in this thesis, but we refrain from presenting their phenomenology in this thesis.

quarkyonic matter At low temperatures and intermediate densities, i.e., in the
region of the phase diagram between the nuclear liquid gas transition and the color super-
conducting phase, a conjectured regime is the so-called quarkyonic matter where densities
are high enough that nucleons overlap and the constituent quarks become “free” [111–114].
Then, quarks and light hadrons are the dominant, interacting degrees of freedom. It is ex-
pected that possible scenarios for chiral phase transitions and especially regimes of exotic
phases, which are discussed below, are compatible with quarkyonic matter [115]. Moreover,
quarkyonic matter can exist both in phases with broken and restored chiral symmetry, but
its existence suggest that confinement persists at larger densities than chiral symmetry
[111, 116].

1.2 chiral phases at intermediate densities: vastly unexplored ter-
ritory

The chiral crossover between a phase with a dynamically generated chiral condensate ⟨ψ̄ψ⟩,
which we will refer to as homogeneous broken phase (HBP) in the following, and so-called
symmetric phase (SP), where chiral symmetry is approximately restored, at a temperature
of Tpc ≈ 155MeV and µB = 0 is well established [69, 70].6

6 The name SP is not fully accurate, as the chiral symmetry is never exact for physical current quark masses.
However, we avoid a differing definition between a phase with an approximate chiral symmetry and an
exact chiral symmetry. The term SP is used for both of these phases.



1.2 chiral phases at intermediate densities: unexplored territory 7

At intermediate and large µB/T , there is little evidence with respect to the nature of
the chiral phase transition and order parameters related to chiral symmetry breaking at
intermediate temperatures and densities in general. This is due to the infamous sign problem
of QCD at µB ̸= 0 which spoils the Monte-Carlo simulation techniques from statistical
physics in LFT due to the emergence of complex weights, see Ref. [117] for a review.
Results from lattice simulations can be extrapolated to up to µB/T = 3µ/T ≥ 2 [118, 119]
where µ is the quark chemical potential. The findings from LFT predict a decrease of the
crossover temperature for increasing µ [120] in consistency with functional approaches such
as the functional renormalization group (FRG) [121] and from Dyson-Schwinger equations
(DSEs) [122–125]. Functional methods, in general, are a powerful tool as they provide the
possibility to study the phase diagram at intermediate temperatures and densities with
first principle input.7 However, DSEs require truncation at a certain order and the FRG
requires restrictive ansatzes for the form of the quantum effective action to be solvable,
both of which introduces artifacts into the findings which are uncontrolled. Thus, the
results from functional approaches carry a systematic error, which is hard to quantify and
is expected to increase for larger µ/T . Therefore, results from functional methods must be
treated with caution and, ideally, should be cross-checked through investigations of similar
observables with different methodologies.

Thus, first principle evidence for the phase structure of QCD at intermediate tempera-
tures and density is scarce. Due to the lack of such evidence, there are many conjectures
regarding the (chiral) phase structure of QCD at intermediate temperatures and densities.
In Fig. 1.2, two possible scenarios for regimes related to chiral, mesonic order parameters
are sketched. The focus of the sketches is solely on chiral phases, while other features of
the phase diagram (such as the possibility of a confinement-deconfinement transition or the
onset of color superconductivity) are neglected for clarity. These expectations are based on
effective model calculations that are inspired by QCD and capture certain, essential fea-
tures of the theory but not all of them. Within the following discussion and in the sketches,
we do not discuss the chiral spin symmetric regime, as it is generated by quantum effects
in the QCD partition function. These have, so far, not been studied using model calcula-
tions, at least according to the knowledge of the author. Also, this regime is not further
investigated within this thesis.

Four-fermion models (such as the well-known Nambu-Jona-Lasinio (NJL) model [42, 43]
or the Gross-Neveu (GN) model [36]) and quark-meson (QM) models feature quark inter-
actions with meson fields emerging as auxiliary and dynamical degrees of freedom, respec-
tively,8 as well as spontaneous chiral symmetry breaking in the vacuum and at low µ and
T [137]. In high energy physics, they are often used to model QCD at lower energy scales,
see Refs. [93, 138–146] for examples. In these works the gluon dynamics can be treated as

7 Other lattice approaches, like Lefshetz thimble or complex Langevin methods, are prospects to circumvent
the sign problem, but so far they are either restricted to very simplistic theories (Lefshetz thimbles) [126–
128] or have not yet been shown to provide reliable, physical results [129–131]. Quantum computing is
expected to provide the solution to the sign problem of lattice QCD in a few decades, at least if the
required hardware and algorithms can be developed [132].

8 NJL-type models can be written as purely fermionic models containing self-interactions of the fermions in
terms of a four-fermion contact interaction, that are interpreted as effective vertices for the quark-gluon
interaction at lower energy scales [133–135]. Therefore, we use the term NJL-type models interchangeably
with four-fermion models in this thesis, although the latter term refers rather to lower-dimensional theories
in the literature, while the former name is often used for 3 + 1-dimensional models. Mesonic fields emerge
as auxiliary bosonic fields which are dynamically formed as ψ̄Γψ states in four-fermion models [136], where
Γ is a matrix with the quantum numbers appropriate for the respective meson field.
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integrated out and represented in the reminiscent four-quark and quark-meson couplings.9
This transition from QCD to degrees of freedom relevant in effective model calculations at
low energy is observed in functional methods involving dynamical hadronization methods
[121, 147–149]. However, approaches based on NJL and QM models lack the incorporation
of the gauge symmetry and, consequently, confinement is not realized in these models. Ex-
isting improvements involve including the Polyakov loop as an effective background field
in the effective potential [150–152], but this is only a rather crude approximation to the
full gluon dynamics and its response to the medium, especially at non-vanishing densities
[152–154].

Many of the below discussed scenarios and/or exotic regimes are based on calculations
from the aforementioned models. In the following, we want to not only describe the regimes,
that are expected to be relevant for QCD from model studies, but also provide and con-
textualize the underlying literature. Also, the goal is to point out missing evidence in the
literature and to motivate the ROs and goals of this thesis briefly, before explaining them
in more depth in Section 1.3.

critical point The scenario, that is expected by large parts of the community, is the
conjecture that the crossover ends in a CP beyond which the chiral phase transition becomes
first-order [137, 155], see the red line in the left plot of Fig. 1.2.10 This expectation is based
on model calculations [137, 141, 157, 158] and supported by recent computations using the
FRG [121], DSEs [124, 125, 159] as well as reconstructions based on lattice data [160, 161].
Those methods estimate the location of the CP in the range of approximately T = 90 −
110 MeV and µ = 120 − 210 MeV, a region in the phase diagram that is currently not probed
by heavy ion collision experiments. Although the Beam Energy Scan at RHIC studies
collisions with a center of mass energy of 3 GeV and 7 GeV, the theoretical prediction for
the CP (based on the freezeout chemical potential) could be reached when the collision have
a center of mass energy between those two energy scales [162]. The Compressed Baryonic
Matter (CBM) experiment at FAIR will in the future have access to the theoretically
predicted first-order transition. However, the CP might be difficult to probe directly, since
the expected critical scaling is absent even close to the transition [121, 163–165]. Many
model calculations find that the first-order line originating from the CP extends until the
T = 0 axis, although it possibly could have another endpoint at non-vanishing T .

moat regime There is recent evidence from the FRG [121, 166] and calculations in
NJL models [1, 10, 167] for the existence of a so-called moat regime in the phase diagram
where the dispersion relation of quark correlations in mesonic channels have a minimum at
non-vanishing spatial momenta. For example, pions can exhibit this moat regime disper-
sion relation in parts of the QCD phase diagram [121]. The moat regime might be present
in large regions of the (µ,T ) plane including the vicinity of the (to-be) CP, see the blue
regions in Fig. 1.2 for illustration. The behavior of the moat dispersion relation is naturally
associated to exotic phases featuring spatial modulations, as it favors non-vanishing mo-

9 A nice, although rather simplistic picture is to think of lowering the momentum scale as increasing the
relevant length scales that need to be considered. Then, at low enough momentum or energy scale the
microscopic gluon exchange between quarks “looks like” a contact interaction between quarks. This picture
is, of course, incomplete. It only provides a crude idea for the approximation of relevant terms in QCD.

10 For massless quarks, the chiral crossover becomes a second-order phase transition [156] (since chiral symme-
try becomes exactly restored in the SP) such that, precisely speaking, the CP is a tricritical point. However,
for simplicity, we will nevertheless refer to it as a CP throughout this work.
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Figure 1.2: Sketches of possible scenarios for the QCD phase diagram with respect to chiral order
parameters and exotic phases related to spatially modulated observables. Dense dotted
lines are used for the second-order phase transition which is the symmetry restoring
transition in the chiral limit from the HBP to the SP – the analogue to the chiral cross-
over that is obtained for physical current quark masses. The dashed violet line describes
the disorder line, which is the onset of the QπL, see the corresponding paragraph in the
text. (Right) The solid red line is a first-order phase transition between the SP and the
HBP that turns second-order in the chiral limit at the CP. (Left) The first-order phase
transition is replaced by an IP with transitions to the HBP and SP (solid blue lines).

menta of the corresponding (quasi)-particles. Studying the implications of the moat regime
for the existence of spatially modulated regimes with full quantum effects is part of the
scope of this thesis, as in detail formulated in RO3 “How do bosonic quantum fluctua-
tions influence exotic regimes?”. In QFT, the onset of the moat regime is often associated
with the wave function renormalization – the coefficient of the spatial kinetic terms in the
quantum effective action – of the respective, (quasi-particle) meson turning negative which
must be reflected in the quantum effective action and, consequently, in related observables.
While such a moat dispersion relation might be considered exotic in the high energy physics
community, it is a well-known and common phenomenon in condensed matter physics, see
Refs. [168–171] for original publications and reviews. It occurs for example in models of
magnetic materials [168–170], liquid crystals [172, 173] or chemical mixtures and mem-
branes [170] and is often associated with crystallization [174], superconductors [175–177]
and quantum Hall systems [178, 179]. Often, the occurrence of the moat regime is associ-
ated with certain symmetries, see below, and/or a competitive interplay between repulsive
and attractive interactions, although both of these properties are neither necessary nor
sufficient conditions for observing the moat dispersion relation.

generalized P T -symmetry, its relation to the moat regime and ex-
otic phases Moat regimes naturally arise in (non-Hermitian) theories with a general-
ized PT symmetry [180], see Refs. [181–184] for a discussion of PT symmetry in quantum
mechanics and QFT. In this context, P denotes a generic, linear operation and T a generic,
anti-linear operation. A generalized PT symmetry is defined as the invariance of a quantity
under the action of P and T simultaneously, but not individually [181, 184].11 Such a gener-

11 In non-Hermitian quantum mechanics, this is an often used framework modeling systems with loss and
gain in dynamical equilibrium. Thereby, the standard hermiticity conditions for Hamiltonians is replaced
by requiring them to commute with the PT operation where P and T in quantum mechanics denotes the
parity and time reversal operation [181]. This framework allows to compute a spectrum this is either purely
real-valued (“PT -symmetric region”) or contains complex-conjugate eigenvalues (“PT -broken region”) [181,
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alized PT symmetry is also realized in QCD at µ ̸= 0 where the action turns non-Hermitian
and the QCD action is invariant under combined operation of charge conjugation C and
complex conjugation K (but not individually under each of these operations), a PT -type
symmetry transformation. Such a symmetry can also be realized in QCD-inspired models
[189] but its influence on the phase structure is, so far, mostly neglected. QFTs with a gen-
eralized PT symmetry can give rise to the existence of exotic phases, see, e.g., Refs. [188,
190] where “patterned phases” and “PT -broken phases” are predicted from the properties
of propagator poles in scalar mass-mixing theories. Both of these regimes reoccur in this
thesis under the terms inhomogeneous phase and quantum pion liquid, respectively. It is
a focal aspect of this thesis to investigate the relation between the invariance under a gen-
eralized PT symmetry to the existence of exotic phases in QCD-inspired models, as this
aspect is mostly neglected in the literature (exceptions are Refs. [189, 191]). We aim to
study the consequences of this symmetry using a four-fermion model with an emergent CK
symmetry at µ ̸= 0, see RO1 “What are the implications of the presence of the combined
CK-symmetry at µ ̸= 0 for the existence of exotic phases?”.

quantum pion liquid and inhomogeneous chiral condensates A phe-
nomenon, that is likely related to the moat regime, is the appearance of a so-called disorder
line [180, 192]. The disorder line separates a regime in the phase diagram where the bosonic
two-point correlation functions are dominated by an exponential falloff, such as the SP,
from a region in which the spatial correlations behave as an exponential times an oscilla-
tory function, which is defined as quantum pion liquid (QπL) in this thesis. Disorder lines
appear in Polyakov-NJL models [191], Polyakov-QM models [189], static quark models at
strong coupling [193] and nuclear liquid-gas models [194]. In the QπL the chiral condensate
(and other one-point functions) are homogeneous, while the bosonic two-point correlation
functions feature spatial inhomogeneities in form of the oscillatory intermediate range be-
havior. The QπL can be associated to complex-conjugate poles of the bosonic two-point
correlation functions in the spatial momenta of the corresponding mesonic channels [189,
190]. The disorder line marks the point where two poles of the correlation functions become
degenerate.

If the minimum of the moat dispersion relations at non-vanishing momentum is deep
enough, the thermodynamic ground state, given by a condensate of the form ⟨ψ̄Γψ⟩, can be
inhomogeneous carrying a non-vanishing momentum. In this so-called inhomogeneous phase
(IP), the inhomogeneous chiral condensate breaks chiral symmetry as well as translational
symmetry spontaneously. Inhomogeneous chiral condensates are obtained in typical model
calculations in the mean-field approximation – an approximation method that suppresses
bosonic quantum fluctuations in the path integral – at low µ < T [195–200], motivated by
findings in 1 + 1-dimensional four-fermion models where IPs commonly appear [201–203].
We note, however, that inhomogeneous condensation was first studied in nuclear matter
model computations in the form of inhomogeneous pion condensation [204] and, later, in
strongly-interacting models based on quark degrees of freedom [205, 206].12

Inhomogeneous phases can overlap with parts of the moat regime [1]. Typically, one ob-
tains direct transitions from homogeneous phases like the SP and the HBP to the IP, see

183]. A generalization of this symmetry as the above discussed combination of a generic linear and anti-
linear operation is used both in quantum mechanics and in QFT [185, 186]. This type of symmetries might
be useful for resolving the sign problem in lattice-QCD at µ ̸= 0 [185, 187, 188].

12 In mean-field nuclear matter models, instabilities of the homogeneous ground states towards perturbations
with a non-vanishing momentum are also found in Ref. [207].
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the right plot in Fig. 1.2. In model calculations, the CP (and with it the entire region of
the first-order phase transition) is then often replaced by a lifshitz point (LP) where both
transitions from the homogeneous phases to the IP meet. However, in principle there can
also exist a separation of LP and CP [196, 208]. It is important to note that in NJL model
calculations the presence of an IP strongly depends upon the regularization scheme and
regulator value, while the moat regime is rather robust [9, 10, 167]. Further, the extent of
the IP can significantly depend on model details and technical aspects as well as further
parameters such as the pion mass [209, 210]. This renders the predictive power of the above
mentioned studies questionable with respect to QCD, since there is an inherit ambiguity in
the model analysis itself. IPs might only be present in strongly regulated or, equivalently,
lower-dimensional four-fermion models [211, 212]. We provide further context on the ro-
bustness of IPs in QCD-inspired models by analyzing renormalizable QCD-inspired models,
as in detail described under RO5 “What is the fate of inhomogeneous chiral condensates
within 2+ 1-dimensional four-fermion models and related QCD-inspired models?”. Beyond
model investigations, recent analyses of QCD DSEs show that the symmetric solution is
instable to inhomogeneities at low T and high µ. This instability, however, exits in a pa-
rameter region where the symmetric solution is not preferred [213–215]. While this is an
interesting result, these works are not yet conclusive regarding the existence of IPs in the
phase diagram of the DSEs model for QCD.

One-dimensional, inhomogeneous condensates are, moreover, instable against fluctua-
tions from the Goldstone modes of the broken translational symmetry (phonons) [216,
217], leading to a power-law decay of the oscillating correlation functions, and can be
disordered through the Goldstone bosons of chiral symmetry breaking [218, 219]. The dis-
ordering through Goldstone bosons leads to a QπL regime where the chiral condensate
is homogeneous but the bosonic two-point correlation functions are oscillatory functions
times an exponential fall-off, as described above [219]. Thus, this mechanism is expected
to dominate over the disordering from phonon modes. The finding is only relevant in a
large-Ns limit of a model for Ns light meson fields, but the mechanism is likely applica-
ble for QCD at non-vanishing µ and T such that we expect the QπL to be favored over
an IP in the phase diagram, see Ref. [219] for details. This competition of the above de-
scribed mechanisms for the disordering of IPs is covered in this thesis under RO4 “Are
inhomogeneous chiral condensates disordered by bosonic fluctuations? Is the QπL the pre-
ferred scenario in the full quantum theory?. . . ”. Note, however, that magnetic fields can
stabilize inhomogeneous condensates against phonon fluctuations through topological ef-
fects [220, 221] and might possibly stabilize them also against Goldstone mode fluctuations
from chiral symmetry breaking. In general, ordered phases are expected to be weakened
by fluctuations, especially by thermal and bosonic quantum fluctuations.13 The effects of
quantum fluctuations on models for these exotic phases is investigated in this thesis under
RO3 using LFT simulations of a scalar QFT, which classically features a moat regime as
well as an IP.

13 In one spatial dimension, there even exists a no-go theorem forbidding the breaking of any continuous
symmetry, as in a dynamically generated chiral condensate, for non-zero temperatures[222–224]. In present
literature, it is still discussed unclear whether an IPs persist at non-zero temperatures in the GN model [225],
as indicated by lattice simulations [226]. However, these results directly show the existence of oscillating
correlations function in the GN model, but not necessarily the long-range order and true translational
symmetry breaking. In the chiral GN model, however, it is rather clear that the inhomogeneous condensate
is disordered at non-zero temperatures [227–229].
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1.2.1 Possible scenarios for exotic regimes in the QCD phase diagram

In Fig. 1.2, two different scenarios for the above discussed phases in the chiral limit are
sketched. In the right plot, we present a scenario where exotic regimes like the moat regime
exist close to the CP, consistent with Ref. [121]. As discussed above, the first-order transi-
tion (solid red line) is depicted as extending until T = 0 although it might possibly as well
have another endpoint at T ̸= 0. In addition to the moat regime, which extends over a large
region of the (µ,T ) plane consistent with model calculations [1, 10], this sketch features the
disorder line and a QπL at lower temperatures. This QπL itself might be obtained from the
disordering mechanism of inhomogeneous chiral condensates through quantum fluctuations
[219, 225, 226] or mixing effects [180]. The location of the disorder line in the sketch admit-
tedly is chosen arbitrarily. At lower temperatures, short range correlations stemming from
the oscillations in the QπL are expected to be enhanced compared to larger temperatures
(where oscillations might still be present but more suppressed). At almost zero temperature,
the decay of correlation functions might even change from an exponential to a power-law
suppression (a liquid-crystal like regime). Such a behavior can be observed in perturbative
QCD with massless quarks where so-called Friedel oscillations arise at zero temperature, a
power-low fall-off times an oscillatory function that is additionally exponentially screened
for T ̸= 0 [230].

In the left plot of Fig. 1.2, we conjecture that the CP and the first-order phase transition is
entirely covered by an IP ,as implied by standard model computations [197] (although these
computations suffer from regularization artifacts [10, 167]). Thus, also the CP is replaced by
an LP – the onset of the IP and meeting point of three transition lines from the respective
homogeneous phases to the IP. Alternatively, a splitting of the CP and the LP might also
be observed such that there is a first-order transition at temperatures larger than for the IP.
The moat regime at larger temperatures is a natural precursor of the an IP. A moat regime
often also implies the appearance of a disorder line, such that, again, we expect the existence
of a QπL. It is expected that the exponentially suppressed oscillatory behavior in the QπL
is present at intermediate temperatures, while the suppression of thermal fluctuations at
lower temperatures allows for the formation of crystalline-like inhomogeneous condensates.

1.3 research objectives and goals of this thesis

This thesis explores the possibility of exotic phases14 in QCD at intermediate temperatures
T and baryon chemical potential µB building upon the current state of the literature sum-
marized above. QCD-inspired models provide starting point for the investigation of relevant
mechanisms for chiral observables in QCD at intermediate temperatures and chemical po-
tentials, also due to the lack of first principle calculations. Admittedly, the model approach
does not allow for quantitative predictions. Instead, we aim at the identification of novel
phenomena relevant for QCD itself. An example for such a phenomenon is the discovery of
inhomogeneous chiral condensates in NJL-type theories [195, 202] that further motivated
the investigation of IPs using DSEs [213, 214] and FRG [121]. Moreover, an improved un-
derstanding of possible exotic phenomena in QCD could aid in developing new methods to
study the phase diagram of QCD directly, see Refs. [185, 187, 188] for recent, although still

14 At this point, it should be noted that the term “exotic phase” is not only restricted to phases in a strict
thermodynamic classifications. Instead, the term is used for any phase or regime that can be characterized
by a distinctly different behavior of a certain observable. For example, the moat regime can be characterized
by a non-vanishing, global minimum of the mesonic dispersion relation.
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rather academic examples. The discovery of a novel feature of the phase diagram further
allows for experimental predictions using model calculations, which can then be tested in
heavy-ion collisions. For example, the moat regime dispersion relations leaves its imprints
on two-particle correlations for pions [231–234] and leads to an enhanced production of
back-to-back dileptons [11]. These signatures are expected to be testable experimentally in
the future through the CBM experiment at FAIR.

Given these preliminary remarks, we formulate the ROs addressed in this thesis and give
some context for the necessity of addressing them:

RO1 What are the implications of the presence of the combined CK-symmetry at µ ̸= 0
for the existence of exotic phases?
As outlined above, scalar QFTs with a generalized PT -type symmetry (as is the CK
symmetry) feature moat regimes, QπLs and IPs [180, 188, 190]. However, computa-
tions using QCD-inspired models for chiral symmetry breaking have so far neglected
modeling the emergent CK-symmetry of QCD at µ ̸= 0 and its effect on the phase
diagram, besides a few studies [189, 191]. We are going to explore the effect of this
symmetry in the framework of four-fermion models avoiding the above described reg-
ularization artifacts by studying 2 + 1 dimensional models (we further elaborate on
this in RO5).

RO2 What are the implications of mixing effects between scalar and vector mesons for the
existence of exotic phases at µ ̸= 0?
Many investigations of QCD-inspired models with respect to chiral phases do not
include vector interactions. Exceptions are Refs. [196, 208, 235, 236] which in turn do
not consider the emergent CK-symmetry. The fundamental QCD partition function
gives rise to such Yukawa-type interactions between fermions and vector mesons, as,
for example, the ω meson, arising from a resonance of four-fermion interactions in
the corresponding vector channels [133, 148, 237]. In line with RO1, we investigate
the momentum-dependent mixing effects between scalar and vector mesons using
2 + 1-dimensional four-fermion models. In this thesis, we aim to explore the mixing
effects of scalar and vector mesons on the phase structure, as generated through the
fermionic interactions. We note that the parallel work [189] explores both RO1 and
RO2 in a similar approach as this work, but only static mixing effects are investigated
and the focus is more on phenomenological results.

RO3 How do bosonic quantum fluctuations influence exotic regimes ?
Most of QCD-inspired model computations with respect to the phase diagram rely on
certain approximations that either completely suppress bosonic fluctuations or only
partially take them into account, while allowing for semi-analytical analyses. In this
thesis, we study exotic regimes without any approximation using LFT simulations of
a scalar O(Ns) theory. This theory can be seen as a toy model for the light scalar
mesons in QCD and is tuned to feature exotic regimes. Such models are applied
in the literature already for spontaneous symmetry breaking and phase transitions
both in high-energy and condensed matter physics [238, 239]. Note that in QCD the
chiral symmetry for two, massless quark flavors amounts to a rotational O(4) sym-
metry transformation of the mesonic fields describing the sigma meson and the pions.
The standard action for O(Ns)-symmetric scalar fields is extended in our analysis by
higher-order spatial derivative terms such that a moat regime arises and its classical
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equation of motions feature an IP in the parameter region corresponding to the moat
regime. The effect of bosonic quantum fluctuations is then investigated in LFT sim-
ulations. This approach allows to investigate the existence and possible competition
or coexistence of the moat regime, IPs and QπLs in three spatial dimensions without
the limitations of particular approximations or regularization artifacts.

RO4 Are inhomogeneous chiral condensates disordered by bosonic fluctuations? Is the QπL
the preferred scenario in the full quantum theory? How is translational symmetry
breaking in an IP appropriately detected in the infinite-volume limit using lattice
field theory?
As outlined for RO3, the effect of quantum fluctuations on exotic phases that are
obtained in semi-classical approximations of certain theories. In Ref. [219], the above
mentioned O(Ns) model is studied in the large-Ns limit. Therein, a QπL is obtained
instead of an IP and it is argued that in the full quantum theory the QπL is favored
over the IP, since IPs are disordered by the transverse fluctuations from the Goldstone
modes of O(Ns) (chiral) symmetry breaking. In this work, we are going to investigate
this claim by studying the model for Ns = 1 and Ns = 2 such that no transverse
modes from chiral symmetry breaking are present in the system. This allows to test
for the alternative scenario that the disordering of inhomogeneous chiral condensates
is a generic effect of quantum fluctuations. Further, the competition of the QπL and
the IP is studied for different Ns = 1, 2, 4, 8 and different spatial volumes. Thereby,
we tackle the technical question on how to appropriately characterize the breaking
of the invariance under (the discrete subgroup of) spatial translations using lattice
field theory by an external field approach.

RO5 What is the fate of inhomogeneous chiral condensates within 2 + 1-dimensional four-
fermion models and related QCD-inspired models?
Inhomogeneous chiral condensates in NJL models likely arise as artifacts from the
employed regularization scheme in non-renormalizable 3+ 1-dimensional four-fermion
models [10, 167, 211, 212, 240, 241]. The first hint in this direction stems from the
investigation of the 2 + 1-dimensional GN model where an IP might exist at finite
regulator values depending on the used regularization scheme [242] but vanishes when
removing the regulator [240, 241]. This is possible in two spatial dimensions [243,
244]. Refs. [10, 167] demonstrate that the existence of an IP depends on the chosen
regularization scheme in the 3+ 1-dimensional NJL model, while Refs. [4, 211] suggest
that a four-fermion model in 3+ 1 dimensions with a finite regulator is equivalent to
the same model in lower spatial dimensions (the number of spatial dimensions is not
restricted to integers therein). The two latter manuscripts show that in the GN model
with a discrete chiral symmetry IPs exist only for non-integer spatial dimensions 1 ≤
d < 2. The regulator artifacts, that are unavoidable in three spatial dimensions, can
be in detail explored in two spatial dimensions since the renormalizability allows to
in detail study the dependence on the regulator value and used regularization scheme
[240, 241]. However, in 1+ 1 dimensional four-fermion models larger chiral symmetry
groups typically favor the existence of inhomogeneous condensates and, often, more
involved inhomogeneous structures arise [201, 245–248]. Thus, a natural question,
that arises, is whether IPs exist in 2 + 1-dimensional four-fermion models with a
larger and continuous chiral symmetry group, that gets spontaneously broken. With
respect to QCD, of course, it is also interesting to study a four-fermion model with a
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similar SU(2) axial symmetry that gets spontaneously broken by a chiral condensate.
Answering this question provides insights into the fate of IP in four-fermion models,
in general, since in 3 + 1 dimensions four-fermion model investigations with respect
to IPs (and exotic phases in general) will always suffer from the ambiguities of the
above described regularization artifacts. Moreover, obtaining unambiguous results for
the existence of IPs in many 2 + 1-dimensional four-fermion models avoids artifacts
stemming from details of the chosen model.

remarks on four-fermion models Four-fermion models are non-renormalizable
in 3+ 1 dimensions and arise naturally as low-energy effective interaction channels in QCD
at certain energy scales, making them a popular choice for investigations of regions of the
phase diagram unavailable to first-principle investigations. Thus, keeping a finite regulator
in the theory is necessary and predictions from these models are only trustworthy if they
are robust against the change of the regulator value and regularization schemes whilst still
reproducing expected QCD behavior in certain limits (for example, NJL models are typ-
ically tuned such that the pion decay constant and constituent quark mass are close to
the physical values in the vacuum). Thus, avoiding these artifacts from regularization is
crucial for the investigation of exotic phases at intermediate µ and T , as demonstrated by
the observation of the regulator artifacts in the IP of the NJL model [10, 167]. Since the in-
teresting parameter regions for exotic phases are at the order of magnitude of the typically
required regulator values in four-fermion models, this work focuses on 2 + 1-dimensional
four-fermion models which are renormalizable [243, 244] and, thus, avoids the artifacts from
regularization completely. In the literature, there are quite a few studies (e.g. Refs. [249–
257]) applying 2+ 1-dimensional four-fermion models to investigate physical phenomena in
high energy physics such as, e.g., color superconductivity in a directly accessible QFT [107,
258–261]. Four-fermion models are interesting themselves for several branches of physics,
and are used not only as low-energy effective models for chiral symmetry breaking in QCD
but also to study strongly-interacting, fermionic matter under extreme conditions such as
isospin imbalance or magnetic fields, condensed matter applications such as spontaneous
symmetry breaking in graphene effective field theory [262–267] and other (almost) planar
systems [268–271] as well as for the development of techniques and technical aspects in
QFT [243, 244, 272–276] ( that are also relevant for other aspects of high energy physics
such as asymptotic safety [277] ). However, we focus on the application of these models to
chiral aspects of the QCD phase diagram.

1.4 outline

This thesis is structured as follows. In Chapter 2 we introduce basic concepts of QFT in
thermal equilibrium, which are relevant for the investigations in this thesis. Further, we
introduce four-fermion and Yukawa models used as low energy effective, QCD-inspired
theories and apply certain techniques, like bosonization and the mean-field approximation,
which are relevant multiple times in the results chapters.

Then, an extended literature review on conjectures of the QCD phase diagram at µB ̸= 0
with particular emphasis on exotic regimes with spatially modulated observables is pre-
sented in Chapter 3. We also elaborate on the relation of these expected regimes to QFTs
with generalized PT -symmetry and show evidence for the existence of a moat regime from
functional methods. This chapter aims at providing a deeper overview over moat regimes,
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QπLs, and IPs by presenting selected literature results, which are relevant throughout this
thesis.

In Chapter 4, the major tool for our investigations, namely the computation and anal-
ysis of bosonic two-point vertex functions in four-fermion and Yukawa models within the
mean-field approximation, is presented. Thereby, we discuss its appearance both in the
stability analysis of homogeneous condensates and in the analysis of propagator poles from
considerations of PT -type symmetry. Also, the computation of the bosonic two-point ver-
tex functions are tested using analytical results for the phase diagram of two different
1 + 1-dimensional four-fermion models.

Following these theory and methodology chapters, three result chapters are presented
that focus on different aspects of the research objectives posed in Section 1.3. In Chapter 5,
the absence of instabilities towards inhomogeneous chiral condensates and the moat regime
is shown in all four-fermion and Yukawa models in 2 + 1 dimensions with local, scalar
interactions (with different, possible further extensions) in the mean-field approximation
and, thereby, provides arguments that IPs observed in three spatial dimensions in NJL-
type models might very well be artifacts of regularization schemes. An extension of the
results to vector interactions (such that all models with local quark-meson interactions
are covered) is presented and the absence of instabilities is shown in the SP. Moreover, we
argue that the absence of instabilities in general is a strong indication for the non-existence
of inhomogeneous chiral condensates in these models. Thus, this directly addresses RO5,
see Section 1.3. Using existing literature, we also discuss that the absence of the IP and the
moat regime is likely valid beyond the mean-field approximation in the studied theories. In
Chapter 6, we further investigate the effects of scalar and vector interactions leading to the
mixing of scalar and vector mesons in the HBP within one particular four-fermion model.
One observes a QπL within the HBP of this model, where bosonic two-point correlation
functions are spatially oscillating but exponentially damped. The existence of the QπL
aligns with the presence of a generalized PT -symmetry in this model, a similar symmetry
that is also present in QCD at non-vanishing µ. We show that our findings are also valid
in the context of all four-fermion models that feature scalar-vector mixing effects and local
interaction terms. This chapter directly addresses RO1, RO2, and partially also RO5.

The above chapters all apply the mean-field approximation where bosonic quantum fluc-
tuations are suppressed. In Chapter 7, the influence of these quantum fluctuations on
exotic regimes is investigated in an effective scalar O(Ns) model. The used model fea-
tures spontaneous chiral symmetry breaking as well as moat regime and an IP in classical
computations and can directly be simulated on the lattice. The findings demonstrate how
quantum fluctuations disorder the inhomogeneous condensates, that are observed in the
parameter space of the classical theory, at finite spatial volume independent of Ns. Only
a QπL is present in the quantum theory. A proof-of-work of a specifically developed exter-
nal field technique to investigate translational symmetry breaking in the infinite-volume
extrapolation is presented, but no explicit conclusions from this analysis can be derived
yet.

A summary of the results as well as a overall interpretation with respect to the ROs
and a contextualization with the literature can be found in Chapter 8 where also future
research directions are discussed.

For a quicker read, experts familiar with the research field may consider following the
“fast reading” guide, presented in the front matter of this manuscript.
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T H E O R E T I C A L P R E R E Q U I S I T E S

agenda and relation to the research objectives In this chapter, we
introduce the theoretical prerequisites which are relevant for the rest of the thesis. As a
starting point, we assume that the reader is familiar with basic concepts of QFT, see the
textbooks [278–280] as well as the lecture notes [281] for an introduction to these. Due to
the nature of such an introduction, there is no direct relation to the ROs for this thesis
although the theoretical background for their investigation is presented.

disclosure This chapter provides a brief introduction to thermal QFT and QCD-
inspired theories with focus on relevant topics for this thesis. All content can be found in
more detail in standard textbooks and lecture notes on the topic, for example in Refs. [64,
282–285]. With respect to the introduction to QCD-inspired models and the approaches
used to study them one can refer to the huge amount of literature on four-fermion and
Yukawa models. Although bits and pieces of the content presented in this regard can be
found in publications working with these QFTs, we are not aware of a comprehensive
review in textbooks or review articles. Closely related presentations can be found in the
PhD theses [52, 167, 286]. We by no means claim that any of the content presented in this
chapter is original. Since the contents of this chapter are textbook knowledge, citations are
only spread occasionally for specialized statements, which go beyond the common textbook
knowledge.

outline We start with a brief introduction to the path integral formalism for QFT
in a thermal equilibrium and definition of generating functionals for the computation of
correlation and vertex functions in this context. Then, the QCD-inspired models of interest
for this thesis, i.e., four-fermion and Yukawa-type models, as well as the used techniques
for the analysis of this theories, namely the so-called Hubbard-Stratonovich transformation
and the mean-field approximation, are presented.

2.1 quantum field theory in thermodynamic equilibrium

The goal of this section is to provide a brief introduction to QFTs in D = d+ 1 spacetime
dimensions in thermal equilibrium. The theories of interest for this thesis are QCD-inspired
models in D = d+ 1 spacetime dimensions that do not contain gauge fields. Thus, the
main building blocks of these models are fermionic fields ψ̄,ψ and Ns scalar fields ϕj , see
Appendix A.4 for a brief introduction of these fields as entities that transform under certain
representations of the Poincaré algebra with spin-1/2 and spin-0, respectively. Conventions
for the spacetime metric as well as the Dirac matrices are given in Appendix A.2 and

17
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Appendix A.3. Thereby, we assume that the reader is already familiar with the Dirac
equation and the free Dirac action.

In the path integral formalism, the computation of the expectation value of an observable
O amounts to

⟨O⟩ = 1
Z

∫
Dψ̄DψD ϕ⃗ O(ψ̄,ψ, ϕ⃗) eiS[ψ̄,ψ,ϕ⃗], (2.1)

where S is the classical action of the theory and the path integral

Z = N
∫

Dψ̄DψD ϕ⃗ eiS[ψ̄,ψ,ϕ⃗], (2.2)

where the operator
∫

Dψ̄DψD ϕ⃗ denotes the integration over all microscopic field config-
urations of ψ̄,ψ and ϕ⃗, respectively, and N is a normalization constant. Strictly, such an
integration measure is properly defined on a discretized spacetime lattice Λa with lattice
spacing a. Accordingly, the spacetime coordinates x = (x0, x) are restricted to be elements
of Λ, i.e., they can be written as x = an with nν ∈ Z. Then, the integration measure is
defined as ∫

Dψ̄DψD ϕ⃗ = lim
a→0

∏
x∈Λa

∫
dψ̄(x)dψ(x)

Ns∏
j=1

∫
dϕj(x). (2.3)

Thus, Eq. (2.2) is a shorthand notation for an infinite-dimensional integral over all field
configurations weighted with the exponential of the action times i. We note that one often
implicitly assumes boundary conditions for the functional integral such that the field config-
urations ψ̄,ψ, ϕ⃗ are fixed at an initial and final time slice tin and tf. The path integral (2.2)
then corresponds to a transition amplitude between the initial and final state. For example,
in scattering processes one typically ensures that the fields are solutions of the free theory,
i.e., without interaction terms, in the limits tin → −∞ and tf → ∞, respectively.

Although, in principle, the path integral formalism is suitable for computation of ob-
servables of any kind, solving Eq. (2.1) is in general often not possible. Thus, one relies
on appropriate approximation methods such as, e.g., perturbation theory up to a certain
order.

2.1.1 From Minkowski to Euclidean spacetime

The path integral (2.2) is particularly hard to solve due to the oscillatory nature of the
exponential weight. However, for QFT in thermodynamic equilibrium one often analytically
continues from Minkowski spacetime to Euclidean spacetime with metric ηE,µν = δµ,ν ,
which will be outlined below. For the rest of this subsection, we will use the subcript E to
denote quantities in Euclidean spacetime and the subscript M for Minkowski spacetime.

The change of coordinates from the Minkowski spacetime coordinates xM = (x0, x)T to
Euclidean spacetime coordinates xE = (x, τ )T is given by the naive substitution

τ = ix0, for the time coordinate, (2.4)
xE = xM , for the spatial coordinates, (2.5)

where τ ∈ R such that the time coordinate is taken to be purely imaginary. This process
is also known as Wick rotation in the literature [64, 284], (albeit it is only a special case
of a Wick rotation [287]) as one rotates into the temporal coordinate from the real to the
imaginary axis. The analytical continuation from real to imaginary time implies

i∂τ = ∂x0 for the time derivative, (2.6)
∂xE,j = ∂xM ,j , j = 1, . . . , d, for the spatial derivative. (2.7)
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and
(dsM )2 = dx2

0 − dx2
M = −(dτ2 + dx2

E) = − (dsE)2 (2.8)

making the Euclidean spacetime metric evident. At this stage, we want to note that per-
forming a Wick rotation is in general more involved than the simplified presentation in
this work and is still a topic of active research in mathematical physics.1 Nevertheless, in
the context of this thesis and many common applications in equilibrium QFT, the above
substitutions are sufficient and we will not further elaborate on the subtleties of the Wick
rotation. The analytical continuation makes it necessary to define an action in Euclidean
spacetime, in our case by SE = −iSM , see Appendix A.2 for examples of specific models.
The path integral (2.2) becomes a Euclidean partition function

Z = N
∫

Dψ̄DψD ϕ⃗ e−SE [ψ̄,ψ,ϕ⃗], (2.9)

where the fields ψ̄,ψ and ϕ⃗ are now defined in Euclidean spacetime, i.e., transforming un-
der the spin-0 and spin-1/2 representation of the modified Poincaré algebra for Euclidean
spacetime, c.f. Appendix A.4. The computation of observables (2.1) is modified in an anal-
ogous way, i.e.,

⟨OE⟩ = 1
Z

∫
Dψ̄DψD ϕ⃗ OE(ψ̄,ψ, ϕ⃗) e−SE [ψ̄,ψ,ϕ⃗], (2.10)

where the observables also have to be rotated to Euclidean spacetime quantities. If possible,
the analytical continuation to imaginary time is convenient for practical computations, e.g.,
for LFT methods. However, this procedure can lead to severe difficulties in the computation
of dynamical real-time processes [291]. In this thesis, observables are time-independent and,
thus, the Wick rotation is a useful tool. Nevertheless, we note that one really has to be
careful treating the poles of integrand that lie in the integration contours within this plane.

The transformation to Euclidean spacetime only allows to obtain to interpret Eq. (2.9)
as a probability distribution function if SE is real-valued. This is the case for the theories
studied in this thesis and we assume in the following always that SE is real-valued. Note,
however, that this is not necessarily true for all QFTs. The most prominent example of
a theory with complex-valued action is QCD at non-vanishing baryon chemical potential.
Then, typical computational approaches relying on sampling a high-dimensional probability
distribution function, such as in LFT, are not directly applicable.2

Examples for the consequences of the Wick rotation on the level of the free Dirac action
as well as the theories of interest for this thesis are presented in Appendix A.2. In the
following, we only work in Euclidean spacetime. Thus, the subscript E is omitted.

2.1.2 Introduction of temperature

The Euclidean partition function (2.9) has the form of a probability distribution function
and, moreover, its integrand is of similar form as a Boltzmann weight, i.e., it reminds of

1 For example, one has to think about the exchange of contour integrals in the evaluation of observables such as
correlation functions using the analytical continuation of the temporal coordinate. This process can become
rather complicated when one allows for general observables, since poles, cuts and other non-analyticities
in the complex plane need to be considered when changing the integration contour, see Refs. [288–290] for
details.

2 Approaches for theories with complex-valued SE are under heavy investigation as they pose the possibility
to study the phase diagram of QCD at non-vanishing baryon chemical potential, see Refs. [117, 292] for a
review of the current status of research.
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a partition function in statistical physics. In this section, we will make this analogy more
explicit by introducing a non-vanishing temperature to the system, i.e., we are going to
construct the QFT analogue of a canonical ensemble.

In a QFT in thermal equilibrium, the temperature T is introduced by compactifying
the temporal direction of the Euclidean spacetime to a finite extent β = 1/T , see, e.g.,
Refs. [64, 282–285]. This is sensible as the equilibrium implies that there no longer is
a global time evolution of the macroscopic system and only local thermal and quantum
fluctuations are allowed. Thus, all observables computed by the path integral (2.10) should
be time-independent. The spacetime integration over dd+1x is, consequently modified and
rewritten as ∫

dd+1x =
∫ β

0
dτ
∫

ddx. (2.11)

This change of the spacetime manifold is applied particularly in the Euclidean action S
of the theory, but also all other quantities of the respective QFT. Moreover, one has to
adjust functional integration in the partition function (2.9). Accordingly, the boundary
conditions for the fields have to be modified as the spacetime manifold is compactified.
The appropriate modification for the fields must take into account that taking a trace (as
needed for the partition function) means to identify the final and initial states. In other
words, we need to set

ϕ⃗(τ + β, x) = +ϕ⃗(τ , x), ψ̄(τ + β, x) = −ψ̄(τ , x), ψ(τ + β, x) = −ψ(τ , x), (2.12)

i.e, anti-periodic and periodic boundary conditions in the temporal coordinate τ for the
bosonic fields ϕ⃗ and the fermionic fields ψ̄,ψ, respectively. The necessity of anti-periodic
boundary conditions for the fermion fields (instead of periodic as one would expect) can
be understood by carefully discretizing the temporal direction and carefully consider the
Grassmann nature of fermionic fields when taking the trace which introduces the additional
minus sign in Eq. (2.12) for ψ̄ and ψ.

In summary, the introduction of a temperature T amounts to compactifying the temporal
direction to a cylinder where the temperature is identified with the inverse of the radius of
the cylinder. The overall spacetime manifold is then Rd × S1, i.e., it is the one of a torus
whose radius becomes infinite in the limit of vanishing temperature.

matsubara frequencies While the introduction of temperature above follows
rather hand-waving arguments, one can understand its meaning with reasonable arguments
from quantum mechanics. Similar to the quantization of energy levels when studying the
Schrödinger equation in a spatial box, the finite temporal extent β produces a discrete
spectrum whose resolution is proportional to 1/β = T . This can also read off the Fourier
expansions of the fields that hold the boundary conditions (2.12)

χ(x, τ ) = T

∫ ddp
(2π)d

∑
n∈Z

χ̃(p, iαn) eiαnτ+ipx, (2.13)

where χ represents either a bosonic or fermionic fields. As the fields obey the (anti-)periodic
boundary conditions, the discrete Matsubara frequencies αn with n ∈ Z are given by

αn = ωn = 2πnT , for χ = ϕj , (2.14)

i.e., for bosonic fields and

αn = νn = 2π (n+ 1/2) T , for χ = ψ, (2.15)
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i.e., for fermionic fields 3. In the zero temperature limit, the discrete sum over the Matsubara
frequencies becomes a continuous integral such that standard QFT after the Wick rotation
is recovered. The corresponding, inverse Fourier transformations are

χ̃(p,αn) =
∫ β

0
dτ
∫

ddxψ(x, τ )e−iαnτ−ipx. (2.16)

2.1.3 Introduction of a mean fermionic density

As discussed above, the Euclidean partition function (2.9) reminds of a partition function
of a statistical ensemble. In statistical systems, it is common that, e.g., the number of parti-
cles in the system fluctuates according to the given probability distribution. In QFT, these
fluctuations are naturally incorporated because of the possibility of particle production
through quantum fluctuations and, after the introduction of a temperature as discussed
above, also through thermal fluctuations. To study systems with a fixed particle number or
density, one typically ensures that the particle number of interest is fixed in the statistical
average. Mathematically, this can be ensured using Lagrange multipliers [293, 294]. The
Lagrange multiplier is introduced into the probability distribution functions to modify the
probability of a field configuration according to its corresponding particle number. Physi-
cally, this Lagrange multiplier can be identified with the corresponding chemical potential
– the energy per additional particle in the system. This chemical potential is treated then
as a thermodynamic state variable of the system, analogous to using the grand-canonical
ensemble in statistical physics.

In this work, we are interested in QCD-inspired models at non-vanishing fermion densi-
ties. Therefore, we define the fermion density

n = ψ̄(x)γd+1ψ(x). (2.17)

such that the fermion number is given by

N =
∫

ddx ψ̄(x)γd+1ψ(x). (2.18)

This definition is common as it is associated with a conserved charge associated to the
temporal component of the vector current ψ̄γµψ and, thus, is conserved by applying the
Noether theorem for a global U(1) symmetry. This conserved charge exists independent of
the dimensionality of free fermions in d+ 1 spacetime dimensions, although the respective
global symmetry groups of free fermions can differ significantly depending on d, see for
example Appendix B.

As described above, the fermion density is expected to be fluctuating according to the
statistical distribution. We introduce a fermion chemical potential µ to Eq. (2.9)

Z = N
∫

Dψ̄DψD ϕ⃗ e−S[ψ̄,ψ,ϕ⃗]+
∫

dd+1xµn (2.19)

in order to modify the probability distribution function to account for the fermion number
density of a certain field configuration [293, 294]. The above modification is equivalent to
modifying the statistical distribution

∑
r

(
e−βEr

)
in statistical physics to

∑
r

(
e−β(Er−µNr)

)
,

where Er and Nr are the energy and the particle number of the micro state r, respectively.

3 For ψ̄ = ψ†γd+1, it is convenient to use the opposite sign to the respective definition for ψ for the Fourier
expansion.
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As typical in the field, we redefine the action of the theory to include the chemical potential
as S → S −

∫
dd+1xµn for the rest of this work and include the chemical potential a priori

already in the action.
The expectation value of n can then be computed using the path integral formalism

(2.10) which yields the simple relation from statistical physics

⟨n⟩ = 1
βV

∂ lnZ
∂µ

∣∣∣∣
T ,V

, (2.20)

where a finite, spatial volume V is artificially introduced in this definition.

2.1.4 Finite volume, the thermodynamic limit and phase transitions

In the context of statistical physics, the thermodynamic limit is taken by letting the volume
of the system V go to infinity. In QFT, the situation is more subtle as the volume of the
system is often infinite by construction. However, it may occur that the system is put in a
finite volume V , e.g., in LFT simulations where periodic boundary conditions are enforced.
Then, the momenta of the fields are quantized in each direction, pj = 2πnj/Lj where Lj
is the extent of the respective spatial direction similar to the situation encountered when
working at a non-vanishing temperatures.

In this case, a phase transition cannot occur in a strict mathematical sense, where the
transition is defined by a diverging correlation length. This is due to the fact that the order-
ing is already realized in the system when the correlation length approaches the scale set by
the by the physical volume. Instead, one can approximate a, e.g., transition temperature by
searching for maxima of susceptibilities of the order parameter. These maxima, in principle,
approximate the correct behavior and one can estimate the behavior in the thermodynamic
limit by finite size scaling of the respectively chosen observable. An extrapolation of this
scaling can be used to extract the location of the phase transition in the thermodynamic
limit. In Chapter 7 of this thesis, we encounter a situation in LFT simulations of a scalar
O(Ns) field theory where details of the finite size scaling are non-trivial and one has to
carefully extract results for the infinite-volume. The respective procedure is special to the
investigation in Chapter 7 and is discussed therein.

The definition of certain objects in QFT require the introduction of a spatial volume,
which will often implicitly be send to infinity.4 However, in these cases one typically does
not encounter the subtleties of performing the finite-size scaling in the thermodynamic
limit as the volume is only introduced for simplification of the analytical computation.

2.2 generating functionals and correlation functions in thermal
quantum field theory

The main purpose of this section is to define the generating functionals in the presence
of external sources and the (connected) n-point correlation functions and vertex functions
properly for QFT in thermal equilibrium. The essence of this objects, however, remains
similar to the ones in standard vacuum QFT. Thus, the reader is referred to standard
textbooks on QFT for a more detailed discussion of these objects [278, 279, 281, 295].

4 An example is the above definition of a fermion density or the definition of the effective potential of a QFT
as the quantum effective action per space-time volume in the following sections. Sometimes the spatial
volume will be kept finite in order to ease some computations, but the limit of infinite volume is always
properly taken in the end.
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2.2.1 The generating functional of n-point correlation functions

The partition function (2.19) can be promoted to the generating functional of the ther-
mal QFT by introducing sources η, η̄, J⃗ for the fields ψ̄,ψ, ϕ⃗, respectively. The generating
functional of n-point correlation functions then reads (after including the fermion chemical
potential already in the definition of the action)

Z[η̄, η, J⃗ ] = N
∫

Dψ̄DψD ϕ⃗ e−S[ψ̄,ψ,ϕ⃗]+
∫

dd+1x (ηψ̄+η̄ψ+J⃗ ·ϕ⃗), (2.21)

where the partition function Z = Z[0, 0, 0]. The generating functional Z[ ¯eta, η, J⃗ ] allows
to compute expectation values of any number of fields by taking the appropriate number
of derivatives with respect to the sources η, η̄, J⃗ and evaluating the result at η = η̄ = J⃗ =

0. If an observable O can be written as an analytic function of the ψ̄,ψ, ϕ⃗, one can be
reformulate the formula for its expectation value (2.10). Therefore, one just needs to take
the appropriate number of derivatives of the generating functional (2.21) with respect to
the sources and setting the sources to zero afterwards. For example, an n-point correlation
function of bosonic fields ϕj1 , . . . ,ϕjn , as it is often of interested in this thesis, is given by

⟨ϕj1 . . . ϕjn⟩ = 1
Z

δnZ

δJj1 . . . δJjn

∣∣∣∣∣
η,η̄,J⃗=0

. (2.22)

Similar expressions can be derived for fermionic n-point correlations as well as for fermionic-
bosonic correlations.

2.2.2 The generating functional of connected n-point functions

The n-point correlation functions contain the full information about the system. Although
they can directly be computed from the generating functional (2.21) using LFT, they are
often not the most convenient objects to work with in other approaches. A major reason
for this is that the n-point correlation functions contain disconnected contributions, which
are often not of interest. We will elaborate on this aspect in the following.

The generating functional for connected n-point correlation functions is defined as the
logarithm of the generating functional (2.21),

W [η̄, η, J⃗ ] = lnZ[η̄, η, J⃗ ]. (2.23)

Again, connected n-point correlation functions can be computed by taking the appropriate
number of derivatives with respect to the sources η, η̄, J⃗ and evaluating the result at η =

η̄ = J⃗ = 0.
First, we compute the one-point function

⟨ϕj⟩c =
δW [η̄, η, J⃗ ]

δJj

∣∣∣∣
η,η̄,J⃗=0

=
1
Z

δZ[η̄, η, J⃗ ]
δJj

∣∣∣∣
η,η̄,J⃗=0

= ⟨ϕj⟩, (2.24)

i.e., the connected one-point function is equal to the one-point function derived from
Eq. (2.21).

The difference to the generating functional (2.21) becomes evident when one is interested
in the bosonic two-point correlation function

⟨ϕjϕk⟩c =
δ2W

δJjδJk

∣∣∣∣
η,η̄,J⃗=0

=
1
Z

[
δ2Z

δJjδJk
− 1
Z

δZ

δJj

δZ

δJk

] ∣∣∣∣
η,η̄,J⃗=0

= ⟨ϕjϕk⟩ − ⟨ϕj⟩⟨ϕk⟩. (2.25)
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The quantity ⟨ϕjϕk⟩c will be of interest at multiple points in this thesis for the classification
of phase transition and, for brevity, will also be called the bosonic two-point correlation
function. The connected two-point correlation function ⟨ϕjϕk⟩c only contains information
of the correlation between the fields ϕj and ϕk that is not already contained in the one-
point functions ⟨ϕj⟩ and ⟨ϕk⟩. This removal of redundant information is a major advantage
of using this formalism and also holds for higher n-point functions.

2.2.3 The quantum effective action and one-particle-irreducible vertex functions

While going from the generating functional (2.21) to the generating functional of connected
correlation functions (2.23) removes redundant information in terms of disconnected con-
tributions, it is often useful to further simplify the formalism by introducing the quantum
effective action Γ. This quantum effective action is defined as the functional Legendre trans-
form of the generating functional of connected correlation functions W with respect to the
sources J⃗ , i.e.,

Γ[Φ⃗, Ψ̄, Ψ] = sup
J⃗ ,η,η̄

{∫
dd+1x

(
J⃗ · Φ⃗ + η̄Ψ̄ + ηΨ

)
−W [η̄, η, J⃗ ]

}
, (2.26)

where

Φj =
δW

δJj
, Ψ̄ =

δW

δη
, Ψ =

δW

δη̄
. (2.27)

In the limit of vanishing sources, one consequently obtains

Φj = ⟨ϕj⟩, Ψ̄ = ⟨ψ̄⟩, Ψ = ⟨ψ⟩. (2.28)

As the quantum effective action is a functional of Φj , Ψ̄ and Ψ, it still has an implicit
dependence on the external sources which in turn can be tuned to obtain certain values of
Φj , Ψ̄ and Ψ. Thus, the quantum effective action Γ is a functional of the expectation values
of the fields. It is a generating functional for the so-called one-particle-irreducible n-point
vertex functions, abbreviated with n-point vertex functions in the following, and contains
all information about the correlation functions of the theory. The quantum effective action
incorporates the effect of quantum fluctuations and, thus, serves as a generalization of the
classical action S. An example for this analogue will be given in the following.

Taking derivatives with respect to the field expectation values, one finds the so-called
one-point vertex functions

δΓ
δΦj

= Jj ,
δΓ
δΨ̄

= η, δΓ
δΨ

= η̄ (2.29)

directly from Eq. (2.26). In the absence of the artificially introduced sources, the one-point
vertex functions are zero implying that the expectation values of the fields are stationary
points of the quantum effective action. This is the quantum analogue of the principle of
least action in classical mechanics.

Of particular interest in this work, is the bosonic two-point vertex function

Γ(2)
ϕj ,ϕk

=
δ2Γ

δΦjδΦk
, (2.30)
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which is still a function of the expectation values of the fields Φ⃗, Ψ̄, Ψ. The relation to the
bosonic two-point correlation function is obtained through

δjk =
δJj
δJk

=
δJj
δΦl

δΦl

δJk

J⃗ ,η̄,η→0
= Γ(2)

ϕl,ϕj
⟨ϕlϕk⟩c, (2.31)

where in the last step we implicitly send the sources to zero such that the bosonic two-
point correlation function could be identified. Thus, Γ(2)

ϕl,ϕk
= (⟨ϕlϕk⟩c)−1, i.e. the bosonic

two-point vertex functions are the inverse of the bosonic two-point correlation functions.
Similar relations can be derived for fermionic correlation and vertex functions5.

2.3 four-fermion and yukawa models

By now, we established the general setup to study QFTs in a thermal equilibrium, i.e., at
non-vanishing temperature and fermion density. However, the rest of this thesis is restricted
to the scalar O(N) model (with only bosonic fields), fermionic models with four-fermion
interaction terms and Yukawa-type models with both bosonic and fermionic fields. Since
multiple chapters of this thesis study four-fermion models, we introduce some basic concepts
for these models and important relations to Yukawa-type models.

Hence, we define a generic four-fermion model with the action

SFF[ψ̄,ψ] =
∫ β

0
dτ
∫

ddx

ψ̄ (/∂ + γd+1µ)ψ−
∑
j

λj

2Nf
(ψ̄ cj ψ)

2

 (2.32)

and partition function

ZFF = N
∫

Dψ̄Dψe−SFF[ψ̄,ψ]. (2.33)

in d + 1 Euclidean space-time dimensions. The fermion fields ψ̄,ψ describe Nf spinors
and the number of respective spinor components is given by the dimension of the Clifford
algebra in the respective d+ 1 dimensions.6 For the purpose of this discussion, the vertices
cj represent matrices in spin space. Later in this work we will study more degrees of freedom
for the fermions and the dimensionality of the cj is then adjusted accordingly.

2.3.1 Hubbard-Stratonovich transformation

In order to analytically evaluate the path integral (2.33), one would like to obtain a form of
the action that is bilinear in the fermionic fields, i.e. has a form of ψ̄Qψ with the so-called
Dirac operator Q. Then, one can apply the formula∫

Dψ̄Dψe−
∫

dd+1x
∫

dd+1yψ̄(x)Q(x,y)ψ(y) = αDet Q(x, y), (2.34)

where α is a real normalization parameter,
∫

dd+1x =
∫ β

0 dτ
∫

ddx and the determinant is
understood as a functional determinant over spacetime as well as a matrix determinant over

5 The strategy is rather similar to the above discussion, although one has to be more cautious in the derivations
due to the Grassmann nature of the spinors and sources.

6 In the irreducible representation, spinors are two-component objects for d = 1, 2 and four-component
objects for d = 3. However, for the rest of this thesis we consider the reducible, four-component spinor
representation for d = 2 allowing us to define chiral symmetry in d = 2 spatial dimensions, see Appendix A.4
and Appendix A.3 for a discussion of the spinor representation in this work.



2.3 four-fermion and yukawa models 26

the spinor indices. This formula can be derived using the eigenvalue decomposition of the
operator Q as well as rewriting the measure Dψ̄Dψ as well as the exponent on a discretized
spacetime lattice, i.e., into the form of Eq. (2.3), see the discussion from Eqs. (5.23, 5.24)
to Eq. (5.43) for scalar fields as well as Eqs. (5.116-5.122) for Grassmann-valued fields in
Ref. [281]. An example for the computation of such a matrix determinant can be found in
Appendix C.

In order to cast Eq. (2.33) into a fermion bilinear of the form ψ̄Qψ, a Hubbard-Stratonovich
transformation [296, 297] is applied. The transformation can be performed using a Gaussian
integral in field space of the form of

A =
∫

Dϕ e
−
∫

dd+1x
Nf
2λ

(
ϕ+ λ

Nf
ψ̄cψ

)2

=
∫

Dϕ e
−
∫

dd+1x

(
Nf
2λ
ϕ2+ψ̄cψϕ

)
e

−
∫

dd+1x λ
2Nf

(ψ̄ cj ψ)
2

,
(2.35)

where we omitted the index j for simplicity, the integration measure Dϕ is defined analogous
to Dψ̄Dψ and A is a real-valued constant. Inserting this identity iteratively for each of the
four-fermion interaction terms in Eq. (2.33) (replacing ϕ → ϕj , c → cj et cetera)7, only
changes the partition function by a multiplicative constant (which is without relevance for
the computation of observables, compare Eq. (2.10)). Then, the latter exponential factor
in Eq. (2.35) cancels the respective four-fermion interaction at the price of introducing two
additional terms per four-fermion interaction term. The resulting partition function with
auxiliary fields ϕ⃗ reads

Z = N ′
∫

Dψ̄Dψ
∏
j

Dϕj e−S[ψ̄,ψ,ϕ⃗] (2.36)

with the partially bosonized action

S [ψ̄,ψ, ϕ⃗] =
∫ β

0
dτ
∫

ddx

Nf

∑
j

ϕ2
j

2λj
− ψ̄

/∂ + γd+1µ+
∑
j

cjϕj

ψ
 , (2.37)

where Z ∼ ZFF and N ′ is an arbitrary normalization factor. As one can see, we have
hereby exchanged the four-fermion interaction for a Yukawa-type interaction term. Thus,
instead of a four-point fermion vertex, a fermion-boson interaction vertex is produced such
that fermions interact by the exchange of an auxiliary bosonic field.

effective action Then, one can perform the integration over ψ̄,ψ as described
above and obtain the effective theory

ZBos = N ′
∫ ∏

j

Dϕje−Seff[ϕ⃗] (2.38)

with the so-called effective action

Seff[ϕ⃗] = Nf

∫ dd+1x
∑
j

ϕ2
j

2λj
− ln Det

[
β

(
/∂ + γd+1µ+

∑
j

cjϕj(x)
)]. (2.39)

Note that the factor of β was introduced to the determinant after integrating out the
fermionic fields in order to make the argument of the determinant dimensionless. Thus,

7 If ψ̄cjψ has certain non-trivial quantum numbers, one has to introduce a bosonic field that has a similar
mathematical structure. For example, if cj = γν the corresponding bilinear is a vector under (Euclidean)
Lorentz transformations and one needs to introduce a vector field in the Hubbard Stratonovich transforma-
tion.
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Zbos was changed by a multiplicative, temperature-dependent constant factor compared to
Eq. (2.36). Moreover, in comparison to Eq. (2.35) one has to note that the Dirac operator
is proportional to a Dirac delta in position space. This Dirac delta is omitted in Eq. (2.39)
and is implied in the usage of one specific field dependence. One has to keep this in mind
when evaluating the functional determinant of the operator for a concrete action.

2.3.2 Ward identities for the auxiliary bosonic fields

In QFT, there exist so-called Ward-Takahashi identities (also known as Ward identities)
which relate expectation values of different n-point functions to each other and are derived
by global or gauge symmetries of the theory. Thus, they are the QFT analogue of classical
conservation laws as can be shown using Noether’s theorem. The most famous, original
Ward-Takahashi identity of quantum electrodynamics relates the electron propagator to the
electron-photon vertex leading to the renormalization of the electron charge and canceling
the ultra-violet (UV) divergences of theory via the gauge invariance of the theory [298,
299]. In our case, the Ward identities are derived from invariance of the theory under
infinitesimal, chiral transformations.8

By demanding the invariance of the partition function (2.36) under infinitesimal trans-
formations

ϕj(x) → ϕj(x) + δϕj(x) (2.40)

one can derive Ward identities for the expectation values of the auxiliary fields. Inserting
this transformation into Eq. (2.36) and assuming invariance of the measure9 Dϕj , one
obtains

Z ′ = N ′
∫

Dψ̄Dψ
∏
j

Dϕj e−S[ψ̄,ψ,ϕ⃗+δϕ⃗] = (2.41)

= N ′
∫

Dψ̄Dψ
∏
j

Dϕj e−S[ψ̄,ψ,ϕ⃗]
[
1 −

∫
dd+1x

∑
k

δϕk(x)

(
ψ̄ckψ+Nf

ϕk
λk

)
+ O

(
δϕ2

)]
.

Since the transformation δϕj(x) can be arbitrary, one may choose δϕj = ϵϕjδ
(d+1)(x− z)

(δ(d+1) is the d+ 1-dimensional Dirac delta). Demanding Z ′ = Z implies that the second
summand in the square brackets vanishes. Inserting the ansatz for δϕj(x) into Eq. (2.41)
one obtains

0 = N ′
∫

Dψ̄Dψ
∏
j

Dϕj ϵ

[
ψ̄(z)ckψ̄(z) +

Nf

λk
ϕk(z)

]
(2.42)

and, as ϵ is arbitrary, one concludes after multiplication with 1/Z

⟨ϕj⟩ = − λj
Nf

⟨ψ̄cjψ⟩. (2.43)

Thus, one can directly access the expectation value of fermionic bilinears, such as, e.g.,
the chiral condensate, by computing the bosonic one-point functions, i.e., the expectation

8 Since we do not deal with a specific theory at this point, the discussion is kept rather generic and trans-
formations are defined on the level of the auxiliary bosonic fields. Thus, it depends on the specific theory
whether a certain transformation is chiral in the end. Note that many chiral transformations of fermions
correspond to rotations of fermion bilinears and the corresponding auxiliary bosonic fields ϕj .

9 The invariance of this measure can only strictly be derived before taking the continuum limit in Eq. (2.3).
As common in QFT, we, however, assume that the continuum limit in Eq. (2.3) and Eq. (2.9) can be taken
without any complications.
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value of the bosonic fields. As the expectation value of bosonic fields are typically easier to
compute than fermionic ones, this relation is a powerful tool to study four-fermion models.
For example, in a lattice field theory simulations computation of the expectation value of
ψ̄ψ would involve measuring the trace over the inverse of the Dirac operator. In contrast,
the bosonic field can directly be measured when simulating the partition function (2.38).

Similar relations for two-point functions can be obtained in a similar way demanding
invariance of expectation values of one-point functions under Eq. (2.40), instead of the
partition function. Application of Eq. (2.40) to the expectation value of the bosonic fields
gives

⟨ϕj(y)⟩ →N ′
∫

Dψ̄Dψ
∏
k

Dϕk (ϕj(y) + δϕj(y)) e−S[ψ̄,ψ,ϕ⃗+δϕ⃗] = (2.44)

= ⟨ϕj(y)⟩ − N ′
∫

Dψ̄Dψ
∏
k

Dϕk

∫
dd+1x

∑
l

δϕl(x)e−S[ψ̄,ψ,ϕ⃗]×

×
[
δl,j δ

(d+1)(x− y) − ϕj(y)

(
ψ̄(x)clψ(x) +

Nfϕl(x)

λl

)]
+ O

(
δϕ2

)
.

Using again the ansatz δϕj(x) = ϵδ(d+1)(x− z) this implies the identity

⟨ψ̄(z)clψ(z)ϕj(y)⟩ = −Nf

λl
⟨ϕj(y)ϕl(z)⟩ + δl,j δ

(d+1)(y− z). (2.45)

Repeating this procedure for the expectation value of the fermion bilinear ψ̄cjψ one obtains
an expression for the fermionic four-point function

⟨ψ̄(y)cjψ(y)ψ̄(z)ckψ(z)⟩ = −Nf

λk
⟨ψ̄(y)cjψ(y)ϕk(z)⟩. (2.46)

Combining Eq. (2.45) and Eq. (2.46) one finds

⟨ϕj(y)ϕk(x)⟩ =
λj
Nf

δjkδ(x− y) +
λjλk
N2
f

⟨ψ̄(y)cjψ(y) ψ̄(x)ckψ(x)⟩, (2.47)

which relates the bosonic two-point correlation functions of the auxiliary bosonic fields to
the respective four-point function of the fermion fields.

These Ward identities demonstrate that the partially bosonized partition function (2.36)
contains similar information as the original partition function (2.33) with the four-fermion
action. Moreover, we explicitly showed that the four-fermion interaction vertex really got
replaced by the Yukawa-type interaction between fermion fields and bosonic fields. The
above outlined procedure can be performed iteratively to study higher order correlation
functions.

2.3.3 Yukawa models as a generalization of four-fermion models

In Chapter 5, we are going to study Yukawa-type models where the auxiliary bosonic fields
are promoted to dynamical fields by introducing a kinetic term as well as self-interaction
terms. Thereby, we restrict ourselves to models that contain local interactions between
fermions and the dynamical bosonic fields, i.e., the interaction between fermion fields is
modeled through meson exchange, where the mesons themselves can locally self-interact.
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Then the action of the resulting Yukawa model can directly be defined using the effective
action of the corresponding four-fermion model (2.39), i.e.,

Seff,Y[χ⃗] = Seff[hχ⃗] +
∫ β

0
dτ
∫

ddx

1
2 (∂ν χ⃗(x))2 +

∑
n>1

κn

∑
j

χ2
j (x)

n , (2.48)

where χ⃗ contains scalar fields of canonical dimension energy(d+1−2)/2, h is the Yukawa
coupling of dimension energy(3−d)/2, κn are the couplings of the self-interaction terms and
the sum over n runs over all integers n > 1. The corresponding partition function then
simply reads

ZY ∼
∫

Dχ⃗e−Seff,Y[χ⃗]. (2.49)

Due to the additional terms in Eq. (2.48) the Ward identities derived in Section 2.3.2
are not valid for the Yukawa models. Additional contributions from the kinetic terms and
self-interactions are contained in the Ward identities. Since the Ward identities for the
Yukawa models are not needed throughout this thesis, we do not compute these additional
contributions in this section.

2.4 mean-field approximation and the large-Nf limit

Although large parts of this work deals with strongly-interacting four-fermion models at
non-vanishing densities instead of fully-fletched QCD, there still exist no direct way to
compute the partition function (2.33) or, equivalently, the partition function about the
effective action (2.38) in an exact way. A common first approximation for a partition
function of a strongly-interacting theory is to use a mean-field approximation. The term
mean-field approximation might have different meanings in the literature depending on the
respective research field. In the present case, we define the mean-field approximation as the
suppression of the quantum fluctuations in the bosonic path integral in Eq. (2.38). Thus,
it is a semi-classical approximation where the bosonic fields are treated classically using a
variational approach, while the fermionic quantum fluctuations are fully taken into account
by integrating them out. Thus, only the global minimum with respect to the bosonic fields
ϕ⃗ is taken into account and the partition function is approximated as

Zbos ≈ ZMF = min
ϕ⃗

e−Seff[ϕ⃗]. (2.50)

As a consequence, expectation values of observables can be computed by averaging them
over the global minima of the effective action. This can be, in theory, problematic whenever
degenerate global minima of the action can be related through a symmetry transformation,
which is sponteanously broken by each of these field configurations individually. Often, can-
cellations occur such that the expectation value does not signal the spontaneous breaking
of a symmetry. In the mean-field approximation, it is common and practical to restrict the
space of solution such that a degeneracy generated by symmetry transformations cannot
occur, i.e., one in practice picks only one of the degenerate minima, cf. Refs. [93, 137, 141,
195, 197, 300].

Terms that are often interchangeably used with the mean-field approximation are the
1/N -expansion (including the large-N limit), method of steepest descent or the saddle-
point approximation. While the relation to the 1/N -expansion is discussed below, the
method of steepest descent or saddle-point method is a general technique to approximate
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integrals by evaluating the integrand on contours that go through a saddle point of the inte-
grand. The term saddle-point approximation is a specific example of the method of steepest
descent used in statistics where the method of steepest descent is applied to a probabil-
ity distribution function [301]. In the context of this work, the mean-field approximation
amounts to a saddle-point approximation of the partition function (2.38).

Note that we assumed above that there is only one global minimum in the effective ac-
tion which is not necessarily true, especially in the presence of first-order phase transitions.
Moreover, there might be multiple minima that are degenerate but connected through sym-
metry transformations. Within the mean-field approximation, one typically expresses the
effective action as a functional of an invariant order parameter10 and then minimizes the
effective action with respect to this order parameter. In the full QFT, i.e. when evaluat-
ing the partition function (2.33) without an approximation using lattice field theory, one
typically introduces a small external symmetry breaking parameter which is then continu-
ously removed in the continuum and infinite-volume limit in order to study the spontaneous
breaking of the symmetry. In the mean-field approximation, this procedure simply amounts
to choosing a specific minimum of the effective action. A simple example for this would be
choosing ϕj = δj,0σ after minimization with respect to m =

√∑
j ϕ

2
j , which is typically

possible if m is an order parameter for symmetry breaking in the effective action.

2.4.1 The 1/N expansion and the large-Nf limit

The 1/N expansion is a powerful tool to study strongly-interacting theories. Thereby, N
describes the number of different kinds of interacting degrees of freedom that are essential
ingredient of the respective theory, e.g., the number of colors in QCD or the number of
fermion species in a four-fermion model. For an introduction to the 1/N expansion, we
refer to Ref. [302].

In order for a 1/N expansion to be valid, one typically assumes that 1 ≪ N . However,
the method has been unexpectedly successful in systems where N is rather small, e.g., in
the strong coupling regime. This is caused by the strictly non-perturbative nature of the
1/N expansion which is not limited by the convergence radius of the perturbative series
in a dimensionless small coupling constant. For example, already the leading order of the
1/N expansion can take into account arbitrary high powers of the coupling constant.

In the context of this work, the 1/N -expansion is particularly important for two use
cases. First of all, taking the large-Nf limit of Eq. (2.33), i.e., taking Nf → ∞, amounts to
the mean-field approximation of the partition function (2.33). This is most obvious after
bosonization when inspecting the partition function over the effective action (2.38). The
effective action (2.39) is proportional to Nf such that the partition function is dominated
by the global minimum of the effective action in the limit of Nf → ∞. Thus, the leading
order O(N0

f ) of the 1/Nf -expansion amount precisely to the mean-field approximation
of the four-fermion model. This is not the necessarily the case for the other models with
additional, internal degrees of freedom and one carefully has to examine the impact of
taking the limit of infinite number of fermion flavors for the respective theory. For example,
in Chapter 7 we study an O(Ns) model of scalar fields using lattice field theory. Thereby,
we compare our findings to analytical work in the large-Ns limit of the used O(Ns) model.
One finds that the large-Ns limit of scalar O(Ns) model does not correspond to a mean-field
approximation, see Section 2.5.

10 With respect to chiral symmetry, this order parameter is typically be the 2-norm of the field vector ϕ⃗.
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2.4.2 Alternative derivation of the mean-field approximation

An alternative motivation of the mean-field approximation starts from the originally purely
fermionic action (2.33). First, one defines the expectation values

⟨ψ̄cjψ⟩ = αj , (2.51)

and expands the fermion bilinears appearing in the action around these mean-field values
ψ̄cjψ = αj + ∆αj .11 By neglecting the contributions quadratic in ∆αj one obtains the
partially bosonized action (2.37) by appropriately relating αj to ϕj . Note that in this
procedure one does not integrate over αj in the partition function from the beginning.
Hence, one can directly perform the integration over the fermionic fields and obtain the
effective action Eq. (2.39). One then just determines the values of the mean-fields φj
classically by minimizing the effective action with respect to φj , as described above in
order to obtain the mean-field approximation. Note that in this subsection we enforced the
Ward identities from the beginning by defining the φj fields accordingly instead of deriving
them as in the Hubbard-Stratonovich transformation, see Section 2.3.1.

This argumentation is based on the drastic assumption that the fluctuations about the
classical mean-fields are small. In contrast, the large-Nf limit provides a systematic way
to justify and improve upon the mean-field approximation. Note that 1/Nf -expansion
techniques are equivalent to a mean-field approximation specifically in the case of the four-
fermion models. In general, this is not necessarily true and one has to carefully perform
the 1/N expansion.

2.4.3 Validity of the mean-field approximation

One might argue that the classical treatment of the bosonic fields, i.e., the complete sup-
pression of the bosonic fluctuations, is a severe simplification of the full QFT. However,
it typically allows a first study of the phase structure of theory and, to a certain extent,
the computation of observables. Thus, it serves as an appropriate starting point for fur-
ther investigations that go beyond this approximation. Specifically for the study of phase
diagram, the bosonic quantum fluctuations are expected to weaken ordering as present in
the HBP where a chiral condensate is formed or the IP where the condensate exhibits a
periodic structure. The mean-field approximation can provide first insights about the pos-
sible existence of those phases and the phase transitions between them with significantly
reduced computational effort compared to functional methods or lattice simulations.

2.4.4 The homogeneous effective potential and its relation to the mean-field quantum
effective action

In four-fermion and Yukawa models, as introduced in Section 2.3, it is useful to define
the homogeneous effective potential Ū . The effective potential, in general, is defined as
the quantum effective action Γ, see Section 2.2.3 for its definition, per spacetime volume
βV , where V is the (typically infinite) spatial volume of the system, and (in the present

11 This replacement is only valid for a generic four-fermion model of the type of Eq. (2.32). For a Yukawa
model, one would have to expand the bosonic fields χj around their expectation values.
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case) per fermion flavor Nf . One can identify after performing a one-loop expansion of the
quantum effective action

Γ[ϕ⃗] = Seff[ϕ⃗], (2.52)

which is exact only in the mean-field approximation. Note this non-trivial result cannot be
obtained directly by inserting ZMF into Eq. (2.26) directly, because non-vanishing source
terms are present in the definition of W [η̄, η, J⃗ ] = lnZ[η̄, η, J⃗ ] and the fermion fields are
not integrated out.

The minimum of Γ in the limit of vanishing external sources is given by Φ⃗(x), which
is the global minimum of the Seff or also called the ground state in this thesis. Of course,
this assumes that this minimum is unique, which in the presence of internal symmetry
transformation formally would have to be ensured via an explicit symmetry breaking term.
However, within the mean-field approximation this can be ensured by defining an invariant
under the internal symmetry as the parameter to minimize and expressing observables as
functions of this invariant order parameter, see also the discussion in the first paragraphs
of Section 2.4.

As implied by the name, the homogeneous effective is defined when restricting the ex-
pectation values of the ϕ⃗ to be homogeneous, i.e. ϕ⃗(x) = ⃗̄ϕ,

Ū(⃗̄ϕ,µ,T ) = T

NfV
Seff[

⃗̄ϕ], (2.53)

i.e., it is a function of the variables ⃗̄ϕj , which are constant in space and time. Note that we
additionally also normalize against the number of fermion fields Nf . Under this assump-
tion, the grand potential of the statistical system Ω(µ,T ) = −p/Nf can be defined as
Ω(µ,T ) = −(Ū( ⃗̄Φ(µ,T ),µ,T ) − Ū( ⃗̄Φ(0, 0), 0, 0)).12 Throughout this thesis, ⃗̄Φ is called
the homogeneous global minimum or homogeneous ground state, i.e., the global mimimum
of Seff under the restriction ϕ⃗(x) = ⃗̄ϕ. The effective action in the models in this work is of
the form of

Seff[
⃗̄ϕ] = Nf

f(⃗̄ϕ) − ln Det
[
β

(
/∂ + γd+1µ+

∑
j

cjϕ̄j

)], (2.54)

where f(⃗̄ϕ) is a function of the homogeneous fields (typically containing self-interaction
terms and / or kinetic terms, see Eq. (2.39) or Eq. (2.48)).

computation of the fermion determinant The fermionic determinant can
be computed using the eigenvalue decomposition of the Dirac operator. In the contin-
uum theory, this evaluation is straightforward after Fourier transforming the fermionic
and bosonic fields (see Eq. (2.13) for the conventions for Fourier transforms) such that
the derivative operator /∂ is replaced by i/pδ(d+1)(p− q) where p and q are four-momenta
whose zero components are given by Matsubara frequencies (2.15). The Dirac operator
is, consequently, diagonal in the Fourier space as also ϕ̄j gets replaced by ϕ̃j(p − q) =

β (2π)d δ(d+1)(p− q)ϕ̄j for homogeneous fields. Thus, it remains to diagonalize the Dirac
structure of the operator. Typically, this is possible as the four-fermion models are invariant
under certain symmetry operations, e.g., chiral symmetry, which allows to rotate certain

12 The grand potential in turn is generally defined as the difference of the quantum effective action at fixed µ
and T and the quantum effective action in the vacuum, evaluated at its minimum.
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ϕj to zero. Then, depending on the interaction vertices cj , the dimensionality of space-
time d+ 1 and the dimensionality of the Dirac algebra one can determine the eigenvalues
λα(p, ⃗̄ϕ) of the Dirac operator such that the ln Det expression in Eq. (2.54) becomes

ln
[∏
p

∏
q

∏
α

δ(d+1)(p− q)λα(p, ⃗̄ϕ)
]Nf

= NfT
∑
n

∫ ddp
(2π)d

∑
α

ln
[
λα(p, ⃗̄ϕ)

]
, (2.55)

where α runs over the fermionic degrees of freedom and we used that the temporal direc-
tion is discretized at finite temperature. Also, we used that the Nf fermion species are
decoupled in the determinant. This expression is often further simplified as ⃗̄ϕ can be ro-
tated through symmetry transformations such that it typically only appears as a mass
squared term m2 in λα. Then, one can express the ln Det-term in Seff as an integral over
the d-dimensional spatial momentum space through standard techniques used to compute
the pressure of a free-fermi gas, see Chapter 2.5 of Ref. [64] or Chapter 3.7 of Ref. [285] for
details. Consequently, one finds (up to an irrelevant temperature-dependent constant)

1
βV

ln Det

β
/∂ + γd+1µ+

∑
j

cjϕj

 = (2.56)

= dγ

2

∫
ddp

(2π)d

[
Ep + T ln

(
1 + e−(Ep−µ)/T

)
+ µ → −µ

]
where dγ represents the number of components of a spinor (see Appendix A.3 for the rep-
resentations used in this thesis), V is the infinite spatial volume and the energy Ep =√

p2 +m2. Therein, m2 is a function of ⃗̄ϕ and, often, is given by the 2-norm of ⃗̄ϕ in field
space. Note that the vacuum integrand ∼ Ep yields a divergent contribution, which requires
regularization and an appropriate renormalization prescription to remove the divergences.
The degree of the divergence depends on the space dimensionality d. An explicit compu-
tation of Eq. (2.56) can be found in Appendix C. See the standard textbooks on thermal
field theory [64, 282] or Ref. [285] for further reference.

correlation and vertex functions As we already discussed the computation
of the generating functional as well as the quantum effective action in the mean-field
approximation, we want to briefly comment on the fate of correlation and vertex functions
in this approximation.

Determining values of n-point correlation functions when applying the mean-field approx-
imation Z ≈ ZMF can be done in the following way. One needs to compute the expectation
value of the respective operator O(ψ̄,ψ, ϕ⃗) neglecting the bosonic quantum fluctuations.
This can, in general, still be complicated when the operator O contains either ψ̄ or ψ.
However, as demonstrated in Section 2.3.2, one can relate any fermionic n-point function
to purely bosonic expectation values in the case of the four-fermion and Yukawa models in
this thesis. Thus, it is sufficient to determine all bosonic n-point correlation functions in
order to extract all information of the theory in the mean-field approximation. For bosonic
observables one simply finds

⟨O(ϕ⃗)⟩ = O(Φ⃗), with Φ⃗ = arg min
ϕ⃗

Seff[ϕ⃗], (2.57)

where Seff is the effective action of the theory as outlined in Section 2.3.1 and the minima of
the effective action are the expectation values of the respective bosonic fields in the mean
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field approximation, as previously discussed. Due to this simple relation, we omit using
brackets and simply insert Φ⃗ to indicate that we refer to the respective expectation values
of fields and observables.

In general, one still has to be careful when studying correlations such as ⟨ϕjϕk⟩ in
the large-Nf limit, since the definition of bosonic fields includes factors of Nf , compare
Eq. (2.35) and Eq. (2.43), which one has to take into account in the power counting when
taking Nf → ∞.

The most direct approach to extract relevant observables from the theory is using the
quantum effective action, which can be accessed through the effective action in the mean-
field approximation according to Eq. (2.52). From this equation, it becomes obvious why
Seff is called the effective action. The n-point vertex functions are computed via derivatives
of the quantum effective action with respect to ϕ⃗ and also contain the full information
from the QFT. They can directly be related to the correlation functions of the theory, see
Section 2.2.3. Throughout this work, we will compute bosonic two-point vertex functionΓ(2)

j,k
in four-fermion and Yukawa models multiple times as a tool to study the phase structure of
the respective models with respect to an IP and/or the QπLs. Thus, the entire Chapter 4
with the derivation of Γ(2)

j,k for homogeneous background ϕ = ϕ̄ and benchmark results is
dedicated to the computation of this object.

2.5 large-Ns limit of scalar O(Ns ) models

The following discussion is mostly based on the review [302]. For this presentation we define
an O(Ns) symmetric Euclidean action

S [ϕ⃗] =
∫

ddx
[

1
2
(
∂µϕ⃗

)2
++

m2

2 ϕ⃗2 +
λ

4 (ϕ⃗
2)2
]

(2.58)

in d spatial dimensions, where ϕ⃗ = (ϕ1, . . . ,ϕNs) is an Ns-component scalar field. Further,
m2 and λ are undetermined bare couplings of the theory. The below discussion is valid
for all potentials V [ϕ⃗2] that are general polynomials of ϕ⃗2. The omission of the temporal
direction in this section might seem counter-intuitive, but is sensible for the application of
this section to Chapter 7. The main statements of this analysis are unaffected by the choice
of spacetime dimensions, and we hope that the reader can overlook this inconsistency in
the presentation.

mean-field approximation as classical field theory The mean-field
approximation, as defined in this thesis, amounts to the complete suppression of bosonic
quantum fluctuations. Since the partition function of the above action is

Z =
∫ Ns∏

j=1
Dϕj e−S[ϕ⃗], (2.59)

this approximation amounts to finding the global minimum of S with respect to ϕ⃗. This
minimum is given by the field equations in the Lagrange formalism from classical field
theory, see, e.g., Ref. [303]. Thus, the mean-field approximation in terms of scalar field
theory amounts to studying classical field theory. The fields ϕ⃗ can be determined by solv-
ing the resulting partial differential equations and other observables can be computed by
calculating them on the respective global minima of S [ϕ⃗].
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2.5.1 Constraint field approach

The large-Ns limit serves as a tool to include quantum fluctuations in a saddle-point ap-
proximation, i.e., to go beyond the classical field theory. Thus, it is not equivalent to the
mean-field approximation of the scalar field theory in contrast to the large-Nf limit of four-
fermion models discussed in Section 2.4. To include quantum fluctuations in analytical
computations, a so-called constraint field approach is used. The basic idea is that O(Ns)-
invariant quantities self-average for large Ns such that fluctuations are still small. This idea
is related to the central limit theorem and also relies on the assumption that the individual
components of ϕj do not have strong correlations. Anyhow, these small fluctuations suggest
that the theory can simplified by studying ϕ⃗2 ∼ Ns as a dynamical variable for large Ns.
Therefore, for each point in space xj , we introduce the identity

1 =
∫

dωj δ(ωj − ϕ⃗2(xj)) =
1

4π

∫
dωjdϵj eiϵj(ωj−ϕ⃗2(xj))/2 (2.60)

with auxiliary fields w(x) and ϵ(xj) to the partition function (2.59), where the fields are
evaluated at xj , i.e., ωj = ω(xj) and ϵj = ϵ(xj). Thus, ω is the dynamical field in the
following, enforced to have the value ϕ⃗2 for each spatial coordinate xj and ϵ is introduced
in the integral representation of the Dirac delta. Functional integration measures of the
fields are obtained using the product of Eq. (2.60) over all spacetime points xj on a lattice
and taking the continuum limit, see Eq. (2.3) for the definition of the functional integration
measure in Section 2.1.

The resulting action for constraint fields reads

Sconstr = −
∫

ddx iϵ
2
(
ω− ϕ⃗2

)
(2.61)

and is introduced directly into the partition function (2.59), where each occurrence of ϕ⃗2

can be replaced by ω due to the insertion of identity (2.60). One obtains the action

S [ϕ⃗, ϵ,ω] =
∫

ddx

1
2 (∂µϕ⃗)

2 +
m2

2 ω+
λ

4Ns
ω2 − iϵ

2 (ω− ϕ⃗2)


and partition function

Z =
∫ Ns∏

j=1
DϕjDωDϵ e−Seff[ϕ⃗,ϵ,ω]. (2.62)

The partition function (2.62) is now gaussian in ϕ such that one can apply the bosonic field
version of Eq. (2.35) for each field ϕj(x), i.e.,∫

Dϕj e−
∫

ddx
∫

ddyϕj(x)A(x,y)ϕj(y) = α (DetA)−1/2 (2.63)

with a real normalization parameter α. After partial integration of the kinetic term and
using Eq. (2.63), one obtains the effective action

Seff[ω, ϵ] =
∫

ddx
[
m2

2 ω+
λ

4ω
2 +

iϵ
2 ω+

Ns

2 ln Det
(

−
∑
µ

∂2
µ + iϵ

)]
(2.64)

with a path integral going over ω and ϵ. Thus, the functional determinant in Eq. (2.64)
encodes the quantum fluctuations of ϕ⃗2, which are argued to be small forNs → ∞ according
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to the arguments above. So far, we only made mathematical manipulations of the partition
function and the action, but solving the full path integral over the remaining degrees of
freedom is still a difficult task, in general. Before we discuss how taking Ns → ∞ helps in
solving the path integral, let us study condensation of the field ϕ in this setup.

When condensation is involved, it is more practical to define

ϕ⃗ = (σ, χ⃗) (2.65)

such that one can study the condensation of σ while using the constraint field approach. We
only allow condensation in σ, i.e., a spontaneously broken symmetry is obtained through
⟨σ⟩ ̸= 0. This splitting of field components would need to be introduced through explicit
symmetry breaking that is removed in a infinite-volume extrapolation. Without loss of
generality, this symmetry breaking external field could be choosen in the direction of ϕ1 = σ

such that condensation in this direction is implied. In this analytical approach, we assume
that a similar procedure was performed by enforcing this condensation pattern by hand.
This is common in (semi-)classical approaches, see, e.g., Refs. [93, 137, 141, 197]. Moreover,
in this part of the discussion we assume that there is only homogeneous condensation.
Similar steps as above lead to

S [ϕ⃗, ϵ,ω] =
∫

d3x

1
2
[
(∂µσ)

2 + (∂µχ⃗
2)
]
+
m2

2 ω+
λ

4ω
2 − iϵ

2 (ω− σ2 − χ⃗2)

 (2.66)

where we use the substitution of ω such that χ⃗ appears in bilinears and can be integrated
out. One obtains using Eq. (2.63) for χ⃗

Seff[ϕ⃗, ϵ,ω] =
∫

d3x

1
2 (∂µσ)

2 +
m2

2 ω+
λ

4ω
2 − iϵ

2 (ω− σ2) + Ns−1
2 ln Det

[
−
∑
µ

∂2
µ + iϵ

].

(2.67)

Again, only mathematical manipulations of the path integral were made and no solution
to the full partition function was computed. This will be done in the following paragraph.

the large-Ns limit as a saddle point approximation Since σ ∼
√
ϕ⃗2 ∼√

N s, ω ∼ Ns and ϵ ∼ 1, the remaining degrees of freedom can be calculated in a saddle-
point approximation, when Ns is assumed to be large. The overall proportionality of the
action to Ns allows to only consider the extrema with respect to the remaining dynamical
degrees of freedom when Ns → ∞, given one appropriately rescales the bare couplings
with Ns. This is the same argument as in the mean-field approximation of four-fermion
models for large-Nf , see Section 2.4. The above detour, however, demonstrates that a
large-N expansion must not always be equivalent to the mean-field approximation, which
corresponds to the classical field theory for Eq. (2.58). Here, quantum fluctuations are
encoded in the functional determinants in Eq. (2.64) and Eq. (2.67).

In the case of the large-Ns limit (or Ns → ∞), the respective, global minimum with
respect to σ, ϵ and ω dominates the path integral and can be determined using

∂Seff
∂(σ, ϵ,ω) = 0. (2.68)

This gives a straightforward, analytical approach to a solution of the theory.
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The discussed constraint field approach is used extensively in Chapter 7. Depending on
the condensation method, it can be also adjusted to account for condensation in more
components than just one. Then, the splitting of ϕ in Eq. (2.65) is defined differently but
follow-up steps work rather similar.
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L I T E R AT U R E R E C A P I T U L AT I O N O N S PAT I A L LY M O D U L AT E D
R E G I M E S AT N O N - VA N I S H I N G Q U A R K C H E M I C A L P O T E N T I A L

abstract and relation to the research objectives In this chapter, the
status of research on the main topic of this thesis, (chiral) phases with spatially modulated
observables in QCD at intermediate temperatures and densities, is recapitulated based
on a selection of current literature. The focus is on important findings that provide the
motivation for the existence of these phases in QCD as well as on relevant examples from
QCD-inspired model calculations. Moat regimes, IPs, QπLs, and also liquid-crystal-like
phases are covered.

disclosure This chapter can be seen as a summary of essential literature results on
spatially modulated regimes in QCD (mostly from model computations and functional
methods) based on the subjective perspective and scientific background of the author. A
selection of literature results is necessary for a concise presentation and is designed such
that this chapter serves as an additional background for the understanding of results in
the subsequent chapters of this thesis. The author had made every effort to provide a
comprehensive overview. However, we apologize in advance for any omissions of relevant
literature. Due to the nature of this review, none of the content in this chapter is original
to this thesis. Accordingly, in each section the respective publications, from which findings
are summarized, are properly referenced. Note that the author of this thesis is also an
author of some of the mentioned publications; thus, licenses for used figures from these
works are already associated with the author. To the best of our knowledge, the content
of this chapter has not been compiled in a similar form before, although recapitulations of
particular results can certainly be found in literature reviews, theses with a similar focus,
or other resources.

outline We begin the discussion by presenting what we consider the strongest indica-
tions for the existence of spatially modulated regimes in QCD in Section 3.1. This includes
the findings of the moat regime with the FRG, which is a precursor for all kind of exotic
regimes, see Section 1.2, as well as expectations from symmetries arising at non-vanishing
chemical potentials in QCD. Then, we discuss the properties of IPs using relevant exam-
ples from model computations in Section 3.2. In Section 3.3 we focus on the disordering of
inhomogeneous condensates through Goldstone boson fluctuations, which can lead to the
emergence of liquid-crystal-like regimes or the QπLs.

38
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3.1 hints for the existence of spatially modulated phases in the
qcd phase diagram

In Section 1.2, we give a motivation for the relevance of phases1 with spatial modulations,
including IPs, moat regimes and QπLs, in the QCD phase diagram at intermediate temper-
atures and baryon densities. Thereby, a selection of the relevant literature with respect to
these phenomena and other observations of oscillatory regimes is discussed. In this section,
the focus is on references that can be considered as strong arguments or indications for the
existence of these exotic regimes in QCD.

There is a variety of literature on QCD-inspired model calculations that identify IPs
– the most prominent of the exotic regimes discussed in this thesis – in a region of low
to intermediate temperatures and quark chemical potentials of ≥ 350MeV [195–198, 304].
However, as outlined in Section 1.2, these computations suffer from their strong dependence
on regularization effects that has been discussed recently [10, 240, 241]. A selection of these
studies will be mentioned later. We begin the discussion with unambiguous indications for
the existence of spatially modulated regimes in the QCD phase diagram.

3.1.1 Moat regime dispersion relation in QCD

From the point of view of the author, a strong indication for the existence of inhomogeneities
in the QCD phase diagram is the observation of the moat regime in FRG computations
of the QCD phase diagram [121, 166]. The moat regime is defined as the region in the
phase diagram where the dispersion relation of quark correlations in mesonic channels has
a minimum at non-vanishing spatial momenta. For example, pion (quasi-)particles exhibit
the moat regime dispersion relation. It is essential that these dispersion relations arise from
the thermodynamic ground state of the system, leading to the prediction of, e.g., peaks in
two-particle correlations of pions in heavy-ion collisions within the moat regime [233].

Within the FRG framework, and most other available computations [1, 9, 10, 219] the
moat regime is often detected from the wave function renormalization Zϕ of the respec-
tive, dynamically emerging meson field turning negative. This is reflected in the quantum
effective action (2.26) of the theory. The wave function renormalization can be extracted
from the bosonic two-point vertex function of the respective scalar field at vanishing spatial
moments, as will be discussed in Section 4.1. This is often more practical, since not the
whole dispersion relation (or bosonic two-point vertex function) has to be computed but
only its curvature at zero spatial momentum needs to be extracted.

In the FRG, the meson wave function renormalization is part of modeling the full momen-
tum dependence of the bosonic two-point vertex function of the respective meson fields, and,
thus, is computed through solution of flow equations, see, e.g., equation (92) of Ref. [121].
In this work, the wave function renormalization is first computed in an FRG approach
to QCD, where a first-principles QCD setup involving the non-trivial gluon dynamics is
evolved into a formulation of a quantum effective action resembling the form of many QCD-
inspired models, c.f. equation (39) in Ref. [121]. In Fig. 3.1, we show results from Ref. [121],
where in the left subfigure the wave function renormalization Zϕ is plotted as a function
of the temperature for different baryon chemical potentials µB. Therein, it is observed
that above µB ∼ 400MeV negative values of Zϕ are obtained. This region is identified as

1 Throughout this thesis, the term “phase” is used for a region in the phase diagram that can be characterized
through an observable behaving distinctly different than in the rest of the phase diagram.
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Figure 3.1: Plots regarding the detection of the moat regime with the FRG in Ref. [121]. The figures
are taken from Ref. [121] under the Creative Commons Attribution 4.0 International
license. (left) Value of the mesonic wave function renormalization Zϕ as a function
of the temperature T for different value of the baryon chemical potential. (right) The
moat regime within the computed QCD phase diagram. Points represent freeze-out data
from the STAR experiment at RHIC [51] and different model computations based on
experimental data [50, 305–308]. The dashed line represents the chiral crossover and the
black circle represents the CP.

the moat regime, and plotted in the right subfigure of Fig. 3.1. The moat regime ends at
roughly µB ≈ 600MeV, which is just limited by the used truncation scheme in the FRG
calculation. This leads to the results having qualitative validity only up to µB/T ≤ 6.

the moat regime and inhomogeneous phases As discussed in the literature,
see Section 1.2, it is expected that, if the global minimum of the moat dispersion relation
is deep enough, the ground state is given by a chiral condensate carrying a non-vanishing
momentum of roughly the order of the momentum associated with the minimum of the
moat dispersion. This is then an inhomogeneous chiral condensate, i.e., IPs are expected
to overlap with parts of the moat regime. Often, the moat regime is also called a precursor
for IPs. The first finding of a moat regime within an IP (but also in parts of the SP) in the
1+ 1-dimensional GN model in the mean-field approximation [1] is discussed in Section 4.2.
This computation serves as an important part of testing the methodology of computing the
bosonic two-point vertex functions in the results chapters in this thesis such that details
of the analysis are presented in Chapter 4. At this point, this work is only mentioned as
the first evidence in models from high energy physics that the moat regime indeed can
be associated with IPs. In condensed matter physics, the moat regime is, however, often
associated with inhomogeneous phenomena, e.g., in crystallization [174] or non-uniform
superconductivity [175–177].

3.1.2 Prediction of spatially modulated phases from PT -symmetric field theory

Another aspect, that is discussed in the literature of recent years [180, 185, 188, 190, 191,
194, 309], is the emergent CK symmetry of QCD at non-vanishing quark (or baryon) chemi-
cal potential, which is the combined action of charge conjugation C and complex conjugation
K. At µ = 0, the action of QCD can be shown to be Hermitian and real-valued. However,
as soon as non-vanishing quark chemical potentials are considered, complex weights appear
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in the path integral spoiling statistical simulations, which is the renown sign problem of
QCD (see Ref. [117] for a review). Moreover, the theory looses the invariance under C and K
individually while retaining an invariance under the combined action of CK. The emergence
of this symmetry and its potential for tackling the complex saddle points appearing in the
partition function was to our knowledge first discussed in Ref. [185]. Moreover, the CK sym-
metry is of PT -type, i.e., it is a combination of a linear, discrete and an anti-linear, discrete
symmetry transformation. There is a whole class of models with generalized PT symmetry
in quantum mechanics [181, 183, 184] and also QFTs with generalized PT symmetry [186,
310–313]

Recently, it has been discussed that theories with this type of symmetry can feature
exotic phases involving moat regimes, IPs and QπLs [185]. Thereby, oscillatory regimes arise
naturally in PT -symmetric theories from the behavior of eigenvalues of the Hamiltonian (in
quantum mechanics) or transfer matrix (in QFT). These eigenvalues can occur in complex-
conjugate pairs, as can be determined by the characteristic polynomial of the corresponding
operator having real coefficients [314, 315]. This was recently confirmed in a full QFT
investigation by LFT simulations of a scalar model of mixing contributions [180, 188, 190].

We briefly present a generic example of oscillatory behavior in correlation functions using
a scalar field theory, taken from Ref. [188]. Therefore, we consider the action in Euclidean
spacetime

S[ϕa,ϕb] =
∫

dd+1x

 ∑
j=a,b

1
2 (∂µϕj)

2 + V (ϕa,ϕb)

 , (3.1)

where the potential V is allowed to contain complex masses and couplings. In momentum
space, the bare inverse propagator of the scalar fields can be written formally as

G−1(q) = q2 + M2 (3.2)

with the “d+ 1-momentum” qµ = (q,ωn) and the mass matrix

Mjk =
∂2V

∂ϕj∂ϕk

∣∣∣∣
ϕa=Φ̄a,ϕb=Φ̄b

, j, k = a, b (3.3)

where Φ̄a and Φ̄b represent homogeneous expectation values of the scalar fields ϕa and ϕb,
respectively. The homogeneity of these expectation values is assumed in this analysis.

mass matrix properties and their implications In a conventional QFT,
M has positive eigenvalues Ej , such that the position space propagator G = ⟨ϕjϕk⟩, j, k =

a, b, has two exponentially decaying modes if the ground state (ϕa,ϕb) = (Φ̄a, Φ̄b) is stable
(instabilities lead to exponentially growing position space propagators). As usual, vanishing
eigenvalues can be associated with Goldstone modes. An action with arbitrary complex
terms, in general, features positive, negative as well as complex-valued eigenvalues of the
mass matrix. Imposing PT symmetry on such a non-Hermitian theory, the eigenvalues of
the mass matrix are better behaved. For the example (3.1), a PT -symmetric version can
be obtained by imposing

S[ϕa,ϕb] = S∗[ϕa, −ϕb]. (3.4)

For a typical action with linear interactions between the two different fields, the field ϕb
should be imaginary to fulfill this constraint. Such an imaginary field is actually used in
the investigated mixing model in [190] and can also be realized in the four-fermion model
studied in Chapter 6. The potential and the mass matrix obey a relation similar to Eq. (3.4).
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Eigenvalues λj of M Position-space propagator behavior Region

All positive Exponential decay Normal

Odd number of λj < 0 Exponential growth Unstable

Some λj = λ∗
k Sinusoidally-modulated exponential PT broken

Even number of λj < 0 (Φ̄a, Φ̄b) instable against p ̸= 0 Patterned vacuum

Table 3.1: Properties of the mass matrix of Eq. (3.1) evaluated at homogeneous expansion points
(ϕa,ϕb) = (Φ̄a, Φ̄b) under the assumption of a generalized PT symmetry (3.4) and
resulting behavior of the position space propagator. This table is recreated in an almost
identical way to Ref. [188].

Inspecting the characteristic equation of the mass matrix, one can make conclusions
about the behavior of the position space propagator. The below discussed properties of
the mass matrix and the resulting propagator behavior are summarized in Table 3.1. In
addition to the typical behavior of position space propagators in an ordinary, hermitian
QFT, two novel behaviors can be obtained directly from M. First, when the mass matrix
has one (or possibly more) complex-conjugate eigenvalue pairs, the propagator still decays
exponentially in position space but with oscillatory modulations from a sine term, i.e.,
a QπL regime is observed. In Ref. [188] and Table 3.1, this regime is termed the “PT -
broken regime”, in analogy to the observation of complex-conjugate eigenstates in PT -
symmetry quantum mechanics [181].2 In the QπL, the homogeneous ground state, used in
the computation of the mass matrix, is a stable one. The case of multiple complex-conjugate
eigenvalue pairs also amounts to a QπL but can only be obtained in a theory with more
than two bosonic degrees of freedom; it does not apply for Eq. (3.1).

In the case of an even number of negative eigenvalues, an IP is obtained through an
instability of the homogeneous ground state. Since the determinant of M is positive in this
case, the homogeneous ground state (Φ̄a, Φ̄b) is stable against homogeneous fluctuations
q = 0 while it is instable for a range of momenta q ̸= 0. This amounts to an instability
towards an inhomogeneous condensate and is again discussed in Section 4.1, in the context
of the Hessian matrix of fermionic theories. This is termed a patterned vacuum in Ref. [188]
and Table 3.1 and an IP in this work.

The behavior of bare position space propagators, derived from the properties of the mass
matrix (i.e, in classical field theory or a semi-classical approximation for the used bosonic
fields ), must not necessarily be realized generally in the full quantum theory. However,
in scalar mass-mixing models all of the predicted (exotic) phases are observed using LFT
simulations [180, 188, 190]. The analysis of the mass matrix (or, equivalently, the static
Hessian matrix) presented above can be performed equivalently for all theories with a
generalized PT -symmetry [185], and is also relevant in Chapter 6.

2 The origin of the term “PT -broken” comes from the observation that the complex-conjugate eigenstates are
exchanged under the (generalized) PT symmetry operation. If the system is in one of the two eigenstates
associated with the complex-conjugate eigenvalue pair, it breaks this symmetry spontaneously.
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3.2 inhomogeneous chiral condensates within the mean-field ap-
proximation

In this section, we discuss typical examples of inhomogeneous chiral condensates obtained
in 1 + 1-dimensional four-fermion models. The found solutions for the condensates are
the basis for computations in higher dimensional models, where they are often used as
ansatz functions for inhomogeneous condensates. After this discussion, we turn towards the
realization of IPs in the NJL model and the recently explored regularization dependence of
IPs. For a more in-depth discussion of IPs in QCD-inspired models, we refer to Ref. [197]. In
this section, we restrict ourselves to literature employing mean-field approximations, where
bosonic fluctuations are suppressed entirely, and focus on the effect of bosonic quantum
fluctuations in the following section.

3.2.1 1 + 1-dimensional Gross-Neveu model and the chiral kink crystal

The GN model is arguably the simplest fermionic theory with a single quartic self-interaction.
The action of this four-fermion model in Euclidean spacetime is

S [ψ̄,ψ] =
∫ β

0
dτ
∫

ddx
[
ψ̄ (/∂ + γd+1µ)ψ− λ

2Nf
(ψ̄ψ)

2
]

(3.5)

at temperature T and quark chemical potential µ, introduced following Section 2.1. Here,
ψ and ψ̄ contain Nf two-component spinors, see Section 2.3 for an introduction to the
generic models and Appendix A.3 for representations of the Clifford algebra. In the rest of
this section we discuss the theory in one spatial dimension, i.e., d = 1. After bosonization
according to Section 2.3.1 the action reads

S [ψ̄,ψ,σ] =
∫

d2x

[
σ2

2λ + ψ̄ (/∂ + γ2µ+ σ)ψ

]
(3.6)

with an auxiliary bosonic field σ fulfilling the Ward identity (2.43) for cj = 1. The model
was introduced in Ref. [36] as a 1+ 1-dimensional toy model with features of QCD such as
asymptotic freedom and a chiral symmetry (albeit the latter is discrete)

ψ → γchψ, ψ̄ → −ψ̄γch, (3.7)

see Appendix B.1 for the breaking of the continuous chiral symmetry in 1 + 1 dimensions
through the GN interaction term. This symmetry would be explicitly broken by a bare mass
term for the fermion fields or spontaneously broken through a non-vanishing expectation
value of the field σ.

In the large-Nf limit (or mean-field approximation, see Section 2.4), the homogeneous
phase diagram, i.e., the phase diagram when restricting only to homogeneous field config-
urations σ(x) = σ̄ = const., was first computed in Ref. [316]. It features an HBP at low
temperatures and chemical potentials (including the vacuum) where chiral symmetry is
spontaneously broken through homogeneous expectation values σ̄ = Σ̄ ̸= 0, similar to QCD.
Thereby, Σ̄(µ,T ) can be determined as the global minimum of the homogeneous effective
potential (2.53).3 At low chemical potentials and intermediate temperatures (compared to

3 Note that according to the discussion in Section 2.4.4 we do not use brackets for expectation values, but
just the capitalization of the respective field.
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Figure 3.2: Results regarding in IPs in the 1+ 1-dimensional GN model from Ref. [202]. (left) The
phase diagram of the GN in the large-Nf limit. The dashed red curve corresponds to
the first-order phase boundary that is obtained in the homogeneous phase diagram, i.e.,
if only homogeneous field configurations are allowed [316]. The solid blue lines represent
second order phase transitions, if inhomogeneous condensates are taken into account
[202, 318]. (right) Spatial inhomogeneous chiral condensate Σ(µ,T ,x) for various chem-
ical potentials µ = µc + ∆µ in the IP where µc/Σ̄0 = 2/π. Note that in both plots all
dimensionful quantities are given in units of the chiral condensate in the vacuum Σ̄0.
Similar figures can be found in Ref. [1].

the chiral condensate in the vacuum Σ̄0) a second order phase transition is obtained to the
SP, which turns first-order at a CP, see the dashed red line in Fig. 3.2. Simultaneously, the
temperature of the phase transition line decreases until T = 0 and µ/Σ̄0 = 1/

√
2. Later

it was shown that the finding of the homogeneous phase diagram is actually a rediscovery
of the same phase structure of a model used for spins of electrons in a superconductor
under the influence of a magnetic field, found in Ref. [317]. This model can be shown to
be mathematically equivalent to the GN model in one spatial dimension [318].

The phase diagram was revised in Ref. [202] where inhomogeneous condensation was
taken into account and a solution for the IP was constructed. The full phase diagram
including the IP is presented in the left plot of Fig. 3.2. Therein, the CP is replaced by
a LP and the entire region of the first-order phase transtion is covered by an IP, that
extends to µ → ∞ at zero temperature. All transitions in this revised phase diagram are
of second order. The replacement of the CP and the first-order phase transition through
an IP often occurs also in higher-dimensional models. The extension of the inhomogeneous
condensation towards µ → ∞ is, however, rather unique to 1 + 1-dimensional models.

In the right plot of Fig. 3.2, we present the form of the chiral condensate Σ(µ,T ) as
a function of the spatial coordinate x at T = 0, the chiral kink. We observe a generic
behavior of the condensate when increasing the chemical potential, that remains valid at
non-zero temperatures:

• the functional shape of the condensate evolves from a kink-antikink shape, close to
the phase transition to the HBP, to a sine-like shape,

• the amplitude of the condensate decreases,

• the frequency of the condensate increases.

The plotted behavior of the chiral condensate can be parameterized using Jacobi-elliptic
functions [318] making the Fourier spectrum of the kink solution rather complicated, see
[319] for properties of Jacobi elliptic functions. Right at the second order phase transition to
the SP, the amplitude of the condensate is always infinitesimal and the oscillation is given
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by a sine-wave with fixed frequency. Thus, this transition line can be detected in a stability
analysis of the SP with respect to infinitesimal perturbations, as shown in Section 4.2.

The generation of the chiral kink crystal is energetically favored through a mechanism
similar to the Peierls instability known from condensed matter models [320] which is appli-
cable to an electron gas in a one-dimensional, infinite lattice structure of atoms. The energy
of the system is lowered by applying a spatial perturbation with a momentum that is twice
the fermi surface momentum of the electrons. This results in an inhomogeneous, periodic
charge density distributed over the one-dimensional lattice, similar to the inhomogeneous
condensate [318].

A further, interesting aspect is the alignment of peaks of the baryon density with the zero-
crossings of the chiral condensate, see, e.g., Refs. [167, 321] for visualization. This feature
also gives rise to the name “baryon crystal” for this particular inhomogeneous condensate
and other IPs with a similar alignment.

3.2.2 Chiral Gross-Neveu model and the chiral spiral

Before the findings of inhomogeneous condensates in the GN model, it was already shown
that IPs ground states exists at non-vanishing µ in the chiral GN model within the mean-
field or large-Nf approximation in Ref. [201]. The action of this model reads

S [ψ̄,ψ] =
∫ β

0
dτ
∫

dx
{
ψ̄ (/∂ + γ2µ)ψ+

λ

2Nf

[
(ψ̄ψ)

2
+ (ψ̄iγchψ)

2
]}

(3.8)

where, again, ψ and ψ̄ contain Nf two-component spinors, see Section 2.3. We refer to
Appendix A.3 for the definition of γch. This model features a continuous chiral symmetry
transformation

ψ → eiαγ5ψ, ψ̄ → ψ̄eiαγ5 . (3.9)

After bosonization the action of the model reads

S [ψ̄,ψ,σ, η] =
∫

d2x

[
σ2

2λ + ψ̄ (/∂ + γ2µ+ σ+ iγchη)ψ

]
(3.10)

where the auxilary bosonic fields σ and η follow the Ward identity (2.43) for cj = 1
and cj = iγch, respectively. A non-vanishing expectation value of σ and/or η signals the
spontaneous breaking of chiral symmetry.

Before the publication of Ref. [201], it was assumed that the phase diagram of the chiral
GN model amounts to the homogeneous phase diagram of the GN model with discrete
chiral symmetry, as depicted in the left plot of Fig. 3.2. This can be shown through the
symmetry transformation (3.9) acting on the bosonic fields

σ → cos(2α)σ+ sin(2α)η, η → − sin(2α)σ+ cos(2α)η . (3.11)

corresponding to an O(2) symmetry in the (σ, η) plane. This allows to rotate the bosonic
fields in the case of homogeneous field configurations σ = σ̄ and η = η̄, such that η̄ = 0.
Then, the effective potential and its minima are the same as in the GN model.

Actually, the full phase structure of the chiral GN model is particularly simple when
allowing for inhomogeneous condensation. At the critical temperature Tc = eγ/π with the
Euler-Mascheroni constant γ, one obtains a second-order phase transition from the SP, with
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Σ = H = 0, to an IP where σ and η form a so-called chiral spiral [201, 246] independent of
the value of µ. The critical temperature is the same as the transition temperature in the
homogeneous phase diagram for µ = 0. This chiral spiral solution is given by

Σ(µ,T ,x) = m(T ) cos (2µ(x− x0)) , H(µ,T ,x) = m(T ) sin (2µ(x− x0)) (3.12)

such that both fields oscillate with a frequency 2µ. Strictly speaking, the chiral spiral
solution reduces to an HBP right at µ = 0. The amplitude m(T ) goes to zero when T

approaches the critical temperature. This chiral spiral solutions is a particularly simple
solution, because the norm of field vector (Σ,H) as well as the baryon density remains
constant in space. Further, the chiral spiral consists of one dominant Fourier mode such
that analytical calculations are particularly simple. This property is of relevance later in
the study of disordering of chiral condensates in a different model analysis.

Further, the chiral spiral solution directly implements the linear proportionality of the
frequency to the chemical potential µ, in this particular case k = 2µ. A similar proportional-
ity can already be observed in the GN model, although it is less obvious since the chiral kink
consists of a Fourier spectrum with multiple, non-vanishing coefficients. However, already
this spectrum is dominated by a linear proportionality. The frequency being on the order
of the chemical potential is typical for IPs also in more complicated or higher-dimensional
models [111, 197].

3.2.3 Inhomogeneous phases and their regularization dependence in higher dimensions

Inhomogeneous phases are found in a variety of 3 + 1-dimensional models, most of which
are NJL models, see, e.g., Refs. [195, 196, 200, 208, 304]. The NJL model and four-fermion
models in general are, however, not renormalizable such that regularization effects become
part of the model in the sense that the value of the regulator becomes a parameter of the
theory. Thus, results become dependent on the regularization scheme such that predictions
based on these models should be carefully checked for qualitative agreement amongst dif-
ferent regularization schemes and sensitivity against variations of the regulator [322]. In
this subsection, we summarize results that point towards a strong dependence on the used
regularization scheme and regulator value of the existence and shape of IPs.

phase diagram of the 2 + 1-dimensional GN model The regularization
scheme dependence of IPs was first unveiled through the works [240, 241], which study the
phase diagram of the 2 + 1-dimensional GN model in the mean-field approximation. The
advantage of 2 + 1-dimensional four-fermion models, which taken advantage of multiple
times throughout this thesis, is their renormalizability in the 1/Nf -expansion [243, 244].
First, in Ref. [242] an IP was detected within a LFT mean-field computation at one fixed
lattice spacing. However, in Ref. [240] it was demonstrated that the obtained IP shrinks
when decreasing the lattice spacing such that it is expected to vanish in the continuum limit.
An in-depth analysis [241] followed, revealing that inhomogeneous condensates are absent
in the model when removing any kind of regulator. In this work, the phase structure of the
2 + 1-dimensional GN model was computed using two different lattice discretizations and
one continuum approach using a a Pauli-Villars regularization. For one of the two lattice
discretizations, no IP was observed at all, independent of the value of the investigated lattice
spacing. For the other discretization as well as the continuum approach with a finite value of
the Pauli-Villars regulator Λ, an IP is observed at low temperatures and a range of chemical
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Figure 3.3: Phase diagram of the 2 + 1-dimensional GN model in the (µ,T ) plane. The blue line
is the renormalized result and represents the second-order phase transition between the
homogeneous phases. The red line as well as the shaded green region are the results
for a finite regulator value Λ and represent the second-order phase transition, ending
at an LP (red circle), and the region where the homogeneous ground state is instable,
respectively. The latter region corresponds to an IP. The scale is set by the value of the
chiral condensate in the vacuum σ0 (corresponding to Σ̄0 in the notation of this thesis).
(Left) Lower value of the Pauli-Villars regulator Λ/Σ̄0 ≈ 4.68. (Right) Higher value of
the Pauli-Villars regulator Λ/Σ̄0 ≈ 15.4. This figure is taken from Ref. [241].

potentials, see Fig. 3.3. When the lattice spacing is decreased or the value of Λ is increased,
this IP shrinks, however, and finally disappears for all non-vanishing temperatures when
removing the regulator. This is demonstrated in Fig. 3.3 where the phase diagram in Pauli-
Villars regularization from Ref. [241] is shown for a low value of the regulator (left panel)
and a higher value of the regulator (right panel) alongside the renormalized result (blue line
in both plots). One can see that the region corresponding to the IP significantly shrinks
when increasing the regulator Λ and finally vanishes when removing the regularization
by taking the limit Λ → ∞, see the blue line in both diagrams. We note that at zero
temperature, a degeneracy between homogeneous phases and inhomogeneous condensates
might be left at (µ/Σ̄0,T/Σ̄0) = (1.0, 0.0) where also the homogeneous potential is flat for
a range of homogeneous σ̄/Σ̄0 ∈ [0.0, 1.0] [241] (Σ̄0 is the value of the chiral condensate in
the vacuum). This is in agreement with the analysis in Ref. [321] where this degeneracy is
observed in a finite range of baryon densities.

njl model results and their regulator dependence In the NJL model
in three spatial dimensions and in the chiral limit, the one-dimensional modulations from
the 1 + 1-dimensional GN and chiral GN model can be embedded leading to the appear-
ance of an IP, which is restricted to an intermediate range of chemical potentials and
low temperatures [195, 304]. The shape of the IP looks qualitatively surprisingly similar
to the green shaded region in the left panel of Fig. 3.3, i.e., to the phase diagram of the
2 + 1-dimensional GN model. Later, we will briefly discuss literature results regarding the
dimensionality of four-fermion models and their phase diagram, as well as the relation of
regularization effects and dimensionality.

The findings of [195], albeit being robust with respect to the influence of vector inter-
actions and Polyakov-loops [196], already show a certain sensitivity to the value of the
regulator used as well as to the parameter fitting. We refer for example to Figure 2 in
Ref. [195] where the IP of the NJL model is plotted for three different values of the con-
stituent quark mass implying that different values of the regulator were used according
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to the parameter fitting devised in Ref. [138]. A finite regulator is required due to the
non-renormalizability of the model and, thus, a regularization scheme inherently becomes
part of the theory, in which the regulator scale becomes a parameter. The findings from
Refs. [240, 241] triggered the in-depth analysis of regularization effects on IPs but also
of moat regimes in the NJL model in Refs. [10, 167]. The main finding of this work is
presented in Fig. 3.4. This figure shows the regions of instability from a stability analysis
of homogeneous condensate against inhomogeneous ones, corresponding to an IP, in the
(M0,µ) plane for four different regularization schemes, where the constituent quark mass
M0 controls the respective value of the regulator. From this figure it is obvious that there is
a strong dependence of both the existence and the extent of IPs on the used regularization
scheme as well as on the value of the regulator. For all four of the visualized regularization
schemes, the shape and extent of the IP in the (M0,µ) differs strongly, while the homoge-
neous phase boundaries are qualitatively similar for the different schemes. There is no single
point in the phase diagram where all regularization schemes exhibit an IP simultaneously.
Moreover, a fifth regularization scheme was investigated but no IP was observed at all. For
small values of the constituent quark mass, that correspond to large values of the regulator
due to the used parameter fitting, it is found that IPs are absent within all regularization
schemes. These ambiguities in the phase diagram, which are expected to persist to the fi-
nite temperature results, indicate that predictions of IPs based on NJL model calculations
have limited implications for the phase structure of QCD. The strong regularization arti-
facts of these findings are not suprising given the typical order of magnitude of regulator
values, which are around a few hundred MeV. Thus, the studied chemical potentials and
the preferred frequencies of approximately (1 − 2)µ of the inhomogeneous condensates are
in the same order of magnitude as the regulator (or even above the regulator). These are
two quantities, determining the relevant physics of the IP and appearing in corresponding,
divergent integral equations. Consequently, this UV regularization strongly influences the
phase structure in this parameter region.

robustness of the moat regime A further important finding of the analysis in
Ref. [10] is the robustness of the moat regime in the NJL model. This manifest itself in
the observed mild scheme dependence of the moat regime. There is qualitative agreement
between the applied two regularization schemes that the moat regimes covers a large portion
of the SP suggesting that its presence is indeed a consequence of the NJL model action
and its symmetries. This in turn implies that it also might exist in QCD, which is strongly
supported by the above described FRG computations [121].

gross-neveu model in non-integer spatial dimensions Inspired by the
above findings, the series of works [211, 212] studied the phase diagram of the GN model
in non-integer spatial dimensions 1 ≤ d < 3, where four-fermion models are renormalizable
[243, 252]. These works make use of a stability analysis (a method that is discussed in Sec-
tion 4.1 in this thesis) to connect the results regarding IPs from integer spatial dimensions
smoothly and demonstrate how the presence of an IP in d = 1 turns towards an absence
precisely at d = 2, i.e., for 1 ≤ d < 2 the IP is still present. For d ≥ 2, there is no indication
for an instability towards an IP. This is visualized in Fig. 3.5, where the phase diagram
of the GN model is presented in the (µ, d) plane. Note that the findings for homogeneous
phases were originally computed in Ref. [252].

Similar to a finite value of a regulator, the number of spatial dimensions d < 2 causes
the appearance of a CP and an LP at a non-zero temperature which in turn leads to the
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Figure 3.4: Figure 1 from Ref. [10] showing the homogeneous phase boundary and regions of in-
stability of homogeneous minima, corresponding to an IP, in the NJL model in the
(M0,µ) plane at zero temperature for four different regularization schemes. A fifth regu-
larization scheme was investigated but no IP was observed and the homogeneous phase
boundary is in agreement with the green line, such that this regularization scheme was
not plotted. Thereby, M0 is the constituent mass in the vacuum and varies the value of
the respective regulator according to the standard scale setting approach for the NJL
model proposed in Ref. [138]. The pion decay constant was tuned to fπ = 88MeV. The
model was studied in the chiral limit, i.e., mπ = 0.

appearance of an IP. This study can be interpreted as a study of the 3 + 1-dimensional
GN model with dimensional regularization where a small d would correspond to a strongly-
regularized theory with a relatively small value of the regulator. In this sense, the results of
Ref. [211] can be reinterpreted as a complementary study to Ref. [10], since the expressions
appearing in the stability analysis used in both works are mathematically identical for the
GN and NJL model independent of the number of spatial dimensions d = 1, 2, 3. Thus, this
study provides results within another regularization scheme pointing towards the absence
of IPs for higher values of the regulator (larger values of d in dimensional regularization).

comment regarding ips in the quark-meson model Readers, who are ex-
perts in the fields, might comment that there still exist observations of an IP in a QM
model. This model is renormalizable and not plagued by regularization artifacts, with dy-
namical meson fields interacting via a Yukawa-type interaction with the fermions [198].
While it is certainly true that an IP is observed in a renormalized model in the mean-field
approximation in Ref. [198], the renormalized theory shows inconsistencies with respect
to the important properties of a sensible QFT. In the renormalization procedure a neg-
ative coupling of the mesonic, quartic self-interactions as well as an imaginary Yukawa
coupling arises at a certain value of the regulator. This leads to an effective potential that
is unbounded to −∞ for both large frequencies and amplitudes of the condensates beyond
these values of the regulator in the renormalization process. This artifact is ignored in the
computation of the phase diagram in the sense that large values of the chiral condensate or
large values of the frequencies are neglected. However, at the present stage one might argue
that there is no proper ground state in this theory. These technical problems are considered
as being caused of the applied mean-field approximation. To date, there is, however, no
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Figure 3.5: Figure 6 from Ref. [211] showing the phase diagram of the GN model in the (µ, d) plane
where d is the number of spatial dimensions. The results for the boundary of the HBP
was originally obtained in Ref. [252]. This figure is taken from Ref. [211] under the
Creative Commons Attribution 4.0 International license.

available procedure neither in the mean-field approximation nor beyond to resolve this is-
sue. Thus, while it is certainly true that an IP is observed in the QM model, the predictive
power of these findings is also questionable with respect to the discussed technical issues.
Since mean-field investigations are typically good starting points for the investigation of
the full quantum theory using LFT, see for example Ref. [255], it is questionable how this
model could be investigated with Monte Carlo algorithms if such a divergence exists in the
action of the model.

3.3 disordering of inhomogeneous chiral condensates

In this section, we present two mechanisms for the disordering of inhomogeneous con-
densates. Albeit both mechanisms are derived in different contexts and under different
conditions, both rely on the appearance of Goldstone modes from symmetry breaking. The
quantum fluctuations of these modes lead to the destabilization or, in terms of statistical
physics, disordering of the inhomogeneous condensates. IPs break both chiral and transla-
tional symmetry spontaneously, such that there exist Goldstone modes from both of these
symmetries. Goldstone modes from translational symmetry breaking are also known as
phonons, i.e., as collective excitations of vibrational modes in condensed matter systems.
First, we discuss the disordering from these phonons, which is also known in condensed
matter models as the Landau-Peierls instability [323]. We expect the second mechanism –
the disordering due to Goldstone bosons in QCD, i.e., the pions in the chiral limit, to be
dominant, as explained in the corresponding subsection.

remarks regarding quantum fluctuations Independent of the specifically
proposed mechanisms, there are multiple arguments and literature findings pointing out
that bosonic quantum fluctuations as well as thermal fluctuations weaken ordered phases
generically. In one spatial dimension, there is even a theorem forbidding the breaking
of continuous symmetries at non-vanishing temperatures [222–224]. Note that this no-go
theorem is, in principle, violated by the findings in Sections 3.2.1 and 3.2.2. These results are
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nevertheless not inconsistent with [222–224] because the large-Nf limit is applied. This limit
gives rise to the possibility of infinite range correlations as within the IP, see Ref. [224] where
the circumvention of this theorem for Nf → ∞ is discussed for the Thirring model [324].
Further, there is evidence from numerical computations that ordered phases get weaker
when going from an approximation that suppresses bosonic fluctuations to the full quantum
theory, see, e.g., the computations [52, 225–229, 255, 286, 325–327]. Thus, it is expected that
phases with a non-vanishing order parameter such as the HBP and the IP are suppressed or
entirely destroyed when incorporating bosonic quantum fluctuations compared to the above
mean-field calculations. The two subsections below discuss two different (semi-)analytical
approaches to go beyond a mean-field approximation and investigate the effect of quantum
fluctuations on IPs.

3.3.1 Disordering through phonon modes: Liquid crystal regime

This disordering mechanism is based on the assumption of one-dimensional condensation
in the NJL model. It was first published in the context of QCD-inspired models almost at
the same time in Ref. [216] and Ref. [217]. The former work uses the chiral spiral, discussed
in Section 3.2.2, as an ansatz function, while the latter makes use of the chiral kink ansatz
from the GN model, see Section 3.2.1. Both approaches study the Ginzburg-Landau free
energy in the mean-field approximation with additional contributions from phonon mode
fluctuations of the form

ϕj(x) = ϕj,Ansatz(z + uj(x)) = ϕj,Ansatz(z) + ϕ′
j,Ansatz(z)uj(x) +

1
2ϕ

′′
j,Ansatz(z)u

2
j (x)

(3.13)
where ϕ⃗Ansatz(z) is the respective one-dimensional ansatz functions for the condensates in
the z-direction and u⃗ are the phonon mode fluctuations. The specific realization of this
ansatz is implemented differently in both works, since for the chiral kink only the σ field
needs to be considered while the chiral spiral ansatz requires fluctuations in two field direc-
tions. Therefore, Ref. [216] makes use of a specific parametrization of the fluctuations. In
any case, u⃗ parametrizes the fluctuations of the Goldstone modes from translational sym-
metry breaking in the transverse directions in an attempt to encode the contributions from
these particular quantum fluctuations to the mean-field result, that features the respective
inhomogeneous condensate.

In the end, quadratic fluctuations of the phonon modes u⃗ are identified as the lead-
ing contribution to the expectation value of the chiral condensate, as is expected in such
a saddle-point approximation of the path integral. These low-energy fluctuations destroy
the long-range ordering of the inhomogeneous condensate such that the IP is disordered
and only homogeneous condensates are obtained. However, a remnant of the spatial in-
homogeneities persists in a phase resembling to smectic liquid crystals [173]. This liquid
crystal regime is characterized by quasi-long range order, i.e., the order parameter cor-
relation functions C(x) decay algebraically according to C ∼ |x|−n with n ∈ Z and an
oscillatory behavior in the z-direction, in which the one-dimensional ansatz function for
the IP oscillates, remains. The above described mechanism is known as the Landau-Peierls
theorem in condensed matter physics [323], not to be confused with the Peierls instabil-
ity in one spatial dimensions, see Section 3.2.1. It is demonstrated in both of the works
that this mechanism is observed and correlation functions of the chiral condensate decay
algebraically but oscillate in the direction of the ansatz function for the inhomogeneous
condensate. The transition between a regime with quasi-long range order and an SP is also
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called Berezinskii-Kosterlitz-Thouless transition [328–330], and first was discovered in the
phase transition of the XY model, which models vector spins in two spatial dimensions.

3.3.2 Disordering through Goldstone modes from chiral symmetry breaking: Quantum
pion liquid

In Ref. [219], it was demonstrated that there is a mechanism leading to a stronger, expo-
nential suppression of correlation functions, using an O(Ns) model of Ns scalar fields in
the large-Ns limit, see Section 2.5 for a brief introduction to the techniques. For Ns = 4,
the symmetry breaking pattern of the model is isomorphic to two-flavor QCD in the chiral
limit. The disordering mechanism is derived using the fluctuations of Goldstone modes from
chiral symmetry breaking, i.e., from the spontaneous breaking of the O(Ns) symmetry in
the IP from a chiral spiral ansatz.

The effective O(Ns) model, that features both a moat regime and an IP classically, is
defined by the Lagrangian

Leff =
Z

2
(
∂jϕ⃗

)2
+

1
2M2

∑
j

∂2
j ϕ⃗

2

+
m2

2 ϕ⃗ 2 +
λ

4 (ϕ⃗
2)2 (3.14)

in three Euclidean spatial dimension, where ϕ⃗ is an Ns-component vector of scalar fields
ϕj . This theory is treated as an effective theory for regimes with spatial modulations at
intermediate temperatures and chemical potentials and the temporal direction is treated
as integrated out. The bare parameters are thought of as being generated from an underly-
ing (fermionic) theory at non-vanishing temperatures and chemical potentials, i.e., from a
gradient and amplitude expansion of a fermion determinant of the form of, e.g., Eq. (2.56).

In the mean-field approximation, which amounts to solving the classical field equations
for this scalar theory, three phases are observed: an SP, an HBP and, for negative Z, an
IP. In the analytical work [219], the ansatz function for the IP is chosen as the chiral spiral
ansatz (3.12), i.e.,

ϕ⃗ = ϕ0
(
cos(k0z), sin(k0z), ϕ⃗⊥ = 0⃗

)T
(3.15)

where k0 and ϕ0 can be determined from the field equations, as in classical field theory.
Thus, the theory features an LP at m2 = Z2 = 0.

Applying the limit of Ns → ∞ after appropriately rescaling the couplings with Ns,
one can treat the model with a constraint field approach, see Ref. [302] for a review and
2.5, allowing to also study quantum fluctuations. Again, the chiral spiral ansatz is used.
Ref. [219] shows that double poles arise in the bare propagators of the transverse modes ϕ⃗⊥,
which are expected to disorder the system. Then, indeed, only homogeneous ground states
are observed, but, for small positive and negative Z complex-conjugate propagator poles of
the scalar fields are detected. These complex-conjugate poles can be interpreted according
to the discussion in Section 3.1.2 and correspond to a QπL, i.e., the bosonic propagators
are an exponential times an oscillatory sine-like function. A disorder line forms where one
transitions from the ordinary SP to the QπL. At this line the purely imaginary poles
become degenerate and subsequently develop non-vanishing real parts, responsible for the
oscillation. In Ref. [219] it is suggested that these findings are valid for all Ns > 2 while
for Ns = 1, 2 an IP might be present due to the absence of Goldstone modes from chiral
symmetry breaking.
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The effect of bosonic quantum fluctuations and, particularly, the mechanism of disorder-
ing through Goldstone modes from chiral symmetry breaking is topic of RO3 and RO4 of
this thesis, see Section 1.3. Therefore, the above model (3.14) is studied using LFT sim-
ulations in Chapter 7 where also the above results from Ref. [219] are discussed in more
detail.
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D E T E C T I N G S PAT I A L LY M O D U L AT E D R E G I M E S F RO M T H E
B O S O N I C T WO - P O I N T V E RT E X F U N C T I O N S

abstract and relation to the research objectives In this chapter, a
generic derivation of the bosonic two-point vertex functions for d + 1-dimensional four-
fermion models within the mean-field approximation is presented. We demonstrate that
the bosonic two-point vertex functions naturally are obtained in the stability analysis of
homogeneous ground states against inhomogeneous fluctuations. Thus, this computation
serves as a tool for the detection of IPs. The advantages and drawbacks of the stability
analysis itself are also discussed. Moreover, we discuss how the bosonic two-point vertex
functions give direct insight in the properties of the bosonic two-point correlation func-
tions in the case of stable homogeneous ground states. Since this is a chapter focused on
methodology, none of the ROs defined in Section 1.3 are addressed directly. However, the
presented computations are applied in Chapters 5 and 6 such that there is an interplay
with RO1, RO2 and RO5. Reading this chapter is not mandatory for understanding the
key findings of this thesis. However, these technical aspects of the computations can be
helpful for a in-depth study of Chapters 5 and 6.

disclosure Computations similar to the presented one can be found in Ref. [1] and
Ref. [241] on the example of the 1 + 1-dimensional and 2 + 1-dimensional GN model or
Ref. [2] for generic 2+ 1-dimensional four-fermion models. Moreover, we also refer to anal-
yses [211, 212] of the bosonic two-point vertex function in the GN model in non-integer
spatial dimensions. The stability analysis based on the bosonic two-point vertex function of
the 1+ 1-dimensional GN model is published in Ref. [1], while the 1+ 1-dimensional chiral
GN model is studied in Ref. [4]. The presentation of the findings in this chapter differs
from those two publications, but the ideas, computations and figures are taken from the
respective publications. Thus, they are attributed in similar shares to me and the respec-
tive co-authors A. Koenigstein, L. Pannullo, S. Rechenberger, and M. Steil. The figures in
Section 4.2 and Section 4.3 are produced by L. Pannullo and A. Koenigstein, respectively;
the underlying data, however, are crosschecked by multiple of the respective authors, and
also by myself.

outline In Section 4.1, the bosonic two-point vertex functions in the mean-field ap-
proximation is derived for a generic d+ 1-dimensional four-fermion model using homoge-
neous auxiliary fields as background fields. Then, the appearance of the bosonic two-point
vertex functions in the stability analysis of homogeneous condensates is discussed. Based
on this method, we present benchmark computations in the 1 + 1-dimensional GN model
in Section 4.2 and in the 1 + 1-dimensional chiral GN model in Section 4.3, which are
both four-fermion models with analytically known phase diagrams in the (µ,T ) plane. In

54



4.1 the bosonic two-point vertex functions in four-fermion models 55

Section 4.4, we discuss how the QπL can be detected using the bosonic two-point vertex
function in an analysis related to the one presented in Section 3.1.2.

4.1 the bosonic two-point vertex functions in four-fermion mod-
els

To provide a rather general derivation of the bosonic two-point vertex function, we use a
generic four-fermion model with Nf four-component spinor fields ψ̄ and ψ, as defined in
Eq. (2.32). We follow Section 2.3 and perform a Hubbard-Stratonovich transformation such
that fermion fields appear only in a bilinear of the form ψ̄Qψ. Then, we integrate over the
fermionic degrees of freedom in the path integral in order to obtain the partition function

ZBos ∼
∫ ∏

j

Dϕj e−Seff[ϕ⃗] (4.1)

with the effective action

Seff[ϕ⃗] = Nf

∫ dd+1x
∑
j

ϕ2
j

2λj
− ln DetβQ

 , (4.2)

where the imaginary time direction is restricted to a finite extent , xd+1 = τ ∈ [0,β) and
the fields respect (anti-)periodic boundary conditions, see Section 2.1 for context on QFT
in thermal equilibrium. We defined in Eq. (4.2) the Dirac operator

Q[ϕ⃗] = /∂ + γd+1µ+
∑
j

cjϕj (4.3)

containing the Yukawa term
∑
j cjϕj with the coupling matrices cj and the auxiliary bosonic

fields ϕj . Moreover, λj are the coupling constants of the original four-fermion interactions.
The sum over j goes over a set of interaction vertices corresponding to the original four-
fermion interaction and, for the first part of this derivation, is unspecified. In Chapter 5, two
examples for sets of the matrices cj and, through the Ward identities given in Eq. (2.43),
also the auxiliary bosonic fields ϕj are presented and studied. For the rest of this chapter,
we use λj ≡ λ as this allows to obtain rotational symmetries in the auxiliary field space.
These symmetries mostly correspond to chiral symmetry transformations in the fermionic
sector, see Appendix B and Section 3.2.2 for examples.

4.1.1 Computation of the bosonic two-point vertex functions with homogeneous back-
ground fields in the mean-field approximation

The effective action is a functional of ϕ⃗(x). In the mean-field approximation, one approxi-
mates the partition function by the global minimum with respect to ϕ⃗. Since Γ[ϕ⃗] = Seff[ϕ⃗]

in the mean-field approximation, cf. Section 2.4.4, one determines Φ⃗(x) by minimizing
Seff[ϕj ]. The computation of observables amounts to evaluating them on the global mini-
mum Φ⃗(x) of the effective action, see Section 2.4. The global minimum is determined by
the extremal criterion, also called gap equation

δΓ[ϕ⃗]
δϕj

=
δSeff[ϕ⃗]

δϕj
= 0, (4.4)
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where the functional derivative is used, and reinsertion of all solutions of Eq. (4.4) back
into the effective action. The bosonic two-point vertex functions

δ2Γ[ϕ⃗]
δϕjδϕk

∣∣∣∣
ϕ⃗=Φ⃗

= (⟨ϕjϕk⟩c)−1 , (4.5)

where ⟨ϕjϕk⟩c are the corresponding connected two-point correlation functions in the ab-
sence of external sources, also called bosonic two-point correlation functions in this work,
see Section 2.2 for the respective definition.

In principle, Eq. (4.5) can directly be computed by performing the second functional
derivative with respect to ϕ⃗ and evaluating it on ϕ⃗ = Φ⃗(x). However, determining Φ⃗(x)

can become arbitrarily complicated. First of all, the effective action (4.2) requires the
computation of the fermionic determinant which can become very involved or (currently)
impossible when general shapes of inhomogeneous fields ϕ⃗(x) are allowed. One can approach
this problem using LFT techniques, see, e.g., Refs. [8, 241, 331–333], which requires solving
a high-dimensional optimization problem (see Ref. [334] for relevant algorithms) including
continuum and infinite-volume limits of non-trivial inhomogeneous modulations. In general,
this is a non-trivial, (computer) time consuming task which can usually only be performed
in simple approximations of the quantum effective action. A particular setup using mean-
field LFT techniques can be and already was applied also by the author [7, 10, 241] but
we will later argue that the stability analysis is a more efficient tool to study IPs in model
investigations. Even if a (semi)-analytical approach for computing the determinant was
available1, finding global minima of such complicated functionals with respect to arbitrary
functions is generically a highly non-trivial task [335, 336].

For similar reasons, evaluating bosonic two-point vertex functions as a curvature of the
effective action which is a function of arbitrary inhomogeneous expectation values is not
straightforward if one does not make a simple enough ansatz for the inhomogeneous fields,
see, e.g., Ref. [337]. This is caused by the necessary, yet complicated evaluation of functional
derivatives, even if a form of Γ is found through solving the functional optimization problem.

homogeneous background fields A common approach in mean-field model
computations, see, e.g., Refs. [99, 141, 249, 252, 316, 338–340] is to assume homogeneous
condensation of the bosonic fields, i.e., apply the restriction ϕ⃗(x) = ⃗̄ϕ = const.. Then,
one can express the ln Det-term in Seff as an integral over the d-dimensional spatial mo-
mentum space through standard thermal field theory techniques, see for example Chapter
2.5 of Ref. [64] or Chapter 3.7 of Ref. [285] for details. Assuming that the Yukawa-type
interactions between the fermion fields and the bosonic fields can be rewritten as a mass
term contribution after performing the discrete determinant in Dirac space, one obtains an
expression for the effective action where only a momentum integral needs to be performed,
see Eq. (2.56) and the discussion in Section 2.4.4. See Appendix C for a calculation in
the 2 + 1-dimensional GN model where only a single scalar field is present. Using this
homogeneous background in the fermion determinant, one finds

Γ(2)
ϕj ,ϕk

=
∂2Seff
∂ϕ̄j∂ϕ̄k

∣∣∣∣∣∣
ϕ⃗=⃗̄ϕ

∝ Tr
(
cjQ̄−1ckQ̄−1

)
, (4.6)

1 This is the case when one can express the fermion determinant as a low-dimensional integral that can be
easily solved numerically. This is an easy task when restricting the bosonic fields to be homogeneous, see
Appendix C.
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where the proportionality to the inverse of the homogeneous Dirac operator Q̄ = Q[⃗̄ϕ]

should be understood symbolically at this point. In order to really invert the Dirac struc-
ture and perform the functional trace, one typically first performs a Fourier transformation.
Further details of the correct mathematical treatment will be discussed in Section 4.1.3. In
summary, one evaluates the bosonic two-point vertex functions by performing the second
functional derivative of the effective action assuming using homogeneous fields as expansion
points. Based on this assumption the functional derivative is equivalent to partial differ-
entiation with respect to the variables ϕ̄j , which can be performed in a straightforward
manner.

Since the bosonic two-point vertex functions Γ(2)
ϕj ,ϕk

are the inverse of the bosonic two-
point correlation functions ⟨ϕjϕk⟩c, they yield direct information about the bosonic correla-
tions in the system. Note that these correlations solely stem from the fermionic interactions
and the bosonic fields are a priori auxiliary fields, i.e., their quantum fluctuations are not
included here. In Section 2.3.2, we showed that one can extract information about the
fermionic four-point functions from the bosonic two-point vertex functions, cf. Eq. (2.46).
We note that the information contained in Γ(2)

ϕj ,ϕk
is only valid when the global minimum of

the effective action is really homogeneous. Otherwise, the computation of Γ(2) is based on
the wrong expansion point. As we will see in the following, one can directly extract from
the bosonic two-point vertex functions whether this is the case.

4.1.2 Stability analysis and its relation to the bosonic two-point vertex functions

In general, the assumption of homogeneous background fields is not justified, as spatially
dependent condensates can be energetically favored, i.e., the global minimum might be
given by ϕ⃗ = Φ⃗(x) leading to a lower effective action compared to the homogeneous min-
imum ϕ⃗ = ⃗̄Φ (the minimum when restricting to ϕ⃗(x) = ⃗̄ϕ = const.). As discussed above,
it is difficult to compute the effective action for arbitrary inhomogeneous fields ϕ⃗(x) since
there exists no general procedure to diagonalize the Dirac operator Q (4.3). Also, the mini-
mization of a functional with respect to arbitrary functions ϕ⃗(x) is a difficult optimization
problem, that has not consistently been solved in the literature [335, 336]. Thus, one re-
frains to simple ansatz functions with few parameters, in which the effective action can be
minimized, ansatz-free minimization using LFT techniques or, alternatively, one performs
a so-called stability analysis, which is the strategy adopted for parts of this thesis. The
approach of analyzing the stability of homogeneous ground states against inhomogeneous
perturbations to detect IPs has been followed in some recent model investigations, for exam-
ple the works [1, 2, 4, 10, 207, 211, 212, 241, 337, 341–343].2 A discussion and comparison
of the stability analysis with other methods can be found at the end of this subsection.

central idea The basic concept of the stability analysis is to apply a perturbation
to the homogeneous fields ⃗̄ϕ (later to be set to the homogeneous minimum ⃗̄Φ of the ef-
fective potential) by functions δϕj(x) of infinitesimal amplitude but arbitrary functional
dependence, i.e.,

ϕ⃗(x) = ⃗̄ϕ+ δϕ⃗(x). (4.7)

2 Fun fact: Back in the eighties, the community did not expect inhomogeneous condensates to appear in
nuclear matter mean-field models. Thus, the appearance of the instability is interpreted in Ref. [207] as a
limitation of the validity of relativistic mean-field models for nuclear matter.
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Then, one performs an expansion of the effective action in powers of the perturbations δϕj
and determines the sign of the non-vanishing leading-order coefficients in this expansion.
It turns out that when choosing ⃗̄ϕ as an extremum of the effective action, e.g., as ⃗̄ϕ =
⃗̄Φ, the first-order terms in the expansion vanish and the leading order is given by the
second-order terms. Thus, one can determine the stability of the homogeneous minimum
⃗̄Φ by computing the curvature of the effective action at the minimum with respect to
the perturbations δϕj . In order to do so, the Hessian matrix in the space of δϕ⃗ needs
to be computed and diagonalized to determine the sign of the eigenvalues. If one of the
eigenvalues is negative, the homogeneous condensate is unstable against the corresponding
perturbation. Such an instability suggests that an inhomogeneous condensate Φ⃗(x), whose
precise spatial dependence is not determined in this procedure, is energetically favored
over the homogeneous ⃗̄ϕ. Note that a negative eigenvalue of the Hessian does not imply
that all components of the field vector Φ⃗(x) have to depend on x, but at least one of the
components.

Since the Hessian matrix is evaluated on the homogeneous background ϕ⃗ = ⃗̄ϕ, it can be
computed with standard techniques from thermal field theory, a major advantage of this
approach. However, the existence of a negative eigenvalue of the Hessian matrix Hϕjϕk

is
a sufficient but not necessary condition for the existence of an inhomogeneous condensate
when H is evaluated for ⃗̄ϕ = ⃗̄Φ. In general, an IP can still exist even if no instability
is observed in the stability analysis. This is the case when there is an energy barrier
between the local homogeneous minimum ⃗̄Φ and the inhomogeneous, global minimum
Φ⃗(x). However, to the author’s knowledge, no phase diagram has been found where an IP
does not at least feature a (possibly smaller) region of instability in the respective phase
diagram – a region where the homogeneous minimum of the effective action is instable
with respect to inhomogeneous perturbations. Moreover, all IPs so far observed in the
literature are connected to the SP by a second-order phase transition which can always
be detected by a stability analysis of the SP. However, when studying the same phase
diagram with respect to general inhomogeneous condensates using either ansatz functions
or LFT technigues, one finds that these regions of instability are either equivalent to an IP
or enclosed by a larger IP, see, e.g., Refs. [5, 7, 8, 241, 344]. Further discussion about the
applicability of the stability analysis can be found below.

One can perform a generic expansion of the quantum effective action in terms of inho-
mogeneous perturbations δϕ⃗ is given by

Γ[⃗̄ϕ+ δϕ⃗(x)] = Γ[⃗̄ϕ] +
δΓ[⃗̄ϕ]
δϕj(x)

δϕj(x) +
1
2

δ2Γ[⃗̄ϕ]
δϕj(x)δϕk(y)

δϕj(x)δϕk(y) + . . . , (4.8)

where in the mean-field approximation this expansion can also be formulated by replacing
Γ with Seff. The first-order term is supposed to vanish at ⃗̄ϕ = ⃗̄Φ due to the gap equation
δSeff/δϕj = 0. The coefficient of the second-order term is the Hessian matrix of the effective
action evaluated at its minimum. Using the assumption of the homogeneous expansion point
⃗̄ϕ yields

Hϕjϕk
=

δ2Seff[ϕ⃗]

δϕj(x)δϕk(y)

∣∣∣∣
ϕ⃗=⃗̄Φ

=
∂2Seff[

⃗̄ϕ]

∂ϕ̄j∂ϕ̄k

∣∣∣∣⃗̄ϕ=⃗̄Φ = Γ(2)
ϕj ,ϕk

, (4.9)

where we define the bosonic two-point vertex functions in the mean-field approximation
through derivatives of the effective action evaluated at the homogeneous minimum (again,
identifying Seff[ϕ⃗] = Γ[ϕ⃗]). Note that the last identification implies that the ground state
is really given by the homogeneous field values and takes advantage of the mean-field



4.1 the bosonic two-point vertex functions in four-fermion models 59

approximation, see Section 4.1.1 for a more detailed discussion. In case of an instability (or
an inhomogeneous, global minimum of the effective potential, in general), also the exact
bosonic two-point vertex functions are not given by the bosonic two-point vertex functions
at the homogeneous minimum. In Section 4.1.3, we derive Hϕjϕk

for the generic four-
fermion model (2.39) and also show how to compute negative eigenvalues of H by Fourier
transformation of the Dirac operator and δϕ⃗(x) as well as diagonalizing the Hessian matrix
in momentum space and field space.

stability analysis beyond mean-field In recent efforts [343] the bosonic two-
point vertex functions were used to detect instabilities of the symmetric phase towards an
IP in the quark-meson model using the functional renormalization group within the local po-
tential approximation to incorporate bosonic quantum fluctuations beyond the mean-field
approximation. Moreover, instabilities of the symmetric solution against inhomogeneous
condensation were detected in a Dyson-Schwinger study of QCD using a simple model for
the quark-gluon interaction [213–215], where an expansion about a homogeneous quark
propagator was necessary due to the non-locality of the interaction. One has to note that
these instabilities are found in the left spinodal region where the symmetric phase is not
preferred over a non-vanishing chiral condensate such that statements about the existence
of an IP are not possible.

Note further that the definition of the bosonic two-point vertex functions (4.5) (see
Section 2.2.3 for further details) does not involve any kind of approximation. As obvious
from Eq. (4.5), the bosonic two-point vertex functions provide all important information
about the two-point correlations of bosonic fields in the system. Thus, they are in general
interesting observables in all kind of systems and frameworks where bosonization techniques
are applied, or dynamical boson fields are present. However, for non-local interaction as
in, e.g., QCD the approach for the search of IPs has to be modified, since translational
symmetry breaking allows for non-local perturbations of second order. To account for this,
an approach based on the two-particle irreducible effective action can be followed [213–215].

general remarks regarding the stability analysis The idea of analyz-
ing the stability of a homogeneous ground state against inhomogeneous fluctuations is a
powerful, yet versatile tool to study the existence of IPs in a model. The general approach
can be applied to many theories, in different theoretical frameworks or approximations
independent of the space-time dimension. The main reason is that the generic expansion
(4.8) is also applicable on the level of the quantum effective action (2.26).

Of course, one has to pay a price for the versatility of the stability analysis such that one,
in general, lacks information about the form of the inhomogeneous condensate in case an
IP is realized. Also, as discussed above, there are scenarios where an IP is not detected by
the stability analysis although an inhomogeneous ground state would be preferred. Both
of these drawbacks can be overcome by direct determination of the ground state which in
turn is less versatile; often it requires either usage of ansatz functions or LFT techniques.
The former method again restricts the form of the inhomogenoeus condensate and intro-
duce a bias to the investigation, the latter is computationally rather time-consuming and
involved due to continuum and infinite volume limits that have to be performed on spa-
tially inhomogeneous observables. Both of these alternative methods are only applicable
depending on the respective theory and approximation used and can typically be used in
a less general manner. For example, a mean-field investigation of the phase diagram of
various 2 + 1-dimensional four-fermion models with direct numerical minimization using
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LFT would be incredibly costly in terms of computing time, while we analyze all kind of
local four-fermion models simultaneously with the stability analysis in Chapter 5. This is
due to the enormous computational cost of the direct minimization of the effective action
for inhomogeneous fields, which also does not guarantee finding the global minimum due
to the high dimensionality of the optimization problem, see Refs. [7, 241], compared to the
(semi)-analytical computation of the Hessian matrix in the mean-field approximation with
standard techniques in thermal field theory.

4.1.3 Stability analysis in a generic four-fermion model

In this subsection, we provide a generic algorithm for the computation of the Hessian matrix
Hϕjϕk

(4.9) using the prototype of a four-fermion model (2.32), rewritten into the effective,
bosonized action (4.2) as described in Section 2.3, in the mean-field approximation. One can
relatively easily generalize this algorithm to Yukawa models with local interaction terms,
see Ref. [2] or Chapter 5.

First, the expansion ϕj(x) = ϕ̄j + δϕj(x) is inserted into the effective action (4.2) of
the model. Then, the effective action is expanded in powers of the perturbations δϕj of
infinitesimal amplitude. Therefore, we split the Dirac operator

Q =

/∂ + γd+1µ+
∑
j

cjϕ̄j

+
∑
k

ckδϕk(x) = Q̄ + ∆Q (4.10)

into a homogeneous part Q̄ and a part ∆Q =
∑
k ckδϕk(x) containing the inhomogeneous

perturbations. This allows us to express ln DetβQ as

ln DetβQ = Tr ln
[
βQ̄

(
1 + Q̄−1∆Q

)]
(4.11)

and to expand the logarithm in powers of the small value ∆Q, i.e.,

ln DetβQ = Tr ln βQ̄ −
∞∑
n=1

1
n

Tr
(
−∆Q Q̄−1

)n
. (4.12)

Inserting Eq. (4.12) into the effective action (4.2) allows to rewrite Seff =
∑∞
n=0 S(n)

eff where
S(n)

eff contains the n-th order terms in δϕj . One finds for the leading three terms

S(0)
eff
Nf

= βV
∑
j

ϕ̄2
j

2λj
− Tr ln βQ̄ , (4.13)

S(1)
eff
Nf

= β
∑
j

ϕj
λj

∫
ddxδϕj(x) − Tr

(
∆Q Q̄−1

)
, (4.14)

S(2)
eff
Nf

=
β

2λj

∫
d2xδϕ2

j (x) +
1
2Tr

(
∆Q Q̄−1∆Q Q̄−1

)
. (4.15)

The zeroth order term S(0)
eff is proportional to the homogeneous effective potential, see

Section 2.4.4, and is minimized by ⃗̄ϕ = ⃗̄Φ by definition.
As δϕj are infinitesimal perturbations, it is reasonable to only consider the first and

second-order terms in the expansion as these will be dominating. Therefore, we need to
evaluate the functional traces

Tr
(

∆QQ̄−1
)n

=
∫ n∏

j=1
dd+1xj tr

(
∆Q (x1) Q̄−1 (x1,x2) . . .∆Q (xn) Q̄−1 (xn,x1)

)
(4.16)
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where tr denotes the trace over the discrete degrees of freedom of the Dirac operator, whose
number is equivalent to the dimensionality of the matrices cj , and xj = (xj , τj) represents
the spacetime coordinates. As the Dirac operator in position space

Q̄ = /∂x + γd+1µ+
∑
j

cjϕ̄j (4.17)

is complicated to evaluate and to invert, it is instructive to perform a Fourier transformation
of the whole functional trace. The Fourier representation of (the inverse of) the homoge-
neous Dirac operator is obtained by Fourier-transformation of the respective fermion fields
according to Eq. (2.13).

fourier representation of the inverse dirac operator In four-fermion
models the Fourier representation of the inverse Dirac operator, i.e., the bare fermion prop-
agator in momentum space, is typically given by

˜̄Q−1(p) =
−iγν (pν − iµδν,d+1) +

∑
k c

⋆
kϕ̄k

p̃2 +M2(ϕ̄2
k)

(4.18)

where M2 is a mass generated by the homogeneous fields ϕ̄k and the matrices in Dirac space
c⋆k are proportional to ck. Those two expressions depend on the choice of the matrices cj
(see Eq. (5.2) for an example of a set of interaction matrices cj). For many models M2 = ⃗̄ϕ2

but this must not necessarily be the case, e.g., when including the vertex cj = iγ4γ5 in
two spatial dimensions, see Eq. (5.9). Moreover, one typically finds p̃ = p− (0, iµ) at non-
vanishing fermion chemical potential. However, additional modifications to the temporal
component of the four-momentum pd+1 can stem from condensation of vector fields with,
e.g., cj ∼ γd+1. As we refrain from specifying the matrices cj in this general computation,
no specific form of ˜̄Q−1(p) is used. Note however that the assumption of ˜̄Q−1 being diagonal
in momentum space3 is fulfilled for all theories studied in this thesis.

Using the Fourier representation of the Dirac operator one finds for the first-order term
(4.14)

S(1)
eff
Nf

= β
∑
j

(∫
ddxδϕj(x)

)[
ϕj
λj

− T
∞∑

n=−∞

∫ ddp
(2π)d tr

(
˜̄Q−1 (p) cj

)]
(4.19)

which is proportional to the gap equations in a homogeneous background field

1
Nf

∂S(0)
eff

∂ϕ̄k

∣∣∣∣⃗̄ϕ=⃗̄ϕ′
= β

[∫
ddx

] [
ϕ̄k
λk

− T
∞∑

n=−∞

∫ ddp
(2π)d tr

(
˜̄Q−1 (p) ck

)] ∣∣∣∣⃗̄ϕ=⃗̄ϕ′
= 0 (4.20)

where ⃗̄ϕ′ is a homogeneous field configuration that is a solution of the gap equations.
Note that, most importantly, ⃗̄Φ also solves the gap equations. Therefore, the first-order
term vanishes at any homogeneous field that solves the gap equations which is the case
for ⃗̄ϕ = ⃗̄Φ. If these expansion points are used in this derivation, the second-order term
is the first non-zero correction. Using the Fourier representation of the inhomogeneous
perturbations

δϕj(x) =
∫ ddq

(2π)d eiqxδϕ̃j(q) (4.21)

3 This means that the inverse Dirac operator only depends on one momentum variable p that represents the
momentum of the bosonic field and not on two external momenta.
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p

p+ (q, 0)

cj ck
qq

Figure 4.1: Graphical representation of the fermion loop contribution in S(2)
eff according to Eq. (4.23)

and Eq. (4.24). The blue lines represents the bare fermion propagator ˜̄Q−1, the gray
dashed lines represent the external, bosonic legs of the auxiliary fields ϕj , and the teal
circles represents the bare interaction vertices cj . In the expression for the bosonic two-
point vertex functions Γ(2)

ϕj ,ϕk
, the bosonic legs are amputated.

we find for the trace in S(2)
eff

Tr
[
Q̄−1∆QQ̄−1∆Q

]
= (4.22)

=
∫ ddp

(2π)d
[∑
j,k

δϕ̃j(−q) δϕ̃k(q)

(∑
n

∫ ddp
(2π)d tr

(
˜̄Q−1 (p+ (0, q)) cj ˜̄Q−1 (p) ck

))]
,

where q = |q|. Inserting this into Eq. (4.15) one obtains

S(2)
eff
Nf

=
β

2

∫ ddq
(2π)d

∑
j,k

δϕ̃j(−q)δϕ̃k(q)Γ
(2)
ϕj ,ϕk

(
⃗̄ϕ,µ,T , q

)
(4.23)

Thereby,

Γ(2)
ϕj ,ϕk

(
⃗̄ϕ,µ,T , q

)
=
δj,k
λj

+ T
∑
n

∫ ddp
(2π)d tr

(
˜̄Q−1 (p+ (q, 0)) cj ˜̄Q−1 (p) ck

)
(4.24)

are the the bosonic two-point vertex functions in the mean-field approximation of the
generic four-fermion model. The trace over two fermion propagators in this expression
can graphically be represented as a fermionic loop with two bare fermion-boson vertices,
see Fig. 4.1. The appearance of Γ(2)

ϕj ,ϕk
in Eq. (4.23) can be anticipated already from the

discussion in Section 4.1.2, where the bosonic two-point vertex functions appear in the
second-order term in perturbations of the effective action. This is due to the fact that
the bosonic two-point vertex functions are proportional to the curvature of the quantum
effective action.

Further evaluation of this term requires specifying the interaction matrices cj and finding
the correct expression for ˜̄Q−1, which in all computations in this work is similar to Eq. (4.18)
with slight differences between the models in the form of M2, c⋆j and p̃. In the following
subsections, we will show how this expression is evaluated for the 1 + 1-dimensional GN
model and the 1 + 1-dimensional chiral GN model.

diagonalizing the hessian matrix One can directly use the obtained Γ(2)
ϕj ,ϕk

to determine the stability of the homogeneous phase against inhomogeneous fluctuations.
As derived above, the bosonic two-point vertex functions appear as the Hessian matrix
elements in field space. Since the expression is already diagonalized in momentum space
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Γ(2)

q

Z > 0

Z < 0, moat regime

Instability

Z < 0, moat regime

Z > 0, moat regime

Figure 4.2: Sketches of the bosonic two-point vertex function Γ(2) associated with the sign of the
bosonic wave function renormalization Z, illustrating its behavior in different cases. The
red curve represents the case where the homogeneous ground state is instable against
an inhomogeneous condensate such that an IP is detected. The teal and yellow curves
represent functional shapes of the bosonic two-point vertex function represented in the
moat regime. A negative sign of Z is only present for the yellow curve such that Eq. (4.27)
fails to detect the moat regime in a case similar to the teal curve.

(as the integrand only depends on one specific integration variable q), all that is left is
to find a basis transformation δϕj → δφj = bjkδϕk where the Hessian matrix Γ(2)

ϕj ,ϕk
is

diagonal. Often, the diagonalization is possible analytically. Since by definition of φj the
corresponding bosonic two-point vertex functions are diagonal in this basis, i.e., Γ(2)

φj ,φk ∼
δj,k, we use the abbreviation Γ(2)

φj = Γ(2)
φj ,φj for the eigenvalues of the Hessian matrix or,

equivalently, the diagonal elements of the Hessian in this basis. We provide a summary of
the whole stability analysis:

1. Computation of the homogeneous minimum ⃗̄Φ of the effective potential or, equiva-
lently, of Seff[

⃗̄ϕ].

2. Performing an expansion about this minimum ⃗̄ϕ = ⃗̄Φ + δϕ⃗(x) and computation of
the Hessian matrix / bosonic two-point vertex functions Γ(2)

ϕj ,ϕk
(⃗̄ϕ,µ,T , q) of the form

(4.23), where q = |q| is the absolute value of the spatial momentum of the Fourier
mode δϕ̃j(q) of the inhomogeneous perturbation.

3. Determination of the field basis φj that diagonalizes the Hessian matrix Γ(2) (often
analytically possible and sometimes even φj = ϕj).4

4. Searching for negative values of Γ(2)
φj ( ⃗̄φ,µ,T , q) at q ̸= 0 and ⃗̄ϕ = ⃗̄Φ which is evidence

for the existence of an IP. A possible shape for Γ(2)
φj as a function of q, where an

instability can be found, is depicted in Fig. 4.2 by the red curve.

4 In Chapter 6 we study a model with both vector and scalar four-fermion interactions which requires the
numerical diagonalization of Γ(2)

ϕj ,ϕk
.
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4.1.4 Extracting the bosonic wave function renormalization

The bosonic wave function renormalizationion Zϕ of a bosonic field ϕ is formally defined
as the second-order coefficient of the bosonic two-point vertex function Γ(2)

ϕ (q) in a Taylor
expansion around q = 0, i.e.,

Zφj =
1
2

d2

dq2 Γ(2)
φj

(
⃗̄ϕ,µ,T , q

) ∣∣∣∣
q=0

(4.25)

where we used field basis φj where Γ(2)
φj ,φk ∼ δj,k. More generally, the wave function renor-

malization encodes the coefficient of the spatial kinetic term ∼ (∇ϕj)2 of the quantum
effective action Eq. (2.26), see Ref. [121]. Thus, it serves as a measure for the relevance of
bosonic fluctuations and gradient driven field configurations in the system. In the mean-field
approximation, however, the quantum effective action Γ is given by the classical effective
action Seff evaluated at its global minimum ⃗̄Φ. Thus, one can extract the bosonic wave
function renormalization Zϕj

by expanding the effective action in perturbations around
the homogeneous minimum ⃗̄Φ and identifying the coefficient of the spatial kinetic term,
proportional to the momentum squared q2 of the inhomogeneous fluctuations. From the
form of the second-order coefficient in the basis φj

1
Nf

S(2)
eff [ ⃗̄φ, δφ] = β

2

∫ ddq
(2π)d

∑
j

δφ̃j(−q)Γ(2)
φj

(φ̄,µ,T , q) δφ̃j(q) (4.26)

one can directly see that the definition of Zφj (4.25) indeed extracts the leading coefficient
of the quantum effective action of the term proportional to q2φ2

j , i.e., the spatial kinetic
term of the bosonic field φj .

Of course, this is no longer the case when one allows for an inhomogeneous expansion
point which would break down the association of the order of S(n)

eff with the Fourier spectrum
of the true ground state, which could be composed of the spectrum of the expansion point
and, in case of instabilities, the spectrum of inhomogeneous perturbations. For example,
already the zeroth order coefficient could contain arbitrary powers of the spatial momenta
of the condensates.. Moreover, when going beyond the mean-field approximation one has
to be careful with the definition of the wave function renormalization as the quantum
effective action in principle contains all kind of non-local contributions also from bosonic
fluctuations.

the wave function renormalization as a criterion for the moat
regime In the literature, a negative value of Zφj is discussed as an indication for the
presence of an IP [219, 231, 232]. However, a negative wave function renormalization does
not yield information whether an instability of the homogeneous phase towards the IP is
observed. This would be signaled by Γ(2)

φj (q) < 0 for any q ̸= 0, see the discussion in the
last paragraph of Section 4.1.3.

Nevertheless, as stated above, the wave functional renormalization is the prefactor of the
spatial kinetic term of the quantum effective action in the mean-field approximation. Thus,

Zφj < 0 (4.27)

signals a negative curvature of the quantum effective action at q = 0 and, thus, also
a negative curvature of the dispersion relation Eφj – which is contained in the quantum
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effective action – of the bosonic field φj at vanishing momentum, see Fig. 4.2. Consequently,
this criterion signals that the dispersion relation of this field has a global minimum at non-
vanishing momentum, which is precisely the defining property of the moat regime, see
Section 3.1.1 for a detailed discussion. However, it is important to note that Eq. (4.27) is
a sufficient, but not a necessary condition, since Γ(2)

φj might have a positive curvature at
q = 0 although a global minimum at q ̸= 0 exists. This would be caused by higher order
terms in q which can be present in the bosonic two-point vertex function and would also
result in a moat regime. This behavior is depicted in the teal curve in Fig. 4.2 where the
bosonic two-point vertex function features both a maximum and a minimum at q ̸= 0 such
that Zφj > 0 and q = 0 is a local minimum, while q ̸= 0 is the global one. Such a behavior
is, however, rather unexpected, see, e.g., Refs. [121, 200], and is typically not observed in
any QCD-inspired models relevant in this context.5 Overall, using Eq. (4.27) is a simple
criterion characterizing a moat regime as not the full momentum dependence of Γ(2)

φj has
to be determined – which is especially advantageous when studying the full phase diagram
of a model or the full momentum dependence of the bosonic two-point vertex function is
difficult to extract.

4.2 stability analysis in the 1 + 1-dimensional gross-neveu model

In this section, we apply the generic algorithm, presented in Section 4.1.3, for the compu-
tation of the bosonic two-point vertex functions in the mean-field approximation to the
1 + 1-dimensional GN model. This serves as a proof-of principle for this method and tests
its applicability for searching IPs on a model with an analytically known phase diagram
(in the mean-field approximation), see Ref. [202] and Fig. 3.2. Thereby, we also perform a
novel computation of the wave-function renormalization in the GN model which is used to
predict the presence of a moat regime in the phase diagram of the model, see Ref. [1] for
the original publication of this work.

The 1 + 1-dimensional GN model can be obtained from the generic four-fermion model
in Eq. (2.32) by specifying the spatial dimensions d = 1, λj = λ and c⃗ = (1) where the 1
represents the identity matrix in the two-component spinor space. Then, we obtain

S [ψ̄,ψ] =
∫ β

0
dτ
∫

dx
[
ψ̄ (/∂ + γ2µ)ψ− λ

2Nf
(ψ̄ψ)

2
]

, (4.28)

where ψ is a two-component spinor in 1 + 1 spacetime dimensions, see Eq. (A.16) for the
definition of the Gamma matrices and Appendix A.4 for a general discussion of the fermion
field as a representation of the Poincaré group. The model is invariant under a U(1) global
phase transformation of the spinors ψ → eiαψ with a real-valued parameter α as well
as a discrete chiral symmetry transformation (3.7). This symmetry would be explicitly
broken by a mass term mψ̄ψ. We note that the γµ are proportional to two of the Pauli
matrices for d = 1 and, thus, γch = −iγ1γ2 is proportional to the third Pauli matrix, see
Appendix A.3.1.

5 In fact, in the literature there is only one case where a moat regime is observed but the wave function
renormalization is not negative. This is the case in the non-renormalizable NJL model in one particular
regularization scheme and large chemical potential compared to the regularization scale [10].
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Following the Hubbard-Stratonovich transformation in Section 2.3.1, we introduce a
bosonic auxiliary field σ to replace the four-fermion interaction term by a Yukawa term
between σ and ψ̄ψ. This leads to the action

S [ψ̄,ψ, ϕ⃗] =
∫ β

0
dτ
∫

ddx

Nf

∑
j

σ2

2λ − ψ̄ (/∂ + γ2µ+ σ)ψ

 , (4.29)

i.e., σ acts as a dynamically generated mass term for the fermions. One can directly access
the chiral condensate through the Ward identity

⟨σ⟩ = − λ

Nf
⟨ψ̄ψ⟩, (4.30)

which can be derived as in Section 2.3.2. Thus, a non-vanishing expectation value of σ im-
plies a spontaneous breaking of the discrete chiral symmetry (3.7) the model. The discrete
chiral symmetry transformation (3.7) becomes a reflection symmetry on the level of the
auxiliary bosonic field, i.e.,

σ → −σ. (4.31)
In the Hubbard-Stratonovich transformation σ is introduced as a dynamical degree of
freedom in the partition function of the model, see Eq. (2.36). As in the partially bosonized
action (4.29) the fermions appear only in a bilinear, one can integrate them out in the
partition function (compare the explicit calculation in Section 2.3.1). One obtains the
effective action of the GN model

Seff[σ] = Nf

∫
d2x

σ2

2λ − ln Det
[
β (/∂ + γ2µ+ σ)

]
(4.32)

with the partition function
Z =

∫
Dσ e−Seff[σ] (4.33)

which serves as a starting point for the computation of the bosonic two-point vertex func-
tions in the GN model. Note that we use the mean-field approximation, c.f. Section 2.4,
such that the computation of the partition function Z is reduced to the computation of
the effective action Seff evaluated at its global minimum with respect to the bosonic fields.

4.2.1 The bosonic two-point function in the Gross-Neveu model

The derivation of the Hessian matrix in the GN model is straightforward using the generic
algorithm presented in the previous section. If the reader, however, wants to follow the
details of the computation at the example of the GN model, we refer to Refs. [1, 52, 167,
286]. Since there is only one four-fermion interaction in the GN model, the Hessian matrix
of the effective action has one element and the second-order correction to the effective
action

S(2)
eff
Nf

=
β

2

∫ dq
2π δσ̃(−q)δσ̃(q)Γ

(2)
σ (σ̄,µ,T , q) (4.34)

is given by bosonic two-point vertex function Γ(2)
σ of the auxiliary σ field. In this expression,

q is the spatial momentum6 of the inhomogeneous perturbation δσ. The general form of
Γ(2)
σ according to Eq. (4.24) is

Γ(2)
σ (σ̄,µ,T , q) = 1

λ
+ T

∑
n

∫ dp
2π tr

(
˜̄Q−1

(
pν + (q, 0)T

)
˜̄Q−1 (pν)

)
(4.35)

6 For spatial dimensions d = 1 we do not adapt the vector notation q = (q1) from earlier in this chapter.



4.2 stability analysis in the 1 + 1-dimensional gross-neveu model 67

with
˜̄Q−1(p) =

−iγ2 (νn − iµ) − iγ1p+ σ

(νn − iµ)2 + p2 + σ2
(4.36)

where pα = (p, νn)T for α = 1, 2.
The bosonic two-point vertex function can be written as

Γ(2)
σ (σ̄,µ,T , q) = 1

λ
− ℓ1(σ̄,µ,T ) − ℓ2(σ̄,µ,T , q) (4.37)

where the momentum-independent integral contribution

ℓ1(σ̄,µ,T ) = 2
π

∫ ∞

0
dp 1

β

∞∑
n=−∞

1
(νn − iµ)2 +E2

p

(4.38)

=
1
π

∫ ∞

0
dp 1

Ep
[1 − nF (Ep) − nF̄ (Ep)] .

also appears in the gap equation of the GN model, see Appendix C for a discussion in 2+ 1
spacetime dimension, with the Fermi-Dirac distribution functions nF (x) and nF̄ (x), see
Eq. (C.18) for their definition. The momentum-dependent integral contribution is

ℓ2(σ̄,µ,T , q) ≡ 2
π

∫ ∞

0
dp 1

β

∞∑
n=−∞

p q− 2 σ̄2

(νn − iµ)2 +E2
p+q

1
(νn − iµ)2 +E2

p

. (4.39)

At this point we want to note that Γ(2)
σ still contains a UV divergence stemming from

the momentum integral ℓ1. However, this divergence is removed by treating the integral
with, e.g., a sharp momentum cutoff scheme and the renormalization condition that the
homogeneous global minimum Σ̄ in the vacuum assumes a non-vanishing value Σ̄0, i.e.,
Σ̄(µ = 0,T = 0) = Σ̄0. This renormalization condition ensures that the chiral condensate
is non-vanishing in the vacuum and, thus, the fermions acquire a dynamical mass in the
vacuum due to the spontaneous chiral symmetry breaking. We note that such a regular-
ization and renormalization prescription is also needed when solving the gap equation of
the GN model, see Section II.C of Ref. [1] for details on the 1 + 1-dimensional GN model
or Appendix C for the procedure in two spatial dimensions. With this renormalization
prescription, one can insert

1
λ

− ℓ1(σ̄,µ,T ) = 1
π

[
1
2 ln σ̄

2

Σ̄2
0
+
∫ ∞

0
dp 1
Ep

(nF (Ep) + nF̄ (Ep))

]
(4.40)

into Eq. (4.37) and obtain the renormalized bosonic two-point vertex functions in the GN
model which is free of UV divergences. In two spatial dimensions ℓ1 contains a linear diver-
gence and not a logarithmic one as in Eq. (4.38). Thus, resulting formulae in Appendix C
obviously differ from Eq. (4.40). Conceptually, both computations are, however, rather sim-
ilar such that we do not in depth discuss the renormalization of the 1+ 1-dimensional GN
model and, instead, refer to Ref. [1] for details.

In order to evaluate ℓ2 further, one carries out the Matsubara sum at non-vanishing q,
which yields

ℓ2(σ̄,µ,T , q) = (4.41)

= −
(
q2

2 + σ̄2
) 2
π

∫ ∞

0
dp 1

Ep

 1
E2
p+q −E2

p

+
1

E2
p−q −E2

p

[1 − n(Ep,µ) − n(Ep, −µ)].
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and for q = 0 one finds7, one finds

ℓ2(σ̄,µ,T , 0) = −σ̄2 2
π

∫ ∞

0
dp 1

4E3
p

(
1 − (1 + βEp)

[
n(Ep,µ) + n(Ep, −µ)

]
+ (4.42)

+ βEp
[
n2(Ep,µ) + n2(Ep, −µ)

])
.

We note that for the evaluation of Eq. (4.41) one needs to take care of a pole at p = q/2
requiring a Cauchy principal value prescription. For the evaluations of both expressions
(4.41) and (4.42) in special cases of the thermodynamic variables µ and T , we refer to
Appendix A of Ref. [1].

4.2.2 The bosonic wave function renormalization in the Gross-Neveu model

The bosonic wave function renormalization can be computed directly from the bosonic
two-point vertex function Γ(2)

σ via Eq. (4.25). Performing the derivative with respect to q
in Eq. (4.37) and evaluating at q = 0 yields

Zσ(σ̄,µ,T ) = 1
π

∫ ∞

0
dp 1
β

∞∑
n=−∞

1
(νn − iµ)2 +E2

p

(
1 − 4

3
σ̄2

(νn − iµ)2 +E2
p

)
, (4.43)

where the Matsubara summation can be evaluated in the standard way using the residue
theorem and contour integration, see the last paragraphs of Appendix C.4. The result is
given by

Zσ(σ̄,µ,T ) = (4.44)

=
1

4π

 1
3σ̄2 −

∫ ∞

0
dp 1
E2
p

[
n(Ep) + n̄(Ep) − Ep

T

(
n2(Ep) + n̄2(Ep) − n(Ep) − n̄(Ep)

)]
+

+ σ̄2
∫ ∞

0
dp 1
E5
p

[
n(Ep) + n̄(Ep) − Ep

T

(
n2(Ep) + n̄2(Ep) − n(Ep) − n̄(Ep)

)]
+

+
1
3
E2
p

T 2

[
2n2(Ep) + 2n̄3(Ep) − 3n2(Ep) − 3n̄2(Ep) + n(Ep) + n̄(Ep)

].

Further analysis of this expression in the limit of vanishing T , µ and/or σ̄ can be found in
Appendix B of Ref. [1].

4.2.3 Results

With the expressions for ℓ1 and ℓ2 at hand we can proceed by studying the stability of
homogeneous condensates in the GN model. We start by analyzing the momentum depen-
dence of Γ(2)

σ for various values of the chemical potential µ and the temperature T . Before
going in this discussion, we refer the reader to the discussion of Fig. 3.2 in Section 3.2.1
where the analytical solution to the phase diagram of the GN model is presented.

7 It is recommended to set q = 0 before evaluating the Matsubara summation instead of taking the limit of
q → 0 in Eq. (4.41) because the two propagator poles in Eq. (4.39) become degenerate. When taking the
q → 0 limit first, one can apply a standard Matsubara frequency summation formula [345], see the last
paragraphs of Appendix C.4.
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In Fig. 4.3, Γ(2)
σ (q) is plotted as a function of the external momentum q for different

values of µ and T . The figure allows to analyze bosonic two-point vertex function in different
regions of the phase diagram. In the top left plot in Fig. 4.3, Γ(2)

σ is presented for vanishing
chemical potential and four different values of T evaluated at the respective homogeneous
minimum σ̄ = Σ̄(0,T ) of the effective potential as relevant for analyzing the stability of the
homogeneous phase. As one would expect, the bosonic two-point vertex function is positive
for all values of q and T at µ = 0. This is the case for zero and non-zero temperatures in
the HBP (T/Σ̄0 = 0.0, 0.3), in the SP (T/Σ̄0 = 1.0) and on the phase boundary between
the two phases (T/Σ̄0 = Tc/Σ̄0 = eγ/π), compare Fig. 3.2 for the homogeneous phase
diagram.

In the bottom left subfigure, we analyze the bosonic two-point vertex function at µ/Σ̄0
and five different values of the temperature T . This allows to inspect the behavior of Γ(2)

σ

within the IP of the model. The corresponding homogeneous expansion point is always zero,
i.e., Σ̄(µ,T ) = 0. As expected, we find a positive Γ(2)

σ with unique minimum at q = 0 for
high T at µ/Σ̄0 = 0.75, i.e., in the SP. According to our discussion in Section 4.4, such a
behavior implies that the long-range behavior spatial propagator of the σ field ⟨σ(x1)σ(0)⟩
is proportional to exp (−mx1) where m is given by the purely imaginary propagator pole.
When lowering the temperature to, e.g., T/Σ̄0 ∈ [0.2, 0.3], one finds that Γ(2)

σ develops a
non-trivial minimum at q = Q ̸= 0.0 albeit Γ(2)

σ (q) > 0.0 for all q where

Q = arg min
q

Γ(2)
σ (Σ̄(µ,T ),µ,T , q). (4.45)

One can infer that at these intermediate temperatures a moat regime is present in the
GN model as the bosonic two-point vertex function has a global minimum at q = Q ̸= 0
and, also, the more practical criterion of a negative bosonic wave function renormalization
(curvature of Γ(2)

σ with respect to q at q = 0) is fulfilled. More details about the value of the
bosonic wave function renormalization will be discussed later. For even lower temperatures,
this non-trivial minimum becomes negative signaling the presence of an IP in the GN model.

The on-set of the instability (here roughly T/Σ̄0 = 0.2) corresponds to the phase transi-
tion between the SP to the IP, cf. Fig. 3.2. Since the stability analysis describes the inhomo-
geneous condensate as a small perturbation about (in this case) σ̄ = 0, it is expected that
this second-order phase transition can accurately be captured by the stability analysis as is
described in following paragraphs. At this point in the phase diagram, Γ(2)

σ (Σ̄(µ,T ),µ,T ,Q)
vanishes and the value of Q corresponds to the wave vector of the inhomogeneous conden-
sate in the full analytical solution, which at the phase transition indeed is a sine wave of
infinitesimal amplitude, see Ref. [202] and the discussion in Section 3.2.1 for details. When
lowering the temperature further, the minimum of the bosonic two-point vertex function
Γ(2)
σ (q = Q) gets more and more negative. At zero temperature, this minimum finally turns

into a pole at q = 2µ. This momentum scale is expected of inhomogeneous condensates
as the antifermion-fermion pairs are formed in the vicinity of the Fermi surface ∼ µ, see
Refs. [111, 197].

Next, the top right plot in Fig. 4.3 is discussed where Γ(2)
σ at µ/Σ̄0 = 0.6 and T = 0.0

is plotted for two different values of the homogeneous expansion point σ̄ = 0.0 and
σ̄ = Σ̄(µ, 0.0) ̸= 0, i.e., these values of µ and T correspond to the HBP. This plot demon-
strates that it is crucial to evaluate the bosonic two-point vertex function at the correct
homogeneous expansion point as the evaluation of Γ(2)

σ at σ̄ = 0 leads to negative values
of Γ(2)

σ signaling an instability which, however, does not provide evidence for the existence
of an IP. For this test case scenario, this point seems rather trivial. However, for more
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Figure 4.3: The bosonic two-point vertex function Γ(2)
σ (q) as a function of the external momentum

q. The different colors in the same subfigure correspond to different values of the respec-
tively varied quantity. Except for the subfigure in the top right, Γ(2)

σ (q) is evaluated
at the respective homogeneous minimum σ̄ = Σ̄(µ,T ) of the effective potential. (top
left) µ = 0 and T/Σ̄0 ∈ {0.0, 0.3, eγ/π, 1.0} (γ is the Euler-Mascheroni constant). (top
right) µ/Σ̄0 ∈ {0.6} and T = 0. The two different curves correspond to the homoge-
neous, local minimum σ̄ = 0.0 and the global minimum σ̄ = Σ̄(µ,T ) of the effective po-
tential. (bottom left) µ/Σ̄0 = 0.75 and T/Σ̄0 ∈ {0.0, 0.05, 0.2, 0.3, 0.5}. (bottom right)
µΣ̄0 ∈ {0.0, 0.6, 0.8, 1.0, 1.2} and T/Σ̄0 = 0.15.

involved computations of the bosonic two-point vertex functions in more complicated mod-
els or approximations, such as, e.g., Functional Renormalization Group calculations, the
determination of the correct evaluation point can be a difficult task.

Finally, in the bottom right plot in Fig. 4.3 the behavior of Γ(2)
σ is presented at T/Σ̄0 =

0.15 and five different values of µ. This particular temperature slice allows to study all
three phases present in the phase diagram. Within the HBP at µ = 0 and µ/Σ̄0 = 0.6, the
bosonic two-point vertex function is positive for all q with the minimum located at Q = 0
as expected. The bosonic curvature mass, i.e. Γ(2)

σ (q = 0) decreases when increasing the
chemical potential µ within the HBP. As soon as one crosses the first-order boundary line
between the HBP and the SP, which is present when studying spatially homogeneous con-
densates, cf. Fig. 3.2, the bosonic two-point vertex function develops a non-trivial, negative
minimum at Q ̸= 0 signaling the instability of Σ̄ = 0.0 against inhomogeneous fluctuations.
Thus, at µ/Σ̄0 = 0.8 a spatially inhomogeneous condensate is favored. Further increasing
the chemical potential, shifts the Γ(2)

σ curve to larger values such that roughly at µ/Σ̄0 = 1.0
the minimum of Γ(2)

σ (q) is positive again. Consequently, at µ/Σ̄0 = 1.2 the bosonic two-
point vertex function is positive for all q again as one would expect for the SP. However, the
Γ(2)
σ is not convex such that one still observes a non-trivial global minimum at q ̸= 0. This

curve corresponds again to a moat regime as we will further demonstrate in the following
by computing the wave function renormalization Zσ.
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Figure 4.4: The bosonic two-point vertex function Γ(2)
σ (q) in the (σ̄, q) plane for the point

(µ,T ) /Σ̄0 = (0.67, 0.1) as a color map. The solid black line marks the non-trivial min-
ima. The dashed white line corresponds to the homogeneous, global minimum σ̄ = Σ̄ at
this point in the phase diagram.

shortcomings of the stability analysis In Fig. 4.4 the bosonic two-point
vertex function Γ(2)

σ (q) is plotted in the (σ̄, q)-plane for the point (µ,T ) /Σ̄0 = (0.67, 0.1)
where the value of Γ(2)

σ is encoded in a color map. This µ,T point in the phase diagram
is located close to the first-order transition line (see the red line in Fig. 3.2) but is within
the HBP. The minimum of the effective potential there is roughly σ̄/Σ̄0 = Σ̄/Σ̄0 ≈ 1 while
σ̄ = 0 is a local minimum. Inspecting Fig. 3.2 reveals that in this region of the phase
diagram actually the IP is energetically preferred over the HBP if one allows for spatial
modulations of the condensate. However, when performing the stability analysis around the
correct homogeneous expansion point σ̄ = Σ̄ one finds a positive value of Γ(2)

σ for all q. Thus,
the stability analysis fails to detect the IP in this region of the phase diagram. As can also
be inferred from Fig. 4.4, one still finds instabilities when decreasing σ̄ below the correct
expansion point. These instabilities cannot be interpreted with respect to the presence of
an IP as they only appear for a homogeneous field value σ̄ < Σ̄ that is not relevant for
the detection of an IP. We have seen instabilities of this kind in multiple selected sample
point in the phase diagram where, e.g., at σ̄ = 0.0 the bosonic two-point vertex function
exhibits instabilities while the correct expansion point σ̄ = Σ̄(µ,T ) is stable. The reason
for this failure is that the non-trivial homogeneous minimum σ̄ = Σ̄(µ,T ) and the spatially
oscillating inhomogeneous ground state are separated by an “energy barrier” in the effective
potential. This leads to a positive curvature around σ̄ = Σ̄ and the homogeneous minima
do no longer turn into saddle points with an unstable direction in momentum space when
studying inhomogeneous perturbations. In this region of the phase diagram, the oscillating
ground state is described by Jacobi-elliptic functions which oscillates between the two
global minima of the effective potential ±Σ̄(µ,T ), see Section 3.2.1. Thus, this condensate
can no longer be described by a small perturbation around one of these minima.

phase diagram via the stability analysis Based on the previous discussion,
we present Fig. 4.5 which presents the insights into the (µ,T ) phase diagram that can
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Figure 4.5: The wave function renormalization Zσ(Σ̄(µ,T ),µ,T ), line of Zσ = 0 (dotted black line)
and the boundary of the region with instability of the GN model in the µ-T -plane.
In the region marked by the diagonal hatching using thin black solid lines we find
Γ(2)
σ (Σ̄(µ,T ),µ,T ,Q) < 0, i.e. the homogeneous minimum is unstable with respect to

inhomogeneous fluctuations.

be gained from the bosonic two-point vertex functions and the bosonic wave function
renormalization in the GN model. The main result – which will be further elaborated on in
the following – is that the stability analysis correctly detects the known phase transition
line between the SP and the IP while it fails in the region between the HBP and the IP
transition line and the homogeneous first-order phase transition, cf. Fig. 3.2.

As discussed above, the stability analysis is trustworthy in regions of the phase dia-
gram where the homogeneous expansion point is trivial, i.e., σ̄ = Σ̄(µ,T ) = 0 and, espe-
cially, where the inhomogeneous condensate has a small amplitude. This is the case near
the second-order phase transition between the SP and the IP. The reliability near this
phase transition is expected since the stability analysis itself is based on expanding the
field σ(x) around the homogeneous background σ̄. These expectations are matched by
our numerical results in Fig. 4.5. The solid black line in Fig. 4.5 marks the line where
Γ(2)
σ (Σ̄(µ,T ),µ,T ,Q) = 0, which is the unique minimum of the bosonic two-point vertex

function for fixed µ and T at q = Q, in the external bosonic minimum. This line extends
from the LP to larger chemical potentials and is identical to the exact phase boundary from
Fig. 3.2 within out numerical precision ∼ 0.005Σ̄0 within the (µ,T ) plane. The method also
detects the second-order boundary line between the SP and the HBP which is not surpris-
ing since the bosonic curvature mass vanishes at this line. The curvature mass, however, is
proportional to Γ(2)

σ (Σ̄(µ,T ),µ,T , q = 0) and consequently also vanishes.
The phase boundary between the HBP and the IP is not correctly detected by the

stability analysis. This is caused by the large amplitude of the inhomogeneous oscillation
in this region which is not connected to the homogeneous expansion point σ̄ = Σ̄(µ,T ) by
a small perturbation. The initial assumption in the stability analysis of small perturbations
Eq. (4.7) is violated in this region of the phase diagram. The analysis starts to fail when
crossing the first-order phase transition between the HBP and the SP that is present when
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studying spatially homogeneous condensates. We note that this failure might be avoided
by using the so-called fermion double trick, as in Ref. [337], which takes into account also
higher order coefficients in the stability analysis, i.e., higher order n-point vertex functions,
at the drawback that it requires an harmonic ansatz for the chiral condensate. The results
of Ref. [337] can be interpreted as a sign that one would need to compute higher-order
n-point functions in order to correctly detect the IP in the region near the IP↔HBP
phase transition line. In Ref. [346], it is demonstrated that a modified stability analysis
using the inverse spatial period of the inhomogeneous perturbation as expansion parameter
can correctly detect this transition line, which, however, requires computing the effective
potential for a single baryon ansatz for σ̄(x).

the wave function renormalization in the gross-neveu model In
Fig. 4.5 the wave function renormalization Zσ(Σ̄(µ,T ),µ,T ) computed using Eq. (4.44)
is visualized through a color map in the (µ,T )-plane. The results in Fig. 4.5 are also
cross-checked using a numeric evaluation of the q-derivatives of Γ(2)

σ at q = 0. As depicted
in this figure the wave function renormalization is positive for small values of µ and T

within the HBP. However at larger µ in the region around the first-order phase transition
between SP and HBP when studying spatially homogeneous condensates, the wave function
renormalization jumps to a negative value. Interestingly, this is also the region where
the stability analysis fails to detect the IP. Thus, it seems that also the wave function
renormalization signals the importance of bosonic fluctuations of all orders in this phase
diagram. This is expected near a first-order phase transition where correlation lengths
typically diverge such that all orders of fluctuations become equally important. At larger
temperatures, in contrast, Zσ changes more smoothly from positive to negative values
when increasing the chemical potential. In the SP one can observe the line of µ/T = 1.91
where Zσ = 0 marked by the black dashed line in Fig. 4.5. The region of negative Zσ
corresponds to the region where the GN model exhibits a moat regime. Such a regime is
also present in Functional Renormalization Group studies starting from first-principles [121]
and is a precursor for all kind of spatially inhomogeneous observables, see the discussion
in Chapter 3.

4.3 stability analysis in the 1 + 1-dimensional chiral gross-neveu
model

The second test for the stability analysis is performed on the phase diagram of the 1 + 1-
dimensional chiral GN model. This model is obtained by setting λj = λ, d = 1 and
c⃗ = (1, iγ5). The resulting Euclidean action is

S [ψ̄,ψ] =
∫ β

0
dτ
∫

dx
{
ψ̄ (/∂ + γ2µ+ iγ1µ̃)ψ+

λ

2Nf

[
(ψ̄ψ)

2
+ (ψ̄iγchψ)

2
]}

(4.46)

where ψ̄ and ψ are Nf two-component Dirac spinors in 1+1 dimensions (see Appendices A.3
and A.4 for details on spinor representation in 1+ 1 dimensions). The chiral GN model with
both chiral and fermion chemical potential serves as an adequate, additional benchmark
model for the stability analysis as it 1.) is a model with a well-known phase diagram
featuring an IP in the mean-field approximation, 2.) features a continuous chiral symmetry
that is spontaneously broken and 3.) contains two bosonic fields. The two latter aspects of
the theory provide a contrast to the GN model which is invariant under a discrete chiral
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symmetry operation and has only one bosonic field. Also, the Hessian matrix containing
the bosonic two-point vertex functions Γ(2)

ϕj ,ϕk
needs to be diagonalized in the chiral GN

model which is not the case in the GN model.
In addition to the fermion chemical potential µ which couples to the temporal component

of the vector current ψ̄γµψ – the fermion number – we also allow for a non-vanishing chiral
chemical potential µ̃ coupling via conserved charge of the axial vector current ψ̄γµγchψ.8
Remember that γch = iγ1γ2 such that the chiral chemical potential is introduced by adding
the term ψ̄iµ̃γ1ψ to the above action.

After following the usual bosonization method, the resulting effective action is given by

Seff[σ, η] =
∫ β

0
dτ
∫

dx
[
Nf

2λ
(
σ2 + η2

)]
− ln Det [β (/∂ + γ2µ+ iγ1µ̃+ σ+ iγchη)] (4.47)

where the auxiliary bosonic fields σ and η were introduced. See Eq. (3.10) for an interme-
diate step where σ and η are introduced before integrating out the fermions. The scalar
fields follow the Ward identities

⟨σ⟩ = − λ

Nf
⟨ψ̄ψ⟩, ⟨η⟩ = − λ

Nf
⟨ψ̄iγchψ⟩ (4.48)

following the derivation of Eq. (2.43) in Section 2.3.2. The four-fermion action (4.46) is
invariant under the chiral symmetry transformation acting on the fermion fields (3.9),
which is a continuous symmetry in contrast to the discrete chiral symmetry in the GN
model. On the level of the effective bosonic action (4.47), this symmetry is realized by
the transformation (3.11) which is an O(2) symmetry acting on the bosonic fields. A non-
vanishing expectation value of either σ or η breaks this symmetry spontaneously signaling
also the breaking of the chiral symmetry (3.9) and generates a Goldstone mode [44, 45].

4.3.1 The bosonic two-point vertex functions in the chiral Gross-Neveu model

In the basis of the auxiliary fields σ and η, the second-order correction in δσ and δη are
expressed by the Hessian matrix Γ(2)

ϕj ,ϕk
(ρ̄,µ,T , q) with ϕ⃗ = (σ, η) and ρ̄ = σ̄2 + η̄2

S(2)
eff
Nf

=
β

2

∫ dq
2π (δσ(−q), δη(−q)) · Γ(2)(ρ̄,µ, µ̃,T , q) ·

δσ(q)
δη(q)

 (4.49)

where Γ(2) is defined by the matrix elements (recall c⃗ = (1, iγ5))

Γ(2)
ϕj ,ϕk

(ρ̄,µ,T , q) = δj,k
λ

+ 2T
∑
n

∫ dp
(2π) tr

(
˜̄Q−1

(
p+ (q, 0)T

)
cj ˜̄Q−1 (p) ck

)
. (4.50)

Note that ˜̄Q−1 is given by Eq. (4.36) when using the continuous symmetry (3.11) to choose
the homogeneous expansion as η̄ = 0 such that ρ̄ = σ̄2. Consequently, the Hessian matrix
explicitly has non-vanishing off-diagonal elements Γ(2)

σ,η = Γ(2)
η,σ when one takes into account

that the trace over γµγ5 is non-vanishing for the Dirac matrices in d = 1 spatial dimensions,

8 In terms of testing the stability analysis for QCD-inspired models at non-vanishing baryon density, the
introduction of this additional imbalance is not very insightful. However, in the underlying work [4], it is
introduced as an extension of the analysis of the model itself. Thus, the author decided to keep it in this
section for consistency with the original work [4]. A chiral imbalance is relevant in physical systems such
as heavy-ion collision or compact stars.
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see Appendix A.3 for their definition. Thus, the diagonalization of the Hessian matrix
requires a basis change. The corresponding field transformation was already used in studies
of the chiral GN model [203, 227, 347] and is given by

∆ = σ+ iη, ∆∗ = σ− iη, ρ = ∆∗∆ (4.51)

such that
σ+ iγchη = γL∆∗ + γR∆, (4.52)

see Eq. (A.17) for the definition of γL/R. In the matrix-vector notation, this reads as

φ⃗ =Mϕ⃗, φ⃗† = ϕ⃗TM−1, M =

1 −i
1 i

 (4.53)

where φ⃗ = (∆∗, ∆)T and φ⃗† = (∆, ∆∗). With the definition of the matrix M the Hessian
matrix can be transformed as

Γ(2)
φ†

j ,φk
=MjlΓ

(2)
ϕl,ϕm

(M−1)mk . (4.54)

By inserting the identity 1 = MM−1 left and right of the Hessian matrix we rewrite
Eq. (4.49) in terms of the fields ∆ and ∆∗ as

S(2)
eff
Nf

=
β

2

∫ dq
2π

[
δφ†

j(−q)Γ
(2)
φ†

j ,φk
δφk(q)

]
(4.55)

with δφ = (δ∆∗, δ∆)T . This is the so-called complex Hessian matrix in field space, as
it also appears in multi-dimensional analysis with complex variables. It is defined such
that it contains information invariant under holomorphic coordinate changes. Note φ†

1 =

φ2 = ∆ and φ†
2 = φ1 = ∆∗ such that Γ(2)

∆,∆∗ and Γ(2)
∆∗,∆ are the diagonal entries of Γ(2)

φ†
j ,φk

.

Since off-diagonal elements Γ(2)
∆,∆ = Γ(2)

∆∗,∆∗ vanish, the diagonal entries correspond to the
eigenvalues. This basis for Γ(2) arises naturally as a consequence of the definition of the fields
in Eq. (4.51) as a complex-conjugate pair. Note that Γ(2)

φ†
j ,φk

could be directly obtained by

taking functional derivatives of the effective action (4.47) with respect to φ⃗ and φ⃗† instead
of (σ, η)T and (σ, η). We define the obtained eigenvalues as Γ(2)

φ1 = Γ(2)
∆,∆∗ and Γ(2)

φ2 = Γ(2)
∆∗,∆.

The bosonic two-point vertex functions are given by

Γ(2)
φ1/2

(ρ̄,µ, µ̃,T , q) = 1
λ
+ 2T

∑
n

∫ dp
(2π) tr

(
˜̄Q−1 (p+ (0, q)) γR/L

˜̄Q−1 (p) γL/R

)
(4.56)

with ˜̄Q−1(p) = (iγ0(νn − iµ) + iγ1(p+ µ̃) + γL∆̄∗ + γR∆̄)−1 as the fermion propagator for
constant fields ∆̄ = σ̄+ iη̄. Since we are interested in using the stability analysis to find the
critical temperature, where a phase transition between the SP and the IP occurs indepen-
dently of µ, only the stability of the SP, i.e., for ∆̄ = ∆̄∗ = 0 such that also ρ̄ = ∆̄∆̄∗ = 0,
is investigated. See Section 3.2.2 for a discussion of the phase diagram of the chiral GN
model. This significantly simplifies the analysis (details can be found in Ref. [4]) such that
one finds

Γ(2)
φ1/2

(0,µ,T , q) = 1
λ
+ T

∑
n

∫ ∞

−∞

dp
(π)

1[
νn + i(µ± q

2 )
]2 + p2

. (4.57)
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Note that this equation no longer depends on µ̃. This is a consequence of the chiral chemical
potential coupling via iγ1, i.e., to the spatial momentum p and can, thus, simply be shifted
away in the momentum integral. In fact also the effective potential of the theory only
contains the term −µ̃2/2π [4] such that the phase diagram, is independent of µ̃, as first
discussed in Ref. [246].9

Performing the Matsubara sum in Eq. (4.57), one finds

Γ(2)
φ1/2

(0,µ,T , q) = 1
λ
+
∫ dp

π

1
p

[
1 − n

(
p,µ± q

2

)
− n

(
p, −

(
µ± q

2

))]
, (4.58)

where the term 1/p is not finite but the logarithmic UV divergence is canceled by the
renormalization prescription of the four-fermion coupling λ. The renormalization can be
done in the same way as in the GN model, compare Eq. (4.40) for the respective formula in
the GN model and Appendix C for the entire renormalization procedure in 2+ 1 spacetime
dimensions.10 The renormalization is done in the vacuum where homogeneous condensation
is preferred and, thus, one can use the chiral rotation (3.11) to rotate homogeneous field
configurations such that η̄ = 0. In the integrand of Eq. (4.58), a pole is present that needs
to be taken care by a proper infra-red (IR) regularization. Using this IR cutoff one can
show that the IR divergence of the first term cancels against the divergence of the latter
two terms such that the bosonic two-point vertex functions are finite. Moreover, note that a
similar mathematical structure appears in the GN model as one can recover the ℓ1 integral
(4.38) but with a shifted chemical potential µ → µ± q/2. Incomplete polylogarithms can
be identified (see, e.g, Ref. [348] for a summary of these functions) such that we end up
within

Γ(2)
φ1/2

(0,µ,T , q) = 1
π

[
1
2 ln

(
4T 2

ρ̄0

)
− DLi0

(
µ± q

2
T

)
− γ

]
(4.59)

where

DLi2n(y) =
[
∂

∂s
Lis(−ey) + ∂

∂s Lis(−e−y)

]
s=2n

(4.60)

= −δ0,n(ln(2π) + γ) + (−1)1−n(2π)2n Reψ(−2n)
(1

2 +
i

2π y
)

.

Here, Lis is the polylogarithm function and ψ(n) the polygamma function, while γ is the
Euler-Mascheroni constant. This result is in agreement with taking derivatives of the free
energy from Refs. [228, 229].

Evaluating Eq. (4.59) numerically using Mathematica [349] (crosschecks by the authors
are done using Python3 [19] and the Numpy package [350]) for different values of µ and
T reveals the behavior of the bosonic two-point vertex functions in the chiral GN model.
Thereby, ρ̄0 = Σ̄2(µ = 0,T = 0) + H̄2(µ = 0,T = 0), the value of the chiral condensate in
the vacuum squared, is used to set the scale in the following (Σ̄(µ,T ) and H̄(µ,T ) are the
homogeneous, global minima of the effective potential with respect to σ̄ and η̄, respectively).
In Fig. 4.6, we investigate Γ(2)

φ2 for different values of T at fixed µ/
√
ρ̄0 = 1 as a function

of the external momentum q. Since Γ(2)
φ1 (q) = Γ(2)

φ2 (−q) this plot is sufficient to understand
the complete behavior of both bosonic two-point vertex functions. The bosonic two-point

9 More precisely, the condensates Σ and H do not depend on µ̃.
10 The formulae obtained after momentum space integration are obviously different in two spatial dimensions

compared to one due to the additional factor of p in the Jacobi determinant of polar coordinates. Conceptu-
ally, however, the procedure is similar to the one in 1+ 1 dimensions. More details for the 1+ 1-dimensional
GN model are discussed in-depth in Ref. [1].
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vertex functions are positive for all q when T/
√
ρ̄0 > Tc/

√
ρ̄0 = eγ/π where Tc is the critical

temperature of the phase transition between the SP and the IP in the chiral GN model,
see Section 3.2.2. Precisely at T = Tc, the bosonic two-point vertex functions develop a
root at q = 2µ indicating the onset of the instability of the homogeneous phase against
inhomogeneous fluctuations. Consequently, the stability analysis successfully detects the
phase transition between the SP and the IP in the chiral GN model. Moreover, q = 2µ is
precisely the momentum of the chiral spiral at T = Tc and below. The latter can, of course,
not be predicted using the bosonic two-point vertex functions, which however still always
have a minimum at q = ±2µ. Rather, it is an interesting observation that the minimum
of the bosonic two-point vertex functions corresponds to the true wave vector of the chiral
spiral, cf. Eq. (3.12). The minimum of the Γ(2)

φ2 finally turns into a pole at q = ±2µ when
lowering the temperature further to T = 0. This effect is also observed in the GN model,
see the bottom left graph in Fig. 4.3.

connection to the inner spinodal line Inspecting Fig. 4.6, we find that for
T < Tc there exists an interval in q for which the bosonic two-point vertex functions are
negative. The roots, i.e., the boundaries of this interval, are related to the inner spinodal
line of the homogeneous phase boundary of the GN model (or chiral GN model when the
inhomogeneous chiral condensates are neglected). The inner spinodal line is defined as the
line where the second derivative of the effective potential (or effective action) with respect to
the homogeneous order parameter vanishes at vanishing homogeneous fields. However, the
second derivative of the homogenoeus effective potential with respect to

√
ρ̄ is proportional

to the bosonic two-point vertex function of the GN model Γ(2)
σ (q) at q = 0 and vanishing

homogeneous fields. Since the phase diagram is symmetric with respect to µ → −µ, there
are always two values µ = ±µspinodal of the chemical potential for each T < Tc where
Γ(2)
σ (q = 0) vanishes. These two values correspond to two combinations of µ and q given

by ±(µ± q/2) where the bosonic two-point vertex functions Γ(2)
φj in the chiral GN model

vanishes exactly. There are two roots for each of the bosonic two-point vertex functions,
which can be related to each other by sign reflection according to the combinations of
±(µ± q/2) or, vice versa, by Γ(2)

φ1 (q) = Γ(2)
φ2 (−q). For fixed chemical potential, these roots

are the respective end points of the interval in q where one of the bosonic two-point vertex
functions is negative.

4.4 detecting the quantum pion liquid from hessian matrix with
generalized P T symmetry

As discussed above, the bosonic two-point vertex functions Γ(2)
ϕj ,ϕk

can be interpreted as a
Hessian matrix which contains information about the curvature of the (quantum) effective
action with respect to (inhomogeneous) perturbation. This is explicitly computed in Sec-
tion 4.1.2 with Eq. (4.24) as the Hessian matrix within the mean-field approximation. In
Section 2.2.3, we show, however, that the Γ(2)

ϕj ,ϕk
= (⟨ϕjϕk⟩c)−1, i.e., the bosonic two-point

vertex functions are the inverse of the bosonic two-point correlation functions. Thus, one
can extract information about the propagator and its poles directly from Γ(2)

ϕj ,ϕk
. For the

present analysis, one has to mention that Γ(2)
ϕj ,ϕk

computed in Eq. (4.24) only are the exact
bosonic two-point vertex functions of the system when the ground state is homogeneous.
With the presented analysis, we have to assume that this is the case when no instabilities
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Figure 4.6: Eigenvalue of the bosonic two-point function (4.59), Γ̃(2)
22 = Γ(2)

φ2 , for different T at fixed
quark chemical potential µ =

√
ρ̄0 as a function of the external momentum q. This plot

was produced using Mathematica [349].

are detected in the stability analysis, although in principle one would need to determine
the true ground state by minimizing the quantum effective action, see the discussion in
the paragraph about “general remarks regarding the stability analysis” in Section 4.1.2.
Whether this assumption is justified depends on the studied theory and must be checked
in each individual case. To perform the search for instabilities, the full Hessian matrix
Γ(2)
ϕj ,ϕk

has to be diagonalized by finding an appropriate basis φj and instabilities towards

an IP have to be excluded, i.e. Γ(2)
φj ( ⃗̄φ,µ,T , q) > 0.

Assuming this analysis was already performed and no IP is observed, one can examine
the existence of a QπL in the following way. The basis of our investigation is the discussion
in Section 3.1.2. Therein, we explained that propagator poles of ordinary, homogeneous
phases, such as the HBP or the SP, typically are purely imaginary leading to an expo-
nential decay of the position space propagators. This is a standard result for QFT in
Euclidean spacetime after Wick rotation [64, 282]. However, in theories with a generalized
PT symmetry one may observe a so-called disorder line, where two or more propagator
poles first become degenerate and, when crossing the disorder line, these poles develop a
non-vanishing real and imaginary part [185, 191], see Section 3.1.2. In finite density QCD,
this symmetry transformation corresponds to the combined operation of a charge conjuga-
tion C and complex conjugation K leaving the QCD action invariant at µ ̸= 0 (while it is
not invariant under C or K individually), see Section 3.1.2 for details. A disorder line is also
observed in a study of the stability of an inhomogeneous chiral spiral condensate against
flcutuations of Goldstone bosons of O(Ns) symmetry breaking [219].

The disorder line corresponds to a transition towards a so-called PT -broken phase with
position space propagators that feature short- and/or intermediate-range oscillations, in-
duced by the real part of the pole, in addition to the exponential decay, stemming from
the imaginary part of the pole as discussed above, that dominates the behavior for large
distances. In this thesis, this regime is called a QπL, see Section 1.2 or Chapter 3. From
the computation and analysis of the mass matrix (the static Hessian matrix) in a scalar
field theory with dynamical scalar fields, one can anticipate the appearance of complex-
conjugate propagator poles [188], see Section 3.1.2 for details, and the QπL can also be
observed in LFT simulations [180, 188, 190]. In a four-fermion model, one uses that the
bosonic two-point correlation function are the inverse of the Hessian matrix Γ(2)

ϕj ,ϕk
in the
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mean-field analysis from the previous sections. Also the Hessian matrix in the mean-field
approximation Γ(2)

ϕj ,ϕk
can have complex-conjugate eigenvalues which can be shown to be

the characterizing behavior in a QπL [189], see below.
In the analysis of Γ(2)

φj , however, we at first only consider real momenta q and, therefore,
are not in the position to find the roots of the bosonic two-point vertex functions in the
complex plane in order to directly determine the respective poles of ⟨φjφj⟩c(q). Although
it is possible to repeat the computation of Γ(2)

ϕj ,ϕk
with q ∈ C, we perform a simpler,

exploratory analysis of the bosonic two-point vertex functions based on the assumption
that the ground state is homogeneous. A low-momentum expansion of the bosonic two-
point vertex functions in the diagonalizing field basis

Γ(2)
φj

(q) ≈ Zφjq
2 + Γ(2)

φj
(q = 0) , (4.61)

with the bosonic wave function renormalitzation Zφj (4.25), yields an effective kinetic term
∼ q2 in the quantum effective action and can be used as an approximation of Γ(2)

φ for small
|q|. Note that Γ(2)

φj (q = 0) just corresponds to the mass matrix in its diagonal basis. Setting
the low-momentum expansion (4.61) to zero, allows to search for propagator poles in this
range. Especially, when

Γ(2)
φj

(q = 0) =
(

Γ(2)
φk

(q = 0)
)∗

, j ̸= k, (4.62)

i.e., complex-conjugate eigenvalues of Γ(2)(q = 0) appear, one can directly compute the
propagator poles when the imaginary part of Zφj is small enough. These poles then also
appear as complex-conjugate pairs. Details on this procedure are discussed in Chapter 6.
In this chapter, a QπL is observed in the phase diagram of a four-fermion model using this
expansion. Analytical benchmarks for this procedure are currently not available, since to
our knowledge there exist no simple, analytical result on the existence of QπLs in four-
fermion theories in the literature.

4.5 implications for the following result chapters

In this chapter, a general derivation of the bosonic two-point vertex functions within the
mean-field approximation in a generic four-fermion model in d+ 1 Euclidean spacetime
dimensions at non-vanishing temperatures and chemical potentials was presented. We es-
tablished the appearance of the bosonic two-point vertex functions in the Hessian matrix
when applying inhomogeneous fluctuations to homogeneous condensates and demonstrated
how the stability of homogeneous condensates can be analyzed by studying the bosonic two-
point vertex functions in an appropriate field basis. Moreover, the bosonic wave-function
renormalization was computed as the second derivative of the bosonic two-point vertex
functions with respect to the external momentum q evaluated at q = 0. This method was
then applied and benchmarked on the phase diagram of the GN model and the chiral GN
model in 1 + 1 dimensions. Thereby, we demonstrated that the stability analysis is suc-
cessful in determining the phase transition between an IP and the SP, although it is not
guaranteed that the region of instabilities, that is obtained from the analysis of the bosonic
two-point vertex functions, is identical to an IP that is obtained from computing the true
ground state of the theory (although it is often extremely difficult or impossible to truely
determine the ground state). In the GN model, we showed that the method fails to detect
parts of the IP when there is an energy barrier between the homogeneous expansion point
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and the true, inhomogeneous ground state. In the chiral GN model, the method succeeds
in detecting the correct phase boundary between the SP and the IP.

In the case of stable homogeneous ground states, we discussed further the potential of
the bosonic two-point vertex functions to analyze properties of the corresponding bosonic
two-point correlation functions. Finding complex-conjugate root pairs of the bosonic two-
point vertex functions in momentum space yields the existence of a QπL – a regime where
the position space propagators are oscillatory but exponentially suppressed. The existence
of this regime is based on symmetry arguments from QFTs with generalized PT symmetry,
a framework that also applies to QCD at non-vanishing µ. We outlined how these complex
roots can be obtained from a low momentum expansion of the bosonic two-point vertex
functions, a method that is applied to a four-fermion model in Chapter 6.

The presented analysis of the bosonic two-point vertex functions in four-fermion models
is used as a general framework in the following Chapter 5 and Chapter 6 in order to study
the phase diagams of the respective theories with respect to the existence of exotic phases.
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disclosure The central �ndings of this chapter have been published in Ref. [2] and
Ref. [3]. To be speci�c, the results in Section 5.2 stem from Ref. [2] and were obtained in
collaborative work with L. Pannullo. They can be associated to both of us in similar shares.
The �gure in Section 5.2 was produced by L. Pannullo. All other �gures were produced by
myself. These �ndings were extended and build upon in Ref. [3] by including the quartic
vector interactions. The results including vector interactions in Section 5.3 can, thus, solely
be attributed to the author of this thesis. The majority of the presentation of the �ndings
has been rewritten and restructured in the context of this manuscript. However, parts of
the description of the tables and central equations are close to the respective references.

abstract and relat ion to the research objectives In this chapter,
we show that homogeneous condensates are stable against IPs in2 + 1-dimensional four-
fermion and Yukawa-type models. The technique of stability analysis, which was introduced
in Chapter 4, is applied to these models at non-vanishing baryon chemical potential. We
argue that the absence of instabilities is strong evidence for the absence of IPs in these mod-
els at any non-vanishing temperature.1 Thereby, we naturally arrive at conclusive evidence
with respect to the part of RO5: �What is the fate of inhomogeneous chiral condensates
within 2 + 1-dimensional four-fermion theories and related QCD-inspired models?�. The
latter part regarding related QCD-inspired models can only partially be tackled using also
context from other �ndings in the literature.

outl ine After a brief de�nition of the models in Section 5.1, the absence of instabilities
is proven for four-fermion models with a complete basis in the local local, (Euclidean)
Lorentz-scalar interaction channels at all values of the chemical potential and non-vanishing
temperatures in Section 5.2. This �nding is shown to be valid also for corresponding Yukawa
models that can be obtained from a generalization of the four-fermion models. Moreover,
the absence of instabilities is shown for models subjected to multiple chemical potentials,
but with a restricted set of scalar interactions.. In Section 5.3, we extend the analysis to
four-fermion models with vector interactions and show the absence of instabilities towards
inhomogeneous �uctuations within the SP of the theories. This analysis is restricted to
the SP since a non-vanishing chiral condensate leads to mixing e�ects between scalar and
vector modes and the appearance of a Q� L � an e�ect that is investigated in Chapter 6.
In Section 5.4, the �ndings are summarized in a compact way and contextualized with the

1 A degeneracy between a HBP and an IP can be observed atT = 0 according to Ref. [321]. This degeneracy
is speci�cally excluded from the argumentation.

81















5.2 absence of inhomogeneous condensates for scalar interactions 88

0 1 2 3

q/M0

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

M
/
M

0

L2,+

T/M0 = 0.05
µ/M0 = 1.0

0.25
0.50

0.75

1.00

1.25

0 1 2 3

q/M0

L2,−
T/M0 = 0.05
µ/M0 = 1.0

0
.2

5

0.
50

0.
75

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

M
/
M

0

L2,+

T/M0 = 0.00
µ/M0 = 1.0

0.25
0.50

0.75

1.00

1.25

0
.0

0

L2,−
T/M0 = 0.00
µ/M0 = 1.0

0
.2

5

0.
50

0.
75

0
.0

0

0.0

0.2

0.4

0.6

0.8

1.0

1.2

L
2
,±
/
M

0

Figure 5.1: L2,+ and L2,− for T/M0 = 0, 0.05 and µ/M0 = 1.0 as a function of q and M . The
0.0 contour line and its label are not shown, because they would be obscured by the
axis. In the ancillary files to Ref. [2], we provide a Python3 script for the numerical
computation of L2,± for arbitrary values of (M2,µ,T , q2) and the production of figures
similar to this one. See Eqs. (5.10) and (5.11) for the definition of L2,±.

with C⃗ = C⃗s and λj = λS or λj = 0 is stable against inhomogeneous fluctuations for all
temperatures and chemical potentials. Moreover, these models also do not feature a moat
regime where Γ(2)

ϕj
develops a global minimum at q ̸= 0, see Section 3.1.1 and Section 4.1.4

for a more detailed introduction of the moat regime. The monotonically increasing behav-
ior of L2,± implies that the wave function renormalization Z, the curvature of the bosonic
two-point vertex function with respect to q, see Eq. (4.25), is always ≥ 0, and the moat
regime is absent in these models.

At zero temperature, one finds ℓ2 ∼ Θ
(
µ2 −M2 − q2/4

)
resulting in the observation of

a plateau with Γ(2)
ϕj

(M2,µ,T = 0, q = 0) = Γ(2)
ϕj

(
M2,µ,T = 0, q2 ≤ 4

(
µ2 −M2)). In this

area, the bosonic wave function renormalization Z but also higher derivatives of the bosonic
two-point vertex functions vanish. The flatness itself is a consequence of the behavior of the
fermionic distribution functions (see Eq. (C.18) for their definition) at zero temperature.
However, when also the contribution 1/λ− ℓ1 vanishes, the whole bosonic two-point func-
tion Γ(2)

ϕj
vanishes for 0 ≤ q2/4 ≤ µ2 −M2 implying a degeneracy between the homogeneous

global minimum and inhomogeneous condensates that can be built up by infinitesimal inho-
mogeneous perturbations with q2/4 ≤ µ2 −M2 according to Eq. (5.8). Such a degeneracy
was observed in the (2 + 1)-dimensional GN model at T = 0 and µ/M0 = 1.0 using a
one-dimensional ansatz for the inhomogeneous condensate [321]. Interestingly, this ansatz
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is the so-called chiral kink, build by Jacobi-elliptic functions, and the found parameters for
this ansatz allow for rather large amplitudes of the inhomogeneous condensate, see Fig. 3.2
for a plot of exemplary field configurations of the chiral kink. Moreover, at T = 0 and
µ/M0 = 1.0 the homogeneous effective action and, consequently, also the effective poten-
tial of the GN model is flat for homogeneous field values M/M0 ∈ [0.0, 1.0]. This point in
the phase diagram was termed a first-order phase transition in the past, but rather this
behavior corresponds to a CP. As discussed above, the homogeneous phase diagram of all
models described by Eq. (5.8) with C⃗ = C⃗s and λj = λS or λj = 0 is identical to the one
of the (2 + 1)-dimensional GN model.

At this point, it is important to mention that the absence of instabilities towards in-
homogeneous fluctuations does not completely rule out the existence of an IP. As shown
in Ref. [1] at the example of the (1 + 1)-dimensional GN model, it is possible that an
energy barrier exists between the homogeneous minimum, i.e., the minimum of the ho-
mogeneous effective potential and, thus, the appropriate expansion point for the stability
analysis, and the global inhomogeneous minimum. Then, the homogeneous condensate is
metastable and, thus, the IP is not detected by the stability analysis although the in-
homogeneous condensate is energetically favored. Such a phase can only be detected by
calculations with a guess of an ansatz function, reducing the minimization of the effective
action for inhomogeneous condensates to the minimization of a few parameters, or by nu-
merical brute-force minimization of the effective action using lattice discretizations of the
theory. For the (2 + 1)-dimensional GN model, there is evidence that an IP can also not
be found by explicit lattice minimizations of the effective actions [7, 8, 240, 241, 344]. In
these works, only IPs are found at finite lattice spacings which are also detected using
the stability analysis, see Refs. [7, 241, 344] for detailed descriptions. It is crucial to note
that these IPs vanish when taking the continuum limit [240, 241] as the bosonic two-point
vertex function converges toward a momentum dependence proportional to L2,+. These
findings in the (2 + 1)-dimensional GN model suggest that the stability analysis applied to
the general four-fermion model (5.1) with Lorentz-scalar interactions also does not miss an
IP. Also, to the best of our knowledge, all IPs in effective model investigations can at least
in some parameter region be detected by the stability analysis. Typically, one observes a
transition between the SP and the IP which is of second-order. This implies that at least
this second-order transition can be detected by analyzing the stability of the SP against
inhomogeneous fluctuations. Finding the stability of all homogeneous expansions points, as
described above, in combination with these arguments is strong evidence for the absence
of inhomogeneous condensates in all models described by Eq. (5.1) – or, vice versa, the
effective action (5.6) – with C⃗ = C⃗s and λj = λS or λj = 0. Moreover, we showed the
absence of a moat regime in both the SP and the HBP of the respective models.

different models and symmetries In Table 5.3, we present examples of four-
fermion models where the condensates do not develop an instability towards inhomogeneous
perturbations and, thus, it is improbable that an IP exists in their respective phase dia-
gram. All presented models can be obtained from the action (5.1), or the effective action
(5.6), by using C⃗ = C⃗s (5.2) and setting λj = λS or λj = 0. This allows to study different
theories invariant under different symmetry groups. The main purpose of Table 5.3 is to il-
lustrate that the non-existence of IPs and moat regimes in (2+ 1)-dimensional four-fermion
models is independent of the number of considered interaction channels and the respective
(chiral) symmetry group of the action. This is significantly different from findings in 1+ 1-
dimensions where the phase diagram of a theory can differ significantly when changing the
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interaction channels and the respective symmetry group [201, 202, 245–248]. As already
discussed above, the momentum-dependent part of the bosonic two-point vertex functions
Γ(2)
ϕj

is given by L2,+ when the parity quantum numbers (P4,P5) of the corresponding
bosonic field ϕj are even whereas it is given by L2,− when the parity quantum numbers are
odd.

The first row of Table 5.3 shows the GN model with one single (iso-)scalar interaction
channel, c.f., Table 5.1. The momentum-dependent part of the bosonic two-point vertex
function is proportional to L2,+ as already shown in Ref. [241].

The second row considers the analogue of an NJL model in (2 + 1)-dimensions with
three interaction channels, one isoscalar and two isovector interactions either of which is
odd under P4 or P5. The axial symmetry transformations Eqs. (B.14) and (B.15) are broken
by the isovector interactions similar to the axial U1 symmetry breaking in the NJL model
in 3+ 1 dimensions4 such that an invariance under combined isospin and axial symmetries
Eqs. (B.20) and (B.21) remains. The γ5 operator is ambiguous in (2 + 1)-dimensions such
that it is sensible to construct an NJL model in this way. The momentum-dependence of
the bosonic two-point vertex functions of the π-fields is given by L2,− while it is L2,+ for
the σ-field (similar to (3 + 1) dimensions [10, 342]).

The third row introduces the chiral Heisenberg-Gross-Neveu (χHGN) model [267] with
an additional (ψ̄γ45ψ)

2 interaction term that is invariant under the whole chiral symmetry
group (B.19). The second-order contribution of this model (5.8) is only diagonal in the
original field basis (σ, η4, η5, η45) when η̄45 = 0 which cannot be produced by a symmetry
transformation of the homogeneous ground state. Thus, we showed how η̄45 = 0 is obtained
from the homogeneous effective potential below Eq. (5.9) such that there exist no off-
diagonal contributions. Then, also for this model we found that the momentum-dependent
parts of Γ(2)

ϕj
are either proportional to L2,+ or L2,− such that homogeneous condensates

are stable against inhomogeneous fluctuations.
The last row includes all interaction channels present in Eq. (5.1) with C⃗ = C⃗s and λj =

λS , ∀j, and is called complete Lorentz-(pseudo)scalar four-fermion (PSFF) model in this
work. As discussed above, one finds by analytic arguments that η̄45 = ⃗̄π45 = 0 such that the
second-order contribution is diagonal in the original field basis (σ, η4, η5, η45, a⃗0, π⃗4, π⃗5, π⃗45).
Even though all interaction channels and the largest possible chiral symmetry group is
considered, no bosonic two-point vertex function develops a minimum at q ̸= 0 and the
homogeneous condensates are stable against inhomogeneous fluctuations.

As discussed above, Γ(2)
ϕj

is proportional to L2,± independent of the symmetry group of
the action and independent of the number of interaction channels considered. Therefore,
according to the arguments summarized above, none of the models exhibits an instability
towards an IP for any value of M2,µ,T , q2. This is strong evidence for the absence of IPs
and a moat regime in (2 + 1)-dimensional four-fermion models, as argued above.

implications for the full quantum theories As for the whole chapter, the
stability of homogeneous condensates is obtained in the mean-field approximation such that
one needs to discuss the predictive power of the finding for the full quantum theory – given
by the partition function (2.33) replacing SFF by Eq. (5.1) with C⃗ = C⃗s. Typically, it is ob-
served that bosonic fluctuations tend to disfavor and/or disorder any kind of condensation,

4 This symmetry is broken by a quantum anomaly in QCD [352]. As this anomaly is not broken by quantum
effects in a theory without gauge fields, one constructs the NJL model such that the chiral symmetry
resembles QCD, i.e., with a broken axial U1 symmetry. Note that the occurence of an anomaly depends
highly on the number of spacetime dimensions.
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model used channels
cj

field basis φ⃗j
diagonalizing

S(2)
eff

momentum
dependence

of Γ(2)
φj

symmetry
groups

L2,+ L2,−

GN 1 σ σ UI4(N) ×
Uγ45(N) ×
Zγ5(2) ×

SUτ⃗ (2) × P4 × P5

NJL 1, iτ⃗ γ4, iτ⃗ γ5 σ, π⃗4, π⃗5 σ π⃗4, π⃗5 UI4(N) ×
Uγ45(N) ×

SUA,γ4(2N) ×
SUA,γ5(2N) ×

SUτ⃗ (2) × P4 × P5

χHGNP 1, iγ4, iγ5, γ45 σ, η4, η5, η45
(for η̄45 = 0)

σ, η45 η4, η5 Uγ(2N) ×
SUτ⃗ (2) × P4 × P5

PSFF 1, iγ4, iγ5, γ45,
τ⃗ , iτ⃗ γ4, iτ⃗ γ5, iτ⃗ γ45

σ, η4, η5, η45
a⃗0, π⃗4, π⃗5, π⃗45

( for η̄45 = ¯⃗π45 = 0 )

σ, η45,
ς⃗, π⃗45

η4, η5,
π⃗4, π⃗5

Uγ(2N) ×
SUτ⃗ (2) × P4 × P5

Table 5.3: Examples of the bosonized four-fermion models given by the action (5.1), or the effective
action (5.6), with C⃗ = C⃗s (5.2) where no instability is observed for all homogeneous
expansion points and all values of µ and T .. We allow for finite baryon chemical potential
µ and finite temperature T . The first column gives the models abbreviations for their
names for further reference (whenever available names existing in the literature are used).
In the second column, the respective interaction channels kept from Eq. (5.1) are listed.
The rest is removed by setting λk = 0. The third column lists the field basis φj , for
which the second-order corrections (4.23) can be diagonalized and, thus, a meaningful
stability analysis can be performed. The fourth column indicates whether the momentum
dependence of Γ(2)

φj is given by L2,+(M2,µ,T , q2) or L2,−(M2,µ,T , q2). The fifth column
gives the full symmetry group of the model. The group names are ´links to the definition
of the symmetry group.

see Chapter 7 for a discussion. In d = 1 spatial dimensions and non-zero temperatures,
a rather general argumentation is given excluding the spontaneous breaking of discrete
symmetries in Ref. [323] and the breaking of a continuous symmetry is forbidden according
to a no-go theorem [222, 223]. In higher dimensions, there exists no general argument for-
bidding the breaking of symmetries, but it is generically expected that bosonic quantum
fluctuations disfavor any kind of ordering similar to thermal ones. This statement is sup-
ported multiple times in the literature [225, 226, 228, 229, 275, 325, 327]. See Section 3.3
and Chapter 7 for further discussions on the influence of bosonic quantum fluctuations on
the phase diagram of QCD-inspired effective models. Based on these findings, we expect
that the non-existence of IPs in (2 + 1)-dimensional four-fermion and Yukawa models (the
generalization to Yukawa models is discussed below) in the mean-field approximation is a
clear signal that inhomogeneous ground states are not present in the full quantum theory.
The observation of an IPs – or other inhomogeneous order parameters / ground states –
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in the full quantum theory that is not present within the mean-field approximation has so
far not been observed.

5.2.2 Stability analysis with multiple chemical potentials

In this subsection, the discussion is extended towards theories that feature multiple im-
balances introduced by the presence of multiple chemical potentials. In addition to the
chemical potential for the fermion number density µ, which is introduced in Eq. (5.1) via
the usual µψ̄γ3ψ term following Section 2.1, we consider an isospin as well as a chiral imbal-
ance. Similar to non-vanishing fermion number, these imbalances are accounted for in the
partition function through introduction of a finite isospin chemical potential with the term
µI ψ̄γ3τ3ψ, and a chiral chemical potential with µ45ψ̄γ3γ45ψ. Although these additional
imbalances in the system require a more sophisticated analysis, one can again identify
the momentum-dependent part of the bosonic two-point vertex functions L2,± from Sec-
tion 5.2.1 in particular simple cases. Thus, also the models discussed in this subsection do
not exhibit instabilities towards an IP. Also, the existence of a moat regime is ruled out,
as Z ≥ 0 according to the discussion in Section 5.2.1.

In general, the introduction of multiple chemical potentials induces that multiple aux-
iliary fields ϕj have non-vanishing (homogeneous) expectation values; in contrast to the
case of only µ ̸= 0 where the homogeneous ground state can be given by ϕ̄j = δj,0σ̄. For
example, a non-vanishing µ45 can lead to a non-vanishing η̄45 in addition to σ̄ ̸= 0. An
important example from QCD is the condensation of charged pions in the presence of an
isospin chemical potential [353–355]. Thus, even when restricting to homogeneous phases,
the phase structure of such a theory can be more involved, compare, e.g., Refs. [7, 304,
356].

Consequently, also the analysis of the bosonic two-point vertex functions in a stability
analysis is more involved, although in principle the method can be applied as introduced
in Section 4.1.2. The main difficulty is the diagonalization of the second-order contribution,
see Eq. (4.23), since the fermion propagator Q̄−1 contains the above introduced chemical
potentials as well as multiple non-vanishing expectation values ϕ̄j . For many of the scalar
interaction channels contained in Eq. (5.2) it can become impossible to analytically diag-
onalize this expression and numerical diagonalization is required (see Chapter 6 where a
numerical diagonalization is performed due to the presence of vector interactions). Thus,
a general analysis of the model described by Eq. (5.1) with C⃗ = C⃗s with multiple chemical
potentials is not possible in a straightforward way similar to Section 5.2.1. However, for
certain combinations of multiple chemical potential and interaction terms, the momentum
dependence of the bosonic two-point vertex functions can be obtained by a comparatively
straightforward diagonalization procedure through a suitable choice of field coordinates φ⃗.
In this case, one chooses φj such that the fermion propagator (D.1) is diagonal in this basis
and decomposes into 2 × 2 blocks – each corresponding to an irreducible spinor represen-
tation. Then, the contribution of the fermion loop (proportional to Tr

(
Q̄−1∆QQ̄−1∆Q

)
,

see Eq. (4.15)) also decomposes when ∆Q is rewritten as a function of the corresponding
perturbations δφ⃗. The bare interaction vertices for the ψ̄ψφj term – that are proportional
to the original four-fermion vertices cj ∈ C⃗s – project out either one or multiple of the
2 × 2 blocks and diagonalize the field space matrix in brackets in Eq. (D.3). This allows to
proceed with the analysis as described in Section 4.1.2 and Appendix D.1.
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Table 5.4 contains all models, where such an analysis with respect to the stability of
homogeneous condensates against inhomogeneous fluctuations was performed by us with
the presence of two or more non-vanishing chemical potentials. All bosonic two-point ver-
tex functions obtained in the models in Table 5.4 are proportional to L2,+. This stems
from the choice of φ⃗ such that block-diagonal structures are obtained in the homogeneous
fermion propagator (D.1). These blocks behave as contributions from the homogeneous
propagator in the (2+ 1)-dimensional GN model (whose bosonic two-point vertex function
is proportional to L2,+) with a single effective chemical potential and either a single field
φj or a linear combination of the fields φj . The effective chemical potentials are linear
combinations of µ,µI ,µ45. The momentum dependence of the obtained bosonic two-point
vertex functions is given by linear combinations of L2,+ with effective masses and chemical
potentials.

The first row in Table 5.4 contains an extension of the GN model with an additional
(ψ̄γ45ψ)

2 interaction term and is subjected to both an ordinary fermionic and a chiral
chemical potential. Without the additional interaction channel such a model was already
studied in Ref. [7]. Due to the non-vanishing µ45 the homogeneous expectation value η̄45 ̸= 0
breaking both P4 and P5 (B.25) and (B.26) spontaneously. As described above, the field
basis ϕL/R decouples the theory into two independent GN-type theories with chemical
potentials µL/R = µ±µ45 leading to bosonic two-point vertex functions whose momentum
dependence is given by L2,+. A similar procedure can be performed for the model in the
second row where instead of the (ψ̄γ45ψ)

2 one considers an isovector-component interaction
channel (ψ̄τ3ψ)

2 (corresponding to an auxiliary bosonic field a0,3 in the bosonized action)
and an isospin chemical potential µI instead of a chiral imbalance. In the third row, one
studies both isospin and chiral imbalance in addition to the fermion chemical potential in
a model with both (ψ̄ψ)

2 and (ψ̄γ45τ3ψ)
2 interaction channels. Again, the diagonalized

field basis is given by a linear combination of the bosonic fields σ and π45,3. Due to the
introduction of both chemical potential, the momentum dependence of the bosonic two-
point vertex functions is given by a sum of two L2,+ terms that differ in the value of
the effective chemical potential. In the forth row, one considers all interactions present in
the first two rows and the chemical potentials µ,µI ,µ45. Interestingly, the diagonalizing
field basis contains ϕL,ϕR, a0,3, i.e., the isovector-component interaction is not part of
the diagonalization procedure although an isospin chemical potential is considered. The
momentum dependent part of Γ(2)

ϕL/R
is again given by sums of two L2,+ contributions each

with different effective chemical potentials and masses M2 = (ϕL/R ± a0,3)
2. The bosonic

two-point vertex function of a0,3, however, is proportional to the sum of Γ(2)
ϕL

and Γ(2)
ϕR

.
Summarizing, all presented four-fermion model in Table 5.4 do not exhibit an instability

of the homogeneous ground state towards inhomogeneous condensates and we consider it
unlikely that their phase diagrams feature an IP or a moat regime, cf. the discussion in Sec-
tion 5.2.1. Nevertheless, we want to note that in this investigation of four-fermion models
subjected to multiple imbalances we restricted ourselves to a very limited set of interaction
channels. This also restricts the predictive power of the used models for high-energy phe-
nomenology. For example, at non-vanishing isospin chemical potential one needs to account
for charged pion condensation [353–355]. Attentive readers may notice that the relevant
channels for pion condensation are not present in the discussed models in Table 5.4. In
order to take such a phenomenon into account in our analysis, one certainly has to ex-
tend this study to the relevant interaction channels. To study a larger set of interactions
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with several of the chemical potentials µ,µI ,µ45 or other axial imbalances5, the diagonal-
ization procedure is certainly more involved than what is described above and, probably,
a numerical diagonalization is required. Such a numerical diagonalization is, for example,
performed in Chapter 6 where it is necessitated by the inclusion of vector interactions.
However, the present analysis should be understood as a first step in the stability analysis
of four-fermion models with the presence of multiple imbalances in fermion densities. Cer-
tainly, our investigation shows that the presence of multiple chemical potentials does not
generically favor the existence of inhomogeneous ground states. The numerical analysis of
the (2 + 1)-dimensional GN model at non-vanishing µI or µ45 in Ref. [7] rather suggest
that the introduction of another chemical potential in addition to the fermion chemical
potential µ disfavors the existence of inhomogeneous condensates.

5.2.3 Generalization to Yukawa models

When the models are studied with a baryon chemical potential without the presence of
other imbalances, it is directly possible to generalize the findings in the stability analysis
in Section 5.2.1 to Yukawa models defined as generic extensions of the four-fermion models
following Eq. (2.48).

The derivation is similar to the one outlined in Section 4.1.2 and in Section 5.2 for the
general four-fermion model (5.1) with C⃗ = C⃗s. After an expansion of the effective action
SY in powers of inhomogeneous perturbations δχ⃗ of the Yukawa fields χ⃗, one identifies
again S(0)

Y as the homogeneous effective action, proportional to the homogeneous effective
potential, see Section 2.4.4. Applying the stability analysis to Eq. (2.48), the second-order
contribution is again the first non-vanishing correction to the homogeneous effective action
S(0)
Y when the homogeneous expansion point is a solution of the gap equation. This is, again,

due to the fact that the first-order correction S(1)
Y is proportional to the gap equations. For

the second-order corrections we find

S(2)
Y

Nf
=
β

2
∑
j∈C⃗s

1
hλj

∫
d2x δχ2

j (x) − Tr
[
Q̄−1 h∆QQ̄−1 h∆Q

]
+ (5.14)

+
1
2
∑
j∈C⃗s

{∫
d2x (∂νδχj(x)) (∂νδχj(x)) +

∑
n>1

κn2n
(
⃗̄χ2
)n−1 ∫

d2x δχ2
j (x)

}
+

+ 2
∑
j,k∈C⃗s

∑
n>1

κnn(n− 1)χ̄jχ̄k
(
⃗̄χ2
)n−2 ∫

d2x δχj(x)δχk(x),

where the second and third line contain the additional terms from the extensions to Yukawa
models while all other expressions are similar to the ones in Eq. (4.23) when replacing ϕ̄
by hχ̄ and δϕ⃗ by hδχ⃗. Thus, ∆Q =

∑
k ckδχk. Note that the third line contains non-

diagonal contributions from the self-interaction terms of the χ⃗ fields. These are, however,
proportional to χ̄jχ̄k and, consequently, vanish when the homogeneous expansion can be
chosen such that only one of the Yukawa fields develops a non-vanishing expectation value.
Since the Yukawa-type models given by Eq. (2.48) with a baryon chemical potential possess
the same chiral symmetries as the respective four-fermion model, this is always possible.
This is the case for the models in Table 5.3. If this choice is not allowed, e.g., due to the

5 For example, one could introduce chemical potentials for the conserved currents ψ̄γνγ5ψ or ψ̄γνγ4ψ as in
Ref. [107].
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used
chan-

nels cj

bosonic
auxil-
iary

fields
ϕj

non-zero
chemical

potentials

field
basis φ⃗j
diago-

nalizing
S(2)

eff

momentum
dependence of

Γ(2)
φj

f(M2,µ) =
L2,+(M

2,µ,T , q2)

underlying
symmetry

group

1, γ45 σ, η45 µL=(µ+ µ45)

µR=(µ− µ45)

ϕL=(σ+ η45)

ϕR=(σ− η45)

f(ϕ̄2
L,µL)

f(ϕ̄2
R,µR)

UI4(N) ×
Uγ45(N) ×
Zγ5(2) ×

SUτ⃗ (2) × P4 ×
P5

1, τ3 σ, a0,3 µ↑=(µ+ µI)

µ↓=(µ− µI)

ϕ↑=(σ+ ς3)

ϕ↓=(σ− ς3)

f(ϕ̄2
↑,µ↑)

f(ϕ̄2
↓,µ↓)

UI4(N) ×
Uγ45(N) ×
Zγ5(2) ×

Uτ3(1)×P4 ×P5

1, τ3γ45 σ,π45,3 µL,↑=(µL + µI)

µL,↓=(µL − µI)

µR,↑=(µR + µI)

µR,↓=(µR − µI)

φ+ =

(σ+ π45,3)

φ− =

(σ− π45,3)

f(φ̄2
+,µL,↑)

+f(φ̄2
+,µR,↓)

f(φ̄2
−,µL,↓)

+f(φ̄2
−,µR,↑)

UI4(N) ×
Uγ45(N) ×
Zγ5(2) ×

Uτ3(1)×P4 ×P5

1, τ3, γ45 σ, a0,3, η45 µL,↑, µL,↓,
µR,↑, µR,↓

ϕL

ϕR

a0,3

f((ϕ̄L + ā0,3)2,µL,↑)

+f(ϕ̄L − ā0,3)2,µL,↓)

f((ϕ̄R + ā0,3)2,µR,↑)

+f(ϕ̄R − ā0,3)2,µR,↓)

Γ(2)
ϕL

+ Γ(2)
ϕR

UI4(N) ×
Uγ45(N) ×
Zγ5(2) ×

Uτ3(1)×P4 ×P5

Table 5.4: Examples of the bosonized four-fermion models with multiple chemical potentials and in-
teraction channels where no instability is observed for all homogeneous expansion points
and all values of the chemical potentials and the temperature. The first column describes
the used four-fermion interaction vertices (compare Eq. (5.2)) in the model. The second
column gives the corresponding auxiliary bosonic fields after bosonization, that corre-
spond to the fermion bilinear via the Ward identity (5.5). The third column lists the
used chemical potentials. In the fourth column, the field basis φj is defined, which diag-
onalizes the second-order correction. Then, the momentum dependence of the two-point
functions Γ(2)

φj is given in the fifth column, next to the field definition. The last column
givens an overview of the present symmetries in the model. The group names are links
to the definition of the symmetry group.
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presence of additional chemical potentials, these additional contributions need to be taken
into account and an explicit diagonalization procedure is necessary.

In the present case of one chemical potential µ for the fermion number, we can directly
identify the second-order contribution to the effective action as being diagonal in the orig-
inal field basis χ⃗. We find

S(2)
Y

Nf
=
β

2

∫ d2q

(2π)2

∑
j∈C⃗s

|δχ̃j(q)|2 Γ(2)
χj

(
M2,µ,T , q

) , (5.15)

with the bosonic two-point vertex functions

Γ(2)
χj

(
M2,µ,T , q

)
=

1
λ

− ℓ1
(
M2,µ,T

)
+ L2,χj (M

2,µ,T , q2)+ (5.16)

+
1
2q

2 +
∑
n>1

κnn

[
2
(
⃗̄ζ2
)n−1

+ 4(n− 1)ζ̄2
j

(
⃗̄ζ2
)n−2]

.

Again, one finds for the momentum-dependence of Γ(2)
χj the monotonically increasing func-

tions L2,± (5.11). As obvious from Eq. (5.16), the additional terms compared to the bosonic
two-point vertex functions in the four-fermion model (5.10) are either constant or mono-
tonically increasing in q2. These terms cannot facilitate the appearance of an instability
towards inhomogeneous fluctuations. Thus, the reasoning of the previous subsection ap-
plies also to the Yukawa models (2.48) with the effective action given by Eq. (5.6) where
C⃗ = C⃗s and either λj = λS or λj = 0. For these models, no instabilities towards an IP is
observed for all values of T ,µ, ⃗̄χ, q2 similar to the four-fermion models. In particular, this is
the case for the Yukawa extensions of all models presented in Table 5.3. However, one has
to note that the respective phase diagrams of the Yukawa models can significantly differ
form the phase diagrams of the four-fermion model depending on the parameter setting of
the additional couplings. Also, the effect of bosonic fluctuations can certainly be different
due to nature of the dynamical bosonic fields. However, it is certainly also not expected
that IPs are absent within the mean-field approximation but present in the full quantum
theory, similar to the discussion in Section 5.2.1.

yukawa models with multiple chemical potentials The extension of the
findings from four-fermion models subjected to multiple chemical potentials to Yukuwa
models is not straightforward – in contrast to the models with one, fermion chemical
potential in Table 5.3 whose analysis can be extended to Yukawa extensions according to
Eq. (2.48) as argued above. For the models in Table 5.4, we already showed that the respec-
tive bosonic two-point vertex functions are proportional to L2,+ such that no instabilities
towards an IP are observed and also no moat regime is present. Due to the multiple chem-
ical potentials, multiple homogeneous expectation values χ̄j are non-vanishing (similar to
multiple ϕ̄j in the four-fermion models). As discussed above, the Yukawa self-interactions
of the bosonic fields cause non-vanishing second-order contributions proportional to χ̄jχ̄k,
which are off-diagonal in the field perturbations δχ⃗, c.f., the third line of Eq. (5.14), in
addition to the off-diagonal fermion contributions, see Eq. (D.17) for an example. In the
stability analysis of such a model the whole second-order contribution (5.14) needs to be
diagonalized, i.e., one needs to find a field basis ζ⃗ such that the whole second-order con-
tribution is diagonal in the field perturbations δζ⃗, see for example Eq. (4.26). In the case
of the four-fermion models in Table 5.4, this basis is given by ϕ⃗ which is determined as
discussed in Section 5.2.2. The basis transformations of the four-fermion part, however, is
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not suitable for the corresponding Yukawa model, as one still needs to diagonalize the ad-
ditional off-diagonal contributions from the bosonic self-interactions. This diagonalization
can become very involved by analytic means, even when using symbolic diagonalization
tools such as, e.g., Mathematica [349] or Matlab [22].

An example for this procedure is provided in Appendix D.2, where we discuss the Yukawa
extension of the model in the first row of Table 5.4. In the analysis of this model, the bosonic
two-point vertex functions exhibit a more complicated functional dependence and the di-
agonalizing field basis ζ⃗ depends on the studied momentum q = |q| of the perturbation
as well as on the homogeneous expectation values of the bosonic fields in addition to the
external parameters such as the temperature and the chemical potentials. Nevertheless, we
were able to show that the obtained bosonic two-point vertex functions are monotonically
increasing functions in q and, thus, no instabilities toward inhomogeneous perturbations
are observed. For the other models in Table 5.4, we refrain from performing an explicit
calculation as the expressions become lengthy and the analysis is rather involved. How-
ever, we expect that also these Yukawa models do not develop any instabilities towards
inhomogeneous condensates, since the off-diagonal contributions coming from the bosonic
self-interactions are not dependent on the external momentum q.

5.3 stability of the symmetric phase when including vector inter-
actions

In this section, we also consider vector interactions in the four-fermion models, i.e., we
study the action (5.1) with C⃗ = C⃗c, see Eq. (5.3). It is important to note that there is no
symmetry constraint relating the coupling for the scalar interactions to the vector couplings,
such that we, in general, allow for λj = λS for cj ∈ C⃗s and λk = λV for ck ∈ C⃗v. The action
of this theory can be written as

S [ψ̄,ψ] =
∫

d3x

[
ψ̄ (/∂ + γ3µ)ψ−

∑
cj∈C⃗s

[
λS

2Nf
(ψ̄cj ψ)

2
+ λV

2Nf

(
(ψ̄ cj iγ3 ψ)

2
+ (ψ̄ cj iγψ)2

)] ]
(5.17)

where we used the definition of the tupel of scalar interaction vertices C⃗s in Eq. (5.2) in order
to illustrate the different signs of scalar and vector terms. Note that, especially when vector
interactions including γν = (γ, γ3) are studied, the signs and prefactors of i of interaction
terms depend on the conventions used for the gamma matrices and the wick rotation. Our
conventions for the gamma matrices and the Wick rotation are given in Appendix A.3 and
Appendix A.2, a concrete example for the Wick rotation is given in Appendix A.2.2.

In the action (5.17) the vector coupling is treated as a free parameter and will not be
affected by renormalization. This is further discussed in Chapter 6 where a simplified ver-
sion of this model is studied in more detail, involving the computation of the homogeneous
effective potential, the gap equations as well as the homogeneous phase diagram. Therein,
we show that the vector interactions in combination with a non-vanishing chiral conden-
sate can lead to mixing effects between the auxiliary scalar and vector fields. In certain
parameter regions, this leads to the existence of a QπL in the phase diagram of the model.
In the following, however, we focus on the stability analysis of the SP of the model where
no mixing effects are present. In the case of vanishing chiral condensate, i.e., Σ̄ = 0, the
absence of instabilities towards inhomogeneous condensates can be shown. Consequently,
this analysis is in line with the stability analysis of models with Lorentzscalar interactions
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in Section 5.2. The models discussed in Section 5.2.1, that neither feature a moat regime
nor instabilities to an IP, can directly be obtained by setting λV = 0 in the action (5.17).

5.3.1 Reducing the number of relevant interaction channels in the stability analysis

In this subsection, we argue that the stability analysis can be performed with a reduced set
of interaction channels, as present in the simpler model (6.1) from Chapter 6. Therefore,
we use the Hubbard-Stratonovich transformation and the expression for the Hessian matrix
(4.23) involving the expression (4.24) of the model described by the action (5.17).

We start with the bosonized effective action of the model (5.17) following Eq. (5.6)

1
Nf

Seff[ϕ⃗, v⃗] =
∫

d3x
∑

j,cj∈C⃗s

[
vj,νvj,ν

2λj
+

ϕ2
j

2λj

]
− Tr ln βQ (5.18)

with Dirac operator

Q[ϕ⃗, v⃗ν ] = γν∂ν + γ3µ+
∑
ca∈C⃗s

(caϕa + icjγνva,ν) . (5.19)

The set of interaction vertices C⃗s is defined in Eq. (5.2). The auxiliary bosonic fields ϕ⃗ and v⃗
are used to replace the scalar and vector four-fermion interaction terms in the four-fermion
action (5.17), respectively, and follow the Ward identities (5.5).

homogeneous expansions points for the stability analysis The ho-
mogeneous phase diagram of this theory is in detail discussed in Chapter 6. For the stability
analysis in the SP, i.e., with ⃗̄ϕ = 0, we additionally assume that the homogeneous expec-
tation values of the spatial components of the vectors fields vanish, i.e.,

⟨va,j⟩ = 0 for j = 1, 2. (5.20)

This assumption is, however, natural when considering homogeneous ground states. The
system retains its invariance under rotations of the spatial coordinates x = (x1,x2) only if
the expectation values of the spatial components of the vector fields vanish. While in an IP
it is often observed that in addition to translational invariance also rotational invariance
is spontaneously broken, this is expected when the ground state is assumed to be homo-
geneous in space. Therefore, the assumption of v̄a,j = 0 with j = 1, 2 is justified for the
homogeneous expansion points of the stability analysis.

Moreover, for the scalar fields we already motivated in Section 5.2 that one can choose
ϕ̄j = δj,0σ̄ by using chiral symmetry transformations. Consequently, for the homogeneous
expansion point only σ and va,3 need to be considered as non-vanishing. At this point, a
further assumption is made in the analysis. In this chapter we consider a non-vanishing
fermion chemical potential µ. Then, it is natural that the homogeneous field ω̄3 is non-
vanishing, since its expectation value is proportional to ⟨ψ̄γ3ψ⟩ according to Eq. (5.5).
However, all other fields ⟨va,3⟩ could in principle also develop a non-vanishing expectation
value. We assume in the present analysis that this is not the case,i.e. ⟨va,3⟩ ∼ δva,3,ω3 . Note
that chiral and isospin symmetry transformations (B.19) can be applied also to the vector
fields. This allows to rotate the vector ⃗̄v such that all other homogeneous expectation values
of the vector fields are vanishing besides the ones of ω3 and the temporal component of
a⃗1,45. Thus, our assumption, that only ω3 has a non-vanishing homogeneous expectation
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value, amounts to setting the third component of ⟨⃗a1,45⟩ = 0 by hand. This is rather
natural since the temporal components of the vector fields are proportional to charges of
the theory, which are conserved classically according to the Noether theorem. Since no
chemical potential associated to the density ψ†γ45ψ is introduced within this section, it is
natural to assume that the expectation value of the temporal component of a⃗1,45 vanishes
which is proportional to ⟨ψ†γ45ψ⟩ via Eq. (5.5).

Summarizing, the appropriate homogeneous expansion points for the stability analysis
are ϕ̄j = δϕj ,σσ̄ and v̄j,a = δvj,a,ω3ω̄3. From the Ward identity for ων = (ω,ω3)

⟨ω3⟩(x) = −λV
Nf

i⟨ψ̄γ3ψ⟩(x), ⟨ω⟩(x) = −λV
Nf

i⟨ψ̄γψ⟩(x), (5.21)

the temporal component of ων is proportional to the fermion density n(x) = −ψ̄γ3ψ/Nf .6
Following Eq. (5.21), one finds for the homogeneous expectation values

ω̄3 = λV in̄. (5.22)

This purely imaginary expectation values allows to conveniently absorb the vector conden-
sate into an effective chemical potential µ̄ = µ+ iω̄3 = µ−λV n̄ where n̄ is the homogeneous
fermion number density per fermion species.

The properties of the homogeneous expectation values are crucial for the stability analy-
sis. They can be chosen such that the bare fermion propagator Q̄−1 corresponds to the prop-
agator of free fermions with mass given by σ̄ and effective chemical potential µ̄ = µ+ iω̄3
such that one can directly follow the analysis from Section 4.1.2, see the discussion around
Eq. (4.36).

hessian matrix After expanding around the homogeneous field configurations

ϕ⃗(x) = ⃗̄ϕ+ δϕ⃗(x), v⃗(x) = ⃗̄v+ δv⃗(x) (5.23)

and identifying the leading second-order terms in the expansion of the effective actions
in orders of the inhomogeneous perturbations following Section 4.1.2, one obtains the
second-order correction and Hessian matrix of the theory Γ(2)

ϕj ,ϕk
(q) given by Eq. (4.23)

and Eq. (4.24) where the bosonic fields in both of these eqs. can take the value of both ϕj
and vj , respectively, and the vertices cj can, consequently, come from both C⃗s (5.2) and
C⃗v (5.4). Here, q is the respective momentum in the Fourier decomposition of the inho-
mogeneous perturbation, i.e., the expression (4.23) is diagonal in momentum space. In a
model with repulsive vector interactions (as mediated by the temporal component of the
vector fields), one must treat the fluctuations in Eq. (5.23) carefully. For the saddle point
approximation7 to be well-defined, one has to consider perturbations with respect to the
temporal components of the vector fields va,3 in the complex plane, since the homogeneous
condensates, such as ω̄3 ∼ in̄, can be purely imaginary. As discussed in Ref. [189], fluc-
tuations must be in the direction of the steepest descent of the effective action as this
amounts to following the stable Lefshetz thimble. While the real-valued condensates ϕ̄a
and the spatial components of the vector fields v̄a,ν are perturbed with real-valued per-
turbations as expected, one has to perturb the purely imaginary condensates v̄a,3 with
real-valued fluctuations δv3 in order to follow the steepest descent of the effective action

6 Note that signs and factors of i may be different for different conventions of the Wick rotation and Gamma
matrices.

7 Considering second-order fluctuations about the homogeneous expecation values in the mean-field approxi-
mation amounts to a saddle-point approximation about these extrema of the effective action.
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(5.18). Especially, this is important for ω3 whose homogeneous expectation value is purely
imaginary, ω̄3 = iλV n̄, and the steepest descent is in the direction parallel to the real axis.
This is demonstrated in Figure 5 of Ref. [128] where a similar NJL-type model with vector
interactions in 3 spatial dimensions is studied and the Lefshetz thimble in the field space of
the temporal vector component is depicted. The corresponding bare fermion-boson vertices
cj ∈ C⃗c relevant for the computation of the Hessian matrix (4.24) are modified according to
the direction of the fluctuations in the complex plane, i.e., all vertices of the form ψ̄cva,3ψ

pick up an additional factor of i compared to their definition in C⃗v (5.4).
The resulting Hessian matrix Hϕjϕk

= Γ(2)
ϕj ,ϕk

can be decomposed into sixteen, identical
4 × 4 blocks that contain matrix elements given by Hσσ,Hσων ,Hωνωξ

. Consequently, the
Hessian matrix of Eq. (5.17) is identical to the one of the action (6.2) proposed in Chapter 6

S [ψ̄,ψ,σ,ων ] =
∫

d3x

[
ψ̄Qψ+

ωνων
2λV

+
σ2

2λS

]
, (5.24)

Z =
∫ ∏

ϕ={ψ̄,ψ,σ,ων}
Dϕ e−S[ψ̄,ψ,σ,ων ] (5.25)

with Dirac operator
Q[σ,ων ] = γν∂ν + γ3µ+ σ+ iγνων . (5.26)

The partition function of this partially bosonized action is equivalent to the one of a four-
fermion model with interaction terms ∼ (ψ̄ψ)

2 and ∼ (ψ̄iγνψ)2, see Eq. (6.1).
In the following we show explicitly that the decomposition of H = Γ(2) of the effective

action (5.18), given by Eq. (4.23), into a block-diagonal structure containing multiple copies
of the Hessian of the simpler model (5.24) is possible. Therefore, we consider the one-loop
diagram (4.24) contained in the Hessian matrix H, which is proportional to

∑
n

∫ d2p

(2π)2 Tr
(
Q̄−1(p+ (q, 0))cjQ̄−1(p)ck

)
(5.27)

with p = (p, νn), and use properties of the bare fermion-boson vertices cj ∈ C⃗c (5.3).
From the global U(4Nf ) symmetry (B.19) one can choose the values of the homogeneous
expansion points such that ϕa = δϕa,σσ̄ which implies Hϕaϕb

∼ δa,b, i.e., no off-diagonal
terms are observed in the terms involving only perturbations in the scalar fields ϕ⃗. This is
a result already used in Section 5.2. Inspecting the trace over the spinor degrees of freedom
in Eq. (5.27) one can also infer that Hϕa,vb,ν = 0 for a ̸= b as the additional Gamma matrix
in the Dirac trace compared to the purely scalar matrix elements Hϕaϕb

does not lead to a
non-vanishing result of the trace. Thus, one obtains off-diagonal matrix elements only for
each respective 4 × 4 block in H with a = b, i.e., only Hϕa,νva,ν , Hϕa,νϕa,ν , and Hva,νva,ν can
be non-zero. Again, inspecting the trace in Eq. (5.27) and using the commutation relations
between the cj ∈ C⃗c (5.3) with each other and the Gamma matrices, one can derive that the
matrix elements of these respective 4 × 4 blocks are identical to the 4 × 4 Hessian matrix
that stems from doing the perturbative expansion Eq. (5.23) for the model (5.24) with
ϕ⃗ = (σ) and v⃗ = (ων). Thus, the Hessian matrix derived from the effective action (5.18)
is block-diagonal consisting of 16 matrices of size 4 × 4, which are identical to the Hessian
matrix derived from the stability analysis of the simpler model (5.24).

practical computations In this section we investigate only the SP, i.e., ⃗̄ϕ = 0.
According to the above paragraph, we can simplify the stability analysis of the full model
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described by the effective action (5.18) to the computation of the 4 × 4 Hessian matrix
which is obtained for a model containing only σ and ων interactions. Inserting the bare
fermion propagator given by

Q̄−1(νn, p) = −i/̃p + Σ̄
p̃2 + Σ̄2 , p̃ = (νn − iµ̄, p)T (5.28)

with µ̄ = µ+ iω̄3 as well as the vertices

c⃗ = (1, −γ3, iγ1, iγ2) (5.29)

for the fields (σ,ω3,ω1,ω2), respectively, into the Hessian matrix (4.24) according to the
above discussion and using the homogeneous minima of the effective action (σ̄, ω̄ν) =

(Σ̄, Ω̄3δν,3), one finds the matrix elements (D.27) to (D.31), which need to further evaluated
by performing the Matsubara summation and the angle integration in d2p. In the above
formulae we choose q = (q, 0) which is possible by appropriately rotating the momentum
space integration variable p. The resulting formulae can be found in Appendix D.3. From
these explicit computations, one finds that Γ(2)

ω1,ω2 = Γ(2)
ω3,ω2 = Γ(2)

ω3,ω1 = 0, see Appendix D.3.
Moreover, the matrix elements Γ(2)

σ,ων ∼ Σ̄, as obvious from Eq. (D.29), such that they vanish
in the SP since Σ̄ = 0. Consequently, the Hessian matrix Γ(2) is diagonal in the field basis
φ⃗ = (σ,ω3,ω1,ω2)

T in the SP and the eigenvalues are given by the diagonal elements
Γ(2)
σ,σ, Γ(2)

ων ,ων , which in turn correspond to the bosonic two-point vertex functions Γ(2)
σ and

Γ(2)
ων , respectively. For non-vanishing T and any value of µ, we compute these diagonal

elements numerically using Python3 with various libraries [19, 350, 357]. The implemented
formulae for Γ(2)

ωj ,ωj can be found in Eqs. (D.32), (D.38) and (D.39), while Γ(2)
σ,σ is the bosonic

two-point vertex function of the GN model and contains ℓ1 and L2,+, so see Appendix C.4
and Appendix D.1.1 for its evaluation.8

5.3.2 Results in the symmetric phase

In the following, we present the behavior of the bosonic two-point vertex functions Γ(2)
σ

and Γ(2)
ων which are given by the diagonal elements of the Hessian matrix according to

the discussion above. Due to the absence of mixing effects, the bosonic two-point vertex
functions are real-valued and, consequently, can directly be studied with respect to the
(absence of) instabilities of the SP towards inhomogeneous fluctuations and the existence
of the moat regime.

In the left plot of Fig. 5.2, Γ(2)
φj with φ⃗ = (σ,ω3,ω1,ω2) are plotted as functions of the

momentum q of the perturbation δφj for λV Σ̄0/π = 0.1 and (µ/Σ̄0,T/Σ̄0) = (1.051, 0.238).
This point in the phase diagram lies directly on the second-order phase boundary between
the SP and HBP, as shown in Chapter 6. The bosonic two-point vertex function of the order
parameter σ, that characterizes the phase transition, is zero at q = 0. Since Γ(2)

φj (q) can be
interpreted as the curvature of the effective action of the model (5.24) in the direction of
φj(q), it is expected that this curvature goes to zero for q = 0 and φj = σ at the second-
order homogeneous phase transition. The field ων is not an order parameter and, thus, the
corresponding bosonic two-point vertex functions are insensitive to the transition.

The bosonic two-point vertex functions Γ(2)
ϕj

(q) are monotonically increasing functions
for any value of µ,T and λV by numerical computations. For T = 0, this can be seen

8 The bosonic two-point vertex function of the GN model is calculated multiple times in published work, e.g.,
in Refs. [211, 212, 241], see also Appendix B of Ref. [2] for the evaluation in various limits of Σ̄, T and q.
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Figure 5.2: The bosonic two-point vertex functions Γ(2)
φj (q) as functions of the momentum of the

perturbation q with φ⃗ = (σ,ω3,ω1,ω2)
T . ((left)) At the homogeneous second-order

phase transition for λV Σ̄0/π = 0.1. ((right)) Within the SP for λV Σ̄0/π = 1.0.

analytically by taking the zero temperature limit for all diagonal elements of the Hessian
using the formulae in Appendix D.3 and setting Σ̄ = 0. An example for the bosonic two-
point vertex functions within the SP is plotted on the right side of Fig. 5.2. In the plot,
we used λV Σ̄0/π = 1.0 which is the largest vector coupling studied in this work. A non-
monotonic behavior of the bosonic two-point vertex functions is not observed within in
the SP within the large range of chemical potentials, temperatures and vector couplings
we studied numerically. For Γ(2)

σ , this result was already presented in Ref. [2], while in
this work we also studied the two-point vertex functions Γ(2)

ων (q), that become relevant
within the mean-field approximation when including vector interactions. In the SP, however,
our analysis yields the same conclusion as the one in Ref. [2]. We do neither observe an
instability towards an IP nor a moat regime for all studied vector couplings. Together with
the argument that in all model investigations in the literature (see Section 3.2 and Ref. [197]
for a review) IPs feature a second-order phase boundary towards the SP which would be
detected by the stability analysis [1], we consider the absence of such an instability a strong
indication for the non-existence of an IP within this model.

As discussed in Section 5.2, there still exists a degeneracy between inhomogeneous con-
densates and homogeneous phases at zero temperature as found with a particular ansatz
function in the GN model [321]. This is also consistent with our analysis, where the bosonic
two-point vertex function Γ(2)

σ (q) is flat and vanishes for a certain interval in q at the point
(µ/Σ̄0 = 1.0,T/Σ̄0 = 0) as shown in Section 5.2 for λV = 0 – the same point in the phase
diagram where also the homogeneous potential is flat. The flatness of Γ(2)

σ (q) also occurs
at the critical chemical potential µc at any value of λV at T = 0.0, again indicating a
similar degeneracy between the SP and the IP as before. This property could already be
guessed from the right plot in Fig. 5.2, which is still at finite, but low enough temperatures
such that Γ(2)

σ is almost flat for small q. We expect, however, that a degenerate condensate
would not be given by the one-dimensional kink ansatz from Ref. [321] (see Figure 5.4
therein) for non-vanishing vector coupling λV , since its mean density n̄ is smaller than
n̄/Σ̄2

0 = 1/ (2π), which is the density corresponding to Σ̄ = 0.0 when solving the gap
equations (6.10) and (6.12) at (µ/Σ̄0 = 1.0,T/Σ̄0 = 0). Thus, the homogeneous solution
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(Σ̄/Σ̄0 = 0.0, Ω̄3/Σ̄0 = iλV Σ̄0/ (2π)) is expected to be favored over the ansatz in Ref. [321],
as the bosonized action favors solution of the gap eqs. with higher baryon number, compare
Eq. (5.24) using Ω̄3 = iλV n̄.

5.4 summary and contextualization

In this chapter, the stability of homogeneous condensates in (2 + 1)-dimensional four-
fermion and Yukawa models is shown at non-vanishing chemical potential and tempera-
tures by computing and analyzing the bosonic two-point vertex functions Γ(2)

φj following
Chapter 4. The investigation was performed in a general manner for all four-fermion and
Yukawa models with Lorentzscalar interaction channels with sixteen different interaction
vertices defined in Eq. (5.2) such that the findings are robust against model details – vector
interaction channels were treated separately. The central results of the analysis are:

(1) Homogeneous condensates are stable against inhomogeneous perturbations for every
homogeneous expansion point and any value of µ and non-vanishing T when studying
only Lorentzscalar interactions with sixteen different interaction vertices as defined in
Eq. (5.2). This stability emerges from the monotonically increasing behavior of Γ(2)

φj as
a function of the external, bosonic momentum for all homogeneous expansions points
corresponding to the momentum of the inhomogeneous perturbation, as shown in
Section 5.2. We refer to the central equations Eqs. (5.10), (5.11) and (5.13) including
the analytic proof of the montonically increasing behavior for T = 0 and Fig. 5.1 for
a visualization of the momentum dependence of Γ(2)

φj at T ̸= 0.

(2) In the models specified in (1), the absence of moat regimes is obtained from the
monotonically increasing momentum dependence of the Γ(2)

φj .

(3) The inclusion of vector interactions in Section 5.3 yields the same findings as described
above for the scalar channels when restricting the investigation to the SP within the
homogeneous phase diagram, see Fig. 5.2 for a plot of the bosonic two-point vertex
functions in this case. In the HBP mixing effects and symmetry arguments play an
important role. The resulting phenomena are subject of Chapter 6.

(4) At zero temperature, there are hints for a degeneracy between the homogeneous
phases and inhomogeneous condensates at µ/Σ̄0 = 1 consistent with the earlier work
[321]. At this point in the phase diagram, the homogeneous effective potential is also
flat.

(5) The momentum dependence of the bosonic two-point vertex functions is proportional
to L2,±, see Eq. (5.11); L2,+ is identical to the observed behavior of the bosonic two-
point vertex function in the 2+ 1-dimensional GN model, while L2,− just differs in a
prefactor of the same integral as appearing in L2,+. This implies that the behavior of
Γ(2)
φj , when introducing finite regulators, strongly depends on the used regularization

scheme similar to the 2 + 1-dimensional GN model [241]. This in turn results in a
strong regularization dependence of IPs that possibly emerge at finite regulator values
depending on the chosen regularization scheme [240, 241] in all of the investigated
QCD-inspired models.

Further, we extended the above analysis by including multiple chemical potentials, implying
a chiral and/or an isospin imbalance. Again, the stability of the homogeneous condensates
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and the absence of the moat regime could be shown, but only for a restricted number of
interaction channels, see Table 5.4 for the studied models. It has to be noted that the models
investigated in this table are not very relevant for high energy physics phenomenology due
to the restricted number of interaction terms, that result in, e.g., the absence of charged
pions, which are expected to condense at a certain value of the isospin chemical potential.

conclusions In Section 5.2.1, we argued that the absence of instabilities is a strong
hint for the absence of IPs in mean-field investigations of the phase diagram in the above
mentioned models. This statement is supported by literature findings from full minimiza-
tions of the effective action of the theory using LFT [7, 8, 240, 241, 344] and the central
argument that all IPs in effective model investigations can be detected in some region of
parameter space by a stability analysis since all of them feature a second-order transition to
the SP. Under the assumption that an IP, if existent in the phase diagram, can be detected
by the stability analysis at least in some region of the parameter space (to the knowledge
of the author this has so far always been the case in effective model investigations, see,
e.g., Refs. [1, 197, 342]), the findings and argumentation address the central aspect of
RO5 “What is the fate of inhomogeneous chiral condensates within 2+ 1-dimensional four-
fermion theories and related QCD-inspired models?”. The findings suggest that IPs are
non-existent for all four-fermion and Yukawa models in 2+ 1 dimensions within the mean-
field approximation (except for vector interactions in the HBP which are studied separately
in Chapter 6). Naturally, the question arises whether the mean-field results have predictive
power for the phase diagram of full quantum theories when computing the full partition
function / path integral. The mean-field approximation according to our definition (see
Section 2.4 for details) suppresses the bosonic quantum fluctuations. Bosonic quantum
fluctuations that tend to disfavor and/or disorder any kind of condensation, see Refs. [216,
217, 219, 225, 226] and a detailed discussion in Section 1.2 (the paragraph on the quantum
pion liquid and inhomogeous chiral condensates) and the findings in Chapter 7 . Thus,
we consider the non-existence of IPs in the mean-field approximation a clear signal that
inhomgoeneous ground states are absent also when including all quantum fluctuations in
the partition function of 2 + 1-dimensional four-fermion and Yukawa models.

Regarding the second part of the posed quesion in RO5 with respect to “related QCD-
inspired theories”, the found momentum dependence of the bosonic two-point vertex func-
tions implies that in all four-fermion and Yukawa models in two spatial dimensions that at
(artifically introduced) finite regulators there is a strong dependence of the existence and
extent of the IP on the respective regularization scheme and regulator value. This further
supports the evidence in the literature that the extent and existence of IPs, especially in
the parameter region of interest for QCD and QCD-inspired models, are very sensitive to
regularization artifacts [10, 167, 211, 212, 240, 241] which implies that there is no predictive
power of findings in four-fermion models in 3+ 1 dimensions due to the found ambiguities
[10, 167]. In these investigations, the regulator cannot be removed as four-fermion models
are non-renormalizable in three spatial dimensions. Thus, the second part of RO5 is not yet
finally addressed and our findings rather suggest that this question cannot be answered at
least for four-fermion / NJL-type model in 3+ 1 dimensions. Also with respect to Yukawa
/ QM models, there are certain ambiguities regarding the renormalization of the results
in mean-field investigations where unbounded potentials arise in the whole phase diagram
[198]. This, however, is not subject of the present work and might be investigated in the
future.
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future research perspectives Our results suggest further that there might
be a general argument behind the absence of IPs in 2 + 1 dimensions, which might be
of similar form as, e.g., Derrick’s theorem [358] and could possibly be found by studying
the properties of a appropriate general Ginzburg-Landau free energy as done in Ref. [359].
Therefore, this free energy functional would need to encode higher orders in a gradient
expansion to represent the terms stemming from the fermion determinant in the four-
fermion theories investigated in this chapter. An obvious direct research direction is the
inclusion of vector interaction generically also within the HBP, as these are important for
low-energy effective descriptions of QCD as they emerge from the quark-gluon interaction
in a similar way as the scalar interactions [133, 148, 237] and are important to encode the
CK symmetry of QCD at µ ̸= 0 in four-fermion models [189]. Yet, their analysis within the
HBP is technically different from the one present here and is performed in Chapter 6.

With respect to high energy physics phenomenology, there are many ways to build on the
present analysis – for example studying four-fermion models with an SU(3) flavor symme-
try allowing for effects from strangeness or the dependence of the findings on explicit quark
masses. However, from results in 3 + 1 dimensions the effects of these aspects on IPs are
negligible [200, 342] and, as outlined in Section 1.3, qualitative predictions for phenomenol-
ogy were not part of the motivations for this work. Probably, other model approaches like
QM models should be investigated first before incorporating the aforementioned aspects
into 2 + 1-dimensional four-fermion models. Further, this work contributes to the general
understanding of the thermodynamics and phase transitions of strongly-interacting fermion
in 2 + 1 dimensions in equilibrium. From this point of view, it would be very interesting
to study difermion interactions to allow for color-superconducting order parameters in or-
der to study their competition with the chiral ones [107, 304, 356] or to investigate the
interference and competition of different chiral chemical potentials (as possible in two spa-
tial dimensions) via terms µ4/5ψ̄γ3γ4/5ψ corresponding to different charges. Both of these
studies would, however, not change the conclusion with respect to the existence of IPs, as
suggested by the findings in this chapter and in Ref. [7].



6
G E N E R AT I N G A Q U A N T U M P I O N L I Q U I D F RO M M I X I N G
E F F E C T S B E T W E E N S C A L A R A N D V E C T O R M E S O N S

disclosure The results of this chapter have been published in Ref. [3] and, thus, can
be solely attributed to myself. The presentation and discussion of these results has been
adapted to this thesis. However, some of the formulations in this chapter, especially in the
results section, are similar to the ones of Ref. [3]. Also, all figures are taken from Ref. [3].

abstract and relation to the research objectives In this chapter, we
incorporate mixing effects between scalar and vector mesons as well as the CK symmetry at
µ ̸= 0 into the investigation of four-fermion models as QCD-inspired models for the phase
diagram at non-vanishing temperatures and chemical potentials. This allows to perform
exploratory investigations in the direction of RO1 and RO2 which formulate the aim to
investigate the implications of the combined CK symmetry at µ ̸= 0 and the incorporation
of mixing effects between scalar and vector mesons, respectively, see Section 1.3 for the
detailed formulation of these research objectives. We show that the incorporation of these
features leads to the appearance of a QπL in 2 + 1-dimensional four-fermion models, a
regime that is not present in models without vector interactions.

outline In Section 6.1, we define a simple model with scalar and vector interactions
and discuss its general properties on the level of its action and partition function. The
homogeneous phase diagram of this model, as well as the renormalization procedure, is
discussed in Section 6.2. Using the homogeneous condensates as expansion points, we per-
form an analysis of the Hessian matrix in field space in Section 6.3. We show how the QπL
emerges from the complex-conjugate eigenvalue pairs of the static Hessian matrix.

6.1 minimal four-fermion model for the inclusion of mixing ef-
fects

In this section, we incorporate the mixing of scalar and vector mesons – described by aux-
iliary fields in the four-fermion models – within our general approach to the phase diagram
of strongly-interacting matter at non-vanishing temperatures and chemical potentials us-
ing QCD-inspired four-fermion models. This mixing is expected to be important for QCD
at non-vanishing baryon density, since the emerging field in the isoscalar-vector channel
couples directly to the vector current ψ̄γµψ such that its expectation value is proportional
to the baryon density. Consequently, at least this condensate as well as the chiral conden-
sate is present in QCD matter at µ ̸= 0 and mixing between at least this scalar and the
described vector channel occurs [360]. Moreover, Yukawa-type interactions between quarks
and the effective scalar and vector degrees of freedom are rather dominant in the region of
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intermediate and low temperatures and densities, as can be derived from FRG �ows with
dynamical hadronization [133, 361, 362]. In Chapter 1, a more detailed discussion of this
and other relevant observations can be found. We consider the following action

Smix [ ¯ ,  ] =
Z �

0
d�

Z
d2x

�
¯ ( /@+  3� )  �

h
� S

2N f
( ¯  )2 + � V

2N f

�
( ¯ i 3  )2 + ( ¯ ig  )2

�i �

(6.1)

with g = ( 1,  2) as the simplest example of a four-fermion model that features both
scalar and vector interactions as well as a generalizedPT symmetry at � 6= 0, as is
discussed in a separate paragraph below. Thereby, contains N f identical spinors with
four components, see Section 2.3 for a general introduction of four-fermion models in this
work and Appendix A.3 for the reducible representation of Gamma matrices used. The
action (6.1) is invariant under the chiral symmetry group1 U1(N f ) � U 45 (N f ) � Z  5 (2),
see Eqs. (B.12), (B.13) and (B.23).

6.1.1 Bosonization

Following the usual bosonization procedure with a Hubbard-Statonovich transformation,
we introduce auxiliary �elds � and ! � = (w, ! 3) for the scalar and vector interactions,
respectively. The partially bosonized action reads

S[ ¯ ,  , � , ! � ] =
Z

d3x

"

¯ Q  +
! � ! �

2� V
+

� 2

2� S

#

, (6.2)

Z =
Z Y

� = f ¯ , ,� ,! � g

D� e� S[ ¯ , ,� ,! � ], (6.3)

with the Dirac operator

Q[� , ! � ] =  � @� +  3� + � + i � ! � , (6.4)

see Section 2.3.1 for details with respect to the bosonization procedure. Then, one obtains
the following Ward identities according to Eq. (2.43) for the one-point functions of the
auxiliary �elds

h� i (x) = � � S
N f

h¯  i (x), h! 3i (x) = � � V
N f

ih ¯  3 i (x), hwi (x) = � � V
N f

ih ¯ g i (x). (6.5)

such that the expectation value of the temporal component of! � is proportional to the
expectation value of the fermion density n(x) = � ¯  3 / N f following Eq. (5.22). From
this, one obtains that ! 3 yields purely imaginary expectation values and, in the mean-�eld
approximation, is conveniently absorbed into an e�ective chemical potential �̄ = � + i !̄ 3.
This is directly linked to the repulsive nature of the Yukawa-type interaction between ¯ ,  
and ! � in the action (6.2) and the corresponding four-fermion interaction.

general ized P T symmetry It becomes evident through Eqs. (6.2), (6.4) and (6.5)
that the model features an invariance under a combinedCKtransformation at non-vanishing
� while breaking both charge conjugationCand complex conjugationK separately through

1 The model is also invariant under Z  4 (2) (B.23) but this transformation can be obtained by appropriate
combination of U 45 and Z  5 (2) such that it is no independent symmetry of the action (6.1).
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Note that we used that ω̄3 = 0 in the vacuum, as can be read off directly from Eq. (6.12).
Using this procedure and sending Λ → ∞, we obtain

L1(µ,T , σ̄, ω̄3) ≡ 1
λS

− ℓ1(µ,T , σ̄, ω̄3) = dγ

[
|σ̄| − |Σ̄0|

4π +
∫ d2p

(2π)2
nF (E) + nF̄ (E)

2E

]
,

(6.16)

which is finite. This procedure is all that is required to keep the effective potential (6.9)
finite. The chiral condensate in the vacuum Σ̄0 will be used as the physical scale to construct
dimensionless ratios for all other quantities, such as, e.g., T/Σ̄0, µ/Σ̄0 and n/Σ̄2

0.
However, the gap Eq. for ω̄3 (6.10) does not contain a vacuum contribution such that

imposing a renormalization condition is not necessary. Since, ω̄3 = 0 in the vacuum, there
is thus no way of fixing λV in an analogous way to the scalar coupling λS . To the knowledge
of the author, no alternative way of renormalizing this coupling is realized in the literatue
and, in fact, a renormalization of the vector coupling is not necessary for the computation
of the phase diagram. Alternatively, one could fix λV by working at µ ̸= 0, e.g., by im-
posing a value of ω̄3 at a certain µ and T = 0. We consider the action (6.1) anyhow as a
toy model for scalar-vector mixing effects in the (µ,T ) phase diagram such that we do not
fix λV according to some phenomenlogically motivated value. Instead, we treat it as a free
parameter to study its influence on the phase diagram of the theory similar to Refs. [235,
236]. Moreover, the ratio λS/λV of the effectively generated four-fermion interaction ver-
tices should anyhow change dynamically in QCD depending on µ and T as well as on the
considered momentum exchange.

6.2.3 Results

In the following, we discuss our findings on the homogeneous phase diagram of the model
(6.1) for different values of the vector coupling λV . We distinguish between the SP where
Σ̄ ̸= 0 and chiral symmetry is restored and the HBP where chiral symmetry is sponta-
neously broken by a non-vanishing chiral condensate Σ̄ ̸= 0. By analyzing the gap Eq. (6.10)
and the effective potential (6.9) we find that the phase boundary between those two phases
in the (µ̄,T ) plane is identical to the one of the 2+ 1-dimensional GN model in the (µ,T )
plane, as first determined in Ref. [249] and later confirmed to be the full solution of the
phase diagram in Refs. [240, 241]. The analytic expression for the critical chemical potential
in the GN model, see Appendix C.3 for a derivation,

µc(T ) = Tarcosh
(
0.5eΣ̄0/T − 1

)
(6.17)

can be used as a cross-check for our numerical results also at λV ̸= 0 by computing
µ̄c = µc + iΩ̄3(µc,T ) at the obtained phase boundary µc(λV ,T ) of the model (6.1). Then,
the value of µ̄c/Σ̄0 must be identical to the critical boundary µc(0.0,T )/Σ̄0, as given by
the right hand side of Eq. (6.17). The phase boundary in the GN model is of second-order,
except for µc(T = 0)/Σ̄0 = 1 where the effective potential is flat for σ̄/Σ̄0 ∈ [0.0, 1.0]
which corresponds to a critical point.

In Fig. 6.1, the phase boundary lines of the model (6.1) are plotted for different values of
the vector coupling λV Σ̄0 ∈ [0.0,π]. Similar to findings with NJL-type models with vector
interactions [196, 208, 235] an enlargement of the phase with broken chiral symmetry is
observed when increasing the vector coupling. The extent of the HBP grows monotonically
with the vector coupling within the studied range. At larger vector couplings, a so-called
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Figure 6.1: Phase boundary lines between the HBP and SP in the (µ,T ) space for 5 different values
of the vector coupling λV . The λV = 0.0 phase boundary corresponds to the known
analytic solution of the GN model in (2 + 1) dimensions [241, 249].

back-bending of the transition line is observed, i.e., the difference µc(λV ,T ) − µc(0.0,T )
for intermediate temperatures is larger than for zero or low temperatures. This reminds of
a spinodal line in typical NJL or GN model phase diagrams [93] where no phase transition
occurs but only the symmetric solution σ̄ = 0.0 becomes metastable. However, in the
present investigation the left spinodal corresponds directly to the phase boundary line,
since the phase transition is of second-order and the order parameter Σ̄(µ,T ) changes
continuously from zero when crossing the boundary line from the SP at higher chemical
potentials to the HBP.

This is investigated in more detail in Fig. 6.2 where the value of the order parameter
Σ̄(µ,T ) is visualized in a triangulated contour color map for two different values of the
vector coupling. For all studied values of λV one observes a continuous decrease of the
chiral condensate Σ̄ when increasing the temperature within the HBP. Thereby, by renor-
malization condition Σ̄(µ = 0.0,T = 0.0) = Σ̄0 which remains constant for all values of
µ ≤ Σ̄0 in consistency with the Silver blaze property: observables are unaffected by chemical
potential as long as the chemical potential is not large enough to create physical excita-
tions, see Refs. [363–365] for a motivation why this is realized in QCD. Further increase
of the chemical potential leads to a continuous decrease of Σ̄(µ/Σ̄0 = 1,T = 0) = Σ̄0
to Σ̄(µ = µc,T = 0) = 0 at the phase transition. This can be analytically derived from
the flatness of the GN model’s effective potential at µ/Σ̄0 = 1 and zero temperature. The
flatness as a function of σ̄ is also present in the effective potential (6.9) for non-vanishing
λV at (µ/Σ̄0 = 1,T = 0). However, the additional contribution due to ω̄3 causes solutions
with higher densities to be favored, see Eq. (6.9). The coupled gap Eqs. (6.10) and (6.12)
leads to a simultaneous decrease of the chiral condensate and a continuous increase of the
density N̄ = −iΩ̄3/λV , when increasing µ ∈ [Σ̄0,µc]. For all chemical potentials in this
interval and all values of λV ̸= 0, one obtains µ̄ = 1.0 which is the only value where the gap
Eq. (6.10) allows for solutions other than Σ̄/Σ̄0 = 1.0 or Σ̄ = 0.0. The solution of the gap



6.2 homogeneous phase diagram 113

0.2 0.4 0.6 0.8 1.0 1.2

µ

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

T

λV /π =0.1

GN, λV = 0.0

0.00

0.20

0.40

0.60

0.80

0.93

0.99

Σ̄

0.5 1.0 1.5

µ

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

T

λV /π =1.0

GN, λV = 0.0

0.00

0.20

0.40

0.60

0.80

0.93

0.99

Σ̄

Figure 6.2: Contour color maps in the (µ,T ) plane for the value of the chiral condensate Σ̄(µ,T ) for
(left) λV Σ̄0/π = 0.1, (right) λV Σ̄0/π = 1.0. The green lines represent the second-order
phase boundary of the (2 + 1)-dimensional GN model, while the blue lines correspond
to the phase boundary of the model (6.1) for the respective value of λV . Continuous data
for the contour plots is obtained using triangulation provided by Matplotlib in Python3
[19, 20]. Note that the plot range in the µ and the T axis differs from plot to plot in
order to make the contour lines visible.

eq. for Σ̄(µ,T = 0) can directly be read of the plot for this range of chemical potentials. It
is Σ̄ = µ− µ̄c(T = 0) = µ− Σ̄0.

For λV = 0.0, the density jumps from 0 to Σ̄2
0/(2π) when crossing the phase transition at

zero temperature [321].2 For non-vanishing vector coupling, a continuous transition of the
density is obtained, as visualized also in Fig. 6.3, where the density N̄π/Σ̄2

0 is plotted as
a triangulated contour color map in the (µ,T ) plane for two different values of the vector
coupling. All values of N̄(µ,T = 0)/Σ̄2

0 ∈ [0.0, 1/(2π)) are obtained when continuously
increasing the chemical potential from µ/Σ̄0 > 1.0. At µ = µc, we obtain N̄/Σ̄2

0 = 1/(2π).
The gap Eq. (6.12) allows a non-vanishing density only when µ/Σ̄0 > 1.0 and Σ̄/Σ̄0 < 1.0
such that at µ/Σ̄0 = 1.0 the zero density solution is observed. This is another indication
that the phase boundary is of second-order at zero temperature for non-vanishing vector
coupling. At non-vanishing temperatures the relation of µ and the value of Ω̄3 has to
be determined numerically solving the gap Eqs. (6.10) and (6.12) and finding the global
minimum of the effective potential (6.9). Compared to zero temperature, the density is
non-vanishing also for µ/Σ̄0 < 1.0. When comparing different values of λV , one generally
observes that the density is smaller when increasing the vector coupling at fixed values of
µ and T .

Note that one does not obtain a first-order phase transition for all values of λV within
the (µ,T ) phase diagram of this model, in contrast to NJL model results involving vector
coupling [235]. In typical NJL model investigations, an IP can emerge that covers the
region of the first-order phase transition between the HBP and SP that is present in the
homogeneous phase diagram of the theory.

2 There is a factor of 2 difference in the value of the density between this work and Ref. [321] due to different
conventions.
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Figure 6.3: Contour color maps in the (µ,T ) plane for the value of the density N̄(µ,T )π =
−iΩ̄3(µ,T )π/λV for (left) λV Σ̄0/π = 0.1, (right) λV Σ̄0/π = 1.0. The green lines
represent the second-order phase boundary of the (2 + 1)-dimensional GN model, while
the blue lines correspond to the phase boundary of the model (6.1) for the respective
value of λV . Continuous data for the contour plots is obtained using triangulation pro-
vided by Matplotlib in Python3 [19, 20]. Note that the plot range in the µ axis, the T
axis and the discrete color bar differs from plot to plot in order to make the contour
lines visible. Also, the discrete contour levels are not necessarily linearily distributed.

6.3 mixing effects in the hessian matrix generating the quantum
pion liquid

In this section, we turn towards computing the Hessian matrix consisting of the bosonic
two-point vertex functions Γ(2)

ϕj ,ϕk
in order to analyze the stability of the homogeneous

ground states against inhomogeneous perturbations as well as the possible existence of the
QπL over the whole (µ,T ) phase diagram of the model (6.1).

6.3.1 Hessian matrix analysis in field and momentum space

The resulting Hessian for model (6.2) is given by

Γ(2)
ϕj ,ϕk

(ϕ̄,µ,T , q) =
δj,k
λj

+ T
∑
n

∫ d2p

(2π)2 tr
(

˜̄Q−1 (p+ (q, 0)) cj ˜̄Q−1 (p) ck
)

(6.18)

where ˜̄Q−1 is the bare propagator of a free fermion with mass Σ̄ at chemical potential
µ̄ = µ + iΩ̄3 and temperature T . The matrices cj stem from the bare fermion-boson
vertices according to the action (6.2) with a slight, but important modification. Following
the discussion about the expansion about homogeneous imaginary ground states, such as
Ω̄3 = −iλV n̄, in the paragraph about the Hessian matrix in Section 5.3.1, fluctuations
in the complex plane have to be chosen along the steepest descent of the effective action
in order to follow the stable Lefshetz thimble. For the real-valued σ̄ as well as for the
spatial components of the vector field ω, this is the case with real-valued perturbations,
while one has to perturb the imaginary homogeneous expectation value ω̄3 with real-valued
fluctuations (instead of purely imaginary ones as one might naively expect). In the Hessian
matrix, as computed generically in Eq. (4.24) and given in Eq. (6.18), the matrices c⃗ =

(1, −γ3, iγ1, iγ2) corresponding to the bare ψ̄ − ψ − ϕj for ϕ⃗ = (σ,ω3,ω1,ω2) absorb the
additional factor of i to account for the real-valued perturbation about the imaginary ω̄3,
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see Section 5.3.1 for details. Additionally, one has λj = λS for ϕj = ϕk = σ and λj = λV
for ϕj = ϕk = ων .

The Hessian matrix (6.18) is already studied for Σ̄ = 0 in Section 5.3 in order to demon-
strate the absence of an IP for all 2 + 1-dimensional four-fermion models with local four-
fermion interactions, see the discussion in Section 5.3.1. Therein, the individual matrix ele-
ments are given in Eqs. (D.27) to (D.31) using its rotational invariance to choose q = (q, 0)
and are further evaluated in Appendix D.3. In practice, all elements of the Hessian matrix
Γ(2) are evaluated numerically for fixed q at fixed µ and T using the previously computed ho-
mogeneous ground states Σ̄(µ,T ) and Ω̄3(µ,T ) as the appropriate expansion points. After
computing all Hessian matrix elements for fixed q, we proceed by calculating the eigenval-
ues through numerical diagonalization. The numerics are implemented using Python3 with
various libraries [19, 350, 357].

P T -type symmetry of the hessian In the following, we analyze properties of
the Hessian Γ(2) (6.18) using the generalized PT symmetry of the model (6.1) at non-zero µ
which is given by CK, i.e., combined charge conjugation and complex conjugation. Since ων
is a vector field, it picks up a sign under charge conjugation, CωνC−1 = −ων , see Ref. [274]
for a construction of C in 2 + 1 Euclidean spacetime dimensions. Thus, at non-vanishing
density, as present according to Section 6.2.3 at non-vanishing µ and T , C is broken. This
is expected from heuristic arguments due to the excess of particles over antiparticles. The
Hessian matrix is non-Hermitian simultaneously with the broken C symmetry at µ ̸= 0
due to the non-vanishing, purely imaginary Γ(2)

σ,ω3 = Γ(2)
ω3,σ. However, the Hessian still has a

remaining invariance under the combined, anti-linear CK symmetry accordingly.
This symmetry of the Hessian gives rises to the property

Γ(2) = AΓ(2)∗A (6.19)

where ∗ denotes complex conjugation and A = diag(1, −1, 1, 1). It directly follows that both
Γ(2) and Γ(2)∗ have the same set of eigenvalues αj and, consequently, these eigenvalues are
either real-valued or come in complex conjugate pairs. In the former case, one can analyze
the eigenvalues of the Hessian Γ(2) in a stability analysis of the homogeneous expansion
points using an appropriate diagonalization according to Section 4.1.2. The latter case has
been recently found as a so-called “PT -broken” regime in the study of mixing in Euclidean
field theories with PT -type symmetries [180, 190]. The existence of complex-conjugate
eigenvalue pairs in the Hessian matrix can lead to bosonic two-point correlation functions
with spatial sine-like modulations in addition to the ordinary exponential decay, see the
discussion in Section 4.4.

6.3.2 Results

Within the HBP where Σ̄ ̸= 0, one obtains mixing between σ and ω3 when inspecting
the static Hessian Γ(2)

ϕj ,ϕk
(q = 0) since the matrix element for ϕj = σ and ϕk = ω3 (or

vice versa) is non-vanishing, see Eq. (D.29). When considering q ̸= 0, there can also occur
mixing involving the spatial components of ων , see the discussion in Section 5.3.1 and
Appendix D.3 for the Hessian matrix elements. We start by focusing on the static Hessian
Γ(2)(q = 0), i.e., the mass matrix of the theory. To study these static mixing effects, one can
consider the block of Γ(2) with ϕj ,ϕk ∈ (σ,ω3). Perturbations about the spatial components
of the vector field are not relevant in this case, since the static Hessian is diagonal anyway
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Figure 6.4: The real and imaginary part of the bosonic two-point vertex functions Γ(2)
φj (q) are plotted

as functions of the momentum of the perturbation q. The bosonic two-point vertex
functions are obtained as eigenvalues of Hϕj ,ϕk

with ϕj ,ϕk ∈ {σ,ω3}. Note that only
Im Γ(2)

φj (q) is plotted, since Im Γ(2)
φa = − Im Γ(2)

φb .

with respect to ω1 and ω2. Thus, no complex-conjugate eigenvalues can be obtained from
these diagonal elements Γ(2)

ωj ,ωj with j = 1, 2. The main finding of the following analysis
is the observation of complex-conjugate eigenvalues of Γ(2)(q = 0) in the certain regions
within the HBP through these mixing effects between σ and ω3. As a consequence, we
argue that the bosonic two-point correlation functions ⟨φj(0)φj(x)⟩c, see Eq. (2.25) for
its definition, are oscillatory, but exponentially suppressed according to the analysis of the
propagator poles presented in Section 4.4. This regime is termed a QπL in analogy to
quantum spin liquids in condensed matter systems, see Section 3.1.2 and Section 3.3.2 for
further context.

At any non-vanishing T and µ within the HBP, one obtains mixing between σ and ω3
such that the physical basis φj ̸= ϕj . This mixing, given that the non-diagonal elements of
the Hessian are large enough compared to the diagonal ones, can lead to the appearance
of complex-conjugate eigenvalues of Γ(2)

ϕj ,ϕk
depending on µ and T , and implicitly on the

homogeneous expansion points Σ̄(µ,T ) and Ω̄3(µ,T ). An example of this phenomenon is
shown in Fig. 6.4, where the real and imaginary eigenvalues of Γ(2)

ϕjϕk,(q) with ϕj ,ϕk ∈
(σ,ω3) are plotted for (µ/Σ̄0 = 1.03,T/Σ̄0 = 0.05) and λV Σ̄0/π = 1.0. The eigenvectors
φa and φb are given by q-dependent linear combinations of σ and ω3, i.e., φj(q) = cj(q)σ+

dj(q)ω3(q). The imaginary part of the eigenvalues for q = 0 decreases as a function of q
in this analysis until real-valued eigenvalues are obtained for q/Σ̄0 ≈ 0.5. Then, also the
degeneracy Re Γ(2)

φa = Re Γ(2)
φb is no longer enforced by CK invariance (see the discussion in

Section 6.3.1) resulting in an apparently non-analytic behavior of both bosonic two-point
vertex functions at q/Σ̄0 ≈ 0.5 and q/Σ̄0 ≈ 3.0. Whenever the real parts of Γ(2)

φa/b(q) are
equal to each other one also observes a non-vanishing imaginary part of Γ(2)

φa (q) = −Γ(2)
φb (q)

for a ̸= b. In the static case with q = 0, the complex-conjugate eigenvalue pairs leads to
bosonic propagators that are sinusoidal modulated alongside the usual exponential decay,
see Section 4.4. A low-momentum expansion of the bosonic two-point vertex functions then
yields the described behavior through the appearance of roots of the propagator with a
non-vanishing real and imaginary part, see the discussions in Refs. [180, 188, 191]. Note the
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bosonic two-point vertex functions behave quantitatively different from Fig. 6.4 at q ̸= 0
when the Γ(2)

ϕj ,ϕk
is considered as a 4 × 4 matrix with ϕ⃗ = (σ,ω3,ω1,ω2), i.e., perturbations

about ω1 and ω2 are considered. The off-diagonal matrix elements proportional to ω1 and
/ or ω2 contribute at q ̸= 0. Thus, Fig. 6.4 at non-vanishing q should be understood as an
example for the effects of mixing and not as a full solution for the model (6.1). It would be
the full solution of the momentum dependence of the Hessian matrix when only off-diagonal
elements, i.e., mixing effects, proportional to σ and ω3 are allowed.

To characterize the regime where complex-conjugate eigenvalue pairs appear in Γ(2)
ϕj ,ϕk

for q = 0, we use
k0 = max

φj

(
Im Γ(2)

φj
(q = 0)

)
, (6.20)

i.e., the maximal imaginary part of the eigenvalues of the Hessian matrix at q = 0. This
is an important scale for the momentum of the sinusoidal oscillation of the bosonic propa-
gator, as a non-vanishing k0 induces a non-vanishing real part of the propagator poles, see
the discussion in Section 4.4. In Fig. 6.5, we plot k0 in the (µ,T ) plane using a color code
for λV Σ̄0/π ∈ {0.6, 0.8, 1.0}. A region with k0 ̸= 0 for chemical potentials µ/Σ̄0 > 1.0 and
rather small temperatures is observed for all three vector couplings. Whenever k0 ̸= 0, the
QπL is observed, i.e., bosonic two-point correlation functions are oscillating, exponentially
damped functions in this region. Note that the diagonalizing field basis for static perturba-
tions φ⃗(q = 0) = (z1σ+ z2ω3, z∗

2σ+ z∗
1ω3,ω1,ω2) with complex-valued coefficients z1 and

z2 for all studied points in the phase diagram and all studied vector couplings λV .
The extent of the region with complex-conjugate eigenvalue pairs both in µ and in T

direction depends monotonically on the value of the vector coupling. For λV Σ̄0/π = 0.6,
this region’s extent is significantly smaller than for λV Σ̄0/π = 1.0. For all studied vector
couplings, the width in the µ direction of the regime with oscillating propagator behavior
decreases for larger temperatures, until k0 goes to zero. We expect that this is caused
by thermal fluctuations suppressing the oscillatory behavior in the propagators. Such a
behavior is typical for regimes with spatial oscillations, because the thermal fluctuations
tend to destroy ordering and flatten short- and intermediate range correlations in general
[219, 225, 226, 366]. For all three vector couplings, k0 jumps from zero to a non-vanishing
value when crossing µ/Σ̄0 > 1.0 at zero temperature in consistency with the Silver Blaze
property. This can also be derived from the formulas in Appendix D for the off-diagonal
elements. As visible in Fig. 6.5, k0(µ,T ) seems to have a rapid but continuous onset from
zero when increasing µ from the left of the regime with spatial oscillations at any T ̸= 0.
In the literature, the transition from k0 = 0 to k0 ̸= 0 is also called disorder line [219],
as the line where the propagator poles become degenerate and, subsequently, develop non-
vanishing real parts.

In Fig. 6.6, we plot k0 at zero temperature as a function of λV Σ̄0 and µ/Σ̄0 and observe
the above described non-analytic behavior at all λV Σ̄0 > 0.5π. Precisely at λV ,cΣ̄0 = 0.5π,
however, there is a continuous onset of k0. For λV Σ̄0 < 0.5π, we do not find k0 ̸= 0 at all.
The width of the region with k0 ̸= 0 in the µ direction is largest at T = 0 for all studied
vector couplings such that we expect that one finds k0 = 0 for all vector couplings lower
than λV ,c both at zero and non-zero temperature. Consequently, for q = 0 we do not expect
any complex-conjugate eigenvalues to appear in the Hessian matrix for λV Σ̄0 < 0.5π. From
Fig. 6.6 it becomes clear that the extent of the region with complex-conjugate eigenvalues
of Γ(2) at q = 0 grows with increasing vector coupling when λV > λV ,c. Also, the value of k0
grows monotonically when increasing λV from any value larger than λV ,c. Both observations
show that the increase of the vector coupling increases the mixing effects, which is expected
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Figure 6.5: Contour color maps in the (µ,T ) plane for the value of the maximal imaginary part
of the eigenvalues at q = 0, denoted by k0, for (top left) λV Σ̄0/π = 0.6, (top right)
λV Σ̄0/π = 0.8, (bottom) λV Σ̄0/π = 1.0. The green lines represent the second-order
phase boundary of the (2 + 1)-dimensional GN model, while the blue lines correspond
to the phase boundary of the model (6.1) for the respective value of λV . Continuous data
for the contour plots is obtained using triangulation provided by Matplotlib in Python3
[19, 20]. Note that the plot range in the µ axis, the T axis and the discrete color bar
differs from plot to plot in order to make the contour lines visible.
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Figure 6.6: Contour color maps in the (λV ,µ) plane for the value of the maximal imaginary part
of the eigenvalues at q = 0, denoted by k0, at zero temperature. Continuous data for
the contour plots is obtained using triangulation provided by Matplotlib in Python3 [19,
20].

since an increase of λV lowers the difference Γ(2)
σ,σ(q = 0) − Γ(2)

ω3,ω3(q = 0). This difference
between the two diagonal elements needs to be smaller than the product of the off-diagonal
elements such that the eigenvalues of the corresponding 2 × 2 block are complex-conjugate
eigenvalue pairs, as one can derive from the characteristic equation of any 2 × 2 matrix.
Logically, the increase of mixing effects in terms of the off-diagonal elements Γ(2)

σ,ω3 also
amounts to a growth of the extent of the regime with spatially oscillating propagators.

Although k0 is a useful observable to quantify the appearance of complex-conjugate
eigenvalues, it is not the unique scale determining the spatial oscillation of the propagator
⟨φj(x)φjk(0)⟩c. Instead, the scales for the oscillation and the exponential decay of Gφj are
given by the respective real and imaginary parts of the roots q1,2

φj
of Eq. (4.61). These roots

are given by

q1,2
φj

= ±i

√√√√Γ(2)
φj (0)
Zφj

. (6.21)

In order to compute these roots numerically, one can use the fact that φj(q) has a weak
dependence on q for small q. In practice, the computation of Zφj involves the discrete
differentiation of the eigenvalues of Γ(2)

ϕj ,ϕk
(compare Eq. (4.61) and Eq. (4.25)). Thus, its

computation has to be performed by carefully taking into account the discretization error
in q and the change of basis φj(q) in this area. Also, the imaginary part of Zφj is very small
such that one also encounters problems with under-flowing of double precision. In test runs
of this evaluation the maximum value for ImZφj encountered was on the order of 10−3,
while ReZφj is typically of order 10−1. However, the problems involving the numerical
evaluation of Z make a precise determination of the poles using Eq. (6.21) impractical
with respect to the study of the whole phase diagram.
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Figure 6.7: Contour color maps in the (µ,T ) plane for the ratio r between the frequency of the spa-
tial oscillation and the exponential decay rate of the exponential decay of the propagator.
(left) λV Σ̄0/π = 0.6, (right) λV Σ̄0/π = 1.0. The green lines represent the second-order
phase boundary of the (2 + 1)-dimensional GN model, while the blue lines correspond
to the phase boundary of the model (6.1) for the respective value of λV . Continuous data
for the contour plots is obtained using triangulation provided by Matplotlib in Python3
[19, 20]. Note that the plot range in the µ axis, the T axis and the discrete color bar
differs from plot to plot in order to make the contour lines visible.

Hence, we decided to use3

θ = arg


√√√√Γ(2)

χ (0)
ReZχ

 =
1
2 arccos

Re Γ(2)
χ (0)

|Γ(2)
χ (0)|

 (6.22)

with
χ = arg max

φj

(
Im Γ(2)

φj
(q = 0)

)
(6.23)

in order to compare the scales of oscillation and exponential decay. Equation (6.22) gives
the complex argument θ of q1,2 when setting the imaginary part of Zφj to zero. As argued
above, the error of this approximation is negligible due to the imaginary part of Zφj being
small. Using Eq. (6.22) does not require an evaluation of Zφj and, thus, avoids the problems
related to the underflow of the imaginary part of Zφj .

We find r = tan θ = Re q1,2
χ / Im q1,2

χ as the ratio of the oscillation frequency Re q1,2
χ and

the decay rate Im q1,2
χ . In Fig. 6.7, r is plotted for two different values λV Σ̄0 = 0.6π and

λV Σ̄0 = π. The maximal value of r is 0.58, obtained for the largest value of the vector
coupling λV Σ̄0 = π, implying that the frequency of the oscillation is larger than half of the
exponential decay rate at this point in the phase diagram. As expected from the decrease of
k0 for smaller vector couplings, also lower values of r are obtained in general when lowering
λV . This is expected, since mixing effects will not be as drastic for lower vector couplings,
see the discussion above. In general, the obtained contour lines for r are similar to the
ones of k0, see Fig. 6.5. The figure demonstrates that for large parts of the regime with
oscillatory behavior the wavelengths are in the order of the inverse of the exponential decay
rate.

3 Note that by definition of Γ(2)
χ its imaginary part is always positive such that the determination of the

argument in Eq. (6.22) is always valid.
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Figure 6.8: The real and imaginary part of the bosonic two-point vertex functions Γ(2)
φj (q) as func-

tions of the momentum of the perturbation q. The bosonic two-point vertex functions
are obtained as eigenvalues of Hϕj ,ϕk

with ϕj ,ϕk ∈ {σ,ων}. Note that the non-vanishing
imaginary part does not necessarily belong to similar eigenvectors φj(q) and complex-
valued two-point vertex functions appear as complex-conjugate pairs.

6.3.3 Analysis of the Hessian matrix for larger external momenta

In Fig. 6.4, where only mixing of σ and ω3 was taken into account, one can observe the
appearance of complex-conjugate eigenvalues of the Hessian at q ̸= 0. However, considering
a 4 × 4 Hessian matrix Γ(2)

ϕj ,ϕk
(q) with ϕj ,ϕk ∈ (σ,ων) yields a more involved mixing pattern,

since also ω1 contributes to mixing effects with σ when studying q ̸= 0. The other vector
component ω2 is not mixing with σ (but with the other components of ων), since we choose
q = (q, 0) in Eq. (6.18) by using the rotational invariance of the internal momentum
integration in the Hessian matrix elements. The roles of ω1 and ω2 are exchanged if we
choose q to be aligned with the x2 axis. Since the stability analysis turns out to be invariant
under spatial rotations (see the discussion in Section 6.3.1), the eigenvalues are independent
of the chosen spatial direction q/|q| (just the eigenvectors correspond to a different linear
combination of ω1 and ω2 when changing the angle of q).

The more complicated mixing pattern is depicted in Fig. 6.8. From the plot one obtains
that Γ(2) has real eigenvalues for q = 0, but then develops complex-conjugate eigenvalue
pairs at some value of q = qB where

qB = min
q∈C

q, C = {q ∈ [0, ∞)|ImΓ(2)
ϕj

(q) ̸= 0}. (6.24)

In this case, one obtains that only two of the four eigenvalues have non-vanishing imaginary
parts for fixed q, while the other two are real-valued. As can also be seen from Fig. 6.8,
complex-conjugate eigenvalue pairs can be obtained for multiple, disconnected intervals in
q. This leads to the rather complicated behavior of the bosonic two-point vertex functions
after diagonalization with the real-parts of different eigenvalues becoming degenerate de-
pending on the value of q. Since complex-conjugate eigenvalue pairs can occur for all of the
Γ(2)
φj with j ∈ {1, 2, 3, 4}, the yellow line in the plot always only describes the appearance

of the maximal imaginary part in any of those eigenvalues. Since the eigenvectors of Γ(2)

in field space can be strongly q-dependent especially for large q/Σ̄0, one might even argue
that the association of the eigenvalues using functions Γ(2)

φj (q) is not very insightful. Nev-



6.3 mixing effects generating the quantum pion liquid 122

ertheless, Fig. 6.8 certainly demonstrates the involved mixing effects between scalar and
vector modes. Also, it shows that there is non-monotonic behavior of the real parts of the
bosonic two-point vertex functions such that one cannot exclude the appearance of moat
regime. However, also the bosonic wave-function renormalization Zφj can become complex,
see its definition involving Γ(2)

φj (4.25), and might not be a decent criterion for a moat regime
where arg minq Re Γ(2)

φj (q) ̸= 0. This is caused by non-analytic behavior of Γ(2)
φj (q) around

the regions with non-vanishing imaginary parts leading also to non-monotonic behavior.
For these reasons we refrain from studying the moat regime within the HBP and focus on
the complex-valued eigenvalues instead.

Overall, to the best of the author’s knowledge there is no clear interpretation for the ap-
pearance of complex-conjugate eigenvalues of Γ(2) appearing at fixed q ̸= 0, especially for
q/Σ̄0 > 1, in the literature. Also, this work marks the first observation of this phenomenon
in the literature – again to the knowledge of the author. For small qB, a similar interpre-
tation as in the static case of correlation functions with sinusoidal modulations might be
meaningful, again performing a low-momentum expansion of the bosonic two-point vertex
functions, compare Eq. (4.61) around some non-vanishing q and determining propagator
poles similar to Eq. (6.21). However, whenever qB/Σ̄0 > 1.0 such an expansion is certainly
not sensible. We document the values of qB in the following.

In the left plot of Fig. 6.9, we plot a color map in the (T ,µ) plane encoding qB for
λV Σ̄0/π. In the right plot of this figure we visualize

kmax = max
j,q

(
Im Γ(2)

ϕj
(q)
)

(6.25)

also using a color code. Fig. 6.9 demonstrates that complex-conjugate eigenvalues appear
in large parts of the HBP except for a rather small region at small temperatures and
chemical potentials. For some parts of this region the obtained imaginary parts are rather
small. In consistency with the Silver Blaze property, kmax = 0 for T = 0 and µ/Σ̄0 < 1.0.
For rather small chemical potentials, kmax/Σ̄0 is of the order of 10−3 and qB/Σ̄0 ≫ 1.
Accordingly, the interpretation in terms of oscillating propagators as in the static case is
not possible, since the argumentation involves a low-momentum expansion which is not
sensible here. However, if existent, any oscillating effects in this region should be negligible
anyhow given that any relevant imaginary part should be smaller than kmax/Σ̄0 ∼ 10−3. For
larger chemical potentials, one obtains qB/Σ̄0 < 1.0 making a low-momentum expansion
of the inverse propagator more sensible. We note that due to the computational demands
of computing multiple momentum integrals for the determination of the matrix entries
of H(q) and its diagonalization, the resolution in q for the computation of the data in
Fig. 6.9 was chosen as ∆q = 0.2. The rather coarse resolution in q results in inaccuracies in
the determination of qB and kmax, because the intervals, where complex-valued eigenvalues
occur, can be smaller than ∆q. This is evident for some data points around the homogeneous
phase boundary as well as small µ and T/Σ̄0 ∈ [0.5, 0.7], where qB appears to have jumps
when changing µ or T . At these data points, it is likely that for some intervals in q, which
are smaller than ∆q, complex-valued Γ(2)

φj (q ̸= 0) appear, that where missed such that the
correct qB differs from the depicted data point. Anyhow, the value of kmax is likely to be
small anyhow within these intervals.

Again, we note that there is no clear interpretation for the appearance of complex-
conjugate eigenvalues of Γ(2) appearing at fixed q/Σ̄0 > 1 in the literature. An inversion
and Fourier-transformation of the obtained Γ(2)

φj to compute Gφj (x, y) within these regions
yields an ordinary exponential decay in the HBP. This is expected, since kmax is rather
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Figure 6.9: Contour color maps in the (µ,T ) plane for λV Σ̄0/π = 1.0 encoding (left) qB (see
Eq. (6.24)) (right) kmax (see Eq. (6.25)). The green lines represent the second-order
phase boundary of the (2 + 1)-dimensional GN model, while the blue lines correspond
to the phase boundary of the model (6.1). Note that the plot range in the discrete color
bar differs from plot to plot. The color bar for qB is cut off at qB/Σ̄0 = 5.0 such that
the behavior of lower qB could be visualized accurately. The discretization of q is given
by ∆q = 0.2 resulting in discretization errors in the computation of qB and kmax.

small compared to the real-part of the bosonic two-point vertex functions in these parameter
regions (see Fig. 6.9) such that the effect of this phenomenon is negligible when studying
bosonic two-point correlation functions. A search for propagator poles in the complex plane
by studying q ∈ C as an argument of the bosonic two-point vertex functions would be a
more appropriate method to finally determine the behavior of bosonic two-point correlation
functions in the regime with complex-conjugate eigenvalues at q ̸= 0.

6.4 summary and contextualization

In this chapter, the phase diagram of a 2+ 1-dimensional four-fermion model was computed
in order to investigate the effects of mixing effects between scalar and vector mesons as
well as the incorporation of the CK symmetry at µ ̸= 0 in a QCD-inspired theory. Thereby,
the vector coupling λV was treated as a free parameter and varied in units of the chiral
condensate in the vacuum Σ̄0. In line with the findings in Chapter 5, no instabilities of
homogeneous ground states are observed such that the absence of inhomogeneous chiral
condensates is expected in all 2+ 1-dimensional four-fermion models with local interaction
channels in line with the argumentation presented in Section 5.4 (and the more lengthy
analysis in Chapter 5, in general). However, a QπL, i.e., a regime with spatially oscillating,
yet exponentially damped mesonic two point correlation function, is observed within the
HBP at low temperatures and intermediate chemical potentials for vector couplings λV Σ̄0 >

π/2. Moreover, an enhancement of the HBP is observed with growing vector coupling λV ,
see Fig. 6.1.

The QπL regime was detected by the appearance of complex-conjugate eigenvalues when
computing the bosonic two-point vertex functions Γ(2)

φj (q) = (⟨φjφj⟩c(q))−1 as a function
of the external momentum q, following the discussion in Section 4.4. See Fig. 6.5 for a
visualization of the region in the phase diagram that corresponds to the QπL, where these
complex-conjugate eigenvalues are observed, for three different values of the vector coupling.
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The argumentation that the QπL arises from these complex-conjugate eigenvalues pairs,
corresponding to a so-called PT -broken regime, originates to studies of scalar theories
with PT -type symmetry [180, 188, 190], the same type of symmetry as the CK operation
in QCD at µ ̸= 0, see the corresponding paragraph in Section 1.2 for a discussion. It has
to be noted that the complex-conjugate eigenvalues are observed for both q ̸= 0 and q = 0
in Γ(2)

φj (q), but a sensible interpretation through the emergence of a QπL was only possible
for q = 0 through a low momentum expansion of Γ(2)

φj (q). Further, an estimate on the ratio
r of the frequency of the oscillation and the exponential decay rate of the mesonic bosonic
two-point correlation functions was computed in the whole QπL regime for two different
vector couplings demonstrating that this ratio can be of order 10−1 to 1 for a large region,
c.f. Fig. 6.7 for a visualization of the value of r within the QπL.

conclusions This study represents one of the first investigations incorporating the
presence of the combined CK symmetry at µ ̸= 0 as well as the mixing effects between scalar
and vector mesons. Both effects are expected to play a crucial role in QCD at intermediate
densities and temperatures [133, 191]. Thus, it serves as one of the first explorations of
RO1 “What are the implications of the presence of the combined CK-symmetry at µ ̸= 0
for the existence of exotic phases?” and RO2 “What are the implications of mixing effects
between scalar and vector mesons for the existence of exotic phases at µ ̸= 0?”. The finding
of the QπL is to the best of our knowledge the first finding of this regime in a four-fermion
model generated by the interplay of a attractive, scalar and repulsive, vector four-fermion
interaction – apart from the report in the parallel work [189]. We note that Ref. [189]
also incorporates both of the above mentioned features. Therein, complex-conjugate eigen-
values are also observed when computing the bosonic two-point vertex functions, which
are, however, only studied for homogeneous perturbations (the external spatial momentum
q = 0 in Eq. (6.18)), i.e., only static mixing effects in the mean-field approximation are
considered. Further, Ref. [189] does not quantitatively investigate these complex-conjugate
eigenvalues but only reported about their appearance near the CP of the phase diagram
and their implicit relation to the QπL regime as stemming from the analysis of scalar
theories with a PT -type symmetry (as the CK operation is) [180, 188, 190] . These works
already concluded that this type of symmetry can imply the existence of a QπL. However,
these scalar theories can feature both IPs as well as QπLs while only the latter is realized in
2+ 1-dimensional four-fermion models. Thus, our results together with the findings in Sec-
tion 5.4 suggest that the latter seems to be the more robust phenomenon in QCD-inspired
models.

Consequently, our findings and Refs. [189, 191] suggest that the QπL is relevant in
the phase diagram of QCD at intermediate chemical potential and temperatures both
from the above mentioned competition of repulsive and attractive forces as well as its
direct relation to the emergent CK symmetry at µ ̸= 0 – both phenomena are relevant for
QCD. The competition between an attractive and repulsive interaction is realized in the
QCD phase diagram not only through emergent scalar and vector quark-meson exchange
diagrams and corresponding four-fermion resonances [133, 148] but also directly from the
lifted degeneracy between the Polyakov-loop and its conjugate at µ ̸= 0 [189, 191]. The
latter suggest that gluon interactions might further favor the existence of a QπL.

Note that the QπL is realized at low temperatures in the case of the 2 + 1-dimensional
four-fermion model, but at higher temperatures near the CP in the QM model from
Ref. [189]. We suspect that this is the case, because the analogue to a CP in four-fermion
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models in two spatial dimensions is located at the zero temperature transition line where
the homogeneous effective potential becomes flat. Thus, in QCD the QπL and a possibly
related moat regime might be present near the suspected CP and the possible first-order
phase transition line. They might leave an even more distinct imprint on observables such
as two-particle correlations [232–234] and dilepton production [11].

future research perspectives With respect to QCD, effective model computa-
tions in three spatial dimensions would be even more relevant, although these are possibly
spoiled by regularization artifacts present in four-fermion models [10, 210], as in detail
discussed in Section 5.4 and multiple times throughout this thesis. Also in QM models /
Yukawa-type models, certain ambiguities regarding unbounded potentials appear in the
mean-field investigations of the phase diagram through a negative coupling of the mesonic
self-interaction as well as an imaginary Yukawa coupling when including the vacuum fluc-
tuations in the renormalization procedure [198] (something that does not occur in the
aforementioned Ref. [189] where only effects of mixing in the medium are studied). A
study of a fully-fletched QM model with vector mesons would be a logical next step to
get closer to QCD and provide phenomenologically interesting results on the scales of the
oscillation within the QπL. A promising tool for the renormalization of this theory, while
still matching QCD observables in the vacuum such as the pion decay constant, the con-
sistent quark mass and the σ mass, could possibly be provided by the framework of PT
symmetric field theory. Although such QFTs are still rather novel [185, 186, 312, 313, 367],
encouraging results for negative couplings have been found in this framework [368–370] –
including the non-triviality of scalar ϕ4 theory for N > 2 components and (possibly) for
N = 1 and negative quartic couplings [371]. Moreover, a non-Hermitian PT -symmetric
four-fermion theory could be renormalizable [369].

Further, the investigations in Chapter 5 and Chapter 6 are performed within the mean-
field approximation. Certainly, it would be interesting to study the effect of bosonic quan-
tum fluctuations on the QπL. There exist LFT simulations [255] of the 2 + 1-dimensional
GN model observing oscillatory mesonic correlation function, although the model does not
include vector interactions. These findings could be remnants of the IP that is present at fi-
nite lattice spacing in the GN model or could be generated by mixing effects stemming from
off-diagonal fermion doubler interactions that have quantum numbers of a vector interac-
tion, which are present in naive and staggered lattice discretizations at finite lattice spacing
[226, 372]. Going beyond the mean-field approximation in the model (6.1) with LFT is not
straightforward as complex weights appear in the path integral [128, 373]. Thus, one would
have to either rely on Lefshetz thimble approaches [126, 127], the FRG [121], non-abelian
bosonization techniques [228, 229] or 1/Nf -expansion techniques [272, 273]. All of these
approaches pose certain drawbacks, since the latter two analytical approaches are not yet
developed to deal with complex actions while the FRG can tackle non-Hermitian problems
but has to apply uncontrolled approximations to the bosonic two-point vertex functions
(and it is not guaranteed that the method is numerically stable at these low temperatures
[286]). Meanwhile, Lefshetz thimbles have been applied to an NJL model with vector in-
teractions similar to model (6.1), see Ref. [128], but numerical instabilities from singular
points and cuts in the integration plane have spoiled the simulations. In Chapter 7, the in-
fluence of bosonic fluctuations on exotic phase in general is nevertheless investigated using
LFT, but using a simple enough, scalar field theory to study their effect with traditional
lattice techniques.
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As discussed in Section 1.2, oscillatory regimes can have effects on the propagation of
pions in heavy-ion-collisions leaving imprints on the two-particle correlation functions of
pions [233, 234] and dilepton production rates [11]. However, these findings are based
on a generic moat dispersion relation. To extract similar observables from the QπL, one
would have to think about a sensible model for this regime that allows their computation.
Yet, further information about the scales of the oscillatory behavior in relation to the
exponential decay of typical pion correlation functions would be helpful in this process and
could be extracted from a Polyakov-Loop QM model, as discussed above.
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disclosure The results presented in this chapter stem from the conference proceed-
ings contribution [6] and an on-going research project by the author together with S. Val-
gushev. Thus, these results can be attributed to myself and S. Valgushev. The underlying
lattice simulation code was implemented solely by S. Valgushev. The production of the pre-
sented data was performed solely by myself. Further, useful discussions with R. D. Pisarski
are acknowledged. A lot of the results stemming from mean-field and large-Ns approxima-
tion are reproduced from Ref. [219]. The presentation of the material has been rewritten
and adapted to fit the context of this thesis.

abstract and relation to the research objectives In this chapter, we
investigate a scalar O(Ns) model incorporating higher-order, spatial kinetic terms to ac-
count for the possible existence of exotic phases, like an IP, a moat regime or a QπL, using
LFT. Inhomogeneous condensates arise as solutions of the classical equations of motion of
this model. We examine the impact of bosonic quantum fluctuations on inhomogeneous
condensates through a fully-fledged LFT simulation using the Hybrid Monte Carlo (HMC)
algorithm, as proposed in RO3 (see Section 1.3). Furthermore, we review findings from the
large-Ns limit where a mechanism for the disordering of IPs through the Goldstone mode
fluctuations from O(Ns) symmetry breaking is proposed.

The main finding is that IPs are absent in the phase diagram for the investigated finite,
spatial volumes independent of the chosen value of Ns = 1, 2, 4, 8. Instead, a QπL is ob-
served for negative Z. The question posed in RO4 about possible disordering mechanisms of
IPs through bosonic quantum fluctuations is explored. In the LFT simulations, we system-
atically vary the number of scalar fields such that Goldstone modes from O(Ns) symmetry
breaking are either present or absent. This demonstrates that IPs are not stable at finite
spatial volumes independent of Ns. In line with RO4, an appropriate detection method of
the breaking of translational invariance (and rotational invariance) in the thermodynamic
limit is constructed and a proof-of-concept is presented.

outline In Section 7.1, the used model for spatially modulated phases is presented.
Then, an extensive review of the findings in Ref. [219] for the mean-field approximation,
amounting to classical field theory in the present case, and for the large-Ns limit is given.
These findings build the foundation for the following LFT simulations for Ns = 1, 2, 4, 8.
The setup of the HMC algorithm and investigated observables are discussed in Section 7.3.
Then, the simulation results are presented in Section 7.4. More specifically, observables for
fixed finite spatial volumes suggesting the disordering of the IP into a QπL at negative Z
are discussed in Section 7.4.1, while preliminary findings for an extrapolation to the thermo-
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dynamic limit are presented in the following subsections. A summary and contextualization
of the results with the literature and ROs is provided in Section 7.5.

7.1 an effective model for exotic regimes based on mesonic de-
grees of freedom

A scalarO(N) model in 3+ 1 Euclidean spacetime dimensions with spatial higher-derivative
terms is considered at finite temperature β = 1/T ,

S [ϕ⃗] =
∫ β

0
dτ
∫

d3x

[
1
2 (∂0ϕ⃗)

2 +
Z

2 (∂jϕ⃗)
2 +

m2

2 ϕ⃗2 +
λNs

4 (ϕ⃗2)2
]

, (7.1)

where ϕ⃗ = (ϕ1, . . . ,ϕNs) is an Ns-component scalar field such that the theory has a global
O(Ns) symmetry modeling chiral symmetry of QCD, which is isomorphic to O(4) for
two flavors. The model is originally constructed in Ref. [219]. This action is considered an
effective model emerging from an underlying theory (such as QCD or a four-fermion model)
at non-vanishing µ and T , whose action is expanded in mesonic fields and their gradients.
Such an expansion naturally arises also in the stability analysis in Section 4.1.2. There,
the bosonic two-point vertex functions contains coefficients of up to all orders in spatial
momenta but second-order in the amplitude of the meson fields, see, e.g., Ref. [342] for
an explicit expansion of the thermodynamic potential. In Eq. (7.1), Z is the bare bosonic
wave function renormalization1, m2 the bare mass, λ the quartic coupling of the scalar
self-interaction term and M corresponds to a large mass scale. A negative Z implies the
existence of the moat regime in the classical theory. This specific choice of a model can be
motivated from the occurrence of the moat regime in four-fermion models [1, 9, 167] and
in FRG investigations of QCD [121, 166].

At non-vanishing temperatures, the temporal momenta of bosonic fields are discretized as
Matsubara frequencies ωn = 2πTn, n = 0, ±1, ±2, . . .. In this case, the static Matsubara
mode βω0 = 0 is dominating the effective theory such that an effective 3-dimensional
Lagrangian is given by2

Leff =
Z

2
(
∂jϕ⃗

)2
+

1
2M2

∑
j

∂2
j ϕ⃗

2

+
m2

2 ϕ⃗ 2 +
λ

4 (ϕ⃗
2)2 (7.2)

with the effective action Seff[ϕ⃗] = β
∫

d3xLeff and partition function

Z =
∫

D ϕ⃗ e−Seff[ϕ⃗]. (7.3)

This effective action can directly be obtained from Eq. (7.1) when restricting the bosonic
fields to be time-independent. The bare parameters are varied in the following to explore the
parameter space and the possible existence of exotic regimes within the model in different
approximation and in LFT. Varying these parameters of the effective model should be
though of as varying T and µ in the underlying theory.

Note that, in general, the used model is restrictive in the considered terms of higher
energy dimension, for example one could consider a higher-order self-interaction (ϕ⃗2)3 or

1 Its emergence from the bosonic two-point vertex functions of a four-fermion theory is presented in Sec-
tion 4.1.

2 In this chapter, we use
(
∂j ϕ⃗
)2

as a short-hand notation for (∂j ϕ⃗)(∂
j ϕ⃗) with summation over j.
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other terms of mass dimension six that involve two spatial derivatives and four ϕ⃗ operators,
see Ref. [11] where all terms of mass dimension six involving higher spatial derivatives are
listed.3 However, as shown in Ref. [219], the terms considered in Eq. (7.6) are the relevant
ones in the study of exotic regimes in the present context while the additional terms
yield negligible contributions. See equations (1)-(3) in Ref. [219] for all further terms, and
Chapters II and III of Ref. [219] for the discussion of the neglected terms.

super-renormalizability and its implications The model (7.6) is super-
renormalizable since each bare propagator contributes a factor of p−4 to the all pertur-
bative calculations, rendering all Feynman diagrams finite. Therefore, commonly used
power-counting arguments regarding renormalizability based on the dimension of coupling
constants does not work, as seen explicitly in Section 7.2 where in tadpole diagrams are
discussed. The super-renormalizability of the model implies that quantum corrections are
finite, making effects from a finite UV regulator weaker than in renormalizable theories.
As a first instructive study of this model, we fix M and λ, the couplings of the two terms
with the highest order in mass dimension, and treat the model as an effective theory. Then,
we vary Z and m2 as the effective parameters of the theory in order to map out a phase
diagram in this restricted parameter region. This is instructive because the Lagrangian
(7.6) features a Mexican hat potential in both the field amplitude ρ =

√
ϕ⃗2 (corresponding

to quartic and quadratic terms in ϕ⃗) and the field momenta (corresponding to quartic and
quadratic terms in the spatial derivatives). The physics of this potential is determined by
the ratio of the quadratic and quartic coefficient and not by their respective amplitudes.
Stability, obviously, requires M > 0 and λ > 0. Due to the super-renormalizablity of the
theory and its function as a model for translational and chiral symmetry breaking, we start
the investigation by considering the theory at a fixed energy scale (corresponding to fixed
λ and M). This is further discussed in Section 7.4 and Section 7.5. A continuum limit or
a removal of this limitation is not performed in this work.

7.2 discussion of results from analytical approximations

The model (7.6) can be analyzed in the mean-field approximation, where bosonic quantum
fluctuations are completely neglected (see Section 2.4). For a purely bosonic theory, the
mean-field approximations amounts to reducing the QFT to the classical field theory. Note
that the mean-field approximation is equivalent to the large-Nf limit of four-fermion models
but not equivalent to the large-Ns limit of scalar O(Ns) models, see Section 2.5. The
large-Ns limit for the scalar model contains (quantum) fluctuations of the scalar fields
in a saddle-point approximation of the partition function (7.17) under the assumption
that O(Ns)-invariant observables self-average in the partition function and have small
fluctuations, see Ref. [302] for a review and Section 2.5. Note the findings discussed in this
section stem from Ref. [219].

3 When coupling the moat regime to photons via imposing gauge invariance, as in Ref. [11], more caution is
required.
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7.2.1 Mean-field approximation – Classical field theory

Equation (7.6) consists only of scalar fields such that the mean-field approximation amounts
to studying the classical field theory defined by the effective Lagrangian (7.6). The field
equations from the Lagrange formalism read

1
M2

−
3∑
j=1

∂2
j

2

ϕk + Z

−
3∑
j=1

∂2
i

ϕk + (m2 + λϕ⃗2)ϕk = 0. (7.4)

The solutions of these equations are found depending on the values of Z and m2 for fixed
values of M and λ.

In general, the mathematical structure of a Mexican hat potential arises both in spatial
derivatives and in the field amplitude, i.e., one obtains vanishing or non-vanishing minima
of the potential depending on the coefficient of the respective quadratic term.

positive Z For positive Z, the field ϕ2(x) = ϕ2
0 is expected to be homogeneous in

space since the potential is a monontonically increasing function of the momentum of the
field. Thus, we distinguish between a phase with a non-zero expectation value of the field
ϕ⃗ for negative m2 and a phase with ϕ⃗ = 0 for positive m2. The latter corresponds to a SP
where O(Ns) symmetry is restored. For negative m2, one obtains a constant condensate
given by ϕ0 = ±

√
−m2/λ corresponding to the HBP. At m2 = 0 there is a line of second-

order phase transitions for any positive Z between the SP and the HBP.

negative Z For negative Z, we expect that ∂j ⃗ϕ ̸= 0, i.e., a spatially inhomogeneous
condensate is generated. Consequently, the theory features a Lifshitz point at Z = 0 and
m2 = 0 where three phases meet: the HBP with ϕ = ϕ2

0 ̸= 0 (m2 < 0,Z > 0), the SP with
ϕ = 0 (m2 > 0,Z > 0) and an IP (Z < 0). The form of Eq. (7.4) suggest that there is a
single mode with momentum k0 ̸= 0 that minimizes the potential for the spatial derivatives.
A simple ansatz for inhomogeneous condensates with a single Fourier mode is the chiral
spiral

ϕ⃗ = ϕ0
(
cos(k0z), sin(k0z), ϕ⃗⊥ = 0

)
(7.5)

for Ns ≥ 2. The parameters k0 and ϕ0 can be determined by solving Eq. (7.4) and mini-
mizing the action (7.6). The Ns − 2 field components ϕ⃗⊥ are set to zero and, in the case of
condensation, play the role of the Goldstone bosons of the theory. Note that the chiral spi-
ral ansatz does not only break translational invariance spontaneously, but also rotational
symmetry due to its dependence on only one of the three cartesian coordinates. The chiral
spiral is only a specific ansatz and more general solutions can be given by sums of mul-
tiple or even infinitely different modes in the Fourier spectrum. In the present case, the
chiral spiral is only used to construct an analytical solution as a starting point for the LFT
simulations, making the analytical computations rather simple. Thus, the limitations of
this ansatz can be seen as a further restriction of analytical computations, that are later
overcome through using LFT.

properties of the chiral spiral solution With the chiral spiral ansatz, the
Lagrangian (7.5) equates to

Leff(k0,ϕ0) =
Z

2 k
2
0 ϕ

2
0 +

1
2M2k

4
0 ϕ

2
0 +

m2

2 ϕ 2
0 +

λ

4 ϕ
4
0. (7.6)
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Minima with respect to k0 are determined by differentiation with respect to k0

∂Leff
∂k0

= 0 (7.7)

resulting in the solutions

k2
0 = −ZM

2

2 or k0 = 0. (7.8)

Since k2
0 must be positive by definition, Z must be negative whenever a non-vanishing k2

0
is obtained. Thus, an IP is observed in the mean-field approximation whenever Z < 0. For
negative Z, a resubstitution of the non-trivial solution for k0 yields

Leff(k0,ϕ0) =
1
2

(
m2 − Z2M2

2

)
ϕ2

0 +
λ

4ϕ
4
0. (7.9)

When minimizing with respect to ϕ0, one consequently obtains

∂Leff
∂ϕ0

=

(
m2 − Z2M2

2

)
ϕ0 + λNsϕ

3
0 = 0, (7.10)

i.e., the development of an inhomogeneous condensate at Z < 0 affects the scalar couplings
involving contributions to the bare mass term. Thus, an IP is realized in form of a chiral
spiral (7.5) if 2m2 < Z2M2 and Z < 0.

7.2.2 Divergences in perturbation theory

The inverse propagator for the static, transverse modes ϕ⃗⊥ is

∆−1
ϕ⃗⊥

(k) = 1
M2 (k

2)2 + Zk2 +m2 + λϕ2
0 (7.11)

which can be rewritten to

∆
ϕ⃗⊥

(k) = 1
M2 (k

2 − k2
0)

2 +
1
ϕ0

∂Leff
∂ϕ0

=
1
M2 (k

2 − k2
0)

2 (7.12)

using Eq. (7.8) and Eq. (7.10). Thus, at k2 = k2
0 the propagator vanishes. The traditional

version of the Goldstone theorem would be that the mass squared vanishes for the trans-
verse modes at zero momentum, i.e., the propagator at k = 0 vanishes [44, 45]. Here, this
vanishing is observed at the preferred momentum k0 of the chiral spiral. Thus, Ns − 2
massless Goldstone modes of the broken O(Ns) symmetry group arise for k = k0.

Perturbative contributions to the propagator of the transverse field components involve
tadpole diagrams proportional to the bare propagator at the classical minimum∫

d3k
1

1
M2 (k2 − k2

0) +
1
ϕ0

∂Leff
∂ϕ0

∼ M2
∫

k=k0k̂+δk

dk
(|k| − k0)2 (7.13)

where we use that the integral is dominated by the contributions of the integrand near
|k| = k0, i.e., |δk|/k0 < 1. This diagram has an IR divergence at |k| = k0 such that
the tadpole diagram diverges and the chiral spiral ansatz is destablized once quantum
corrections are included using perturbation theory. However, in a perturbative analysis
it is unclear whether this divergence is canceled by higher order diagrams or other non-
perturbative effects that are missing. We revisit the fluctuations of transverse modes in
the following discussion applying the large-Ns limit for non-perturbative access to the
transverse propagator.
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7.2.3 Large-Ns analysis: General methodology

In the analysis of the model (7.6), one has to distinguish between the case of homogeneous
and inhomogeneous condensation in the methodology of the large-Ns limit. Therefore, we
employ a constraint field approach for the dynamical variable ϕ⃗2, which is expected to have
small fluctuations as Ns → ∞, see Section 2.5 for a brief introduction. Keep in mind that
we still restrict any possible IP to the chiral density wave ansatz (7.5).

homogeneous case We treat both SP and HBP simultaneously by defining

ϕ⃗ = (σ, χ⃗) (7.14)

where we only allow condensation in σ, i.e., a spontaneously broken symmetry is obtained
through ⟨σ⟩ ̸= 0. This is a common choice in semi-classical approximations, see, e.g.,
Refs. [93, 137]. With this restriction, we use the constraint field approach for ϕ⃗2 following
Section 2.5. Auxiliary fields ω and ϵ are introduced in an O(Ns)-invariant constraint for
ϕ⃗2, where ω is the dynamical field enforced to have the value ϕ⃗2 and ϵ is introduced in the
technical realization of this constraint, see Eq. (2.60).

The resulting action for introduction of the constraint fields reads

Sconstr =
∫

d3x
iϵ
2
(
ω− ϕ⃗2

)
. (7.15)

By introducing this action in the partition function (7.17), each occurrence of ϕ⃗2 can be
exchanged by ω due to the insertion of the identity (2.60). One obtains the effective action

Seff[ϕ⃗, ϵ,ω] =
∫

d3x

 1
2M2

[(∑
j

∂2
j σ
)2

+
(∑

j

∂2
j χ⃗
)2
]
+
Z

2
[
(∂jσ)

2 + (∂jχ⃗)
2
]
+ (7.16)

+
m2

2 ω+
λ

4ω
2 +

iϵ
2 (ω− σ2 − χ⃗2)


and partition function

Z =
∫

D ϕ⃗DωDϵ e−Seff[ϕ⃗,ϵ,ω], (7.17)

where we use the substitution of ω such that χ⃗ only appears in bilinears. An integral identity
for operators appearing as χ⃗TAχ⃗, see Eq. (2.63), can be applied to obtain the determinant
of the corresponding operator A. The effective action then reads

Seff[σ, ϵ,ω] =
∫

d3x

 1
2M2

(∑
j

∂2
j σ

)2
+
Z

2 (∂jσ)
2 +

m2

2 ω+
λ

4ω
2 − iϵ

2 (ω− σ2)+ (7.18)

+
Ns − 1

2 ln Det
[ 1
M2

(
−
∑
j

∂2
j

)2
+ Z

(
−
∑
j

∂2
j

)
+ iϵ

].

Since σ ∼
√
ϕ⃗2 ∼

√
N s, ω ∼ Ns and ϵ ∼ 1, all terms in Seff are of order Ns (as long as

λ is tuned to scale as 1/Ns) and can be calculated in a large-Ns limit by a saddle point
approximation, see the discussion in Section 2.4. The respective, global minimum with
respect to σ, ϵ and ω dominates the path integral and needs to be determinant through
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inserting the solutions of the gap equation, denoted by (σ0, ϵ0,ω0), in the effective action.4
These saddle point conditions

∂Seff
∂(σ, ϵ,ω)

∣∣∣∣
(σ,ϵ,ω)=(σ0,ϵ0,ω0)

= 0 (7.19)

can be expressed as
ϵ0σ0 = 0, (7.20)

and
i
2ϵ0 +

∂V

∂ω

∣∣∣∣
ω=ω0

= 0 (7.21)

with V (ω) = m2

2 ω+ λ
4Ns

ω2 as well as

ω0 − σ2
0 + (Ns − 1)Tr

 1(
−
∑
j ∂

2
j

)2
/M2 + Z

(
−
∑
j ∂

2
j

)
+ iϵ0

 = 0. (7.22)

From these equations, the common properties of spontaneous symmetry breaking can be
deduced. For example, in the HBP one finds σ0 ̸= 0 and ϵ0 = 0, which ensures that the
transverse modes are Goldstone bosons, i.e., have a vanishing pole mass, see Eq. (7.22).
To determine the respectively observed phase, i.e., to distinguish an HBP with the global
minimum Σ ̸= 0 and SP with Σ = 0, one would need to reinsert the solutions into the
effective action and compute its global minima. However, we follow a simpler approach
for determination of the phase transition line below such that we refrain from doing this
computation here.

inhomogeneous case With the chiral spiral ansatz (7.5), the two first components
of ϕ⃗ can be non-vanishing. Therefore, we decompose ϕ⃗ into a two-component field σ⃗ and
Ns − 2 component vector of the transverse modes χ⃗,

ϕ⃗ = (σ⃗, χ⃗) . (7.23)

This decomposition is related to the chiral spiral ansatz (7.5) where the first two-components
of ϕ⃗ can be non-vanishing. We use the constraint field approach for both χ⃗2 and

(
∂jϕ⃗

)2

in order to study the fluctuations of the transverse modes with respect to both magnitude
and the derivatives.

Auxiliary fields ω and ϵ are introduced in an O(Ns)-invariant constraint for χ⃗2, that
holds for each point in space xj , using the identity

1 =
∫

dωj δ(χ⃗2(xj) − ωj) =
1

4π

∫
dωdϵj eiϵj(χ⃗2−ωj)/2 (7.24)

where ωj = ω(xj) and ϵj = ϵ(xj), similar to Eq. (2.60). A similar constraint for
(
∂jϕ⃗

)2

using the auxiliary fields ω̃ and ϵ̃ is implemented.
The resulting action stemming from these constraints reads

Sconstr =
∫

d3x

[ iϵ
2
(
ω− χ⃗2

)
+

iϵ̃
2
(
ω̃− (∇χ)2

)]
(7.25)

4 Note that this notation is a bit sloppy as, in principle, one needs to label each solution with an index to
properly distinguish each individual solution of the gap equation from each other. In this case, we refrained
from complicating the notation with multiple indices and stayed with the notation from Ref. [219] where
this analysis is performed originally.
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and is introduced directly into the partition function (7.17), where every occurrence of
χ⃗2 and

(
∂jϕ⃗

)2
can consequently be replaced by ω and ω̃. Following the same strategy as

above, one obtains

Seff[ϕ⃗, ϵ,ω, ϵ̃, ω̃] =
∫

d3x

 1
2M2

∑
j

∂2
j σ⃗

2

+
Z

2 (∂j σ⃗)
2 +

m2

2 σ⃗2 +
λ

2ωσ⃗
2 +

λ

2
(
σ⃗2
)2

+

(7.26)

− i
2 (ϵω+ ϵ̃ω̃) +

Z

2 ω̃+
m2

2 ω+
λ

4ω
2+

+
(Ns − 2)

2 ln Det
[ 1
M2

(
−
∑
j

∂2
j

)2
− i∂j (−ϵ̃∂j) + iϵ

].

Thereby, we consider ω, ω̃ as well as ϵ and ϵ̃ as being homogeneous. This restriction is
sensible due to the simplicity of the chiral spiral ansatz (7.5) where the gradient squared
of ϕ⃗ is homogeneous. Again, the expectation values are denoted by ω0, ϵ0, and so on. For
ω, one obtains

2∂Seff
∂ω

∣∣∣∣
(σ⃗,ϵ,ω,ϵ̃,ω̃)=(σ⃗0,ϵ0,ω0,ϵ̃0,ω̃0)

= −iϵ0 +m2 + λ(ω0 + σ⃗2
0) = 0 (7.27)

where we define the effective mass

m2
eff = iϵ0 = m2 + λ(ω0 + σ⃗2

0) (7.28)

in analogy to the discussion in the homogeneous case. For ω̃, in turn, one obtains

2∂Seff
∂ω̃

∣∣∣∣
(σ⃗,ϵ,ω,ϵ̃,ω̃)=(σ⃗0,ϵ0,ω0,ϵ̃0,ω̃0)

= −iϵ̃0 + Z = 0 (7.29)

fixing iϵ̃0 = Z. Thus, while ϵ0 acts as the effective mass for χ⃗2, ϵ̃0 describes the quadratic
coefficient of

(
∂jϕ⃗

)2
. This is confirmed by

∂Seff
∂σ⃗

∣∣∣∣
(σ⃗,ϵ,ω,ϵ̃,ω̃)=(σ⃗0,ϵ0,ω0,ϵ̃0,ω̃0)

=

 1
M2

(
−
∑
j

∂2
j

)2
+ Z

(
−
∑
j

∂j
)2

+m2
eff

 σ⃗0 = 0 (7.30)

where we reinserted the above findings. From the gap equation for ϵ, one finds

−ω0 + (Ns − 2)Tr
[

1
1
M2 (−

∑
j ∂

2
j )

2 + Z(−
∑
j ∂j)

2 +m2
eff

]
= 0. (7.31)

and, from the one of ϵ̃,

−ω̃0 + (Ns − 2)Tr
[

(−
∑
j ∂j)

2

1
M2 (−

∑
j ∂

2
j )

2 + Z(−
∑
j ∂j)

2 +m2
eff

]
= 0. (7.32)

The functional traces can be performed by inserting Fourier representations similar to the
procedure in Section 4.1.2. Then one can identify the inverse propagator of the static,
transverse modes

∆−1
χ (k) =

1
M2 (k

2)2 + Zk2 +m2
eff (7.33)
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in the above equations. One obtains

−ω0 + (Ns − 2)
∫ d3k

(2π)3 ∆−1
χ (k) = 0 (7.34)

for ϵ and
−ω̃0 + (Ns − 2)

∫ d3k

(2π)3 k2∆−1
χ (k) = 0 (7.35)

for ϵ̃. Recall that the theory is formulated as an effective one for the static fields at non-
zero temperature such that integrals only involve the spatial momenta. For the chiral spiral
ansatz (7.5), one obtains from Eq. (7.30) either

1
M2k

4
0 + Zk2

0 +m2
eff = 0. (7.36)

Thus, one obtains two solutions for a non-vanishing k2
0 or the trivial solution ϕ0 = 0

corresponding to an SP with σ⃗0 = 0. Equation (7.36), however, is of the same structure as
the inverse propagator ∆χ(k) of the transverse modes. Consequently, it vanishes at k = k0k̂,
see also the discussion in the perturbative analysis at the end of Section 7.2.1.

For the ground state solution, the inverse propagators should be positive to avoid insta-
bilities, cf. Section 4.1. Since Eq. (7.33) is positive for large k2 and at k = 0 if m2

eff > 0,
the case of the saddle point solution (7.36) having two non-vanishing roots k+0 and k−

0
implies negativity of the inverse propagator in the interval k−

0 < k < k+0 . Thus, Eq. (7.36)
can be satisfied in a stable theory only if there is a double zero of the inverse propagator
at k0 = k−

0 = k+0 , which also implies that the propagator is minimal at k = k0. At this
point, note that this degenerate double pole of the propagator is enforced simply by the
saddle point equation and the requirement of a stable ground state (otherwise the theory
would be unbounded from below). The same double pole arises in the brief discussion of
perturbation theory of the same model, see the last paragraph of Section 7.2.1. This leads
to a destabilization of the chiral spiral, that is expected from the mean-field approximation
for negative Z.

This large-Ns analysis should hold for any effective theory obtained for light mesons,
e.g., from some approximation to QCD or other fermionic models, that features an IP
dominated by a single mode. Further, we suspect that similar properties do also hold for
multi-mode solutions, although this remains unclear unless a more profound analytical
approach is developed to investigate these. In the following analysis of the whole (m2,Z)
parameter region of the model (7.6) in the large-Ns limit we show how a self-consistent
solution for the groundstate is obtained in a disorder phase, the QπL.

7.2.4 Explicit solution in the (m2,Z) plane

We briefly discuss the explicit solution of the phase diagram for λNs = 1 and M = 1.
These parameters of the highest order terms are fixed, i.e., they are treated as the largest
energy scales in the system. Therefore, we perform a slight variation of the constraint field
approach discussed previously. We introduce the constraint field ω as

1 =
∫

dωjδ(ϕ⃗2 − ωj) =
1

4π

∫
dωjdϵj eiϵj(ωj−ϕ⃗2(xj))/2 (7.37)

with ωj = ω(xj) and ϵj = ϵ(xj) for each point in space xj but integrate over all Ns compo-
nents of ϕ⃗ (instead of only Ns − 1 transverse modes as above), as discussed in Section 2.5.
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Here, we only briefly summarize the procedure. In this case, the effective action only con-
tains ϵ(x) and up to quadratic powers in ω, similar to Eq. (2.64). In the mass-squared term,
we do not replace ϕ2. Subsequently, we integrate over ϕ⃗ which only occurs in quadratic
terms. Then, also ω can be integrated over in the partition function since it occurs as a
Gaussian integral similar to Eq. (2.63), but with a shift given by the term ∼ ϵω. After
using the identities for Gaussian integrals with respect to both ϕ⃗ and ω, one obtains an
effective action only in terms of the auxiliary field ϵ

Seff[ϵ] =
∫

d3x

 ϵ24λ +
Ns

2 ln Det

 1
M2

−
∑
j

∂2
j

2

+ Z

−
∑
j

∂2
j

+m2 + iϵ


 . (7.38)

This formalism does not yield access to the expectation value of ϕ⃗2, since ω is integrated
out, but to the effective mass squared m2

eff . This is sufficient to determine the transition line
between the homogeneous phases when it is of second-order. A homogeneous, first-order
transition is not classically not possible from the ansatz for the potential that contains only
up to fourth orders of ϕ⃗ (terms of at least sixth order would be needed). From the above
analysis, it can also not occur in the large-Ns limit.

Using the saddle point approximation, i.e., the limit of Ns → ∞, we obtain through the
gap equation, see the previous subsection,

ϵ0 − iλNs

2 Tr

 1
1
M2

(
−
∑
j ∂

2
j

)2
+ Z

(
−
∑
j ∂

2
j

)
+m2

eff

 = 0 (7.39)

identifying the effective mass squared

m2
eff = m2 + ϵ0 (7.40)

for the extrema ϵ = ϵ0 of the effective action. Simple solutions with homogeneous ϵ0 involve
either homogeneous phases or a chiral spiral with a single mode (7.5). Then, the transverse
propagator ∆ is similar to Eq. (7.33) and one needs to evaluate

Tr∆ =
∫ d3k

(2π)3 ∆(k) = M2

4π2

∫
dk k2

(k2 +m2
+)(k

2 +m2
−)

(7.41)

=
M2

4π2
1

m2
+ −m2

−

∫
dk
(

m2
+

k2 +m2
+

−
m2

−
k2 +m2

−

)

where k = |k| and the poles im2
± can be expressed in terms of m2

eff and the parameters of
the theory,

m2
± =

ZM2

2 (1 ±
√

1 − α2), α =
2meff
|Z|M

. (7.42)

One needs to take care about the position of these poles in the complex plane when evalu-
ating the trace.

If α ≤ 1, m2
± is real and positive and one finds

Tr∆ =
M2

4π
1

m+ +m−
. (7.43)

By solving (k2 +m2
+)(k

2 +m2
−) = (k2)2 + ZM2k2 +m2

effM
2 = 0 one obtains

(m+ +m−)
2 = 2meffM + ZM2 (7.44)



7.2 discussion of results from analytical approximations 137

independent of the sign of Z. Eq. (7.39) becomes

m2
eff −m2 = λ0

M3/2
√

2meff + ZM
(7.45)

with the rescaled quartic coupling λ0 = λNs/8π. This equation can be solved for m2
eff in

the (m2,Z) plane when fixing λ0 and M . When m2
eff = 0, a second-order phase transition

between the SP (where m2
eff > 0) and the HBP (where m2

eff < 0 ) is obtained. Since we
consider no self-interaction terms of higher order than the quartic ones, a first-order phase
transition cannot be expected, unless these terms are generated from quantum fluctuations.
From the analysis above, this is not the case in the large-Ns limit.

It is interesting to study the line with m2 = 0. In the mean-field analysis in Section 7.2.1,
one obtains a line of second-order phase transitions at Z > 0, a LP at Z = 0 and an IP at
Z < 0. Neither of this is the case in the large-Ns limit. Instead, meff stay positive for any
value of Z and m2 = 0 in the large-Ns limit The second-order phase transition happens
only for negative m2 and positive Z at the value

m2
c = −λ0M√

Z
(7.46)

obtained by setting m2
eff = 0 in Eq. (7.45). As discussed above, in the broken phase we

have to employ the constraint field method following Section 7.2.3 to compute the value
of ϕ0 and show that the transverse modes indeed are Goldstone modes, but this is not of
interest here.

observation of quantum pion liquid At m2 = 0 one obtains a value of Z
where m2

+ and m2
− become degenerate. This is the case when α = 1, which for m2 = 0

occurs at Z = (23/2 λ0
M )2/5. Similarly, one can find α = 1 for any m2 ∈ R and a positive

value of Z. The point of α = 1 marks the degeneracy of m2
+ and m2

−, which we will later
recover as the onset of the QπL, where spatial correlation functions of the ϕj fields are
oscillatory on top of the exponential falloff. Thus, the line of α = 1 as a function of Z and
m2 corresponds to the disorder line.

To discuss properties of correlation functions, we study first the SP with m2 > 0 although
one, in general, can also treat negative bare masses by recognizing the above discussed
transition to the HBP. At large, positive Z, one finds α < 1, c.f. Eq. (7.42). The propagator
poles are k = ±im+ and k = ±im−. Consequently, a Fourier-transformation of Eq. (7.33)
yields a sum of two-exponential as the long-range behavior, i.e.,

⟨ϕi(x)ϕj(y)⟩
∣∣∣∣
|x−y|→∞

= δi,j
[
c−e−m−|x−y| + c+e−m+|x−y|

]
. (7.47)

At large Z, one obtains separation of the masses, m2
+ becomes large while m2

− becomes
small, compare Eq. (7.42). Physically, this corresponds to one light and one heavy excitation
of the scalar field ϕi. When decreasing Z both poles remain on the imaginary axis and the
values of m+ and m− are getting closer to each other, since α increases. At the point
Zα=1(m2), the masses merge, m+ = m− =

√
meffM ≡ m0. Then, the poles are located at

k = ±im0 and the spectrum of the two excitations becomes degenerate.
Below this point, m2

+ and m2
− develop real and imaginary parts such that the poles of

the propagator are

k = m0 exp
[
±i
(
π

2 ± θ

2

)]
, tan θ =

√
α2 − 1 (7.48)
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with α > 1, as described above. These are four distinguished poles, but, however, two
of the respective poles only differ by a global sign. The complex-conjugate pairs of the
poles can be identified through the sign flip in front of the exponential. Propagator poles
become degenerate and, subsequently, develop non-vanishing real and imaginary parts, as
also observed in so-called PT -broken regions of scalar theories [180], see Section 3.1.2, and
in the four-fermion model with scalar and vector mesons studied in Chapter 6, where the
bosonic two-point vertex functions appear in complex-conjugate pairs. In both of these
cases, QπLs arise.

In the present case, one specifically obtains

⟨ϕi(x)ϕj(y)⟩
∣∣∣∣
|x−y|→∞

= δi,je−mr|x−y| [c1 cos(mix) + c2 sin(mix)] (7.49)

for α ≥ 1, where

mr = m0 cos
(
θ

2

)
, mi = m0 sin

(
θ

2

)
(7.50)

for Z > 0, while

mr = m0 sin
(
θ

2

)
, mi = m0 cos

(
θ

2

)
(7.51)

for Z < 0. The two-point correlation functions are always real-valued, as ensured by the
properties of the poles discussed above.

The case of Z → 0 is special, since α diverges and θ → π/2. Then, mr = mi = m0/
√

2,
which is consistent with Eq. (7.51) and Eq. (7.50). The effective mass remains non-zero
at Z = 0 at any m2 = 0 and neither a LP nor a second-order transition is observed.
One obtains a symmetric regime with ϕ2 = 0 in contrast to the mean-field findings, see
Section 7.2.1. Considering Z → −∞, one finds m0 ∼ |Z|1/2M and θ ∼ λ0/(M |Z|5/2) such
that mr ∼ Z−2 and mi ∼

√
Z, i.e., the exponential suppression gets weaker while the

frequency of the oscillations increases.

summary and “phase diagram” The findings of the large-Ns analysis in this
chapter and Ref. [219] are summarized in Fig. 7.1. The second-order phase transition be-
tween the HBP and SP is obtained by numerical solution of Eq. (7.45) for effective mass
m2

eff = 0. Analyzing the poles of the bosonic two-point correlation functions (7.42), one
finds that the poles on the imaginary axis become degenerate at the so-called disorder-line
(dashed blue line in Fig. 7.1). Beyond this line, one obtains complex-conjugate propaga-
tor poles with non-vanishing real and imaginary parts. As a consequence, one obtains a
QπL where correlations functions are oscillatory in space while falling off exponentially, see
Eq. (7.49).

The results for the phase diagram suggest that the quantum fluctuations of transverse
modes, which can be incorporated in the large-Ns method, disorder the inhomogeneous
condensate that is obtained for negative Z within the mean-field approximation, which
is equivalent to classical field theory in the case of scalar field theory. In Ref. [219], it is
argued that this disordering remains the dominant mechanism for Ns > 2, where Goldstone
bosons from O(Ns) (chiral) symmetry breaking are present. This argumentation leads to
the conclusion that an IP might be favored for Ns = 1 and Ns = 2, where for a chiral spiral
ansatz no Goldstone modes are present. With respect to RO4, see Section 1.3, this is a
considered disordering mechanism in the context of bosonic quantum effects in general. As
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Figure 7.1: Phase diagram of the effective model (7.6) with the chiral spiral ansatz (7.5) in the
(m2,Z) plane, originally obtained in Ref. [219]. The solid green line describes the second-
order phase transition between the HBP and the SP. The dashed blue line describes the
disorder line where the two poles of the spatial propagator become degenerate. Beyond
the disorder line, one obtains the QπL regime with spatially oscillating correlations
functions (7.49).

proposed in RO3, this question is answered using LFT simulations with the setup presented
in the following section. LFT allows to study the impact of quantum fluctuations in full
simulations of the effective theory (7.6) for different values of the bare parameters and
possibly detecting an IP as well as a QπL according to the findings above.

7.3 lattice setup, monte-carlo algorithm and observables

In order to study the partition function

Z =
∫

D ϕ⃗ e−Seff[ϕ⃗] (7.52)

with the effective Lagrangian given by Eq. (7.6), we discretize the theory on a finite spatial
lattice Λa,L with lattice spacing a and periodic boundary conditions ϕ⃗(x) = ϕ⃗(x + (La)ej)

for j = 1, 2, 3, where ej = aêj using the cartesian unit vector êj in the j-th direction.
Thereby, we use an isotropic lattice with L3 lattice points xn = na in our numerical
computation, where n = (n1,n2,n3)T and nj ∈ 0, . . . ,L− 1. This causes the integration
measure to be discretized,

D ϕ⃗ →
∏

n

Ns∏
j=1

dϕj,n (7.53)

with ϕj,n = ϕj(xn). A suitable Lagrangian for numerical calculations on the lattice can be
obtained by partially integrating the kinetic term proportional to Z in Eq. (7.6) such that
the term reads −Zϕ⃗

∑
j ∂

2
j ϕ⃗.
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In order to write down a Lagrangian suitable for numerical calculations we discretize the
second derivatives by the replacement

∂2
j →

∑
m
[∆j ]xn,ym = (7.54)

=
∑
m

1
12a2

(
−δym,xn+2ej + 16δym,xn+ej − 30δym,xn + 16δym,xn−ej − δym,xn−2ej

)
.

(7.55)

Moreover, the spatial integration in the effective action is replaced by a sum over the lattice
points xn. The resulting, lattice discretized action is

Seff[ϕ⃗, a,L] =
∑

n
a3

− Z

2 ϕ⃗(xn)
∑
j

∑
m
[∆j ]xn,ym ϕ⃗(ym) +

1
2M2

∑
j

∑
m
[∆j ]xn,ym ϕ⃗(ym)

2

+

(7.56)

+
m2

2 ϕ⃗2(xn) +
λ

4
(
ϕ⃗2(xn)

)2


and the partition function

Za,L =
∫ ∏

n

Ns∏
j=1

dϕj,n e−Seff[ϕ⃗,a,L], (7.57)

which can be studied with statistical simulation methods. Throughout the computation, we
expressed all dimensinful quantities in units of the lattice spacing, i.e., a is never specifically
determined. In a continuum extrapolation, obviously, one would need to physically fix the
value of the lattice spacing by imposing, e.g., a fixed value of the chiral condensate

√
ϕ⃗2 for a

certain parameter set. In this exploratory, qualitative investigation of quantum fluctuation
effects on IPs and moat regimes, we focus on choosing specific bare parameters at one
fixed lattice spacing a. In this setup, the dependence on the spatial volume is explored by
varying the value of L while keeping other parameters of the action fixed.

7.3.1 Monte-Carlo algorithm

Monte Carlo methods are algorithms based on the sampling of random numbers to obtain
numerical results. A typical application is the computation of (high-dimensional) integrals.
Therefore, one draws N samples of random numbers within the integration domain and
evaluates the integrand at these samples. In the limit of N → ∞, the value of the integral
is given by the average of the integrand over samples. For finite N , an approximate value
for the integral is obtained, contaminated with a statistical error of N−1/2 given that the
integration domain is appropriately sampled. Monte Carlo integration is one of the most
efficient methods for the computation of high-dimensional integrals. In LFT simulations,
one typically uses importance sampling in Monte-Carlo integration algorithms, where the
random numbers are not drawn uniformly but according to the probability distribution
density given by the weight exp (−S), where S is the lattice-discretized action of the
respective theory, such as, e.g., Eq. (7.56). This can be realized by an appropriate change
of variables in the original integral. This strategy prevents the problem of underestimation
of the integral that is caused by the integrand being approximately 0 within large regions
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of the high-dimensional integration domain. In the integration procedure, the action of the
theory of interest must be real-valued and positive such that the integral can be interpreted
as a probability distribution. This requirement makes the simulation of QCD at µ ̸= 0 using
LFT Monte-Carlo simulations impossible with the standard techniques, see, e.g., Ref. [117].
Equation (7.56) is real-valued and positive such that Monte-Carlo techniques are directly
applicable. In this part of the chapter, we briefly present the HMC algorithm used for
our specific case. This is a standard method in LFT and many details are omitted. For
an introduction to Monte Carlo simulations in LFT context we refer to the textbooks [59,
284].

hybrid monte-carlo algorithm The specialty of the HMC algorithm is the
Molecular dynamics update step, which are is based on the numerical solutions of the
field equations from the Hamilton formalism. This is typically more efficient than local
algorithms due to the global update step changing the whole field configuration.5 Therefore,
one introduces the conjugate momenta π⃗ to the bosonic fields ϕ to the partition function,
which integrates over the lattice-discretized fields ϕ⃗ and π⃗. The probability weight for the
integration is given by the exponential of the Hamiltonian

H [ϕ⃗, π⃗, a,L] = 1
2
∑

n
π2(xn) + Seff[ϕ⃗, a,L]. (7.58)

One derives Hamiltonian field equations

π̇j(xn) = − ∂H

∂ϕj(xn)
, ϕ̇j(xn) =

∂H

∂πj(xn)
= π(xn) (7.59)

where the time derivatives, represented by the dot, are taken with respect to the artificially
introduced Molecular dynamics time t. The following global update algorithm is based on
the so-called ergodic hypothesis, which says that time averages of a statistical system are
equal to statistical ensemble averages. Given an initial configuration of the field values
ϕ⃗(xn), one proceeds by

1. Generating new conjugate momenta π⃗j : For each step the conjugate momenta are
drawn according to a Gaussian distribution ∼ exp(−π⃗2/2).

2. Proposal step: Numerical integration step of the field ϕ⃗ and π⃗ via Eq. (7.59) for a
Molecular dynamics step of size dt: The numerical integration of Eq. (7.59) gives a
proposal for the next field configurations ϕ⃗′ and π⃗′. We use an Omelyan integrator
algorithm, see Ref. [374] for their construction. Obviously, the numerical integration
introduces an error to the computation, which is, however, compensated by the fol-
lowing acceptance step.

3. Acceptance step: The proposed configurations ϕ⃗′ and π⃗′ are accepted with the prob-
ability

P (ϕ⃗ → ϕ⃗′, π⃗ → π⃗′) = min
[
1, exp

(
H [ϕ⃗, π⃗, a,L] −H [ϕ⃗′, π⃗′, a,L]

)]
. (7.60)

This transition is numerically implemented by drawing another random number lying
between 0 and 1 and comparing to the value of P in the following way: If P = 1, the

5 A typical introduction to Monte-Carlo methods discusses the Metropolis update step, where one step
updates the value of only one of the integration variables (the value of a field on a specific lattice point xn).
This is considered a local update step.
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proposal is immediately accepted. If not, one compares the value of P to the random
number r that is drawn. Given r < P , the proposal is also accepted. If the proposal
is rejected, the initial configuration for the field values ϕ⃗(xn) are taken as the new
configuration and one continues the generation of samples with step 1.

The combination of these algorithms meets the required condition of detailed balance [284],
which ensures the normalization of all transition probabilities between the configurations.
Details on the required properties of Monte-Carlo methods can be found in Refs. [59, 284].

An explicit dependence of the results on the numerical parameters of this setup such
as, e.g., the discretization of the integration algorithm in step 2 was explored. Thereby,
the acceptance rate of the HMC algorithm is tuned such that an average acceptance rate
of roughly 80 − 90% of proposed configurations is achieved. This choice leads to a fast
enough thermalization process while guaranteeing that the whole configuration space can,
in principle, be sampled. The tuning procedure needs to be repeated whenever the lattice
setup changes and is specifically sensitive to the lattice volume L3 and Ns.

Initial field configurations are produced either using the random number generator ranlux
[375] or setting ϕ⃗ = 0. With this starting configuration, 200 initial Metropolis sweeps for
thermalization are performed. Further, the first 200 update steps of the HMC algorithm are
also identified as part of the thermalization and, consequently, not used in the computation
of observables.

7.3.2 Observables

From the analytical investigation in Section 7.2, one expects different exotic phases to
emerge within the (m2,Z) parameter space of the theory, such as an IP or the QπL.
Moreover, a liquid crystal-like scenario might also arise where correlation functions have
quasi-long range order, see Section 3.3 for a motivation of this expectation. But also typical
homogeneous phases are expected. The IP as well as the QπL are characterized by a partic-
ular behavior of bosonic correlations functions. Also, direct access of ⟨ϕ⃗(x)⟩ or ⟨|ϕ⃗|(x)⟩ is
not suitable for detecting IPs due to destructive interference [226]. Thus, a straightforward
choice for an observable, which allows to search for these different phenomena, are the
spatial correlation functions between the bosonic fields ϕ⃗

Cij(xn) = ⟨cij(xn)⟩ = 1
L3

∑
m

⟨ϕi(ym + xn)ϕj(ym)⟩ , (7.61)

where the sum over lattice point ym is used to get more statistics. The brackets ⟨.⟩ denote
the statistical averaging of the observable over all used field configurations, produced in
the HMC algorithm. In order to characterize the different regimes, we use fits of Cjj for
the respective regimes. Thereby, we focus first on one-dimensional slices of the correlator
defined in Eq. (7.61), i.e., we choose n as a unit vector in one of the three spatial dimensions.
The fit functions used are:

• Decaying oscillations Cij(x) ∼ δije
−mrx cos(kx) for the QπL, SP (using k ≈ 0) and

the IP (using mr ≈ 0).

• Algebraically decaying oscillations Cij(x) ∼ δij
cos(kx)
xα for possible quasi-long range

order, as in a liquid crystal.
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For fitting, we use the Scipy package [357]. As a criterion to compare the fit qualities we use
the coefficient of determination, defined for observables O(xnj ) depending on one spatial
direction on the lattice xnj = nj as

R2
i = 1 −

∑L
nj=0

(
O(xnj ) − FO(xnj )

)2

∑L
nj=0 (O(nj) − Ō)

2 (7.62)

with the spatially mean L Ō =
∑
nj
O(xnj ) and the values of the fit function FO(x = xnj )

produced by Scipy.
As a further observable to check the dominating freuquency in the case of an oscillating

correlator, we use the Fourier-transform of cij as an observable

C̃ij(kn) = ⟨F{cij}(kn)⟩ (7.63)

where kn = 2πn/L are the momenta available in the cubic, spatial volume L3.
Moreover, we use the expectation value

Φ2 =
1

NsL3 ⟨
∑
xn

ϕ⃗2⟩ (7.64)

to determine whether the system is in the SP, where Φ2 should have a small, non-vanishing
value generated by statistical noise, or the HBP where Φ2 ̸= 0.

remarks on numerical parameters We run the calculations for Ns = 1, 2, 4, 8
and lattice sizes L3 = 123, 163, 203, 303 (the largest lattice size is only studied for Ns = 1)
as well as various values of the bare parameters. Between 2000 − 12000 independent config-
urations are generated for the computation of the plotted observables, respectively. Except
for the preliminary results in Section 7.4.3, all presented computations are thermalized
and the statistical errors, estimated with the Jackknife method implemented in the As-
tropy package [376] and indicated by error bars, are typically so small that they are hardly
visible in the plotted data.

7.4 results from lattice field theory

As discussed above, one expects different scenarios alternative to an IP from analytical
approximations to the partition function of model (7.6) that should be taken into account
when simulating the full quantum theory. In our first, qualitative analysis we evaluate the
spatial bosonic correlator Cii(xn) using Eq. (7.61). Fits to the correlator allow to distinguish
between QπL, SP, IP and quasi-long range order, see Section 7.3.2. For a first, qualitative
effect of the quantum fluctuations on the phase diagram of the theory, we keep the bare
parameters M2 = 1.0, λNs = 1.0 fixed6 and study the phase diagram within the (m2,Z)
plane, analogous to the large-Ns findings [219] summarized in Section 7.2.3. We use the
phase structure presented in Fig. 7.1 as a reference for our simulations.

7.4.1 Phase diagram for fixed spatial volumes

In the following, we present results for the spatial volume L3 = 203. However, we note
that our findings are stable among different volumes L3 = 103, 163, 203, 303 except for

6 The rescaling of λ with Ns is necessary in order to ensure that the lattice results can converge to the
large-Ns findings when increasing the number of scalar fields.
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very small, negative Z, where the decay rates of spatial correlators are getting small and
larger volumes are needed. For the largest volume L3 = 303, only few parameter sets are
computed for Ns = 1 such that we use generally L = 20 for the discussion of our results.
The error bars on computed observables estimated based on the Jackknife analysis are
typically smaller than the dots used for visualization.

We begin by investigating the correlator C11 using Eq. (7.61) for different values of Ns

and fixed Z = −1.0,m2 = 0.0. In Fig. 7.2, the result for C11 as well as the preferred
fit scenario is plotted for Ns = 1, 2, 4, 8. Note that we choose to plot always C11 but the
simulations results for Cjj are independent of the choice of j, i.e., we could have chosen
also, for example, j = 2 for Ns = 2, 4, 8 or j = 6 for Ns = 8. As obvious from the
individual figures, the QπL fit function is preferred independent of Ns and the individually
computed functional behaviors of C(x) are qualitatively similar. From Ref. [219], one would
have expected to obtain an IP at least for Ns = 1 since there is no disordering through
Goldstone modes of O(Ns) symmetry breaking for the symmetry group O(1) = Z(2).
The independence of the phase structure, determined by fits and measurements, on Ns

repeatedly is observed in the present analysis, which is entirely unexpected. The structure
of the model (7.6) contains off-diagonal terms ∼ ϕjϕk with j ̸= k in the quartic self-
interactions as well as in the higher order derivative term. However, we find, in general,
that Cjk ≈ 0 for j ̸= k within the statistical errors of the simulation, which are on the
order ov 10−4, i.e., i.e., the off-diagonal correlations of the fields ϕj are vanishing. This
factorization of the correlator suggests that the mechanism of disordering inhomogeneous
condensates through Goldstone modes might not be the relevant one for the observation of
the QπL. The plots in Fig. 7.2 infer, instead, that generically including bosonic quantum
fluctuations leads to disordering of inhomogeneous condensates independent of Ns.

ForNs = 1, we demonstrate how varying the parametersm2 and Z changes the correlator.
As discussed above, the qualitative behavior of the correlator is independent of Ns, as we
checked by producing similar plots for Ns = 2 and Ns = 4. Therefore, C(x) = C11((x, 0, 0))
is plotted in Fig. 7.3 in the top row of Fig. 7.3. In consistency with the predictions from
large-Ns the obtained exponential decay rate gets smaller when decreasing Z to Z = −2.0,
see the top left plot of Fig. 7.3. Moreover, when increasing Z for fixed m2, the oscillatory
behavior is stronger suppressed and finally vanishes. This can also be seen in the expectation
value of the Fourier-transform (7.63) of the correlator, as plotted in Fig. 7.3. For small Z,
there is a single mode, corresponding to the spatial momentum k = 8π/L that dominates
the Fourier spectrum, while lower frequencies are rather suppressed. It is expected that,
when further lowering Z, this single dominant Fourier mode gets enhanced even more
significantly compared to the other modes until, in the limit Z → −∞ an IP might emerge
[219]. A diverging negative wave function renormalization, however, is not observed in
typical QCD-inspired models [1, 10] or in the FRG [121, 166]. Within the SP, one observes
the typical Fourier spectrum of a function proportional to exp(−m|x|) as is expected from
the fit, cf. the right column of Fig. 7.3.

When varying m2 between m2 = −0.4 and m2 = 0.4 in lattice units for fixed Z = −1.0,
one obtains a QπL behavior of the correlator, see Fig. 7.4. However, the behavior of C(x)
still changes quantitatively, as the value of C(0) in lattice units is significantly smaller
for larger m2. Moreover, the exponential decay rate is higher for larger m2. Nevertheless,
this behavior still amounts to the QπL such that no strong dependence of m2 of the
qualitative effects is observed. Therefore, in the exploratory analysis for the thermodynamic
volume in the following sections we start by focusing on a single value of m2 to reduce the
computational costs.
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Figure 7.2: Plot of the spatial correlator C(x) = C11 ((x, 0, 0)) for Z = −1.0,m2 = 0.0 and L = 20.
The preferred fit scenario is determined using the coefficient of determination. (top left)
Ns = 1. (top right) Ns = 2. (bottom left) Ns = 4 (bottom right) Ns = 8.
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Figure 7.3: Plot of the (top row) spatial correlator C(x) = C11 ((x, 0, 0)) (7.61) and (bottom row)
its Fourier-transform C̃(k) = C̃ ((k, 0, 0)) for Ns = 1 and L = 20. The preferred fit
scenario is determined using the coefficient of determination. (left) m2 = 0.0,Z = −2.0.
(right) m2 = 0.0,Z = 0.5.
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Figure 7.5: Phase diagram of the scalar lattice model (7.56) from fits for Ns = 1 with λNs =
1.0,M = 1.0. The color shaded regions represent the large-Ns findings from Ref. [219]
for the phases: green — HBP, white — SP and blue — QπL.

In Fig. 7.5, we summarize our findings using fit functions for different values of m2 and
Z by depicting the observed regimes for Ns = 1 using LFT, represented by dots in different
colors, in comparison to the large-Ns boundary lines. This illustrates that the simulation
results are in agreement with the large-N prediction, although one has to note that the
comparison of different fit scenarios does not yield conclusive results near any of the phase
boundaries. As discussed in Section 7.3.2, we checked to correctly detect the HBP for one
fixed parameter set using the observable defined in Eq. (7.64). The phase diagram in the(
m2,Z

)
plane seems to be identical for all studied values of Ns up to the current status of

investigation. Investigations of the correlators for Ns = 2, 4, 8 yield similar phase diagrams
as Fig. 7.5 (although admittedly less different tupels (m2,Z) are studied), which we do not
plot to avoid redundancy of the figures.

Summarizing, there is remarkable agreement between the LFT simulation results and
the large-Ns phase structure. This could be an indication that the inclusion of bosonic
quantum fluctuations themselves leads to disordering and it is not necessary to have any
kind of Goldstone modes in order to form a QπL. Thus, the mechanism of disordering
through transverse Goldstone modes discussed in Ref. [219] might not be the correct one
for all finite Ns, although the resulting phase diagram could look similar. At Ns = 1, there
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exist no Goldstone modes in the system and still the QπL could be observed instead of an
IP.. However, symmetry breaking (as a transition from a SP to an IP would be) requires
careful study, especially when recalling that phase transition in the strict mathematical
sense, i.e., due to a diverging correlation length, can only occur in an infinite volume. This
is explored in the following subsection.

7.4.2 Explicit symmetry breaking through external field

The above findings can be seen as an indication that the IP does not exist in the
(
m2,Z

)
phase diagram of the full quantum theory with effective action (7.6) at respectively fixed
spatial volume. However, the thermodynamic limit, i.e. V → ∞, is required in order to
properly identify phase transitions. Moreover, a removal of the artificially introduced spatial
volume is interesting for the phase diagram in thermodynamic equilibrium. Within our
simulations, however, the restriction to finite spatial volumes is always present. Thus, an
extrapolation method of the results to the infinite volume is required. A straightforward
approach is the finite volume scaling of an observable relevant for the distinction between
IP and QπL, such as the exponential decay rate mr in the QπL. The scaling of this quantity
is, however, plagued by huge, systematic errors from the bias introduced through fitting and
from the statistical errors of the simulation. Thus, we decide to use the traditional method
of studying phase transitions by introducing an external symmetry breaking parameter,
which we need to modify to study translational symmetry breaking.

Since we are interested not only in the spontaneous breaking of the O(Ns) symmetry
but also of the remaining translational invariance and possibly of the discrete rotational
symmetry on the lattice, we use an external field that specifically breaks these symmetry.
Thus, we modify Eq. (7.56)

S(h0)
eff [ϕ⃗] = Seff[ϕ⃗] −

∑
n
h⃗(xn)ϕ1(xn) (7.65)

with hj = δj,1h1, where

h1(xn) = h1(x3) =
h0√

2πLσ0

L−1∑
n=0

e− 1
2σ

(pn−k0)
2

cos(pnx3), (7.66)

for Ns = 1 and h⃗ = h⃗spiral, where

h⃗spiral(xn) = h⃗spiral(x3) =
h0√

2πLσ0

L−1∑
n=0

e− 1
2σ

(pn−k0)
2
(cos(pnx3), sin(pnx3)) , (7.67)

for Ns = 2 as well as h⃗ =
(
h⃗spiral, 0

)
for Ns > 2. This ansatz resembles the chiral spiral

(7.5), but additional one sums over lattice momenta pn = 2πn/L and σ0 = 0.1, each spiral
weighted by a Gaussian. In order to determine the peak of the Gaussian in momentum
space, we extract k0 from the fits to C11 with h0 = 0, which are described in Section 7.4.1.

The Gaussian distribution of the present momenta is used in order to allow the system to
adapt differing frequencies when translational symmetry is explicitly broken. Nevertheless,
the peak of the Gaussian is extracted from the “physical situation” where the external field
is supposed to be absent. In the end, we want to learn how the system behaves for L → ∞
and h0 → 0.

Since the introduction of the external symmetry breaking term does not only break
translational but also rotational invariance for h0 ̸= 0 in the modified action (7.65), we
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Figure 7.6: Color coded value of C(0, 0,x, y), see Eq. (7.68), for Ns = 1,Z = −1.5,m2 = 0.0,L =
10 with an external symmetry breaking field (7.66) introduced to the action according
to Eq. (7.65). Note that the scaling of the color bar differs in both plots. (left) h0 = 0.5.
(right) h0 = 0.01.

expect that the correlation function still depends on the relative differences in the x1 and x2
directions. Translational symmetry breaking should then have an impact on its dependence
on the x3 directions, i.e., one expects

C(x1 − y1,x2 − y2,x3, y3) = ⟨c11(x, y)⟩ = 1
L3 ⟨ϕ1(y)ϕ1(x)⟩ (7.68)

where the spatial coordinates are obviously restricted to the lattice points with coordinates
xn = na with nj = 0, . . . ,L− 1 for j = 1, 2, 3. compare to the definition of the correlator
(7.61), which assumes translational invariances.

In Fig. 7.6, we plot C(0, 0,x, y) as a color map for Z = −1.5,m2 = 0.0 and L2 = 103.
In this figure, we use an external field (7.66) with k0 = 0.63 ≈ 3 × 2π/20. This serves to
illustrate the effects of the external field introduced in Eq. (7.56) and draw consequences
for the following analysis. For the left plot with h0 = 0.5, one can directly see the signs of
translational symmetry breaking due to the external field. Clearly, the correlator C follows
an oscillatory pattern following an inhomogeneous ground state, that is sine-like in the x2
direction. Thus, for this parameter set the ground state is expected to be inhomogeneous,
reflecting the translational symmetry breaking stemming from the term proportional to h
in the action (7.65). On the other hand, translational invariance is at least approximately
intact for h0 = 0.01, since the color pattern shows a dependence of C only on x− y. Thus,
in between those two values a phase transition between the QπL and the IP must occur.
Determining the critical value h0,c of the external field amplitude for this transition as a
function of the volume V can provide the basis for the infinite-volume extrapolation.

Qualitatively, one can observe a color map similar to the right panel of Fig. 7.6 when
computing the correlator (7.68) for vanishing external field, which is a consistency check
and confirms that the translational symmetry, indeed, is intact for these parameter sets. In
the following subsection, the inspection of plots similar to Fig. 7.6 is used for exploratory
studies of the possibility of translational symmetry breaking in the thermodynamic limit.

7.4.3 Preliminary studies of the finite-volume scaling

The idea of the infinite-volume extrapolation is to determine the critical amplitude of
the external field h0,c for the onset of the IP at fixed parameters of the effective action
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Seff[ϕ⃗, a,L] and, specifically, for fixed L. The computation of h0,c for different values of L
would then allow to get an idea of the functional behavior of h0,c(L). An extrapolation to
L → ∞ could then clarify whether translational symmetry breaking for the infinite volume
theory and the physically interesting theory, i.e., for L = ∞ and h0 = 0.0. For example,
if the fit to h0,c is a monotonically decreasing function of L, hitting the h0 = 0 axis for a
finite value of L, one can expect that an IP is realized in the thermodynamic limit. On the
other hand, the disordering of the IP in a QπL remains present in the infinite volume limit
when, e.g., the fit to h0,c(L) is a constant or monotonically increasing function.

Unfortunately, investigations performing these extrapolations are not finalized yet. Larger
values of L and large amplitudes of the external field significantly complicate the LFT sim-
ulations by significantly increasing autocorrelations and thermalization time. Additionally,
huge amounts of memory storage are required, since the size of the spatial correlator ob-
servable (7.68) scales with L4. Thus, only low statistics result are available for large L.
Therefore, we present computations of Eq. (7.68) for a selected number of data points in
the following without explicitly studying the finite volume scaling. Instead, the amplitude
h0 of the external field, given by Eq. (7.66) or Eq. (7.67) depending on the value of Ns,
is fixed and L is increased in order to visualize a generic tendency of the system of either
remaining in the disordered QπL or breaking translational invariance for larger L. Note
that we refrain from analyzing these following findings with respect to the fate of IPs in the
infinite-volume since these are preliminary results without proper thermalization at larger
volumes.

In Fig. 7.7, we present color coded results for the correlator (7.68) for simulations with
an external field using h0 = 0.1, k0 = 0.62 for three different volumes L3 = 103, 203, 303.
Specifically that the findings for L = 20 and L = 30 suffer from the long autocorrelation and
thermalization times and are produced on rather low statistics. Within these configurations,
thermalization effects are still present such that the plotted result probably does not entirely
represent the value of the observable in equilibrium. Nevertheless, comparing the three
different color maps one can clearly see that the translational invariance, which is intact
in the x3 direction for L = 10 where C(0, 0,x, y) ∼ f(x− y), is getting broken already
for L = 20. We note that thermalization effects might be the reason that the oscillating
structure in the color map is not periodic over the whole lattice. These findings could be
an indication, given that fully thermalized configurations confirm these figures, that the
system tends to break translational invariance when increasing the spatial volume, at least
for Ns = 1. On the other hand, one could argue that the quantum fluctuations have not
yet fully destroyed the inhomogeneous ordering provided by the external field and further
thermalization would lead to an intact translational symmetry. Investigations for larger Ns

and different values of h0 are on-going and will be reported on in a later publication.

7.4.4 Remarks regarding the line of constant physics

One can argue that the above investigations suffer from technical problems regarding the
scale setting. As outline above and in Section 7.3, we always set a = 1. No observable such
as the absolute value of the chiral condensate Φ (7.64) or the diagonal elements of the
spatial correlator

∑
iC

ii(0), see Eq. (7.61) for its definition, is used to set a physical scale.
Such a scale is used in LFT simulations to ensure that one remains on a line of constant
physics while varying the lattice spacing a. This is a strategy that should be pursued in
further investigation of this type. Nevertheless, the presented simulation results are at an
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Figure 7.7: Color coded value of C(0, 0,x, y), see Eq. (7.68), for Ns = 1,Z = −1.5,m2 = 0.0
with an external symmetry breaking field (7.66) introduced to the action according to
Eq. (7.65). Note that the scaling of the color bar differs in both plots. The results for
L = 20 and L = 30 suffer from long autocorrelation and thermalization times and
are produced on rather low statistics. (top left) L = 10. (top right) L = 20. (bottom)
L = 30.

intermediate stage and computed for a specific model setup with fixed bare parameters
of the action at one fixed lattice spacing a. Especially, as motivated in the beginning of
this chapter, the scalar model is considered as an effective theory for symmetry breaking
patterns in QCD. Thus, it can naturally be considered as an theory with an inherit UV
cutoff. If this UV cutoff is associated with the lattice spacing a, a continuum limit must
not be necessary, especially since our findings are anyhow of qualitative nature and focus
on the investigation of quantum effects in general. A strategy for a correct continuum limit
of the above investigation is already developed and will be reported upon in subsequent
publications.

7.5 summary and contextualization

In this chapter, we presented an investigation of the effect of bosonic quantum fluctuations
on spatially modulated phases using a scalar O(Ns) model, which is constructed to feature
a moat regime and an IP classically. We reviewed literature findings from the large-Ns limit
as indications that bosonic quantum fluctuations of Goldstone modes stemming from the
O(Ns) symmetry breaking disorder the IP and, instead, a QπL is observed. The presented
LFT simulation results demonstrate that this disordering is also observed for Ns = 1, 2, 4, 8
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at finite spatial volumes. Thus, a QπL is always preferred over an IP in the LFT investiga-
tion (at finite spatial volume), independent of the studied model parameters, see Fig. 7.5
for the phase diagram in the parameter space of the theory.

For the study of spontaneous translational symmetry breaking in the thermodynamic
limit, an external symmetry breaking approach was developed and first results for finite
amplitude of the symmetry breaking term were discussed. In the developed approach, one
introduces an external, static field, that explicitly breaks translational invariance, and deter-
mines the critical value of its amplitude that leads to the observation of an IP. Preliminary
findings are presented, but the statistics are rather low such that no conclusions can be
drawn from these simulations.

conclusions At the current stage, our analysis suggests that, at finite spatial volume,
a QπL is favored over an IP, even if the fermionic fluctuation effects, here encoded in the
effective model Lagrangian as higher order kinetic terms, favor inhomogeneous condensa-
tion. This yields a clear picture in the sense of RO3 and RO4, that disordered phases like
a liquid-crystal regime with quasi-long range order or a QπL are preferred over crystalline
structures like IPs. The model (7.6) classically features an IP and (trivially) a moat regime.
However, from our lattice results it seems that the QπL is favored over quasi-long range or
long-range ordering. Thus, in a computation of the phase diagram of QCD at non-vanishing
µ, if possible in the future, we would rather expect the emergence of a QπL instead of an
IP, given the presence of bosonic fluctuations in the system.

Our results are obtained for a fixed lattice spacing. No continuum limit is performed.
However, the continuum limit might not be very insightful given that the used theory is
super-renormalizable and can, anyhow, be considered an effective theory. This investiga-
tion focuses on qualitative effects of quantum fluctuations in LFT simulations such that
keeping a UV cutoff for this purely scalar theory seems natural and practical in the first
place. Nevertheless, it is important to check the stability of our findings against numerical
parameters, such as the lattice spacing, in following investigations.

In the context of RO4, our analysis challenges the mechanism of the disordering of
inhomogeneous condensates through the Goldstone modes stemming from O(Ns) symmetry
breaking, proposed in Ref. [219]. The LFT simulations reveal that the observed regime
remains independent of Ns, demonstrating that the existence of Goldstone bosons is not
responsible for the absence of IPs in correlation functions. Instead, our findings suggest
that bosonic quantum fluctuations alone are the primary cause of disordering, making the
previously proposed mechanism unlikely.

To study the fate of the IP in the thermodynamic limit of a LFT simulation, we pro-
pose a method based on the external breaking of translational invariance, a key technical
aspect of RO4. Albeit the method is rather intensive in both processing time and memory
storage, as it increases the dimensionality of the to-be-explored parameter space as well
as thermalization times significantly, we consider this the best available method for per-
forming finite-size scaling in the context of spontaneous symmetry breaking – especially in
contrast to studying the scaling of fit parameters. A rather drastic systematic limitation of
the current approach is its reliance on the visual inspection of Eq. (7.68) using color maps,
as in Fig. 7.6, to determine whether translational invariance is broken or not. Thus, this
method lacks a sensible observable to determine the critical external field amplitude for
the transition between IP and QπL at finite spatial volumes.

The finding of a moat regime with FRG computations of the QCD phase diagram in
Ref. [121] can be interpreted as a signal for the existence of spatially modulated, chiral
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observables in the phase diagram, see Section 3.1. Unfortunately, our investigation, so
far, did not allow the computation of the coefficient of the spatial kinetic terms in the
quantum effective action, the full bosonic wave function renormalization of the scalar fields.
However, we expect that, within the observed QπL in Fig. 7.5, the oscillatory behavior in
the correlators is caused by the presence of a moat regime in the quantum effective action.
It is likely that the appearance of the moat regime and of the complex-conjugate bosonic
two-point vertex functions around the CP in model computations [189] are related to each
other in the sense that the moat regime is a precursor of the oscillatory behavior of mesonic
correlation functions realized in the QπL.

future research perspectives The research project, that resulted in the LFT
findings presented in this chapter, is on-going such that we only comment on direct follow-
up steps, which are planned for the completion of the corresponding publication. Obviously,
an extrapolation to the thermodynamic limit is mandatory to make clear statements about
the fate of translational symmetry breaking in the thermodynamic limit. This, however,
requires more data points with a lot of statistics in the plane of external field amplitude
and the cubic, spatial volume L3. The production of this data is rather cost intensive
in terms of computer time but also memory storage, since the respective correlator, that
needs to be computed and stored for each field configuration, scales with L4. Moreover,
the configurations at non-vanishing external field suffer from high autocorrelation and
thermalization times. The analysis would further greatly be simplified by a construction of
a local observable allowing to determine the transition between QπL and IP. However, we
were unable to come up with an improvement of this method so far.

A further interesting research aspect is the investigation of the breaking of discrete
rotational symmetry on the lattice. Findings without external symmetry breaking indicate
that the QπL leaves rotational symmetry intact. This should be further investigated in the
approach with external symmetry breaking, according to Eq. (7.65), that clearly breaks
also the discrete rotational invariance on the lattice. The correlator observable, used so far
in this investigation, can provide hints if one inspects its dependence on spatial coordinates
transverse to the direction of external symmetry breaking. This analysis is left for future
works.

Finally, there is also the above discussed aspect of performing a continuum limit. We
argued above that a continuum limit, albeit the theory can be non-trivial according to
Ref. [371] in the continuum, might not be very relevant for the qualitative effects, that
we are interested in. A tuning of the observables to fix a phenomenlogical observable and
the analysis of two or three different lattice spacings, however, is still a sensible approach,
since the used parameter sets can be compared to more elaborate QCD-inspired models
based on fermions. Moreover, it is, in general, important to check the numerical stability of
the simulations also against the lattice spacing. Studying further lattice spacings, however,
is, again, very intensive in terms of computer time and memory such that this is the last
aspect from the ones discussed here, that will be improved upon.
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S U M M A RY , C O N C L U S I O N S A N D O U T L O O K

8.1 summary

In this work, relevant mechanisms and properties for the existence of exotic regimes with
spatial modulations in QCD at non-vanishing baryon chemical potentials and temperatures
were investigated using so-called QCD-inspired models, i.e., QFTs that share particular
features with QCD. First principle computations in QCD directly are not available at non-
zero baryon chemical potential, see Chapter 1 for details. As the title of this thesis suggests,
the approach is rather of exploratory nature and quantitative predictions for observables are
not made. We focused on the incorporation of important aspects relevant in finite-density
QCD and on the consequences of these aspects on the phase structure of the models used.
In the following, let us briefly summarize the central findings:

The findings in Chapter 5 and Chapter 6 suggest the absence of IPs in all 2 + 1-
dimensional four-fermion models with local interactions and a variety of Yukawa models
at non-vanishing chemical potentials and temperatures. The absence of instabilities of ho-
mogeneous ground states against inhomogeneous perturbations was rigorously proven in
these models within the mean-field approximation, where bosonic quantum fluctuations
are completely suppressed and only the fermionic ones are taken into account. Moreover,
we argued that this finding is strong evidence that IPs are absent also in the full quantum
theories. Also, our findings strongly support the claims in the literature that IPs have a
strong dependence on the regularization scheme and value of the respective regulator [9,
10, 211, 240, 241], see also Section 3.2 for a discussion.

In Chapter 6, we showed that the mixing effects between scalar and vector mesons leads
to the generation of a QπL, a regime with spatially oscillating, exponentially damped two
point correlation functions of mesonic fields, within the HBP of 2 + 1-dimensional four-
fermion models. The appearance of the QπL is related to the interplay of the attractive
scalar interactions and repulsive vector interaction channels and could have been expected
through the existence of the combined CK symmetry of the model at non-vanishing chemical
potential – a symmetry that is also realized in QCD. The CK transformation is of PT -type,
and theories with this symmetry are expected to exhibit exotic regimes [180, 185, 189, 191].
The mixing terms are proportional to the constituent quark masses, or, equivalently in the
chiral limit, to the chiral condensate, an artifact from the mean-field approximation that
was used in Chapter 6. The studied effects, however, are also expected to be the dominant
mixing contributions in the full quantum theory.

The study in Chapter 7 is conceptually different from Chapters 5 and 6 since the effect
of bosonic quantum fluctuations on exotic regimes is explored using LFT theory. Therefore,
a scalar O(Ns) model is used that classically features both a moat regime as well as an
IP. Our initial findings suggest that quantum fluctuations entirely disorder IPs in the LFT
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results for Ns = 1, 2, 4, 8, where Ns = 4 is the relevant symmetry group isomorphic to
the chiral SU(2) × SU(2) symmetry of two-flavor QCD in the chiral limit. These results
are obtained at finite spatial volumes. The thermodynamic limit is essential to study the
symmetry breaking in the strict sense, i.e., through diverging correlation lengths. Therefore,
a method involving an inhomogeneous, external field that breaks translational invariance
was developed.

8.2 conclusions

In this section, the results are interpreted first in the context of the research program
that the author set up and followed during the completion of this thesis, characterized
through five ROs defined in Section 1.3. In the second part of this section, we also make
an attempt to derive hints for the phase structure of QCD at intermediate temperatures
and densities with respect to exotic, chiral regimes. This part should be rather seen as an
educated speculation, influenced by the opinion and perspective of the author, than an
evidence-based prediction for the phase structure. As admitted multiple times throughout
this thesis, QCD-inspired model computations are not able to provide a solid basis for
predicting the phase structure of QCD itself.̧

8.2.1 Implications with respect to the research objectives

RO1 focuses on the influence of the combined CK symmetry of QCD at µ ̸= 0 on the
formation of exotic regimes. From the findings in Chapters 5 and 6 we conclude that the
emergence of this symmetry at non-vanishing densities strongly favors the generation of
QπLs. In these chapters, we first of all observed the absence of IPs in all kinds of 2 + 1-
dimensional four-fermion models both with and without the realization of the CK symmetry
in four-fermion models. When including vector interactions and, as a consequence, allow-
ing for condensation in the temporal component of a vector meson channel, however, the
QπL is observed in the phase diagram at a sufficient strength of the vector coupling. The
condensation of the vector meson, in turn, leads to the emergence of the CK symmetry in
four-fermion models, supporting the claim that this symmetry pattern of the QCD action,
mixing effects between scalar and vector mesons and the QπL regime are closely related to
each other. Computations in QCD-inspired models have so far mostly neglected the effect
of the CK symmetry in the investigation of the phase diagram. Our analysis is one of the
first computations (together with the parallel work [189]) that the QπL can arise in the
phase diagram when a model features the CK symmetry. Thereby, this result is obtained
in an entirely renormalizable, unambiguous and consistent QFT used as a QCD-inspired
model.1

RO2 concerns the mixing effects between scalar and vector mesons and their effect on
the phase diagram. Yukawa-type interactions and four-fermion resonances in the respective
channels play an important role at intermediate baryon densities and temperatures [133].

1 We briefly comment on the important findings in Ref. [191] and Ref. [189]. In the first of these two works, an
NJL-type models with Polyakov-loops was used such that the results investigated parameter regions might
be affected by regularization artifacts [10], unknown of at the publication of Ref. [191]. However, they find
clear signals of the QπL. Ref. [189] uses a renormalizable QM model and also finds signals of the QπL, but
neglects the effects of vacuum fluctuations such that the model computation is not based on an entirely
consistent QFT setup. Given these remarks, we consider both of these works seminal to the above made
arguments.
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As outlined already in the above paragraph, the incorporation of both scalar and vector
channels in four-fermion models implements the CK symmetry at µ ̸= 0 and, thus, is closely
related to the existence of the QπL. The findings of the above mentioned Refs. [189, 191]
together with the results in this thesis, consequently, provide arguments for the existence
of a QπL in QCD. We note at this point, that both Refs. [189, 191] also incorporate mixing
effects stemming from the gluon fields in terms of Polyakov loop potentials in addition to
the mixing between scalar and vector mesons.

The work of the above mentioned chapters and many of the phase diagram calculations
in QCD-inspired models in the literature are restricted to the mean-field approximation,
where bosonic quantum fluctuations are suppressed. RO3 is about the effect of the bosonic
quantum fluctuations on these exotic regimes. Regarding RO3, our LFT investigations of a
scalar O(Ns) model in Chapter 7 for Ns = 1, 2, 4 suggest that bosonic quantum fluctuations
disorder inhomogeneous condensates. The corresponding classical theory features an IP
but in the LFT simulations the QπL is obtained instead, as a remnant of the IP, for all
studied Ns. This result is independent of Ns and consistent with predictions from the
large-Ns limit [219]. The simulation results are in line with investigations and arguments
in the literature [222, 223, 225, 227–229, 323, 328, 329] that support the statement that
bosonic quantum fluctuations disorder phases with spontaneous symmetry breaking such
as the HBP or the IP. The simulation results are obtained for a fixed lattice spacing
and three different spatial volumes. Consequently, there are still a lot of open questions
regarding the findings in Chapter 7 with respect to the infinite-volume and continuum
extrapolation. Especially, the infinite-volume limit is crucial, since phase transitions (with
critical behavior) and spontaneous symmetry breaking can in a strict sense only be observed
in the thermodynamic limit. Together with further literature results, one can certainly
conclude that QπLs are more stable with respect to quantum fluctuations than IPs, which
can be disordered through different mechanisms [216, 217, 219].

Disordering mechanisms are in detail studied under RO4. Our findings suggest that
inhomogeneous condensates are disordered purely by quantum fluctuations independent of
the number of scalar fields Ns used in the lattice simulation. The relevant mechanism is not
necessarily the disordering through Goldstone modes from the O(Ns) symmetry breaking,
as suggested in Ref. [219], since the QπL is also favored for Ns = 1 and Ns = 2 where the
Goldstone mode should be non-existent or strongly-suppressed, respectively (for Ns = 2
the mechanism of Goldstone mode fluctuations is only applicable depending on which
modulation is realized ). The present status of our analysis suggests that indeed the QπL is
favored whenever quantum fluctuations are included. We note that in fermionic models, like
the 1+ 1-dimensional GN model whose discrete chiral symmetry Z(2) = O(1) corresponds
to Ns = 1 in our scalar model, oscillating bosonic two-point correlation functions were
observed, but translational symmetry breaking could not be proven [226]. In the chiral GN
model, corresponding to the symmetry breaking pattern of the scalar model with Ns = 2,
however, disordering was clearly observed [227]. RO4 also formulates the technical goal of
developing an efficient method to detect translational symmetry breaking appropriately in
a LFT simulation. Our current approach to this problem is based on inspecting whether
the bosonic two-point correlation functions break translational invariance when an explicit
breaking through an inhomogeneous external field is introduced to the action. Then, an
extrapolation of the critical, external field amplitude for translational symmetry in the
correlator observable to an infinite volume should reveal the fate of translational symmetry
in the absence of the external field. This approach is expected to provide sensible results,
although it is highly inefficient due to the additional numerical costs and the non-locality
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of the used observable. One possible approach is to define an observable for the translation
symmetry breaking through a combination of matrix elements of the chosen correlator.
However, a key challenge is ensuring that this observable is uniquely defined, regardless of
the lattice spacing and the number of spatial lattice points used.

For RO5, we come back to the findings in Chapters 5 and 6 in 2 + 1-dimensional four-
fermion models. The question about the fate of inhomogeneous chiral condensates in 2 +

1-dimensional four-fermion models was answered through the evidence for the absence
of IPs provided by the results in these chapters. The question about the fate of IPs in
related, QCD-inspired model is broader and can, thus, not be answered entirely within
this thesis. As in detail described in Section 1.3 and Section 3.2, there is evidence for
a strong regularization scheme and regulator dependence of IPs [211, 212, 240, 241] in
the literature, which is particularly severe for predictions based on non-renormalizable
four-fermion models such as the NJL model [10, 167]. As a side effect of our analysis in
Chapter 5, the formulae for the bosonic two-point vertex functions – the object of relevance
for the detection of IPs using stability analyses – can be identified with similar computations
in the 2 + 1-dimensional GN model [241] where also a strong regularization scheme and
regulator dependence is observed. Thus, our results support the above mentioned literature
that a strong regularization scheme and regulator dependence of IPs exists also in all 2+ 1-
dimensional four-fermion models. From this, one may conclude that there is no predictive
power from findings in four-fermion models in three spatial dimension for QCD in the
parameter regions relevant for the IP.

8.2.2 Implications for the QCD phase diagram: A speculation on the phase structure

By no means does the author suggest that the findings in this thesis provide direct predic-
tions for the QCD phase diagram. The model approaches serve as a foundation for further
investigations and are able to identify mechanisms for the formation of exotic phenomena
in the QCD phase diagram. Thus, the results of this thesis should serve as a guideline for
future studies of QCD at non-vanishing baryon densities, possibly experimentally through
astrophysical observations or heavy-ion collision experiments, or theoretically with func-
tional methods, like DSEs or the FRG, or other novel approaches that could be developed
in the future. The motivation is to provide hints for interesting phenomena and give input
to the more elaborate approaches to the QCD phase diagram at intermediate temperatures
and densities. Also for experimental comparison, exotic regimes, observed in QCD-inspired
model computations, can be incorporated in phenomenological approaches such that signa-
tures of these regimes for experimental observables can be obtained without first-principles
calculations, see, for example, Refs. [11, 231–233] for experimental signatures of the moat
regime.

This subsection summarizes the subjective opinion of the author on the “most probable”
scenario for the QCD phase diagram with respect to exotic, chiral regimes at intermediate
temperatures and chemical potentials, based on the findings of this thesis and related
literature. Thus, it should be interpreted as a speculative comment rather than a scientific
prediction.

In Section 1.2.1, we discussed possible scenarios for the phase structure of QCD with
respect to chiral symmetry breaking and related, exotic regimes. In Fig. 1.2, two different
scenarios are proposed: One of these features the typical scenario of a first-order phase
transition between HBP and SP at low temperatures with a CP, from which the transition
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turn second-order (matching the second-order transition of two flavor QCD in the chiral
limit at µ = 0). In the other scenario, an IP at low temperatures and chemical potentials
is observed instead of the first-order phase transition between HBP and SP, which was
motivated by findings in NJL models [195, 197]. Both of these scenarios commonly feature
a moat regime, as its existence in QCD is strongly suggested by the results stemming from
the FRG [121, 166] and the robustness of the moat regime in NJL model calculations [9,
10, 167]. Moreover, the moat regime is often related to the appearance of the disorder line,
the onset of the QπL [180, 192] (note that there is no rigorous proof for the connection
between the two) which is also contained in this scenario. The disorder line is observed in
recent model computations [189, 191], also in the present work, c.f. Chapter 6.

The findings in this thesis suggest that the scenario of the IP is likely not realized since
we expect the IP to be destroyed by quantum fluctuations. Evidence for this mechanism
is obtained in this thesis but also further evidence in the literature [216, 217, 219]. If an
IP is realized, then it is expected at very low and/or zero temperatures where bosonic
flucutations are milder. Consequently, the replacement of the CP and the chiral first-order
phase transition through an IP is considered unlikely. The QπL could be formed both from
mixing effects between scalar and vector mesons, which are relevant at these intermediate
densities, but also from effects from the gluon dynamics, see Refs. [189, 191]. Moreover, at
low temperatures it could be a remnant of the disordering of inhomogeneous condensates,
as also suggested by the LFT simulation in Chapter 7. Thus, the phase diagram in the
left sketch of Fig. 1.2 seems to be a more probably scenario in the eyes of the author.
However, slight modifications are warranted. Although a disorder line is also obtained in
the 1+ 1-dimensional GN model [377], a model without mixing effects (the disorder line in
the GN model resembles closely the sketch in Figure 1 of Ref. [11]), we suggest that parts
of the QπL that are generated by mixing effects lie dominantly within the HBP. They are
expected to appear also close around the CP, such that large parts of the HBP around
the chemical potential of the CP and within temperature ranges between 0 and T = TCP
could be covered with the QπL regime. Thus, also the onset of the QπL would be different
to the proposed scenario in Fig. 1.2.

8.3 outlook

In this section, an outlook on the individual research projects, presented in this manuscript,
but also on the broader investigation of the QCD phase diagram in the region of interest
for this thesis is provided. For the former, the interested reader is referred also to the
respective last sections of the results Chapters 5 to 7 where detailed research perspectives
for the individual research projects are given. Nevertheless, we briefly comment here on
interesting follow-up research perspectives in the context of the overall findings in this
work.

8.3.1 Possibilities for following projects

As in detail motivated in Section 5.4, the absence of IPs in 2+ 1-dimensional four-fermion
and Yukawa models could be implied through a general principle, similar to Derrick’s
theorem [358]. A first attempt to formulate such a theorem could be made using a general
enough Ginzburg landau free energy, similar to the approach in Ref. [359] but also including
higher order kinetic terms.



8.3 outlook 158

For investigations of QCD-inspired theories in three spatial dimensions (which are in this
respect certainly closer to QCD compared to the four-fermion models studied in the present
work), one first has to tackle either the problem of non-renormalizability of four-fermion
models in 3 + 1 dimensions or technical problems in Yukawa-type models like unbounded
potentials and imaginary Yukawa coupling [198], which arise when studying the theories
properly including the vacuum fluctuations and imposing certain values of QCD observables
in the renormalization procedure. The latter is sensible to obtain relevant phenomenological
results in a fully consistent QFT. In terms of studying QCD inspired models, overcoming
these technical problems and perform relevant investigations in three spatial dimensions
would, however, be appropriate next steps for phenomenologically interesting findings, e.g.,
on the relevant scales of oscillations in the QπL. An interesting approach for both the issue
of non-renormalizability as well as the issues with the renormalization of Yukawa / QM
models is the application of PT -symmetric field theory. The study of these QFTs is still
rather novel [186, 312, 313, 367]; encouraging results involving negative quartic couplings,
however, have been found regarding the non-triviality of the O(Ns) theory [371]. Also,
a PT -symmetric four-fermion theory could be renormalizable [369] which is a promising
first finding for further QCD-inspired model computations. The drawback of this approach,
however, is that it often involves non-Hermitian actions, which severely complicates LFT
investigations. First, studies in a mean-field or large-N approximation should be conducted.
Further, it is yet unclear whether these theories can reproduce QCD phenomenology. Inves-
tigations in these directions would be logical next steps with respect to the investigation
of exotic regimes involving model approaches.

Further, going beyond the mean-field approximation is another important aspect. As
outlined above, the issues in three spatial dimensions need to be solved first before LFT
simulations are sensible. However, if the developed theories with PT symmetry are non-
Hermitian, one will have to deal with their respective sign problem, i.e., with complex
weights appearing in the partition function. Methods to deal with sign problems are in de-
velopment and involve Lefshetz thimble approaches [126–128] or complex Langevin methods
[129–131]. Presently, the methods are far from producing reliable results for QCD at non-
vanishing densities. Thus, their application to PT -symmetric theories that are developed
according to the discussion above is only sensible if the appearing non-Hermiticities are
mild. Otherwise, it would be more fruitful to try to apply developed methods directly in
QCD.

Thus, it is currently sensible only to investigate scalar field theories, that incorporate
IPs or QπLs as simple models using a gradient expansion, directly with LFT. This is
the approach followed in Chapter 7 and is presently still under investigation. However,
this study investigates the disordering of IPs and technical issues regarding spontaneous
translational symmetry breaking on a finite spacetime lattice. It is not sensible to expect
quantitative predictions from the investigation of scalar O(Ns) theories. The study in
Chapter 7 is not complete and next steps in this project are discussed above.

8.3.2 Future research perspectives: Exotic regimes in the QCD phase diagram

The non-perturbative nature of QCD and its non-Hermiticity at intermediate temperatures
and baryon densities make the investigation of these regions of the phase diagram an
incredibly challenging task. To quote the PhD thesis of M. Steil [52], a highly appreciated
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collaborator: “[The QCD phase diagram] . . . is still to an extent a terra incognita of
challenges and mysteries: Here be dragons and maybe even three-headed ones.”2

Although the author certainly agrees to this statement, this region of the phase diagram
is also of incredibly interesting and is more and more approached from the experimental
side in terms of astrophysical approaches like direct gravitational wave detection or from
heavy-ion collisions, like the planned CBM experiment at FAIR. Thus, complementary the-
oretical approaches are urgently needed and, still, as outline above, mostly consist of effec-
tive model calculations and functional methods like DSEs and FRG. The latter approaches
are likely to be the ones that can provide the most accurate quantitative predictions for
experimental observables, although uncontrolled artifacts are introduced into the findings,
through restrictive ansatzes for the quantum effective action (or field derivatives of it) re-
quired in the FRG and through truncations of the DSEs. Thus, ideally, calculations from
both methods should provide consistent estimates, as in the recent determination of the
CP [121, 124, 159]. If this is not possible, the effect of the uncontrolled approximations
must be carefully investigated by performing multiple computations involving different ap-
proximation schemes. Therefore, the further development of new numerical and analytical
approaches within functional methods for the study of this region in the phase diagram is
subject to a lot of research, see, e.g., Refs. [213–215, 378–383]. Still, it requires probably
a lot of collaborative work combining experimental data analysis and theoretical modeling
to tackle this region of the phase diagram, where first-principles results from theory are
not available.

Since quantitative, theoretical computations can be incredibly involved both in terms
of complexity as well of numerical sophistication, effective model calculations can provide
hints for the appearance of novel phenomena. These investigations can be thought of as
exploratory works focusing on the discovery of novel mechanism to provide guidelines for
more involved studies. This is motivated also by the findings in this thesis, see Section 8.2.1,
where multiple new aspects of exotic regimes were covered under the formulated ROs. These
results can be build upon in the future to tackle the phase structure of QCD from different
sides.

For example, findings from model calculations can lead to the development of new ap-
proaches within functional methods, see, for example, Refs. [102, 215] for the search for
inhomogeneous chiral condensates. Further, model calculations can provide substantial
weight for the focus of further involved experimental and theoretical investigations. This
is achieved by providing novel experimental signatures of exotic regimes, such as the en-
hancement of dilepton production in the moat regime [11]. The quantitative precision of
these signatures can later be improved upon using functional methods, see Ref. [166] for
first attempts in this direction.

Nevertheless, one has to admit that all of these approaches always only provide tiny steps
towards a realistic picture of the QCD phase diagram. The quality of predictions is far away
from state-of-the-art LFT predictions for QCD at non-zero temperatures but zero density.
In the end, to get accurate first-principles results in the (µ,T ) plane, developments in the
hardware and algorithmic side of quantum computing are necessary to provide a platform
for these computations in the next decades. This technology is expected to provide the
solution to the sign problem of lattice QCD in the end [132].

2 The formatting of the sentence in quotation marks is modified compared to the original text in the thesis.
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A
C O N V E N T I O N S , D E F I N I T I O N S A N D M O R E

This chapter summarizes the unit system, the wick rotation from Minkowski to Euclidean
spacetime and chosen representations of the Clifford algebra in 1 + 1 and 2 + 1 spacetime
dimensions. This serves as supplementary material for the main part of the thesis. Moreover,
we briefly discuss the representation theory of the Poincaré group for standard spin-0 and
spin-1/2 fields in 1 + 1 and 2 + 1 Euclidean spacetime dimensions. Due to the nature of
this appendix, none of its content is original to this thesis and can be found elsewhere. A
decent effort was put into referencing appropriate publications whenever possible, but much
of the content in this chapter is repetitively used in the community such that it is difficult
to identify original works. In these cases, the reader shall refer to common textbooks and
lecture notes on QFT such as Refs. [278–281].

a.1 units

In this section, the used unit system is briefly introduced. Note, however, that we typically
work with ratios of dimensionful quantities and avoid quantifying the absolute values of
physical observables and thermodynamic parameters. The reason for this is that this thesis
mostly deals with qualitative behaviors of strongly-interacting systems at non-vanishing
temperatures and chemical potentials. As discussed in Chapter 1, QCD is not accessible
in this regime and, thus, our models are only effective descriptions for certain aspects of
QCD. We do not aim to provide quantitative predictions but instead investigate underlying
mechanisms for the generation of exotic phases in QCD at non-vanishing temperatures
and chemical potentials. Consequently, the choice of unit system is not relevant in terms
of the prediction of quantitative values of observables. It plays, however, a major role
when comparing formulae from within this thesis to other literature results with different
conventions.

A variant of natural units is used in this work. These are defined by setting the Boltzmann
constant kB = 1, the speed of light in vacuum c = 1 as well as h̄ = 1, i.e., all of these
constant are chosen to be dimensionless. This unit system is rather standard in high energy
physics as it massively reduces the number of constants in equations and allows to express
all quantities in this thesis in terms of their energy dimensions. For example, temperatures,
chemical potentials and masses have the dimension of an energy, while length and time
are given in units of inverse energy. Thereby, this unit system implicitly implements the
concept from special relativity of treating space and time equally. For conversion to SI units,
one typically uses h̄c ≈ 197.329 . . .MeVfm. In natural units, actions are dimensionless such
that the path integral formalism does not require dimensionful prefactors in front of the
action of the theory, see Chapter 2.

161
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a.2 wick rotation

In this section, we present examples for the changes in the path integral formulation of
QFTs from the analytical continuation from real to imaginary spacetime. The starting
point is the formulation of the QFT in Minkowski spacetime, see Eqs. (2.1) and (2.2), with
metric

ηµν = diag (1, −1, . . . , −1) (A.1)

for µ, ν = 0, 1, . . . , d. As outlined in Section 2.1.1, we perform the substitution τ = ixM0 and
leaving the spatial coordinates to transform from xM = (x0, x)T to Euclidean spacetime
coordinates xE = (x, τ )T . Thereby, τ is real-valued such that the original time coordinate
must be purely imaginary. From this substitution stems the name “imaginary time formal-
ism”. The metric of Euclidean spacetime is defined as ηµν,E = δµ,ν such that one finds
ds2

M = − (dsE)2 for the Minkowski and Eucilidean spacetime differences, see Eq. (2.8).

a.2.1 Consequences for the action of common field theories

In this subsection, we present the application of the Wick rotation to the action and
partition function of common free field theories. We start with the free Dirac action without
a bare mass term

SM [ψ̄,ψ] =
∫

dd+1xM ψ̄i/∂Mψ = ψ̄γµM∂µ,Mψ (A.2)

where the γµM matrices fulfill the Clifford algebra

{γµM , γνM} = γµMγ
ν
M + γνMγ

µ
M = 2ηµνM 1, µ, ν = 0, . . . , d. (A.3)

In order to define a similar relation for the Euclidean Gamma matrices with the Euclidean
metric, one needs to make the substitution

γd+1
E = γ0

M , γjE = iγjM , j = 1, . . . , d, (A.4)

i.e., the spatial Gamma matrices pick up an additional factor of i. This leads to the Eu-
clidean Gamma matrices fulfill a similar relation to Eq. (A.3), but with the Euclidean
metric, see Appendix A.3 for details. Thus, we get for the kinetic term of the fermions

/∂M = −γiM∂im + γ0
M∂0,M = iγiE∂iE + iγd+1

E ∂d+1
E = i/∂E (A.5)

which is inserted into Eq. (A.6) resulting in

SM [ψ̄,ψ] = −i
∫

dd+1xEψ̄ [−γµE∂µ,E ]ψ ≡ iSE [ψ̄,ψ]. (A.6)

Thus, the path integral transforms as

Z ∼
∫

Dψ̄DψeiSM [ψ̄,ψ] =
∫

Dψ̄Dψe−SE [ψ̄,ψ], (A.7)

i.e., the difficult to evaluate oscillatory, complex-valued integrand is transformed into a
real-valued integrand that can be interpreted as a probability distribution for the fermionic
fields.

Similar transformations can be performed, e.g, for scalar, spin-0 fields where the Klein-
Gordon operators ∂2

0,M − ∇2
M changes to −∂2

E − ∇2
E leading to a similar transformation

of the respective path integral to a probability distribution. This leads, together with the
transformation of the spacetime integration measure and the definition of a Euclidean
action, to a change of the sign of the bare mass term in the action.
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a.2.2 Example: Four-fermion model with both scalar and vector interactions

For interacting theories, one has to be careful to properly handle the signs and prefactors
of coupling constants. We briefly discuss the Wick rotation at the example of the four-
fermion model (6.1) studied in Chapter 6. Here, it is particularly important to be clear
about the used conventions in Minkowski spacetime and for the Wick rotation (especially
for the Euclidean Gamma matrices) since the applied conventions might results in different
prefactors and signs in the theory. This subsection is adapted from Appendix A of Ref. [3].

In (2 + 1)-dimensional spacetime with the metric ηµν = diag(1, −1, −1) we demonstrate
the Wick rotation using the action (6.1) and partition function

SM ,mix[ψ̄,ψ] =
∫

dx0

∫
d2x

{
ψ̄ (iγνM ∂ν,M )ψ+

[
λS

2Nf
(ψ̄ ψ)

2
+ λV

2Nf
(ψ̄ iγνM ψ) (ψ̄ iγM ,ν ψ)

]}
,

(A.8)

Z =
∫

Dψ̄Dψ eiSM ,mix[ψ̄,ψ] (A.9)

with appearing variables as defined below Eq. (6.1) and in Section 2.3. The Gamma matrices
γνM fulfill Eq. (A.3) for d = 2 as usual. For the Wick rotation we use the conventions
discussed above, such that one obtains (γν,E)

2 = 1. This changes the vector interaction
term in the following way

(ψ̄ iγνM ψ) (ψ̄ iγM ,ν ψ) =
(
ψ̄ iγ0

M ψ
)2

−
(
ψ̄ iγjM ψ

)2
= (ψ̄ iγ3 ψ)

2
+ ψ̄ ( iγj ψ)2 (A.10)

where the additional factor (−i)2 = −1. Moreover, there is an overall additional “-” sign
in front of the Euclidean interaction terms stemming from the factor of −i that comes
from d3xM = −id3xE . With the other standard changes of the action and the definition
SM ,mix = iSE ,̧mix one obtains the Euclidean action Eq. (6.1).

a.3 gamma matrices as representations of the clifford algebra

In this chapter, we already introduced the Gamma matrices γµ as representations of
the Clifford algebra (A.3) in d+ 1 spacetime dimensions with Minkowski metric ηµν =

diag(1, −1, . . . , −1). The size of the Gamma matrices dγ is closely connected to the num-
ber of spacetime dimensions. As we restrict ourselves to d = 1, 2, we have dγ = 2 and
dγ = 4.

For the most part of this thesis we work in Euclidean spacetime, i.e., the metric is given
by δµν = diag(1, 1, . . . , 1), see Section 2.1 and Appendix A.2 for a discussion of the Wick
rotation. The anti-commutation relation (A.3) is then replaced by

{γµ, γν} = 2δµν1, µ, ν = 1, . . . d+ 1. (A.11)

where µ = d + 1 describes the Euclidean time component. Typically, one searches for
irreducible representations of the algebra Eq. (A.3) or Eq. (A.11) in order to define the
Gamma matrices. In odd spacetime dimensions, this is not necessarily the case as we will
discuss below at the example of 2 + 1 dimensions.

The Gamma matrices behave fundamentally different in even and odd spacetime di-
mensions, see, e.g., Ref. [384] for a compact presentation of representations of the Clifford
algebra in different spacetime dimensions. When d+ 1 is even and an irreducible representa-
tion of the Clifford algebra is used, there generically exists one matrix that anti-commutes
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with all γ matrices.1 This matrix is typically called the chiral gamma matrix or chiral op-
erator, denoted by γch in this thesis, as it can be used to define so-called chiral projectors
∼ (1 ± γ5). A generic definition of γ5 in even spacetime dimensions is

γch = −(−i)
d+1

2 −dγ1
M . . . γdMγ

0
M = −(−i)

d+1
2 γ1 . . . γd+1 (A.12)

where we used both the Gamma matrices in Minkowski and Euclidean spacetime with
conventions from the Wick rotation given in Section 2.1. The chiral projectors can be
used to project out the parts of a spinor ψ with left- or right-handed chirality. Left- and
right-handed spinors transform differently under chiral symmetry transformations. The free
Dirac Lagrangian is only invariant under chiral symmetry transformations when the mass
term is set to zero, i.e., for massless fermions. This is because a mass term mixes left- and
right-handed components of the spinor breaking chiral symmetry. The particular definition
of chirality is specific to the number of spacetime dimensions and the dimensionality of the
representation of the Clifford algebra, as discussed in Appendix B.

In odd spacetime dimensions, the irreducible representation of the Clifford algebra corre-
sponds to the one from one dimension lower where the “missing” Gamma matrix is chosen
to be proportional to the chiral Gamma matrix from one dimension lower. In this case, no
chirality operator γch can be defined, i.e., one cannot find a matrix that anti-commutes with
all γµ [385]. Consequently, no axial chiral symmetry can be defined in this case and spinors
cannot be decomposed into left- and right-handed components. In irreducible representa-
tions of the Clifford algebra in odd spacetime dimensions, it is, thus, not possible to define
chirality and chiral symmetry. Moreover, there typically exist two independent irreducible
representations in odd spacetime dimensions that cannot be related by such transforma-
tions. In even spacetime dimensions, in contrast, different irreducible representations of the
Clifford algebra can be related through similarity transformations involving γch, which is
not present in odd spatial dimensions. We are unaware whether a rigorous proof of this
statement exists for arbitrary odd spatial dimensions, but below an example for 2 + 1 di-
mensions is given. Since we are interested in the study of regimes that also involve the
possibility of spontaneous chiral symmetry breaking, it is instructive to use reducible rep-
resentations of the Clifford algebra. This is common in the literature of 2 + 1-dimensional
QFTs involving fermions that feature an internal symmetry group, see Appendix B.2. In
particular, this approach is also relevant for the study of condensed matter systems involv-
ing the description of electrons2. In the reducible representation, it is possible to define
chiral symmetry and chiral projectors appropriately. Of course, the usage of a reducible
representation comes at the price of introducing ambiguities in these definitions as well as
in the definition of other spacetime symmetries, e.g., of parity, time-reversal and charge
conjugations transformation, on the level of spinors. This becomes relevant at the example
of the spinors in 2 + 1 dimensions, see below and Appendix B.2.

1 When using a reducible representation, the Gamma matrices are typically taken from a representation of
the Clifford algebra of two dimensions higher. Then, there exists multiple matrices that anti-commute with
all γ matrices.

2 For example, these applications involve effective field theories for graphene and other planar systems [262–
266, 271].
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a.3.1 1 + 1 dimensions

We start with the irreducible representation of the Clifford algebra in 1+ 1 dimensions. In
Minkowski spacetime with metric ηµν = diag(1, −1), the Gamma matrices are chosen to
be in Weyl basis, i.e.,

γ0
M = σ1, γ1

M = −iσ2, (A.13)

with the Pauli matrices (extended by the identity matrix)

σ0 =

+1 0
0 +1

 , σ1 =

 0 +1
+1 0

 , σ2 =

0 −i
i 0

 , σ3 =

+1 0
0 −1

 , (A.14)

There exists another, additional matrix that anti-commutes with all γ matrices, the chirality
operator denoted by γch in analogy to the usual notation in 3 + 1 dimensions. In 1 + 1
dimensions, it is proportional to the “unused” Pauli matrix, i.e., in our conventions

γch = γ0
Mγ

1
M = −γ1

Mγ
0
M = σ3. (A.15)

This operator can be used to define axial symmetries of theories, e.g., of the free Dirac
Lagrangian as discussed in Appendix B.1.

The Euclidean γ matrices are then given by

γ1 = σ2, γ2 = σ1, (A.16)

where we used that the definition of the chirality operator does not change under Wick
rotation. The chirality operator is similar to the one in Minkowski spacetime, i.e., γch =

iγ1γ2 = σ3, as discussed above. Moreover, we define chiral projectors

γR/L =
1
2 (1 ± γ5) (A.17)

such that

γR =

1 0
0 0

 , γL =

0 0
0 1

 . (A.18)

These are in particular relevant in the analysis of the chiral GN model in Section 4.3.

a.3.2 2 + 1 dimensions

In odd spacetime dimensions, there exists an ambiguity in the representation of Clifford
algebra, i.e., two independent irreducible representations which cannot be related by a
similarity transformation. In Minkowski spacetime the two, irreducible representations are

γ0
M = +σ1, γ1

M = −iσ2, γ2
M = −iσ3 (A.19)

and

γ̃0
M = −σ1, γ̃1

M = +iσ1, γ̃2
M = +iσ2. (A.20)

Since there exist no further anti-commuting matrix in both of these representations, one
cannot define a chirality operator and chiral projectors in these representations. Thus, one
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cannot define chirality and chiral symmetry in 2+ 1 dimensions. Consequently, irreducible
representations are not suited for the study of chiral symmetry breaking in 2+ 1 dimensions
which is crucial for the study of exotic phases in fermionic systems at non-zero densities.

In investigations of chiral symmetry breaking in 2+ 1 dimensions, one therefore typically
chooses a 4 × 4 representation of the Clifford algebra [274, 385], corresponding to using
Gamma matrices from 3 + 1 dimensions. Whenever needed, we choose for the basis of
Gamma matrices in 2 + 1 dimensions specifically as

γ0
M = σ3 ⊗ σ1, γ1

M = σ3 ⊗ (−iσ2) , γ2
M = σ3 ⊗ (−iσ3) . (A.21)

After Wick rotation, the Euclidean γ matrices are

γ1 = σ3 ⊗ σ2, γ2 = σ3 ⊗ σ3, γ3 = σ3 ⊗ σ1. (A.22)

Using this reducible representation leaves two anticommuting matrices, i.e., the chirality
operator is ambiguous. These two matrices are the chirality operator from 3+ 1 dimensions
as well as proportional to one leftover spatial Gamma matrix from 3 + 1 dimensions. In
the above basis (A.22), these are3

γ4 = σ1 ⊗ σ0, γ5 = −σ2 ⊗ σ0. (A.23)

Both of these matrices generate axial symmetry transformations that leave the free Dirac
lagrangian invariant, compare Appendix B.2. Additionally, there exists a further, indepen-
dent matrix

γ45 = iγ4γ5 = σ3 ⊗ σ0. (A.24)

that commutes with the Gamma matrices and generates a vector symmetry transformation
(B.8). Note that γ4, γ5 and, consequently, also γ45 are not affected by the Wick rotation, i.e.,
both Eq. (A.23) and Eq. (A.24) would be appropriate operators in Minkowski spacetime
as well. We chose γ4, γ5 and γ45 to be self-inverse and hermitian. All three matrices can
be used to define chiral projectors similar to Eq. (A.17).

a.4 fields as representations of the poincaré group

In this section, we present representations of the Poincaré group in 1+ 1 and 2+ 1 Euclidean
spacetime dimensions for bosonic fields with spin 0 and fermionic fields with spin 1/2. This
discussion is mostly based on the Appendix B of Ref. [344] and not original to this thesis.
Moreover, representation theory of the Poincaré group is covered in many textbooks, lecture
notes and reviews such as, e.g., Refs. [278, 279, 386].

For the purpose of this discussion, we only concentrate on the Poincaré symmetry on a sin-
gle field, that transforms according to its respective spin. The transformations contained as
elements in the Poincaré group can be categorized as (Euclidean) Lorentz transformations
and spacetime translations. Moreover, only proper Lorentz transformations are discussed,
while discrete spacetime symmetries are neglected. Note that in Euclidean spacetime it is
possible to define the Lorentz transformations as a product of proper transformations, i.e.,

3 This choice is not unique. With reducible representations, a Weyl basis (which is used in 1 + 1 dimensions)
is, unfortunately, not sensible since both γ4 and γ5 generate axial transformations and spinors can be
decomposed according to both matrices. A Weyl basis is defined by having a diagonal chirality operator
such that chiral projectors project out certain components of the spinor. This is not possible to guarantee
for both both choices of projectors corresponding to γ4 and γ5, respectively.
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with determinant 1, and a discrete Z2-symmetry. This discrete symmetry can for example
be chosen as time reversal or parity (the latter has to be defined as the inversion of an
odd number of cartesian coordinate axes; otherwise it is part of the proper Lorentz trans-
formations for two spatial dimensions). From now, we always discuss transformations in
Euclidean spacetime and do not specifically mention it the geometry of spacetime. At first,
we discuss general properties of Poincaré transformations in d dimensions.

We start by defining a Poincaré transformation T through its action on spacetime vectors
or, equivalently, spin 1 fields, i.e.

x′ = T (Λ, a)x = Λx+ a . (A.25)

with a spacetime vector a = (a0, . . . , ad−1)
T . The proper Lorentz transformation Λ is

element of SO(d). An infinitesimal Lorentz transformation is given by

Λµν = δµν + ϵµν (A.26)

with arbitrary small parameters ϵµν = −ϵνµ.
Then, we consider the representation U (Λ, a) of the Poincaré group on another vector

space, i.e., on other physical entities. The elements U (Λ, a) are written as

U(Λ, a) = e− i
2 ϵµνMµν e−iaµPµ = 1 − i

2ϵµνMµν − iaµPµ + . . . , (A.27)

where Mµν denote the anti-symmetric generators for Lorentz transformations. These gener-
ate rotations in Euclidean spacetime. Moreover, Pµ denote the generators for translations
and aµ is the parameter for the translation. The operators Mµν and Pµ form a Lie algebra,
the Poincaré algebra, whose commutation relations are given by4

[Mαβ, Mγδ] = i (δβγMαδ + δαδMβγ − δαγMβδ − δβδMαγ) , (A.28a)
[Pα, Pβ ] = 0, (A.28b)

[Pα, Mβγ ] = i (δαβPγ − δαγPβ) . (A.28c)

A specific representation for the generators can be5

Mµν = i (xµ∂ν − xν∂µ) + Sµν , Pµ = −i∂µ , (A.29)

where Sµν is a spin structure that vanishes for scalar fields. In general, Sµν = −Sνµ. A
scalar field ϕ transforms under Lorentz transformations under this specific representation
with Sµν = 0

ϕ′(x′) = U (Λ, 0)ϕ(Λx) = e− i
2 ϵµνMµνϕ(Λx). (A.30)

Considering only infinitesimal transformation, this expression is expanded up to O(ϵ2)

corrections to

ϕ′(x′) ≈
(

1 − i
2ϵµνMµν

)
[ϕ(x) + ϵµνxν∂µϕ(x)]

= ϕ(x) +
1
2ϵµν (xµ∂ν − xν∂µ)ϕ(x) + ϵµνxν∂µϕ(x) = ϕ(x), (A.31)

4 These relations can, for example, be derived from the condition U (Λ, a)U
(

Λ′, a′)U−1(Λ, a) =

U
(

ΛΛ′Λ−1, a+ Λa′ − ΛΛ′Λ−1a
)
, which follows the composition rules for the representation T (Λ, a). One

inserts infinitesimal transformations (A.27) and keeps only linear terms in all group parameters.
5 The generators are chosen such that we obtain transformations of spin 0 and spin 1/2 fields. One can also

obtain the spacetime transformation (A.25). Then each of the Mµν has a matrix structure in spacetime.
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where in the last step we use the anti-symmetry of the parameters ϵµν and relabel the
summation indices. As we can express general Lorentz transformations via infinitesimal
transformations, we obtain the expected invariance of scalar fields.6. One can perform the
same calculation for translations U(I, a) and obtain

ϕ′(x′) = ϕ′(x+ a) = ϕ(x). (A.32)

Spin-1/2 fermion fields transform under Poincaré transformations as

ψ′(x′) = U(Λ, 0)ψ(Λx) = e− i
2 ϵµνSµνψ(x) (A.33)

with parameters ωµν = −ωνµ, where we implicitly used the invariance of the spinor field
under the part of the transformation generated by Mµν . This invariance can be derived
similar to Eq. (A.31). Here, in the last step we used Eq. (A.31). The additional spin
structure Sµν of the generators can be constructed using representations of the Clifford
algebra, c.f. Appendix A.3,

Sµν =
i
4 [γµ, γν ] . (A.34)

Then, the spinor transformations U fulfill

U−1(Λ)γµU(Λ) = Λµνγν (A.35)

such that the Lagrangian of free spinor fields is invariant under (Euclidean) Lorentz trans-
formations.

a.4.1 1 + 1 dimensions

The Lorentz transformation Λ is an element of SO(2). An element O of SO(2) can be
expressed as

O = eiθσ2 = cos(θ) + i sin(θ)σ2 , ť (A.36)

where τ2 is the second Pauli matrix and θ is a real parameter. Hence, the group elements
are connected continuously and can be represented by iterative application of infinitesimal
transformations.

In 1 + 1 dimensions, an irreducible representation of the Euclidean Clifford algebra is
given by Eq. (A.16). The transformation behavior of fermion fields (A.33) can be explicitly
written as

ψ′(x′) = e
i
2 ϵ01σ3ψ(x). (A.37)

using the one, independent generator S01 = −σ3
2 With parameter ϵ = ϵ01 the transforma-

tion matrix is given by

e
i
2 ϵσ3 =

 e
iϵ
2 0

0 e− iϵ
2

 . (A.38)

6 Besides the non-vanishing spin structure Sµν when considering fields with a spin, this transformation shall
also hold for all higher spin fields.



A.4 fields as representations of the poincaré group 169

a.4.2 2 + 1 dimensions

In 2+ 1 dimensions the Lorentz transformation Λ is element of SO(3), as demonstrated in
the following. Elements R ∈ SO(3) can be expressed by

R = eiθjTj (A.39)

with three parameters θj and generators

T0 = i


0 0 0
0 0 −1
0 +1 0

 , T1 = i


0 0 1
0 0 0

−1 0 0

 , T2 = i


0 −1 0
+1 0 0
0 0 0

 . (A.40)

The commutation relation between the generators are

[Tj ,Tk] = iϵjklTl (A.41)

with the three-dimensional Levi-Civita symbol, which is the Lie algebra of SO(3). This
commutation relations are similar to the ones of orbital angular momentum operators, i.e.,
the specific choice of the generators Tj generate rotations in a three-dimensional Euclidean
space.

There exist three independent generators for Lorentz transformations Mµν and three
generators for spacetime translations Pµ in 2 + 1 spacetime dimensions. One can unam-
biguously map the matrix-valued Mµν to vectors

Lα = −ϵαβγ
2 Mβγ ↔ Mαβ = −ϵαβγLγ . (A.42)

The Poincaré algebra (A.28) translates to

[Lµ,Lν ] = iϵµνρLρ , (A.43a)
[Pµ,Lν ] = iϵµνρPρ , (A.43b)
[Pµ,Pν ] = 0 , (A.43c)

i.e. the generators of Lorentz transformations Lα fulfill the algebra (A.41).
Fermion fields transform as

ψ′(x′) = e− i
2 ϵµνSµνψ(x) (A.44)

where we now have three independent generators

Sµν =
i
4 [γµ, γν ] . (A.45)

As Sµν involves the Gamma matrices, i.e., representations of the Clifford algebra (A.11),
the transformation behavior of spinors will differ between irreducible representations, such
as Eq. (A.19) (up to Wick rotation to Euclidean spacetime), and reducible ones, such as
Eq. (A.22).
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two-component spinor representations In the irreducible, 2 × 2 represen-
tations with Pauli matrices the generators Sµν are given by

S01 = −σ1
2 , S02 =

σ3
2 , S12 = −σ2

2 , (A.46)

i.e., they fulfill the algebra of SU(2)

su(2) =
{
A ∈ C2×2 : A+A† = 0, tr(A) = 0

}
, (A.47)

which is isomorphic to the one of SO(3) (A.41). Consequently, the matrices

U = e− i
2 ϵµνSµν = e

i
2 εασα (A.48)

are elements of SU(2). We define ε = (ϵ01, ϵ12, −ϵ02) and σ = (σ1,σ2,σ3) in the last step
to choose a standard basis of SU(2) generators.

As well known (see, e.g., Ref. [278]), SU(2) is a double cover of SO(3), which is equivalent
to the group of proper Euclidean Lorentz transformations in 2 + 1 spacetime dimensions.
This is demonstrated by considering rotations (A.48) and (A.39) around the x1 axis (θ0 =

0, θ2 = 0 and ε0 = 0, ε2 = 0, respectively) for a spacetime vector a and a spinor ψ

a′(x′) = ei2πT2a(x) =


+ cos(2π) 0 − sin(2π)

0 1 0
+ sin(2π) 0 + cos(2π)

 a(x) = a(x) (A.49a)

ψ′(x′) = e
i
2 2πτ2ψ(x) =

 + cos(π) + sin(π)
− sin(π) + cos(π)

ψ(x) = −ψ(x) . (A.49b)

Thus, after a full rotation around the x1-axis the spinor is not mapped to itself. However, as
one can easily see from the above calculation, performing a rotation with angle 4π results in
ψ′(x′) = ψ(x). In general, a spinor rotates through half the angle that the spacetime vectors
rotates through. Increasing a generic rotation angle by 2π one obtains U → −U , R → R.
However, U and −U both correspond to the rotation R, i.e., there is a two to one mapping
of elements of SU(2) to elements of SO(3).

This is closely connected to the existence of two independent irreducible representations
for the Clifford algebra, see Appendix A.3.1. Indeed, if one restricts the angles of rotation
in (A.48) and (A.39) to [0, 2π), one obtains the complete group of proper Lorentz trans-
formation on spacetime vectors. To regain the complete group of spinor transformations
one can use a second basis of generators σ′ = (−σ1, −σ2, −σ3)

T in addition to the set of
Pauli matrices defined in Eq. (A.48). Both choices of generator representations are not not
equivalent but fulfill both the Clifford algebra (A.11) in 2+ 1 spacetime dimensions as well
as the SU(2) algebra (A.47).

four-component spinor representations In the reducible representation
(A.21) the generators Sµν are given by

S01 = 12 ⊗ −σ1
2 , S02 = 12 ⊗ σ3

2 , S12 = 12 ⊗ −σ2
2 . (A.50)

Consequently, the spinor transformation (A.44) takes the form of

U = e− i
2 ϵµνSµν = e

i
2 (12⊗σ)αεα . (A.51)
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with ε = (ϵ01, ϵ12, −ϵ02)T and τ = (τ1, τ2, τ3)
T . Using the matrix exponential we can rewrite

U =

 e
i
2 ϵµσµ 0
0 e

i
2 ϵµσµ

 , (A.52)

where the 2 × 2 blocks are again elements of SU(2). For four-component spinors, axial
transformations, as, for example, Eq. (B.10) can be applied to obtain the full SU(2) group,
even with the restriction ϵ ∈ [0, 2π), which is not possible when choosing one of the two
differing irreducible two-component representations.



B
S Y M M E T R I E S O F F E R M I O N S I N d + 1 D I M E N S I O N S

In this chapter, we are going to discuss the symmetry transformations leaving the free,
massless Dirac Lagrangian

L = ψ̄ (γµ∂µ)ψ (B.1)
in d+ 1 Euclidean spacetime dimensions invariant with d = 1, 2, as relevant for this disser-
tation. Note that the respectively used representations of the Dirac algebra for fixed d are
given in Appendix A.3. Moreover, we show how certain interaction channels as well as (bare
or dynamically generated) mass terms break these symmetries. Subgroups of symmetries,
that are relevant for models discussed in Chapters 3 to 5, are defined as supplementary
materifal for these chapters.

b.1 fermions in 1 + 1 dimensions

In 1 + 1 dimensions, the irreducible representation of the Dirac algrebra (A.11) is given
by 2 × 2 matrices, see Eq. (A.16). The internal, chiral symmetry group of one species of
fermions consists of the vector transformation

UV (1) : ψ → eiα1ψ, ψ̄ → ψ̄e−iα1 (B.2)

and the axial transformation

UA(1) : ψ → eiβγ5ψ, ψ̄ → ψ̄eiβγ5 (B.3)

with real parameters α,β. Thus, the full, internal symmetry group of Eq. (B.1) is given by
UV (1) × UA(1).

b.1.1 Generalization to Nf fermion species

Often, we consider Nf identical copies of spinors, that are all contained in the field ψ.
Thus, in the following (and also in the majority of this thesis) ψ implicitly represents(
ψ1, . . . ,ψNf

)
where each ψj is a 2-component spinor for d = 1. Consequently, symmetry

transformation can always also be combined with any kind of rotation in the internal space
of the Nf fermion species, as long as the action is diagonal in this space. This is always
the case within this thesis. Thus, the full symmetry transformation, that leaves the free
fermion action (B.1) invariant in this case, is given by UV (Nf ) × UA(Nf ) with

UV (Nf ) : ψ → eiαa1Ta
ψ, ψ̄ → ψ̄e−iαa1Ta ;

UA(Nf ) : ψ → eiβaγ5Ta
ψ, ψ̄ → ψ̄eiβaγ5Ta ,

where T a with a = 1, . . . ,N2
f − 1 are generalized Nf ×Nf Gell-Mann matrices [387] and

TN
2
f = 1 is the Nf ×Nf identity matrix. Moreover, αa and βa are real parameters.
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b.1.2 Subgroups

In case of the GN model interaction term ∼ (ψ̄ψ)
2, the axial symmetry transformation of

Eq. (B.3) is broken to a discrete subgroup. This is demonstrated in the following. Consider
the application of the axial transformation UA(Nf ) (B.3) to the interaction term

(ψ̄ψ)
2 →

(
ψ̄e2iβγ5ψ

)2
= [ψ̄ (cos(2β) + i sin(2β)γ5)ψ]

2 . (B.4)

Thus, the interaction term is transformed into a combination of the original interaction term
and the interaction term (ψ̄iγ5ψ)

2 and a mixed term, which is not present in the original
action (but is considered in the chiral GN model which is invariant under UA(Nf )). For the
GN model, only an invariance is obtained when β = nπ2 , n ∈ Z. For even n the invariance
is trivial, while for odd n one obtains the discrete subgroup

ψ → inγ5ψ, ψ̄ → ψinγ5. (B.5)

When combined with the vector transformation (B.2), this is written in the typical form
in the literature

Z(2) : ψ → γ5ψ, ψ̄ → −ψ̄γ5. (B.6)

Thus, the full symmetry group of the GN model is given by UV (Nf ) ×Z2.

b.2 fermions in 2 + 1 dimensions

The content of this section is mostly taken from Appendix A of Ref. [2]. In this section,
we elaborate on the symmetries of free fermions in 2 + 1 dimensions that are chosen as 4-
component spinors in the reducible representation (A.22) of the Dirac algebra. This choice
of Gamma matrices allows to define axial symmetries involving operators similar to the
chirality operator in 3 + 1 dimensions, which would not be possible using the irreducible
representation. Apart from this, 4-component spinors in two spatial dimensions dimensions
are chosen for applications where spontaneous internal symmetry breaking occurs, see, e.g.,
Refs. [259, 261, 268, 270, 274, 385]. First, we discuss symmetries of the free fermion action
(B.1) in 2 + 1 dimensions for Nf = 1 species of fermions without any additional degree of
freedom.

b.2.1 Chiral symmetry

The free fermion action in 2 + 1 Euclidean spacetime dimensions is invariant under the
chiral symmetry group U(2), in addition to the invariance under Poincaré transformations
that is a priori present. This chiral symmetry group has 4 generators given by 1, γ4, γ5, γ45
(see Eqs. (A.23) and (A.24) for the definition of the additional matrices that are no represen-
tation of the Dirac algebra). Thereby, one distinguishes between the vector transformations

U1(1) : ψ → eiα1ψ, ψ̄ → ψ̄e−iα1; (B.7)
Uγ45(1) : ψ → eiβγ45ψ, ψ̄ → ψ̄e−iβγ45 (B.8)

with real parameters α,β and the axial transformations

Uγ4(1) : ψ → eiζγ4ψ, ψ̄ → ψ̄eiζγ4 ; (B.9)
Uγ5(1) : ψ → eiιγ5ψ, ψ̄ → ψ̄eiιγ5 (B.10)
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with real parameters ζ, ι. The whole chiral symmetry group of one fermion species without
an isospin degree of freedom is

Uγ(2) : ψ → Uψ (B.11)

where U is a matrix element of the group U(2).

b.2.2 Generalization to Nf fermion species

In order to adequately perform a large-Nf limit, we typically study Nf fermion species, i.e.,
ψ implicitly represents

(
ψ1, . . . ,ψNf

)
where ψi each is a 4-component spinors for d = 2.

Thus, each of the above chiral transformations is combined with rotation within the internal
space of fermion species generated by Nf ×Nf generalized Gell-Mann matrices T a with
a = 1, . . . ,N2

f − 1 and the Nf ×Nf identity matrix TN
2
f = 1. As above, we define the chiral

transformations as

U1(Nf ) : ψ → eiαa1Ta
ψ, ψ̄ → ψ̄e−iαa1Ta ; (B.12)

Uγ45(Nf ) : ψ → eiβaγ45Ta
ψ, ψ̄ → ψ̄e−iβaγ45Ta ; (B.13)

Uγ4(Nf ) : ψ → eiζaγ4Ta
ψ, ψ̄ → ψ̄eiζaγ4Ta ; (B.14)

Uγ5(Nf ) : ψ → eiιaγ5Ta
ψ, ψ̄ → ψ̄eiιaγ5Ta ; (B.15)

with real parameters αa,βa, ζa, ιa. The chiral symmetry group of Nf fermion species with-
out considering isospin is then

Uγ(2Nf ) : ψ → Uψ (B.16)

where U is a matrix element of the group U(2Nf ).

b.2.3 Isospin symmetry

In Chapter 5, we also introduce an isospin degree of freedom allowing to additionally classify
the fermion fields with isospin quantum numbers I = ±1/2. This additional degrees of
freedom allows for the definition of isospin rotations of the group UI(2), which is composed
of U(1) axial transformation generated by the identity in isospin space and the vector
transformation

SUτ⃗ (2) : ψ → eiχ⃗τ⃗ψ, ψ̄ → ψ̄e−iχ⃗τ⃗ . (B.17)

Combined with the chiral symmetry group Uγ(2) (B.11) a single fermion species is
invariant under the full symmetry group

U(4) ∼= Uγ(2) × UI(2). (B.18)

Thus, for Nf fermion species, the full symmetry group is

U(4Nf ) ∼= Uγ(2Nf ) × UI(2) (B.19)

under which the free fermion action (B.1) is invariant for d = 2 spatial dimensions.
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b.2.4 Subgroups

However, when one adds interaction terms to the action, these terms possibly break the
invariance under the full symmetry group. To avoid this, it is necessary to introduce a Fierz-
complete set of four-fermion interaction channels with identical coupling constants. Then,
each of the respective interaction terms is either invariant under Eq. (B.19) or transformed
into another interaction term that is also present. This is, e.g., the case when using C⃗ = C⃗s
(5.2), C⃗ = C⃗v (5.4) or C⃗ = C⃗c (5.3) in the action (5.1) and λj = λS , ∀j.

However, sometimes it is necessary for phenomenological purposes to break the chiral
symmetry group. For example, in QCD the axial UA(1) symmetry is broken by a quantum
anomaly, which is typically modelled by hand in the Lagrangian of NJL-type models. In
the following we provide a list of the relevant symmetry transformations as a reference for
Table 5.3 and Table 5.4. Choosing a set of interaction channels such that one of the axial
transformations (B.14) or (B.15) is broken (as in the second row of Table 5.3), the full
symmetry group is reduced to a combined isospin and chiral rotation

SUA,γ4(2N) : ψ → eiζ⃗′aτ⃗γ4Ta
ψ, ψ̄ → ψ̄eiζ⃗′aτ⃗γ4Ta ; (B.20)

SUA,γ5(2N) : ψ → eiι⃗′aτ⃗γ5Ta
ψ, ψ̄ → ψ̄eiι⃗′aτ⃗γ5Ta (B.21)

where ζ⃗ ′a, ι⃗′a are real-valued, three-component isovectors and a = 1, . . . ,N2
f . Typically,

the isovector symmetry (B.17) remains intact. Some choices of interaction channels, e.g.,
in the GN model, break the continuous axial symmetries to discrete subgroups (see Ap-
pendix B.1.2 for a discussion of the mechanism)

Zγ4(2) : ψ → γ4ψ, ψ̄ → −ψ̄γ4; (B.22)
Zγ5(2) : ψ → γ5ψ, ψ̄ → −ψ̄γ5. (B.23)

Either of Eq. (B.22) or Eq. (B.23) can be reproduced by a combination of Eq. (B.8) and
the other of the two discrete symmetries. In the three last models in Table 5.4, a remnant
of the isospin symmetry (B.17) is present, namely

Uτ3(1) : ψ → eiχτ3ψ, ψ̄ → ψ̄e−iχτ3 (B.24)

where τ3 is the third Pauli matrix and χ is a real parameter.

b.2.5 Discrete symmetries

Apart of continuous elements of the Euclidean Poincaré group, there always exist discrete
ones that can be combined with the continuous elements to form improper Lorentz trans-
formations. On the level of spinor transformations, one can typically apply the parity
transformation P , time reversal T and charge conjugation C. In the reducible 4 × 4 rep-
resentation, the definition of this discrete operations comes with an ambiguity due to the
enlarged symmetry group, see Ref. [274] for further details.

In this thesis, we particularly need to define the parity transformation for the classifi-
cations of quantum numbers of fermionic bilinears in Chapter 5. For an odd number of
spacetime dimensions, parity must be defined as the inversion of an odd number of axes
(otherwise it is an element of the continuous Poincaré group). Our convention is to flip all
axis x → −x. Then, two Parity transformations can be defined

P4 : ψ(x) → γ4ψ(−x), ψ̄(x) → ψ̄(−x)γ4; (B.25)
P5 : ψ(x) → γ5ψ(−x), ψ̄(x) → ψ̄(−x)γ5. (B.26)



C
E F F E C T I V E P O T E N T I A L , G A P E Q U AT I O N S A N D
R E N O R M A L I Z AT I O N O F T H E ( 2 + 1 ) - D I M E N S I O N A L
G RO S S - N E V E U M O D E L

In Chapters 4 and 5, variants of fermionic theories with four-fermion self-interaction are
studied in 2+ 1 spacetime dimensions. These theories are renormalizable in a 1/Nf expan-
sion [243, 244] that incorporates non-perturbative effects. In this section, the renormaliza-
tion of these theories in the large-Nf limit (or, equivalently, in the mean-field approxima-
tion) is presented at the example of the 2 + 1-dimensional GN model. Thereby, we also
touch the computation of the homogeneous, effective potential of the theory as well as
the gap equations. Various limits of relevant integrals within the computations are derived.
Many of the below computations can be found in Refs. [2, 241, 249].

The effective action of this model is

Seff
Nf

=
∫

d3x
σ2

2λ − ln Det (βQ) , Q[σ] = /∂ + γ3µ+ σ, (C.1)

where σ is the auxiliary field introduced to get rid of the (ψ̄ψ)
2 self-interaction term

and λ is the respective coupling constant with dimension of a length. The GN model is
chosen on purpose, as it contains the relevant four-fermion coupling, which is subject of
the renormalization procedure, and the effective action is of the form of Eq. (2.39) that is
common to all four-fermion models studied in Chapters 4 and 5.

As described in Section 2.4, the quantum effective action is given by the minimum of
Seff with respect to σ, which is also easy to determine in the vacuum T = µ = 0 where
the assumption of σ = hom σ = const. for the ground state is fulfilled. The more practi-
cal object to study is, however, the homogeneous, effective potential Ū defined according
to Eq. (2.53). The essential object, that is left to determine, is the fermion determinant
DetQ. However, with the assumption of homogeneous σ̄ the evaluation is similar to the
computation of the fermion determinant of free fermions with mass m = σ̄.

c.1 fermion determinant

We briefly recapitulate the evaluation of the expression ln DetQ in Eq. (C.1). This is a
textbook computation relevant for the pressure of the free-fermi gas and can be found
in, e.g., Section 2.5 in Ref. [64] or Section 3.7 in Ref. [285] for the case of three spatial
dimensions. As a first step, we perform a Fourier-expansion of the fermionic fields before
integrating them out to obtain the Fourier representation of the Dirac operator Q̄ = Q[σ̄],
given by

˜̄Q = iγν (pν − iµδν,d+1) + σ̄. (C.2)
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After using the identity ln Det ˜̄Q = Tr ln ˜̄Q, one inserts the functional trace (4.16) to obtain

1
βV Nf

Tr ln β ˜̄Q = T
∑
n

∫ d2p

(2π)2¸tr ln β [iγν (pν − iµδν,d+1) + σ̄] (C.3)

= T
∑
n

∫ d2p

(2π)2 ln detβ [iγν (pν − iµδν,d+1) + σ̄]

= T
∑
n

∫ d2p

(2π)2 2 ln β2
[
E2

p + (iνn − µ)2
]2

= T
∑
n

∫ d2p

(2π)2

{
ln β2

[
iν2
n + (Ep − µ)2

]
+ ln β2

[
iν2
n + (Ep + µ)2

]}

with the energies Ep =
√

p2 + σ̄2. From the first to the second line, we reuse the identity
ln detM = tr lnM for the discrete operations on the level of spinor indices. In the third line,
we insert the Gamma matrices in the representation (A.22) and compute the respective
determinant in Dirac space for fixed p and νn. Then, we use a mathematical trick by
restricting the integration and summation just to positive νn and p and grouping together
terms with opposite signs in p together. After a few, arithmetic manipulations one obtains
back the original integration domain, since the resulting integrand in the fourth line only
depends on p2 and ν2

n.
The respective integrand can be rewritten in another integral expression,

ln β2
(
iν2
n + (Ep ± µ)2

)
= 2

∫ β(Ep±µ)

1
dx x

x2 + β2ν2
n

+C (C.4)

with an irrelevant integration constant. This expression combined with the Matsubara sum
can be evaluated using the identity

∞∑
n=−∞

f(k0 = iνn) =
1

2πi

∮
C

dk0f(k0)
1

2T tanh k0
2T (C.5)

with a contour C that consists of an infinite number of small circles around iνn = i(2n+

1)πT for n ∈ Z. Equation (C.5) holds for functions f(k0) that are analytic on the imaginary
k0 axis, such that the residue theorem can be applied for the poles x = (2n + 1)πi of
tanh x = (ex − 1)/(ex + 1). For f(k0) = T/(T 2x2 − k2

0), one finds

T
∞∑

n=−∞
f(k0 = iνn) = (C.6)

=
1

2πi

∫ +i∞+δ

−i∞+δ
dk0 f(k0)

(1
2 − 1

1 + eβk0

)
+

1
2πi

∫ +i∞+δ

−i∞+δ
dk0f(k0)

(
−1

2 +
1

1 + e−βk0

)
where we deformed the original integration contour. One of the contours is shifted away
from the imaginary axis with a small positive real part, while the other is shifted in the
opposite direction, leading to different expressions for tanh k0/2T . This deformation is legit
because enlarging the circles until they merge is allowed according to the residue theorem,
as they still enclose the poles. Then, parts of the contour are crossing the imaginary axis
in opposite directions such that they cancel each other. We refer to Section 3 of Ref. [285]
for a nice visualization of the contour deformations described in this section.

These integration contours can respectively be closed in a half-circle “at infinity” con-
necting +i∞ ± δ and −i∞ ± δ since f(k0) ∼ k−2

0 is suppressed there. Then, however, this
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contour only encloses the poles at k0 = ±x. Before doing so, however, we merge both
expressions by substituting k0 → −k0 in the second term such that we obtain

T
∞∑

n=−∞
f(k0 = iνn) = (C.7)

=
1

2πi

∫ +i∞

−i∞
dk0

1
2 (f(k0 + f(−k0))) +

1
2πi

∫ +i∞+δ

−i∞+δ
dk0

1
2 (f(k0 + f(−k0)))

1
eβk0 + 1.

In the first integral we are allowed to set δ = 0 since the poles are contained in the second
term. Reinserting this into Eq. (C.4), one observes that, depending on the values of E and
µ, either k0 = +x or k0 = −x is within the integration contour. However, we can treat
both cases simultaneously with the residue theorem resulting in

T
∑
n

f(k0 = iνn) =
1

|x|

(1
2 − 1

e|x| + 1

)
=

1
2|x|

tanh |x|
2 (C.8)

and, overall,

1
βV Nf

Tr ln β ˜̄Q = T
∑
n

∫ d2p

(2π)2

{
ln β2

[
iν2
n + (Ep − µ)2

]
+ ln β2

[
iν2
n + (Ep + µ)2

]}
(C.9)

= 2T
∫ d2p

(2π)2

∑
n

∫ d2p

(2π)2

{∫ β(Ep−µ)

1
dx x

x2 + ν2
n

+
∫ β(Ep+µ)

1
dx x

x2 + ν2
n

}

= 2T
∫ d2p

(2π)2

{∫ β(Ep−µ)

1
dx
(

1 − 2
ex + 1

)
+
∫ β2(Ep+µ)

1
dx
(

1 − 2
ex + 1

)}
.

This last expression can be integrated to obtain

1
βV Nf

Tr ln β ˜̄Q = 2
∫ d2p

(2π)2

[
Ep + T ln

(
1 + e−β(Ep−µ)

)
+ T ln

(
1 + e−β(Ep+µ)

)]
(C.10)

which is the well-known expression for the pressure of the free fermi gas in the vacuum [64].
This last expression contains a cubical UV divergence from the vacuum energy.

Reinserting this result into the homogeneous potential per fermion flavor, one obtains

Ū(σ̄,µ,T ) = 1
βV Nf

Seff[σ̄] = (C.11)

=
σ̄

2λ − 2
∫ d2p

(2π)2

[
Ep + T ln

(
1 + e−β(Ep−µ)

)
+ T ln

(
1 + e−β(Ep+µ)

)]
which still contains the divergence. Dealing with the divergence by imposing a proper
renormalization condition is subject of the following section.

c.2 renormalization

In order to renormalize the effective potential (C.11), we choose a fixed value Σ̄0 for the
vacuum expectation value of σ, i.e.,

Σ̄(µ = 0,T = 0) = Σ̄0 (C.12)

where Σ̄(µ,T ) is the minimum of the homogeneous potential for fixed values of µ and T .
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c.2.1 Gap equation and definition of Fermi-Dirac distribution functions

To determine Σ̄, the gap equation of the GN model

∂

∂σ̄
Ū(σ̄,µ,T ) = 0 (C.13)

is used, i.e., the extrema of the effective potential with respect to σ̄ are determined. This
evaluates to

σ̄

( 1
2λ − ℓ1(σ̄,µ,T )

)
= 0 (C.14)

with the integral expression

ℓ1(σ̄,µ,T ) = 1
βV

Tr
(
Q̄−1

)
= dγ

∫ d2p

(2π)2T
∞∑

n=−∞

1
(νn − iµ)2 +E2

p
(C.15)

and the dimensionality of the Gamma matrices dγ = 4.1 This expression can directly
be obtained from the derivative of the effective potential using representation (C.3) for
the ln Det ˜̄Q expression. Equation (C.14) always allows for the solution σ̄ = 0 and, for a
non-trivial solution, one has to find the solution of

1
2λ = ℓ1(σ̄,µ,T ). (C.16)

It is practical to perform the summation over n using the Residue theorem, as discussed
at the end of this section, such that

ℓ1(σ̄(µ,T ),µ,T ) = dγ

∫ d2p

(2π)2
1

2E [1 − nF (E) − nF̄ (E)] (C.17)

where we defined E ≡ Ep as well as the Fermi-Dirac distribution functions

nF (E) =
1

eβ(E−µ) + 1
, nF (E) =

1
eβ(E+µ) + 1

. (C.18)

regularization However, Eq. (C.17) contains a linear UV divergence, that we prop-
erly regularize with a Pauli-Villars regularization∫ d2p

(2π)2 f(σ̄) →
∫ d2p

(2π)2

(
f(σ̄) − f(

√
σ̄2 + Λ2)

)
, (C.19)

i.e., we substract a term with an artificially introduced “Pauli-Villars mass” σ̄2 + Λ2.2
This prescription, albeit it might seem arbitrary, is applied only to the vacuum parts of

1 A brief comment on the introduction of dγ at this point: In principle, one can evaluate the whole effective
potential also for irreducible representations with dγ = 2, as, e.g., given in Eq. (A.19) for Minkowski
spacetime. However, then the evaluation of the discrete determinant in Dirac space in Eq. (C.3) differs
slightly to the one discussed, albeit the result deviates from Eq. (C.3) by a factor of 1/2. This is proven
in Section 2 of Ref. [241]. Since ℓ1 can in principle directly be obtained from deriving the effective action
(C.1) with respect to σ̄, ℓ1 can be calculated without an explicit representation of Gamma matrices until
the trace over Q̄−1 needs to be evaluated. Thus, we define dγ to indicate that the final result only differs
by a global factor depending on whether the 4 × 4 or 2 × 2 representations are used.

2 The term “Pauli-Villars mass” stems from the fact that σ̄ acts as a dynamically generated mass term for the
fermions, such that the Pauli-Villars regularization introduces fermionic terms with a heavy mass

√
σ2 + Λ2

artificially.
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the integrals – the parts where neither µ nor T appear – allowing to perform some of the
medium integrals analytically. For example, in this prescription

ℓ1(σ̄(µ,T ),µ,T ) → dγ

∫ d2p

(2π)2

[ 1
2E (1 − nF (E) − nF̄ (E)) − 1

2
√
E2 + Λ2

]
(C.20)

=
dγ
4π
[√

σ̄2 + Λ2 − |σ̄| − T ln
(
1 + e−β(|σ̄|−µ)

)
− T ln

(
1 + e−β(|σ̄|−µ)

)]
.

(C.21)

c.2.2 Gap equation in the vacuum

Inserting this result into the gap equation (C.14) for µ = T = 0 and imposing the renor-
malization condition (C.12), one finds

λ =
4π

dγ

(√
Σ̄2

0 + Λ2 − |Σ̄0|
) (C.22)

as the scaling of the coupling constant with the regularization parameter to ensure that
Σ̄(µ = 0,T = 0) = Σ̄0. The gap equation (C.14) at non-vanishing µ and T amounts to

L1(σ̄,µ,T ) ≡ 1
λ

− ℓ1 =
dγ
4π
[
|σ̄| − |Σ̄0| + T ln

(
1 + e−β(|σ̄|−µ)

)
+ T ln

(
1 + e−β(|σ̄|−µ)

)]
= 0

(C.23)
from which the extrema of Ū(Σ̄,µ,T ) can be determined for all µ and T . The extremum
Σ̄ = 0 follows directly from the factorization of Eq. (C.14) and is not necessarily a solution
of Eq. (C.23). The non-trivial part of the gap equation (C.23) is, thus, finite. The above
prescription is suitable to remove divergences of all other observables studied in this work.

For T = 0, one can simplify L1 to

L1(σ̄,µ,T = 0) = dγ
4π
[
|Σ̄| − |Σ̄0| + Θ(µ2 − σ̄2) (|µ| − |Σ̄|)

]
, (C.24)

from which the other limits µ → 0 and / or σ̄ → 0 follow trivially.

c.2.3 Renormalization of the effective potential

Inserting Eq. (C.22) for λ is not sufficient to render the cubic UV divergence of the effec-
tive potential finite. However, the physically relevant object is the difference ∆U(σ̄,µ,T ) =
U(σ̄,µ,T ) − U(0,µ,T ) which is finite. This differences is used to determine the homoge-
neous ground state Σ̄, by inserting the solutions of Eq. (C.14) into ∆U and determining
the global minimum. Inserting Eq. (C.22) with dγ = 4,̧ one finds for the effective potential

U(σ̄,µ,T ) =σ2

2π

(√
Σ̄2

0 + Λ2 − |Σ̄0|
)
+ (C.25)

− 1
π

∫ ∞

0
dp
[
E + T ln

(
1 + e−β(Ep−µ)

)
+ T ln

(
1 + e−β(Ep+µ)

)]
.

In the vacuum, one obtains after some calculation3

∆U(σ̄,µ = 0,T = 0) = σ2

6π (2σ− 3|Σ̄0|) . (C.26)

3 This result can only be obtained if one, in addition to the Pauli-Villars regulator, introduces a further
artifical UV cutoff in the vacuum integrals of U(σ̄, 0, 0) and U(0, 0, 0). After integration, one has to carefully
cancel the cubically diverging terms, expressed as functions of the UV cutoff, and, subsequently, remove
the Pauli-Villars regulator.
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This is consistent with the vacuum renormalization condition (C.12), since ∆U(0, 0, 0) = 0
and ∆U(Σ̄0, 0, 0) = −Σ̄3

0/6π, i.e., Σ̄0 is the minimum of the renormalized, effective poten-
tial. In practical computations in the medium, one has to add the medium integrals from
the second row of Eq. (C.25) to Eq. (C.26). The medium contributions can be evaluated
numerically, which can be simplified by expressing them in terms of Polylogarithms [348],
as done in Ref. [241].

c.3 homogeneous phase diagram of the gn model

In Sections 5.2 and 6.2, the homogeneous phase diagram of the 2+ 1-dimensional GN model
is discussed multiple times, as a limit emerging from the model with vector interactions
(6.1) or as the solution for the homogeneous ground states of the four-fermion models (5.1)
with scalar interactions (5.2).

The chiral condensate Σ̄(µ,T ) as a function of µ and T can be obtained by finding the so-
lutions of the gap equation (C.14) and inserting them into ∆U (Σ̄,µ,T ), see Appendix C.2.3,
to find the global minimum of ∆U with respect to Σ̄ for fixed µ and T . This can be done
numerically using Python3 [19] , similar to the procedure discussed in Section 6.2.

We briefly want to discuss how the second-order phase boundary line (6.17) can be
obtained analytically. One performs a stability analysis, as outlined in Section 4.1.2, but
only for homogeneous fluctuations. This corresponds to studying the bosonic two-point
vertex function of the GN model Γ(2)

σ for vanishing spatial momenta. Thereby, Γ(2)
σ is given

by Eq. (5.10) with L2,ϕj
= L2,+ (5.11). For the homogeneous phase transition between SP

and HBP, it is sensible to consider the stability of Σ̄ = 0 (M2 = 0 in Eq. (5.10)) around
homogeneous fluctuations, i.e., q2 = 0. One obtains the condition

Γ(2)
σ (σ̄2 = 0,µ,T , q2 = 0) = 1

λ
− ℓ1(Σ̄ = 0,µ,T ) = 0 (C.27)

for the phase boundary, which corresponds to setting the curvature of the quantum effective
action (that corresponds to the effective action in the mean-field approximation) to zero.
This expression is, of course, only valid when there is no first-order phase transition which
one does only know from the numerical analysis described above or from the findings in
Ref. [249].

Inserting Eq. (C.22) into Eq. (C.27) for σ̄ = 0, one finds

T ln
(
1 + eβµ

)
+ T ln(1 + e−βµ) = Σ̄0. (C.28)

This can be solved for the chemical potential to obtain the phase transition line, one finds

µc(T ) = Tarcosh
(1

2eβΣ̄0 − 1
)

, (C.29)

which is the expression given for the phase boundary in Eq. (6.17).

c.4 evaluation of the matsubara sum in the gap equation

In Appendix C.2.1, the solution (C.17) of the Matsubara sum appearing in the expression
for ℓ1(Σ̄,µ,T ) (C.15) is given without derivation. This derivation is outlined within this
chapter. Thereby, the strategy of computation is taken from the lecture notes [285] and
from Ref. [57], which provided an helpful, compact overview when the author first faced
different types of Matsubara sums.
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Equation (C.15) contains the sum

T
∞∑

n=−∞

1
(νn − iµ)2 +E2

≡ 1
T

∞∑
n=−∞

f(zn) (C.30)

with the complex function f(z) = 1/((βE)2 − z2) and zn = i2π(n+ 1/2) − βµ. Thereby,
the Matsubara frequencies νn = 2π(n+ 1/2)T are obtained from the anti-periodic bound-
ary conditions (2.12) for the fermionic fields, see Eq. (2.13) and Eq. (2.15). Note that we
focus on the fermionic Matsubara sum exclusively in this section, although a formula with
the replacement νn → ωn (2.14) can be solved with a similar strategy.

The following strategy is followed: One expresses the sum as a contour integral over an
integrand containing f(z) multiplied with a function that has poles in the complex plane
at z = zn. Then, the contour integral in the complex plane can be deformed and closed
such that the residue theorem can be applied over the poles of f(z), while the poles of the
multiplying function are avoided.

First, we prove that the searched function for the residue theorem is

g(z) =
1
2 − 1

ez+βµ + 1 (C.31)

where the second term reminds of the Fermi-Dirac distribution defined in Eq. (C.18). One
can directly see from Eq. (C.18) that g(z) has its poles at zn, just by inserting zn into the
expression and using the Euler identity exp(i2π(n+ 1/2)) = −1. Thus, we obtain∑

n

f(zn) =
1

2πi

∮
C

dzf(z)g(z) (C.32)

where the contour C consists of multiple, positively oriented4 circles around the zn, see
Section 3 of [285] for a nice visualization. Then, the residue theorem

1
2πi

∮
C

dz h(z) =
m∑
n=1

Res (h, zn)χ(C; zn) (C.33)

with simple poles and a contour C with winding numbers

χ(C; zn) =
1

2πi

∮
C

dz 1
z − zn

(C.34)

around these poles ensures that Eq. (C.32) holds. Thereby, n labels the number of poles
enclosed by the contour C and the residue for the simple pole is

Res(h, zn) = lim
z→zn

h(z)(z − zn). (C.35)

The integration contour C is now deformed into two contours (again, we refer to Ref. [285]
for the visualization) into two paths

C1 : z(t) = −βµ+ ϵ+ it, t ∈ (−∞,+∞) , ϵ ∈ R, ϵ ≪ 1, (C.36)
C2 : z(t) = −βµ− ϵ+ it, t ∈ (∞, −∞) , ϵ ∈ R, ϵ ≪ 1. (C.37)

Thus, C1 goes along the imaginary axis with a small, positive shift away from the real part
of the poles Re zn = −βµ, while C2 goes along the imaginary axis in the opposite direction

4 In mathematics, positively oriented means that the integration path winds around the pole in counter-
clockwise direction.
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with a small, negative shift. These contours can be closed at infinity without additional
contribution, since f(z) ∼ z−2 for large |z|. Now, the residue theorem (C.33) can again be
applied, but now for the poles of f(z) = ±βE taking into account the negative winding
numbers. One finds

∞∑
n=−∞

f(zn) =
1

2πi

∮
C

dzf(z)g(z) = (C.38)

= −Res [f(z)g(z), z = βE] − Res [f(z)g(z), z = −βE]

= − lim
z→βE

(z − βE)

(βE − z)(βE + z)

(1
2 − 1

ez+βµ + 1

)
+

− lim
z→−βE

(z + βE)

(βE − z)(βE + z)

(1
2 − 1

ez+βµ + 1

)
=

1
2βE

(1
2 − nF̄ (E)

)
− 1

2βE

(1
2 − nF̄ (−E)

)
=

1
2βE (1 − nF (E) − nF̄ (E))

where we identified the Fermi-Dirac distribution functions (C.18) and used that

−
(1

2 − nF̄ (−E)
)
=

1
2 − nF (E). (C.39)

This is the expression used in Eq. (C.17) taking into account that the factor of 1/β is
canceled by the prefactor in Eq. (C.30).

Summarizing, one finds

T
∞∑

n=−∞

1
(νn − iµ)2 +E2 =

1
2E (1 − nF (E) − nF̄ (E)) (C.40)

which is used in Eq. (C.15) to obtain Eq. (C.17). Formulae for expressions of the form

T
∞∑

n=−∞

1
[(νn − iµ)2 +E2]n

(C.41)

can be obtained by iteratively applying 1
E

∂
∂E to both sides of Eq. (C.40). Formulae with

differing energies of the form

T
∞∑

n=−∞

1
(νn − iµ)2 +E2

1

1
(νn − iµ)2 +E2

2
(C.42)

requires a computation that works analogous as for Eq. (C.40) but one has to take care of
four different poles stemming from the energies E1 ̸= E2. The strategy is, however, similar
and we refrain from performing it explicitly.



D
S TA B I L I T Y A N A LY S I S I N 2 + 1 D I M E N S I O N S : D E R I VAT I O N S
A N D I M P O RTA N T FO R M U L A E

This appendix consists of supplementary material for Chapters 5 and 6 regarding the
stability analysis. The basic derivation for this analysis, that is based on the bosonic two-
point vertex functions of auxiliary field in four-fermion models, can be found in Section 4.1.2.
The following section provides model specific details of the computation of the bosonic
two-point vertex functions in the above mentioned chapters and appearing formulae in
the analysis. Also, selected limits for arguments of bosonic two-point vertex functions are
performed and resulting formulae are given.

d.1 general four-fermion model with lorentzscalar interactions

In this section, the computation of the bosonic two-point vertex functions for the general,
2 + 1-dimensional four-fermion theory (5.1) from Chapter 5 with C⃗ = C⃗s (5.2) subjected
to a baryon chemical potential is performed in more depth. The basic principles of the
expansion are presented in Section 4.1.2. Here, only specific aspects of the computation
for Section 5.2 and Section 5.2.3 are discussed. Thus, this calculation can be understood
as the logical bridge between the generic expression (4.23) and the formulae in Eq. (5.8)
and Eq. (5.10) for C⃗ = C⃗s, λj = λ and d = 2. Further, we provide formulae for the
integral expressions L2,± appearing in Eq. (5.10), including the integral ℓ2. Computations
and formulae are originally derived in Ref. [2].

Following the expansion of fields ϕ⃗ around a homogeneous expansion point ⃗̄ϕ with in-
homogeneous perturbations δϕ⃗ according to Eq. (4.7) and, subsequently, expanding the
effective action in orders of δϕ⃗, see Eq. (4.8), one obtains the second order correction (4.15)
involving the bosonic two-point vertex functions (4.24) for d = 2 spatial dimensions. In
order to evaluate the traces over spinor indices appearing in Eq. (4.24), it is instructive to
consider the Fourier representation of the homogeneous propagator

Q̄−1(x, y) = 1
β

∞∑
n=∞

∫
d2p
(2π)2 ei[νn(τx−τy)+p(x−y)] ˜̄Q−1(p), (D.1)

which can be obtained by Fourier-transformation of the fermion fields the bilinear ψ̄Q̄ψ
and inverting the obtained expression for ˜̄Q. One obtains

˜̄Q−1(p, νn)¸ =
−iγip̃i +

∑
k c

⋆
kϕ̄k

ν̃2
n + p2 +M2 (D.2)

where ν̃n = (νn − iµ), νn = 2π(n− 1
2 )/β are the fermionic Matsubara frequencies. The

quantities M and c⋆ are given in Eq. (5.9).

184
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As outlined in Section 4.1.2, the second order term is the first non-zero correction when
using expansion points ⃗̄ϕ that are solutions of the gap equation. This is the case for ho-
mogeneous, global minimum ⃗̄Φ, which is the appropriate expansion points for searching
instabilities towards an IP. We evaluate the trace in Eq. (4.23) to

1
β

∑
n

∫
d2p
(2π)2 tr

(
cj ˜̄Q−1(p + q, νn) ck ˜̄Q−1(p), νn

)
= (D.3)

= − 1
β

∑
n

∫
d2p
(2π)2

Acjck

[ν̃2
n + p2 +M2][ν̃2

n + (p + q)2 +M2]

with

Acjck
= (ν̃2

n + p2 + p · q)tr [cjγickγj ] −
∑
l,m∈C⃗

ϕ̄lϕ̄mtr
[
cjc

⋆
l ckc

⋆
m

]
= (D.4)

= δj,k8(ν̃2
n + p2 + p · q) −

∑
l,m∈C⃗

ϕ̄lϕ̄mtr
[
cjc

⋆
l ckc

⋆
m

]
,

where we used that tr(γicjckcl) = 0, c2
j = ±1 and that the anti-commutator {γi, ck}

evaluates to 0 or 2ckγi for all considered cj . In order to make statements about the stability
of a homogeneous field configuration one has to determine a basis φj(ϕ⃗) for which Γ(2)

ϕj ,ϕk
,

containing the above trace, cf. (4.24), is diagonalized. This is not possible in general and
depends on the present chemical potentials and the interactions of the model. In the present
case, i.e., model (5.1) for C⃗ = C⃗s, λj = λ and d = 2 at finite baryon chemical potential,
one computes (D.4) and obtains for Eq. (4.23)

S(2)
eff
Nf

=
β

2

∫ d2q

(2π)2

∑
j∈C⃗s

|δφ̃j(q)|2 Γ(2)
φj

(
M2,µ,T , q

) (D.5)

with

Γ(2)
φj

(
M2,µ,T , q

)
=

1
λ

− 8
β

∑
n

∫ d2q

(2π)2

(
p̃2 + p · q + a′

φj
M2

[ν̃2
n + p2 +M2][ν̃2

n + (p + q)2 +M2]

)
, (D.6)

where a′
φj

is a coefficient that is determined by the considered field φj . In this diagonalized
form, we identify Γ(2)

φj (q
2) as the curvature of the effective action for an inhomogeneous

perturbation in field direction φj with momentum q. By writing the denominator of the
integrand in Eq. (D.6) in a partial fraction, we can split the integral and obtain the final
form of the bosonic two-point function as given in Eq. (5.10), where aφj = 2(a′

φj
− 1).

d.1.1 The momentum dependent part L2,±

In order to calculate the momentum dependent part of the two-point function (5.10), we
start by carrying out the Matsubara summation in ℓ2, see Eq. (5.10) for its definition.1

1 This Matsubara sum can be performed in a similar fashion as the integral for ℓ1 performed in Appendix C.4.
The only difference in the computation is that one has to consider four different poles (two of the poles can
be assigned to the energy Eq while the other two stem from E, respectively) instead of two. Besides this,
the procedure is completely analogue and is, thus not repeated here.
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The summation of such expressions is standard in textbooks on thermal QFT, see, e.g.,
Ref. [64] or Appendix C.4 for examples. One obtains

ℓ2(M
2,µ,T , q) = dγ

∫
d2p
(2π)2

1
2p · q + q2

[
1 − nF (E) − nF̄ (E)

2E −
1 − nF (Eq) − nF̄ (Eq)

2Eq

]
,

(D.7)

where Eq =
√
M2 + (p + q)2 and dγ = 8 is the dimension of the spinor index due to

the reducible, 4 × 4 Gamma matrices used and the additional isospin degree of freedom,
cf. Eq. (5.2). This integral is UV-finite and, thus, we do not have to apply a regularization
scheme. However, the integrand has a divergence at 2p · q = −q2, which has to be treated
with a Cauchy principal value prescription. The vacuum contribution can be calculated
analytically and we obtain

ℓ2(M
2,µ,T , q) = 8

4πq

 arctan
(

q

2|M |

)
−
∫ q/2

0
dp p

E

nF (E) + nF̄ (E)√
q2/4 − p2

. (D.8)

At any non-vanishing T , the medium contribution needs to be calculated numerically. How-
ever, taking the zero temperature limit enables us to also calculate the medium contribution
analytically and we find Eq. (5.13). From this expression, we can take either the limit q → 0
to obtain

ℓ2(M
2,µ,T = 0, q = 0) = 1

π


0 , µ2 > M2

1
|M | , µ2 < M2

(D.9)

or the limit |M | → 0 to obtain

ℓ2(M
2 = 0,µ,T = 0, q) = 2

πq


0 , µ2 > q2/4

arctan
(√

q2−4µ2)
2µ

)
, 0 < µ2 ≤ q2/4

π
2 , µ2 = 0

. (D.10)

While ℓ2 is not defined for M = q = T = 0 for some values of µ, the whole momentum-
dependent contribution to the two-point functions L2,± (5.11) yields

L2,±(M
2 = 0,µ,T = 0, q = 0) = 0. (D.11)

d.2 stability analysis for yukawa model with multiple chemical
potentials

In this section, we demonstrate an example that consists of off-diagonal contributions
from the Yukawa self-interactions (compare the third line of Eq. (5.14)). This makes the
diagonalization of S(2)

Y harder to perform analytically. However, we will also demonstrate
that this q-independent contribution does not alter the predictions coming out of the
analysis. This section is mostly taken from the appendix in the original publication [2].

The model that we will study is defined as the Yukawa model extension according to
Eq. (2.48) of the four-fermion model in the first row of Table 5.4. Thus, the four-fermion
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model contains the σ and η45 fields as well as a baryon chemical potential µ and a chiral
chemical potential µ45. As documented in Table 5.4 and Ref. [5], the four-fermion part of
the model is diagonalized by

(σ± η45) . (D.12)

In analogy to the four-fermion model, we study the effective action

Seff[χL,χR]
N

= − Tr ln [/∂+ γ3 (PLµL + PRµR) + hPLχL + hPRχR] + (D.13)

+
∫

d3xh2
[
χ2

L+χ2
R

2λ + 1
2 (∂χL)

2 + 1
2 (∂χR)

2 +

+
∑
n>1

κnh
2(n−1)

(
χ2
L + χ2

R

)n ]

of a Yukawa theory, i.e., χL/R are fields of canonical dimension and proportional to the
dynamical scalar fields χσ and χη45 according to

χL = 1√
2 (χσ + χη45) , χR = 1√

2 (χσ − χη45) . (D.14)

This definition is completely analogous to the diagonalization of the four-fermion model.
We, again, introduced a Yukawa coupling h as well as couplings κn for the self-interactions
and define projectors and chemical potentials accordingly

PL = 1√
2 (1 + γ45) , PR = 1√

2 (1 − γ45) , (D.15)

µL = 1√
2 (µ+ µ45) , µR = 1√

2 (µ− µ45) . (D.16)

All terms except for the last row in Eq. (D.13) either contain only χL or only χR.2 Thus,
the second order correction is given by

S(2)
eff
Nf

=
β

2

∫
d2q
(2π)2

 ∑
j=L,R

|δχj(q)|2
h2ΓFχj

+ q2 + (D.17)

+
∑
n>1

κnn
(
2(M2)n−1 + 4(n− 1)χ̄2

j (M
2)n−2

)+
+ δχL(−q)δχR(q)4κnn(n− 1)χ̄Lχ̄R(M2)n−2 + L ↔ R

,

where M2 = χ̄2
σ + χ̄2

η45 = χ̄2
L + χ̄2

R and

ΓFχj
=

1
λ

− ℓ1 + L2,+(h
2χ̄2

j ,µj ,T , q2) (D.18)

is the contribution, that also appears in the corresponding four-fermion model (see Table 5.4
and Ref. [5]). The integrals ℓ1 and L2,+ are defined in Eqs. (5.10) and (5.11).

The last row of Eq. (D.17) contains the off-diagonal contribution stemming from the
self-interaction of the dynamical fields. This contribution is not dependent on the spatial
momentum q of the perturbation, but it makes the diagonalization more complicated

2 The Dirac operator within the Tr ln can be decomposed into a block-diagonal form, where each block only
contains either µL and χL or µR and χR. In this sense, the fermionic contributions completely decouples
χL and χR.
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(compare Eq. (5.14) for the form of this contribution in the more general case). In fact, we
are only able to diagonalize this symbolically using Matlab [22]. Using the definitions

Yj = q2 +
∑
n>1

κnn
(
2(M2)n−1 + 4(n− 1)χ̄2

j (M
2)n−2

)
, (D.19)

with j = L,R as well as

I =
∑
n>1

4κnn(n− 1)χ̄Lχ̄R(M2)n−2 (D.20)

and
A =

√
(h2ΓFχL

− h2ΓFχR
+ YL − YR)2 + (2I)2 (D.21)

we write the diagonalization of S(2)
eff in the (δχL(q), δχR(q))-space

S(2)
eff
N

=
β

2

∫
d2q
(2π)2 (δχL(−q), δχR(−q))B(q, χ̄L, χ̄R,µL,µR,T )× (D.22)

×

h2

2

(
ΓFχL

+ ΓFχR

)
+ 1

2 (YL + YR) − 1
2A

h2

2

(
ΓFχL

+ ΓFχR

)
+ 1

2 (YL + YR) +
1
2A

×

×B−1(q, χ̄L, χ̄R,µL,µR,T ) (δχL(q), δχR(q))T ,

where B(q, χ̄L, χ̄R,µL,µR,T ) is a basis changing matrix determined by Matlab, whose
form is not relevant for our analysis. In this form one can determine, whether the diagonal
entries of the matrix in Eq. (D.22) are non-negative. For the physically relevant homoge-
neous expansion point M both entries are non-negative for q = 0, since otherwise the
expansion point would not be a minimum when only considering homogeneous field values.
Therefore, in order to prove positivity for all q = |q| it suffices again to show that the
entries are monotonically increasing functions of q. We take the derivative of the entries
with respect to q and require it to be non-negative

h2

2
[
(L2,L)

′ + (L2,R)
′
]
+ 2q∓ h2

2
[
(L2,L)

′ − (L2,R)
′
] h2ΓFχL

− h2ΓFχR
+ YL − YR

A

!
≥ 0,

(D.23)

where L2,L/R = L2,+(h2χ̄2
L/R,µL/R,T , q2) and its derivative with respect to q is non-

negative, i.e., d
dqL2,L/R =

(
L2,L/R

)′ ≥ 0, since it is a monotonically increasing function of
q (compare Section 5.2). We can rearrange Eq. (D.23) and square it to obtain

([
(L2,L)

′ + (L2,R)
′
]
+

2q
h2

)2
≥
[
(L2,L)

′ − (L2,R)
′
]2 (

h2ΓFχL
− h2ΓFχR

+ YL − YR
)2

(h2ΓFχL
− h2ΓFχR

+ YL − YR)2 + (2I)2 =

(D.24)

=
[
(L2,L)

′ − (L2,R)
′
]2
c2, (D.25)

where obviously 0 ≤ c2 ≤ 1 and, thus, the inequality is fulfilled for all q.
Summarizing this lengthy and delicate analysis: We diagonalized the second order cor-

rections (D.17) of a Yukawa model with multiple chemical potentials given by Eq. (D.13)
using computer algebra systems such as Matlab [22]. Analyzing the resulting expression,
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we find that both eigenvalues of the relevant curvature matrix in the second order cor-
rections are positive, monotonically increasing functions of the momentum squared q2 of
the inhomogeneous perturbation. Thus, we do not observe instabilities of the homogeneous
condensates in the Yukawa model given by Eq. (D.13). By the same reasoning, a negative
wave-function renormalization (proportional to the second derivative of the two eigenvalues
with respect to q), i.e., a so-called moat regime is not observed in the model. Similar behav-
ior is expected for the other Yukawa models that correspond to the four-fermion models
in Table 5.4 in Section 5.2.3.

d.3 stability analysis for the model with scalar and vector mesons

In this section, we collect formulae needed for the computation of the bosonic two-point
vertex functions Γ(2)

ϕj ,ϕk
= Γ(2)

ϕk,ϕj
with ϕ⃗ = (σ,ων), compare Eq. (4.24). A similar collection

can be found in the appendix of Ref. [3].
Inserting the homogeneous fermion propagator

˜̄Q−1(p, νn) =
−i/̃p + Σ̄
p̃2 + Σ̄2 , p̃ = (νn − iµ̄, p)T (D.26)

with µ̄ = µ+ iω̄3 and homogeneous expansions points (σ,ων) = (σ, δ3,ν ω̄3) and the re-
spective vertex c⃗ = (1, −γ3, iγ1, iγ2) for ϕ⃗ = (σ,ω3,ω1,ω2) in Eq. (4.24), respectively, one
obtains for the diagonal elements

Γ(2)
σ,σ =

1
λS

+
dγ
β

∫ d2p

(2π)2

∑
n

−p̃2 − pq + Σ̄2

(νn − iµ̄)2 + (p + q)2 + Σ̄2
1

(νn − iµ̄)2 + p2 + Σ̄2 , (D.27)

Γ(2)
ων ,ων

=
1
λV

+ (1 − 2δν,3)
dγ
β

× (D.28)

×
∫ d2p

(2π)2

∑
n

(2δν,α − 1)p̃αp̃α + (2δν,1 − 1)p1q− Σ̄2

(νn − iµ̄)2 + (p + q)2 + Σ̄2
1

(νn − iµ̄)2 + p2 + Σ̄2 ,

where we choose the angle integration such that q lies on the x1 axis. The off-diagonal
elements are given by

Γ(2)
σ,ων

= (D.29)

=

(
δν,3 (−i − 1) + 1

)
Σ̄
dγ
β

∫ d2p

(2π)2

∑
n

2p̃ν + δν,1p1q

(νn − iµ̄)2 + (p + q)2 + Σ̄2
1

(νn − iµ̄)2 + p2 + Σ̄2 ,

Γ(2)
ω1,ω2 =

dγ
β

∫ d2p

(2π)2

∑
n

2p1p2 + qp2
(νn − iµ̄)2 + (p + q)2 + Σ̄2

1
(νn − iµ̄)2 + p2 + Σ̄2 , (D.30)

Γ(2)
ω3,ωj

= −dγ
β

∫ d2p

(2π)2

∑
n

2p̃3pj + δj,1p̃3q

(νn − iµ̄)2 + (p + q)2 + Σ̄2
1

(νn − iµ̄)2 + p2 + Σ̄2 , j ∈ {1, 2}.

(D.31)

Note that in consistency with the repulsive nature of the Yukawa interaction ψ̄ω3ψ, the
Hessian matrix elements with only one ω3 index are purely imaginary.

d.3.1 Finite temperature expressions for non-vanishing q

In order to evaluate the Hessian at finite temperatures and chemical potentials, we perform
the Matsubara summation, see Appendix C.4 for an explicit calculation of such a sum. Fur-
ther examples can be found for example in Refs. [64, 285]. For some of the above expression,
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one needs to do some additional manipulations in order to perform the summation in an
easier way or to circumvent problems in the contour integration stemming from p̃2

3 terms
in the numerator. Equation (D.27) is exactly the bosonic two-point vertex function of the
auxiliary bosonic field appearing the GN model, and was calculated multiple times, e.g., in
Refs. [211, 212, 241], see Appendix B of Ref. [2] for the evaluation in various limits of Σ̄,
T and q. The other entries, however, have to our knowledge not be computed.

Using some manipulation of the numerator of Eq. (D.28) for ν = 3 as well as rewriting
the denominator in a partial fraction (see Eqs. (4.14 − 16) in Ref. [138] for the general idea)
one finds that

Γ(2)
ω3,ω3 =

1
λV

− ℓ1(µ,T , Σ̄, Ω̄3) + L2,+(µ̄,T , Σ̄, q) + ℓ3(µ,T , Σ̄, q), (D.32)

where ℓ1 is known from the GN model and appears in the gap equation (C.16) or (6.10),

L2,+(µ̄,T , Σ̄, q) = 1
2

∫ d2p

(2π)2

∞∑
n=−∞

dγ
β

(
q2 + 4Σ̄2)

(νn − iµ̄)2 + p2 + Σ̄2
1

(νn − iµ̄)2 + (p + q)2 + Σ̄2
=

(D.33)

≡ 1
2
(
q2 + 4Σ̄2

)
ℓ2(µ,T , Σ̄, q)

is (up to a factor of 2) the momentum dependence of the bosonic two-point vertex function
in the GN model [241] plus the novel contribution

ℓ3(µ̄,T , Σ̄, q) = 2dγ

β

∫ d2p

(2π)2

∞∑
n=−∞

p2 + pq
(νn − iµ̄)2 + p2 + Σ̄2

1
(νn − iµ̄)2 + (p + q)2 + Σ̄2

.

(D.34)

The Matsubara summation can be performed as usual by analytic continuation and a
contour integral. Then, one obtains

ℓ3(µ̄,T , Σ̄, q) = 2dγ
∫ d2p

(2π)2

(
p2 + pq

)
q2 + 2pq

[ 1
2E (1 − nF (E) − nF̄ (E)) − (E → Eq)

]
(D.35)

with E =
√

p2 + σ̄2, nF (x), nF̄ (x) defined in Eq. (C.18) and Eq =
√
(p + q)2 + Σ̄2. This

expression can be split up between p1 < q/2 and p1 > q/2 (remember that q = (q, 0)),
manipulated and evaluated using a Cauchy-Principal value (similar to how L2 can be
evaluated) and amounts to

ℓ3(µ̄,T , Σ̄, q) = (D.36)

=
dγ
(4π)

∫ q/2

0
dp p

E

p2 − q2/2
q
√
q2 − 4p

[1 − nF (E) − nF̄ (E)] +
∫ ∞

0
dp p
E

[1 − nF (E) − nF̄ (E)]

,

where the latter term is linearly divergent and identical to ℓ1. Thus, the divergences of
ℓ1 and ℓ3 exactly cancel each other out such that Eq. (D.32) is finite. We are aware that
these divergences occur because of splitting up the numerator of Eq. (D.28) for ν = 3, as
described above. However, this procedure is easier than dealing with the (νn − iµ)2 term in
the numerator, since the standard method of analytic continuation and contour integration
cannot be done as usual, since the asymptotic behavior of the integrand is not suppressed
strong enough at the boundaries of the contour at infinity.
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In turn, the other diagonal elements are evaluated in a straight forward manner

Γ(2)
ωj ,ωj

= (D.37)

=
1
λV

− ℓ1 +
q2

2 ℓ2 +
2Nγ

β

∫ d2p

(2π)2

∑
n

p2
j + δj,1p1q

(νn − iµ̄)2 + p2 + Σ̄2
1

(νn − iµ̄)2 + (p + q)2 + Σ̄2
.

Splitting up the numerator and treating the remaining integrals with standard techniques
(shifts, inversions of the integration variable) allow to identify already known integral struc-
tures for j = 1 and one obtains

Γ(2)
ω1,ω1 =

1
λV

− ℓ1 +
1
2q

2ℓ2 + ℓ1 + q2ℓ2 =
1
λV

+
3
2q

2ℓ2(µ,T , Σ̄, q). (D.38)

Also, one finds for j = 2

Γ(2)
ω2,ω2 =

1
λV

+
Nγ

2πq

∫ q/2

0

p3

E
√
q2 − 4p2 [1 − nF (E) − nF̄ (E)] , (D.39)

which is again finite. Note that the differences in the expression for Hω1ω1 and Hω1ω1 come
from the choice on q = (q, 0). The matrix elements Hω2ω2 and Hω1ω1 would be exchanged
if we would have chosen q = (0, q), as expected since the analysis is invariant under spatial
rotations. The limit of zero temperature in the above expressions is rather straightforward.

The mixing between σ and ω3 is given by

Γ(2)
σ,ω3 = −iΣ̄2Nγ

β

∫ d2p

(2π)2

∞∑
n=−∞

p̃3
(νn − iµ̄)2 + p2 + Σ̄2

1
(νn − iµ̄)2 + (p + q)2 + Σ̄2

. (D.40)

This expression can be evaluated using a contour integral, as the analytic continuation of
the integrand is well-behaved when closing the contour at infinity. The result is

Γ(2)
σ,ω3(q) = iΣ̄Nγ

∫ d2p

(2π)2
1

q2 + 2pq [(nF (E) − nF̄ (E)) − (nF (Eq) − nF̄ (Eq))] (D.41)

= −iΣ̄Nγ

∫ q/2

0

dp
2π

p

q
√
q2 − 4p2 [nF (E) − nF̄ (E)] ≡ −iΣ̄ℓ4(µ,T , Σ̄, q),

where one can directly see that this expression vanishes in the SP and for µ = 0.
Also, one obtains

Γ(2)
σ,ω1 = 2Σ̄|q|ℓ2(µ,T , Σ̄, q) (D.42)

and Hσω2 = 0, where the term with j = 2 vanishes using symmetry arguments in the angle
integration3 (compare Eq. (D.29) for ν = 2). Again, the two matrix elements Hσω1 and
Hσω1 would be exchanged, if we would setup the momentum integration such that q would
be aligned with the p2 axis. In a similar way as for Hσω2 , we obtain that Hω1ω2 = Hω3ω2 = 0.
Lastly, one obtains

Γ(2)
ω3,ω1 = 0 (D.43)

through splitting up the integral in Eq. (D.31) into two integrals, where each integral
contains one of the summands in the numerator. Both integrals turn to be proportional to
ℓ4, but with different signs and prefactors such that both contributions cancel each other.

3 At first glance, this seems to be a trivial integration, but one still needs to perform a Cauchy principal value
before using symmetry arguments.
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d.3.2 Finite temperature expressions for q = 0

For the q = 0 expressions (and even more limits) of Hσσ and all integrals related to it, we
refer again to Ref. [9]. Note that several of the integrals in the beginning of Appendix D.3
vanish, when the limit of q going to zero is taken. More precisely, we find

Γ(2)
σ,ωj

(q = 0) = 0, Γ(2)
ω1,ω2(q = 0) = 0, Γ(2)

ω3,ωj
(q = 0) = 0, j ∈ {1, 2}, (D.44)

as can be seen from going into polar coordinates after Matsubara summation and per-
forming the angle integration, respectively. The Hessian Γ(2)

ϕj ,ϕk
becomes diagonal w.r.t. the

2 × 2 block with ϕj ,ϕk ∈ {ω1,ω2}. Thus, complex-conjugate eigenvalue pairs can only be
generated by mixing of σ and ω3 at q = 0, allowing to study this phenomenon by only
taking the respective 2 × 2 block. For the rest of the diagonal elements, we find

Γ(2)
ωj ,ωj

(q = 0) = 1
λV

− ℓ1(µ,T , Σ̄) + ℓ3(µ,T , Σ̄, q = 0) (D.45)

=
1
λV

− ℓ1 +
Nγ

8π

∫ ∞

0
dp p

3

E3

[
1 − (1 + βE) (nF (E) + nF̄ (E)) +

+ βE
(
n2
F (E) + n2

F̄ (E)
) ]

=
1
λV

+
Nγ

8π

∫ ∞

|Σ̄|
dE

[
βE

[
n2
F (E) + n2

F̄ (E) − nF (E) − nF̄ (E)
]
+

− Σ̄2

E2

[
1 − (1 + βE) (nF (E) + nF̄ (E)) + βE

(
n2
F (E) + n2

F̄ (E)
)] ]

,

which is finite due to the suppression of high momenta in the first summand of the integrand,
and

Γ(2)
ω3,ω3(q = 0) = 1

λV
− ℓ1 + 2Σ̄2ℓ2 + ℓ3, (D.46)

which is identical to Γ(2)
ωj ,ωj up to an additional contribution of 2Σ̄2ℓ2. The diagonal element

Γ(2)
σ,σ is given by the bosonic two-point vertex function Γ(2)

σ (q) in the (2 + 1)-dimensional
GN model and studied in this limit in Refs. [2, 241]. For the remaining off-diagonal element
we find

Γ(2)
σ,ω3 = −iΣ̄dγ

π

∫ ∞

0
dE

{
βE

[
n2
F (E) − n2

F̄ (E)
]

− [nF (E) − nF̄ (E)]
}

. (D.47)
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