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Deutsche Zusammenfassung
Seit Langem ist die Menschheit fasziniert von der Frage, was die elementaren Bau-
teile unserer Materie sind. Bereits der griechische Philosoph Demokrit postulierte,
dass kleinste unteilbare Elemente existieren, aus denen alle bekannten Substanzen
aufgebaut sind. Gegen Ende des 19. Jahrhunderts hatte man etwa 100 der heute als
chemische Elemente bekannten Teilchen entdeckt und nahm an, dass es sich hier-
bei um Elementarteilchen handelt. Um 1900 stellte sich jedoch heraus, dass all diese
Atome wiederum aus drei kleineren Bestandteilen, Protonen, Neutronen und Elektro-
nen, aufgebaut sind. In Beschleuniger-Experimenten in den 50er und 60er Jahren des
20. Jahrhunderts wurde eine Vielzahl weiterer Teilchen entdeckt, die in ihren Eigen-
schaften Protonen und Neutronen ähneln. Dies warf erneut die Frage auf, ob all diese
Teilchen wiederum auf kleinere elementare Bestandteile zurückgeführt werden können.
Die Antwort auf diese Frage lieferten Mitte der 1960er Jahre Gell-Mann und Zweig,
die die Existenz kleinster elementarer Teilchen, den Quarks, postulierten. Heute wissen
wir, dass es sechs verschiedene Arten von Quarks gibt, sogenannte Flavors, die sich in
ihrer Masse stark unterscheiden und in drei Generationen eingeteilt werden können.
Die erste besteht aus den leichten up (u) und down (d) Quarks, welche die Konstitu-
enten aller gegenständlichen Materie bilden. Hinzu kommen die Quarks der zweiten
Generation, das strange (s) und charm (c) Quark, sowie abschließend die schweren
bottom (b) und top (t) Quarks der dritten Generation. Teilchen, die aus Quarks auf-
gebaut sind, bezeichnet man als Hadronen, und man unterscheidet zwischen Baryonen,
die halbzahligen Spin besitzen, und Mesonen mit ganzzahligem Spin. Hierbei sind ge-
wöhnliche Baryonen aus drei Quarks oder Antiquarks aufgebaut, während gewöhnliche
Mesonen aus einem Quark-Antiquark Paar bestehen. Da alle beobachteten Hadronen
eine ganzzahlige elektrische Ladung aufweisen, müssen Quarks eine fraktionale Ladung
von +2/3 (u, c, t) oder −1/3 (d, s, b) besitzen.
In der Praxis stand das Quarkmodell in seinen Anfängen jedoch vor zwei großen Pro-
blemen. Erstens konnten experimentell keine freien Teilchen mit nicht-ganzzahliger La-
dung, sprich Quarks, nachgewiesen werden. Zweitens stand die Entdeckung des Spin
3/2 Baryons ∆++ mit Quark-Struktur uuu im Widerspruch zum Pauli-Prinzip, da
die drei Quarks in allen bekannten Quantenzahlen übereinstimmten und demnach die
Gesamtwellenfunktion damit symmetrisch wäre, obwohl Baryonen als Fermionen eine
antisymmetrische Gesamtwellenfunktion haben müssen. Dies führte zur Einführung
eines weiteren Freiheitsgrades, der sogenannten Farbladung, welche drei verschiede-
ne Werte (blau, grün, rot) annehmen kann. Ordnet man jedem der drei Quarks im
∆++ eine andere Farbladung zu, so unterscheiden sie sich in einer Quantenzahl, das
Pauli-Prinzip ist erfüllt und die Gesamt-Wellenfunktion ist antisymmetrisch. Alle frei-
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en Teilchen, und somit auch Hadronen, sind farbneutral. Dies löst auch das zweite
Problem des Quarkmodells, da freie Quarks eine Farbladung tragen und somit ent-
sprechend dieser Forderung in der Natur nicht einzeln auftreten. Mathematisch lässt
sich das Konzept der Farbladung mithilfe einer zusätzlichen globalen SU(3)-Symmetrie
beschreiben, unter der die Wellenfunktion der freien Teilchen invariant ist.
Dies führt zur grundlegenden Theorie der starken Wechselwirkung, welche durch die
Farbladung erzeugt wird und die Interaktion von Quarks (und Gluonen) sowie die Bil-
dung von Hadronen charakterisiert. Formal beschrieben wird die starke Wechselwir-
kung durch eine nicht-abelsche SU(3)-Eichtheorie, die Quantenchromodynamik (QCD)
genannt wird. Eine Besonderheit dieser Theorie ist, dass ihre Austauschteilchen, die
Gluonen, selbst ebenfalls Farbladung tragen und somit nicht nur mit Quarks, son-
dern auch untereinander wechselwirken. Dies hat beispielsweise zur Folge, dass ein
Quark-Antiquark Paar nicht separiert werden kann. Versucht man, ein solches Paar
zu trennen, so bildet sich eine Art Schlauch aus Gluonen, und die Energie, die für
eine weitere Vergrößerung des Abstandes benötigt wird, wächst proportional an. Zu
einem gewissen Zeitpunkt ist diese Energie so groß, dass der Schlauch bricht (“string
breaking”) und ein weiteres Quark-Antiquark Paar entsteht. Dieses Prinzip bezeichnet
man auch als Confinement und verkörpert, dass Hadronen farbneutral sind und Quarks
nicht als freie Teilchen vorliegen können. Gleichzeitig sind die Kräfte bei kleinen Ab-
ständen bzw. für große Energien gering, was auch asymptotische Freiheit genannt wird
und eine Berechnung von QCD-Observablen innerhalb der Störungstheorie ermöglicht.
Für nieder-energetische Messgrößen, wie beispielsweise die Massen von Hadronen, ist
dies aufgrund der starken Kopplung jedoch nicht möglich.
Eine nicht-perturbative, numerische Methode zur Berechnung von QCD-Observablen
bietet die Gitter-QCD, auch Lattice QCD genannt. Die Grundidee ist hierbei, das
kontinuierliche und unendlich ausgedehnte Raum-Zeit Volumen durch eine vierdimen-
sionale Box und diskretisierte Raum-Zeit zu approximieren. Neben dem Gittervolumen
L3 ×T ist hierbei die Gitterkonstante a, die den Abstand zweier Gitterpunkte quantifi-
ziert, ein wichtiger Parameter. Mithilfe des Pfadintegralformalismus, welcher aufgrund
des endlichen Gitterabstandes mathematisch wohldefiniert ist, können somit QCD-
Erwartungswerte auch im niederenergetischen Bereich verlässlich berechnet werden.
Diese Berechnungen sind jedoch so aufwendig, dass sie nur mithilfe moderner Hoch-
leistungsrechner und unter Verwendung von statistischen Methoden wie Monte-Carlo
Simulationen durchgeführt werden können. Gleichzeitig verwendet man häufig unphy-
sikalisch schwere Massen für die leichten up und down Quarks, repräsentiert durch
die Masse des Pions, da die numerischen Methoden, die innerhalb der Gitter-QCD
verwendet werden, für die sehr kleine physikalische Pion-Masse sehr rechenintensiv
werden.
Ein großer Vorteil der Gitter-QCD ist jedoch, dass sie außer den genannten Nähe-
rungen direkt auf der QCD aufbaut und keine weiteren Annahmen getroffen werden
müssen. Zusätzlich können der nicht-verschwindende Gitterabstand, das räumliche Vo-
lumen und die Pion-Masse variiert werden, was es erlaubt, die Abhängigkeit der Mess-
größen von diesen Parametern zu untersuchen. Darauf aufbauend können Ergebnisse

iv



von Gitter-QCD Rechnungen somit in das Kontinuum, in das unendliche Volumen und
zu physikalischen Pion-Massen extrapoliert werden. Dementsprechend sind mögliche
systematische Fehler kontrollierbar, können relativ genau quantifiziert und somit im
finalen Ergebnis berücksichtigt werden.
Während die Gitter-QCD eine sehr genaue Bestimmung der Massen von stabilen Ha-
dronen ermöglicht, ist die Untersuchung von Resonanzen deutlich schwieriger. Ein
prominentes Beispiel für solch eine Resonanz ist das ρ-Meson, welches bei der Streu-
ung zweier Pionen entstehen kann und nach einer kurzer Zeitspanne auch wieder in
zwei Pionen zerfällt. Um solche Resonanzen umfassend zu beschreiben, müssen daher
sowohl die physikalischen Prozesse, die zur Bindung führen, wie auch die Zerfallspro-
zesse korrekt behandelt werden. Eine große Schwierigkeit ergibt sich dabei aus dem
endlichen Volumen des Gitters. Während stabile Teilchen Eigenzustände des Hamilton-
Operators sind, tauchen Resonanzen im Spektrum der kontinuierlichen Streuzustände
auf und sind durch ihre Streuamplitude charakterisiert. Durch das endliche Gittervolu-
men ist dieses eigentlich kontinuierliche Energiespektrum jedoch auch diskretisiert. Die
große Herausforderung ist deshalb, diese diskreten Energieniveaus mit dem kontinuier-
lichen Energiespektrum der physikalischen Streuzustände in Verbindung zu bringen.
Der Durchbruch bei der Betrachtung von Streuprozessen in der Gitter-QCD gelang
in den 1990er Jahren Martin Lüscher, der einen Formalismus entwickelte, mit dessen
Hilfe die Streuamplitude im unendlichen Raum basierend auf den diskreten Energien,
die im endlichen Gitter-Volumen berechnet wurden, bestimmt werden kann. Auf die-
ser Grundlage können, ähnlich wie bei der Analyse experimenteller Daten, Größen wie
die Masse oder Zerfallsbreite einer Resonanz extrahiert werden. Neben der Berechnung
von Resonanzen ist diese Methode auch dann hilfreich, wenn man gebundene Zustände
mit kleinen Bindungsenergien betrachtet, da auch in diesem Fall signifikante Effekte
aufgrund des endlichen Volumens auftreten können.

Ein Schwerpunkt aktueller experimenteller und theoretischer Forschung im Bereich der
Elementarteilchenphysik liegt inzwischen auf der Untersuchung exotischer Hadronen.
Hierunter versteht man Teilchen, die aus mehr als drei Quarks aufgebaut sind, z.B.
Tetraquarks und Pentaquark, aber auch Zustände mit angeregten Gluonen, sogenann-
te hybride Mesonen, oder Teilchen, die nur aus Gluonen bestehen und als Glueballs
bezeichnet werden. Im Rahmen dieser Arbeit beschäftige ich mich mit Tetraquarks,
welche als Vier-Quark-Systeme aus zwei Quarks und zwei Antiquarks bestehen. Erste
Anhaltspunkte für die tatsächliche Existenz von Tetraquarks lieferten Beschleuniger-
Experimente, die ein Teilchen detektierten, dessen Masse der eines c̄c Mesons ähnelte,
das allerdings nicht elektrisch neutral war. Somit konnten die Quantenzahlen nicht
mit einem einfachen Quark-Antiquark Paar beschrieben werden, was auf die Präsenz
eines zusätzlichen leichten Quark-Antiquark Paares schließen ließ. Inzwischen wurden
mithilfe großer Beschleuniger-Experimente wie LHCb, Belle oder BES III eine Viel-
zahl möglicher Tetraquarks entdeckt, wobei insbesondere Systeme, die zwei schwere
Quarks (charm oder bottom Quarks) beinhalten, vielversprechende Kandidaten sind.
In dieser Arbeit fokussiere ich mich auf Tetraquark-Systeme, die aus zwei schweren
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Antiquarks aufgebaut sind, wobei mindestens eines der beiden Antiquarks ein bottom
Quark ist. Im Gegensatz zu Tetraquarks, die aus einem schweren Quark-Antiquark
Paar bestehen, konnten diese Teilchen bisher zwar experimentell nicht nachgewiesen
werden, sind in einer theoretischen Betrachtung aber besser zugänglich. Man erwartet
zudem, dass diese Systeme stabile Zustände hinsichtlich der starken Wechselwirkung
bilden können.
Im Rahmen numerischer Gitter-QCD Simulationen berechne ich die Massen dieser po-
tentiellen Tetraquarks und untersuche, ob sie tatsächlich gebundene Zustände formen
oder möglicherweise Kandidaten für Resonanzen sind. Da die Implementierung von
bottom Quarks auf dem Gitter aufgrund ihrer großen Masse mit einigen Problemen
verbunden ist, verwende ich für sie eine nicht-relativistische Formulierung (NRQCD),
die es erlaubt, auch schwere Quarks mit aktuell verfügbaren Gitterabständen und
-größen zu betrachten. Ein entscheidender Punkt bei der Berechnung des Massen-
spektrums eines Hadrons, der sogenannten Hadronenspektroskopie, ist die sorgfältige
Auswahl geeigneter Erzeugungsoperatoren, wobei die generierten Zustände möglichst
ähnlich zu den tatsächlichen physikalischen Zuständen sein sollten. Für meine Gitter-
QCD Berechnungen der Tetraquark-Energiespektren verwende ich zusätzlich zu Ope-
ratoren, die alle vier Quarks an der gleichen räumlichen Position platzieren, auch
Streuoperatoren, die zwei räumlich separierte Mesonen repräsentieren. Neben einer
besseren Auflösung des Energiespektrums erlaubt dies auch, eine Streuanalyse mithil-
fe des Lüscher-Formalismus durchzuführen und somit mögliche Effekte aufgrund des
endlichen räumlichen Volumens genau betrachten zu können.
Das Hauptaugenmerk meiner Arbeit liegt darauf, die Vier-Quark Systeme b̄b̄ud mit
Quantenzahlen I(JP ) = 0(1+), b̄b̄us mit JP = 1+ und b̄c̄ud mit I(JP ) = 0(0+) und
I(JP ) = 0(1+) hinsichtlich der Existenz eines gebundenen Zustandes zu untersuchen.
Hierfür habe ich zwei unterschiedliche Gitter-Setups betrachtet. Im ersten Setup, das
von der RBC und UKQCD Kollaboration generiert wurde, verwende ich Streuopera-
toren lediglich als Vernichtungsoperatoren, während ich für die Rechnungen auf den
Eichfeldkonfigurationen des zweiten Setups, die mit der HISQ-Wirkung von der MILC
Kollaboration erzeugt wurden, Streuoperatoren vollständig berücksichtige.
Sowohl für das b̄b̄ud als auch für das b̄b̄us System wurde in beiden Rechnungen jeweils
exakt die gleiche Operator-Basis verwendet, wobei wie erwähnt für das erste Setup
Streuoperatoren nicht als Erzeugungsoperatoren verwendet wurden. Für beide Syste-
me zeigte sich, dass die Berücksichtigung von Streuoperatoren essentiell ist, um den
Grundzustand bestmöglich aufzulösen. Angeregte Zustände werden jedoch nur dann
gut wiedergegeben, wenn Streuoperatoren komplett, d.h. als Erzeugungs- und Vernich-
tungsoperatoren in die Berechnungen einbezogen werden.
Für das b̄b̄ud System finde ich für beide Rechnungen einen Grundzustand, der deutlich
unterhalb der BB∗-Threshold liegt. Dies deutet auf die Existenz eines gebundenen
Zustandes hin. Basierend auf den beiden niedrigsten Energieniveaus ist es möglich,
eine Ein-Kanal Streuanalyse mithilfe der Lüscher-Methode durchzuführen und die
Bindungsenergie im unendlichen Volumen zu bestimmen. Im Fall des b̄b̄ud Systems
zeigt sich jedoch, dass diese Bindungsenergien identisch zu den aus der Gitter-QCD
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Rechnung erhaltenen Grundzustandsenergien sind und Effekte aufgrund des endlichen
Volumens dementsprechend klein sind. Für beide Setups wurden die Rechnungen für
verschiedene Gitter Ensembles durchgeführt, die sich in der Pion-Masse und dem Git-
terabstand unterscheiden. Dies ermöglicht es, die Bindungsenergie zum Punkt physika-
lischer Pion-Masse zu extrapolieren. Außerdem kann der Einfluss von Diskretisierungs-
Effekten abgeschätzt werden, wobei ich im Fall der MILC Ensembles die Ergebnisse
explizit im Kontinuumslimit betrachtet habe. Es ergeben sich damit die Bindungs-
energien für das b̄b̄ud System von −128(24)(10) MeV bzw. −101(11)(25) MeV, was mit
der Vorhersage eines gebundenen b̄b̄ud Zustand mit I(JP ) = 0(1+) einher geht.
Qualitativ ähnliche Ergebnisse konnte ich auch für das b̄b̄us System mit Quantenzahlen
JP = 1+ finden. Auch hier liegt die Grundzustandsenergie unterhalb der relevanten
Threshold. Eine Streuanalyse gestaltet sich in diesem System jedoch komplizierter,
da zwei Streukanäle mit ähnlicher Energie relevant sind und somit einbezogen wer-
den müssen. Folglich ist eine Zwei-Kanal Streuung für eine rigorose Betrachtung des
b̄b̄us Systems notwendig. Es stellte sich jedoch heraus, dass dies nur möglich ist, wenn
Streuoperatoren vollständig implementiert sind, da anderenfalls die niedrigsten Ener-
gieniveaus nicht ausreichend aufgelöst werden können. Aus diesem Grund habe ich
nur für die Rechnungen, die auf den MILC Konfigurationen durchgeführt wurden, ge-
mäß der Lüscher-Methode die Bindungsenergien im unendlichen räumlichen Volumen
bestimmt. Hierbei wurden die drei niedrigsten Energieniveaus in einer Zwei-Kanal
Streuung berücksichtigt, und die Streuamplitude bestimmt. Es zeigte sich jedoch auch
für das b̄b̄us System, dass die Bindungsenergien im unendlichen Volumen den Ener-
giedifferenzen zur Threshold im endlichen Volumen entsprechen. Auch hier traten so-
mit keine entscheidenden Effekte durch das endliche Gittervolumen auf. Aus diesem
Grund kann man annehmen, dass auch die Ergebnisse der Gitter-Rechnung basie-
rend auf den Konfigurationen der RBC und UKQCD Kollaboration verlässlich die
Bindungsenergien widerspiegeln. Deshalb habe ich für beide Fälle die Ergebnisse zum
physikalischen Punkt extrapoliert und für die MILC Konfigurationen zusätzlich das
Kontinuumslimit betrachtet. Die gefundenen Bindungsenergien von −86(22)(10) MeV
bzw. −28(5)(10) MeV legen die Interpretation nahe, das es sich bei dem b̄b̄us Grund-
zustand um ein Tetraquark handelt, das bezüglich der starken Wechselwirkung stabil
ist.
Für die b̄c̄ud Vier-Quark Systeme zeigte sich sowohl im I(JP ) = 0(0+) wie auch im
I(JP ) = 0(1+) Kanal ein qualitativ anderes Bild. Die Rechnungen, basierend auf den
Konfigurationen der RBC und UKQCD Kollaboration, bei denen die Streuoperatoren
lediglich als Vernichtungsoperatoren berücksichtigt wurden, lieferten keinen Hinweis
darauf, dass gebundene Tetraquark-Zustände vorliegen, da das niedrigste Energieni-
veau im endlichen Volumen konsistent mit der Threshold ist. Allerdings lassen sich
auf diese Weise keine Aussagen über die mögliche Existenz eines nur schwach gebun-
denen Zustandes oder gar einer Resonanz treffen. Hierzu ist es erforderlich, mithilfe
der Lüscher-Methode die Streuamplitude zu bestimmen. Dies erfolgte daraufhin im
Rahmen der Rechnungen basierend auf den MILC-Konfigurationen. Hierzu habe ich
die Operator-Basis um einige Streuoperatoren erweitert, wodurch es möglich wurde,
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das niederenergetische Energiespektrum vollständig aufzulösen. Es zeigt sich hierbei,
dass im Vergleich zu den nicht-interagierenden Meson-Meson Energieniveaus das Ener-
giespektrum verschoben ist und ein zusätzliches Energieniveau auftritt. Dies ist ein
Hinweis auf nicht-triviale Interaktionen, die auf einen zusätzlichen Zustand hindeuten
können. Mithilfe einer Ein-Kanal Streuanalyse lässt sich aus diesen Energieniveaus
die Streuamplitude bestimmen. Diese weist charakteristische Pole auf, die mit einer
Resonanz assoziiert werden können und folglich darauf hindeuten, dass zwar keine
gebundenen Zustände in den beide b̄c̄ud Kanälen vorliegen, jedoch jeweils eine breite
Tetraquark-Resonanz.
Schlussendlich habe ich eine vereinfachte Analyse des b̄b̄ud Systems mit Quantenzah-
len I(JP ) = 0(1−) auf den MILC-Konfigurationen durchgeführt. Dieses System ist ein
möglicher Kandidat für eine Tetraquark-Resonanz, jedoch ist eine rigorose theoretische
Untersuchung herausfordernd. Unter Verwendung von Daten einer Born-Oppenheimer
Rechnung, mit denen ich mögliche Ergebnisse einer Gitter-QCD Rechnung simulier-
te, konnte ich zeigen, dass eine Lüscher-Analyse basierend auf Energieniveaus, die im
endlichen Gitter Volumen bestimmt wurden, prinzipiell möglich sein sollte. Eine erste
volle Gitter-QCD Betrachtung, die sich lediglich auf eine kleine Zahl von Streuoperato-
ren begründet, sowie eine anschließende Ein-Kanal Streuanalyse konnten die mögliche
Existenz einer Resonanz jedoch nicht bestätigen. Gleichzeitig lässt die Genauigkeit der
Ergebnisse allerdings auch nicht zu, eine Resonanz zuverlässig auszuschließen.
Abschließend lässt sich sagen, dass in dieser Arbeit die Existenz von gebundenen b̄b̄ud
und b̄b̄us Tetraquark Zuständen vorhergesagt wird und zusätzlich eine Resonanz für
die b̄c̄ud Kanäle mit J = 0 und J = 1 postuliert wird. Diese theoretischen Befunde
können einen wichtigen Beitrag für die experimentelle Suche nach exotischen Hadronen
liefern und somit helfen, neue physikalische Teilchen zu entdecken.
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1
Introduction

The theory that describes the strong interaction of quarks and gluons is called Quan-
tum Chromodynamics (QCD). It is formulated as a non-abelian SU(3) gauge theory
where the color charge serves as the associated conserved quantity. Originating from
the non-abelian structure of the theory, the gluons, which are the mediators of QCD,
also carry color and thus experience self-interactions. These interactions are one rea-
son why the coupling constant of QCD depends on the energy regime and decreases
for increasing energies. For high energies, this leads to only weakly interacting quarks
and gluons which is called asymptotic freedom. In the low-energy regime, however, the
coupling becomes large so that quarks and gluons are strongly interacting and appear
only as color-neutral states like hadrons. This is called confinement.
While the high-energy region of QCD can be studied perturbatively thanks to the
small coupling constant, this is not feasible for low energies where the coupling con-
stant becomes large. Accordingly, studying low-energy observables like hadron masses
requires a different approach which is non-perturbative.
Lattice QCD, initially introduced by K. Wilson [1], provides such an approach. Here,
QCD is considered on a discretized Euclidean lattice of space-time points with finite
size L3 ×T where the distance between two neighboring points is called lattice spacing
a. A reasonable approach to computing QCD observables on this grid is to utilize
the path integral formalism of quantum field theory. On the lattice, the path integral
becomes finite-dimensional and can be evaluated numerically using stochastic integra-
tion methods like Monte-Carlo simulations on high performance computers. Note that
introducing the discretized finite grid represents an approximation to QCD which is,
however, controllable. The dependence of QCD observables on the non-zero lattice
spacing and the finite space-time volume can be studied, and an appropriate contin-
uum and infinite volume limit can be established.

One branch of particular interest in modern QCD calculations is hadron spectroscopy.
Computing masses of particles which are experimentally well-established is an excel-
lent test of QCD. Moreover, predicting new states that have not been detected yet
provides valuable input for ongoing experimental research.
While decades of experimental efforts discovered a zoo of hadrons, it was Gell-Mann
and Zweig in the 1960s who introduced quarks as point-like elementary particles which
are, together with gluons, the building blocks of all hadrons [2, 3]. There are six dif-
ferent types of quarks, called flavors: the up (u), down (d), strange (s), charm (c),
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bottom (b) and top (t) quarks. Hadrons are divided into two categories: mesons, which
have integer spin, and baryons, which have half-integer spin. Generally, an ordinary
meson corresponds to a quark-antiquark pair, whereas an ordinary baryon is built of
three quarks or three antiquarks. However, QCD also allows for the formation of color-
neutral hadrons consisting of more than three quarks or antiquarks like tetraquarks1

or pentaquarks which are summarized as exotic hadrons.
In the last few years, a large number of hadrons that cannot be explained by ordi-
nary, i.e., non-exotic, quark content have been experimentally discovered. Such exotic
hadrons are summarized as XYZ states. One prominent example is the Zc(3900), which
has been simultaneously discovered by the Belle and BES III collaborations [4, 5] as
an enhancement in the process e+e− → π+π−J/ψ and is the first independently found
tetraquark candidate. This discovery has been followed by the detection of further
quarkonium-like Zc and Zb states by the Belle [6, 7], BES III [8–11] and LHCb [12]
collaborations while by now a large number of tetraquark candidates have been found,
many of them in the heavy quark sector [13–19]. Quite recently, the LHCb collab-
oration has found the Tcc, which is the first tetraquark state with a mass below the
relevant two-meson threshold corresponding to DD∗ [20, 21]. In contrast to the Zc
states, which have a charmonium-like structure, the Tcc consists of two anticharm
quarks and two light quarks and is therefore obviously a flavor exotic state.
Lattice QCD provides an excellent framework to investigate the spectrum of hadrons
and study exotic states. Using carefully chosen creation operators, the energy spectra
of interest are computed from Euclidean correlation functions. The energies of stable
hadrons are then governed by the energies well below the threshold of strong decay
and can be computed in current lattice calculations extremely precisely. However, the
variety of hadrons covers not only stable particles but also resonances with short life-
times. Unfortunately, the vast majority of flavor exotic states is expected to be either
a stable state close to the threshold of strong decay or a resonance so that theoretical
investigations are facing big challenges. The treatment of resonances is sophisticated
as they are not eigenstates of QCD with distinct energies but excitations in the con-
tinuous spectrum of scattering states. The essential challenge is to relate the discrete
spectrum of states in the finite volume to the continuum of scattering states in the
infinite volume. This has been facilitated by the pioneering work of M. Lüscher who
established a formalism that relates the finite volume energy spectrum to the infinite
volume scattering amplitude [22,23] from which resonance parameters like the hadron
mass can be extracted. Nevertheless, this is a sophisticated task as a large number of
energy levels need to be resolved precisely. Also the energies of stable hadrons that
are close to the threshold of strong decay may not be directly extracted from the finite
volume energy spectra as couplings to the threshold of strong decay might play an
important role. This issue can also be addressed by resorting to Lüscher’s method.

1The term tetraquark is used ambiguously in literature. While sometimes it is used exclusively
for diquark-antidiquark structures, I will follow the more general nomenclature where all bound
states and resonances that have a strong four-quark contribution are labeled as tetraquarks.
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Four-quark structures Q̄Q̄′qq′ that consist of two heavy antiquarks and two light quarks
are promising candidates for bound tetraquarks or resonances and are theoretically
easier to examine than their Q̄Q′q̄q′ counterpart, since they can decay only in two
heavy-light mesons whose masses are in general of similar order [24]. Q̄Q′q̄q′ sys-
tems, however, have an additional decay channel corresponding to a light meson and
a heavy quarkonium. Additionally, it can be shown that the Q̄Q̄′qq′ tetraquark is
hadronically stable in the infinite mass limit for heavy quarks, mQ,Q′ → ∞ [25–27]. In
this case, a color-antitriplet is formed by the two heavy antiquarks, while the associ-
ated binding energy is of order α2

smQ [26]. As the binding is weakened for decreasing
heavy quark masses, the essential question is now if such antiheavy-antiheavy-light-
light tetraquarks Q̄Q̄′qq′ exist also for physical bottom or charm quark masses and,
if so, whether as a QCD-stable bound state below or as a resonance above the two
meson threshold Q̄q-Q̄′q′.

First lattice QCD computations of doubly-antiheavy doubly-light tetraquark systems
have been carried out for the b̄b̄ud four-quark system with quantum numbers I(JP ) =
0(1+) using static b̄ quarks and the Born-Oppenheimer approximation, predicting a
b̄b̄ud tetraquark bound state with respect to the strong interaction [28–32]. Using the
same approach, a b̄b̄ud tetraquark resonance with quantum numbers I(JP ) = 0(1−)
has been found [33], while a more recent study questions this [34]. The existence
of the bound b̄b̄ud tetraquark with I(JP ) = 0(1+) has been confirmed by calcula-
tions with b̄ quarks of finite mass which are treated in a non-relativistic framework
(NRQCD) [35–40]. Furthermore, lattice calculations carried out by several groups
agree about the existence of a bound b̄b̄us tetraquark with JP = 1+ [24, 35, 36, 40],
while for the b̄c̄ud system with I(JP ) = 0(1+), recent results are still inconclusive if a
stable tetraquark exists or not [41–43].
So far, there has been no experimental observation of Q̄Q̄′qq′ tetraquarks with at least
one heavy b̄ quark, but the prospects of discovering such states have been examined in
Refs. [44–46]. However, in the closely related sector of doubly-charmed tetraquarks,
major progress has recently been made via the discovery of the Tcc tetraquark by the
LHCb collaboration as stated above [20, 21], while a lattice QCD calculation investi-
gating this system can be found in Ref. [47].

In this thesis, I will investigate doubly-antiheavy doubly-light tetraquark systems with
at least one heavy antibottom quark using lattice QCD. I focus on four-quark systems,
which are promising candidates for stable or nearly stable tetraquarks. In order to
investigate such structures, the correlation functions are constructed using two dif-
ferent types of creation operators. In addition to local creation operators, where all
four quarks are located at the same space-time position, I utilize also scattering op-
erators which resemble two spatially separated mesons. According to Refs. [48, 49],
such scattering operators are mandatory to rigorously resolve the energy of ground
states in exotic systems. Thus, I expand on previous research in Refs. [35, 36, 41]
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where doubly-antiheavy doubly-light tetraquarks were investigated without consider-
ing scattering operators. In addition to that, including scattering operators allows
me to apply Lüscher’s method by analyzing the relevant meson-meson scattering and
subsequently to determine the scattering amplitude in the infinite volume. I use this
method for two different cases. First, I investigate possible effects due to couplings to
the threshold of strong decay for tetraquarks which are expected to be stable under
the strong interaction. Second, I apply this approach to study tetraquark candidates
which might be bound states, resonances or neither of the two. As none of the inves-
tigated states has been experimentally observed yet, these results might be a valuable
starting point for the experimental search of such exotic hadrons.

This thesis is structured as follows: In Chapter 2, I introduce the theoretical founda-
tions of lattice QCD. I present the different fermion actions that are utilized in the fol-
lowing calculations and, in particular, I discuss the framework of non-relativistic QCD
(NRQCD) that is used for implementing b quarks throughout this work. Chapter 3
focuses on the theoretical description of two-particle states on the lattice. As an es-
sential part I recapitulate the derivation of Lüscher’s formula and discuss implications
of the lattice symmetries for actual calculations. Basic aspects of hadron spectroscopy
on the lattice that are required for the following computations are covered in Chap-
ter 4. Here, I also describe the construction of the relevant interpolating operators and
provide the techniques that are used for computing and evaluating correlation func-
tions. I also explicate the employed strategy for the scattering analysis. In Chapter 5,
I present results for the ground-state energies of the four-quark systems b̄b̄ud with
I(JP ) = 0(1+), b̄b̄us with JP = 1+ and b̄c̄ud with I(JP ) = 0(0+) and I(JP ) = 0(1+).
Here I use scattering operators at the sink and identify two candidates for a stable
tetraquark. A more elaborated study of the b̄b̄ud system with I(JP ) = 0(1+) and the
b̄b̄us system with JP = 1+ is carried out in Chapter 6. Using scattering operators at
the sink and the source, the low-lying energy spectrum is extracted, and I perform
a rigorous scattering analysis using Lüscher’s method. In Chapter 7, I exploratively
study the b̄c̄ud systems with I(JP ) = 0(0+) and I(JP ) = 0(1+) in a scattering analy-
sis relying on energy spectra obtained from large operator bases including scattering
operators. Chapter 8 focuses on the b̄b̄ud system with I(JP ) = 0(1−) which is a can-
didate for a tetraquark resonance. Here, I initially discuss the prospects of studying
this system in lattice QCD, followed by the results of a first rough lattice calculation.
I will end with my conclusions and an outlook on further work in Chapter 9.
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2
Lattice QCD

Lattice QCD provides a powerful numerical approach to studying QCD and partic-
ularly allows computing low-energy observables like hadron masses for which pertur-
bation theory is not applicable. In this chapter I will recapitulate the theoretical
foundations of lattice QCD based on Ref. [50] and discuss some special techniques
that are applied in this work. I start with a short overview of the basic concepts of
lattice QCD and illustrate the derivation of the naive fermion action as well as the
gauge action from the continuum theory in Sec. 2.1. Here, I also briefly discuss the
path integral formulation which is a suitable approach to computing observables on
the lattice. In Sec. 2.2, I introduce an improved gauge action which reduces lattice
discretization errors, while in the subsequent Sec. 2.3, I present several fermion ac-
tions which are utilized to include light and strange quarks in the lattice computations
carried out in this thesis. Considering heavy quarks in lattice QCD is more sophis-
ticated as they cannot be reliably resolved on currently used lattices. One option to
incorporate them is using an effective field theory corresponding to a non-relativistic
expansion of the Dirac Lagrangian which is discussed in Sec. 2.4. In Sec. 2.5 I present
a relativistic heavy quark action which depicts another possible approach to including
heavy quarks in lattice simulations. Finally, in Sec. 2.6 I give an overview of statis-
tical and systematic uncertainties occurring in lattice calculations. A more complete
introduction to lattice QCD can be found in standard text books like Refs. [50,51].

2.1 The Formulation of QCD on the Lattice
The fundamental idea of lattice QCD is to replace the continuous Euclidean space-time
by a four-dimensional grid of finite size. This hypercubic lattice with spatial extent L
and temporal extent T is characterized by the set of lattice points

Γ = {x ∈ Z4 | x1, x2, x3 = 0, . . . , Ns − 1 and x4 = 0, . . . , Nt − 1} (2.1)

which are separated by a lattice spacing a. Here Ns and Nt equal the total number
of lattice points in the spatial and temporal direction. As a consequence of the finite
spatial volume, the lattice momenta are discrete obeying

pi = ni
2π
L
, ni ∈ Z, i = 1, 2, 3. (2.2)

Additionally, due to the discretized space-time, the momentum is bounded from above
and the maximal momentum is given by 2π/a. Therefore, the lattice serves as a
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natural regulator of the theory. It introduces a momentum cutoff which renders the
ultraviolet divergence that appears for QCD as a quantum field theory and sets a finite
energy region. Moreover, the discretization of the space-time makes the path integral
formalism of QCD mathematically well-defined (see Sec. 2.1.2). One drawback is,
however, that the continuous translational and rotational symmetry is broken. I will
discuss the implications of this in Secs. 3.2 and 4.2 in more detail.

2.1.1 From Continuum to Lattice Theory

The QCD action in the continuum for four-dimensional Euclidean space-time is given
by

SQCD[ψ, ψ̄, A] = SF [ψ, ψ̄, A] + SG[A], (2.3)
with the fermion action

SF [ψ, ψ̄, A] =
Nf∑
f=1

∫
d4x ψ̄(f)(x)

(
γµDµ +m(f)

)
ψ(f)(x), (2.4)

and the gluon action

SG[A] = 1
2g2

∫
d4x Tr

[
Fµν(x)Fµν(x)

]
, (2.5)

with the bare coupling g. Here, the spinors ψ(f)a
A(x), ψ̄(f)a

A(x) denote a quark field
of flavor f at space-time position x with Dirac index A = 1, . . . , 4 and color index
a = 1, 2, 3. The field strength tensor Fµν(x) is defined as

Fµν(x) = ∂µAν(x) − ∂νAµ(x) + i[Aµ(x), Aν(x)]. (2.6)

The covariant derivative writes Dµ = ∂µ+ iAµ(x) and is introduced to maintain gauge
invariance of the action, while the 3×3 matrices Aµ(x) represent the gluon fields with
the Lorentz index µ = 1, . . . , 4 labeling the direction of its components in Euclidean
space-time. The γµ are the Euclidean gamma matrices as defined in Appendix A. Note
that the last term of the field-strength tensor is not vanishing, as the Aµ(x) matrices
are not commuting. This is a consequence of the non-abelian structure of QCD and
incorporates the gluons’ self-interactions.

In order to construct the QCD action on the lattice, all terms appearing in Eq. (2.3)
must be converted to a discretized formulation. As the fermion fields ψ(x), ψ̄(x) are
placed on the lattice points, a discretized version of the fermion fields’ derivative must
be established. One possible symmetric expression is

∂µ ψ(x) = ψ(x+ µ̂) − ψ(x− µ̂)
2a , (2.7)

where µ̂ stands for one step on the lattice in µ-direction. However, using a discretized
derivative like Eq. (2.7) in the fermion action introduces terms like ψ̄(x)ψ(x+µ̂) which
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are not invariant under gauge transformations according to ψ(x) → ψ′(x) = Ω(x)ψ(x)
with Ω(x) ∈ SU(3). To preserve the gauge invariance of the action, new gauge fields
Uµ(x) ∈ SU(3) are introduced. These fields carry a directorial index µ and are located
at the links between two lattice points. They are related to the continuum gauge fields
Aµ(x) by

Uµ(x) = exp(iaAµ(x)). (2.8)
Their transformation behavior under a gauge transformation Ω(x) is governed by

Uµ(x) → U ′
µ(x) = Ω(x)Uµ(x) Ω†(x+ µ̂) (2.9)

and is designed such that the terms appearing in the discretized derivative can be
formulated in a gauge invariant way. Using the gauge fields to formulate a gauge
invariant lattice derivative, the naive lattice fermion action is given by

SF [ψ, ψ̄, U ] = a4
Nf∑
f=1

∑
x∈Γ

ψ̄(f)(x) D(f)(x; y) ψ(f)(y), (2.10)

with the Dirac operator

D(f)(x; y) = 1
2a

4∑
µ=1

γµ

(
Uµ(x) δx+µ̂,y − U−µ(x) δx−µ̂,y

)
+m(f) δx,y, (2.11)

where U−µ(x) ≡ Uµ(x− µ̂)†.

A lattice version of the gauge action is obtained by using closed loops of gauge links,
while these loops are gauge invariant objects (e.g., see Ref. [50]). The smallest possible
loop is the so-called plaquette Uµ,ν(x) which is defined as

Uµ,ν(x) = Uµ(x)Uν(x+ µ̂)U−µ(x+ µ̂+ ν̂)U−ν(x+ ν̂). (2.12)

The first version of a lattice gauge action has been introduced by Wilson [1] and is
constructed via a sum over all plaquettes of the lattice, while every loop is only counted
once,

SG[U ] = 2
g2

∑
x∈Γ

∑
µ<ν

ReTr
[
1 − Uµ,ν(x)

]
. (2.13)

Using Eq. (2.8), it can be shown that this gauge action recovers the continuum action
Eq. (2.5) in the naive continuum limit a → 0.

2.1.2 The Path Integral Formulation for Lattice QCD

The Euclidean path integral is a fundamental tool to compute observables of QCD on
the lattice. Using the lattice gauge action and fermion action discussed in the previous
paragraph, expectation values of observables are given by

⟨O⟩ = 1
Z

∫
D[ψ, ψ̄] D[U ] e−SF [ψ,ψ̄,U ]−SG[U ] O[ψ, ψ̄, U ] (2.14)
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with the partition function

Z =
∫

D[ψ, ψ̄] D[U ] e−SF [ψ,ψ̄,U ]−SG[U ]. (2.15)

The path integral on the lattice is formulated as an integral over all possible fermion
and gluon field configurations. The measures are consequently products over all fields
and all associated indices,

D[Φ] =
∏
x∈Γ

∏
α

dΦα, (2.16)

where Φ is a generic field and α labels all internal indices of Φ. Every possible path is
weighted by the exponential e−SF [ψ,ψ̄,U ]−SG[U ] which serves as the Boltzmann factor of
the QCD action. Note that the operator O is translated from a Hilbert-space operator
to a functional of the fields.
As the lattice consists of a finite number of points, the number of possible field con-
figurations is also finite and the path integral is mathematically well-defined on the
lattice. This makes lattice QCD an excellent tool to evaluate the path integral.
The expectation values for observables can also be written in a form separating the
fermionic from the gauge field part of the path integral,

⟨O⟩ = ⟨⟨O⟩F ⟩G = 1
Z

∫
D[U ] e−SG[U ]

(∫
D[ψ, ψ̄] e−SF [ψ,ψ̄,U ] O[ψ, ψ̄, U ]

)
. (2.17)

Using anti-commuting Grassmann numbers to express the fermion fields ψ, ψ̄, the
fermionic part of the path integral can be integrated out. This yields the expectation
value

⟨O⟩ = 1
Z

∫
D[U ] e−SG[U ] det

(
D[U ]

)
⟨O⟩F , (2.18)

where det(D[U ]) = ∏Nf

f=1 det(D(f)[U ]) is the fermion determinant and ⟨O⟩F the fermi-
onic expectation value.
In order to compute correlation functions of hadron operators as it will be discussed
in Sec. 4.1, it is necessary to compute the fermionic expectation values for fermion
fields, i.e., Grassmann valued numbers,〈

ψ(f)(x) ψ̄(f)(y)
〉
F
. (2.19)

This expectation value can be evaluated using Wick’s theorem (e.g., see Ref. [50]) as〈
ψ(f)a

A(x) ψ̄(f)b
B(y)

〉
F

=
(
D(f)

)−1 a,b
A,B(x; y), (2.20)

where (D(f))−1 is the inverse of the Dirac operator given, for example, by Eq. (2.11).
This is also referred to as fermion contractions, and the inverse Dirac operator (D(f))−1

is also called quark propagator. I will discuss different techniques of how to determine
the quark propagator in Sec. 4.4.
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2.2. Gauge Actions

2.1.3 Generation of Gauge Link Configurations

Using modern computing systems, it is not possible to calculate Eq. (2.14) in its
entirety. Such path integrals are instead evaluated by Monte Carlo simulations which
replace the integral by a sum over N samples of gauge field configurations Un that are
distributed according to the Boltzmann weight e−S[ψ,ψ̄,U ]. The expectation value for
an observable O is then approximated by

⟨O⟩ ≈ 1
N

∑
Un

O[Un] (2.21)

where Un has a probability ∝ e−S[ψ,ψ̄,U ]. For a sufficiently large number of sample
gauge configurations N , Eq. (2.21) approaches Eq. (2.14) and describes the expecta-
tion values quite accurately. The set of sample gauge configurations is generated by
Monte Carlo algorithms. Hereby, Markov chains provide a reasonable way to obtain
a sequence of gauge configurations which respect the probability distribution intro-
duced by the Boltzmann factor. For more details about the generation of gauge link
configurations see, for example, Sec. 4 of Ref. [50].

2.2 Gauge Actions
The Wilson gauge action given in Eq. (2.13) approximates the continuum gauge action
in Eq. (2.5) up to O(a2), which can be easily seen if Eq. (2.8) is inserted in the Wilson
action and expanded in orders of a. While the discretization effects are already quite
small, further improvement can be achieved using the so-called Lüscher-Weisz gauge
action. [52, 53] Hereby, in addition to the plaquette term known from Wilsons gauge
action, one adds a sum over all closed rectangular 2 × 1 loops, U rect.

µ,ν , and a sum over
all parallelogram loops of lengths 6 along the contour of all three-dimensional cubes,
Upar.
µ,ν,ρ,

SLüscher-Weisz
G [U ] = 2

g2

∑
x∈Γ

(
c0
∑
µ<ν

Re Tr
[
1 − Uµ,ν(x)

]
+ c1

∑
µ̸=ν

Re Tr
[
1 − U rect.

µ,ν (x)
]

+c2
∑

µ ̸=ν ̸=ρ
Re Tr

[
1 − Upar.

µ,ν,ρ(x)
])
.

(2.22)
The coefficients ci obey the relation c0 + 8 c1 + 8 c2 = 1, so that for c1 = c2 = 0 the
Wilson gauge action is recovered. Tree-level improvement in perturbation theory is
obtained by c1 = − 1

12 , c2 = 0 and consequently c0 = 5
3 . Another prominent gauge

scheme is the Iwasaki gauge action which uses c1 = −0.331, c2 = 0 and accordingly
c0 = 3.468 [54, 55].
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Chapter 2. Lattice QCD

2.3 Fermion Actions
The naive fermion discretization given in Eq. (2.11) suffers from lattice artifacts, the
so-called doublers. Considering the naive fermion action in Eqs. (2.10) and (2.11)
for free fermions, e.g., Uµ(x) = 1, and a single flavor, the Fourier transformed Dirac
operator is given by

D̃(p; q) = 1
Γ
∑
x,y∈Γ

e−ipxD(x; y)eiqy = δp,qD̃(p) (2.23)

with
D̃(p) = m1 + i

a

4∑
µ=1

γµ sin(pµa). (2.24)

In the case of massless fermions, m = 0, the inverse Dirac operator, the so-called
quark propagator, can be easily determined. First, one observes that the correct naive
continuum limit is obtained,

D̃−1(p)|m=0 =
− i
a

∑4
µ=1 γµ sin(pµa)

1
a2
∑4
µ=1 sin2(pµa)

a→0−→
−i∑4

µ=1 γµpµ

p2 . (2.25)

Second, the continuum propagator has one pole at p = (0, 0, 0, 0). In the lattice version,
this pole is also present, however, there are also poles for all other combinations of
pµ ∈ [0, π/a], so there appear 15 additional unphysical poles which are called doublers.
These doublers should be removed from the theory.
In the following paragraphs, I will present several lattice fermion discretizations, so-
called fermion actions, which essentially remove or partially remove the doublers, while
fulfilling the correct continuum limit.

2.3.1 Wilson Fermions

One common formulation of lattice fermions has been introduced by Wilson (e.g., see
Ref. [50]). He added an extra term, the Wilson term

OWilson = 1
a

4∑
µ=1

(1 − cos(pµa)), (2.26)

to the Dirac operator in momentum space D̃(p) in order to distinguish the unphysical
poles from the physical pole and to remove the doublers. This term vanishes in the
continuum limit a → 0 and gives rise to an additional mass for the doublers,

m = 2l
a
, l : Number of momentum components pµ = π/a, (2.27)

so only one massless pole remains. Sending a → 0, the mass of all other poles diverges
and they decouple from the theory.

10



2.3. Fermion Actions

In position space, the Wilson Dirac operator is given by

D
(f)
Wilson(x; y) =

(
m(f) + 4

a

)
1 δx,y − 1

2a

±4∑
µ=±1

(1 − γµ)Uµ(x) δx+µ̂,y, (2.28)

where γ−µ ≡ −γµ. Note that the Wilson Dirac operator is invariant with respect
to crucial symmetry transformations like charge conjugation and parity and obeys
γ5-hermiticity, which means that it fulfills

(γ5D)† = γ5D or D† = γ5Dγ5. (2.29)

However, one big disadvantage of Wilson’s discretization is that the Wilson term
breaks chiral symmetry explicitly, even for massless fermions. This can easily be seen,
as the Wilson Dirac operator does not satisfy the equation (e.g., see Ref. [50])

{D, γ5} = 0. (2.30)

Restoring the chiral symmetry is a quite delicate issue and cannot be fully achieved,
while obtaining a theory free of any doublers. This is formulated by the Nielson-
Ninomiya theorem [56–58] which states that for a lattice regularization which is her-
mitian, local and translational invariant, fermion doublers cannot be totally removed
without breaking the chiral symmetry for massless fermions.
Implementing chiral symmetry on the lattice has been an unresolved issue for many
years. Progress was only achieved when it was recognized that the Ginsparg-Wilson
equation,

{D, γ5} = aD γ5 D, (2.31)
provides a way of implementing chiral symmetry in a milder and better controllable
way on the lattice [59, 60]. As the lattice spacing a appears on the right-hand side of
Eq. (2.31), the continuum expression for chiral symmetry in Eq. (2.30) is recovered
for a → 0. Based on the Ginsparg-Wilson equation, fermion actions which restore
chiral symmetry have been developed. Two frequently used discretizations obeying
the Ginsparg-Wilson equation are overlap fermions [61–65] and domain wall fermions
(see Sec. 2.3.3). Another formulation of fermions on the lattice that can recover chiral
symmetry are the so-called staggered fermions (see Sec. 2.3.4). Here, the number of
doublers is reduced while in the meantime a remnant chiral symmetry is maintained.

2.3.2 Wilson-Clover Fermions

While the Wilson formulation of fermions discussed in Sec. 2.3.1 matches the contin-
uum fermion action in Eq. (2.4) when taking the continuum limit a → 0, discretization
errors of O(a) appear for non-zero lattice spacing a. Using the Symanzik improvement
scheme [52,66,67], the discretization errors can be further reduced from O(a) to O(a2)
by adding an additional term to the Wilson action,

SWilson-Clover = SWilson + csw a
5 ∑
x∈Γ

∑
µ<ν

ψ̄(x) 1
2σµν F̂µν(x)ψ(x), (2.32)

11



Chapter 2. Lattice QCD

with the Sheikholeslami-Wohlert coefficient csw and σµν = 1
2 [γµ, γν ]. This term is called

the clover term as its shape looks like a clover leaf. The term F̂µν(x) is expressed by

F̂µν(x) = −i
8 a2 (Qµν(x) −Qνµ(x))

with Qµν(x) = Uµ,ν(x) + Uµ,−ν(x) + U−µ,−ν(x) + U−µ,ν(x)
(2.33)

where Qµν is the sum over plaquettes in the µ− ν plane.
For removing all contributions of O(a), the csw coefficient must be tuned in an ap-
propriate way. This can be done non-perturbatively using the chiral symmetry of
QCD [68–70]. Another feasible approach is the tadpole improvement [71] which re-
duces radiative corrections. Consequently, adding the clover term with a reasonably
tuned csw, the Wilson-clover action is O(a) improved.

2.3.3 Domain-Wall Fermions

Domain-wall fermions [72–75] provide an opportunity to implement chiral symmetry
on the lattice. The basic concept is to introduce a fifth dimension, while chiral zero
modes are located at the domain walls of this dimension, i.e., the four-dimensional
boundaries. Following the approach of Ref. [76], one considers a five-dimensional
continuum Dirac equation with a mass term depending on the fifth dimension,[

D + γ5∂s +m(s)
]
Ψ(x, s) = 0, (2.34)

where D is a four-dimensional massless Dirac operator and s is the coordinate for the
fifth dimension. The mass term is given by

m(s) =
 m for s > 0

−m for s < 0
(m > 0). (2.35)

The spinor Ψ(x, s) can be expanded in modes n and factorized in left- and right-handed
parts according to

Ψ(x, s) =
∑
n∈Z

[
gn(s)PR + fn(s)PL

]
ψn(x), (2.36)

with the chiral projectors PR/L = (1 ± γ5)/2 and the s-dependent prefactors gn and
fn. Eq. (2.36) needs to fulfill the Dirac equation in Eq. (2.34), which yields

[∂s +m(s)] fn(s) = µngn(s),
[−∂s +m(s)] gn(s) = µnfn(s),

[D + µn]ψn(x) = 0.
(2.37)

The value µn can be understood as a coupling of the left- and right-handed parts of Ψ
and consequently must be zero for a chiral zero mode where both parts are decoupled.
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Solving Eq. (2.37) for µ0 = 0, we observe that the solution f0(s) is not normalizable,
so the left-handed spinor ΨL(x, s) vanishes. Consequently, the chiral fermion which
appears at the four-dimensional boundary is right-handed. Note that the location of
this zero mode corresponds to the position where the mass changes sign, i.e., s = 0.
If the fifth dimension Ls is finite as required for lattice calculations, the mass must
change its sign once more. Thus, another zero mode with opposite chirality appears,
located at the other domain wall. These two chiralities decouple only if the length
of the fifth dimension is sent to infinity. For a finite sized fifth dimension, left- and
right-handed modes are coupled and exact chiral symmetry is broken. However, their
interactions are exponentially suppressed by the length of the fifth dimension so an
approximated chiral symmetry is maintained.

This description of chiral symmetry allows the formulation of the domain-wall action
on the lattice given by [73,74]

Sdw
F [Ψ, Ψ̄, U ] =

∑
x,y∈Γ

N5∑
s,r=0

Ψ̄(x, s)Ddw(x, s; y, r) Ψ(y, r), (2.38)

with the domain wall Dirac operator

Ddw(x, s; y, r) = δs,rD(x; y) + δx,yD
dw
5 (s; r). (2.39)

Here, D(x; y) is the known Wilson Dirac operator as defined in Eq. (2.28), but the
mass term is replaced by a new parameter −M5 which should be chosen between 0
and 1 to avoid doublers [75]. The domain-wall term Ddw

5 (s; r) is given by

Ddw
5 (s; r) =δs,r − (1 − δs,N5−1)PL δs+1,r − (1 − δs,0)PR δs−1,r

+m (PL δs,N5−1 δ0,r + PR δs,0 δN5−1,r).
(2.40)

where N5 is the number of lattice points in the fifth dimension and m is the mass ap-
pearing in the four-dimensional theory [50]. The form of the operator Ddw

5 in Eq. (2.40)
guarantees that the boundary conditions in the fifth dimension are fulfilled. Conse-
quently, the five-dimensional fields Ψ(x, s) obey

PLΨ(x,N5) = −mPL Ψ(x, 0),
PRΨ(x,−1) = −mPR Ψ(x,N5 − 1).

(2.41)

Note that for large values of N5 heavy degrees of freedom appear which are removed by
introducing pseudofermion fields, also called Pauli-Villars fields [50,75]. A convenient
choice for the associated Dirac operator has the same form as Eq. (2.39), but with

Dpf
5 (s, r) = Ddw

5 (s, r)
∣∣∣∣
m=1

(2.42)

replacing Ddw
5 (s, r) [75]. For more details about the pseudofermion fields, I refer to

Ref. [50].
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The powerful property of domain-wall fermions is that fermion doublers can be re-
moved, while simultaneously chiral symmetry breaking is kept exponentially small [77].
However, the additional fifth dimension increases the number of lattice points by a
factor of N5 so that numerical computations become extremely expensive.

2.3.4 Staggered Fermions

The staggered formulation of fermions, established by Kogut and Susskind [78], reduces
the number of doublers to 4 while in the meantime a remnant chiral symmetry is
maintained. The fundamental step is to transform the fermion fields according to

ψ(x) = Γ(x)ψ′(x), with Γ(x) = γx1
1 γx2

2 γx3
3 γx4

4 , (2.43)
which mixes spinor and space-time indices (see Ref. [50]). Inserting the transformed
fields governed by Eq. (2.43) in the naive fermion action given in Eq. (2.10), we obtain

SF [ψ′, ψ̄′] = a4 ∑
x∈Γ

ψ̄′(x)
( 4∑
µ=1

ηµ(x)Uµ(x)ψ′(x+ µ̂) − U−µ(x)ψ′(x− µ̂)
2a +mψ′(x)

)
,

(2.44)
where ηµ are scalars which are defined as

η1(x) = 1, η2(x) = (−1)x1 , η3(x) = (−1)x1+x2 , η4(x) = (−1)x1+x2+x3 . (2.45)
Consequently, Eq. (2.44) is diagonal in Dirac space, while all four components are
identical copies. The staggered action is now obtained by keeping only one of the four
identical components, e.g., ψ′

1(x), while the other three are discarded. The number of
fermion doublers decreases therefore from 16 to 4.
To better understand their physical intepretation and to recover the familiar 4-spinor
structure for staggered fermions, one can introduce hypercubes of length 2 which group
together 16 lattice sites [79, 80]. Labeling each hypercube by h and the corners by s,
these new coordinates are related to the original ones by

xµ = 2hµ + sµ,

with xµ = 0, . . . , Nµ − 1, hµ = 0, . . . , Nµ/2 − 1, sµ = 0, 1,
(2.46)

where Nµ is the number of lattice points in µ-direction. Considering the free case, we
can now introduce new fields ψ(t)

A which live on the grid of hypercubes and are defined
as

ψ
(t)
A (h) = 1

8
∑
s

ΓAt(s)ψ′
1(2h+ s), ψ̄

(t)
A (h) = 1

8
∑
s

ψ̄′
1(2h+ s) Γ∗

At(s), (2.47)

where A is a spinor index and t will be identified as the taste of the fermion. This
gives rise to the free staggered action

SF [q, q̄] =b2∑
h

( 4∑
t=1

(
mψ̄(t)(h)ψ(t)(h) +

∑
µ

ψ̄(t)(h) γµ ∇µ ψ
(t)(h)

)

− b

2

4∑
t,t′=1

∑
µ

ψ̄(t)(h) γ5 (τ5τµ)tt′ ∇(2)
µ ψ(t′)(h)

)
,

(2.48)
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with τµ = γTµ and ∇µ and ∇(2)
µ being the first and second lattice derivative as defined

in Appendix A but with the hypercubic lattice spacing b = 2a. Here, we observe four
different types of quarks, called tastes of staggered fermions, labeled by t = 1, . . . , 4.
While the first two terms of Eq. (2.48), corresponding to a mass and kinetic term, are
diagonal in taste, the third term mixes the different tastes of quarks and subsequently
breaks the taste symmetry. Remember that taste originates from doublers and thus
is unphysical. However, the major problem is not the presence of several tastes as
long as these are decoupled [81, 82], but rather the existence of large taste changing
interactions which are absent in real QCD.
The discretization errors of the staggered action are O(a2) as chiral symmetry is main-
tained [81]. These O(a2) errors are, however, unusually large and have two different
sources, first the discretization of the derivatives, and second taste exchange interac-
tions associated to the taste mixing term in Eq. (2.48). While the errors originating
from discretizing the derivatives can be easily removed exploiting the Naik term [83], a
rigorous treatment of O(a2) taste exchange terms has been carried out in Refs. [81,82]
to remove also errors arising due to taste mixing. A quite accurate formulation of
staggered quarks is the highly improved staggered quark (HISQ) action which is de-
rived in Ref. [82] and used for computations with staggered quarks in this work (see
Chapters 6 to 8).
A huge advantage of the staggered fermion action is that it can be simulated faster
than other fermion actions, while relying on the HISQ formulation it is still a quite
accurate discretization [82]. The preservation of chiral symmetry, however, comes at
the cost of introducing additional tastes of fermions which must be treated in a proper
way as discussed above.

2.3.5 Mixed Action Setup

In QCD one distinguishes between sea quarks and valence quarks. Sea quarks de-
scribe virtual quark-antiquark pairs which are permanently created and annihilated,
while valence quarks are those quarks which are the constituents of the hadron. In
lattice QCD, sea quarks are incorporated by including a specific fermion action in the
QCD action that is utilized to generate the gauge link configurations as discussed in
Secs. 2.1.2 and 2.1.3. The valence quarks are introduced directly as fermion fields in
lattice observables. As these fields, which appear in fermionic expectation values, are
contracted according to Wick’s theorem in Eq. (2.20), they are expressed by quark
propagators. The quark propagators in turn are computed by inverting the Dirac op-
erator of a specific fermion action.
In general, the same fermion action is used for incorporating the sea and valence
quarks. However, it is also possible to use different fermion actions for the generation
of gauge link configurations and the computation of the quark propagator. This is
called a mixed action setup. In order to obtain a well-defined continuum limit, the
two actions must be matched. This can be achieved by demanding that the pion mass
is equal in both actions [84, 85]. Even if this matching is done properly, the eigen-
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value spectrum of the sea and valence Dirac operators differ. For small quark masses
this can cause problems arising from so-called exceptional configurations. These are
configurations for which the valence Dirac operator has small eigenvalues and conse-
quently the numerical inversion breaks down. In a setup with same sea and valence
quark action, such exceptional configurations are suppressed during the generation of
the gauge configurations [86]. For computations using mixed-action setups in prac-
tice, it is thus mandatory to ensure that the used ensemble does not suffer from such
exceptional configurations for the given valence quark action.

2.4 Effective Theories for Heavy Quarks
Lattice computations facing heavy quarks like the bottom quark require some special
techniques since the Compton wavelength λCompton ∝ 1/mQ of a heavy quark is in
general smaller than a typical lattice spacing and thus heavy quarks cannot be re-
solved reliably. For example, for a bottom quark with mass mb = 4.18+0.03

−0.02 GeV in
the MS scheme [87], one would require a lattice spacing a < 0.04 fm, while nowadays
commonly used lattices have lattice spacings of order 0.05 fm to 0.2 fm. Accordingly,
relativistic fermion actions as discussed in Sec. 2.3 are only applicable for quarks ful-
filling amQ < 1 which is obviously not the case for bottom quarks.
One major contribution to the masses of heavy mesons are the valence quark masses
themselves. Thus, the basic strategy of an effective theory for heavy quarks is to sep-
arate the different energy scales |pQ| ≪ mQ, where mQ denotes the heavy quark mass
and |pQ| the relevant spatial momentum. In this way, the valence quark mass contri-
bution can be removed and higher energy contributions can be treated perturbatively
so that numerical calculations involving heavy quarks are feasible on recent lattices.
One successful way to describe heavy quarks on the lattice is constructing an effective
non-relativistic Lagrangian. The subsequent discussion of this effective Lagrangian is
based on Refs. [88–90].

2.4.1 Dynamics of Heavy Quark Systems

In order to understand how to separate the energy scales, it is essential to consider the
dynamics of heavy quarks. The power counting differs for systems containing only one
heavy quark and systems containing at least two heavy quarks [89,90]. The dynamics
of the light degrees of freedom and gluons is described by the QCD scale ΛQCD, while
heavy quarks introduce another scale as their dynamics is mainly governed by their
mass mQ.
In systems containing only one heavy quark, the momentum transfer is of order ΛQCD.
As ΛQCD ≪ mQ, the dynamics of the heavy quark is hardly influenced by the light
degrees of freedom, and the motion of the heavy quark is suppressed by (ΛQCD/mQ).
This makes (ΛQCD/mQ) a good expansion parameter for these systems.
For systems consisting of at least two heavy quarks, their dynamics is different as their
movement is mainly governed by their orbital movement around their center of masses.
The orbital velocity v is given for bottomonium by v2 ∼ 0.1 and for charmonium by
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v2 ∼ 0.3, which is based on the 2S − 1S energy splitting [88]. Hence the dynamics of
the quarks is described by three different energy scales: the mass of the heavy quarks
mQ, their spatial momentum |pQ| ∼ mQv, and the kinetic energy scale Ekin ∼ mQv

2.
The appropriate expansions coefficient for such systems is therefore v.
I will continue this discussion of the power counting in Sec. 2.4.3 after recapitulating
the derivation of the NRQCD Lagrangian in the next paragraph.

2.4.2 Foldy-Wouthuysen-Tani Transformation

The heavy quark effective Lagrangian for the continuum can be derived using the
Foldy-Wouthuysen-Tani (FWT) transformation. In this section, I will follow the
derivation in Ref. [91] which has also been carried out in detail in Refs. [90,92,93]. The
underlying idea is to transform the fermion fields in such a way that contributions of
O(1/mn

Q) in the Lagrangian are removed up to desired order n. Note that expanding
in orders of 1/mQ is only formal. As discussed in the previous section, the power
counting and consequently the expansion parameter depends on the actual number of
heavy quarks. For systems with a single heavy quark where the expansion parameter
is (ΛQCD/mQ), it is obviously a convenient choice to expand in orders of 1/mQ. Even
though the power counting is different for heavy-heavy systems, expanding in orders
of 1/mQ is still adequate. I will illustrate this in more detail in Sec. 2.4.3.
The Foldy-Wouthuysen-Tani transformation decouples particle and antiparticle com-
ponents of the Dirac Lagrangian L up to a given order of 1/mQ. As the particle/anti-
particle projectors are given by

P± = 1
2(1 ± γ0), (2.49)

a transformation decoupling particle and antiparticle components must remove all
terms that do not commute with γ0. Accordingly, considering the Dirac Lagrangian
in Minkowski space,

L = ψ̄
(
iγ̂0D

0 + iγ̂jD
j −mQ

)
ψ, (2.50)

the term iγ̂jD
j needs to vanish. This is achieved by the first field transformation

which writes
ψ = exp

(
1

2mQ

iγ̂j D
j

)
ψ(1),

ψ̄ = ψ̄(1) exp
(

1
2mQ

iγ̂j D
j

)
.

(2.51)

This transformation cancels the non-commuting term iγ̂jD
j but introduces an infinite

number of terms in higher powers of 1/mQ. Consequently, the Lagrangian expressed
in terms of the new fields is given by

L = ψ̄(1)
(
iγ̂0D

0 −m
)
ψ(1) +

∞∑
n=1

1
mn
Q

ψ̄(1) O(1),n ψ(1). (2.52)
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Eq. (2.52) is obtained by expanding the exponentials in Eq. (2.51) in Taylor series. In
this manner, the sub-leading term of O(1/mQ) is found to be

O(1),1 = −1
2Dj D

j − ig

8

[
γ̂µ, γ̂ν

]
F µν , (2.53)

with the field strength tensor F µν defined as

[Dµ, Dν ] = ig F µν . (2.54)

For a step-by-step derivation of Eqs. (2.52) and (2.53), I refer to Ref. [92].
In order to further improve the Lagrangian up to O(1/m2

Q), non-commuting terms
appearing in O(1),1 need to be canceled. I split O(1),1 in a commuting part OC

(1),1 and
an anti-commuting part OA

(1),1,

O(1),1 = −1
2Dj D

j − ig

8

[
γ̂i, γ̂j

]
F ij︸ ︷︷ ︸

=OC
(1),1

− ig

2

[
γ̂j, γ̂0

]
F j0︸ ︷︷ ︸

=OA
(1),1

. (2.55)

To cancel the anti-commuting term OA
(1),1, a second field transformation according to

ψ(1) = exp
(

1
2m2

Q

OA
(1),1

)
ψ(2),

ψ̄(1) = ψ̄(2) exp
(

1
2m2

Q

OA
(1),1

)
,

(2.56)

is performed. The Lagrangian for the fields ψ(2), ψ̄(2) consequently reads

L = ψ̄(2)
(
iγ̂0D

0 −m
)
ψ(2) + 1

mQ

ψ̄(2) O
C
(1),1 ψ(2) +

∞∑
n=2

1
mn
Q

ψ̄(2) O(2),n ψ(2). (2.57)

The anti-commuting term of O(1/mQ) has vanished, and the next anti-commuting
term appears in O(1/m2

Q). To cancel also the O(1/m2
Q) contributions, one proceeds

in the same way as for O(1/mQ). First, the operator O(2),2 is expressed in terms
of a commuting part OC

(2),2 and an anti-commuting part OA
(2),2. Then, another field

transformation defined by

ψ(2) = exp
(

1
2m3

Q

OA
(2),2

)
ψ(3),

ψ̄(2) = ψ̄(3) exp
(

1
2m3

Q

OA
(2),2

)
,

(2.58)

is carried out, yielding a Lagrangian which contains only commuting terms up to
O(1/m2

Q). This procedure can be repeated up to the desired order in 1/mn
Q. Here, I
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stop at the given order of O(1/m2
Q). In a final step, the mass term in the Lagrangian

can be eliminated by the field transformation

ψ(3) = exp (−imQγ̂0 x0) ψ̃,

ψ̄(3) = ¯̃ψ exp (imQγ̂0 x0) ,
(2.59)

since the operators OC
(n),n commute with γ̂0 and apart from iγ̂0D

0 no time derivatives
appear. Consequently, the resulting Lagrangian is given by

L = ¯̃ψ
[
iγ̂0D

0 − 1
2mQ

Dj D
j − ig

8mQ

[γ̂i, γ̂j]F ij

− g

8m2
Q

γ̂0

(
(Dj)∗ F j0 − 1

2 [γ̂i, γ̂j] {Di, F j0}
) ]
ψ̃ + O

(
1
m3
Q

)
,

(2.60)

where I inserted OC
(1),1 and OC

(2),2 explicitly.

It can be observed that Eq. (2.60) is block-diagonal, so consequently the particle
and antiparticle solution decouple as desired. We can write the fields ψ̃, ¯̃ψ in a two
component representation using

ψ̃ =
 ψh

χh

 , ¯̃ψ =
(
ψ†
h, −χ†

h

)
, (2.61)

where ψh are the quark fields and χh are the antiquark fields. Moreover, identifying
the chromoelectric and chromomagnetic fields as

Ei = F0i and Bi = −1
2ϵijk Fjk (2.62)

and using

[γ̂i, γ̂j] = −2i ϵijk Σk with Σk =
σk 0

0 σk

 , (2.63)

the Lagrangian is finally given by

L =ψ†
h

[
iD0 + D2

2mQ

+ gσ · B
2mQ

+ g

8m2
Q

(
D∗ · E + iσ · (D × E − E × D)

)]
ψh

+χ†
h

[
iD0 − D2

2mQ

− gσ · B
2mQ

+ g

8m2
Q

(
D∗ · E + iσ · (D × E − E × D)

)]
χh

+O
(

1
m3
Q

)
.

(2.64)
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2.4.3 Power Counting

As the expansion parameter 1/mQ which has been used deriving the effective La-
grangian Eq. (2.64) in Sec. 2.4.2 is purely formal, one needs to distinguish between
systems containing one heavy quark and systems with at least two heavy quarks as
discussed in Sec. 2.4.1.
Remember that the motion of a heavy quark at rest in heavy-light systems is sup-
pressed by (ΛQCD/mQ). Additionally, the momentum transfer as well as the gluon
dynamics are governed by ΛQCD, so that the covariant derivatives are of order

|D0| ∼ |D| ∼ ΛQCD, (2.65)

and the gauge field potentials as well,

|g A0| ∼ |gA| ∼ ΛQCD. (2.66)

The chromoelectric and chromomagnetic fields are hence of order

|gE| ∼ |gB| ∼ Λ2
QCD. (2.67)

Comparing Eqs. (2.65) to (2.67) with the effective Lagrangian in Eq. (2.64) reveals that
a term which appears in order 1/mn

Q is indeed suppressed by (ΛQCD/mQ)n compared
to the leading contribution.
For systems with at least two heavy quarks, their motion is mainly governed by the
orbital movement around the center of masses with velocity v, while the relevant scales
are the spatial momentum and the kinetic energy

|pQ| ∼ mQv, Ekin ∼ mQv
2. (2.68)

The spatial and temporal covariant derivatives acting on gauge fields are of order [94]

|D| ∼ mQv and |D0| ∼ mQv
2. (2.69)

Using the lowest order field equation in Coulomb gauge, it is found that the potential
energy is of same order as the kinetic energy [94], so

|g A0| ∼ mQv
2. (2.70)

Finally, the vector potential is found to be of order [94]

|gA| ∼ mQv
3 (2.71)

and consequently
|gE| ∼ m2

Qv
3 and |gB| ∼ m2

Qv
4. (2.72)

Comparing these expressions with the terms appearing in the Lagrangian in Eq. (2.64),
we observe that all contributions to the Lagrangian are suppressed by certain orders
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of v2. Thus, the formal expansion in 1/mQ is suited for systems with more than one
heavy quark and v2 is proved to be the correct expansion parameter as discussed in
Sec. 2.4.1. Eq. (2.64) contains only terms up to O(v4), however, one term is missing.
This can easily be seen by expanding the relativistic expression of the kinetic energy
in terms of the momentum,

Ekin =
√
m2
Q + p2

Q −mQ =
p2
Q

2mQ

−
p4
Q

8m3
Q

+ O(p6
Q). (2.73)

While the first term is included in Eq. (2.64), the second term, which is O(v4), is
missing. Including this term yields the non-relativistic (NRQCD) Lagrangian for quark
fields

LNRQCD = ψ†
h

[
iD0 + D2

2mQ

+ gσ · B
2mQ

+ D4

8m3
Q

+ g

8m2
Q

(
D∗ · E + iσ · (D × E − E × D)

)]
ψh + O

(
v6
)
,

(2.74)

which includes all terms up to corrections of O(v6). A detailed discussion of power
counting and contributions in higher order in v2 can be found in Ref. [94]. Note that
Eq. (2.74) can be applied for heavy-light as well as heavy-heavy systems. As discussed
above, Eq. (2.74) is accurate up to O(v4) for systems with at least two quarks and
still up to order (ΛQCD/mQ)2 for heavy-light systems.

2.4.4 Euclidean Green Function

To apply the NRQCD formalism in lattice calculations, the Euclidean formulation of
the NRQCD Lagrangian is required. This is obtained by replacing the derivatives
and chromoelectric and chromomagnetic fields expressed in Minkowski space by their
Euclidean counterparts. The only two terms that introduce additional factors are

D0
(M) = iD0

(E) and Ej
(M) = −i Ej

(E), (2.75)

where the index (M) labels Minkowski space and (E) Euclidean space. Consequently,
the Euclidean lattice NRQCD Lagrangian (omitting the index (E)) reads

LNRQCD = ψ†
h

[
∇0 − ∆(2)

2mQ

− gσ · B
2mQ

− (∆(2))2

8m3
Q

+ i g

8m2
Q

(
∇∗ · E + iσ · (∇ × E − E × ∇)

)]
ψh + O

(
v6
)
.

(2.76)

This Lagrangian can be written in short as

LNRQCD = ψ†
h

[
∇0 +H

]
ψh, (2.77)
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so that the associated Green function must obey[
∇0 +H

]
Gψh

(x;x′) = δ4(x, x′). (2.78)

A convenient way to solve Eq. (2.78) is the temporal Green function evolution equation
given by [90,94]

Gψh
(x, x0; y, y0) =

(
1 − δH|x0

2

)(
1 − H0|x0

2n

)n
U †

0(x, x0 − a)

×
(

1 − H0|x0−a

2n

)n (
1 − δH|x0−a

2

)
Gψh

(x, x0 − a; y, y0).
(2.79)

This is the so-called retarded Green function as it describes quark fields and vanishes
for x0 < y0. The Green function for antiquark fields can be easily obtained from
Eq. (2.79) via [90]

Gψh
(x, x0; y, y0) = −Gχh

(y, y0; x, x0)†. (2.80)

Combining the quark and antiquark Green function, the heavy quark propagator in
4-spinor notation is consequently given by

Gh(x, x0; y, y0) = Θ(x0−y0)
Gψh

(x, x0; y, y0) 0
0 0

−Θ(−x0+y0)
0 0

0 Gχh
(x, x0; y, y0)

 .
(2.81)

Let us have a closer look at the Green function in Eq. (2.79). H0 contains the kinetic
term of leading order O(v2) and is given by

H0 = − ∆(2)

2mQ

. (2.82)

The integer n is introduced to avoid instabilities due to high momenta [94]. The term
δH contains all contributions in higher order of v including also Symanzik improvement
terms. Splitting the contributions in O(v4) and O(v6) terms, we obtain

δH = δHv4 + δHv6 (2.83)

with

δHv4 = − c1

(
∆(2)

)2

8m3
Q

+ c2
ig

8m2
Q

(
∇ · Ẽ − Ẽ · ∇

)
− c3

g

8m2
Q

σ
(
∇̃ × Ẽ − Ẽ × ∇̃

)

− c4
g

2mQ

σ · B̃ + c5
∆(4)

24mQ

− c6

(
∆(2)

)2

16nm2
Q

(2.84)
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and

δHv6 = − c7
g

8m3
Q

{
∆(2),σ · B̃

}
− c8

3g
64m4

Q

{
∆(2),σ

(
∇̃ × Ẽ − Ẽ × ∇̃

)}
− c9

ig2

8m3
Q

σẼ × Ẽ.

(2.85)

The chromoelectric and chromomagnetic fields E and B are replaced by their Symanzik
improved counterparts Ẽ and B̃ as defined in Appendix A of Ref. [90]. The same holds
for the improved derivatives ∇̃ which can be also found in Appendix A of Ref. [90].
The coefficients ci are the matching coefficients which should be chosen such that the
effective theory matches full QCD. A reasonable way of matching the parameters per-
turbatively is using tadpole improvement for the underlying gauge fields [71]. This is
achieved by dividing all gauge links by the tadpole parameter u0, while a convenient
choice for u0 is the mean link in Landau gauge u0L [71, 95]. Using tadpole improve-
ment, one possibility is to set the matching coefficients to their tree-level value ci = 1.
Throughout this work, I use a heavy quark Green function, which is accurate up to
O(v4), so the matching coefficients associated with δHv6 are set to zero, c7 = c8 =
c9 = 0. The actual choice of the other matching coefficients that are used for the
investigations carried out in this work is discussed in the corresponding chapter (see
Chapters 5 and 6).

2.5 Relativistic Heavy Quark Action
Nowadays, there exist also approaches that treat heavy quarks in a relativistic frame-
work. As lattice discretization effects become large for amQ ≳ 1 while the non-
relativistic expansion breaks down for amQ ≲ 1, this is especially useful for charm
quarks where amQ ≈ 1 on commonly used lattices but also for heavier quarks when
moving to smaller lattice spacings. A well-established approach to treating heavy
quarks relativistically is the so-called Fermilab method [96, 97], where the basic idea
is to tune the bare quark mass and the coupling of spatial and temporal terms in
the heavy quark action such that the heavy quark dispersion relation is correctly
reproduced. The Fermilab method has been applied in several slightly different vari-
ants [49,96–106], while the general form of the Fermilab action is an anisotropic clover
action according to

Srel. heavy =a4 ∑
x∈Γ

ψ̄(x)
[
mQ + γ0∇0 − a

2∇(2)
0 + ζ

3∑
i=1

(
γi∇i − a

2∇(2)
i

)

−ce
a

2

3∑
i=1

σ0iF̂0i(x) − cB
a

4

3∑
i,j=1

σijF̂ij(x)
]
ψ(x).

(2.86)

Here, ∇µ and ∇(2)
µ denote the first and second covariant lattice derivative in direction

µ as defined in Eq. (A.3). In contrast to the isotropic clover action given in Eq. (2.32)
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which has two parameters, the anisotropic clover action has four parameters which are
the bare quark mass mQ, the anisotropy ζ, and the chromoelectric and chromomag-
netic coefficients cE and cB. Considering the coefficients ζ, cE and cB as functions of
amQ and tuning all four parameters appropriately, discretization errors of order a|p|,
(amQ)n and a|p|(amQ)n can be eliminated [105].
In this work, I rely on two different variations of the Fermilab action. The first variant
uses the same parameter for the chromoelectric and chromomagnetic coefficients, cE =
cB = cP , and tunes the remaining three parameters, the mass amQ, the anisotropy
parameter ζ, and the clover coefficient cP in an appropriate way. This approach has
been utilized, e.g., in Refs. [96, 101, 105]. The second approach which is the simplest
variant of the Fermilab action fixes the anisotropy to unity and sets the clover coeffi-
cient to its tree-level value with tadpole improvement, cE = cB = csw = 1/u3

0, where u0
is the mean link. The single remaining parameter is the bare quark mass amQ which is
related to the so-called hopping parameter κQ according to 2κQ = 1/(amQ + 4) and is
finally tuned non-perturbatively. This has been applied, e.g., in Refs. [49,103,104,106].

2.6 Statistical and Systematic Uncertainties
Lattice calculations provide a first principle approach to computing QCD observables.
While the path integral formulation in the continuum discussed in Sec. 2.1.2 is exact,
computing observables in lattice QCD introduces statistical and systematic errors
which can, however, be estimated or controlled.

2.6.1 Estimating Statistical Uncertainties

Statistical uncertainties arise as only a limited number of possible paths of the path
integral formulation are considered. Those paths are governed by the gauge field con-
figurations which are generated according to a Monte-Carlo sampling (see Sec. 2.1.3).
Using this set of gauge field configurations, one can determine the expectation value
of an observable and its statistical error. Reasonable approaches to computing this
statistical uncertainty are the jackknife or the bootstrap methods, which are closely
related to each other. In both cases, one considers the N measurements of an observ-
able X which are given by the data set {Xi}. The mean value X̂ obtained from these
N measurements is given by

X̂ = 1
N

N∑
i=1

Xi. (2.87)

2.6.1.1. Jackknife method

In order to compute the Jackknife error of the observable X, one draws N so-called
Jackknife samples X̃n by removing the n-th entry of the data set {Xi} and computing
the mean value of this reduced sample,

X̃n = 1
N − 1

N∑
i ̸=n

Xi. (2.88)
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An estimate for the statistical error σX̂ is finally obtained via

σ2
X̂

= N − 1
N

N∑
n=1

(X̃n − X̂)2 (2.89)

so that the expectation value for the observable X can be expressed as ⟨X⟩ = X̂±σX̂ .

2.6.1.2. Bootstrap method

An alternative approach to estimating the statistical uncertainty is provided by the
bootstrap method. In this case a set of K samples is created by choosing randomly
N data points from the original set {Xi}. For each of the K new samples, the mean
value X̃k is determined. An estimate for the expectation value of X is computed as

X̃ = 1
K

K∑
k=1

X̃k (2.90)

with the associated bootstrap error

σ2
X̃ = 1

K

K∑
k=1

(X̃k − X̃)2. (2.91)

In analogy to the jackknife method, the expectation value for the observable is then
quoted as ⟨X⟩ = X̃ ± σX̃ .

Both methods assume that the data set {Xi} is uncorrelated. If this is not the case,
an efficient method is to bin the data by dividing it into sub-blocks of fixed size and
computing their mean values. These means serve then as a new data set which is used
to compute the statistical error.
If the number of uncorrelated data points N is increased, which is equivalent to in-
creasing the number of gauge field configurations, the statistical error decreases like
1/

√
N .

2.6.2 Systematic Uncertainties

The formulation of QCD on the lattice introduces systematic errors due to the finite
volume, the discretized space-time, and unphysical heavy quark masses. In principle,
these sources of systematic error can be controlled. This can be done by investigating
the dependence of a QCD observable, e.g., the mass of a hadron, on the spatial volume,
the lattice spacing and the pion mass.

2.6.2.1. Discretization Errors

The first source of systematic errors arises due to the discretized space-time. The
lattice actions for the gluon and fermion fields which have been discussed in Secs. 2.2
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and 2.3 are only accurate up to a specific order in the lattice spacing a. Consequently,
the same holds also for a lattice observable computed with these actions, so the lattice
QCD result depends on the lattice spacing a. Results for continuum space-time are
obtained if one approaches the limit a → 0, which is the so-called continuum limit.
Decreasing the lattice spacing, however, shrinks also the physical volume of the box
if the number of lattice points Ns and Nt is kept constant. To maintain the physical
volume when approaching the continuum limit, the number of lattice points must be
increased accordingly which results in increasing the numerical costs. A reasonable
way to study the a-dependence of an observable is to compute the expectation value
for different lattice spacings a, while the physical volume is preserved and perform a
continuum extrapolation to a = 0.

2.6.2.2. Finite Volume Effects

Systematic errors are also introduced by the finite size of the lattice. Due to the pe-
riodic boundary conditions, interactions around the spatial torus appear. These are
governed by the mass of the lightest meson, the pion, and are exponentially suppressed
according to exp(−mπ L) [107]. In general, these effects are negligible if mπ L ≳ 4,
which is the case for most modern lattices. Additionally, for a hadronically stable state
the spatial volume must be large enough to accommodate this particle. If the volume
were too small, the wave function would be influenced by the boundaries of the box
and the energy spectrum would change. In practice, a physical box size ≳ 3 fm turned
out to be sufficiently large.
For multi-particle states, however, finite volume effects play a crucial role and influ-
ence the energy levels also for rather large box sizes. The energy spectrum for such
states differs significantly from the infinite volume case as the finite box discretizes the
previously continuous spectrum of scattering states. This problem has been addressed
by M. Lüscher, who related the finite spectrum to infinite volume quantities [22], and
will be exhaustively discussed in Chapter 3.

2.6.2.3. Unphysical heavy quark masses

A further adjustment that is usually applied in lattice calculations is choosing a heav-
ier than physical light quark mass. In practice, a good indicator for the light quark
masses is the pion since it consists exclusively of two light quarks. While at the phys-
ical point, the pion mass is given by mπ,phys. ≃ 135 MeV, lattice calculations often use
pion masses in the region of 200 MeV to 300 MeV.
Whereas the first two sources of systematic errors originate directly from establishing
QCD on the lattice, this adjustment is motivated by practical reasons as computa-
tions for small pion masses are expensive or in some cases even problematic. Choosing
a small pion mass requires extremely large lattices to keep finite size effects due to
interactions around the torus negligible. Additionally, the computation of the quark
propagator which involves inverting the Dirac operator (see Sec. 4.4) is numerically
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more expensive for small quark masses. Finally, small quark masses can also lead to
problematic gauge field configurations, the so-called exceptional configurations (see
Sec. 2.3.5). These can appear for some fermion discretizations if small pion masses
lead to zero eigenvalues of the Dirac operator.
In order to avoid such problems and keep the numerical costs within acceptable limits,
it is a common strategy to determine the expectation value of an observable for several
heavier-than-physical pion masses and extrapolate the results to the physical point,
which is often referred to as chiral extrapolation.

Throughout this work all three sources of systematic errors will be addressed. All
computations are performed on several gauge link ensembles which differ in the pion
mass, the lattice spacing, and the physical volume. For all systems considered in this
work, I will perform a chiral extrapolation to the physical point if feasible and discuss
possible implications of discretization effects. Additionally, I apply Lüscher’s method
to extrapolate results to the infinite volume, if necessary.
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3
Two-Particle States in the

Finite Volume
Within the last decades, a large number of previously unknown hadrons have been
found in experiments. While some of them are stable with respect to the strong in-
teraction, the majority are resonances with rather short lifetimes. This poses new
challenges for a theoretical formulation of such unstable states as additionally to the
binding also the decay process must be encoded. Lattice QCD as a non-perturbative
approach provides a framework for dealing with both stable and resonant states. How-
ever, the finite volume of the lattice complicates studying resonances. While hadron-
ically stable states appear as eigenstates of QCD with a discrete energy, resonances
are enhancements in the continuous spectrum of scattering states [108]. The crucial
quantity to describe the elastic scattering of two hadrons is the phase shift δl. It de-
scribes the shift of the phase between the incoming and the outgoing l-wave outside
the interaction range and it encodes the relevant information of the two-particle in-
teraction.
In the finite volume of the lattice, the previously continuous spectrum of scattering
states becomes discrete. Thus the main challenge is to relate the discrete energy levels
of the lattice to the infinite volume phase shift which allows us to draw conclusions
about a possibly existing resonance.
This problem has been solved by Lüscher who developed an approach that relates the
discrete two-particle energies in a cubic box to the scattering phase shift in the infinite
volume [22,107,109–111]. Lüscher’s formalism, often referred to as Lüscher’s method,
has been originally developed for the scattering of two particles with equal masses
m and zero total momentum P = 0. This formalism has been extended to non-zero
momenta P ̸= 0, so-called moving frames, by Rummukainen and Gottlieb [112] and
Feng et al. [113, 114] and generalized for particles with different masses by Fu [115]
and Leskovec et al. [116]. On the lattice, the phase shift δl(s) can only be computed
for the discrete energies s where s = E2 − P2 is the squared center-of-momentum
energy and E are the discrete lattice energies. Considering also moving frames with
P ̸= 0 consequently enlarges the number of accessible energies s for which the phase
shift δl(s) can be computed. This allows a more precise determination of the phase
shift’s energy dependence and facilitates extracting resonance parameters.
In this chapter I will first present the derivation of the scattering phase shift formula
for two-particle elastic scattering in Sec. 3.1. In the subsequent Sec. 3.2 I will focus
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on the reduced rotational symmetry of the lattice and the resulting consequences for
two-particle scattering. This is followed by a brief discussion of the theoretical founda-
tions of coupled channel scattering, describing processes with more than one scattering
channel involved in Sec. 3.3.

3.1 Derivation of Scattering Phase Shift Formula
In this section, I recapitulate the derivation of Lüscher’s formula that relates the finite
volume energies to the infinite volume phase shift. Deriving the phase shift formula
for moving frames and particles with different masses is conceptually similar to the
original work by Lüscher [22] for P = 0 and equal masses. Since the phase shift is
naturally defined in the center-of-mass frame (CMF), the major overhead to establish
a phase shift formula for moving frames (MF) is to transform the scattering system
back to the CMF. This is accomplished by a Lorentz transformation and has been
carried out for the scattering of two particles with both equal masses [112–114, 117]
and unequal masses [115, 116]. Here, I will illustrate the derivation of the phase shift
formula in the most general form considering moving frames and particles of different
masses following the discussion in Refs. [115,116].

3.1.1 Non-Interacting Particles

We consider two non-interacting particles with masses m1 and m2, momenta p1 and
p2, and total momentum P in a finite box of size L3. As a consequence of the periodic
boundary conditions, the momenta obey

P = p1 + p2 = 2π
L

d, with d ∈ Z3. (3.1)

The energy E of the two particles in the lattice frame, which is also called moving
frame (MF) for P ̸= 0, is given by the sum of the single particle energies,

E =
√
m2

1 + p2
1 +

√
m2

2 + p2
2, with p1 = 2π

L
n1, p2 = 2π

L
n2, n1,n2 ∈ Z3. (3.2)

The center-of-momentum frame (CMF) moves relatively to the lattice frame with a
velocity v given by

v = P
E
, γ = 1√

1 − v2
, (3.3)

where γ is the Lorentz factor. Note that a Lorentz boost only affects the component
of a vector y that is parallel to v while the perpendicular component is unaffected,

γ y = γ y∥ + y⊥, with y∥ = v · y
|v|2

v, y⊥ = y − y∥. (3.4)

As the total momentum vanishes in the CMF, the single particle momenta obey

p1,cm = pcm = −p2,cm. (3.5)
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Using a Lorentz transformation to relate pi,cm and pi one obtains

p1 = γ(pcm + vE1,cm) and p2 = γ(−pcm + vE2,cm), (3.6)

where Ei,cm is the center-of-momentum energy of the i-th particle given by

E1,cm = Ecm

2

(
1 + m2

1 −m2
2

(Ecm)2

)
and E2,cm = Ecm

2

(
1 + m2

2 −m2
1

(Ecm)2

)
. (3.7)

Here, Ecm =
√
s denotes the two-particle energy in the CMF which is related to E via

Ecm =
√
s = γ−1E =

√
E2 − P2. (3.8)

Finally, we can express the momentum pcm in the CMF as

pcm = γ−1(p1 − γvE1,cm) = γ−1
(

p1 − 2πd
L

1
2

[
1 + m2

1 −m2
2

(Ecm)2

])
≡ 2π

L
r . (3.9)

In the last step, a short notation for pcm has been introduced [116] using r ∈ Pd ,
where Pd describes the set of all lattice points after the Lorentz transformation from
the MF to the CMF according to

Pd =
{

r | r = γ−1(n − 1
2 Ad)

}
, n ∈ Z3 (3.10)

with the abbreviation
A ≡ 1 + m2

1 −m2
2

(Ecm)2 . (3.11)

The mesh Pd and especially the symmetry transformations under which this set of
points is invariant play a crucial role for the scattering formalism on the lattice [116]
and will be discussed in detail in Sec. 3.2.

3.1.2 d-Periodic Boundary Conditions of the Wave Function

The wave function for the system of two spinless particles ψ(x1, x2) transforms under
a Lorentz transformation according to

ψ(x1, x2) = ψ′(x′
1, x

′
2) = ψ′(Λx1,Λx2), (3.12)

where (x′)µ = λµνx
ν denotes the Lorentz transformation of the space-time argument.

In Ref. [112], Rummukainen and Gottlieb derived for two particles with equal masses
an expression that relates the wave function ψMF(x1, x2) in the moving frame to the
wave function ϕCM(xcm) in the center-of-momentum frame depending only on the
relative coordinate xcm = x1,cm − x2,cm. In a finite box with size L3 and periodic
boundary conditions, the wave function ψMF in the moving frame fulfills

ψMF(x1,x2) = ψMF(x1 + n1L,x2 + n2L), n1,n2 ∈ Z3. (3.13)
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Using their relation between the MF and CMF wave functions, Rummukainen and
Gottlieb determined the so-called d-periodic boundary conditions for the wave function
ϕCM in the CMF [112]. This has been generalized by Fu [115] for the case of two
particles with different masses, yielding

ϕCM(xcm) = (−1)And ϕCM(xcm + γnL), n ∈ Z3, (3.14)

with A as defined in Eq. (3.11).

3.1.3 Interacting Particles

In the case of two interacting particles, the interaction will change the energy eigenval-
ues compared to the non-interacting case, and the individual momenta of the particles
do not obey anymore the quantization condition in Eq. (3.2). To provide a clear
distinction between quantized and non-quantized momenta, I will label the momenta
appearing for interacting particles with k, while I will continue to use p for momenta
obeying a quantization condition like Eq. (3.2) or Eq. (3.10).
The center-of-momentum energy for two interacting particles is consequently given by

Ecm =
√
s =

√
m2

1 + k2
cm +

√
m2

2 + k2
cm, with kcm = 2π

L
q, (3.15)

where the entries of q are arbitrary numbers. The subsequent discussion will be car-
ried out in the CMF, and to increase readability, I will omit from now on the index
cm indicating CMF quantities.
Following the discussion in Refs. [112,115,116], the two-particle interaction is charac-
terized by a short-range potential V (x) with x = |x|, which vanishes in an exterior
region |x| > R, while R < L/2. Before I consider the wave function in a finite box,
let us go back to the infinite volume. We know that the wave function for a spherical
symmetric potential can be expanded in spherical harmonics Ylm,

ϕCM(x) =
∞∑
l=0

l∑
m=−l

Ylm(θ, φ)ϕlm(x). (3.16)

In the exterior range |x| > R, ϕCM(x) solves the Helmholtz equation(
∆x + k2

)
ϕCM(x) = 0, (3.17)

with k = |k|, and the free radial wave function is found to be

ϕlm(x) = clm
[
al(k) jl(kx) + bl(k)nl(kx)

]
, (3.18)

where jl and nj are the spherical Bessel and Neumann functions. The interactions in
the interior region affect the free solution in the exterior region only by a phase shift
δl(k) between the incoming wave jl − inl and the outgoing wave jl + inl. Comparing
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this shifted wave function with the free solution in Eq. (3.18) yields the well-known
relation [22,37,112]

e2iδl(k) = al(k) + ibl(k)
al(k) − ibl(k) . (3.19)

In the finite box, the proceeding is similar, but additionally to the Helmholtz equa-
tion given in Eq. (3.17), ϕCM must also satisfy the d-periodic boundary condition in
Eq. (3.14). One possible choice for ϕCM is the Green function

Gd(x, k2) = 1
γ L3

∑
p= 2π

L
r, r∈Pd

eipx

p2 − k2 , (3.20)

where the sum runs over all possible lattice momenta p = 2πr/L which are defined
by the mesh Pd given in Eq. (3.10). Note that we assume that k is not a “singular”
value, which means that for k = 2π|q|/L it holds that q ̸∈ Pd . Considering singular
values requires a special treatment which has been discussed in detail in Ref. [22] for
the CMF and equal masses and can be generalized for moving frames as shown in
Ref. [112]. Around the origin x = 0, the Green function must be governed by a power
of 1/|x| to satisfy the Helmholtz equation [22]. Thus, a convenient way to express
Gd(x, k2) is to split off the singular part at the origin and write the Green function as

Gd(x, k2) = k

4πn0(kx) + Ĝd(x, k2), (3.21)

where Ĝd(x, k2) contains all regular parts of Gd(x, k2) [22, 112]. A complete set of
linear independent solutions of the Helmholtz equation is given by

Gd
lm(x, k2) = Ylm(∇)Gd(x, k2), (3.22)

where Ylm(x) = xlYlm(θ, φ) are the harmonic polynomials [22, 112, 116]. Accordingly,
the wave function ϕCM can be written as a linear combination of the functions Gd

lm,

ϕCM(x) =
∞∑
l=0

l∑
m=−l

vlmG
d
lm(x, k2). (3.23)

In analogy to the continuum case, we expand Eq. (3.23) and thus the functions
Gd
lm(x, k2) in spherical harmonics. This has been initially done by Lüscher for the

CMF [22], and the generalization to moving frames is straightforward [112,116], yield-
ing

Gd
lm(x, k2) = (−1)lkl+1

4π

nl(kx)Ylm(θ, φ) +
∞∑
l′=0

l′∑
m′=−l′

Md
lm,l′m′(q2) jl′(kx)Yl′m′(θ, φ)

 .
(3.24)

The first term is the singular part at the origin which can be derived from Ylm(∇)n0(kx)
as done in Ref. [22]. The matrix Md appearing in the regular term is essential to de-
termine the two-particle phase shift. It is governed by an analytic expression which
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was first derived in Ref. [22] for the CMF, while its generalization to moving frames
was deduced in Refs. [112,116] and is given by

Md
lm,l′m′(q2) = (−1)l

γπ3/2

l+l′∑
j=|l−l′|

j∑
s=−j

ij

qj+1 Zd
js(1; q2)Clm,js,l′m′ , (3.25)

where the tensor Clm,js,l′m′ can be expressed in terms of the Wigner 3j-symbols,

Clm,js,l′m′ = (−1)m′
il−j+l

′
√

(2l + 1)(2j + 1)(2l′ + 1)
 l j l′

m s −m′

 l j l′

0 0 0

 .
(3.26)

The generalized Zeta function Zd
js(1; q2) is given by [115,116]

Zd
lm(s; q2) =

∑
x∈Pd

Ylm(x)
(x2 − q2)s . (3.27)

The sum in Eq. (3.27) diverges for Re(2s) < l+ 3, but the divergence can be removed
by analytically continuing to the complex plane [116]. A more elaborated discussion
of this analytic continuation as well as an approach to numerically evaluating the Zeta
function can be found in Refs. [22,116].
In practice, not the complete matrix Md but only the elements with the lowest co-
efficients l are relevant. Consequently, we can write Md for l ≤ 1 and −1 ≤ m ≤ 1
explicitly as

M = Md
lm,l′m′ =


00 10 11 1 − 1

00 w00 i
√

3w10 i
√

3w11 i
√

3w1−1
10 −i

√
3w10 w00 + 2w20

√
3w21

√
3w2−1

11 i
√

3w1−1 −
√

3w2−1 w00 − w20 −
√

6w2−2
1 − 1 i

√
3w11 −

√
3w21 −

√
6w22 w00 − w20

 (3.28)

with the abbreviation

wlm = 1
π3/2

√
2l + 1 γ ql+1

Zd
lm(1; q2). (3.29)

In a last step, we compare the wave function ϕCM(x) expressed in Eq. (3.23) using
the expansion of the functions Gd

lm in Eq. (3.24) with ϕCM(x) given in Eqs. (3.16)
and (3.18). Matching the factors in front of the spherical Bessel and Neumann func-
tions jl and nl, respectively, one obtains

clm bl(k) = (−1)lkl+1

4π vlm, clm al(k) =
∑
l′,m′

(−1)l′kl′+1

4π vl′m′ Md
l′m′,lm(q2), (3.30)

which can be rewritten by inserting the first into the second equation as∑
l′,m′

cl′m′

[
bl′(k) Md

l′m′,lm(q2) − al′(k) δll′ δmm′

]
= 0. (3.31)

34



3.1. Derivation of Scattering Phase Shift Formula

This is a system of homogeneous linear equations which has only non-zero solutions if
the determinant of the coefficient matrix vanishes. Accordingly, this gives rise to the
determinant condition

det
[
BM − A

]
= 0, (3.32)

where the matrices A and B are related to the coefficients al and bl [22] and M is a
short notation for the matrix Md ,

Mlm,l′m′ = Md
lm,l′m′(q2), Alm,l′m′ = al′(k) δll′ δmm′ , Blm,l′m′ = bl′(k) δll′ δmm′ .

(3.33)
Identifying the phase shift in the same way as in Eq. (3.19) as

e2iδl(k) = A+ iB

A− iB
, (3.34)

the determinant condition in Eq. (3.32) is given by

det
[

cot
(
δl(k)

)
−M(q2)

]
= 0. (3.35)

This is the key equation for describing two-particle scattering in a box as it relates the
energy levels Ecm (or equivalently the momenta k) which are computed on the lattice
to the infinite volume scattering phase shift δl(k). Note that according to Eq. (3.15),
the center-of-momentum energy Ecm =

√
s and the momentum k are directly related

to each other. Consequently, it is equivalent to expressing the phase shift δl as a
function of the energy s or the momentum k, while in some cases, for example, in
coupled channel systems, it is more convenient to choose δl(s).
The scattering phase shift δl(s) is directly related to the scattering amplitude T (l)(s)
as

T (l)(s) = 1
ρ(s) sin

(
δl(s)

)
eiδl(s) = 1

ρ(s)
1

cot
(
δl(s)

)
− i

, (3.36)

where ρ(s) = 2k/
√
s is the phase space. In modern lattice scattering studies, this

scattering amplitude plays a central role. Analytically continuing T (l)(s) to complex
energies, physical states appear as poles of this T -matrix in the complex energy plane
and thus allow to deduce the parameters of resonances.
Note that Eq. (3.35) describes two particles with different masses and non-zero total
momentum P ̸= 0. For m1 = m2, the parameter A given in Eq. (3.11) becomes unity
and the result for equal masses [112] is recovered. Setting additionally P = 0 and
γ = 1 reproduces Lüscher’s original version of the phase shift formula [22].
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3.2 Symmetry Properties of the Lattice
In contrast to the infinite volume with continuous space-time where rotations are gov-
erned by the continuous orthogonal group O(3), the lattice has a reduced rotational
symmetry. This is a consequence of the discrete grid of lattice points which is given
by the mesh Pd defined in Eq. (3.10). Note that Pd describes the grid of lattice points
for arbitrary total momenta P = 2πd/L, while the factor A in Eq. (3.10) also allows
us to distinguish between systems with two particles of equal or different masses. We
introduce now a group G which contains all symmetry transformations R̂ that leave
the points in Pd invariant. A short discussion of its relevant group theoretical proper-
ties can be found in Appendix B.1.
If the lattice is at rest, it has the symmetry of a cube, while the corresponding sym-
metry group is the cubic group Oh. For moving frames, however, where a Lorentz
transformation to the CMF is required, the volume of the box is Lorentz contracted
along the direction of P and the previously cubic form of the box is deformed [112].
As a consequence, the symmetry is further reduced, and the corresponding symmetry
group becomes a subgroup of the cubic group Oh. The actual shape of the box and
thus the relevant symmetry group depends on the total momentum P. Moreover,
for moving frames, the symmetry group also depends on whether the masses of the
two particles are equal or not. According to Eq. (3.10), for different masses the cubic
mesh is first shifted by −1/2Ad, while A ̸= 1 for m1 ̸= m2. Thus, the origin of the
mesh Pd is not anymore in the center of a unit cell, and several symmetries like an
inversion with respect to the origin are lost [116]. Consequently, the symmetry groups
for moving frames and two particles with different mass have less elements than in
the case of equal masses. I list the symmetry groups for the lowest total momenta P,
distinguishing the case of equal and different masses, in Table 3.1.

d = L
2πP Symmetry group Classification Nelements

(0, 0, 0)T Oh cubic 48
equal masses m1 = m2

(0, 0, 1)T D4h tetragonal 16
(1, 1, 0)T D2h orthorhombic 8

different masses m1 ̸= m2

(0, 0, 1)T C4v tetragonal 8
(1, 1, 0)T C2v orthorhombic 4

Table 3.1.: Classification of Lorentz boosts, associated symmetry group, cubic classification
and number of elements for the center-of-momentum frame and moving frames with |P|2 ≤
2(2π/L)2.
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The two-particle wave function in Eq. (3.23) transforms under a symmetry transfor-
mation R̂ according to

R̂ ϕCM(x) =
∑
l,m,m′

vlm Γ(l)
mm′(R̂)Gd

lm′(x, p2), (3.37)

where Γ(l)
mm′(R̂) is the representation matrix of the transformation R̂ in the basis of

Ylm [114] and originates from

Ylm(R̂x) =
l∑

m′=−l
Γ(l)
mm′(R̂)Ylm′(x). (3.38)

For the rotational group O(3), the spherical harmonics Ylm form an orthogonal basis,
and the representations Γ(l)

mm′(R̂) are irreducible representations of the group O(3)
[114]. For the group G, the Γ(l)

mm′(R̂) are in general reducible and can be decomposed
into the irreducible representations (irreps) Λ of group G. In the case of the cubic group
Oh there are 10 different irreps, namely A±

1 , A±
2 , E±, T±

1 , T±
2 where ± distinguishes

the transformation behavior under reflections [22, 118].
The representations Γ(l) of the rotational group O(3) are formed by the 2l+1 functions
Ylm. The decomposition of Γ(l) into the irreducible representations Λ can be performed
by exploiting the transformation behavior of Ylm under the transformations R̂ ∈ G. I
carry this out exemplarily for Oh in Appendix B.2 where the resulting decomposition
up to l ≤ 2 is found to be

Γ(0) = A+
1 ,

Γ(1) = T−
1 ,

Γ(2) = E+ ⊕ T+
2 .

(3.39)

The symmetry transformations of group G that result in the decomposition of the
representations Γ(l) into irreps also lead to a block-diagonal form of the matrix M
defined in Eq. (3.28). To recognize this, we consider the transformation behavior
under transformations R̂ of the Zeta function Zd

lm(s; q2) given in Eq. (3.27) which is
the main building block of the matrix M . Relying on the fact that all transformations
R̂ ∈ G leave the mesh Pd invariant, the Zeta function can be rewritten as

Zd
lm(s; q2) =

∑
x∈Pd

Ylm(x)
(x2 − q2)s =

∑
x′=R̂x∈Pd

Ylm(x ′)
(x ′2 − q2)s =

∑
x∈Pd

|x|l Ylm(R̂x)
(x2 − q2)s

=
∑

x∈Pd

l∑
m′=−l

Γ(l)
mm′(R̂) Ylm′(x)

(x2 − q2)s =
l∑

m′=−l
Γ(l)
mm′(R̂) Zd

lm′(s; q2),
(3.40)

where |x ′| = |x| and the transformation relation for Ylm in Eq. (3.38) has been used
[116]. This set of linear relations for Zd

lm can be used to determine if a specific Zd
lm

is purely real, imaginary or zero [22]. For example, in the case of the group Oh the
inversion i ∈ Oh which transforms x → −x leads to

Zd
1m = −Zd

1m, m = −1, 0, 1, (3.41)
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and consequently Zd
1m = 0. Hereby, the representation matrices Γ(l)

mm′(R̂) are obtained
from the transformation of the spherical harmonics Ylm according to Eq. (3.38) as
listed in Table B.3. In the case of Oh, all Zd

lm with l < 4 vanish besides Zd
00 [22].

Consequently, the matrix M in Eq. (3.28) becomes block diagonal,

M = Md
lm,l′m′ =


00 10 11 1 − 1

00 w00 0 0 0
10 0 w00 0 0
11 0 0 w00 0
1 − 1 0 0 0 w00

. (3.42)

The quantization condition in Eq. (3.35) now allows us to extract the S-wave scattering
phase shift δ0 from the A+

1 irrep of Oh as

cot
(
δ0(k)

)
= ω00 = Z00(1; q2)

π3/2 q
, (3.43)

and the P -wave scattering phase shift δ1 from the T−
1 irrep of Oh as

cot
(
δ1(k)

)
= ω00 = Z00(1; q2)

π3/2 q
. (3.44)

Here I utilized Z00(1; q2) ≡ Zd=0
00 (1; q2) and γ = 1. For the other symmetry groups G ∈

{D4h, D2h, C4v, C2v}, the matrix M in Eq. (3.28) can also be simplified following the
same proceeding, which means utilizing the symmetry transformations of the relevant
symmetry group G to study the transformation behavior of Zd

lm. The final forms of
the M matrices are collected in Appendix B.3 for all groups G ∈ {D4h, D2h, C4v, C2v}.

3.3 Coupled Channel Scattering
In practice, it is often not sufficient to describe a resonance by the scattering of two
particles. Many hadrons have several decay channels leading to different final states
which are all of similar importance. In order to study such resonances, all decay chan-
nels must be taken into account, which requires a theoretical treatment of such coupled
channel scattering processes [119–125]. What complicates this is the fact that these
channels interact with each other, so the scalar potential introduced at the beginning
of Sec. 3.1.3 must be replaced by a matrix potential containing also effective two-body
interactions [124]. As a consequence, also the scattering amplitude T (l) that is scalar
for a single channel scattering process becomes a matrix for the coupled channel scat-
tering formalism. Note that the scattering amplitude T (l) is the crucial quantity for
scattering processes in coupled channels, while a scalar phase shift is not suited to
capture all information about the scattering process.
A relation between the finite volume energies and the infinite volume scattering ampli-
tude for coupled-channel scattering has been derived in Ref. [124] by generalizing the
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partial-wave decomposition using separate wave functions for the different channels.
The resulting determinant condition is given by

det
[
δll′ δmm′ δαβ + iρα(s)T (l)

αβ(s)
(
δll′ δmm′ + iMd

lm,l′m′(q2
α)
)]

= 0, (3.45)

where the indices α, β denote the different channels [124]. ρα(s) = 2kα/
√
s is the

relativistic phase-space for channel α, and T
(l)
αβ(s) is the coupled channel scattering

amplitude as a function of the center-of-momentum energy
√
s. Note that for a single

channel, the quantization condition given in Eq. (3.35) is recovered. This can easily
be shown by inserting the definition of the scattering amplitude T (l) in Eq. (3.36) into
the coupled channel quantization condition in Eq. (3.45).
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4
Hadron Spectroscopy for

Tetraquark States
A major field of application for lattice QCD is hadron spectroscopy. As a non-
perturbative approximation of QCD, lattice QCD is perfectly suited to compute low-
energy observables like hadron masses. Therefore, hadron spectroscopy in lattice QCD
is an excellent framework to test the theory of QCD by comparing hadron masses de-
termined in lattice simulations with existing experimental measurements. Moreover,
theoretical predictions of hadron masses for states which have not been experimentally
measured yet provide valuable input for upcoming experimental investigations.
Candidates for such exotic hadrons that have not been observed in experiment so far
are the antiheavy-antiheavy-light-light four-quark systems with quark content b̄b̄ud,
b̄b̄us and b̄c̄ud which are investigated in this work. As I am mainly interested in
whether these tetraquark systems form hadronically stable states, the ground-state
energies are of particular importance. However, in general such tetraquarks are ex-
pected to be rather weakly bound with ground-state energies close to the threshold of
strong decay. Hence, a faithful treatment of finite volume effects is advisable. This can
be done by performing a scattering analysis using Lüscher’s method, which requires
to resolve also higher energy levels sufficiently precisely.
In this chapter, I illustrate how the low-lying energy spectrum for these four-quark sys-
tems is extracted and present the methods that are employed in the associated lattice
computations. The relevant lattice observables to compute hadron masses are two-
point correlation functions of interpolating operators which are introduced in Sec. 4.1.
As the essential components of these correlation functions are carefully chosen inter-
polating operators, I discuss them extensively in Sec. 4.2. Especially, I illustrate how
to construct interpolating operators on the lattice and establish the interpolating op-
erators for the four-quark systems of interest. In Sec. 4.3, I present two techniques
that are applied to extract the energy spectrum from a matrix of correlation func-
tions. Quark propagators play a central role when computing correlation functions.
In Sec. 4.4, I illustrate several numerical methods to estimate the quark propagator by
inverting the Dirac operator. In order to improve the overlap generated by creation
operators with physical states, one employs smearing methods for both the gauge fields
and the fermion fields, which is explained in Sec. 4.5. Finally, in Sec. 4.6, I discuss the
essential steps of a scattering analysis that can be utilized to investigate doubly-heavy
doubly-light tetraquark systems.
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4.1 The Correlation Function and Physical Observables
In order to compute hadron masses, Euclidean correlation functions of two hadron
interpolating operators O1(t) and O†

2(0),

C(t) = ⟨O1(t) O†
2(0)⟩, (4.1)

are employed, while the temporal locations t and 0 can be chosen without loss of
generality due to the periodicity of the lattice. Such two-point correlation functions
can be evaluated via the path integral formalism according to Eq. (2.14). In a lattice
calculation, the path integral is calculated by first generating a set of gauge link con-
figurations according to the probability distribution given by the Boltzmann factor as
discussed in Sec. 2.1.3. Then, if such an ensemble of gauge link configurations is avail-
able, the correlation function is computed on each single gauge link configuration, and
the expectation value is obtained by averaging these results according to Eq. (2.21).
To extract physical observables like hadron masses from a correlation function, Eq. (4.1)
is written in its spectral representation. Starting with the time evolution of the oper-
ator O1(t) on the periodic lattice, Eq. (4.1) can be expressed as

⟨O1(t) O†
2(0)⟩T = 1

ZT
Tr
[
e−(T−t)Ĥ O1 e

−tĤ O2

]
, ZT = Tr

[
e−TĤ

]
, (4.2)

where Ĥ is the Hamilton operator of the system and ZT is the partition function [50].
Using the eigenvector equation

Ĥ|n⟩ = En|n⟩, (4.3)

where En is the energy of the n-th state and |n⟩ is the associated eigenstate, the
correlation function can be written as

⟨O1(t) O†
2(0)⟩T = 1

ZT

∞∑
n,m=0

⟨m|O1|n⟩ ⟨n|O†
2|m⟩ e−Em(T−t) e−Ent. (4.4)

Taking the limit T → ∞, the sum over m breaks down and only the vacuum state
|m⟩ = |0⟩ remains. Defining the energy difference to the vacuum as ∆En = En − E0
consequently yields

lim
T→∞

⟨O1(t) O†
2(0)⟩T =

∞∑
n=0

⟨0|O1|n⟩ ⟨n|O†
2|0⟩ e−∆Ent. (4.5)

The energy differences to the vacuum are exactly those observables that are measurable
in experiment and thus are the quantities of interest in a lattice computation. From
now on, the energy difference to the vacuum is labeled by En instead of ∆En, which
means that the ground-state energy is given by E0.
Studying stable hadrons, this ground-state energy E0 is of particular interest. As
E0 < En for n ≥ 1, the contributions of excited states in the sum in Eq. (4.5) are
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exponentially suppressed for sufficiently large times t, and the correlation function is
then dominated by the ground-state contribution. In order to extract the ground-state
energy, one defines the effective energy as

aEeff(t) = ln
(

C(t)
C(t+ a)

)
, (4.6)

which can be identified with the ground-state energy in the limit of large times t,

aE0 = lim
t→∞

aEeff(t). (4.7)

In practice, the effective energy reaches a plateau already at finite values of t. This cor-
responds to a temporal separation where mainly the ground-state energy contributes
to the correlation function, while all higher contributions are sufficiently small. Con-
sequently, the effective energy in the plateau region corresponds to the ground-state
energy.

4.2 Interpolation Operators
The essential ingredients to compute hadron masses from correlation functions are
carefully selected interpolating operators that first describe the correct quark content
and second generate the desired quantum numbers. For the sake of simplicity, I label
the quark fields appearing in interpolating operators according to their flavors (u, d, s,
c, b, or t), while I additionally distinguish between heavy quarks Q ∈ {b, c} and light
quarks q ∈ {u, d, s}. The relevant quantum numbers characterizing the four-quark
states of interest in this work are the isospin I, the spin J and the parity P . Only
the u and d quarks carry isospin, while both have a value of I = 1/2. Accordingly,
the isospin of a state containing two of these light quarks can be either I = 0 or
I = 1. An operator that creates a state with isospin I = 0 is constructed such that
it is antisymmetric under the flavor exchange u ↔ d, while I = 1 is obtained if the
operator is symmetric under flavor exchange. Spin J and parity P are governed by an
appropriate combination Γ of the gamma matrices γµ. In Table 4.1, I list the quantum
numbers JP for several states and show the associated combinations Γ that generate
these quantum numbers.

State JP Γ
Scalar 0+ 1, γ4

Pseudoscalar 0− γ5, γ4γ5

Vector 1− γj, γ4γj

Pseudovector 1+ γjγ5

Table 4.1.: Quantum numbers for commonly used combinations of gamma matrices and the
associated states.
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The ground-state energy of most ordinary mesons built of two quarks can be extracted
precisely from a correlation function consisting of a single interpolating operator. How-
ever, this is not the case for exotic states like tetraquarks where a single interpolating
operator is not sufficient to reliably obtain the ground-state energy. Especially if also
higher energy levels should be resolved, a large basis of interpolating operators Oj

with j = 1, . . . , N is required. Thus, the correlation function in Eq. (4.1) is replaced
by a correlation matrix,

Cjk(t) = ⟨Oj(t) O†
k(0)⟩, j, k = 1, . . . , N. (4.8)

In this work, the low-lying energy spectra of Q̄Q̄′qq′ four-quark systems with quark
content b̄b̄ud, b̄b̄us and b̄c̄ud are of particular interest. Hereby, I am especially inter-
ested in whether a hadronically stable tetraquark is formed, which means that the
ground-state energy is below the lowest corresponding meson-meson threshold. Thus,
reasonably chosen sets of interpolating operators describing the four-quark structures
are crucial. I will discuss the four-quark interpolating operators that are employed in
this work in detail in Sec. 4.2.3. In order to assess if a stable tetraquark state Q̄Q̄′qq′

exists, its ground-state energy is compared to the lowest meson-meson threshold cor-
responding to the two mesons Q̄q and Q̄′q′. Consequently, also the associated meson
masses must be determined within the lattice calculation. Therefore, I discuss the
mesonic interpolating operators in Sec. 4.2.2, and illustrate how to evaluate a correla-
tion function by using the example of the rather simple mesonic operators. I will start,
however, with a more general discussion in Sec. 4.2.1, focusing on the construction of
lattice interpolating operators with distinct quantum numbers taking into account the
reduced rotational symmetry of the lattice.

4.2.1 Construction of Interpolating Operators on the Lattice

The overall objective of hadron spectroscopy is to study the energy spectrum of parti-
cles with distinct quantum numbers JP . However, introducing the discretized space-
time lattice reduces the rotational symmetry that is present in the continuum to the
symmetry of the cubic group Oh as discussed in Sec. 3.2. Consequently, states can-
not be classified by their spin J but rather according to the associated irreps of the
symmetry group. The infinite number of spins J are therefore subduced into a finite
number of lattice irreps Λ [118]. I list the spins up to J = 4 that appear in each irrep
of the group Oh in Table 4.2. Accordingly, also continuum interpolating operators
with distinct spin J must be subduced into the appropriate lattice irrep. The crucial
property of such a lattice operator is that it transforms accordingly to the relevant
irrep,

R̂O R̂−1 = χ(Λ)(R̂) O. (4.9)
Here R̂ ∈ Oh are transformations that leave the mesh of lattice points Pd (see
Eq. (3.10)) invariant, and χ(Λ)(R̂) is the associated character of irrep Λ which can
be found in the group’s character table (e.g., see Table B.2 for the characters of Oh).
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Symmetry
Irrep ΛP JP

group

Oh

d = (0, 0, 0)T

A±
1 0±, 4±, . . .

T±
1 1±, 3±, 4±, . . .
T±

2 2±, 3±, 4±, . . .
E± 3±, 4±, . . .
A±

2 3±, . . .

Table 4.2.: Lattice irreps ΛP for the symmetry group Oh together with the quantum numbers
JP that are subduced into these irreps.

For example, according to Table 4.2 a lattice interpolating operator for a vector meson
with JP = 1− is constructed in the T−

1 irrep. This is achieved by choosing Γ = γj (see
Table 4.1) as, e.g., the operator with γ1 transforms like the polynomial x which in turn
transforms like the first row of the T−

1 irrep, so the correct transformation behavior is
confirmed.

For moving frames the situation gets even more complicated. Already in the contin-
uum, the z-component M of the spin J is only well-defined if P = 0 or P ∝ ez but not
for arbitrary P. For moving frames it is therefore more convenient to use the helicity
λ instead of the spin J which is defined as the projection of the vectored spin J on
the direction of the total momentum P,

λ = J · P
|P|

. (4.10)

Additionally, also parity P is in general not a good quantum number in moving frames
since the reflection at a plane perpendicular to P also inverts the direction of the total
momentum P. In Ref. [126] it was shown that a helicity state with λ = 0 is an
eigenstate of a reflection at a plane with associated eigenvalue η̃ = P (−1)J which can
be interpreted as the equivalent of parity in moving frames. Note that for λ ̸= 0 a
helicity state is no eigenstate of a reflection at a plane and consequently η̃ cannot be
defined. Similar to the spin J , also the helicity λ is only a good quantum number in
the continuum, so it also has to be subduced into the irreps of the relevant symmetry
group. As the helicity λ for a given spin J can take values according to 0 ≤ λ ≤ J ,
it is obvious that each value of λ refers to a bunch of spins J and consequently even
more continuum spins J are subduced into the same irrep Λ. In Table 4.3 I list which
helicities λ and which η̃ can appear in each irrep of the symmetry groups C4v and C2v.
In the last column I also give the associated quantum numbers JP in the rest frame
for each irrep. Note that the groups C4v and C2v describe the lattice symmetry for two
particles with different masses in the moving frames with P/(2π/L) = (0, 0, 1)T and
P/(2π/L) = (1, 1, 0)T , respectively. In the case of two particles with equal masses, the
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Symmetry
Irrep Λ λη̃ JP (at rest)

group

C4v
d = (0, 0, 1)T

A1 0+, 4, . . . 0+, 1−, 2+, 3−, 4+ . . . / 4±, . . .
A2 0−, 4, . . . 0−, 1+, 2−, 3+, 4− . . . / 4±, . . .
E 1, 3, . . . 1±, 2±, 3±, 4±, . . .
B1 2, . . . 2±, 3±, 4±, . . .
B2 2, . . . 2±, 3±, 4±, . . .

C2v
d = (1, 1, 0)T

A1 0+, 2, 4, . . . 0+, 1−, 2+, 3−, 4+ . . . /2±, 3±, 4±, . . .
A2 0−, 2, 4, . . . 0−, 1+, 2−, 3+, 4− . . . / 2±, 3±, 4±, . . .
B1 1, 3, . . . 1±, 2±, 3±, 4±, . . .
B2 1, 3, . . . 1±, 2±, 3±, 4±, . . .

Table 4.3.: Lattice irreps Λ for the symmetry groups C4v and C2v together with the quantum
numbers that are subduced into these irreps. The second column lists which helicities λ and
which η̃ = P (−1)J can appear for each irrep, while the third column shows the associated
JP at rest.

relevant symmetry groups are D4h for P/(2π/L) = (0, 0, 1)T and D2h for P/(2π/L) =
(1, 1, 0)T . Here, the subduction of continuum quantum numbers is slightly different. As
discussed in Sec. 3.2, the symmetry groups D4h and D2h contain additional symmetry
transformations like the inversion with respect to the origin. In particular, the irreps
ΛP ofD4h andD2h are also characterized by the parity P so that a quantum number J+

cannot be subduced into an irrep Λ− and vice versa. Accordingly, quantum numbers
JP with different parities cannot appear in the same irrep. For example, the quantum
numbers 1− and 3− appearing in the irrep A1 of C4v cannot appear in the A+

1 irrep
of D4h. Thus, only the quantum numbers 0+, 2+ and 4+ are subduced into this irrep.
I list the quantum numbers JP with J ≤ 4 for each irrep ΛP of the groups D4h
and D2h in Table 4.4. Note that this subduction is also obtained by considering the
decomposition of the representations Γ(l) into irreps as done in Appendix B.2. More
details on how to construct interpolating operators on the lattice can be found in
Refs. [126–131].
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Symmetry
Irrep ΛP JP (at rest)

group

D4h
d = (0, 0, 1)T

A±
1 0±, 2±, 4± . . .

A±
2 1±, 3±, 4± . . .

E± 1±, 2±, 3±, 4±, . . .
B±

1 2±, 3±, 4±, . . .
B±

2 2±, 3±, 4±, . . .

D2h
d = (1, 1, 0)T

A± 0±, 2±, 3±, 4± . . .
B±

1 1±, 2±, 3±, 4± . . .
B±

2 1±, 2±, 3±, 4± . . .
B±

3 1±, 2±, 3±, 4± . . .

Table 4.4.: Lattice irreps ΛP for the symmetry groups D4h and D2h together with the quan-
tum numbers JP at rest that are subduced into these irreps.

4.2.2 Interpolating Operators and Correlation Function for Mesons

The interpolating operator for an ordinary meson built of a quark-antiquark pair Q̄q
whose quantum numbers are determined by the monomial of gamma matrices Γ is
given by

OM(t) = 1√
VS

∑
x
Q̄(x, t) Γ q(x, t) eipx . (4.11)

Here, a Fourier transformation running over the spatial coordinates x is performed to
project the operator to a distinct momentum p, while the normalization factor VS = L3

indicates the spatial lattice volume. Accordingly, this operator describes a meson with
definite spatial momentum p = 2πn/L with n ∈ Z3 located at the timeslice t, and
the special case p = 0 is called zero momentum projection. The associated conjugated
operator is given by

O†
M(t) = 1√

VS

∑
x
q̄(x, t) Γ′ Q(x, t) e−ipx (4.12)

with Γ′ = γ0 Γ†γ0. According to Eq. (4.1), the correlation function for a meson can be
computed using the operators OM(t) and O†

M(0). Here, I will discuss the case of zero
momentum projection, while the approach is similar for non-vanishing momenta. The
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correlation function is then given by

C(t) = ⟨OM(t) O†
M(0)⟩ = 1

VS

∑
x,y

〈(
Q̄(x, t) Γ q(x, t)

)(
q̄(y, 0) Γ′ Q(y, 0)

)〉
F,U

= 1
VS

∑
x,y

ΓAB Γ′
CD

〈
Q̄a
A(x, t) qaB(x, t) q̄bC(y, 0)Qb

D(y, 0)
〉
F,U

= − 1
VS

∑
x,y

ΓAB Γ′
CD

〈
⟨qaB(x, t) q̄bC(y, 0)⟩F ⟨Qb

D(y, 0) Q̄a
A(x, t)⟩F

〉
U

= − 1
VS

∑
x,y

ΓAB Γ′
CD

〈((
D(q)

)−1 ab
BC(x; y)

) ( (
D(Q)

)−1 ba
DA(y;x)

)〉
U
.

(4.13)

In the last step, Wick’s theorem has been applied to compute the fermionic expectation
value of two fermion fields according to Eq. (2.20), giving rise to the quark propagators.
These can be estimated by inverting the Dirac operator of the fermion action. I present
several inversion techniques applied in this work in Sec. 4.4. Exploiting the structure
of the spin and color indices, Eq. (4.13) can be written as a trace. Using finally
γ5-hermiticity to get rid of backwards propagators yields

C(t) = − 1
VS

∑
x,y

〈
Tr
[ (
D(q)

)−1
(x; y) Γ′ γ5

( (
D(Q)

)−1
(x; y)

)†
γ5 Γ

]〉
U
. (4.14)

Here, ⟨. . . ⟩U denotes the path integral expectation value over the gauge fields. As
already mentioned, in lattice calculations, one computes Eq. (4.14) for each gauge
link configuration separately, while the final estimate for the correlation function is
governed by averaging these results according to Eq. (2.21).

To investigate whether the Q̄Q̄′qq′ four-quark systems of interest in this work are
hadronically stable, their ground-state energies must be compared to the lowest meson-
meson thresholds. Thus, the masses of the pseudoscalar and vector B, Bs and D
mesons are required which are determined using the interpolating operators

OB(p) = 1√
VS

∑
x
b̄(x)γ5u(x) eipx , (4.15)

OB∗(p) = 1√
VS

∑
x
b̄(x)γju(x) eipx , (4.16)

OBs(p) = 1√
VS

∑
x
b̄(x)γ5s(x) eipx , (4.17)

OB∗
s
(p) = 1√

VS

∑
x
b̄(x)γjs(x) eipx , (4.18)

OD(p) = 1√
VS

∑
x
c̄(x)γ5u(x) eipx , (4.19)

OD∗(p) = 1√
VS

∑
x
c̄(x)γju(x) eipx , (4.20)

while I omit from now on the time coordinate.
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4.2.3 Interpolating Operators for Q̄Q̄′qq′ Four-Quark Systems

In order to compute the low-lying energy spectrum of the Q̄Q̄′qq′ four-quark systems
of interest, an appropriate operator basis that describes the correct quantum numbers
and generates good overlap with the physical states is required.
In the case of the b̄b̄ud system, I consider the quantum numbers I(JP ) = 0(1+). The
choice of isospin I = 0 is motivated by previous studies where it has been found that
the I = 0 channel is more attractive than the I = 1 channel [27, 31]. The spin J is
then fixed due to symmetry considerations of the wave functions of the antidiquark b̄b̄
and the diquark ud [30]. Since both, diquark and antidiquark are assumed to be in a
symmetric S-wave and to form an antisymmetric color antitriplet and triplet, respec-
tively, the flavor-spin wave function must be symmetric following the Pauli principle.
As for the antidiquark b̄b̄ the flavor is symmetric, its spin must be 1, while for the
flavor-antisymmetric light quarks ud, spin 0 follows. Consequently, the total spin is
J = 1.
For the b̄b̄us system, the only channel that is expected to be sufficiently attractive to
form a bound state has quantum numbers JP = 1+ [32]. This can be motivated by
assuming an SU(3) flavor symmetry for the three lightest quarks u, d, s which holds
reasonably well for elementary particles [132,133]. Then, the same chain of reasoning
as discussed for the b̄b̄ud system also applies to the b̄b̄us system. Consequently, the
most attractive channel is found to have total spin J = 1.
For quark content b̄c̄ud, I consider again isospin I = 0 following the same arguments
as discussed for the b̄b̄ud system. However, two promising channels exist for the b̄c̄ud
system since the heavy antidiquark can be arranged either in a symmetric or in an
antisymmetric flavor combination. For the flavor symmetric heavy antidiquark, the
quantum numbers are given by I(JP ) = 0(1+) so this channel is conceptually similar
to the b̄b̄ud channel with I(JP ) = 0(1+) and the b̄b̄us channel with JP = 1+. The an-
tisymmetric flavor combination of the heavy antidiquark leads to the total spin J = 0,
and accordingly the quantum numbers for this channel are given by I(JP ) = 0(0+).

For all four-quark states, I employ local interpolating operators as well as scattering
interpolating operators. Local operators are built of four quarks which are all lo-
cated at the same position in space while the total momentum of the four quarks is
projected to zero. Meanwhile, scattering operators describe a pair of two heavy-light
mesons which are placed at different locations in space. The momentum of each meson
is separately projected to zero. In the case of local operators, I distinguish between
meson-meson and diquark-antidiquark operators. A schematic representation of the
different operator types can be found in Fig. 4.1.
Both types of meson-meson operators correspond to pairs of mesons whose overall
quantum numbers coincide with those of the investigated four-quark state. For every
local meson-meson operator a scattering operator rendering the same two mesons is
included in the operator basis [24]. The diquark-antiquark operators resemble a sub-
structure consisting of a heavy antidiquark Q̄Q̄′ and a light diquark qq′ and have been
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Q̄
Q̄′

q q′

Q̄ Q̄′

q q′

Q̄ Q̄′

q q′

Figure 4.1.: Schematic representation of a local meson-meson operator (left), a local diquark-
antidiquark operator (center) and a scattering meson-meson operator (right). Heavy quarks
are depicted by blue balls while light quarks are represented by red balls. The small white
circles illustrate exchange gluons indicating the dominant interactions of each structure.

shown to play an important role for four-quark states [134–136]. Sticking to Jaffe’s
characterization of “good” and “bad” diquarks [134], a “good” diquark has quantum
numbers JP = 0+, while a ‘bad” diquark is characterized by JP = 1+. The scalar
“good” diquark is expected to lead to a smaller mass and thus is favorable. This mass
splitting between “good” and “bad” diquark gets milder for heavier quarks. There-
fore, I construct the diquark-antidiquark operators in all cases such that the light
diquarks (ud or us) correspond to a “good” diquark. If possible, also the heavy antidi-
quark is constructed as a “good” diquark (which is only possible for quantum numbers
I(JP ) = 0(0+) in the case of b̄c̄ud), otherwise I use the “bad” diquark.

As the main objective of this work is to study the low-lying energy levels of the
previously mentioned four-quark systems with a particular interest in the ground-state
energy, it is mandatory to resolve all low-lying energy levels in sufficiently precise way.
I expect that a trial state generated by a local interpolating operator will have good
overlap with the ground state which might be a bound four-quark state. Moreover,
the scattering operators should describe meson-meson scattering states close to the
lowest meson-meson threshold quite well. If a bound four-quark state exists which
might be close to this threshold, resolving those meson-meson scattering states will
eliminate their contributions to the ground state and improve the fit results for the
ground-state energy [24].
For the bound state analysis carried out in Chapters 5 and 6, I consider only the
center-of-momentum frame with total momentum P = 0, so the associated symmetry
group describing the lattice symmetry is Oh. According to Sec. 4.2.1, the interpolating
operators for the four-quark systems with quantum numbers JP = 1+ are constructed
in the T+

1 irrep of Oh, while the operators for four-quark systems with JP = 0+ are
designed to transform like the A+

1 irrep of Oh [118].
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4.2.3.1. Interpolating Operators for b̄b̄ud with I(JP ) = 0(1+)

In the case of b̄b̄ud with quantum numbers I(JP ) = 0(1+) we consider the two lowest
meson-meson thresholds BB∗ and B∗B∗ which differ only by approximately 45 MeV.
The first three-particle threshold with correct quark content is BBπ which is 44 MeV
above the B∗B∗ threshold. Note, however, that this three-meson channel would have to
appear as P -wave to render the quantum numbers correctly so it is further suppressed.
Additionally, I assume that the coupling to three-particle channels is negligible com-
pared to the coupling to two-particle channels and hence I do not consider three-meson
thresholds. I also exclude baryon-antibaryon thresholds as according to Ref. [137] the
mass of Ξ̄bbN is more than 500 MeV higher than the B∗B∗ mass.
Consequently, I use three local interpolating operators, two meson-meson operators
and one diquark-antidiquark operator, given by

O1 = O[BB∗](0) = 1√
VS

∑
x
b̄γ5u(x) b̄γjd(x) − (d ↔ u), (4.21)

O2 = O[B∗B∗](0) = 1√
VS

ϵjkl
∑

x
b̄γku(x) b̄γld(x) − (d ↔ u), (4.22)

O3 = O[Dd](0) = 1√
VS

∑
x
b̄aγjCb̄b,T (x)ua,TCγ5d

b(x) − (d ↔ u). (4.23)

The operator basis is completed by the two scattering operators

O4 = OB(0)B∗(0) = 1
VS

(∑
x
b̄γ5u(x)

)(∑
y
b̄γjd(y)

)
− (d ↔ u), (4.24)

O5 = OB∗(0)B∗(0) = 1
VS
ϵjkl

(∑
x
b̄γku(x)

)(∑
y
b̄γld(y)

)
− (d ↔ u). (4.25)

Hereby, summation over the color indices a, b as well as the spacial vector indices j, k, l
is implied. For open spatial indices, I average over all three directions. The matrix
C appearing in the diquark-antidiquark operator O[Dd](0) is the charge conjugation
matrix defined as C = γ0γ5. To take account of the isospin I = 0, the operators are
constructed using the antisymmetric light flavor combination ud− du.
At first glance, one might argue that the operator O[B∗B∗](0) is negligible as the two
B∗ mesons are heavier than one B and one B∗ meson. However, an investigation
using static heavy quarks [32] showed that the operator resembling the B∗B∗ structure
contributes similarly to the ground-state wave function as a BB∗ structure. Therefore,
I consider both operators as important.

4.2.3.2. Interpolating Operators for b̄b̄us with JP = 1+

The b̄b̄us four-quark system with JP = 1+ does not exhibit the SU(2) flavor symme-
try that is observed for b̄b̄ud. For this reason, instead of two, there are three relevant
meson-meson thresholds that should be taken into account. The two lowest thresholds
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BB∗
s and B∗Bs differ only by 3 MeV, and the following threshold B∗B∗

s is also only
49 MeV above the BB∗

s threshold. Similar to b̄b̄ud, the lowest three-particle threshold
BBsπ in P -wave and the lowest baryon-antibaryon threshold Ξ̄bbΣ (which is approxi-
mately 600 MeV above the B∗B∗

s threshold) are negligible.
Accordingly, I use three local meson-meson operators and one local diquark-antidiquark
operator,

O1 = O[BB∗
s ](0) = 1√

VS

∑
x
b̄γ5u(x) b̄γjs(x), (4.26)

O2 = O[B∗Bs](0) = 1√
VS

∑
x
b̄γju(x) b̄γ5s(x), (4.27)

O3 = O[B∗B∗
s ](0) = 1√

VS
ϵjkl

∑
x
b̄γku(x) b̄γls(x), (4.28)

O4 = O[Dd](0) = 1√
VS

∑
x
b̄aγjCb̄b,T (x)ua,TCγ5s

b(x), (4.29)

and three scattering operators given by

O5 = OB(0)B∗
s (0) = 1

VS

(∑
x
b̄γ5u(x)

)(∑
y
b̄γjs(y)

)
, (4.30)

O6 = OB∗(0)Bs(0) = 1
VS

(∑
x
b̄γju(x)

)(∑
y
b̄γ5s(y)

)
, (4.31)

O7 = OB∗(0)B∗
s (0) = 1

VS
ϵjkl

(∑
x
b̄γku(x)

)(∑
y
b̄γls(y)

)
. (4.32)

As already mentioned, I do not utilize an antisymmetric flavor combination for b̄b̄us
so also the operators are not designed accordingly. Note, however, that the operators
O3, O4 and O7 are by construction antisymmetric in the light quark flavors. The
operators O1 and O2 as well as O5 and O6 can be linearly combined such that one
flavor symmetric and one flavor antisymmetric operator is obtained [24].

4.2.3.3. Interpolating Operators for b̄c̄ud with I(JP ) = 0(0+)

The two lowest meson-meson thresholds for the case of b̄c̄ud with I(JP ) = 0(0+) are
given by BD and B∗D∗. As the B∗D∗ threshold is approximately 190 MeV above
the BD threshold, I expect that the associated B∗D∗ meson-meson operator is not
required to study a possibly existing tetraquark bound state below the BD threshold.
Following the argumentation for the b̄b̄ud system, the lowest three-meson threshold
B∗Dπ in P -wave and the lowest baryon-antibaryon threshold Ξ̄cbN are not considered.
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The two local operators that I use are

O1 = O[BD](0) = 1√
VS

∑
x
b̄γ5u(x) c̄γ5d(x) − (d ↔ u), (4.33)

O2 = O[Dd](0) = 1√
VS

∑
x
b̄aγ5Cc̄b,T (x)ua,TCγ5d

b(x) − (d ↔ u), (4.34)

and the single scattering operator is

O3 = OB(0)D(0) = 1
VS

(∑
x
b̄γ5u(x)

)(∑
y
c̄γ5d(y)

)
− (d ↔ u). (4.35)

As for b̄b̄ud, the light quarks ud are arranged in an antisymmetric flavor combination
to ensure isospin I = 0. The heavy antiquarks b̄c̄ are also in an antisymmetric flavor
combination allowing total spin J = 0. Note that this is not possible for the heavy
antidiquark b̄b̄ which is always flavor symmetric.

4.2.3.4. Interpolating Operators for b̄c̄ud with I(JP ) = 0(1+)

For the b̄c̄ud four-quark system with I(JP ) = 0(1+), the three lowest meson-thresholds
are B∗D, BD∗ and B∗D∗. As in the case of J = 0, I do not consider the B∗D∗

threshold while the remaining two lowest thresholds B∗D and BD∗ are separated
by approximately 100 MeV. As before, the relevant three-meson threshold BDπ in P -
wave is expected to be strongly suppressed and the lowest baryon-antibaryon threshold
Ξ̄cbN is significantly above the lowest meson-meson threshold [137]. This leads to the
three local operators

O1 = O[B∗D](0) = 1√
VS

∑
x
b̄γju(x) c̄γ5d(x) − (d ↔ u), (4.36)

O2 = O[BD∗](0) = 1√
VS

∑
x
b̄γ5u(x) c̄γjd(x) − (d ↔ u), (4.37)

O3 = O[Dd](0) = 1√
VS

∑
x
b̄aγjCc̄b,T (x)ua,TCγ5d

b(x) − (d ↔ u), (4.38)

and the two scattering operators

O4 = OB∗(0)D(0) = 1
VS

(∑
x
b̄γju(x)

)(∑
y
c̄γ5d(y)

)
− (d ↔ u), (4.39)

O5 = OB(0)D∗(0) = 1
VS

(∑
x
b̄γ5u(x)

)(∑
y
c̄γjd(y)

)
− (d ↔ u). (4.40)

Isospin I = 0 is realized by an antisymmetric flavor combination for the light quarks
ud, while the heavy quarks are in a symmetric flavor combination which yields a total
spin of J = 1.
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Finally constructing the correlation matrix elements as defined in Eq. (4.8) for the four-
quark interpolating operators follows the same approach as discussed in Sec. 4.2.2 for
meson interpolating operators. Some more details about the correlation matrices of
the tetraquark systems can be found in Appendix C while I illustrate the derivation
of the correlation functions for some selected operator combinations in Appendix C.1.
Note that some beneficial analytical properties of lattice QCD like charge conjugation
and time reversal can be employed to improve the results of a lattice QCD calculation.
In fact, the correlation matrix C(t) is found to be real and symmetric and the matrix
elements Cjk(+t) and Cjk(−t) can be related, so that the statistical uncertainties can
be reduced by averaging related correlation functions appropriately.

4.3 Techniques to Extract Energy Levels from Correlation
Matrices

As discussed in the previous section, a large basis of interpolating operators is used to
describe the investigated four-quark states. Thus, the correlation function in Eq. (4.1)
is replaced by a correlation matrix according to Eq. (4.8),

Cjk(t) = ⟨Oj(t) O†
k(0)⟩. (4.41)

As a consequence, more elaborated techniques are required to extract the low-lying en-
ergy levels from the correlation matrix. The starting point is a spectral decomposition
analogous to the scalar case (see Sec. 4.1) yielding

Cjk(t) =
∞∑
n=0

⟨0|Oj|n⟩ ⟨n|O†
k|0⟩ e−Ent =

∞∑
n=0

Zn
j (Zn

k )∗ e−Ent, (4.42)

with the overlap factors
Zn
j = ⟨0|Oj|n⟩. (4.43)

Extracting the low-lying energy spectrum from this correlation matrix can be achieved
using special techniques. In this work, I apply two different methods, first the varia-
tional method and second a multi-exponential matrix fitting. The actual choice which
method is used depends on the shape of the correlation matrix.

4.3.1 Variational Method

The variational method provides a well-established way to extract the low-lying energy
spectrum from a correlation matrix C(t). The basic idea of this approach is that the
eigenvalues λn(t) of the correlation matrix behave like

λn(t) ∝ e−Ent
[
1 + O(e−∆̄Ent)

]
, (4.44)

where En is the n-th energy level and ∆̄En its distance to nearby energy levels of
the spectrum [50]. Thus, corrections to the energy level En decrease exponentially
for large times t [110, 138, 139]. As in practice the correlation matrix C(t) cannot be
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computed very accurately for arbitrary large times t, the error in Eq. (4.44) might
not be negligible. It has been found that better results are obtained if the eigenvalues
λn(t, t0) of the generalized eigenvalue problem (GEVP)

C(t) vn(t, t0) = λn(t, t0)C(t0) vn(t, t0), n = 1, . . . , N, t > t0 (4.45)

are considered [139] where N denotes the number of operators, i.e., the size of the
correlation matrix. The normalization at time t0 improves the signal as contributions
of higher excited states are suppressed and the eigenvalues λn(t, t0) behave like

λn(t, t0) ∝ e−En(t−t0) (4.46)

for sufficiently large times t. The energy levels En can be extracted from the eigenval-
ues λn(t, t0) either by computing the effective energy according to

aEeff,n(t) = ln
(

λn(t, t0)
λn(t+ a, t0)

)
(4.47)

and fitting a constant to its plateau-like region in t or by performing a correlated
χ2-minimizing single exponential fit using Eq. (4.46) as the fit function. In this work
the energy levels are primarily determined using single exponential fits, while in all
cases agreement with the results obtained from a constant fit to the effective energy
is found. The parameter t0 is always chosen rather small as the correlation functions
become noisier for large temporal separations but still sufficiently large so that the
energies En are independent of the actual choice of t0.

4.3.2 Multi-exponential Matrix Fitting

An alternative approach to extracting the energy levels En and the overlap factors Zn
j

from a correlation matrix as given in Eq. (4.42) is a correlated χ2-minimizing multi-
exponential matrix fit. The associated fit function is given by a truncated version of
Eq. (4.42),

Cfit
jk(t) =

N−1∑
n=0

Zn
j (Zn

k )∗ e−Ent, (4.48)

while the temporal fit range tmin ≤ t ≤ tmax must be chosen in such a way that con-
tributions of excited states with n ≥ N can be neglected.
The multi-exponential fits in this work are carried out with the QMBF applica-
tion [140]. Here, the overlap factors for n > 0 are written as Zn

j = Bn
j Z

0
j , while

the Bn
j are used as fit parameters. Moreover, in order to guarantee that the en-

ergies En obtained in the fit are ordered, the logarithms of the energy differences
gn = ln(aEn − aEn−1) are used as fit parameters for n > 0.
Note that if the size of the correlation matrix increases, the number of fit param-
eters will grow significantly, which makes multi-exponential matrix fits much more
challenging. Thus, for large square correlation matrices, the variational method is
preferable. However, multi-exponential fits are not restricted to square matrices so
that also non-square correlation matrices can be analyzed using this approach.
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4.4 Techniques to Compute Quark Propagators
Quark propagators are the essential ingredient to calculate correlation functions as
discussed in Sec. 4.2.2. In the subsequent paragraphs, I will present the techniques
that are employed in this work to compute the quark propagators which are required
to determine correlation matrices for tetraquark systems. The entries of a quark
propagator G(f)ab

AB(x; y) ≡ (D(f))−1ab
AB(x; y) connect two points (x, a, A) and (y, b, B)

which are often labeled as the source and sink position. We obtain the all-to-all quark
propagator G(f) as the inverse of the Dirac operator D(f) according to∑

y,b,B

D(f)ab
AB(x; y) G(f)bc

BC(y; z) = δac δAC δ(x, z) (4.49)

for a particular flavor f [50]. This equation needs to be evaluated 12 × N3
s × Nt

times1 to obtain the full quark propagator. For modern lattice sizes, G(f) has O(1013)
entries. This makes an exact inversion impossible as storing this large matrix would
require too much memory and its computation would be numerically too expensive.
Moreover, the quark propagator describes the propagation in one particular gauge link
configuration which means that the entries of the matrix are highly correlated [50].
Therefore, attempting to determine the full propagator is not reasonable, whereas a
suitable approach is to compute only those parts which are required for an appropriate
estimate of the quark propagator with respect to the correlation functions of interest.
The starting point for most techniques is to consider the system of linear equations,∑

y,b,B

D(f)ab
AB(x; y) ϕ(f)b

B(y) = ξaA(x) (4.50)

and determine the solution ϕ(f) for a given source term ξ. This solution ϕ(f) is an
estimate for a column of the quark propagator G(f) as shown is the following sections.
Solving Eq. (4.50) for a particular choice of indices is often called an “inversion”.
Numerically, ϕ is determined up to certain precision using iterative methods such
as a conjugate gradient solver (CG) [141], the bi-conjugate gradient stabilized solver
(Bi-CGStab) [142] or a multi grid solver (MG) [143–147].

4.4.1 Point-to-all Propagators

Since QCD is spatially translational invariant, in many cases it is sufficient to compute
the quark propagator from a fixed space-time position to all other points on the lattice.
This propagator is obtained by solving∑

y,b,B

D(f)ab
AB(x; y) ϕ(f)b

B(y)[c, C, z] = ξaA(x)[c, C, z], (4.51)

where ξaA(x)[c, C, z] is a point source given by

ξaA(x)[c, C, z] = δac δAC δ(x, z). (4.52)
1The integer 12 is obtained by number of color components times number of Dirac components.
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The indices in the square brackets [c, C, z] denote the fixed color, spin and space-time
indices, i.e., the location of the point source. Taking the spin and color structure
into account, Eq. (4.51) must be solved for all 12 spin-color indices to obtain the 12
solutions ϕ(f)b

B(y)[c, C, z] connecting the space-time position z with all other points.
Multiplying both sides of Eq. (4.51) with the quark propagator G(f), we can identify

ϕ(f)b
B(y)[c, C, z] = G(f)bc

BC(y; z), (4.53)

which is referred to as a so-called point-to-all propagator. For example, expressing the
correlation function in Eq. (4.14) in terms of point-to-all propagators yields

C(t) = −
∑

x

〈
Tr
[
(Γ′γ5)AB

(
ϕ(f)(x)[b, B, y] γ5 Γϕ(f) †(x)[b, A, y]

)]〉
U
. (4.54)

Using translational invariance, the sum over y has been replaced by a factor Vs and y
is fixed to the arbitrary source location.
While point-to-all propagators provide a rather straightforward way of computing
quark propagators, there is one severe disadvantage: This method can only be used if
all propagators of a particular correlation function start at the same point y. Especially
for four-quark systems so-called scattering operators (see Sec. 4.2.3), which rely on
quark propagators starting at different positions in space-time, become important.
Consequently, an effective method to calculate also all-to-all propagators is required.

4.4.2 Stochastic Timeslice-to-all Propagators

Even if it is numerically not feasible to exactly compute the full all-to-all propaga-
tor from any space-time position x to any other position y, it is possible to make
a stochastic estimate [148–151]. One method which is commonly used are so-called
stochastic timeslice-to-all propagators. Hereby, a stochastic estimate of a propagator
from all spatial positions x of a fixed timeslice t0 to any other space-time point y is
computed. To that end, we introduce NR stochastic sources

ξaA(x)[t0, r] = δ(x0, t0) ηaA(x)[r], (4.55)

where ηaA(x)[r] with r = 1, . . . , NR denotes a random number and the set of random
numbers must obey

1
NR

NR∑
r=1

ηaA(x)[r] η∗b
b(y)[r] = δab δAB δ(x,y) + unbiased noise. (4.56)

Commonly one uses so-called Z(2) noise, which means that the complex random num-
bers are given by ηaA(x)[r] ∈ Z(2)×Z(2). The introduced unbiased noise for this choice
is O(1/

√
NR). The resulting NR systems of linear equations that need to be solved

for the given stochastic sources are found to be∑
y,b,B

D(f)ab
AB(x; y) ϕ(f)b

B(y)[t0, r] = ξaA(x)[t0, r]. (4.57)
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Multiplying Eq. (4.57) with ξ∗c
C(z)[t0, r] and G(f)da

DA(u;x) and summing over all noise
terms r, the quark propagator can be written in terms of the NR stochastic sources ξ
and the associated solutions ϕ(f) of Eq. (4.57):

1
NR

NR∑
r=1

∑
x,a,A

∑
y,b,B

ξ∗c
C(z)[t0, r] G(f)da

DA(u;x) D(f)ab
AB(x; y) ϕ(f)b

B(y)[t0, r]

= 1
NR

NR∑
r=1

∑
x,a,A

ξaA(x)[t0, r] ξ∗c
C(z)[t0, r] G(f)da

DA(u;x)

⇔ 1
NR

NR∑
r=1

∑
y,b,B

δ(u, y) δdb δDB ξ∗c
C(z)[t0, r] ϕ(f)b

B(y)[t0, r]

=
∑
x,a,A

G(f)da
DA(u;x)

(
δac δAC δ(x, z) δ(z0, t0) + unbiased noise

)

⇔ 1
NR

NR∑
r=1

ξ∗c
C(z)[t0, r] ϕ(f)d

D(u)[t0, r]

= G(f)dc
DC(u; z, t0) +

∑
x,a,A

G(f)da
DA(u;x) × unbiased noise.

(4.58)

Consequently, a stochastic estimate for the quark propagator is given by

G(f)ab
AB(x; y, t0) = 1

NR

NR∑
r=1

ϕ(f)a
A(x)[t0, r] ξ∗b

B(y)[t0, r] + unbiased noise. (4.59)

In practice, the number of stochastic sources NR can be rather small as the sum over
the sources commutes with the sum over the gauge link configurations. Nevertheless,
for every stochastic propagator a different source term is required.
In contrast to point-to-all propagators, stochastic timeslice-to-all propagators do not
rely on replacing a spatial sum using translational invariance so arbitrary sink and
source positions are possible. This flexibility comes along with the severe drawback of
introducing stochastic noise. The number of stochastic noise terms for each applied
stochastic timeslice-to-all propagator is ≈ V 2

s so the signal-to-noise ratio becomes
rapidly worse if a large number of stochastic propagators is used for a single correlation
function. Especially for tetraquark systems where four quark propagators are required
the exclusive use of stochastic propagators is expected to yield an insufficient signal-
to-noise ratio.
In Appendix C.2, I discuss which type of quark propagator is used to compute a
particular correlation matrix element for the investigation of the four-quark systems.

4.4.3 The One-End-Trick for Stochastic Propagators

As every stochastic source term ξ and the associated solution ϕ(f) of Eq. (4.57) in-
troduces additional stochastic noise terms, it is desirable to reduce the number of
required source terms. If exactly two quark propagators are connected at a space-time
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point y, while no other quark propagator starts or ends at this point, the one-end-
trick [152, 153] provides an efficient way to compute the product of those two quark
propagators. One needs to solve the 2NR linear equations∑

y

D(f1)ab
AB(x; y) ϕ(f1)b

B(y)[t0, r] = ξaA(x)[t0, r],∑
y

D(f2)ab
AB(x; y) ϕ̃(f2)b

B(y)[t0,Γ, r] = (γ5Γ†ξ)aA(x)[t0, r],
(4.60)

where ξ is a stochastic source as defined in Eq. (4.55). If the solutions ϕ(f1) and ϕ̃(f2)

are determined, the product of the two quark propagators is given by [151]∑
y
G(f1)(x; y, t0) Γ G(f2)(y, t0; z)

= 1
NR

NR∑
r=1

ϕ(f1)(x)[t0, r] ϕ̃(f2)(z)[t0,Γ, r]† γ5 + unbiased noise.
(4.61)

Using the one-end-trick instead of two ordinary stochastic propagators has the advan-
tage that only a single stochastic source term is needed. Consequently, the number of
stochastic noise terms is reduced by a factor Vs which results in a significant improved
signal-to-noise ratio [151].
Using only a single stochastic source term, however, also comes along with a disad-
vantage as it fixes the spin structure at space-time point y to Γ. Accordingly, the
second linear equation in Eq. (4.60) must be solved separately for every required spin
structure Γ. Especially for large sets of creation operators with different Γs, this might
be impractical.

4.4.3.1. Spin Dilution

The linear equations in Eq. (4.60) can be formulated independent of Γ if one introduces
additional spin dilution [154]. Hereby, spin indices are established at the source, so
the spin-diluted stochastic source is given by

ξaA(x)[t0, B, r] = δ(x0, t0) δAB ηaB(x)[r]. (4.62)
Instead of solving a linear equation for every Γ, one needs to solve only four linear
equations, one for each spin index, given by∑

y

D(f)ab
AB(x; y) ϕ(f)b

B(y)[t0, C, r] = ξaA(x)[t0, C, r]. (4.63)

The product of two quark propagators connected at the same space-time position in
terms of the solutions ϕ(f) can then be written as∑

y
G(f1)ab

AB(x; y, t0) ΓBC G(f2)bc
CD(y, t0; z)

= 1
NR

NR∑
r=1

ϕ(f1)a
A(x)[t0, B, r] (Γ γ5)BC ϕ(f2)c

E(z)[t0, C, r]† (γ5)ED + unbiased noise.

(4.64)
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4.4.3.2. One-End-Trick for Combinations of Heavy and Light Quark Propagators

Most of the products of two quark propagators that are relevant for the four-quark
states discussed in this work are built of one light quark propagator using a fermion
action presented in Sec. 2.3 and one heavy quark propagator computed in the frame-
work of NRQCD (see Sec. 2.4). As NRQCD decouples the particle and antiparticle
solutions, the associated propagators have only a 2-component spin structure which
can be embedded in a 4-component spin structure as shown in Eq. (2.81). In order to
use the one-end-trick for such a product of one heavy and one light quark propagator,
the same source term ξ must be used for both cases, so

ϕ(f)(x)[t0, B, r] =
∑

y
G(f)(x; y, t0) ξ(y)[t0, B, r] (4.65)

for heavy and light flavors f = h, l. In the case of the heavy quark propagator, we can
apply Eq. (2.81) to decouple the solution ϕ(h) in particle and antiparticle solutions,

ϕ(h)(x)[t0, B, r] =


Θ(x0 − t0)

ϕ(h)
ψ (x)[t0, B, r]

0

 , for B = 1, 2,

−Θ(−x0 + t0)
 0
ϕ(h)
χ (x)[t0, B, r]

 , for B = 3, 4.
(4.66)

As I am using spin dilution for the stochastic sources (see Eq. (4.62)), only those
entries of the source term for which the Dirac index agrees with the spin-dilution
index are non-zero. Accordingly, the linear equations for the 2-spin component heavy
quark propagators are written as

ϕ
(h)
ψ (x)[t0, B, r] =

∑
y
G

(h)
ψ (x; y) ξ(y)[t0, B, r], with B = 1, 2,

ϕ(h)
χ (x)[t0, B, r] =

∑
y
G(h)
χ (x; y) ξ(y)[t0, B, r], with B = 3, 4.

(4.67)

Consequently, the 2-spin component forward quark propagator is computed using only
the first two spin-diluted stochastic sources, while for the backward quark propagator
only the last two spin-diluted stochastic sources are considered.
All stochastic timeslice-to-all propagators that are used in this work exploit the one-
end-trick with spin dilution. Additionally, I also introduce color dilution which is
analogous to spin dilution formulated as∑

y

D(f)ab
AB(x; y) ϕ(f)b

B(y)[t0, C, c, r],= ξaA(x)[t0, C, c, r] (4.68)

with a spin and color diluted source
ξaA(x)[t0, B, b, r] = δ(x0, t0) δAB δab ηbB(x)[r]. (4.69)

This requires a factor of 3 additional inversions and is expected to further reduce
stochastic noise (see Ref. [155]). The main benefit, however, is that it drastically
simplifies the numerical computation of correlation functions in the employed code
framework.
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4.5 Smearing Techniques
Energy levels that are extracted from correlation functions are governed by their be-
havior for large temporal separations t where the noise becomes large, while for small
separations the signal suffers from contributions of higher excited states. In order to
optimize the signal-to-noise ratio, one attempts to improve the overlap generated by
the creation operators with the real physical states. Fermion fields which are placed
at a single space-time point as well as gauge links are highly local and do not render
the actual physical shape quite well. The overlap with real physical states can be im-
proved by smearing the fields in only spatial or spatial and temporal direction. This
is done by replacing a field with a field obtained by averaging over neighboring points.

4.5.1 Smearing of Gauge Fields

In a first step, the signal of the correlation function can be substantially improved
by smearing the gauge links. The smeared gauge links are obtained by averaging
over short paths connecting the start and endpoint of the gauge link. This removes
fluctuations of the gauge fields at short distances. Moreover, smearing gauge link
configurations also mitigates the appearance of exceptional configurations which have
been mentioned in Sec. 2.3.5. As the new gauge links are in general not SU(3) matrices
anymore, they are projected back to SU(3). In practice, there is a large number of
different smearing algorithms using different approaches. I will shortly discuss those
techniques that are applied in this work.

4.5.1.1. APE Smearing

APE smearing [156] constructs the new links using so-called staples S̃µν(x) which are
the six paths with length 3 connecting the two endpoints of the gauge link. The
smeared link is given by

UAPE
µ (x) = PSU(3)

(1 − αAPE)Uµ(x) + αAPE

6
∑
ν ̸=µ

S̃µν(x)
 , (4.70)

where the staples are defined as

S̃µν(x) = Uν(x)Uµ(x+ ν̂)U †
ν(x+ µ̂) + U †

ν(x− ν̂)Uµ(x− ν̂)Uν(x− ν̂ + µ̂). (4.71)

PSU(3) indicates projection to SU(3), and αAPE is the real-valued smearing parameter.
In general, one performs NAPE smearing steps by iteratively repeating the smearing
procedure described in Eq. (4.70).

4.5.1.2. HYP Smearing

Another smearing approach is HYP smearing [157] where the gauge link is averaged
over the hypercubes that contain the original gauge link. Mathematically this is
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realized by

UHYP
µ (x) = PSU(3)

(1 − α1)Uµ(x) + α1

6
∑

±ν ̸=µ
Ṽνµ(x) Ṽµν(x+ ν̂) Ṽ †

νµ(x+ µ̂)
 , (4.72)

where only the so-called decorated links Ṽνµ(x) that are perpendicular to the µ-
direction, i.e., ν ̸= µ, are taken into account. The links Ṽµν(x) are constructed from
another set of decorated links as

Ṽµν(x) = PSU(3)

(1 − α2)Uµ(x) + α2

4
∑

±ρ ̸=ν,µ
V̄ρνµ(x) V̄µρν(x+ ρ̂) V̄ †

ρνµ(x+ µ̂)
 , (4.73)

where the index ρ runs only over the directions ρ ̸= µ, ν. Finally, V̄ρνµ(x) is governed
by

V̄µνρ(x) = PSU(3)

(1 − α3)Uµ(x) + α3

2
∑

±η ̸=ρ,ν,µ
Uη(x)Uµ(x+ η̂)U †

η(x+ µ̂)
 . (4.74)

In this way, only links that are part of the hypercubes containing the original gauge
link are considered where each single step uses a modified form of APE blocking. Note
that PSU(3) denotes again projection to SU(3). A convenient choice for the smearing
parameters is α1 = 0.75, α2 = 0.6 and α3 = 0.3, which is also applied in this work.
In principle it is also possible to perform several HYP smearing steps iteratively. In
most cases a single step is, however, sufficient.

4.5.1.3. Stout Smearing

Using Stout Smearing [158], the new links are obtained by a projection of the old links
according to

UStout
µ (x) = eiQµ(x) Uµ(x). (4.75)

The hermitian and traceless matrix Qµ(x) is built of the staples S̃µν(x) defined in
Eq. (4.71) via

Qµ(x) = i

2

(
Ω†
µ(x) − Ωµ(x) − 1

3 Tr
[
Ω†
µ(x) − Ωµ(x)

])
,

Ωµ(x) =
∑
ν ̸=µ

ρµν S̃µν(x)
U †

µ(x).
(4.76)

The smearing parameters are commonly kept constant with ρµν = ρ. Again, the
smearing procedure can by iteratively repeated up to a desired number of smearing
steps NStout.

62



4.6. Scattering Analysis

4.5.2 Smearing of Quark Fields at Sinks and Sources

A common practice in lattice QCD is to smear also the fermion fields thus improving
the overlap of the trial state generated by an operator with low-lying energy eigen-
states. A reasonable choice is a Gaussian shape. Therefore, smearing fermion fields is
also referred to as Gaussian smearing [159–161], which I apply in two slightly different
formulations in this work. First, I use the gauge-covariant Gaussian smearing in the
form

ψsmeared(x) =
(

1 + σ2
Gauss

4NGauss
∆(2)

)NGauss

ψ(x), (4.77)

where NGauss is the number of smearing steps and σGauss is the smearing parameter [37].
∆(2) is the spatial nearest-neighbor gauge covariant Laplacian as defined in Eq. (A.3),
while the gauge fields Uj(x) are replaced by gauge fields Ũj(x) that are smeared ac-
cording to one of the gauge fields smearing techniques discussed in Sec. 4.5.1.
The second formulation for Gaussian smearing is given by

ψsmeared(x) =
[ 1
1 + 6κGauss

(
1 + κGauss H

)]NGauss

ψ(x), (4.78)

with
H ψ(x) =

3∑
j=1

[
Ũj(x)ψ(x+ ȷ̂) + Ũ †

j (x− ȷ̂)ψ(x− ȷ̂)
]
. (4.79)

This prescription is also called Gaussian/Wuppertal smearing [160, 162, 163]. Both
formulations can be transferred into each other using

σGauss =
√

2NGauss κGauss

1 + 6κGauss
, (4.80)

which relates κGauss to the width σGauss of the smeared fermion field [164].
Every fermion field that appears in a correlation function should be smeared. This
means that the quark propagator which is obtained via Wick contraction of the quark
fields must be multiplied by smearing operators from the left as well as the right side.
If we consider the techniques to compute the quark propagator discussed in Sec. 4.4
and especially the general formula in Eq. (4.50), we recognize that both the source
term ξ and the solution ϕ must be smeared to obtain correctly smeared fermion fields.

4.6 Scattering Analysis
The finite volume energy spectrum that is extracted from a correlation matrix can
only be associated to hadronic states well below the threshold of strong decay. To
investigate states that are located in the elastic scattering region or close to S-wave
thresholds, a more elaborated treatment is required as the finite volume energy spec-
trum needs to be related to the infinite volume scattering amplitude to reliably extract
these hadron masses. Thus, performing a scattering analysis using Lüscher’s method
(see Ref. [22] and Chapter 3) provides a suitable approach to rigorously studying
tetraquark states close to or above the threshold of strong decay.
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4.6.1 Lattice Dispersion Relation

In order to apply Lüscher’s method, we require the dispersion relation of the mesons
that are involved in the scattering process. For relativistic mesons, the dispersion
relation is given by

E(p) =
√
m2 + p2, (4.81)

where m is the meson mass and p = 2πn/L is the quantized lattice momentum. For
mesons where at least one heavy quark is treated in the framework of NRQCD, the
dispersion relation needs to be modified since the heavy quark mass has been removed
from the action as discussed in Sec. 2.4. The momentum dependent energy for mesons
with one heavy quark obeys

EM(p) = EM,0 +
√
m2
M,kin + p2 −mM,kin, (4.82)

where M can be, for example, the pseudoscalar and vector B or Bs mesons and mM,kin
is the kinetic mass of the meson M [37]. Computing the momentum dependent energy
EM(p) of a particular meson for several values of p, the meson’s kinetic mass can be
extracted directly from Eq. (4.82) by solving it for the lowest momentum p2 = (2π/L)2

and verifying that the solution is also valid for higher momenta p. Alternatively, mM,kin
can be also extracted from a χ2-minimizing fit to Eq. (4.82) using all energies EM(p).

4.6.2 Scattering Momenta and Infinite Volume Scattering Amplitude

According to Eq. (3.15), the low-lying finite volume energy levels En of a particular
four-quark state can be related to the scattering momentum kn by

En = EM1(kn) + EM2(kn), (4.83)

where M1 and M2 indicate the two mesons that are involved in the scattering process.
In the case of antiheavy-light mesons, the dispersion relations are given by Eq. (4.82).
Solving Eq. (4.83) for k2

n, one obtains

k2
n = 1

4s

(
s− (mM1,kin +mM2,kin)2

)(
s− (mM1,kin −mM2,kin)2

)
(4.84)

with the center-of-momentum energy
√
s given by

√
s = En − EM1(0) − EM2(0) +mM1,kin +mM2,kin. (4.85)

The scattering momenta kn, which are governed directly from the finite volume energy
levels En via Eq. (4.84) can be related to the infinite volume scattering amplitude T
using Lüscher’s method. This is done by constraining a suitable energy dependent
parametrization of the T -matrix using the finite number of discrete momenta kn. In
practice, there are different ways how the T -matrix parametrization can be determined
relying either on the quantization condition in Eq. (3.35) where the phase shift δl is
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considered or on the more general quantization condition in Eq. (3.45) where the T -
matrix appears directly. Which approach is more appropriate depends on the number
of scattering channels and the structure of the M -matrix defined in Eq. (3.28).
After the scattering amplitude has been successfully parametrized, it can be analyti-
cally continued into the complex energy plane. Here, one examines if pole singularities
of the T -matrix appear. Such poles are related to physical states. Poles that are lo-
cated on the real axis of the first Riemann sheet below the threshold correspond to
bound states, while the location of the pole yields the bound state’s binding energy.
Resonances are governed by poles in the second Riemann sheet off the real axis and
above the threshold. The pole position can be interpreted as the mass (real part) and
width (imaginary part) of the resonance.

4.6.2.1. Computing the Infinite Volume Phase Shift

For a scattering analysis using only a single scattering channel, a common method
is to compute the phase shift δl(kn) for each scattering momenta kn using the quan-
tization condition in Eq. (3.35). This is possible as long as the M -matrix can be
block-diagonalized for the relevant angular momentum l. For example, this approach
is applicable for the scattering analysis of the b̄b̄ud system with I(JP ) = 0(1+) carried
out in Chapter 5. In the center-of-momentum frame, the quantum numbers JP = 1+

appear in the T+
1 irrep of group Oh and according to Sec. 3.2, the S-wave phase shift

δ0 for the T+
1 irrep is found to be

cot
(
δ0(kn)

)
= 2Z00(1; (knL/2π)2)

π1/2knL
. (4.86)

For the tetraquark candidates that are studied in Chapter 7, where also moving frames
are considered, different symmetry groups and irreps must be taken into account.
Thus, the phase shift formulas might differ from Eq. (4.86). However, they are ob-
tained in a similar way considering the block-diagonal part of the M -matrix that
corresponds to the relevant irrep. The M -matrices for all symmetry groups of interest
can be found in Eqs. (3.42) and (B.14) to (B.17).
In the next step a reasonable parametrization for cot(δl) is selected and the associated
parameters are determined. Besides many possible parametrizations, two common
choices are the effective-range expansion (ERE) and the Breit-Wigner parametriza-
tion.

According to Ref. [49], the effective-range expansion is a reasonable parametrization
for k cot(δ0) in the vicinity of the threshold, given by

k cot
(
δ0(k)

)
= 1
a0

+ 1
2r0k

2 + O(k4). (4.87)

Using the scattering momenta kn and the corresponding phase shifts cot(δ0(kn)), the
two parameters a0 (S-wave scattering length) and r0 (S-wave effective range) can be
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determined. Note that for the case of only two energy levels En with n = 0 and n = 1,
the parameters can be directly computed by solving the occurring system of linear
equations. If more than two energy levels are involved, the parameters are determined
via a χ2-minimizing fit.
Using the parametrization of k cot(δ0), the scattering amplitude is given via Eq. (3.36).
In order to determine the pole positions of the T -matrix, one needs to find the solutions
of cot(δ0) = i in the complex energy plane.
For bound states, the pole is located at the real axis below threshold where −ik > 0.
This simplifies the pole search, as we can introduce the bound state momentum kBS
according to k = i|kBS|. Combining the pole condition cot(δ0(kBS)) = i with the
effective-range expansion yields

−|kBS| = 1
a0

− 1
2r0|kBS|2, (4.88)

which can be easily solved for |kBS|. The binding energy is then given by

Ebind = EBS − EM1(0) − EM2(0) = EM1(kBS) + EM2(kBS) − EM1(0) − EM2(0)

=
√
m2
M1,kin − |kBS|2 −mM1,kin +

√
m2
M2,kin − |kBS|2 −mM2,kin,

(4.89)

where EBS denotes the bound state energy. This approach has been successfully ap-
plied in various previous work (e.g., see Refs. [48, 49, 165, 166]). I will follow this
proceeding in Chapter 5 where I determine the infinite volume binding energy of the
b̄b̄ud tetraquark state with I(JP ) = 0(1+). Additionally, I also utilize this approach in
Chapter 7 to studying b̄c̄ud four-quark systems with I(JP ) = 0(0+) and I(JP ) = 0(1+).

The Breit-Wigner parametrization is well-suited to describe narrow P -wave resonances
(see Refs. [167,168]). Here, the phase shift is parametrized as

k3
√
s

cot
(
δ1(s)

)
= 6π
g2 (m2

R − s), (4.90)

where the free parameters are the coupling g and the resonance mass mR. As discussed
for the effective-range expansion, using the lattice energy levels En (which are related
to the scattering momenta kn and the center-of-momentum energies √

sn according to
Eqs. (4.84) and (4.85)) and the associated phase shifts cot(δ1) allows us to determine
the free parameters g and mR by fitting the Breit-Wigner function in Eq. (4.90) to the
data. Using the parametrization, the pole of the scattering amplitude (see Eq. (3.36))
in the complex energy plane is determined. Such a parametrization could be used to
search for a b̄b̄ud tetraquark resonance with I(JP ) = 0(1−) as discussed in Chapter 8.

4.6.2.2. Parametrizing the Scattering Amplitude

If either the M -matrix cannot be block-diagonalized or several scattering channels are
considered, the phase shift cannot be computed as easily as discussed in the previ-
ous section. Here, it is more appropriate to use the quantization condition given in
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Eq. (3.45). The T -matrix can be written as

[T−1(s)]αβ = 1
(2kα)l [K−1(s)]αβ

1
(2kβ)l + Iαβ(s), (4.91)

where K(s) is a symmetric matrix which is real for real s, and the factors 1/(2kα)l
guarantee that the behavior at the kinematic thresholds is correct [129,169–171]. The
diagonal matrix I(s) ensures unitarity by claiming that Im(Iαβ(s)) = −δαβρα(s) above
the threshold and Im(Iαβ(s)) = 0 below the threshold [129,170]. To determine the real
part of I(s), I follow the approach in Refs. [129, 170] and use the Chew-Mandelstam
prescription [172] which ensures an analytically well-behaving scattering amplitude
below threshold. The K-matrix parametrization that I use in this work for single
channel scattering processes is given by

[K−1(s)]single = c(0) + c(1)s, (4.92)

where c(k) are the free parameters. Similarly, for a coupled channel scattering analysis,
the associated K-matrix parametrization is given by

[K−1(s)]coupled =
c(0)

00 c
(0)
01

c
(0)
10 c

(0)
11

+
c(1)

00 c
(1)
01

c
(1)
10 c

(1)
11

 s, (4.93)

with the free parameters c(k)
ij which has been applied, e.g., in Refs [129, 170, 171, 173].

As the K -matrix is supposed to be symmetric, it follows that c(k)
ij = c

(k)
ji .

Having chosen a reasonable ansatz for the parametrization of the energy dependent
scattering amplitude T (s), the quantization condition in Eq. (3.45) must be solved for
the discrete finite volume energy spectrum obtained from the lattice QCD calculation
in order to determine the free parameters of the T -matrix. In the most general case, one
might have computed the energy spectrum not only for the center-of-momentum frame
but also for several moving frames and possibly for different irreps. Additionally, also
several lattice volumes might have been taken into account. All these energy levels
can then be considered in a single scattering analysis. The discrete energy spectra
are consequently denoted as En,cm(P,Λ, L), where P,Λ labels the frame and irrep
and L the spatial lattice extent. The index cm indicates that all energies obtained
in moving frames are transferred back to the center-of-momentum frame according to
En,cm =

√
s =

√
E2
n − P2. One approach to determining the T -matrix parametrization

is to vary the free parameters such that the whole spectrum En,cm(P,Λ, L) is described
in an optimal way. Mathematically, this is achieved by minimizing a χ2 function that
describes the difference between the lattice energy levels En,cm and the energy levels
Epar.
n,cm that are obtained from Eq. (3.45) for a specific choice of parameters {cj},

χ2({cj}) =
∑
L

∑
n,n′

∑
P,Λ,P′,Λ′

[
En,cm(P,Λ, L) − Epar.

n,cm(P,Λ, L, {cj})
]

×
(
C−1

)
n,n′

(P,Λ,P ′,Λ′, L)
[
En′,cm(P ′,Λ′, L) − Epar.

n′,cm(P ′,Λ′, L, {cj})
]
.

(4.94)
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Here, the matrix C is the data covariance matrix. For energy levels computed on
the same ensemble, its off-diagonal elements can be non-zero, while a suitable way to
estimate them is the jackknife method [129].
If the scattering amplitude is successfully parametrized, one searches for poles of the
T -matrix in the complex energy plane to identify physical states. I apply the approach
discussed in this paragraph for the scattering analysis carried out in Chapter 6.

4.6.3 The Left-Hand Cut

One major issue in modern scattering analyses is imposed by the so-called left-hand
cut. This corresponds to a branch cut that originates from a one-particle exchange
in two-body systems [174]. A detailed discussion of possible implications of the left-
hand cut with respect to the parametrization of the scattering amplitude has been
carried out for DD∗ scattering in Ref. [174]. Here, I will give a short overview of the
most important aspects and implications. Let us consider the scattering process of
two hadronically stable particles, e.g., BB∗ scattering. The relevant threshold BB∗

introduces a two-body branch point in the scattering amplitude, while a three-body
branch point occurs from the three-meson threshold BBπ. Both introduce branch
cuts which are right-handed and located at the real axis. According to Ref. [174], the
two-body branch point is located at

k2
rhc2 = 0, (4.95)

and the three-body branch point at

k2
rhc3 = 2µ(mπ − ∆m) (4.96)

with ∆m = mM2 − mM1 and µ = mM1mM2(mM1 + mM2), where mM1/2 denotes the
masses of the mesons involved in the scattering process.
Additionally, also one-particle exchanges play a crucial role, while in the case of BB∗

scattering the relevant interaction is one-pion exchange. This introduces an additional
singularity of the amplitude and gives rise to a left-hand cut starting at this branch
point. Following Ref. [174], its location can be determined as

(k1π
lhc)2 ≈ 1

4(∆m2 −m2
π). (4.97)

Note that additional left-hand cuts are introduced by exchange of heavier mesons and
two or more pions.
The actual practical implications for a scattering analysis concern the parametriza-
tion of the T -matrix or phase shift, respectively. The range of convergence for most
parametrizations like the ERE is constrained by the nearest singularity which is given
by the branch point of the left-hand cut. Thus for scattering systems, where the sin-
gularity appears in the relevant energy region, the physics behind the left-hand cut
cannot be disregarded [174].
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However, it is still an unresolved issue how to cover the left-hand cut rigorously in
a scattering analysis. Moreover, it is unclear how to interpret a pole that has been
found using a particular parametrization which exceeds its range of convergence. It is
unknown if such a pole suffers from only mild corrections due to one-particle exchange
or if it is totally unphysical as the parametrization is not valid to describe the physics
in this energy region. It is the subject of ongoing research to investigate this subtle
issue further [174–178].
In this thesis, I neglect effects due to the left-hand cut in my scattering analyses.
Nevertheless, I determine the position of the branch point associated to the left-hand
cut to judge if the T -matrix parametrization is reliable or if one-particle exchanges
should be taken into account. In the case of a left-hand cut in the relevant energy
region the results of a scattering analysis must be treated with caution since their
truthfulness is unclear. Here, an improved scattering analysis formalism taking into
account one-particle exchange would be desirable.
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5
Computation of the

Ground-State Energy for Q̄Q̄′qq′

Tetraquark States
One major interest of this work is to investigate if hadronically stable antiheavy-anti-
heavy-light-light tetraquark states Q̄Q̄′qq′ exist. In this chapter I will discuss the
lattice computations that were carried out to determine the four-quark ground-state
energy levels for the most promising tetraquark candidates with quark content b̄b̄ud in
the I(JP ) = 0(1+) channel, b̄b̄us in the JP = 1+ channel, and b̄c̄ud with I(JP ) = 0(0+)
and I(JP ) = 0(1+). While for the b̄b̄ud and b̄b̄us tetraquarks evidence for a bound
state has already been found in several lattice calculations [24, 35–40], the situation
is less clear for b̄c̄ud four-quark states where first a bound state had been predicted
in Ref. [41] but later revoked [42], while another group found indication for a stable
tetraquark state [43].
In addition to local interpolating operators the lattice calculation presented in this
chapter employs also scattering interpolating operators which have not been considered
in previous calculations [35,36,41–43] and therefore expands these works accordingly.
Since the computation of quark propagators is extremely expensive for the given lattice
setup, already existing light and strange point-to-all propagators are used. Therefore,
scattering operators can only be considered at the sink but not at the source, thus
resulting in a non-square correlation matrix. All techniques that are applied to study
the four-quark states in this chapter have been introduced in Chapter 4, while I have
discussed the utilized interpolating operators in particular in Sec. 4.2.3.
In Sec. 5.1 I present the used lattice setup covering the gauge link ensembles, the ap-
plied techniques to compute the quark propagators, and the utilized smearing methods.
In Sec. 5.2 I show the results for the energies of the heavy-light mesons which are con-
stituents of the relevant meson-meson thresholds. Sec. 5.3 covers the main part of
this chapter. Here I depict the lattice results for the four-quark ground-state energy
levels. This is followed by a discussion of the final results in Sec. 5.4 including a chiral
extrapolation of the binding energies to the physical pion mass.
Note that the results for the case of b̄b̄ud which are discussed in the following are
part of a previous work in Refs. [37, 92], but I will nevertheless recapitulate them for
the sake of completeness. All results that are presented in this chapter have been
published in Refs. [24,37].
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5.1 Lattice Setup
In this section, I present the gauge field configurations, explain how the quark propa-
gators are computed, and mention the applied smearing methods.

5.1.1 Gauge Field Configurations

The computations carried out in this chapter use gauge link configurations generated
by the RBC and UKQCD collaborations [179, 180]. These ensembles are generated
using the Iwasaki gauge action [54, 55] (see also Sec. 2.2) and domain-wall fermions
with Nf = 2 + 1 flavors [72–74, 181] (see also Sec. 2.3.3). The five ensembles that
are utilized for this project differ in their lattice spacing, the spatial volume and
the pion mass, while one ensemble is at the physical point. Details about the lattice
ensembles are summarized in Table 5.1, and the lattice spacings have been determined
in Ref. [180].

Ensemble N3
s ×Nt a [fm] am

(sea;val)
u;d am(sea)

s am(val)
s mπ [MeV] Nconf

C00078 483 × 96 0.1141(3) 0.00078 0.0362 0.0362 139(1) 40
C005 243 × 64 0.1106(3) 0.005 0.04 0.0323 340(1) 311
C01 243 × 64 0.1106(3) 0.01 0.04 0.0323 431(1) 283
F004 323 × 64 0.0828(3) 0.004 0.03 0.0248 303(1) 251
F006 323 × 64 0.0828(3) 0.006 0.03 0.0248 360(1) 442

Table 5.1.: List of gauge link ensembles [179, 180] used in this work. Ns, Nt: number of
lattice sites in spatial and temporal directions; a: lattice spacing; am

(sea)
q : sea-quark mass

for flavor q; am
(val)
q : valence-quark mass for flavor q; mπ: pion mass; Nconf: number of gauge

field configurations.

5.1.2 Light and Strange Quark Propagators

For the light and strange quark propagators, I use Gaussian smeared point-to-all
propagators which are computed using a conjugate gradient solver in combination
with low-mode deflation. A more detailed discussion of the numerical methods used
to calculate the quark propagators can be found in Ref. [37].
As the numerical computation of the point-to-all propagators is quite expensive, I ap-
ply the so-called all-mode-averaging technique [182,183] to reduce the numerical costs.
Hereby, on each configuration only a small sample of exact quark propagators and as-
sociated exact correlation functions and a larger sample of sloppy quark propagators
and correlation functions are computed. Exact and sloppy correlation functions are
afterwards combined such that the expectation value of the exact sample is maintained
while the large number of sloppy samples reduces the variance significantly,

(AMA samp.)e = (ex. samp.)e−(slop. samp.)e,0+ 1
Nslop.

Nslop.−1∑
s=0

(slop. samp.)e,s. (5.1)
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Here, e numerates the exact samples (ex. samp.), covering all gauge link configurations
and source positions. The sloppy samples (slop. samp.) associated to an exact sample
e are additionally indexed with s which labels a space-time displacement of the source
relative to the exact source, while s = 0 indicates no displacement. The number of
exact and sloppy samples for each ensemble are listed in Table 5.2.

Ensemble Nsamples, exact Nsamples, sloppy

C00078 80 2560
C005 311 9952
C01 283 9056
F004 251 8032
F006 442 14144

Table 5.2.: Number of exact and sloppy samples used for all-mode-averaging [182, 183]. Per
configuration I use 1 or 2 exact samples with 32 or 64 sloppy samples.

5.1.3 Charm Quark Propagators

For the charm quarks I use point-to-all propagators which are computed using the first
variant of the anisotropic clover action in Eq. (2.86) presented in Sec. 2.5. Following
this approach, I use the same values for the chromoelectric and chromomagnetic co-
efficients, i.e., cP ≡ cE = cB (e.g., see Ref. [105]). The remaining three parameters
amQ, ζ and cP are tuned for each ensemble such that the rest mass, the kinetic mass
and the hyperfine splitting for the Ds meson match their experimental values [24,87].
I list all coefficients in Table 5.3.

Ensemble amQ = amc ζ cP

C00078 0.2751 1.1883 2.0712
C005, C01 0.1541 1.2004 1.8407
F004, F006 −0.0517 1.1021 1.4483

Table 5.3.: Parameters used in the anisotropic clover action in Eq. (2.86) for the charm
quarks.

5.1.4 Bottom Quark Propagators

The bottom quarks are treated in the framework of NRQCD which has been presented
in Sec. 2.4 whereby the quark propagators are determined using the Green function
evolution equation given in Eq. (2.76). The matching coefficients are all set to their
tree-level value ci = 1 except for c4 which is taken from a computation in one-loop
lattice perturbation theory in Ref. [184]. As discussed in Sec. 2.4.4, the gauge links
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are divided by the mean link in Landau gauge u0L. The bare bottom quark masses are
tuned such that the spin-averaged kinetic mass of bottomonium matches its experi-
mental value [37,137]. I list all parameters in Table 5.4, while omitting the matching
coefficients which are set to their tree-level value.

Ensemble amb u0L c4

C00078 2.52 0.8432 1.09389
C005, C01 2.52 0.8439 1.09389
F004, F006 1.85 0.8609 1.07887

Table 5.4.: Parameters used in the NRQCD action in Eq. (2.76) for the bottom quarks.

5.1.5 Smearing of Quark Fields

All quark fields that are used to compute the correlation functions in this chapter are
smeared. I use Gaussian smearing for all five quark flavors as discussed in Sec. 4.5.2,
while the smearing parameters and the number of Gaussian smearing steps are listed
in Table 5.5. For the up, down and strange quarks, the Gaussian smearing is carried
out on spatially APE smeared gauge links (see Sec. 4.5.1.1). Furthermore, for the
charm quarks, the gauge links are initially stout smeared (see Sec. 4.5.1.3), while no
gauge link smearing is used for the bottom quarks. All parameters for the gauge
link smearing are also summarized in Table 5.5. As the computation of the quark
propagators is numerically extremely expensive, I reuse existing quark propagators

Ensemble Up and down quarks Strange quarks
NGauss σGauss NAPE αAPE NGauss σGauss NAPE αAPE

C00078 100 7.171 25 2.5 30 4.350 25 2.5
C005, C01 30 4.350 25 2.5 30 4.350 25 2.5
F004, F006 60 5.728 25 2.5 60 5.728 25 2.5

Charm quarks Bottom quarks
NGauss σGauss Nstout ρ NGauss σGauss

C00078 10 2.00 10 0.08 10 2.0
C005, C01 10 2.00 10 0.08 10 2.0
F004, F006 16 2.66 10 0.08 10 2.0

Table 5.5.: Smearing parameters for the quark-fields used in the computation of the corre-
lation functions. Gaussian smearing is carried out according to Eq. (4.77). A single gauge
link smearing sweep is defined in Eq. (4.70) for APE smearing and in Eq. (4.75) for stout
smearing.

74



5.2. Energies for Antiheavy-Light Pseudoscalar and Vector Mesons

from a previous project. This is the reason why a different gauge link smearing is
applied for the charm quarks.

5.2 Energies for Antiheavy-Light Pseudoscalar and Vector
Mesons

To make reliable statements about the binding of four-quark states, we require the
masses of the mesons forming the lowest two-meson threshold in each channel. For this
purpose, I compute the two-point correlation functions for the pseudoscalar and vector
B, Bs andD mesons using the interpolating operators presented in Eqs. (4.15) to (4.20)
for zero momentum projection, p = 0. The ground-state energy for each meson is
determined by an uncorrelated χ2-minimizing fit of a constant to the effective energy
given by Eq. (4.6) for sufficiently large temporal separations. Statistical uncertainties
are calculated using jackknife resampling. I exemplarily depict the effective energies
for all mesons computed on ensemble C005 in Fig. 5.1 together with a plateau fit for a
suitable temporal fit range. The final results for the mesons’ energies on all ensembles
are collected in Table 5.6. Note that slightly different B and B∗ masses have been
used for studying the b̄b̄ud system (see Ref. [37]) due to a slightly different temporal
fit range, though those masses are consistent within statistical uncertainties.
The energies for the pseudoscalar and vector B and Bs mesons do not correspond to
their physical values but are shifted as a consequence of using NRQCD [24, 37]. This
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Figure 5.1.: Effective energies as defined in Eq. (4.6) at zero momentum for pseudoscalar
and vector B, Bs and D mesons computed on ensemble C005. The corresponding plateau
fits in the range 7 ≤ t/a ≤ 20 are indicated by the horizontal lines.
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Ensemble aEB aEB∗ aEBs aEB∗
s

aED aED∗

C00078 0.4564(46) 0.4814(49) 0.5052(12) 0.5349(15) 1.0823(14) 1.1638(21)
C005 0.4639(12) 0.4936(14) 0.4998(8) 0.5294(9) 1.0616(4) 1.1462(8)
C01 0.4737(11) 0.5052(13) 0.5025(8) 0.5338(10) 1.0714(4) 1.1586(7)
F004 0.3757(10) 0.3976(11) 0.4031(6) 0.4256(7) 0.7944(4) 0.8566(6)
F006 0.3786(6) 0.4007(7) 0.4033(4) 0.4258(5) 0.7981(2) 0.8609(4)

Table 5.6.: Energies of pseudoscalar and vector B, Bs and D mesons at zero momentum.

shift is proportional to the number of b quarks nb, and consequently it cancels if we
consider energy differences with equal number of b quarks as it is the case for the
difference of a four-quark energy level to the associated lowest two-meson threshold.
For the case of b̄b̄ud, the finite volume ground-state energy is extrapolated to the
infinite volume by performing a scattering analysis. Therefore, the momentum depen-
dence for the B and B∗ mesons’ energy has been studied, and the kinetic masses have
been determined using the dispersion relation given in Eq. (4.82). More details and
the resulting kinetic masses can be found in Sec. IV of Ref. [37].

5.3 Results on Q̄Q̄′qq′ Tetraquark Systems
The four-quark correlation functions are computed using the interpolating operators
in Eqs. (4.21) to (4.40), while scattering operators are applied only at the sink. Ac-
cordingly, the correlation matrices have a shape of (Nloc ×Nscatt) × (Nloc) where Nloc
is the number of local operators and Nscatt the number of scattering operators for the
respective four-quark system. The energies En are extracted from these non-square
correlation matrices using fully correlated χ2-minimizing multi-exponential matrix fits
as described in Sec. 4.3.2. I vary the number of exponentials N included in the fit as
well as the temporal fit range and determine the energies En for the full correlation
matrix and also for several sub-matrices.
As the number of exact samples is partly rather small compared to the degrees of free-
dom appearing in the matrix fit, the covariance matrix might be poorly determined,
especially for the full correlation matrix. I prevent this by using a modified version of
the all-mode-averaging where the modified AMA sample (mAMA) is governed as

(mAMA samp.)e,s = (ex. samp.)e − (slop. samp.)e,0 + (slop. samp.)e,0. (5.2)

This increases the number of samples by a factor Nsloppy = 32 so that the covariance
matrix is also well-defined for large correlation matrices. A drawback of this modified
AMA method is, however, that additional correlations are introduced. This is covered
by rescaling the uncertainties of the energy levels in an appropriate way. For more
details about this procedure, I refer to Ref. [37].
In addition to the energies En, I also determine the overlap factors Zn

j as defined in
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Eq. (4.42). A trial state of a particular creation operator can be expanded in terms of
the overlap factor Zn

j according to

O†
j |Ω⟩ =

∞∑
n=0

|n⟩⟨n|O†
j |Ω⟩ =

∞∑
n=0

Zn
j |n⟩. (5.3)

Consequently, the overlap factor Zn
j indicates how strongly the energy eigenstate |n⟩

contributes to the trial state O†
j |Ω⟩. This makes it possible to draw certain conclusions

about the composition of the eigenstate |n⟩. If for a particular trial state O†
j |Ω⟩ one

overlap factor |Zm
j | is considerably larger than all other overlap factors |Zn

j | for n ̸= m,
this suggests that |m⟩ is similar to the trial state O†

j |Ω⟩ [24]. In contrast to that, an
overlap factor |Zm

j | that is clearly smaller than at least one other overlap factor |Zn
j |

with n ̸= m indicates that the states |m⟩ and O†
j |Ω⟩ are rather orthogonal to each

other. In this section, I consider the normalized overlap factors defined as

Z̃n
j =

Zn
j

maxm(|Zm
j |) . (5.4)

5.3.1 Results for the Case of b̄b̄ud with I(JP ) = 0(1+)
The b̄b̄ud four-quark system with I(JP ) = 0(1+) is the most promising candidate for a
bound tetraquark state. In the following, I will summarize the results for this system,
which have been published in Refs. [37, 92], to give a complete overview of all studies
on doubly-heavy tetraquarks that have been carried out using the presented lattice
setup. Parts of the analysis have been done by other members of our collaboration.
In Fig. 5.2, I present the fit results obtained from various sub-matrices for the ground-
state energy level ∆E0 (blue) and the first excited state ∆E1 (green) relative to the
BB∗ threshold, i.e., ∆En = En − EB − EB∗ , on ensemble C005. The boxes below
the plot indicate which operators are included in the correlation matrix. The lowest
box represents O1 and the topmost O5. A filled/empty box indicates that the asso-
ciated operator is included/excluded in the fit, while a black box represents a local
operator and a red box a scattering operator. The final estimates for the energy levels
∆En = En − EB − EB∗ are depicted by the horizontal lines with shaded error bands.
Looking at these fit results, we can make two essential observations [37]. First, includ-
ing scattering operators has substantial impact on the fit results. This is characterized
by the fact that, on the one hand, stable results are only obtained if at least one scat-
tering operator is included and, on the other hand, that in this case the ground-state
energy and the energy of the first excited state drop significantly. Second, the final
estimate for the ground-state energy level is found approximately 120 MeV below the
BB∗ threshold which is an indication for a bound tetraquark state. Moreover, the
first excited state is close to the BB∗ threshold indicating a meson-meson scattering
state.
These observations can be further supported by considering the normalized overlap
factors Z̃n

j as defined in Eq. (5.4). In Fig. 5.3, I show the normalized overlap factors
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Figure 5.2.: Fit results for the two lowest energy levels ∆E0 and ∆E1 for the b̄b̄ud system with
I(JP ) = 0(1+) relative to the BB∗ threshold obtained on ensemble C005. The boxes below
the plot indicate the utilized operator basis. Above each fit the number of exponentials,
the temporal fit range and the value of χ2/d.o.f. are presented. The shaded horizontal lines
correspond to the final estimates for ∆E0 and ∆E1 and are obtained by a bootstrap average
of the fit results indicated by a filled symbol.

that have been extracted from a fit to the full 5 × 3 correlation matrix on ensemble
C005. Note that the mean values and uncertainties of Z̃n

j are obtained via bootstrap
resampling of the fits with the consequence that the largest value can be smaller than
1 [37]. According to Fig. 5.3, we observe that the overlap of the trial state generated
by the operator O3 with the ground state |0⟩ is significantly larger than the overlap
with all other states, i.e., Z̃0

3 ≫ Z̃n
3 for n ̸= 0. Additionally, the trial states generated

by the scattering operators O4 and O5 overlap mainly with the first excited state |1⟩.
This agrees with the interpretation of the ground state as a bound four-quark state
and the first excited state as a meson-meson scattering state.
The estimates for the finite volume energy levels En presented in Fig. 5.2 can be
related to the infinite volume scattering amplitude using Lüscher’s method following
the approach discussed in Sec. 4.6.2.1. In Ref. [37], we computed the parameters a0
and r0 of the effective-range expansion which is shown in Fig. 5.4. Using the ERE given
in Eq. (4.87), the pole of the scattering amplitude below the threshold is determined
according to Eqs. (4.88) and (4.89). This pole position corresponds to the binding
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Figure 5.3.: Normalized overlap factors Z̃n
j for the b̄b̄ud system obtained via a three-

exponential fit to the full 5 × 3 correlation matrix in the range 12 ≤ t/a ≤ 24 on ensemble
C005. The index j corresponds to the index of the operator shown above each plot, the
index n to the energy eigenstates shown below each plot.

energy Ebind of the b̄b̄ud tetraquark state and is found to be essentially identical to
the finite-volume energy difference ∆E0 [37]. Consequently, the interpretation of the
b̄b̄ud ground state as a stable tetraquark is further supported. The results for the
ground-state binding energies are collected for all ensembles in Table 5.8 in Sec. 5.4.
For more details about the calculations studying the b̄b̄ud tetraquark system, I refer
to Ref. [37].
Note that in the scattering analysis performed for the b̄b̄ud system possible effects
due to the left-hand cut (see Sec. 4.6.3) are neglected. However, using Eq. (4.97),
∆m = mB∗ − mB ≃ 45 MeV and mπ ≃ 310 MeV, we find the left-hand cut branch
point at (k1π

lhc)2 ≈ −(153 MeV)2 which is much closer to the threshold than the bound

−0.3 −0.2 −0.1 0.0 0.1
(ak)2

−1

0

1

a
k

co
t
δ(
k

)

Ensemble C005

Figure 5.4.: Effective range expansion for ensemble C005 indicated by the red line based on
the two lowest energy levels. The BB∗ threshold is located at k = 0, the B∗B∗ threshold
is indicated by the green vertical line. The blue curve starting at k = 0 corresponds to
ak cot(δ(k)) + a|k| whose lowest zero gives the binding energy.
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state pole located at kBS ≈ 800 MeV [37]. Thus, the pole of the scattering amplitude
lies outside the range of convergence of the ERE and consequently this parametrization
might not be a valid choice for the scattering analysis. A rigorous understanding of
the implications arising due to the left-hand cut is still subject of ongoing research
and not further addressed in this chapter.

5.3.2 Results for the Case of b̄b̄us with JP = 1+

Another promising candidate for a bound tetraquark state is the b̄b̄us four-quark
system with quantum numbers JP = 1+. My results presented in this section have
already been published in Ref. [24]. As discussed in Sec. 4.2.3.2, four local operators
and three scattering operators are considered in this channel which leads to a rather
large correlation matrix. This is disadvantageous as extracting the energies via multi-
exponential matrix fits for large matrices is extremely challenging and the obtained
fits might be unstable.

5.3.2.1. Reducing the Size of the Correlation Matrix

A reasonable way to handle this disadvantage is reducing the size of the correlation
matrix while maintaining all relevant information which is required to precisely de-
scribe the ground-state energy level. Accordingly, the size of the associated correlation
matrix for the b̄b̄us system is reduced from 7 × 4 to 6 × 3. To do so, the set of local
interpolating operators O1 to O4 defined in Eqs. (4.26) to (4.29) is substituted by
linear combinations of these operators given by

O′
j =

4∑
k=1

v̄kj−1Ok, with j = 1, . . . , 4. (5.5)

The coefficients v̄kn are extracted from the eigenvectors vn that are obtained by solv-
ing the GEVP for the 4 × 4 correlation matrix built of the local operators O1 to O4.
Note that each eigenvector vn associated to the n-th state is normalized according
to ∑4

k=1 |vkn|2 = 1. I show the squared normalized eigenvector components |vkn(t)|2
obtained on ensemble C01 in Fig. 5.5. As one can see, for sufficiently large temporal
separation, the eigenvectors become independent of t. A reasonable choice for the

v̄kn k = 1 k = 2 k = 3 k = 4
n = 0 +0.493 −0.501 −0.588 −0.399
n = 1 −0.708 −0.706 +0.002 +0.002
n = 2 −0.448 +0.446 −0.773 −0.056
n = 3 −0.351 +0.351 +0.529 −0.689

Table 5.7.: Coefficients v̄kn that are applied in the linear combination of the local operators
O1 to O4 to obtain the new interpolation operators O′

j according to Eq. (5.5).
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coefficients v̄kn in Eq. (5.5) is found to be v̄kn = vkn(t/a = 8) as for t/a = 8 a plateau is
reached, while statistical fluctuations are small [24]. I collect the results obtained for
all v̄kn in Table 5.7.
The new set of operators has some beneficial properties as the trial state generated by
the operator O′

j acting on the vacuum state will have significant overlap with the eigen-
state |j − 1⟩, while it will be almost orthogonal to all other eigenstates. Accordingly,
the operator O′

1 is crucial to describe the ground-state energy level, while operators
whose trial states overlap mainly with higher excitations play a rather subordinate role
and can possibly be discarded. This allows us to consider a small correlation matrix
which is advantageous for performing multi-exponential fits whereas simultaneously
all relevant contributions to the lowest energy levels are preserved. While additionally
to O′

1 also O′
2 and O′

3 have been found to be valuable to precisely determine the low-
lying energy levels, the operator O′

4 does not seem to provide any improvement and is

0 2 4 6 8 10 12 14 16

t/a

0.0

0.2

0.4

0.6

0.8

1.0

|v
k 0
|2

n = 0

OBsB∗, |v̄1
0|2 = 0.2434

OB∗sB, |v̄2
0|2 = 0.2511

OB∗sB∗, |v̄3
0|2 = 0.3460

ODd, |v̄4
0|2 = 0.1595

0 2 4 6 8 10 12 14 16

t/a

0.0

0.2

0.4

0.6

0.8

1.0

|v
k 1
|2

n = 1

OBsB∗, |v̄1
1|2 = 0.5010

OB∗sB, |v̄2
1|2 = 0.4990

OB∗sB∗, |v̄3
1|2 = 0.0000

ODd, |v̄4
1|2 = 0.0000

0 2 4 6 8 10 12 14 16

t/a

0.0

0.2

0.4

0.6

0.8

1.0

|v
k 2
|2

n = 2

OBsB∗, |v̄1
2|2 = 0.2010

OB∗sB, |v̄2
2|2 = 0.1991

OB∗sB∗, |v̄3
2|2 = 0.5967

ODd, |v̄4
2|2 = 0.0032

0 2 4 6 8 10 12 14 16

t/a

0.0

0.2

0.4

0.6

0.8

1.0

|v
k 3
|2

n = 3

OBsB∗, |v̄1
3|2 = 0.1230

OB∗sB, |v̄2
3|2 = 0.1229

OB∗sB∗, |v̄3
3|2 = 0.2795

ODd, |v̄4
3|2 = 0.4746
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therefore dropped [24].
In addition to the three new local interpolating operators O′

1, O′
2 and O′

3, the operator
basis is completed by the three scattering operators in Eqs. (4.30) to (4.32) which are
renamed as

O′
4 = O5, O′

5 = O6, O′
6 = O7, (5.6)

resulting in a 6×3 correlation matrix which will be analyzed in the following paragraph.

5.3.2.2. Energy Levels and Overlap Factors

I carried out correlated χ2-minimizing multi-exponential fits, as discussed in Sec. 4.3.2,
for various sub-matrices of the correlation matrix discussed in the previous section [24].
The fit results are presented in Fig. 5.6 in the same way as for b̄b̄ud in Fig. 5.2.
First, we observe that for fits which consider only correlation matrices with local in-
terpolating operators, each operator seems to be associated to one specific energy level
(see the first seven fits in Fig. 5.6). This is expectable, as the local operator O′

j is
constructed such that its trial state overlaps mainly with the eigenstate |j − 1⟩ and is
orthogonal to all other eigenstates for sufficiently large temporal separations. As al-
ready pointed out in the previous paragraph, the operator O′

1 is mandatory to resolve
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Figure 5.6.: Fit results for the two lowest energy levels ∆E0 and ∆E1 for the b̄b̄us system
with JP = 1+ relative to the BB∗

s threshold obtained on ensemble C01. The notation is the
same as for Fig. 5.2.
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the ground-state energy level reliably and is consequently included in all subsequent
fits [24].
If we consider now fits including O′

1, at least one of the scattering operators O′
4 to

O′
6, and possibly further operators, we observe that the ground-state energy level as

well as the result for E1 drop significantly. This is in agreement with the observations
for the case of b̄b̄ud (see Sec. 5.3.1) where including scattering operators also lowers
the energy levels. Here, we observe a ground-state energy level about 100 MeV below
the lowest non-interacting meson-meson threshold BB∗

s , indicating the existence of a
bound tetraquark state. The energy E1 is found in many cases at around 0 MeV, which
agrees with the assumption that the first excited state is a meson-meson scattering
state. Similar results are also obtained for the other ensemble for which the fit results
can be found in Appendix A of Ref. [24].
The final estimate for the ground-state energy is obtained from all fits that are indi-
cated by a filled symbol in Fig. 5.6. For all these fits, the ground-state energies agree
within statistical uncertainties. Assuming fully correlated fit results, I compute the
weighted average of the ground-state energies following the approach that is also used
by the FLAG collaboration [185] (see also Appendix D). In the following I refer to
this method as the FLAG average. The final estimate for the ground-state energy is
illustrated in Fig. 5.6 by the horizontal blue line with error band.
I decided not to compute an average for the energy E1 as it is difficult to judge if this
energy level indeed belongs to the first excited state [24]. Close to the BB∗

s threshold
there are also two other two-meson thresholds appearing, namely the B∗Bs thresh-
old which differs only by a few MeV and the B∗B∗

s threshold which is approximately
50 MeV above BB∗

s . Therefore it is difficult to make reliable statements if E1, ex-
tracted from a particular fit, really belongs to the first excited state or if it is rather
a mixture of the three states which are all expected at similar energy. For this reason
I renounce giving a final estimate for E1 based on the fit results.

The normalized overlap factors obtained from a three-exponential fit of the full 6 × 3
correlation matrix in the range 16 ≤ t/a ≤ 24 on ensemble F004 are shown in Fig. 5.7.
First of all, for the overlap factors associated to O′

1, we observe that |Z̃0
1 | ≫ |Z̃1

1 |, |Z̃2
1 |.

This indicates that the trial state which is generated by O′
1 is similar to the ground

state |0⟩. In principle, this is not surprising as O′†
1 |Ω⟩ has been constructed such that

the overlap with the lowest state is large. Note that O′
1 is a linear combination of the

four operators O1 to O4. According to Table 5.7 the contributions of the local BB∗
s

and B∗Bs components are equally large but the coefficients v̄1
0 and v̄2

0 differ in sign,
which yields an antisymmetric combination in the flavors us. Additionally, there is a
considerable contribution of operator O3 resembling a local B∗B∗

s component which is
also antisymmetric in the light flavors. As discussed in Ref. [24], this is not unexpected
as the static-light lattice QCD computation in Ref. [32] found similar results for the
ground state in the closely related b̄b̄ud system with I(JP ) = 0(1+). Finally, also the
diquark-antidiquark operator O4 has a substantial contribution to O′

1 which is slightly
smaller than the meson-meson components.
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Figure 5.7.: Normalized overlap factors Z̃n
j for the b̄b̄us system obtained via a three-

exponential fit to the full 6 × 3 correlation matrix in the range 16 ≤ t/a ≤ 24 on ensemble
F004.

Additionally, we observe that |Z̃0
2 |, |Z̃0

3 | ≈ 0, confirming that the trial states O′†
2 |Ω⟩ and

O′†
3 |Ω⟩ are approximately orthogonal to the ground state |0⟩ as expected. Note that,

according to Table 5.7, the operator O′
2 is essentially an equal weighted combination

of O1 and O2 corresponding to a symmetric flavor combination in us, while operator
O′

3 is, according to Table 5.7, antisymmetric in the flavors us.
The trial states generated by the two scattering operators O′

4 and O′
5 have sizable

overlap with the ground state but also to higher excitations. Note that all terms of
the local operators O1 and O2 also appear in O′

4 and O′
5. Therefore, the large overlap

factors |Z̃0
4 |, |Z̃0

5 | do not indicate that the ground state is a meson-meson scattering
state but rather support the interpretation that it is a bound four-quark state with a
large flavor antisysmmetric BB∗

s and B∗Bs contribution [24].
Finally, it is worthwhile to take a brief look at the flavor symmetry of the different
states. For the two lowest states |0⟩ and |1⟩, the associated overlap factors |Z̃0

j | and
|Z̃1

j | indicate that only the antisymmetric light flavor combination contributes to the
associated state. In contrast to that, one can deduce from |Z̃2

j | that the state |2⟩ is
governed almost exclusively by contributions which are symmetric in the light flavors.
This indicates that an approximated SU(3) flavor symmetry is preserved in the finite
volume for the bound state as well as for the scattering states. Consequently, the b̄b̄us
ground state, which is antisymmetric in the light flavors, has a flavor structure similar
to that of the b̄b̄ud ground state with I = 0.
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5.3.3 Results for the Case of b̄c̄ud with I(JP ) = 0(0+)
In the case of b̄c̄ud with I(JP ) = 0(0+) the correlation matrix has size 3×2 with the two
local operators given in Eqs. (4.33) and (4.34) and the scattering operator in Eq. (4.35).
The ground-state energy level is again extracted using multi-exponential matrix fits
for several sub-matrices varying the number of exponentials and the fit range [24]. In
Fig. 5.8 I show all fit results with χ2/d.o.f. < 2 for ensemble C01. As in the case
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Figure 5.8.: Fit results for the lowest energy level ∆E0 for the b̄c̄ud system with I(JP ) =
0(0+) relative to the BD threshold obtained on ensemble C01. The notation is the same as
for Fig. 5.2.

of b̄b̄ud and b̄b̄us, we observe that the ground-state energy level drops significantly if
the scattering operator O3 is included in the operator basis compared to fits relying
only on local operators. The final estimate for the b̄c̄ud ground-state energy level with
J = 0 is determined via the FLAG average (see Appendix D) considering all fits that
include the scattering operator O3. Here, we observe the ground-state energy slightly
above but within uncertainties coinciding with the lowest meson-meson threshold BD.
The results are qualitatively similar for all other ensembles as can be seen in Appendix
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A of Ref. [24]. This indicates that the ground state is rather a BD scattering state
than a bound four-quark state.
The normalized overlap factors Z̃n

j support this interpretation. In Fig. 5.9 I present
the Z̃n

j obtained from a three-exponential fit to the full 3 × 2 correlation matrix in the
range 6 ≤ t/a ≤ 10 on ensemble F004. We clearly observe that the trial state O†

3|Ω⟩
generated by the BD scattering operator O3 has dominating overlap with the ground
state |0⟩, while the overlap with higher excitations is negligible. This agrees with the
interpretation of the ground state as a BD scattering state.
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Figure 5.9.: Normalized overlap factors Z̃n
j for the b̄c̄ud system with I(JP ) = 0(0+) obtained

via a three-exponential fit to the full 3 × 2 correlation matrix in the range 6 ≤ t/a ≤ 10 on
ensemble F004.

5.3.4 Results for the Case of b̄c̄ud with I(JP ) = 0(1+)

Finally, I consider the case of b̄c̄ud with I(JP ) = 0(1+). Note that the results discussed
in this section have already been presented in Ref. [24]. The full correlation matrix has
size 5 × 3 and is composed of the three local operators defined in Eqs. (4.36) to (4.38)
and the two scattering operators given in Eqs. (4.39) and (4.40). Again, I determine
the ground-state energy and the energy of the first excitation via multi-exponential
matrix fits and present the corresponding fit results in Fig. 5.10 for ensemble C01.
Similar to the previous section, we observe that including scattering operators (in this
case O4 and O5) in the operator basis results in a significant decrease in the energy
levels E0 and E1, while the operator O4, which creates a B∗D meson-meson scattering
state, seems to be of particular importance. If O4 is included in the operator basis,
E0 is found to be considerably smaller compared to fits where O4 is excluded. Since
also the operator O1 represents a B∗D-like structure, all fits that include O1 and
O4 in the operator basis are taken into account for the final estimate of E0 which is
obtained via the FLAG average (see Appendix D) [24]. According to Fig. 5.10, the
final ground-state energy is found slightly above but within uncertainties in agreement
with the B∗D threshold. For the first excited state, I renounce giving a final estimate
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Figure 5.10.: Fit results for the two lowest energy levels ∆E0 and ∆E1 for the b̄c̄ud system
with I(JP ) = 0(1+) relative to the B∗D threshold obtained on ensemble C01. The notation
is the same as for Fig. 5.2.

for the energy. Nevertheless, most fits have located E1 in the vicinity of the BD∗

threshold which is approximately 100 MeV above the B∗D threshold [24]. The results
for the other ensembles are similar and can be found in Appendix A of Ref. [24].
Consequently, the ground state in the b̄c̄ud system with J = 1 seems to be a B∗D
scattering state, while no evidence for a bound tetraquark state is observed.
The normalized overlap factors Z̃n

j , obtained from a three-exponential fit to the full
5 × 3 correlation matrix in the range 14 ≤ t/a ≤ 20 on ensemble F004, are shown in
Fig. 5.11. We can see that |Z̃0

4 | ≫ |Z̃1
4 |, |Z̃2

4 |, which indicates that the trial state O†
4|Ω⟩,

generated by the B∗D meson-meson scattering operator O4, has dominating overlap
with the ground state |0⟩, while it is nearly orthogonal to the other states [24]. This
supports our interpretation of the ground state as aB∗D scattering state. Additionally,
we find that |Z̃1

5 | ≫ |Z̃0
5 |, |Z̃2

5 | which means that the trial state O†
5|Ω⟩ overlaps mainly
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with the state |1⟩. This coincides with the assumption that the first excitation is a
BD∗ scattering state.
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Figure 5.11.: Normalized overlap factors Z̃n
j for the b̄c̄ud system with I(JP ) = 0(1+) obtained

via a three-exponential fit to the full 5 × 3 correlation matrix in the range 14 ≤ t/a ≤ 20 on
ensemble F004.

5.4 Final Results and Chiral Extrapolation
The final results for the ground-state energies relative to the lowest corresponding
meson-meson threshold are listed in Table 5.8 for all four four-quark systems and for
all five ensembles. Additionally, they are plotted as a function of m2

π in Fig. 5.12. Note
that for b̄b̄us and b̄c̄ud with J = 0 and J = 1 I present the finite volume ground-state
energy differences ∆E0, while for b̄b̄ud I show the infinite volume binding energy Ebind.

Ensemble b̄b̄ud b̄b̄us b̄c̄ud, J = 0 b̄c̄ud, J = 1
Ebind [MeV] ∆E0 [MeV] ∆E0 [MeV] ∆E0 [MeV]

C00078 −129(28) −77(30) −39(43) −30(47)
C005 −123(34) −76(22) 104(47) 79(35)
C01 −109(26) −83(24) 43(29) 40(31)
F004 −122(25) −92(15) 9(24) 21(40)
F006 −88(29) −67(12) 101(29) 113(24)

Table 5.8.: Energies of the ground state relative to the lowest corresponding meson-meson
threshold for all four four-quark systems and for all five ensembles. For b̄b̄ud the infinite
volume binding energy Ebind = EBS − EB − EB∗ is presented where EBS corresponds to the
pole of the scattering amplitude as defined in Sec. 4.6. For the remaining three systems, the
finite volume energies are listed, i.e., ∆E0 = E0 − EB − EB∗

s
for b̄b̄us, ∆E0 = E0 − EB − ED

for b̄c̄ud with J = 0, and ∆E0 = E0 − EB∗ − ED for b̄c̄ud with J = 1.
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Figure 5.12.: Energies of the ground state relative to the lowest corresponding meson-
meson threshold (indicated by the horizontal dashed lines) as a function of the squared pion
mass m2

π for the b̄b̄ud system (top left), the b̄b̄us system (top right), the b̄c̄ud system with
I(JP ) = 0(0+) (bottom left), and the b̄c̄ud system with I(JP ) = 0(1+) (bottom right). For
b̄b̄ud and b̄b̄us I also show the fit result of the chiral extrapolation according to Eq. (5.7) and
Table 5.9.

As discussed in Sec. 5.3.1, Ebind is determined via a scattering analysis using the finite
volume energy levels En and is found to be essentially identical to the finite volume
ground-state energy ∆E0. Hereby, the effects due to the left-hand cut are neglected
as stated at the end of Sec. 5.3.1.
The infinite volume binding energies for b̄b̄ud with I(JP ) = 0(1+) are around 90 MeV
to 130 MeV below the BB∗ threshold indicating a hadronically stable four-quark state.
In the case of b̄b̄us with JP = 1+, the finite volume ground-state energies are closer to
the relevant threshold. Nevertheless, having ground-state energies of around 70 MeV
to 100 MeV below the BB∗

s threshold, this indicates also for the b̄b̄us systems the
existence of a bound four-quark state. In principle, it would be possible to extrapolate
the results to the infinite volume in the same way as done for b̄b̄ud. However, this
turns out to be technically more challenging [24]. For the case of b̄b̄us it would be
necessary to consider the two scattering channels BB∗

s and B∗Bs, while the associated
thresholds are separated only by a few MeV, making a coupled channel scattering
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analysis indispensable. Additionally, we experienced in Sec. 5.3.2 that it is extremely
difficult to reliably determine the energies of the excited states. However, we expect
only small finite volume effects as the finite volume ground-state energy is significantly
below the lowest meson-meson threshold. This assumption is also justified by the
results for the b̄b̄ud sector, where the finite volume and infinite volume ground-state
energies are essentially identical and discrepancies are much smaller than the statistical
uncertainties. For those reasons, I refrain from performing a scattering analysis for the
b̄b̄us system in this setup and consider ∆E0 as the binding energy of the b̄b̄us system
[24]. A successful treatment of finite volume effects will require the full consideration
of scattering operators at the sink and the source which will be covered in Chapter 6.
As the five ensembles used in this work differ in the pion mass mπ, ranging from
139 MeV to 431 MeV, we are able to extrapolate the binding energies to the physical
point. Lattice discretization errors are expected to be of the order of a few MeV
and thus no a-dependence is considered. I assume a quadratic pion-mass dependence,
which corresponds to a linear dependence on the light quark masses mu;d, according
to

Ebind(mπ) = Ebind(mπ,phys) + c
(
m2
π −m2

π,phys

)
, (5.7)

where mπ,phys = 135 MeV is the physical pion mass [24, 37]. The fit parameters
Ebind(mπ,phys) and c are determined by performing a χ2-minimizing fit using the ansatz
in Eq. (5.7). The fit results as well as the χ2/d.o.f. of the corresponding fits are sum-
marized in Table 5.9. In the last column, I give the mass of the bound tetraquark
which is obtained by adding the experimental mass of the B and B∗ mesons or the
B and B∗

s mesons [87] to the binding energy Ebind. The resulting extrapolation is

Ebind(mπ,phys) [MeV] c [10−4/MeV2] χ2/d.o.f. mtetraquark(mπ,phys) [MeV]
b̄b̄ud −128(24)(10) 1.5(2.3) 0.27 10476(24)(10)
b̄b̄us −86(22)(10) 0.8(2.1) 0.81 10609(22)(10)

Table 5.9.: Fit results for the chiral extrapolation of the b̄b̄ud and b̄b̄us systems to the physical
pion mass mπ = 135 MeV. The last column refers to the mass of the bound tetraquark
obtained by adding the experimental meson masses [87] to Ebind. Statistical and systematic
uncertainties are denoted in brackets.

also plotted together with the data points in Fig. 5.12. Since the χ2/d.o.f. is small
for both fits, this indicates that the data points are successfully described by the fit
function. Moreover, we observe that the slope parameter c is in both cases consistent
with zero. Finally, the extrapolated binding energy Ebind(mπ,phys) coincides well for
both cases with the binding energy that has been determined on the ensemble C00078
with mπ = 139(1) MeV. This suggests that remaining systematic uncertainties due to
the extrapolation in mπ are negligible [37].
Nevertheless, I expect systematic uncertainties which originate from lattice discretiza-
tion errors and the NRQCD action. In Ref. [37] these errors were estimated to be
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smaller than 10 MeV. They are denoted in Table 5.9 for Ebind and mtetraquark in brack-
ets right to the statistical uncertainties.

The finite volume ground-state energies that are obtained for the two b̄c̄ud systems are
comparable with the corresponding lowest meson-meson thresholds. Consequently, I
found no evidence for a hadronically stable tetraquark bound state in neither of the
two channels. Note, however, that the existence of a shallow bound state close to the
threshold or a resonance above the threshold might be possible [24].
Unfortunately, finite volume effects are expected to be large for states close to the
threshold, but the determined spectrum for the two b̄c̄ud systems does not allow to
quantify their actual size. For this reason, I do not perform a chiral extrapolation
of the ground-state energy levels to the physical point as done for b̄b̄ud and b̄b̄us.
Nevertheless, the final results for ∆E0 obtained for both b̄c̄ud systems are shown in
Fig. 5.12.
For a more precise study of the b̄c̄ud systems, it is necessary to include finite volume
effects rigorously. This requires using a large basis of scattering operators to determine
the low-lying finite volume energy spectrum and relate these energy levels to the
infinite volume scattering amplitude using Lüscher’s method. I perform such a more
elaborated investigation of the b̄c̄ud four-quark systems in Chapter 7.
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6
Computation of the Low-Lying
Energy Spectrum for b̄b̄ud and

b̄b̄us Tetraquark States

So far, previous studies of the four-quark systems b̄b̄ud with I(JP ) = 0(1+) and b̄b̄us
with JP = 1+ have relied either solely on local interpolating operators [35, 36, 38–40]
or have used additional scattering operators only at the sink as in Refs. [24,37] and in
Chapter 5. There it was shown that this allows us to successfully extract the ground-
state energy and to predict a bound tetraquark state for both the b̄b̄ud and b̄b̄us
systems. However, higher excited states could not be resolved sufficiently precisely.
Since many tetraquark states are either bound states close to the threshold of strong
decay or resonances in the spectrum of scattering states, their masses can only be
reliably determined by considering the pole of the infinite volume scattering ampli-
tude. As the scattering amplitude is related to the finite volume energy spectrum
via Lüscher’s method, a large number of low-lying energy levels need to be resolved
to parametrize the scattering amplitude successfully. This requires to fully include
scattering operators when computing the correlation matrix.
In this chapter, I extend the investigations of the b̄b̄ud four-quark system with I(JP ) =
0(1+) and the b̄b̄us four-quark system with JP = 1+ by using scattering operators at
the sink and at the source. This approach allows me to rigorously resolve also higher
excited energy levels and to investigate potential finite volume effects in b̄b̄qq′ systems.
Moreover, it might also be beneficial for future studies of tetraquark systems which are
candidates for shallow bound states or resonances. In Sec. 6.3, I present the low-lying
finite volume energy spectra for the b̄b̄ud and b̄b̄us systems, focusing explicitly on the
ground-state energies. Using the finite volume energy levels, I perform a scattering
analysis applying Lüscher’s method in Sec. 6.4 to determine the infinite volume bind-
ing energies. Note that in this section I omit possible effects from left-hand cuts even
though the utilized parametrization of the scattering amplitude exceeds the range of
convergence that is defined by the one-particle left-hand cut branch point. In Sec. 6.5,
I discuss the final results and extrapolate the binding energies to the physical pion
mass. Before considering four-quark systems, I introduce the lattice setup in Sec. 6.1
and present the energies of the heavy-light pseudoscalar and vector B and Bs mesons
in Sec. 6.2.
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6.1 Lattice Setup
In the following, I introduce the gauge field configurations, present the fermion actions
and the associated parameters that are used to compute the light, strange and bottom
quark propagators and list the smearing parameters utilized for gauge field and quark
field smearing.

6.1.1 Gauge Link Configurations

The calculations in this chapter are carried out using gauge link configurations gen-
erated by the MILC collaboration [186]. They use a one-loop Symanzik improved
Lüscher-Weisz gauge action with perturbatively computed and tadpole improved co-
efficients [187] and the Highly Improved Staggered Quark (HISQ) action with 2+1+1
dynamical flavors to include the sea quarks [82]. I consider seven different ensembles
which differ in the pion mass mπ, the lattice spacing a and the spatial volume. In
particular, we have three ensembles with the same pion mass and lattice spacing but
different spatial volumes. The details of all ensembles are listed in Table 6.1, while
the lattice spacings have been determined in Ref. [186].

Ensemble N3
s ×Nt a [fm] m(sea)

π [MeV] m(val)
π [MeV] Nconf

a15m310 163 × 48 0.1510(20) 306.9(5) 320.6(4.3) 11554
a12m310 243 × 64 0.1207(11) 305.3(4) 310.2(2.8) 1053
a12m220S 243 × 64 0.1202(12) 218.1(4) 225.0(2.3) 1020
a12m220 323 × 64 0.1184(10) 216.9(2) 227.9(1.9) 1000

a12m220L 403 × 64 0.1189(09) 217.0(2) 227.6(1.7) 1030
a09m310 323 × 96 0.0888(08) 312.7(6) 313.0(2.8) 1166
a09m220 483 × 96 0.0872(07) 220.3(2) 225.9(1.8) 657

Table 6.1.: List of gauge link ensembles [186] used in this chapter. Ns, Nt: number of lattice
sites in spatial and temporal directions; a: lattice spacing; m

(sea)
π : pion sea-quark mass;

m
(val)
π : pion valence-quark mass; Nconf: number of gauge field configurations.

6.1.2 Light and Strange Quark Propagators

I compute the light and strange valence quarks using the Wilson-clover action which I
presented in Sec. 2.3.2. Staggered fermions which are used for the sea quarks provide
some advantages like maintaining a remnant chiral symmetry or comparably low simu-
lation costs. However, as a consequence of the staggered transformation in Eq. (2.43),
which mixes space-time and Dirac indices, constructing interpolating operators with
distinct spin and parity is complicated. This is not the case for Wilson-clover fermions,
which are consequently the ideal choice for simulating the valence quarks in our study.
The mixed action setup clover-on-HISQ utilized in this work follows the approach that
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has also been successfully applied by the PNDME collaboration in Refs. [86,188,189].
There, they also ruled out the existence of exceptional configurations. I use the same
parameters for the Wilson-clover action as the PNDME collaboration [86, 189] and
summarize them in Table 6.2. A short discussion of benefits and problems of a mixed
action setup has been presented in Sec. 2.3.5.

Ensemble aml ams csw

a15m310 −0.0893 −0.021 1.05945
a12m310 −0.0695 −0.018718 1.05094
a12m220(S/L) −0.075 −0.02118 1.05091
a09m310 −0.05138 −0.016075 1.04243
a09m220 −0.0554 −0.01761 1.04239

Table 6.2.: Parameters for the light and strange quarks used in the Wilson-clover action
in Eq. (2.32). The parameter aml,s is related to the so-called hopping parameter κl,s by
2κl,s = 1/(aml,s + 4) (e.g., see Ref. [50]). a12m220(S/L) stands for all three ensembles
a12m220, a12m220S and a12m220L.

The light and strange quark propagators are computed using a multigrid (MG) solver
according to the implementation discussed in Ref. [147] with three MG levels for all
ensembles except for a15m310 where only two MG levels are used. On each level, I use
24 null vectors. The block sizes for each level are adjusted depending on the number
of spatial and temporal lattice points for each ensemble.

6.1.3 Bottom Quark Propagators

I treat the bottom quarks in the framework of NRQCD as discussed in Sec. 2.4 using
the same coefficients as the HPQCD collaboration [190,191]. Tadpole improvement is
hereby obtained in the same way as in Sec. 5.1.4, i.e., the gauge links are divided by
the mean link u0L in Landau gauge. The matching coefficients, however, differ from
those which have been used for the calculations in Chapter 5. Here, all coefficients are
set to their tree-level value ci = 1 besides the coefficients of the kinetic terms c1, c5

Ensemble amb u0L c1 c5 c6

a15m310 3.42 0.8195 1.36 1.21 1.36
a12m310 2.66 0.834 1.31 1.16 1.31
a12m220(S/L) 2.62 0.8349 1.31 1.16 1.31
a09m310 1.91 0.8525 1.21 1.12 1.21
a09m220 1.90 0.8521 1.21 1.12 1.21

Table 6.3.: Parameters used in the NRQCD action in Eq. (2.76) for the bottom quarks.
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and c6. These are perturbatively determined as explained in Appendix B of Ref. [190].
I collect all parameters and the matching coefficients that deviate from their tree level
values in Table 6.3. The coefficients for a09m220 are obtained by a linear interpolation
in aml between set 7 and set 8 of Ref. [191].

6.1.4 Techniques to Compute Quark Propagators and Smearing of
Quark Fields

In this chapter, I apply two different techniques to compute the quark propagators
depending on the correlation matrix element that is computed. Point-to-all propa-
gators as discussed in Sec. 4.4.1 are used for correlation matrix elements with local
interpolating operators at the sink and the source. For each configuration, I employ
30 point sources at randomly chosen space-time positions for all ensembles except
for the smallest one, a15m310. Here I only use 10 point sources. These propaga-
tors are also used for mesonic correlation functions. For correlation matrix elements
with scattering interpolating operators at the sink and the source, I utilize stochastic
timeslice-to-all propagators with spin and color dilution and additionally apply the
one-end-trick (see Sec. 4.4.3). On all ensembles except for a15m310, I use stochastic
sources at 4 equally distributed random timeslices with 5 different random seeds each.
On ensemble a15m310, I also consider 5 different random seeds but only a single ran-
domly chosen timeslice. For correlations between local and scattering operators, both
techniques are applicable as the correlation matrix is hermitian. One can either use
point-to-all propagators if the local operator is assigned to the source and the scat-
tering operator to the sink or stochastic timeslice-to-all propagators if the scattering
operator is assigned to the source and the local operator to the sink. As I obtained
similar signal-to-noise ratios for both techniques, I apply both methods and average
the results to increase the statistical precision. The explicit forms of the correlation
matrix elements can be found in Appendix C.2
All quark fields appearing in the correlation matrix are smeared, regardless of the type
of quark propagator chosen. I apply Gaussian smearing for all quark flavors. While I

Ensemble Up and down quarks Strange quarks Bottom quarks
NGauss κGauss NGauss κGauss NGauss σGauss

very coarse 22 1.0 15 1.0 10 1.0
coarse 35 1.0 25 1.0 10 1.0
fine 70 1.0 50 1.0 10 1.0

Table 6.4.: Smearing parameters for the quark-fields used in the computation of the cor-
relation functions. Gaussian smearing is carried out according to Eq. (4.78) for light and
strange quarks and according to Eq. (4.77) for bottom quarks. The ensembles are cumulated
corresponding to their lattice spacing, i.e., very coarse is equal to a15m310, coarse includes
a12m310, a12m220S, a12m220, a12m220L, and fine covers a09m310 and a09m220.
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use the Gaussian/Wuppertal prescription (see Ref. [160] and Sec. 4.5.2) for the light
and strange quarks, the bottom quarks are smeared according to Eq. (4.77) as a con-
sequence of the different numerical frameworks employed in this study. The smearing
parameters are listed in Table 6.4. I illustrate the procedure to determine reasonable
smearing parameters in Appendix E.1.
In order to reduce lattice artifacts and the probability that exceptional configurations
appear as a consequence of the mixed action setup, I apply one sweep of HYP smearing
with α1 = 0.75, α2 = 0.6 and α3 = 0.3 (see [157] and Sec. 4.5.1.2) to the HISQ gauge
links that are used in the light and strange quark smearing. Additionally, these gauge
links are also spatially APE smeared (see [156] and Sec. 4.5.1.1) with NAPE = 50 and
αAPE = 0.5. The bottom quark propagators are computed on unsmeared gauge links.

6.2 Energies and Kinetic Masses for Pseudoscalar and Vector
B and Bs Mesons

The energies of the B, B∗, Bs and B∗
s mesons are computed via a correlated single-

exponential fit to the two-point correlation function ⟨OM(p, t) O†
M(p, 0)⟩, where OM

is a meson interpolating operator according to Eqs. (4.15) to (4.18). I perform fits for
various temporal separations with 7 ≤ tmin/a ≤ 9 and 17 ≤ tmax/a ≤ 20 and determine
the final results for the meson energies via the FLAG average (see Appendix D) using
the results obtained for all available fit ranges. In Fig. 6.1, I show the effective energies
for zero momentum projection determined on ensemble a12m220L for all four mesons,
while I collect the meson energies at rest for all ensembles in Table 6.5.
Note that the meson energies do not correspond to the physical masses but are shifted
due to the use of NRQCD. As discussed in Sec. 5.2, these shifts cancel in energy
differences with equal numbers of bottom quarks. Therefore, the relevant quantities
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Figure 6.1.: Effective energies as defined in Eq. (4.6) at zero momentum for pseudoscalar and
vector B and Bs mesons computed on ensemble a12m220L. The horizontal lines correspond
to the final estimate of the mesons’ energies that has been determined by various fits with
7 ≤ tmin/a ≤ 9 and 17 ≤ tmax/a ≤ 20.
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Ensemble aEB(0) aEB∗(0) aEBs(0) aEB∗
s
(0)

a15m310 0.56575(62) 0.59583(72) 0.61547(29) 0.64452(34)
a12m310 0.48902(88) 0.51561(99) 0.53050(43) 0.55641(51)
a12m220S 0.48269(113) 0.50820(126) 0.52653(44) 0.55215(50)
a12m220 0.48197(118) 0.50710(130) 0.52655(61) 0.55203(51)
a12m220L 0.48246(98) 0.50754(103) 0.52657(41) 0.55180(45)
a09m310 0.39766(53) 0.41713(59) 0.42922(29) 0.44894(33)
a09m220 0.38835(77) 0.40690(102) 0.42346(35) 0.44239(42)

Table 6.5.: Energies of the pseudoscalar and vector B and Bs mesons at rest.

in this chapter are again the energy differences ∆En = En − EM1 − EM2 where En is
the n-th energy level of the four-quark state b̄b̄qq′ and M1 and M2 denote the mesons
of the associated lowest two-meson threshold.
In order to perform the scattering analysis in Sec. 6.4, we require the momentum
dependence of the mesons’ energies. As discussed in Sec. 4.6.1, the antiheavy-light
mesons with a b̄ quark treated in the framework of NRQCD obey the dispersion
relation in Eq. (4.82). Using the interpolating operators given in Eqs. (4.15) to (4.18),
I determine the meson energies EM(p) up to the highest momentum p2 = 4(2π/L)2.
Afterwards, the dispersion relation in Eq. (4.82) is fitted to these energies, while EM,0
and mM,kin are the free parameters of the fit. The results for the kinetic masses mM,kin
are listed in Table 6.6. The second parameter EM,0 can be used to examine if the
parametrization indeed describes the data reasonably. In all cases, I have observed
an excellent agreement of EM,0 with the meson energies at rest which are listed in
Table 6.5. Since the ensembles a12m220S, a12m220 and a12m220L differ only in their

Ensemble amB,kin amB∗,kin amBs,kin amB∗
s ,kin

a15m310 4.015(47) 4.017(55) 4.100(24) 4.100(30)
a12m310 3.224(96) 3.238(108) 3.264(49) 3.266(57)
a12m220S 3.130(116) 3.115(127) 3.232(49) 3.223(55)
a12m220 3.167(208) 3.181(225) 3.216(107) 3.220(92)
a12m220L 3.121(252) 3.139(271) 3.208(112) 3.213(126)
a12m220co 3.121(84) 3.091(89) 3.233(37) 3.204(40)
a09m310 2.381(55) 2.382(60) 2.426(31) 2.427(35)
a09m220 2.342(161) 2.341(214) 2.397(79) 2.399(94)

Table 6.6.: Kinetic masses for the pseudoscalar and vector B and Bs mesons determined by
a χ2-minimizing fit.

98



6.3. Finite Volume b̄b̄qq′ Energy Levels

spatial volume but have the same pion mass and lattice spacing, the energy levels
determined on these three ensembles will be used in a single scattering analysis. For
this reason, only a single kinetic mass is required for each meson. These kinetic masses
are determined by a fit taking the meson energies EM(p) from all three ensembles into
account. I depict the momentum dependent meson energies together with the obtained
dispersion relation in Fig. 6.2 for the B meson. The kinetic masses for all mesons are
also listed in Table 6.6 labeled as a12m220co.
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Figure 6.2.: Dispersion relation for the B meson based on the meson energies determined
on the ensembles a12m220S, a12m220 and a12m220L. The momentum dependent energies
aE(p) are determined for 0 ≤ p2 ≤ 4(2π/L)2.

6.3 Finite Volume b̄b̄qq′ Energy Levels
The correlation matrices for the b̄b̄ud and b̄b̄us four-quark systems are built of two-
point correlation functions using the same interpolating operators as in Chapter 5,
given by Eqs. (4.21) to (4.25) and Eqs. (4.26) to (4.32). However, now I compute the
full correlation matrix, i.e., those correlation matrix elements with a scattering oper-
ator at the source are taken into account, too. Consequently, the resulting correlation
matrices are square matrices of size 5 × 5 for the case of b̄b̄ud and 7 × 7 for the case of
b̄b̄us. This makes it possible to extract not only the ground-state energy level precisely
but also higher excitations corresponding to meson-meson scattering states. Resolv-
ing the complete low-lying finite volume energy spectrum is an important preparatory
step to be able to study finite volume effects in a rigorous way applying a scattering
analysis using Lüscher’s method.
The low-lying energy levels of the four-quark systems are determined by solving a
generalized eigenvalue problem (GEVP, see Sec. 4.3.1) and fitting a single-exponential
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ansatz as given in Eq. (4.46) to the resulting principal correlators λn(t, t0) separately
for each energy level n. The parameter t0 in the GEVP is chosen sufficiently large
so that contributions from higher excitations are suppressed. I discuss the impact of
t0 on the effective energies of the considered four-quark systems in Appendix E.2. In
order to reduce systematic uncertainties due to the chosen fit range tmin ≤ t ≤ tmax,
I perform several fits varying tmin and tmax. The final estimate for the energy of the
n-th state is then obtained using the FLAG average including all fit results as dis-
cussed in Appendix D. I determine the associated statistical uncertainty via Jackknife
resampling which means that separately for each Jackknife sample, I solve the GEVP
and fit the principal correlators. For each reduced Jackknife sample, I compute then
the FLAG average considering the results obtained for all fit ranges, while the weight-
factor for a particular fit is governed by the associated statistical error computed via
all Jackknife samples. Finally, the mean value and Jackknife error specify then the
final estimate for the energy of the corresponding n-th energy level.
The eigenvector vn(t) which can also be obtained from the GEVP contains certain
information about the composition of the n-th eigenstate. The component vjn gives
the contribution of the trial state O†

j |Ω⟩ to state |n⟩,

|n⟩ =
∑
j

vjnO†
j |Ω⟩. (6.1)

Provided that the operator basis used contains all relevant structures to describe the
low-lying energy spectrum of a specific channel, a large eigenvector component vjn
indicates that the state |n⟩ has a large component of the quark structure that is
described by operator Oj. Finally, note that the eigenvector components vjn are related
to the overlap factors Zm

j that have been discussed in Sec. 5.3 according to∑
j

Zm
j v

j
n ≈ δmn, (6.2)

where corrections are exponentially small [192].

6.3.1 Energy Spectrum for the Case of b̄b̄ud with I(JP ) = 0(1+)
I use the same operator basis to study the b̄b̄ud four-quark system with I(JP ) = 0(1+)
as in Sec. 5.3.1 consisting of the three local operators given in Eqs. (4.21) to (4.23)
and the two scattering operators defined in Eqs. (4.24) and (4.25). In contrast to the
previous investigation, the full squared 5 × 5 correlation matrix is evaluated, so also
correlation matrix elements with scattering operators at the source are computed.
In order to study the impact of the scattering operators on the low-lying energy spec-
trum, I extract the effective energies via a GEVP for the three lowest energy states
(i) from the 3 × 3 correlation matrix using only the local interpolating operators O1,
O2 and O3 and (ii) from the full 5 × 5 correlation matrix using the scattering opera-
tors O4 and O5 in additional to the local interpolating operators. The corresponding
effective energies determined on ensemble a12m220L are illustrated in Fig. 6.3. The
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Figure 6.3.: Effective energies for the b̄b̄ud four-quark system with I(JP ) = 0(1+) for the
3 × 3 matrix using only the local interpolating operators O1, O2 and O3 (left) and for the
5 × 5 matrix, using the local interpolating operators O1, O2 and O3 as well as the scattering
interpolating operators O4 and O5 (right) extracted from a GEVP on ensemble a12m220L.

ground-state energy level is found in both cases significantly below the BB∗ thresh-
old which agrees with the expectations based on the investigation in Sec. 5.3.1 and
previous lattice QCD calculations [35–38]. Additionally, we expect that the first and
second excited states coincide with BB∗ and B∗B∗ meson-meson scattering states and
are consequently located close to the associated thresholds. However, we observe that
the excited energy levels in the left plot of Fig. 6.3, where I only use local operators,
have a large discrepancy to this expectation. But if the scattering operators O4 and
O5 are included, we observe effective energies that are in accordance with the expec-
tation, i.e., the effective energies of the first and second excited states coincide with
the BB∗ and B∗B∗ thresholds as shown in the right plot of Fig. 6.3. This illustrates
that scattering operators are essential to determine meson-meson scattering states and
underlines their importance to reliably extract the low-lying energy spectrum. Note
that these results also support the conclusions of Sec. 5.3.1 where I already pointed
out the relevance of scattering operators to extract low-lying energy levels precisely.
From now on, I will always consider the full 5 × 5 correlation matrix, i.e., take all
operators into account.
As discussed earlier, I perform correlated single-exponential fits to the principal cor-
relators λn, which have been obtained by solving a GEVP, to extract the energies
En of the associated states. The fit results for the three lowest energy levels relative
to the BB∗ threshold computed on ensemble a12m220L are presented in Fig. 6.4 for
various fit ranges tmin ≤ t ≤ tmax. The lower boundary tmin is chosen sufficiently large
so that the effective energy has reached its plateau. The upper boundary tmax should
be chosen as large as possible before the signal is lost in noise. In practice, however,
I experienced that the actual choice of tmax has only mild effects on the fit results.
For the temporal fit ranges, I use all possible combinations with 8 ≤ tmin/a ≤ 10 and
15 ≤ tmax/a ≤ 19, while the fit range of a particular fit is shown at the top of each

101



Chapter 6. The Low-Lying Energy Spectrum for b̄b̄ud and b̄b̄us Tetraquarks

−150

−100

−50

0

50

100

E
−
E
B
−
E
B
∗

[M
eV

]

χ2/d.o.f. (0) :
χ2/d.o.f. (1) :
χ2/d.o.f. (2) :

t/
a

=
8−

15

1.20
0.14
0.09

t/
a

=
8−

16

1.08
0.16
0.09

t/
a

=
8−

17

0.96
0.15
0.08

t/
a

=
8−

18

1.21
0.48
2.46

t/
a

=
8−

19

1.76
2.01
2.22

t/
a

=
9−

15

1.24
0.15
0.08

t/
a

=
9−

16

1.12
0.18
0.08

t/
a

=
9−

17

0.97
0.16
0.07

t/
a

=
9−

18

1.22
0.54
2.75

t/
a

=
9−

19

1.89
2.23
2.45

t/
a

=
10
−

15

1.55
0.18
0.10

t/
a

=
10
−

16
1.35
0.21
0.09

t/
a

=
10
−

17

1.13
0.18
0.08

t/
a

=
10
−

18

1.40
0.61
3.14

t/
a

=
10
−

19

2.13
2.51
2.76

∆E0

∆E1

∆E2

BB∗ threshold

B∗B∗ threshold

Figure 6.4.: Fit results for the three lowest energy levels for the b̄b̄ud system with I(JP ) =
0(1+) relative to the BB∗ threshold, ∆En = En−EB−EB∗ obtained on ensemble a12m220L.
The horizontal black lines indicate the lowest two-meson thresholds BB∗ (solid) and B∗B∗

(dashed). Above each column, the temporal fit range is indicated, below the plot the value
of χ2/d.o.f.(n) is shown. The colored horizontal lines with shaded error bands correspond
to the final estimates for ∆En.

column in Fig. 6.4. Below the plot, I depict the values of χ2/d.o.f.(n) for the single
exponential fits of the n-th energy level. The horizontal lines with shaded bands rep-
resent my final estimates for the energy differences ∆En obtained by a FLAG average
(see Appendix D). Note that the energy differences ∆En = En − EB − EB∗ are first
computed on each Jackknife sample independently, and only afterwards is the final
result for ∆En determined by calculating the mean and Jackknife error based on the
Jackknife samples. This guarantees that presumably existing correlations between the
meson energies and the energies of the b̄b̄ud levels are correctly incorporated in the
statistical uncertainties.
We observe that the ground-state energy level is clearly below the BB∗ threshold
which is the lowest non-interacting meson-meson threshold in this channel. This in-
dicates that the ground state is indeed a bound tetraquark state. The energy of the
first excited state is slightly above but within uncertainties compatible with the BB∗

threshold. This is in line with our expectation of the first excited state as a meson-
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meson scattering state. Additionally, the energy of the second excited state is in good
agreement with the B∗B∗ threshold. Consequently, I interpret the second excited state
as a B∗B∗ scattering state. I repeat the same analysis for the remaining six ensembles
and show the fit results for these ensembles in Appendix F. The final estimates for
the finite volume energies relative to the BB∗ threshold for the three lowest energy
levels are collected in Table 6.7 and illustrated altogether in Fig. 6.5. According to

Ensemble ∆E0 [MeV] ∆E1 [MeV] ∆E2 [MeV]
a15m310 − 75.5(1.8) 2.7(2.2) 45.2(2.5)
a12m310 − 70.1(4.2) −1.8(3.8) 40.5(4.2)
a12m220S − 84.7(6.5) 1.9(5.3) 45.1(5.9)
a12m220 − 83.1(5.2) 2.5(3.7) 45.2(3.9)

a12m220L −104.0(6.8) 1.4(3.5) 42.1(3.7)
a09m310 − 83.8(5.9) −6.2(5.0) 44.1(6.2)
a09m220 − 98.1(9.6) −2.5(5.0) 37.1(5.5)

Table 6.7.: Finite volume energies of the three lowest energy levels for the b̄b̄ud system
with I(JP ) = 0(1+) on each ensemble in physical units relative to the BB∗ threshold, i.e.,
∆En = En − EB − EB∗ .

Table 6.7, I find similar results for all ensembles with a ground-state energy about
70 MeV to 100 MeV below the BB∗ threshold. Moreover, the first and second excited
states agree in all cases with the non-interacting BB∗ and B∗B∗ threshold respectively.
This is a strong indication for a bound tetraquark state. As the low-lying finite volume
energy spectrum is now resolved precisely, these energy levels can be used as input for
a scattering analysis in order to extract the b̄b̄ud binding energy in the infinite volume.
This will be done in the subsequent section (see Sec. 6.4.1).
Note that I include only the two scattering operators O4 and O5 given in Eqs. (4.24)
and (4.25) in the operator basis representing BB∗ and B∗B∗ scattering states with
zero momentum projection for each meson. However, I do not consider scattering
operators with so-called back-to-back momenta which means that the individual me-
son momenta are non-zero while the total momentum remains zero. Consequently, the
associated scattering states are not resolved in the finite volume energy spectrum. De-
pending on the spatial volume of a particular ensemble, these states can have energies
which are between the BB∗ and the B∗B∗ thresholds. I refrain from including these
scattering operators and extracting the energies of the associated scattering states as
they are not required to precisely determine the infinite volume ground-state energy
for a potentially deeply bound state as in the case of b̄b̄ud, but would generate a large
computational overhead.

The eigenvector components vjn that are obtained additionally to the principal correla-
tors λn from solving a GEVP provide some information about the composition of the
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Figure 6.5.: Finite volume energies of the three lowest energy levels for the b̄b̄ud system with
I(JP ) = 0(1+) on each ensemble relative to the BB∗ threshold, ∆En = En − EB − EB∗ .
The black horizontal lines correspond to the BB∗ (solid) and B∗B∗ (dashed) thresholds.

low-lying states. This can be used to support the interpretation of the ground state
as a bound four-quark state and of the first and second excited states as meson-meson
scattering states. Additionally, the eigenvector component vjn represents the contribu-
tion of the trial state O†

j |Ω⟩ to the eigenstate |n⟩ and consequently allows us to draw
conclusions about the quark structure of the tetraquark state. In Fig. 6.6, I depict the
signed squared eigenvector components

ṽjn = sign
(
vjn
)∣∣∣vjn∣∣∣2, (6.3)

which have been determined on ensemble a12m220L. They have been computed by
solving a GEVP and afterwards fitting a constant to the t-dependent eigenvector
components vjn using various fit ranges tmin ≤ t ≤ tmax, while for ensemble a12m220L
I choose 6 ≤ tmin/a ≤ 9 and 12 ≤ tmax/a ≤ 14. The final result for vjn is then obtained
again as the FLAG average (see Appendix D) over all fit results. The number of the
eigenstate above each plot is identical to the index n, while the numbers below each
plot correspond to the indices j of the operators that are used to create the trial states
O†
j |Ω⟩.

We observe that the ground state is mainly composed of the trial states O†
j |Ω⟩ with j =

1, 2, 3 generated by the local operators O1, O2 and O3. The eigenvector components
ṽ4

0 and ṽ5
0 associated to the trial states generated by the scattering operators O4 and

O5 are in contrast comparably small. This suggests that the ground state is mainly
built of local four-quark structures which supports the interpretation of the ground
state as a hadronically stable tetraquark. Considering the eigenvector components ṽ1

0,
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Figure 6.6.: Signed squared eigenvector components ṽjn for the b̄b̄ud system with I(JP ) =
0(1+) obtained on ensemble a12m220L. The results are determined via constant fits to the
t-dependent eigenvector components vjn in the range tmin ≤ t ≤ tmax with 6 ≤ tmin/a ≤ 9
and 12 ≤ tmax/a ≤ 14 followed by a FLAG average taking all fits into account.

ṽ2
0 and ṽ3

0 associated to the trial states generated by the local operators O1, O2 and
O3 in more detail, we can infer the importance of the different structures for the b̄b̄ud
ground state. We recognize that it has a dominating diquark-antidiquark component
but also large meson-meson components. As the eigenvectors are normalized according
to ∑j(vjn)2 = 1, we can directly extract the weight of the three local structures from
Fig. 6.6 and find a BB∗ component of 0.26(2), a B∗B∗ component of 0.16(2) and a
diquark-antidiquark component of 0.60(5). Consequently, the ratio of meson-meson to
diquark-antidiquark structures for the b̄b̄ud tetraquark is approximately 40%/60% and
indicates that both structures are present in the tetraquark state. This is in agreement
with Refs. [136,193] where also significant contributions of both structures have been
identified. Note that in Refs. [136,193] a slightly dominating meson-meson contribution
has been found. However, the eigenvector decomposition allows qualitative statements
rather than reliable quantitative conclusions regarding the composition of states since,
for example, the quark field smearing can affect the actual eigenvectors. Consequently,
my results support the assumption that both meson-meson and diquark-antidiquark
structures are of similar importance for the formation of the bound b̄b̄ud tetraquark
state. In addition, we observe that the BB∗ and the B∗B∗ components are of similar
magnitude which agrees with the results obtained in Ref. [32].
The first excited state is almost completely governed by the trial state O†

4|Ω⟩. As
O4 resembles a BB∗ scattering structure, this confirms our interpretation of the first
excited state as a BB∗ scattering state. The same holds for the second excited state
where ṽ5

2 ≈ 1 and ṽk2 ≈ 0 for k ̸= 5. Since O5 resembles a B∗B∗ structure, the second
excited state can be identified as a B∗B∗ scattering state.
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6.3.2 Energy Spectrum for the Case of b̄b̄us with JP = 1+

The operator basis that is used to study the b̄b̄us four-quark system with JP = 1+ is
the same as in Sec. 5.3.2, so I am using the four local interpolating operators given
in Eqs. (4.26) to (4.29) and the three scattering interpolating operators in Eqs. (4.30)
to (4.32). Note that I have refrained from including scattering operators with back-
to-back momenta as discussed in Sec. 6.3.1 for the case of b̄b̄ud.
As in the previous section, I compute all possible correlation matrix elements and
extract the low-lying energy levels by solving a GEVP and performing correlated
single-exponential fits to the principal correlators λn. In Fig. 6.7, I show the effective
energies for the four lowest energy eigenstates determined on ensemble a12m220L. The
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Figure 6.7.: Effective energies for the b̄b̄us four-quark system with JP = 1+ for the 4 × 4
matrix using only the local interpolating operators O1, O2, O3 and O4 (left) and for the 7×7
matrix, with the local interpolating operators O1, O2, O3 and O4 and the scattering inter-
polating operators O5, O6 and O7 (right) extracted from a GEVP on ensemble a12m220L.

effective energies in the left plot are extracted from a correlation matrix consisting only
of the four local operators O1 to O4 while in the right plot the full correlation matrix
composed of the local operators O1 to O4 as well as the scattering operators O5 to
O7 is considered. Similar to the case of b̄b̄ud, we expect the ground-state energy level
to be below the lowest non-interacting two-meson threshold. Additionally, the first
three excited states should describe meson-meson scattering states associated to the
three lowest meson-meson thresholds BB∗

s , B∗Bs and B∗B∗
s . While the ground state

is found in both plots of Fig. 6.7 well below the threshold of strong decay as expected,
the effective energies of the excited states meet the expectations only in the right plot.
This underlines again the importance of including scattering operators in the operator
basis to reliably extract the low-lying energy levels as discussed in Secs. 5.3.2 and 6.3.1.
For this reason, I consider from now on always the full 7 × 7 correlation matrix.
In Fig. 6.8, I show the fit results for the four lowest energy levels that are determined by
performing correlated single exponential fits for various t-ranges to the principal corre-
lators, obtained by solving a GEVP, for ensemble a12m220L. Here, I consider all pos-
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Figure 6.8.: Fit results for the four lowest energy levels for the b̄b̄us system with JP = 1+

relative to the BB∗
s threshold, ∆En = En−EB −EB∗

s
obtained on ensemble a12m220L. The

horizontal black lines indicate the lowest two-meson thresholds BB∗
s (solid), B∗Bs (dashed)

and B∗B∗
s (dash-dot). Above each column, the temporal fit range is indicated, below the

plot the value of χ2/d.o.f.(n) is shown. The colored horizontal lines with shaded error bands
correspond to the final estimates for ∆En.

sible temporal separations tmin ≤ t ≤ tmax with 8 ≤ tmin/a ≤ 10 and 15 ≤ tmax/a ≤ 19.
The horizontal lines with shaded error bands represent the final estimate for each en-
ergy level and are computed via the FLAG average (see Appendix D) taking all fit
results into account.
The ground-state energy is found approximately 40 MeV below the BB∗

s threshold
indicating a bound four-quark state. The first and second excited states are almost
degenerate, and their energies are consistent with the BB∗

s and B∗Bs thresholds within
uncertainties. Thus, these two excited states can be interpreted as BB∗

s and B∗Bs scat-
tering states. The energy of the third excited state is found about 40 MeV above the
BB∗

s threshold and is located close to the B∗B∗
s threshold. Consequently, the third

excited state seems to be consistent with a B∗B∗
s scattering state. The same analysis

has been repeated for the remaining six ensembles, while the associated fit results are
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Ensemble ∆E0 [MeV] ∆E1 [MeV] ∆E2 [MeV] ∆E3 [MeV]
a15m310 −34.0(1.2) 2.4(1.4) 6.2(1.5) 41.2(1.7)
a12m310 −29.6(2.5) −1.0(2.7) 0.7(2.4) 40.3(2.9)
a12m220S −30.4(2.6) 4.2(3.0) 3.8(2.8) 44.5(3.2)
a12m220 −37.3(4.3) −4.2(2.8) −3.5(2.9) 36.6(3.2)

a12m220L −35.8(3.2) 0.6(2.3) −0.1(2.2) 41.4(2.3)
a09m310 −29.1(2.5) −1.1(2.7) −2.4(2.6) 41.2(3.2)
a09m220 −30.7(4.0) −1.3(3.0) −2.1(3.3) 40.5(3.3)

Table 6.8.: Finite volume energies of the four lowest energy levels for the b̄b̄us system with
JP = 1+on each ensemble. The results are given in physical units relative to the BB∗

s

threshold, i.e., ∆En = En − EB − EB∗
s
.

collected in Appendix F. The final estimates for the four lowest finite volume energies
represented by the horizontal lines in Figs. 6.8 and F.7 to F.12 are summarized in
Table 6.8 and illustrated in Fig. 6.9. According to Table 6.8, we obtain similar results
for all seven lattice ensembles: The ground-state energies are found about 30 MeV to
40 MeV below the BB∗

s threshold and are consistent with each other within uncer-
tainties. The energies of the first, second and third excited states coincide with the
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Figure 6.9.: Finite volume energies of the four lowest energy levels for the b̄b̄us system with
JP = 1+ on each ensemble relative to the BB∗

s threshold, ∆En = En − EB − EB∗
s
. The

black horizontal lines correspond to the BB∗
s (solid), B∗Bs (dashed) and B∗B∗

s (dash-dot)
thresholds.
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BB∗
s , B∗Bs and B∗B∗

s thresholds and describe the associated two-meson scattering
states. Consequently a strong indication for a bound b̄b̄us tetraquark state is found.
As the low-lying finite volume energy spectrum is precisely determined, these energy
levels can be used as input for a scattering analysis. This allows us to investigate
finite volume effects which might affect the ground-state energy and to determine the
infinite volume binding energy, which is done in Sec. 6.4.2.

In Fig. 6.10, I present the signed squared eigenvector components ṽjn as defined in
Eq. (6.3) for the b̄b̄us system obtained on ensemble a12m220L. The ṽjn are determined
by solving a GEVP and performing constant fits to the time-dependent eigenvector
components vjn for various temporal separations tmin ≤ t ≤ tmax with 5 ≤ tmin/a ≤ 9
and 11 ≤ tmax/a ≤ 14. The final estimate for the eigenvector components is then
computed via the FLAG average taking all fit results into account. I start discussing
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Figure 6.10.: Signed squared eigenvector components ṽjn for the b̄b̄us system with JP = 1+

obtained on ensemble a12m220L. The results are determined via constant fits to the t-
dependent eigenvector components vjn in the range tmin ≤ t ≤ tmax with 5 ≤ tmin/a ≤ 9 and
11 ≤ tmax/a ≤ 14 followed by a FLAG average taking all fits into account.

the eigenvector components for the ground state |0⟩. Here, we observe that |ṽj0| ≫ |ṽk0 |
for j = 1, 2, 3, 4 and k = 5, 6, 7. Consequently, the ground-state energy level |0⟩ is
dominated by contributions of trial states generated by the local operators O1 to O4.
Meanwhile, the contributions of the trial states O†

k|Ω⟩ with k = 5, 6, 7 generated by
scattering operators are significantly smaller. This is a further indication that the b̄b̄us
ground state corresponds to a stable tetraquark. Moreover, in Fig. 6.10 we can rec-
ognize a diquark-antidiquark contribution to the ground state of about 25% while the
meson-meson contribution is found to be approximately 75%. Thus, both structures
are relevant to describe the ground state successfully even though the meson-meson
contribution seems to be slightly dominating. This is in agreement with the results
obtained in Sec. 5.3.2 and in Ref. [24], where I also found sizable meson-meson and
diquark-antidiquark components, while the diquark-antidiquark contribution is some-
what smaller.
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In comparison to the b̄b̄ud system discussed in Sec. 6.3.1 the ratio of meson-meson
to diquark-antidiquark contributions is slightly larger for the case of b̄b̄us. Therefore,
the diquark-antidiquark structure seems to be less important for the ground state in
the b̄b̄us tetraquark compared to the b̄b̄ud ground state. This agrees with our findings
in Ref. [193] where also a larger diquark-antidiquark contribution to the ground state
has been found for b̄b̄ud than for b̄b̄us.
According to Fig. 6.10, ṽ1

0 ≈ −ṽ2
0, so the local BB∗

s and B∗Bs components of the
ground state are arranged antisymmetrically in the light flavors us. The same holds
for the scattering BB∗

s and B∗Bs components, where we found ṽ5
0 ≈ −ṽ6

0. Note that
the operators O3, O4 and O7 are already by construction antisymmetric in the light
flavors (see Sec. 4.2.3), and so are the associated trial states. Consequently, the b̄b̄us
ground state is completely antisymmetric in the light flavors us and seems to be the
counterpart of the b̄b̄ud ground state with I(JP ) = 0(1+) (see Sec. 6.3.1) which is also
antisymmetric in its light flavors ud.
For the first and second excited states, we observe that |ṽ5

1|, |ṽ6
1| ≫ |ṽk1 | and |ṽ5

2|, |ṽ6
2| ≫

|ṽk2 | with k ̸= 5, 6. Accordingly, these two states are mainly governed by the trial states
of the operators O5 and O6, corresponding to a BB∗

s and B∗Bs scattering state re-
spectively, while contributions of all other structures are negligible. This supports our
interpretation of the states |1⟩ and |2⟩ being meson-meson scattering states. However,
we observe that they are not purely governed by a single trial state but are linear
combinations of the trial states O†

5|Ω⟩ and O†
6|Ω⟩ with similar weight. For state |1⟩ we

see that ṽ5
1 ≈ ṽ6

1, so there is a scattering BB∗
s and B∗Bs component that is symmetric

in the light flavors us, whereas ṽ5
2 ≈ −ṽ6

2 and subsequently state |2⟩ is antisymmetric
in the light flavors. Therefore, state |2⟩ is the analogy of the first excited state in the
b̄b̄ud spectrum with I = 0, while state |1⟩ corresponds to an isospin I = 1 state with
light flavors ud.
Since ṽ7

3 ≈ 1 and ṽk3 ≈ 0 for k ̸= 7, the third excited state is essentially identical to
the trial state generated by O7, i.e., |3⟩ ≈ O†

7|Ω⟩. As O7 resembles a B∗B∗
s scattering

structure, this supports the interpretation of the third excited state as a B∗B∗
s scat-

tering state. O7 is by construction antisymmetric in the light flavors, and so is state
|3⟩. Therefore, this energy level is the counterpart of the second excited state in the
b̄b̄ud spectrum with I = 0 discussed in Sec. 6.3.1.
In addition to that, also the remaining eigenstates are either symmetric (state |4⟩) or
antisymmetric (states |5⟩ and |6⟩) in the light flavors us. This suggests that SU(3)
flavor symmetry is approximately preserved for the b̄b̄us system in the finite volume.
Similar results have been found in Sec. 5.3.2 and Ref. [24] where the ground state
and the first two scattering states have also been identified to be either symmetric or
antisymmetric in the light flavors us.
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6.4 Scattering Analysis

The finite volume energy spectra of the four-quark states can be related to the infinite
volume scattering amplitude T using Lüscher’s formula. Since bound states appear as
poles of the T -matrix on the real axis below the threshold of strong decay, this allows
us to examine if the b̄b̄ud and b̄b̄us ground states that have been found below the low-
est two-meson thresholds in Sec. 6.3 are indeed bound states in the infinite volume.
In this section, I follow the approach discussed in Sec. 4.6.2.2 which can be applied
for single as well as coupled channel scattering analyses to determine the S-wave scat-
tering amplitude. For both systems, I considered only the center-of-momentum frame
where the relevant irrep is T+

1 of Oh and neglect contributions from higher partial
waves.
Note that three of the seven ensembles that are used in this work (a12m220S, a12m220,
a12m220L) have similar lattice spacings a ≈ 0.12 fm and pion masses mπ ≈ 220 MeV
and differ only in their lattice volume VS = L3 with L/a ∈ {24, 32, 40} (see Table 6.1).
This allows us to use the energy levels extracted on these three ensembles in a single
scattering analysis. Referring to the results of this combined analysis, the speci-
fier a12m220co will be used. For the remaining four ensembles a15m310, a12m310,
a09m220 and a09m310, I perform an independent scattering analysis for each ensem-
ble.
Throughout this section, possible effects due to the left-hand cut are omitted even
though I use T -matrix parametrizations whose ranges of convergence are limited by
the left-hand cut branch point. I will estimate the position of this branch point and
discuss its relevance with respect to this scattering analysis in Sec. 6.5.

6.4.1 Scattering Analysis for the Case of b̄b̄ud with I(JP ) = 0(1+)

For the case of b̄b̄ud with I(JP ) = 0(1+), the two lowest meson-meson thresholds are
BB∗ and B∗B∗ which are separated by approximately 45 MeV [87]. Therefore, I ex-
pect that the coupling of the scattering amplitude to the B∗B∗ channel is sufficiently
suppressed and a single channel scattering analysis is adequate to determine the infi-
nite volume ground-state energy. For this reason, I use only the ground-state energy
level E0 and the energy level E1 associated to the first excited state (which has been
identified as a BB∗ scattering state) but not the energy E2 of the second excited state
(which resembles a B∗B∗ scattering state) in the following analysis. Another reason
for omitting E2 is that, according to Sec. 6.3, I did not consider scattering operators
with back-to-back momenta. The energies of the associated scattering states might be
between the BB∗ and the B∗B∗ thresholds, and consequently energy levels below the
B∗B∗ threshold are potentially not resolved. Therefore, it would not be credible to
include the second excited state and to perform a coupled channel scattering analysis.
Following the approach discussed in Sec. 4.6.2.2, I perform a single channel scatter-
ing analysis to determine the infinite volume scattering amplitude. The T -matrix is
parametrized according to Eqs. (4.91) and (4.92), so I apply the linear ansatz in s for
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the inverse K-matrix,
[K−1(s)]2 Par.

single = c(0) + c(1)s, (6.4)

where c(0) and c(1) are the two free parameters. Additionally, I also utilize a constant
K-matrix parametrization according to

[K−1(s)]1 Par.
single = c(0), (6.5)

which allows me to check the relevance of the term linear in s.
As stated above, the two lowest energy levels that are computed on each of the en-
sembles a12m220S, a12m220 and a12m220L are used in a single combined fit, thus
increasing the number of data points for this fit. For the remaining four ensembles,
the scattering analysis is performed separately using always the two lowest energy
levels per ensemble. Consequently, I will end up with five infinite volume ground-state
energy levels for different pion masses and lattice spacings.
For each scattering analysis, I use the finite volume energy levels E0(L) and E1(L)
which have been determined in Sec. 6.3.1, the associated scattering momenta k0(L) and
k1(L) which are governed via Eq. (4.84), and the kinetic masses of the B and B∗ mesons
given in Table 6.6 to determine the parameters c(0) for the constant parametriza-
tion and c(0) and c(1) for the linear parametrization by minimizing the χ2 function in
Eq. (4.94) as described in Sec. 4.6.2.2. The results for the parameters c(j) are listed
in Table 6.9. Given knowledge of the optimal choice of the parameters, the infinite

Ensemble NPar. c(0) [1] c(1) [fm2] |kBS| [MeV] Ebind [MeV] χ2/d.o.f.

a15m310 1 −0.74(0.02) 628(8) −75.4(1.8) 0.15
2 −0.87(0.45) −0.15(0.49) 628(8) −75.4(1.8) -

a12m310 1 −0.89(0.04) 605(26) −69.6(4.2) 1.76
2 0.36(1.05) 2.25(1.90) 607(26) −70.1(4.2) -

a12m220co 1 −1.02(0.04) 675(22) −89.0(4.5) 1.41
2 −0.67(0.46) 0.53(0.68) 675(22) −88.9(4.5) 1.71

a09m310 1 −1.31(0.05) 661(40) −83.0(5.9) 3.04
2 −0.18(0.25) 3.17(0.69) 665(40) −83.8(5.9) -

a09m220 1 −1.43(0.08) 717(64) −97.5(9.6) 0.57
2 −0.12(0.42) 3.27(1.03) 719(64) −98.1(9.6) -

Table 6.9.: Fit results for the parameters c(0) and c(1) of a constant (NPar. = 1) and linear
(NPar. = 2) K−1-matrix parametrization, scattering momentum |kBS| and infinite volume
binding energy Ebind for all ensembles obtained by a single channel scattering analysis for
the b̄b̄ud system with I(JP ) = 0(1+). Note that for the fits with NPar. = 2 on a15m310,
a12m310, a09m310 and a09m220 no value for χ2/d.o.f. is given, as the number of data points
equals the number of fit parameters, but I verified that χ2 = 0 for these cases.
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volume ground-state energy is computed as the pole of the T -matrix in the complex
energy plane. For all cases, the T -matrix pole is found at the real axis below the BB∗

threshold. The associated binding energies Ebind and the binding momenta |kBS| that
are obtained by solving Eq. (4.89) for |kBS| are also collected in Table 6.9. Note that
the statistical uncertainties of the binding energies Ebind have been rescaled to take
correlations between the meson energies and the b̄b̄ud energy levels into account. The
scaling factor has been determined from the ratio of the correlated and uncorrelated
uncertainties for the finite volume energy differences ∆E0.

I show the low-lying finite volume energy levels computed on the ensembles a12m220S,
a12m220 and a12m220L with spatial extents L/a = 24, 32, 40 as gray points in Fig. 6.11.
In the left plot, I additionally depict the non-interacting BB∗ energies as blue solid
lines and the non-interacting B∗B∗ energies as green solid lines, while the associated
two-meson thresholds are given by the horizontal lines at the bottom of each non-
interacting spectrum. As already discussed, only the two lowest finite volume energy

24 32 40
L/a

−100

−50

0

50

100

E
−
E
B
−
E
B
∗

[M
eV

]

24 32 40 ∞
L/a

−100

−50

0

50

100

BB∗|thr.

B∗B∗|thr.

Non-interacting BB∗ energies

Non-interacting B∗B∗ energies

Finite volume energy levels

Energy levels from parametrization

Infinite volume ground-state energy

Figure 6.11.: Finite volume energy levels for the b̄b̄ud four-quark system with I(JP ) = 0(1+)
computed on the ensembles a12m220S, a12m220 and a12m220L (dark gray points are used
in the scattering analysis, while light gray points are excluded) and the non-interacting BB∗

(in blue) and B∗B∗ (in green) energies (left). Additionally, the energy levels calculated from
Eq. (3.45) using the single channel K−1-matrix parametrization in Eq. (6.4) are shown by
yellow bands together with the infinite volume ground-state energy as a red horizontal line
(right).
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levels (illustrated by dark gray points in Fig. 6.11) are considered for the scattering
analysis, while the energies of the second excited states depicted in light gray are ex-
cluded from the analysis. In the right plot of Fig. 6.11, the finite volume energy levels
that are obtained from the quantization condition in Eq. (3.45) using the K−1-matrix
parametrization in Eq. (6.4) with c(0) and c(1) as defined in Table 6.9 are shown as
yellow solid lines with shaded error bands. We observe that the two lowest yellow lines
are in good agreement with the finite volume energy levels determined in the lattice
calculation, indicating that the T -matrix parametrization is suitable to describe the
finite volume energy spectrum. Moreover, the third and fourth energy levels obtained
from the quantization condition can be associated to the non-interacting BB∗ energy
levels with back-to-back momenta p2 = (2π/L)2 and p2 = 2(2π/L)2. Note that these
energy levels slightly deviate from the non-interacting energies as a consequence of
the finite lattice volume, while this effect increases for smaller volumes. Finally, the
infinite volume ground-state energy corresponding to the pole position of the T -matrix
in the complex energy plane is depicted by the red horizontal line, while the shaded
band indicates the associated uncertainty.
Let us consider the fit results presented in Table 6.9 in more detail. We observe that
both the constant parametrization (see Eq. (6.5)) and the linear parametrization (see
Eq. (6.4)) of the inverse K-matrix are appropriate to reasonably describe the finite
volume energy spectrum determined in the lattice calculation. For the ensembles
a15m310, a12m310 and a12m220co, the fit results for the parameter c(0) obtained by
the constant and linear ansatz are consistent within uncertainties, while the results
for c(1) appearing in the linear parametrization are consistent with zero for the ensem-
bles a15m310 and a12m220co. Accordingly, the infinite volume ground-state energies
for those three ensembles that are obtained from the constant and linear K−1-matrix
parametrization are in excellent agreement. For the ensembles a09m310 and a09m220,
we found different results for c(0) depending on whether the linear term in s is con-
sidered in the K−1-matrix parametrization or not. However, this is not surprising,
since a constant ansatz is not suited to describe two energy levels (the ground-state
energy level and the first excited state energy level) located below the lowest thresh-
old as found for the ensembles a09m310 and a09m220 (see Fig. 6.5). Nevertheless,
the infinite volume ground-state energies determined from the constant and linear
K−1-matrix parametrization are compatible within statistical uncertainties for both
ensembles.
In the following, I use the infinite volume ground-state energies that are obtained via
the linear K−1-matrix parametrization as the final estimates for the infinite volume
b̄b̄ud binding energies. Comparing these binding energies Ebind as listed in Table 6.9
with the finite volume energy differences ∆E0 collected in Table 6.7, we observe that
both energies are essentially identical. This supports the interpretation of the b̄b̄ud
ground state as a stable tetraquark state.

As discussed at the beginning of this section, I neglect potential effects due to the
coupling of the scattering amplitude to the B∗B∗ channel. This assumption can be
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justified by performing a coupled channel scattering analysis including also the second
excited state E2 in the analysis. As BB∗ scattering states with back-to-back momenta
are not resolved, this is only feasible for ensemble a15m310 where the energy of the
BB∗ scattering state with p2 = (2π/L)2 is above the B∗B∗ threshold as illustrated in
the left plot of Fig. 6.12 with the same color code as for Fig. 6.11. I parametrize the
inverse K-matrix in accordance with Eq. (4.93) as

[K−1(s)]2 Par.
coupled =

c(0)
00 0
0 c

(0)
11

 . (6.6)

Such a constant parametrization can be motivated by the findings of the single channel
analysis in the previous paragraph. The free parameters c(0)

00 and c
(0)
11 are determined

following the approach discussed in Sec. 4.6.2.2. I list the fit results for the parameters,
the binding energy Ebind, the scattering momentum |kBS| and χ2/d.o.f. in Table 6.10.
In the right plot of Fig. 6.12, I show, in analogy to Fig. 6.11, the finite volume en-
ergy levels, obtained via the quantization condition in Eq. (3.45) using the constant
parametrization of the inverse K-matrix, as yellow lines. As expected, these energy
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Figure 6.12.: Finite volume energy levels for the b̄b̄ud four-quark system computed on
the ensemble a15m310 (dark gray points are used in the scattering analysis) and the non-
interacting BB∗ (in blue) and B∗B∗ (in green) energies (left). Additionally, the energy
levels calculated from Eq. (3.45) using the coupled channel K−1-matrix parametrization in
Eq. (6.6) are shown by yellow bands together with the infinite volume ground-state energy
as a red horizontal line (right).
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Ensemble NPar. c
(0)
00 [1] c

(0)
11 [1] |kBS| [MeV] Ebind [MeV] χ2/d.o.f.

a15m310 2 −0.74(0.02) −0.47(0.08) 628(9) −75.3(1.9) 0.14

Table 6.10.: Fit results for the parameters c
(0)
00 and c

(0)
11 of the K−1-matrix parametrization

in Eq. (6.6), scattering momentum |kBS| and infinite volume binding energy Ebind for ensem-
ble a15m310 obtained from a coupled channel scattering analysis for the b̄b̄ud system with
I(JP ) = 0(1+).

levels are in good agreement with the ground-state energy as well as with the energies
of the first and second excited states. We can also observe, that the fourth and fifth
energy levels can be associated to the BB∗ and B∗B∗ non-interacting energy levels
with one momentum quantum, p2 = (2π/L)2. Note that the upwards shift of the
finite volume energies is caused by the relatively small spatial box size. The infinite
volume ground-state energy is again shown as a red horizontal line with a shaded band
indicating the associated uncertainty.
Comparing the binding energy computed in a coupled channel analysis with the bind-
ing energy from the single channel scattering analysis given in Table 6.9, we recognize
that both energies are in full agreement. This supports the assumption that the B∗B∗

channel can be neglected and couplings of the scattering amplitude to B∗B∗ do not
influence the b̄b̄ud ground state.

6.4.2 Scattering Analysis for the Case of b̄b̄us with JP = 1+

In the case of the b̄b̄us four-quark system with JP = 1+, the two lowest meson-meson
thresholds BB∗

s and B∗Bs are separated by only 3 MeV while the next two-meson
threshold B∗B∗

s is about 45 MeV above the BB∗
s threshold. For this reason, it is

mandatory to perform a coupled channel scattering analysis including the two lowest
meson-meson channels BB∗

s and B∗Bs while couplings to the B∗B∗
s threshold can be

neglected similar to the case of b̄b̄ud as discussed in the previous section.
Note that a single channel scattering analysis is unfeasible for another reason. As I
showed in Sec. 6.3.2, the first and second excited states have both approximately equal
weighted contributions of the trial states generated by the operators O5 and O6 which
resemble BB∗

s and B∗Bs scattering states. Consequently, the finite volume energy
levels are not governed by a particular scattering state but appear as symmetric or
antisymmetric BB∗

s and B∗Bs combinations in the light quark flavors. The physical
states in the infinite volume, however, are supposed to be ordinary meson-meson states.
Thus, in a single channel scattering analysis it would be unclear which finite volume
energy level should be assigned to which meson-meson scattering channel.
Accordingly, I include the energy levels E0, E1 and E2 listed in Table 6.8 in the coupled
channel scattering analysis, while the energy level E3 associated to the third excited
state which resembles a B∗B∗

s scattering state is excluded. The scattering analysis
is performed on the basis of the approach discussed in Sec. 4.6.2.2 and follows the
same steps as illustrated in Sec. 6.4.1 for the b̄b̄ud system. I parametrize the inverse
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K-matrix as

[K−1(s)]2 Par.
coupled =

c(0)
00 0
0 c

(0)
11

 , (6.7)

which is in accordance with the parametrization utilized for the coupled channel system
in Sec. 6.4.1. The final fit results for the parameters c(0)

00 and c(0)
11 are collected together

with the scattering momenta |kBS| and the binding energies Ebind in Table 6.11 for all
ensembles.

Ensemble c
(0)
00 c

(0)
11 |kBS| [MeV] Ebind [MeV] χ2/d.o.f.

a15m310 −0.50(0.02) −2.29(1.66) 421(12) −33.5(1.2) 0.08
a12m310 −0.56(0.03) 0.64(0.99) 371(36) −26.0(2.3) 4.09
a12m220co −0.63(0.05) −0.64(0.04) 413(34) −32.7(2.6) 1.53
a09m310 −0.78(0.04) 7.75(52.80) 390(49) −28.6(2.5) 4.20
a09m220 −0.81(0.07) −0.66(9485.07) 400(78) −29.9(3.9) 1.38

Table 6.11.: Fit results for the parameters c
(0)
00 and c

(0)
11 of the K−1-matrix parametrization

in Eq. (6.7), scattering momentum |kBS| and infinite volume binding energy Ebind for all
ensembles obtained by a coupled channel scattering analysis for the b̄b̄us system with JP =
1+.

In Fig. 6.13, I depict the finite volume energy levels determined on the ensembles
a12m220S, a12m220 and a12m220L as gray points, while energy levels presented in
light gray are excluded from the analysis. Additionally, I show also the non-interacting
two-meson energies for BB∗

s as violet solid lines, for B∗Bs as blue solid lines and for
B∗B∗

s as green solid lines. The energy levels that are obtained via the quantization
condition in Eq. (3.45) using the K−1-matrix parametrization in Eq. (6.7) and the
fit results for the parameters c(0)

00 and c
(0)
11 are shown as yellow shaded bands in the

right plot of Fig. 6.13. Note that we found two almost degenerate energy levels close
to the non-interacting BB∗

s and B∗Bs energies. The first three energy levels coincide
well with the energy levels obtained from the lattice calculation, thus supporting the
assumption that the chosen parametrization is suitable to describe the data. The
fourth and fifth energy levels can be associated to BB∗

s and B∗Bs scattering states with
one quantum of back-to-back momentum, p2 = (2π/L)2, and accordingly the sixth
and seventh energy levels can be related to the scattering states with p2 = 2(2π/L)2.
Note that these energy levels are all slightly above the non-interacting energy levels
as a consequence of the finite spatial lattice volume. Finally, I illustrate the infinite
volume ground-state energy as a red horizontal line in the right plot of Fig. 6.13.
Considering the infinite volume binding energies Ebind shown in Fig. 6.13 for ensemble
a12m220co and collected for all ensembles in Table 6.11, we recognize that they are
compatible with the finite volume energy differences ∆E0 listed in Table 6.8. This
supports the interpretation that the b̄b̄us ground state is a stable tetraquark. Note
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Figure 6.13.: Finite volume energy levels for the b̄b̄us four-quark system computed on the
ensembles a12m220S, a12m220 and a12m220L (dark gray points are used in the scattering
analysis, while light gray points are excluded) and the non-interacting B∗Bs (in blue), BB∗

s

(in violet) and B∗B∗
s (in green) energies (left). Additionally, the energy levels calculated

from Eq. (3.45) using the single channel K−1-matrix parametrization in Eq. (6.7) are shown
by yellow bands together with the infinite volume ground-state energy as a red horizontal
line (right).

that the uncertainties of the binding energies Ebind in Table 6.11 are again rescaled
appropriately to incorporate correlations of the meson energies and the b̄b̄us energy
levels correctly.

6.5 Final Results and Investigation of Systematic
Uncertainties

The infinite volume binding energies for the b̄b̄ud system with I(JP ) = 0(1+) and the
b̄b̄us system with JP = 1+ that are listed in Tables 6.9 and 6.11 have been computed
for various lattice spacings a ∈ {0.09 fm, 0.12 fm, 0.15 fm} and unphysical pion masses
mπ ∈ {220 MeV, 310 MeV}. Having a closer look on the results, we cannot observe
an evident dependence of the binding energies on the lattice spacing a. Additionally,
only the results for the b̄b̄ud system seem to depend mildly on the pion mass, while
the binding energies in the b̄b̄us system seem to be rather independent of it.
In order to further investigate the binding energies’ pion mass dependence and estimate
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the final result at the physical point, I consider a chiral extrapolation which is quadratic
in the pion mass, corresponding to a linear light quark mass dependence, according to

Ebind(mπ) = Ebind(mπ,phys) + c
(
m2
π −m2

π,phys

)
, (6.8)

with mπ,phys = 135 MeV the pion mass at the physical point. This is the same ansatz
as utilized in Sec. 5.4. The two free parameters Ebind(mπ,phys) and c in Eq. (6.8) are
determined via a χ2-minimizing fit. I show the fit function for the b̄b̄ud system as well
as for the b̄b̄us system together with the binding energies Ebind as a function of m2

π

in Fig. 6.14. The fit results and the values of χ2/d.o.f. are listed for both channels

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14

m2
π [GeV2]

−150

−125

−100

−75

−50

−25

0

E
b
in

d
[M

eV
]

BB∗

a ≈ 0.15 fm
a ≈ 0.12 fm
a ≈ 0.09 fm

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14

m2
π [GeV2]

−70

−60

−50

−40

−30

−20

−10

0

E
b
in

d
[M

eV
]

BB∗s

a ≈ 0.15 fm
a ≈ 0.12 fm
a ≈ 0.09 fm

Figure 6.14.: Fits of the pion-mass dependence of the binding energies Ebind for the b̄b̄ud four-
quark system with I(JP ) = 0(1+) (left) and the b̄b̄us four-quark system with JP = 1+(right).
The lowest meson-meson threshold for each channel is indicated by the horizontal dashed
lines, while the vertical dashed line represents the physical pion mass.

in Table 6.12, while the statistical errors are rescaled by a factor of (χ2/d.o.f.)1/2 if
χ2/d.o.f. > 1 to incorporate the fit’s quality in the final result.
Moreover, in order to quantify possible discretization effects rigorously, I also study
an additional a-dependence of the binding energies using an ansatz which adds a
quadratic term in the lattice spacing a to Eq. (6.8),

Ebind(mπ, a) = Ebind(mπ,phys, acont) + c
(
m2
π −m2

π,phys

)
+ d a2, (6.9)

where d is the third free parameter and acont = 0 the continuum lattice spacing. This
allows us to partly remove potential discretization errors of O(a2). Note that the gauge
action as well as the HISQ action are already O(a2) improved, but using the mixed
action setup with a Wilson-clover valence action, which is only O(a) improved, might
introduce additional uncertainties. These can be studied and if necessary removed by
considering the a-dependent binding energy as given in Eq. (6.9). The free parameters
in Eq. (6.9) are again determined via a χ2-minimizing fit, and the final results obtained
by this chiral extrapolation with continuum limit can be found in Table 6.12. Fig. 6.15
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displays the fit functions projected to the plane of constant lattice spacings a in the up-
per row and projected to the plane of constant pion masses mπ in the lower row for the
b̄b̄ud and the b̄b̄us systems. The continuum binding energies at the physical pion mass
Ebind(mπ,phys, acont) are indicated in both projections by a black square. Comparing
the final binding energies obtained from the chiral extrapolation with those governed
by the chiral extrapolation with continuum limit, we observe that these binding en-
ergies are compatible within statistical uncertainties for both tetraquark states. Let
us have a closer look on the fit results. In the case of b̄b̄ud, the binding energies show
a mild dependence on the pion mass, while the energy decreases for decreasing pion
mass, i.e., c > 0. However, we do not find a significant a-dependence, as the fit param-
eter d is consistent with zero within statistical uncertainties. Interestingly, we observe
the opposite behavior for the b̄b̄us system. Here, the binding energy is independent
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Figure 6.15.: Fits of the pion-mass and lattice spacing dependence of the binding energies
Ebind for the b̄b̄ud four-quark system with I(JP ) = 0(1+) (left) and the b̄b̄us four-quark
system with JP = 1+(right). In the upper row, a projection to the plane of constant lattice
spacings a is shown, in the lower row a projection to the plane of constant pion masses mπ.
The lowest meson-meson threshold for each channel is indicated by the horizontal dashed
lines, while the vertical dashed line represents either the physical pion mass or zero lattice
spacing a. The black square indicates the final result for Ebind(mπ,phys, acont).
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Chiral extrapolation
Ebind(mπ,phys) [MeV] c [10−4/MeV] χ2/d.o.f.

b̄b̄ud −100(9) 3.0(1.1) 1.67
b̄b̄us −31(7) −0.10(88) 3.39

Chiral extrapolation with continuum limit
Ebind(mπ,phys, acont) [MeV] c [10−4/MeV] d [102×MeV3] χ2/d.o.f.

b̄b̄ud −101(11) 2.8(1.7) 1.2(5.7) 2.44
b̄b̄us −28(5) 0.67(74) −4.6(2.3) 1.72

Table 6.12.: Fit results for the chiral extrapolation and the chiral extrapolation with contin-
uum limit of the binding energies Ebind for the b̄b̄ud system with I(JP ) = 0(1+) and the b̄b̄us
system with JP = 1+ to the physical pion mass mπ = 135 MeV and to zero lattice spacing
a = 0. The statistical uncertainties are rescaled by max(1, (χ2/d.o.f.)1/2) to incorporate the
quality of the fit.

of the pion mass, i.e., the coefficient c is consistent with zero, while we discover a
mild a-dependence that leads to a slightly lower binding energy when approaching the
continuum limit. Nevertheless, lattice discretization effects for our setup are small,
and in particular the mixed action setup does not seem to introduce additional major
discretization errors. As the fits for the chiral extrapolation with continuum limit have
reasonable quality, I conclude that remaining systematic uncertainties originating from
unphysical pion masses and the lattice discretization are negligible.

Note that throughout the whole scattering analysis, I have omitted possible effects
due to the left-hand cut which has been discussed in Sec. 4.6.3. In order to estimate
the relevance of one-particle exchanges related to the left-hand cut, I first determine
the location of the left-hand cut branch point for both channels. In the case of the
b̄b̄ud system, the relevant interaction is one-pion exchange. Using Eq. (4.97) with
∆m = mB∗ −mB ≃ 45 MeV and mπ ≃ 310 MeV, we obtain

(k1π
lhc)2 ≈ 1

4(∆m2 −m2
π) ≈ −(153 MeV)2. (6.10)

Consequently, the branch point in the complex energy plane is located on the real
axis below the BB∗ threshold. Comparing k1π

lhc with the b̄b̄ud binding momentum
|kBS| ∼ 600 MeV as given in Table 6.9, we recognize that the bound state pole is
located below the branch point of the left-hand cut.
The situation is similar for the case of b̄b̄us with a kaon being the exchange particle
instead of a pion. The position k1κ

lhc of the branch point is estimated in the same way,
using ∆m = mB∗

s
−mB ≃ 136 MeV and mκ ≃ 498 MeV, which yields

(k1κ
lhc)2 ≈ 1

4(∆m2 −m2
κ) ≈ −(240 MeV)2. (6.11)
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As according to Table 6.11, the b̄b̄us binding momenta |kBS| are of the order of 400 MeV,
the bound state pole is again located below the left-hand cut branch point. Note that a
second left-hand cut originating from the second scattering channel B∗Bs has a branch
point which is shifted only by a few MeV compared to the case of BB∗

s .
Since the range of convergence of the utilized K−1-matrix parametrizations is given by
the location of the left-hand cut branch point, the bound state poles of the T -matrix
are outside this region. Consequently, it is questionable how reliable the parametriza-
tion of the scattering amplitude is around the position of the bound state poles.
For this reason, I repeat the chiral extrapolation with continuum limit using the ansatz
in Eq. (6.9) for the finite volume energy differences ∆E0 given in Tables 6.7 and 6.8. I
list the fit results in Table 6.13 and illustrate the fit functions in analogy to Fig. 6.15
as projections to the planes of constant pion mass mπ and constant lattice spacing
a in Fig. 6.16. We recognize that the final results for the energies in Table 6.13 are
within statistical uncertainties in agreement with the fit results in Table 6.12. Small
deviations are mainly caused by the appearance of three energy levels instead of one
for mπ ≃ 220 MeV and a ≃ 0.12 fm, leading to a different weight of the single energy
levels in the extrapolation.

Chiral extrapolation with continuum limit
∆E0(mπ,phys, acont) [MeV] c [10−4/MeV] d [10−4×MeV3] χ2/d.o.f.

b̄b̄ud −93(12) 2.1(1.5) 0.5(3.3) 2.54
b̄b̄us −33(7) −0.002(870) 0.01(1.74) 1.97

Table 6.13.: Fit results for the chiral extrapolation with continuum limit of the energy
differences ∆E0 for the b̄b̄ud system with I(JP ) = 0(1+) and the b̄b̄us system with JP = 1+

to the physical pion mass mπ = 135 MeV and zero lattice spacing a = 0. The statistical
uncertainties are rescaled by max(1, (χ2/d.o.f.)1/2) to incorporate the quality of the fit.

It might be possible that both tetraquarks are bound so deeply that finite volume ef-
fects and thus couplings of the scattering amplitude to the lowest two-meson threshold
are small. Eventually, effects of one-particle exchange that give rise to the left-hand
cut are then even smaller and can be neglected. Additionally, the tetraquark states in
this chapter are not pure meson-meson molecules, as it has been assumed for study-
ing the left-hand cut in DD∗ scattering in Ref. [174], but are rather a combination
of local meson-meson and diquark-antidiquark components (see the eigenvector de-
compositions in Secs. 6.3.1 and 6.3.2). This might be another argument that possible
effects of the left-hand cut could be omitted. Note, however, that none of these two
assumptions could be substantiated so far.
Likewise, it has not yet been conclusively clarified how to interpret the bound state
poles beyond the range of convergence dictated by the left-hand cut branch point.
One possible solution to describe such a pole rigorously might be using a different
parametrization that is not affected by the mentioned range of convergence. The Padé
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Figure 6.16.: Fits of the pion-mass and lattice spacing dependence of the energy differences
∆E0 for the b̄b̄ud four-quark system with I(JP ) = 0(1+) (left) and the b̄b̄us four-quark
system with JP = 1+(right). In the upper row, a projection to the plane of constant lattice
spacings a is shown, in the lower row a projection to the plane of constant pion mass mπ.
The lowest meson-meson threshold for each channel is indicated by the horizontal dashed
lines, while the vertical dashed line represents either the physical pion mass or zero lattice
spacing a. The black square indicates the final result for Ebind(mπ,phys, acont).

approximation might provide such a parametrization that could be applied also in the
region of the bound state pole [175, 176, 194]. Nevertheless, it is still subject of ongo-
ing research to investigate the effects of the left-hand cut and develop new techniques
to rigorously incorporate the physics beyond the left-hand cut in the formalisms of
scattering analyses.

In order to determine remaining systematic uncertainties, I follow the approach that
has been applied in Ref. [37]. The Wilson-clover action that is used for the light and
strange quarks introduces lattice discretization errors of order 1% for the fine lattices,
around 1.5% for the coarse lattices and around 2% for the very coarse lattice. Using
the QCD scale ΛQCD ∼ 300 MeV, the associated discretization errors are expected to
be of order 3 MeV to 6 MeV. This is in agreement with the quite small shift of the

123



Chapter 6. The Low-Lying Energy Spectrum for b̄b̄ud and b̄b̄us Tetraquarks

final binding energies when considering the continuum limit in addition to a chiral ex-
trapolation. Thus, this source of systematic errors is adequately covered. The major
contribution to the systematic uncertainties, however, is introduced by the NRQCD
action. Here, we need to distinguish between the heavy-light meson systems and the
four-quark system. For the heavy-light mesons, the most significant systematic uncer-
tainties for our choice of the NRQCD action and matching coefficients as presented in
Sec. 6.1.3 are expected to be as follows:

• Four-quark operators are missing in the heavy quark action. They appear only at
two-loop level in the QCD matching, i.e., at order α2

s, but according to Ref. [195]
their effect can be up to 3 MeV.

• One-loop corrections of the operator −g/(2mb) σ · B are not included in the
action, since the matching coefficient c4 is used at its tree level value. The
associated uncertainties can be estimated as

αsΛ2
QCD/mb ≈ 6 MeV, (6.12)

where I use αs ≈ 0.3 for the gauge coupling.

• I also use only tree-level values for the coefficients c2 and c3 associated to the
operators of order (Λ2

QCD/m
2
b). The uncertainties that are governed by higher-

order contributions to these coefficients are given by

αsΛ3
QCD/m

2
b ≈ 0.4 MeV. (6.13)

As the matching coefficients c1, c5 and c6 are O(αs) improved, systematic uncertainties
arising from the related operators are negligible.
For the four-quark system, it is more sophisticated to identify the relevant sources of
systematic errors as the power counting is more complicated due to the presence of
two bottom quarks. A reasonable estimate for the systematic uncertainties can be ob-
tained by replacing the QCD scale ΛQCD by the binding momentum |kBS| in the power
counting [37]. This yields for the b̄b̄ud four-quark system a systematic uncertainty of
around 25 MeV and for the b̄b̄us four-quark system of around 10 MeV. As I expect
that the meson energies and the tetraquark energies are correlated, it is likely that
the systematic uncertainties partly cancel when computing the binding energy as the
difference Ebind = EBS − EM1 − EM2 with M1 and M2 indicating the relevant mesons
of the lowest threshold. Therefore, I estimate the final systematic uncertainty of the
binding energies to be of the order of 25 MeV and 10 MeV for the case of b̄b̄ud and
b̄b̄us, respectively.

For the final estimate of the tetraquark binding energies, I decide to consider the
fit results Ebind(mπ,phys, acont) that have been obtained from the chiral extrapolation
with continuum limit based on the infinite volume binding energies. I assume here
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that effects due to the left-hand cut can be omitted and the parametrization of the
T -matrix yields reliable results despite the existence of the left-hand cut singularity.
This might be reasonable for deeply bound tetraquarks but requires further validation
in future research. The final results for the binding energies including the systematic
uncertainties are given in Table 6.14. In the last column, I list the tetraquark masses
mtetraquark(mπ,phys, acont) gained by adding the experimental B and B∗ or B and B∗

s

meson masses [87] to the binding energy.

Ebind(mπ,phys, acont) [MeV] mtetraquark(mπ,phys, acont) [MeV]
b̄b̄ud −101(11)(25) 10503(11)(25)
b̄b̄us −28(5)(10) 10660(5)(10)

Table 6.14.: Final estimate for continuum binding energy at the physical pion mass mπ =
135 MeV for the b̄b̄ud tetraquark with I(JP ) = 0(1+) and the b̄b̄us tetraquark with JP =
1+. The last column refers to the mass of the bound tetraquark obtained by adding the
experimental meson masses [87] to Ebind.
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7
Investigation of b̄c̄ud
Tetraquark States

in BD and B∗D Scattering

In this chapter, I will present an exploratory study of b̄c̄ud four-quark systems with
the two possible quantum numbers I(JP ) = 0(0+) and I(JP ) = 0(1+). In contrast to
the b̄b̄ud four-quark system with I(JP ) = 0(1+) and the b̄b̄us four-quark system with
JP = 1+, where stable tetraquark states have been consistently predicted in Chap-
ters 5 and 6 as well as in various further lattice investigations [24,35–40], the situation
for b̄c̄ud four-quark systems is still inconclusive. In Chapter 5, I did not find evidence
for deeply bound b̄c̄ud states, but likewise could not exclude the existence of a bound
state close to the threshold or of a narrow resonance [24]. This is in agreement with
the results of Ref. [42], where a previously predicted bound state has been revoked [41],
but it contradicts the observations of Ref. [43]. Similar, also non-lattice approaches
do not show a consistent picture. While in Refs. [196–207] the existence of a stable
b̄c̄ud tetraquark is predicted, Refs. [27, 208–212] have not found evidence for a bound
state.
A rigorous lattice investigation of the b̄c̄ud four-quark systems requires incorporating
finite volume effects by performing a scattering analysis. Thus, I study the b̄c̄ud sys-
tems with I(JP ) = 0(0+) and I(JP ) = 0(1+) by calculating the BD and B∗D S-wave
scattering amplitudes using Lüscher’s method. A suitable setup for such computations
has already been established in Chapter 6, where the low-lying energy levels that are
essential for a scattering analysis have been determined for the b̄b̄ud and b̄b̄us four-
quark systems. Accordingly, I start in Sec. 7.1 with a brief overview of the lattice
setup and discuss the implementation of the charm quarks in particular. In Sec. 7.2, I
introduce the four-quark interpolating operators that are applied in this chapter. Es-
pecially, I focus on the construction of BD and B∗D scattering operators transforming
according to the irreps of the relevant symmetry group for the center-of-momentum
frame as well as for moving frames. This is followed by the computation of the D
and D∗ meson masses in Sec. 7.3, while the finite volume energy spectra for both b̄c̄ud
systems are presented in Sec. 7.4. Finally, in Sec. 7.5 I perform a scattering analysis
to determine the BD and B∗D scattering amplitudes whose poles can be associated
to b̄c̄ud tetraquark states with J = 0 and J = 1, respectively.
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7.1 Lattice Setup and Tuning of the Charm Quark Mass
The calculations in this chapter use the same lattice setup as discussed in Sec. 6.1,
i.e., I utilize the HISQ gauge-link configurations generated by the MILC collaboration
[186]. For this exploratory study, I restrict myself to the two ensembles a12m220S
and a12m220, which have the same pion mass (mπ ≈ 220 MeV) and lattice spacing
(a ≈ 0.12 fm) and differ only in the spatial volume (L/a ∈ {24, 32}). Details of these
ensembles can be found in Table 6.1.
The light and bottom quark propagators are computed in exactly the same way as
discussed in Secs. 6.1.2 and 6.1.3, i.e., I consider a Wilson-clover action for the light
quarks, while the bottom quarks are treated in the framework of NRQCD. For the
charm quarks, I use the Fermilab action in its simplest form as discussed in Sec. 2.5,
i.e., the anisotropy ζ is set to unity, and the clover coefficients are fixed to their tadpole
improved tree-level value cE = cB = csw. The clover coefficient csw is identical to the
coefficient used for the light quarks as listed in Table 6.2. Following the approach of
Refs. [49, 106], I tune the hopping parameter κc, the only remaining free parameter,
such that the spin-averaged kinetic D meson mass mspinav

D,kin = (mD,kin + 3mD∗,kin)/4
matches its experimental value [87]. In accordance with Refs. [49, 106], I use the
dispersion relation

EMD
(p) = M1 + p2

2M2
− (p2)2

8M3
4

(7.1)

for the D and D∗ mesons, where M1, M2 and M4 are free parameters with M2 corre-
sponding to the kinetic mass.
In order to tune the charm quark mass appropriately, I use the interpolating opera-
tors in Eqs. (4.19) and (4.20) to compute the momentum-dependent D and D∗ meson
energies ED(p) and ED∗(p) with p2/(2π/L)2 = 0, ..., 4 on ensemble a12m220S. The
kinetic masses M2 for the D and D∗ mesons are then determined by a χ2-minimizing
fit of Eq. (7.1) to the energies ED(p) and ED∗(p). Given knowledge of the kinetic
masses, the spin-averaged kinetic D meson mass can be easily computed. This is re-
peated for several values of the charm hopping parameter κc. I depict the resulting
spin-averaged kinetic D meson mass mspinav

D,kin as a function of κc in the right plot of
Fig. 7.1. Assuming a linear κc-dependence of mspinav

D,kin , the final choice for the hopping
parameter κc = 0.106756 is obtained by interpolating to the physical spin-averaged
kinetic D meson mass mspinav

D,kin,phys = 1973.9 MeV [87] indicated by the black horizontal
line in this plot. In the left plot of Fig. 7.1, I show the D and D∗ meson dispersion
relation for the final choice of κc. In this case, the spin-averaged kinetic D meson
mass is given by mspinav

D,kin = 2031(57) MeV, which is slightly heavier than the physical
spin-averaged kinetic mass but still in reasonable agreement.
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Figure 7.1.: D and D∗ meson dispersion relation according to Eq. (7.1) for the final choice of
the charm hopping parameter κc = 0.106756 (left) and spin-averaged kinetic D meson mass
mspinav
D,kin in dependence of κc (right) computed on ensemble a12m220S. The black horizontal

line in the right plot indicates the physical spin-averaged kinetic D meson mass in lattice
units.

7.2 Interpolating Operators for b̄c̄ud Four-Quark Systems
The interpolating operators that have been utilized in Chapter 5 to search for b̄c̄ud
bound states with I(JP ) = 0(0+) and I(JP ) = 0(1+) have been discussed in detail in
Secs. 4.2.3.3 and 4.2.3.4. However, in order to investigate b̄c̄ud four-quark states in
S-wave BD and B∗D scattering, I slightly modify the utilized operator basis. I use the
same local operators as given in Eqs. (4.33) and (4.34) and Eqs. (4.36) to (4.38) but
add for both channels another local operator which resembles a local B∗D∗ structure.
Concerning the scattering operators, I consider only operators describing the meson-
meson pair, which is associated to the lowest non-interacting two-meson threshold.
In addition to the operator where the mesons’ momenta are both projected to zero, I
consider also operators where the individual meson momenta are non-zero. The highest
meson momenta are hereby chosen such that the associated non-interacting two-meson
energy is located in the vicinity of the second meson-meson threshold (either B∗D∗ or
BD∗). In practice, this means that I consider up to six scattering operators.
Moreover, I intend to resolve the finite volume energy spectrum not only for the
center-of-momentum frame but also for moving frames with non-zero total momentum
P = 2πd/L. Here, I consider two moving frames with d = (0, 0, 1)T and d = (1, 1, 0)T .
Consequently, I construct for each frame an appropriate set of interpolating operators
based on the above mentioned guideline, while all operators must transform according
to the relevant irrep of the symmetry group associated to the particular frame (see
Sec. 4.2.1).

7.2.1 Symmetry Groups and Irreps

Apart from the center-of-momentum frame (CMF) with the symmetry group Oh, the
relevant symmetry groups for the scattering of two mesons with different masses
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are the group C4v for the first moving frame (MF1) with total momentum P =
(2π/L) (0, 0, 1)T and the group C2v for the second moving frame (MF2) with total
momentum P = (2π/L) (1, 1, 0)T . I list the relevant irreps that contain the continuum
quantum numbers JP = 0+ and JP = 1+ in Table 7.1 together with the polynomials
that transform according to the given irreps. A lattice interpolating operator for a
state with distinct quantum numbers JP must be constructed such that it transforms
accordingly to a particular irrep that contains JP , i.e., the operator transforms in the
same way as the listed polynomials. Note that several spins J are subduced into the

d Symmetry JP = 0+ JP = 1+

group Irrep Λ Polynomial Irrep Λ Polynomial
(0, 0, 0) Oh A+

1 1 T+
1 (Rx, Ry, Rz)

(0, 0, 1) C4v A1 1, z A2 i, Rz

E (x, y), (Rx, Ry)

(1, 1, 0) C2v A1 1, x̃
A2 i, Rx̃

B1 z, Rỹ

B2 ỹ, Rz

Table 7.1.: Irreducible representations (irreps) of the symmetry groups Oh, C4v and C2v that
contain the quantum numbers JP = 0+ and JP = 1+. Additionally, I also show polynomials
that transform according to the given irrep, where Rj describes the rotation around the j-
axis with j ∈ {x, y, z} and i represents the inversion. For C2v, I denote the direction parallel
to the boost by x̃ ≡ x + y and the perpendicular direction by ỹ ≡ x − y.

same irrep, so the energy spectrum that is computed within a specific irrep will be a
mixture of different quantum numbers JP . For the CMF, we observe according to Ta-
ble 4.2 that the next quantum number that is contained in the A+

1 irrep is JP = 4+ and
in the T+

1 irrep is JP = 3+. As contributions of higher partial waves are suppressed,
I do not expect that states with the associated quantum numbers contribute signifi-
cantly and assume that the resolved energy spectra will describe exclusively JP = 0+

and JP = 1+ energy levels, respectively. For the moving frames, the situation is dif-
ferent. The lowest quantum numbers that are contained in the A1 irreps of C4v and
of C2v are 0+ and 1−, which means that contributions from states with JP = 1− to
the energy spectrum are possible. For the irreps A2 of C4v and C2v, the situation is
similar, as in addition to the quantum number JP = 1+, also JP = 0− is subduced
into this irrep. The irreps E of C4v as well as B1 and B2 of C2v contain, additionally
to JP = 1+, also the quantum numbers JP = 1− and JP = 2±. Consequently, for all
irreps in moving frames we observe relevant contributions from higher partial waves,
which might lead to mixing of states with different quantum numbers in the energy
spectrum. Therefore, the energy spectra determined in moving frames must be treated
with extreme care.
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7.2.2 Interpolating Operators for b̄c̄ud with I(JP ) = 0(0+)
The interpolating operators for the b̄c̄ud system with I(JP ) = 0(0+) are constructed
in the A+

1 irrep for the CMF and in the irrep A1 for both moving frames. As discussed
in Sec. 4.2.3.3, the lowest relevant two-meson threshold is given by BD, while the
second threshold which is governed by B∗D∗ is approximately 190 MeV above the BD
threshold.
The local operators for the center-of-momentum frame and the moving frames differ
only by their momentum projection to the total momentum P = 2πd/L. I use three
local interpolating operators, two meson-meson operators and one diquark-antidiquark
operator, which are given by

O1 = 1√
VS

∑
x
b̄γ5u(x) c̄γ5d(x) eixP − (d ↔ u), (7.2)

O2 = 1√
VS

∑
x
b̄γju(x) c̄γjd(x) eixP − (d ↔ u), (7.3)

O3 = 1√
VS

∑
x
b̄aγ5Cc̄b,T (x)ua,TCγ5d

b(x) eixP − (d ↔ u), (7.4)

where the total momentum P is chosen according to the frame of interest as listed
in Table 7.1. All operators transform as 1, which renders the correct transformation
behavior for the relevant irreps.

Constructing the scattering operators, I take only operators resembling BD scattering
states into account. In contrast to Sec. 4.2.3.3, I consider not only the operator where
the meson momenta are projected to zero but also BD scattering operators where the
individual meson momenta are non-zero. Using the short-term notations

B+(q1) = 1√
VS

∑
x
b̄γ5u e

ip1x , D−(q2) = 1√
VS

∑
x
c̄γ5d e

ip2x , (7.5)

where p1 = 2πq1/L and p2 = 2πq2/L are the individual meson momenta, a BD
scattering operator in its most general form can be written as

OBD scatt(q1, q2) = B+(q1)D−(q2) − (d ↔ u). (7.6)

All scattering operators that are used in this work are constructed by adequately com-
bining several terms of the general expression in Eq. (7.6) for specific values of the
meson momenta p1 and p2. The actual choice of p1 and p2 as well as the number of
terms that appear depend on the total momentum P of the moving frame and the
irrep for which the operator is constructed. The fundamental principle is that several
terms of the form of Eq. (7.6) with distinct meson momenta obeying p1 + p2 = P are
combined such that the resulting operator transforms according to the desired irrep Λ
as defined in Eq. (4.9). To distinguish the operators for different frames, I introduce
the upper index Λ(d2), where d = P/(2π/L) specifies the total momentum and Λ
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denotes the considered irrep.

For the CMF with total momentum P = (0, 0, 0)T , the individual meson momenta
must obey p = 2πq/L ≡ p1 = −p2. I consider four scattering operators for the CMF
with q2 ≤ 3 which are constructed in such a way that they transform according to
the A+

1 irrep of group Oh. The explicit interpolating operators expressed in terms of
Eq. (7.5) are given by

OA+
1 (0)

4 = B+(0)D−(0) − (d ↔ u), (7.7)

OA+
1 (0)

5 =
∑

q=±ei=x,y,z

B+(q)D−(−q) − (d ↔ u), (7.8)

OA+
1 (0)

6 =
∑

q=±ei±ej , i<j

B+(q)D−(−q) − (d ↔ u), (7.9)

OA+
1 (0)

7 =
∑

q=±ex±ey±ez

B+(q)D−(−q) − (d ↔ u), (7.10)

where I use for OA+
1 (0)

6 i, j = x, y, z with the “ordering” x < y < z.

For the first moving frame with total momentum P = (2π/L) (0, 0, 1)T , the scattering
operators are constructed such that they transform according to the A1 irrep of the
symmetry group C4v (see Table 7.1). I consider six scattering operators which have
the correct transformation behavior and whose meson momenta obey q2

i ≤ 3,

OA1(1)
4 = B+(0)D−(ez) − (d ↔ u), (7.11)

OA1(1)
5 = B+(ez)D−(0) − (d ↔ u), (7.12)

OA1(1)
6 =

∑
q=±ei=x,y

B+(q)D−(ez − q) − (d ↔ u), (7.13)

OA1(1)
7 =

∑
q=±ei=x,y

B+(ez − q)D−(q) − (d ↔ u), (7.14)

OA1(1)
8 =

∑
q=±ex±ey

B+(q)D−(ez − q) − (d ↔ u), (7.15)

OA1(1)
9 =

∑
q=±ex±ey

B+(ez − q)D−(q) − (d ↔ u). (7.16)

I also use six scattering operators for the second moving frame whose total momentum
is given by P = (2π/L) (1, 1, 0)T . The operators are constructed such that they
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transform according to the A1 irrep of group C2v and read

OA1(2)
4 = B+(0)D−(ex + ey) − (d ↔ u), (7.17)

OA1(2)
5 = B+(ex + ey)D−(0) − (d ↔ u), (7.18)

OA1(2)
6 = B+(ex)D−(ey) +B+(ey)D−(ex) − (d ↔ u), (7.19)

OA1(2)
7 =

∑
q=±ez

B+(ex + q)D−(ey − q) +B+(ey + q)D−(ex − q) − (d ↔ u), (7.20)

OA1(2)
8 =

∑
q=±ez

B+(q)D−(ex + ey − q) − (d ↔ u), (7.21)

OA1(2)
9 =

∑
q=±ez

B+(ex + ey − q)D−(q) − (d ↔ u). (7.22)

Just as in the case of the other two frames, I also take only operators with meson
momenta q2

i ≤ 3 into account.

7.2.3 Interpolating Operators for b̄c̄ud with I(JP ) = 0(1+)
For the b̄c̄ud system with I(JP ) = 0(1+), the interpolating operators for the CMF are
constructed in the T+

1 irrep of group Oh. For the moving frames, we are in principle
not restricted to a single irrep, as the quantum numbers JP = 1+ are contained in the
irreps A2 and E of C4v for MF1 and in A2, B1 and B2 of C2v for MF2. I decided to
consider only the A2 irreps for both moving frames, while the other possible irreps are
not used in this work.
Following the discussion in Sec. 7.2, I take four local interpolating operators into
account, three meson-meson operators and one diquark-antidiquark operator which
are given by

O1 = 1√
VS

Aj
∑

x
b̄γju(x, t) c̄γ5d(x, t)eixP − (d ↔ u), (7.23)

O2 = 1√
VS

Aj
∑

x
b̄γ5u(x, t) c̄γjd(x, t)eixP − (d ↔ u), (7.24)

O3 = 1√
VS

Aj ϵjkl
∑

x
b̄γku(x) c̄γld(x) eixP − (d ↔ u), (7.25)

O4 = 1√
VS

Aj
∑

x
b̄aγjCc̄b,T (x, t)ua,TCγ5d

b(x, t) eixP − (d ↔ u). (7.26)

These operators can be applied for all frames and irreps by choosing the total momen-
tum P = 2πd/L and the polarization A appropriately according to

CoM: T+
1 of Oh d = (0, 0, 0)T , A = (1, 0, 0)T or (0, 1, 0)T or (0, 0, 1)T ,

MF1: A2 of C4v d = (0, 0, 1)T , A = (0, 0, 1)T ,
MF2: A2 of C2v d = (1, 1, 0)T , A = (1, 1, 0)T .

(7.27)
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Hereby, the polarization A determines the transformation behavior of the operators
and is related to the polynomials in Table 7.1. If several polarization vectors A lead
to the same transformation behavior as, e.g., for T+

1 in Eq. (7.27), I average over all
possible choices to increase the statistical precision.
The scattering operators are formulated similarly to those discussed for the I(JP ) =
0(0+) channel in Sec. 7.2.2. Here, I consider exclusively B∗D scattering operators,
while the individual meson momenta can be projected to zero or non-zero values. I
use the abbreviations

B∗+
j (q1) = 1√

VS

∑
x
b̄γju e

ip1x , D−(q2) = 1√
VS

∑
x
c̄γ5d e

ip2x . (7.28)

with j = x, y, z to formulate a B∗D scattering operator in its most general form,

OB∗D scatt(q1, q2) = B∗+
j (q1)D−(q2) − (d ↔ u). (7.29)

Note that B∗+
j , defined in Eq. (7.28), relies on the notation γx ≡ γ1, γy ≡ γ2 and

γz ≡ γ3, which allows a more consistent formulation of the scattering operators.
The final operators are again constructed by combining several terms of the expression
in Eq. (7.29) with distinct momenta p1 and p2 such that they transform according
to the desired irrep. Again, the operators are denoted by Λ(d2) to distinguish the
different frames and irreps. However, one peculiarity needs to be taken into account
for B∗D scattering in contrast to BD scattering. Since a vector meson, in this case the
B∗ meson, is involved in the scattering process, several partial waves can contribute to
the continuum quantum numbers JP = 1+ [171]. The reason for this is that the total
spin J is governed by the tensor product of the mesons’ total intrinsic spin S and the
orbital angular momentum l. For pseudoscalar-vector scattering, like B∗D scattering,
where the intrinsic spin is S = 1, the total spin J can take values J ∈ {l − 1, l, l + 1}
for l ≥ 1 [171]. Accordingly, if we couple the intrinsic spin S = 1 to the orbital angular
momentum l, we observe that both S- and D-waves can contribute to the quantum
numbers JP = 1+ [171]. This gives rise to two degenerate energy levels in the case
of non-interacting mesons. If interactions are turned on, these energy levels can be
slightly split.
For this reason, I choose an appropriate set of scattering operators that allows me to
describe also the degenerate energy levels. In practice this means that I use several
operators with exactly the same momentum projection which differ either in their
polarization or in the combination of terms given in Eq. (7.29). Consequently, the
number of scattering operators included in the operator basis equals the number of
non-interacting two-meson levels so that also the energy levels which are degenerate
in the non-interacting case are correctly rendered.

For the CMF, where the individual meson momenta obey p = 2πq/L ≡ p1 = −p2, I
consider four scattering operators in the T+

1 irrep whose individual meson momenta
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obey q2 ≤ 2 and which are given by

OT+
1 (0)

5 = B∗+
k (0)D−(0) − (d ↔ u), (7.30)

OT+
1 (0)

6 =
∑

q=±ei=x,y,z

B∗+
k (q)D−(−q) − (d ↔ u), (7.31)

OT+
1 (0)

7 =
∑

q=±ei=x,y

B∗+
z (q)D−(−q) − 2

∑
q′=±ez

B∗+
z (q ′)D−(−q ′) − (d ↔ u), (7.32)

OT+
1 (0)

8 =
∑

q=±ei±ej ,i<j

B∗+
k (q)D−(−q) − (d ↔ u). (7.33)

Note that for OT+
1 (0)

8 , I use again i, j = x, y, z with the “ordering” x < y < z. To
increase the statistical precision, I average over all three polarizations k if possible.

For the first moving frame with P = (2π/L) (0, 0, 1)T , I use six different scattering
operators constructed in the A2 irrep of group C4v with individual meson momenta
q2
i ≤ 2, according to

OA2(1)
5 = B∗+

z (0)D−(ez) − (d ↔ u), (7.34)

OA2(1)
6 = B∗+

z (ez)D−(0) − (d ↔ u), (7.35)

OA2(1)
7 =

∑
q=±ei=x,y

B∗+
z (q + ez)D−(−q) − (d ↔ u), (7.36)

OA2(1)
8 =

∑
q=±ei=x,y

B∗+
z (−q)D−(+ez + q) − (d ↔ u), (7.37)

OA2(1)
9 =

∑
i=x,y

B∗+
i (−ei)D−(ei + ez) −B∗+

i (ei)D−(−ei + ez) − (d ↔ u), (7.38)

OA2(1)
10 =

∑
i=x,y

B∗+
i (−ei + ez)D−(ei) −B∗+

i (ei + ez)D−(−ei) − (d ↔ u). (7.39)

Finally, for the second moving frame with P = (2π/L) (1, 1, 0)T , I consider four scat-
tering operators with q2

i ≤ 2 which transform according to the A2 irrep of C2v. These
operators are given by

OA2(2)
5 = B∗+

x (ex + ey)D−(0) +B∗+
y (ex + ey)D−(0) − (d ↔ u), (7.40)

OA2(2)
6 = B∗+

x (0)D−(ex + ey) +B∗+
y (0)D−(ex + ey) − (d ↔ u), (7.41)

OA2(2)
7 = B∗+

x (ey)D−(ex) +B∗+
y (ex)D−(ey) − (d ↔ u), (7.42)

OA2(2)
8 = B∗+

x (ex)D−(ey) +B∗+
y (ey)D−(ex) − (d ↔ u). (7.43)
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7.2.4 Techniques to Compute Quark Propagators and Smearing of
Quark Fields

In contrast to Sec. 6.1.4, I use point-to-all propagators to compute all correlation
matrix elements containing at least one local interpolating operator, while I consider
stochastic timeslice-to-all propagators only for those correlation matrix elements with
scattering interpolating operators at the sink and the source. Remember that for
correlations between local and scattering operators both techniques can in principle
be applied thanks to the hermiticity of the correlation matrix. However, it turns out
that it is beneficial to use only point-to-all propagators for those elements since using
stochastic timeslice-to-all propagators is numerically more expensive at comparable
signal-to-noise ratio.
For each configuration, I compute point-to-all propagators starting at 30 randomly dis-
tributed point sources. Applying stochastic timeslice-to-all propagators, I use stochas-
tic sources at 4 equally distributed timeslices and consider 3 different random seeds
for each timeslice.
All quark fields used in this calculation are Gaussian smeared as discussed in Sec. 6.1.4.
The smearing parameters for the up, down and bottom quarks are the same as listed in
Table 6.4. For the charm quarks, I use the Gaussian/Wuppertal prescription with the
smearing parameters given in Table 7.2. The gauge links that are used in the charm
quark smearing are HYP smeared, and additionally I applied spatial APE smearing,
using the same parameters as employed in Sec. 6.1.4.

Ensemble Charm quarks
NGauss κGauss

coarse 5 1.0

Table 7.2.: Smearing parameters for the charm quark-fields used in the computation of the
correlation functions. Gaussian smearing is carried out according to Eq. (4.78). The ensem-
bles are cumulated corresponding to their lattice spacing, while coarse includes a12m220S
and a12m220.

7.3 Energies and Kinetic Masses for D and D∗ Mesons
The D and D∗ meson energies are determined analogously to the pseudoscalar and vec-
tor B and Bs meson energies in Sec. 6.2 via correlated single-exponential fits to the two-
point correlation function computed from the interpolating operators in Eqs. (4.19)
and (4.20). The final energies are calculated using the FLAG average for the results
obtained for various temporal fit ranges with 7 ≤ tmin/a ≤ 9 and 17 ≤ tmax/a ≤ 20. I
depict the effective energies for zero momentum obtained on ensemble a12m220S for
the D and D∗ meson in the left plot of Fig. 7.2. The final results for the meson energies
at rest for the ensembles a12m220S and a12m220 are listed in Table 7.3. Similarly to
the case of the B and Bs mesons, whose energies do not coincide with their physical
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Figure 7.2.: Effective energies as defined in Eq. (4.6) for D and D∗ mesons at zero mo-
mentum computed on ensemble a12m220S (left) and dispersion relation for the D and D∗

mesons based on the momentum dependent meson energies aE(p) with 0 ≤ p2 ≤ 4(2π/L)2

determined on the ensembles a12m220S and a12m220 (right). The horizontal lines in the
left plot correspond to the final estimates of the mesons’ energies that have been determined
by various fits with 7 ≤ tmin/a ≤ 9 and 17 ≤ tmax/a ≤ 20.

mass due to the use of NRQCD (see Sec. 6.2), the energy levels computed via the Fer-
milab action also suffer from an energy shift which cancels in energy differences with
equal number of charm quarks. Consequently, for a scattering analysis we require the
kinetic masses of the D and D∗ mesons. They are determined by a fit of the dispersion
relation, given in Eq. (7.1), to the momentum dependent meson energies ED(p) and
ED∗(p). The final results for the kinetic masses and M4 are given in Table 7.3.
Since the ensembles a12m220S and a12m220 differ only in their spatial volume and
will be studied in a single scattering analysis, it is reasonable to determine a common
value for each kinetic mass. This is done by a fit of the dispersion relation in Eq. (7.1)
to the momentum dependent meson energies E(p) computed on both ensembles. The
resulting dispersion relations are shown in the right plot of Fig. 7.2, while the kinetic
masses and the parameters M4 that are obtained from these fits are summarized in

Ensemble aED(0) aED∗(0) amD,kin amD∗,kin aM4,D aM4,D∗

a12m220S 1.01746(47) 1.09512(67) 1.147(24) 1.267(39) 0.97(8) 1.01(12)
a12m220 1.01690(28) 1.09356(52) 1.156(25) 1.273(53) 0.93(13) 0.97(26)
a12m220co 1.01718(38) 1.09434(60) 1.172(14) 1.294(25) 1.09(9) 1.18(16)

Table 7.3.: Energies at rest, kinetic masses and parameters aM4 of the D and D∗ mesons.
The kinetic masses and the parameters aM4 are determined via a χ2-minimizing fit of the
dispersion relation in Eq. (7.1) to the momentum dependent energies ED(p) and ED∗(p).
aED(0) and aE∗

D(0) on ensemble a12m220co are obtained by averaging the associated ener-
gies from the ensembles a12m220S and a12m220.
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Table 7.3 using the ensemble specifier a12m220co. Note that for both mesons, the
parameter M1 is found to be in excellent agreement with the energies at rest, aED(0)
and aED∗(0).

7.4 Finite Volume b̄c̄ud Energy Levels
The correlation matrices for the b̄c̄ud four-quark systems with I(JP ) = 0(0+) and
I(JP ) = 0(1+) are constructed via two-point correlation functions using the interpo-
lating operators discussed in Sec. 7.2 for the three different frames with P2/(2π/L)2 =
0, 1, 2. Consequently, the resulting correlation matrices have a size of 7 × 7 for the
CMF and 9 × 9 for both moving frames in the case of b̄c̄ud with I(JP ) = 0(0+) and a
size of 8 × 8 for the CMF, 10 × 10 for MF1 and 8 × 8 for MF2 in the case of b̄c̄ud with
I(JP ) = 0(1+). The carefully selected operator bases, which contain additionally to
several local operators also all relevant scattering operators with non-vanishing mo-
menta (see Sec. 7.2), allow us to resolve the full low-lying energy spectrum precisely
up to the second elastic meson-meson threshold for both four-quark systems. This is a
crucial step which will enable us to perform a single channel scattering analysis using
Lüscher’s method to study the possible existence of b̄c̄ud tetraquark states located
close to or above the lowest two-meson threshold.
In order to compute the energy spectrum, I follow the approach that I introduced in
Sec. 6.3, which means that I solve a GEVP (see Sec. 4.3.1) and extract the energy
levels En by fitting a single-exponential function to the principal correlators λn(t, t0).
As discussed in Sec. 6.3, the temporal fit range is varied, and the results for all fit
ranges are taken into account via a weighted average according to Appendix D. The
statistical uncertainties are again determined via Jackknife resampling. This is done
by using the previously described method for each reduced Jackknife sample, while
the weight factor for a particular fit range relies on the statistical error obtained for
the corresponding fit range using all Jackknife samples. In the end, the mean value
and the associated Jackknife error specify the final estimate for each energy level.

7.4.1 Energy Spectrum for the Case of b̄c̄ud with I(JP ) = 0(0+)

To study the b̄c̄ud four-quark system with I(JP ) = 0(0+), I use the operator basis de-
fined in Sec. 7.2, which consists of the three local interpolating operators in Eqs. (7.2)
to (7.4) and the scattering operators defined according to Eqs. (7.7) to (7.20) for
the three different total momenta that are considered. I extract the low-lying en-
ergy spectrum for the CMF as well as for both moving frames by evaluating the full
squared correlation matrix. In Fig. 7.3, I show the effective energies aEeff,n accord-
ing to Eq. (4.47) for the five lowest energy eigenstates that have been determined by
solving a GEVP for the 7 × 7 correlation matrix in the CMF on ensemble a12m220S.
We observe that the effective energies for all five eigenstates are either below or in
the vicinity of the B∗D∗ threshold which represents the second relevant scattering
channel. Moreover, the ground-state energy level is found to be slightly below the BD
threshold.
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Figure 7.3.: Effective energies of the five lowest energy eigenstates for the b̄c̄ud four-quark
system with I(JP ) = 0(0+) obtained by solving a GEVP for the 7 × 7 correlation matrix of
the CMF on ensemble a12m220S.

Following the approach described in Sec. 7.4, the final estimates for the energy levels
are determined by single-exponential fits of the form of Eq. (4.46) to the principal cor-
relators λn(t, t0) in the temporal range tmin ≤ t ≤ tmax. I utilize all possible fit range
combinations with 8 ≤ tmin/a ≤ 10 and 15 ≤ tmax/a ≤ 19 for all irreps and for both
ensembles. The final results for the lowest finite volume energy levels determined on
the ensembles a12m220S (with L/a = 24) and a12m220 (with L/a = 32) are illustrated
as gray points in Fig. 7.4 for all three frames. Above each plot, the corresponding ir-
rep is denoted together with the total momentum of the frame using the abbreviation
P = 2π/L (d1, d2, d3)T ≡ [d1, d2, d3]. Note that all energies ∆Ecm,n are given in the
center-of-momentum frame relative to the BD threshold, i.e., the energy levels deter-
mined for moving frames are shifted back to the center-of-momentum frame according
to Eq. (3.8). The solid blue lines in Fig. 7.4 show the relevant non-interacting BD
energies for each irrep given by

Eni
BD = EB(p1) + ED(p2), (7.44)

where EB(p1) is governed by Eq. (4.82) and ED(p2) by Eq. (7.1) while the utilized
parameters can be found in Tables 6.6 and 7.3. The blue and green horizontal dashed
lines correspond to the BD and B∗D∗ threshold, respectively, with B∗D∗ being the
second possible scattering channel.
We observe that the energy levels ∆Ecm,n are shifted with respect to the non-interacting
BD energies which indicates the presence of non-trivial interactions. In particular, we
found for all irreps an additional energy level compared to the number expected from
counting the non-interacting BD energy levels in the same energy region. This could
be a hint for a b̄c̄ud tetraquark state which might be either a bound state slightly
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Figure 7.4.: Center-of-momentum energies ∆Ecm,n relative to the BD threshold for the b̄c̄ud
four-quark system with I(JP ) = 0(0+) in several finite volume irreps for the ensembles
a12m220S (L/a = 24) and a12m220 (L/a = 32). Above each plot, I denote the irrep and
the total momentum using the abbreviation P = 2π/L (d1, d2, d3)T ≡ [d1, d2, d3]. The solid
blue lines represent the non-interaction BD energies, while the blue and green dashed lines
correspond to the BD and B∗D∗ threshold, respectively. Energy levels depicted in light gray
are excluded from the subsequent scattering analysis.

below or a resonance above the BD threshold. Note that the shifted energy levels
contain information about the BD scattering amplitude. Consequently, utilizing the
determined energy spectra as input for a scattering analysis using Lüscher’s method
will allow us to calculate the infinite volume scattering amplitude and to draw con-
clusions about a possibly existing hadronic state. Such an analysis will be carried out
in Sec. 7.5.1.

7.4.2 Energy Spectrum for the Case of b̄c̄ud with I(JP ) = 0(1+)

The operator bases that are utilized to study the b̄c̄ud four-quark system with I(JP ) =
0(1+) consist of the four local operators given in Eqs. (7.23) to (7.26), which are
projected to the correct irrep according to Eq. (7.27), and the associated scattering
operators for the particular irrep displayed in Eqs. (7.30) to (7.43). In Fig. 7.5, I
show the five lowest effective energies aEeff,n as defined in Eq. (4.47) which have
been obtained by solving a GEVP for the 8 × 8 correlation matrix of the CMF for
ensemble a12m220S. The relevant two-meson thresholds B∗D and BD∗ are depicted
by horizontal black lines. We observe that the effective energies are well separated and
the four lowest energies are located below or around the BD∗ threshold, resembling
the second possible scattering channel, while the ground-state energy level seems to
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Figure 7.5.: Effective energies of the five lowest energy eigenstates for the b̄c̄ud four-quark
system with I(JP ) = 0(1+) obtained by solving a GEVP for the 8 × 8 correlation matrix of
the CMF on ensemble a12m220S.

be slightly below the B∗D threshold.
The final estimates for the energies En are obtained following the approach discussed
in Sec. 7.4, i.e., the principal correlators, extracted from the GEVP, are fitted by a
single-exponential according to Eq. (4.46) for various temporal ranges tmin ≤ t ≤ tmax.
In this case, I choose 9 ≤ tmin/a ≤ 11 and 15 ≤ tmax/a ≤ 19 and exploit all possible
combinations of tmin and tmax. This is repeated for both moving frames on ensemble
a12m220S as well as for all frames on ensemble a12m220. I show the final results
obtained in the T+

1 irrep of Oh for the CMF, in the A2 irrep of C4v for MF1 and in
the A2 irrep of C2v for MF2 for both lattice volumes L/a = 24 (ensemble a12m220S)
and L/a = 32 (ensemble a12m220) in Fig. 7.6 as gray points. Note that these energies
correspond to the center-of-momentum energies ∆Ecm,n governed by Eq. (3.8) relative
to the B∗D threshold, i.e., the energies obtained in the moving frames are transformed
back to the CMF. Only those energy levels that are depicted in dark gray will be
considered in the scattering analysis in Sec. 7.5.2, while light gray points will be
excluded from the analysis. Above each plot, I indicate the considered irrep as well
as the total momentum in the short notation P = 2π/L (d1, d2, d3)T ≡ [d1, d2, d3].
Similarly to Sec. 7.4.1, the solid blue lines represent the relevant non-interacting B∗D
energies for each irrep according to

Eni
B∗D = EB∗(p1) + ED(p2) (7.45)

with EB∗(p1) given by Eq. (4.82) and ED(p2) by Eq. (7.1), while the B∗D threshold
is indicated by the blue horizontal dashed line. Finally, the green horizontal dashed
line corresponds to the BD∗ threshold. As discussed in Sec. 7.2.3, some of the non-
interacting energy levels are degenerate since both S- and D-waves contribute to the
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Figure 7.6.: Center-of-momentum energies ∆Ecm,n relative to the B∗D threshold for the
b̄c̄ud four-quark system with I(JP ) = 0(1+) in several finite volume irreps for the ensembles
a12m220S (L/a = 24) and a12m220 (L/a = 32). Above each plot, I denote the irrep and
the total momentum using the abbreviation P = 2π/L (d1, d2, d3)T ≡ [d1, d2, d3]. The solid
blue lines represent the non-interaction B∗D energies, while the blue and green dashed lines
correspond to the B∗D and BD∗ threshold, respectively. Energy levels depicted in light gray
are excluded from the subsequent scattering analysis.

quantum numbers JP = 1+ for pseudoscalar-vector scattering. I indicate these degen-
erate non-interacting energy levels by {2} in Fig. 7.6.
We observe for all irreps and both spatial volumes that the finite volume energies are
shifted with respect to the non-interacting B∗D energies. Moreover, we find one ad-
ditional energy level compared to the number of non-interacting two-meson energies
in the same energy region. These findings are indications for non-trivial interactions.
Note that the degenerate non-interacting B∗D energies are correctly rendered by our
operator basis giving rise to two energy levels in the finite volume spectrum for each
degenerate non-interacting two-meson level. In the case of the CMF, we clearly rec-
ognize that one of the two energy levels is consistent with the non-interacting energy
level, while the other one is slightly shifted. Assuming that the unshifted energy level
resembles a D-wave state, we can conclude that non-trivial interactions do not appear
for l = 2. For moving frames, however, the picture is less clear. Here, we cannot clearly
identify a particular finite volume energy level that exactly matches this degenerate
non-interacting B∗D energy, but observe instead several energy levels that are close
to the non-interacting meson-meson level.
In order to further investigate the non-trivial interactions that have been deduced from
the shifted energies in the finite volume energy spectrum, a reasonable approach is to
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determine the infinite volume B∗D scattering amplitude based on the finite volume
energy levels using Lüscher’s formula as it will be done in Sec. 7.5.2. This allows us to
study if a hadronic state like a shallow bound state or a resonance exists in the b̄c̄ud
channel with I(JP ) = 0(1+).

7.5 Scattering Analysis
The finite volume energy spectra for the b̄c̄ud four-quark systems with I(JP ) = 0(0+)
and I(JP ) = 0(1+) that have been studied in Sec. 7.4 show evidence for non-trivial
interactions. However, the ground-state energy level is located close to the threshold of
strong decay in both cases, and accordingly no deeply bound states could be predicted.
Thus, the interactions might render a shallow bound state close to the threshold or a
resonance in the spectrum of scattering states. In both cases, finite volume effects play
a crucial role, which makes it mandatory to study the b̄c̄ud four-quark systems in a
scattering analysis, while I consider BD scattering for J = 0 and B∗D scattering in the
case of J = 1. This is done by exploiting Lüscher’s method to parametrize the infinite
volume scattering amplitude based on the finite volume energy levels. Here, I follow
the approach discussed in Sec. 4.6.2.1, i.e., I compute the S-wave phase shift δ0(kn) for
each finite volume energy level using the quantization condition in Eq. (3.35). Note
that the M -matrix is simplified as a consequence of the discrete lattice symmetries
as discussed in Sec. 3.2. The actual form of the M -matrix depends on the present
irrep, while all simplified M -matrices which are relevant in this section can be found
in Eqs. (3.42) and (B.14) to (B.17). If the phase shifts are computed, they will be used
to parametrize the scattering amplitude T defined by Eq. (3.36). For the two systems
of interest, where I expect an S-wave state in the vicinity or above the threshold of
strong decay, a reasonable parametrization is given by the effective range expansion
(ERE) which has been introduced in Sec. 4.6.2.1. It turned out, however, that an
ERE which is linear in k2 is not sufficient to describe the data, but a quadratic term
in k2 is required to render the phase shift adequately. Consequently, the ERE with a
quadratic term in k2, which is utilized in this section to parametrize the phase shift,
is given by

k cot
(
δ0(k)

)
= 1
a0

+ 1
2r0k

2 + b0k
4 + O(k6), (7.46)

where a0 and r0 are the well-known S-wave scattering length and effective range and
b0 is a shape parameter. In order to determine the three free parameters a0, r0 and b0,
I perform a χ2-minimizing fit of Eq. (7.46) to the phase shifts δ0(kn) that have been
determined for the finite volume energy levels En,cm. In principle, all energy levels
that have been computed on the two ensembles a12m220S and a12m220 in all three
irreps can be used to parametrize the phase shift. In practice, however, only the levels
that are indicated by dark gray points in Figs. 7.4 and 7.6 are included in the scat-
tering analyses, while energy levels indicated by light gray points are excluded. The
majority of these excluded energy levels are above or in agreement with the second
meson-meson threshold, and thus couplings to this scattering channel are likely and
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might affect such an energy level. If you wanted to include those levels, a coupled
channel scattering analysis would be required. Note that for the case of b̄c̄ud with
I(JP ) = 0(1+) I also exclude the energy levels which can be assigned to D-wave levels.
I will focus on this in more detail in Sec. 7.5.2.
As discussed in Sec. 4.2.1, each lattice irrep Λ contains an infinite number of contin-
uum spins J . In Sec. 7.2.1, I have studied which quantum numbers JP are subduced
to the particular irreps that are used to investigate the b̄c̄ud four-quark systems with
I(JP ) = 0(0+) and I(JP ) = 0(1+). In the center-of-momentum frame, where I con-
sider the A+

1 and T+
1 irreps, we observe that besides the S-wave, no partial-wave

contributions with l ≤ 2 appear. Since higher partial waves are suppressed, I assume
that all other partial-wave contributions are negligible and the resolved energy spec-
trum describes exclusively JP = 0+ and JP = 1+, respectively. For the moving frames,
however, higher partial-wave contributions can be relevant in all irreps. According to
Sec. 7.2.1, the A1 irreps of C4v and C2v, that are used to investigate the b̄c̄ud sys-
tem with JP = 0+, contain the quantum numbers JP = 1− in addition to JP = 0+.
Consequently, the energy spectrum might be a mixture of S- and P -wave states. The
situation is similar for the A2 irreps of C4v and C2v, which is taken into account to
study the b̄c̄ud system with quantum numbers JP = 1+. Here, also JP = 0− is sub-
duced to the same irreps, and accordingly we might experience P -wave admixtures in
this case, too.
In order to minimize the contributions of higher partial waves, I first perform the
scattering analyses relying only on the finite volume energy levels that have been
determined in the CMF. This guarantees that I am studying S-wave scattering ex-
clusively. In a second step, I also include the energy levels obtained from moving
frames and repeat the scattering analysis. Even though I cannot exclude that P -wave
contributions are present, this might be a first step to estimate the effect of P -wave
admixtures to the scattering amplitude.
If the phase shift and therefore the scattering amplitude T are reasonably parametrized,
I search for poles of the T -matrix in the complex energy plane. As it is unclear if a
shallow bound state or a resonance exists in the case of the b̄c̄ud four-quark systems,
I study the scattering amplitude in the full complex plane and not only, as done in
Chapter 6, on the real axis where bound states appear.

7.5.1 Scattering Analysis for the Case of b̄c̄ud with I(JP ) = 0(0+)

The b̄c̄ud four-quark system with I(JP ) = 0(0+) is studied in this chapter in BD scat-
tering. The second possible scattering channel corresponds to B∗D∗ and is located
approximately 190 MeV above the BD threshold. Thus couplings of the scattering
amplitude to B∗D∗ are negligible, and a single channel scattering analysis is sufficient.
According to Fig. 7.4, all finite volume energy levels except for E4,cm in the CMF on
ensemble a12m220S are found to be below the B∗D∗ threshold and can consequently
be taken into account for the scattering analysis. As already stated, these levels are
indicated by dark gray points, while the data points in light gray are excluded from

144



7.5. Scattering Analysis

the analysis.
In order to compute the phase shift δ0(kn) for each finite volume energy level, I ex-
ploit Lüscher’s quantization condition in Eq. (3.35). For the CMF, where the relevant
symmetry group is Oh, the M -matrix is block diagonal and given by Eq. (3.42). Ac-
cordingly, the S-wave phase shift is governed by

P = 2π
L

(0, 0, 0)T , A+
1 of Oh : cot

(
δ0(k)

)
= ω00, (7.47)

where ωlm is defined in Eq. (3.29). As discussed in Sec. 7.2.1, only the quantum num-
bers JP = 0+, 4+, . . . are subduced to the A+

1 irrep. Accordingly, higher partial waves
are negligible, and the obtained phase shift is expected to render S-wave scattering
exclusively. For the moving frames, the situation is different, as the A1 irreps of C4v
and C2v both contain the quantum numbers JP = 0+, 1−, 2+, . . . , and consequently
higher partial-wave states appear in the same irrep. This is also reflected by the shape
of the M -matrices as shown in Eqs. (B.16) and (B.18), since the matrix is in both
cases not fully diagonal. In fact, the determinant condition for the remaining 2 × 2
block, associated to the A1 irrep, mixes S- and P -wave phase shifts. As δ0 appears
solely in this equation, it is challenging to determine the S-wave phase shift reliably.
In Ref. [116], several possible strategies to extract the S-wave phase shift from the
two-dimensional determinant condition in the A1 irrep have been discussed. However,
in the absence of data that allow us to determine the phase shift δ1 explicitly, it is
not possible to utilize any of the proposed approaches. Therefore, I assume that the
P -wave phase shift is negligible in the considered energy region, i.e., δ1(k) ≈ 0. Let
me emphasize that this assumption has not been verified and further work needs to be
done to support or refute it. Neglecting P -wave contributions, the phase shift formulas
reduce to

P = 2π
L

(0, 0, 1)T , A1 of C4v : cot
(
δ0(k)

)
= ω00, (7.48)

P = 2π
L

(1, 1, 0)T , A1 of C2v : cot
(
δ0(k)

)
= ω00. (7.49)

In this section, I utilize Eqs. (7.48) and (7.49) to determine the phase shifts δ0 for the
moving frames.

Since the phase shifts extracted for the moving frames might be unreliable, as men-
tioned above, I consider only the energy levels obtained in the CMF for the main analy-
sis. The phase shifts δ0(kn) are computed via Eq. (7.47) for the scattering momenta kn
that are related to the finite volume energy levels En,cm by Eq. (3.15). Based on these
phase shifts and scattering momenta, I perform a combined χ2-minimizing fit taking
into account the 9 energy levels computed in the CMF on ensembles a12m220S and
a12m220. As a fit function, I use the quadratic ERE parametrization of k cot(δ0(k)) as
defined in Eq. (7.46). In Fig. 7.7, I present kn cot(δ0(kn)), obtained via Eq. (7.47), for
the finite volume scattering momenta kn in the CMF as blue circles and squares. The

145



Chapter 7. Investigation of b̄c̄ud Tetraquark States in BD and B∗D Scattering

−0.05 0.00 0.05 0.10 0.15 0.20

(ak)2

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75
a
k

co
t(
δ)

P = [0, 0, 0]

-0.01 -0.005 0.0

0.0

-0.05

-0.1

−
√
−(ak)2

L/a = 24
L/a = 32

Figure 7.7.: Plot of ak cot(δ0(k)) as a function of the squared scattering momentum k2 in
lattice units for BD scattering. The blue data points correspond to the phase shifts obtained
for the finite volume energy levels on the ensembles a12m220S (squares) and a12m220 (cir-
cles) in the CMF. The black curve with shaded error band represents a quadratic ERE fit
as defined in Eq. (7.46) to the data. I also depict −

√
−(ak)2 as a brown line.

shaded black line corresponds to the quadratic ERE parametrization of k cot(δ0(k)).
As we can see, the final fit describes the data excellently, which is also reflected by
the value of χ2/d.o.f. = 0.48. Note that the data obviously do not behave linearly in
k2, which is the reason why an “ordinary” ERE is not suited to parametrize the phase
shift. The final results for the S-wave scattering length a0, the S-wave effective range
r0 and the shape parameter b0 can be found in Table 7.4.
Having parametrized the phase shift and thus also the scattering amplitude according
to Eq. (3.36), I search for poles of the T -matrix in the complex energy plane. In
Fig. 7.8, I show the absolute value of the S-wave scattering amplitude |T (0)(s)| as a
function of the complex center-of-momentum energy

√
s. Accordingly, we observe four

T -matrix poles: The first is located on the real axis below the threshold, the second
is in the vicinity of the threshold with zero imaginary part, and the third and fourth
appear above the threshold with the same real part, one with positive and one with
negative imaginary energy. Let us first consider the two poles on the real axis which
seem to be candidates for bound states at first sight. Since bound states correspond
to poles of the scattering amplitude with purely imaginary scattering momentum k
and Im(k) > 0, the bound state momentum is governed by the intersection point of
−

√
−k2 with the parametrization of k cot(δ0(k)). In Fig. 7.7, I show −

√
−k2 as a

brown curve, and we can identify both intersection points. However, according to
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Figure 7.8.: S-wave scattering amplitude |T (0)(s)| for BD scattering in the plane of complex
energies. The BD threshold is depicted by the gray plane. The deeper pole below the
threshold is unphysical as discussed in the text, while the other pole corresponds probably
to the threshold scattering state. Above the threshold, a resonance pole appears off the real
axis in the second Riemann sheet, while a shoulder is found in the first Riemann sheet at
positive imaginary energy.

Eq. (6) of Ref. [213], for a bound state pole the slope of k cot(δ0(k)) must be smaller
than the slope of −

√
−k2. This is not the case for the pole well below the thresh-

old, which is therefore identified as an unphysical pole. The second pole passes the
consistency check, but is located almost directly at the threshold and consequently cor-
responds probably to the threshold scattering state but not a bound tetraquark. The
remaining two poles, however, indicate the existence of a b̄c̄ud tetraquark resonance.
One of the poles is located off the real axis with negative imaginary part in the second
Riemann sheet as expected for a resonance. The other pole, which is located at the
same real energy but has the opposite imaginary energy, corresponds to its shoulder
appearing in the first Riemann sheet. Hence, I determine the resonance parameters
from the first of the two poles and list the resonance energy Eres = Re(

√
s) −EB −ED

and the decay width Γ = −2 Im(
√
s) in Table 7.4. Note that the exact position of

a T -matrix pole in S-wave scattering might depend on the actual parametrization as
it has been observed in Ref. [214]. Hence, it will be necessary to investigate different
parametrizations in the future to estimate possible systematic uncertainties concern-
ing the T -matrix pole position.
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Ensemble 1/a0 [fm−1] r0 [fm] b0 [fm3] Eres [MeV] Γ [MeV]
a12m220co −0.19(16) 0.46(16) −0.031(8) 138(13) 229(35)

Table 7.4.: Fit results for the inverse scattering length 1/a0, the effective range r0 and the
shape parameter b0 of the quadratic ERE parametrization in Eq. (7.46) based on the CMF
finite volume energy levels for BD scattering. I also list the parameters for the potential
tetraquark resonance corresponding to a pole of the associated scattering amplitude T .

As already mentioned at the beginning of this paragraph, I repeat the same analy-
sis taking into account also the energy levels that have been obtained in the moving
frames. Accordingly, I parametrize the phase shift based on these discrete energy
levels using the quadratic ERE parametrization. In Fig. 7.9, I show the resulting fit
function together with kn cot(δ0(kn)) for the discrete scattering momenta kn. The fit
parameters are listed in Table 7.5. First, we notice that the data points are reasonably
described by the quadratic ERE which is supported by χ2/d.o.f. = 1.20 for the final
fit. Second, we observe that the fit results for the parameters are consistent with those
listed in Table 7.4. This is encouraging, as it might be an indication that only small
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Figure 7.9.: Plot of ak cot(δ0(k)) as a function of the squared scattering momentum k2 in
lattice units for BD scattering. The blue, green and red data points correspond to the phase
shifts obtained for the finite volume energy levels on the ensembles a12m220S (squares) and
a12m220 (circles) in the CMF (blue), the MF1 (green) and the MF2 (red). The black curve
with shaded error band represents a quadratic ERE fit to the data as defined in Eq. (7.46).
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7.5. Scattering Analysis

P -wave contributions appear in the considered energy region. Using the quadratic
ERE parametrization with the final choice of the free parameters in Table 7.5, I also
determine the poles of the scattering amplitude in the complex energy plane. Again,
I detect a pole above the threshold and off the real axis which could be assigned to a
tetraquark resonance. The associated resonance energy and the decay width are listed
in Table 7.5, and both are in excellent agreement with the resonance parameters found
for the case where only the CMF energy levels are considered.

Ensemble 1/a0 [fm−1] r0 [fm] b0 [fm3] Eres [MeV] Γ [MeV]
a12m220co −0.23(8) 0.54(9) −0.035(6) 137(15) 211(17)

Table 7.5.: Fit results for the inverse scattering length 1/a0, the effective range r0 and the
shape parameter b0 of the quadratic ERE parametrization in Eq. (7.46) based on the finite
volume energy levels from the CMF and moving frames for BD scattering. I also list the
parameters for the potential tetraquark resonance corresponding to a pole of the associated
scattering amplitude T .

To sum up, I discover a possible candidate for a broad b̄c̄ud resonance with quantum
numbers I(JP ) = 0(0+) that is located about 140 MeV above the BD threshold and
has a width of around 230 MeV. Note that this energy is well below the B∗D∗ thresh-
old. Consequently, I assume that a single channel scattering analysis is sufficient to
describe this potential tetraquark resonance, and couplings of the scattering amplitude
to the B∗D∗ channel are indeed negligible.

I will end with a short discussion of the left-hand cut (see Sec. 4.6.3) for BD scattering.
Here, one-pion exchange needs to be considered. Using mπ ≃ 220 MeV and ∆m =
mB −mD ≃ 3409 MeV, we find the left-hand cut branch point according to Eq. (4.97)
at

(k1π
lhc)2 ≈ 1

4(∆m2 −m2
π) ≈ (1700 MeV)2. (7.50)

In contrast, the resonance pole is located at kres ∼ (675 − 250 i) MeV. Consequently,
the left-hand cut does not affect the energy region that is considered to study BD
scattering, and the branch point does not limit decisively the radius of convergence of
the ERE.

7.5.2 Scattering Analysis for the Case of b̄c̄ud with I(JP ) = 0(1+)
In this section, I investigate the b̄c̄ud four-quark system with I(JP ) = 0(1+) in B∗D
scattering. Here, the second possible scattering channel isBD∗ which is about 100 MeV
above the B∗D threshold. Accordingly, I neglect possible couplings of the scattering
amplitude to the BD∗ channel and consider a single channel scattering process exclu-
sively. Since the energy difference between the first and second two-meson threshold
is smaller compared to the case of J = 0 discussed in the previous section, fewer fi-
nite volume energy levels appear in the energy region that can be considered for the
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Chapter 7. Investigation of b̄c̄ud Tetraquark States in BD and B∗D Scattering

single channel analysis. In Fig. 7.6, I depict those finite volume energy levels that are
included in the analysis in dark gray, while all light gray points are excluded from the
analysis. Most of them are located either above or close to the BD∗ threshold, and
thus coupling to this channel might be substantial. Additionally, I also exclude two
data points below the threshold for the case of the CMF. As discussed in Secs. 7.2.3
and 7.4.2, both S- and D-waves contribute to the quantum numbers JP = 1+ leading
to degenerate non-interacting meson-meson energy levels which are slightly split in
the interacting case. In Fig. 7.6, I have identified one of these energy levels being
identical to the non-interacting energy level for the case of CMF, and I have assumed
that it resembles a D-wave state. Accordingly, the D-wave scattering amplitude T (2)

is consistent with zero, and the mixing of l = 2 and l = 0 for J = 1 is negligible. Since
I intend to describe only the S-wave scattering amplitude, I exclude the two finite
volume energy levels that are assigned to D-wave states from the analysis. For the
moving frames, it was not possible to clearly identify such energy levels in the same
way. Hence, I refrain from excluding any additional energy levels in this case.
Following the same approach as utilized in Sec. 7.5.1, I compute the phase shifts δ0(kn)
for each finite volume energy level En using the quantization condition in Eq. (3.35)
with the M -matrices defined in Eqs. (3.42), (B.16) and (B.17). As for the CMF only
the quantum numbers JP = 1+, 3+, 4+, . . . appear in the T+

1 irrep of Oh according to
Sec. 4.2.1, I conclude that contributions of higher partial waves can be neglected, and
the quantization condition reduces to

P = 2π
L

(0, 0, 0)T , T+
1 of Oh : cot

(
δ0(k)

)
= ω00. (7.51)

For the moving frames, however, the situation is similar to the case of J = 0 in
Sec. 7.5.1. The A2 irreps of C4v and C2v both contain the quantum numbers JP =
0−, 1+, 2−, . . . , and therefore also higher partial waves appear in these irreps. Note
that the A2 irrep of C4v transforms like i or Rz and the A2 irrep of C2v like i or Rx̃, as
can be seen in Table 7.1. Hence, the mixing of S- and P -waves in the A2 irrep is again
expressed by the 2 × 2 blocks of the M -matrices in Eqs. (B.16) and (B.18). Following
the discussion in Sec. 7.5.1, I assume that the P -wave phase shift is approximately
zero in the relevant energy region, i.e., δ1(k) ≈ 0, and I consider the resulting reduced
phase shift equations given by

P = 2π
L

(0, 0, 1)T , A2 of C4v : cot
(
δ0(k)

)
= ω00 + 2ω20, (7.52)

P = 2π
L

(1, 1, 0)T , A2 of C2v : cot
(
δ0(k)

)
= ω00 − ω20 − i

√
6ω22. (7.53)

Since P -wave contributions in the moving frames might be substantial, only the finite
volume energy levels obtained in the CMF are considered for the main analysis. Here
we can reliably neglect contributions from higher excited waves. Using Eq. (7.51), I
compute the phase shifts δ0(kn) for the scattering momenta kn that are associated to
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7.5. Scattering Analysis

the five energy levels in the CMF depicted in dark gray in Fig. 7.6. Taking into account
the results obtained on both ensembles, I perform a χ2-minimizing fit of k cot(δ0(k))
using the quadratic ERE parametrization in Eq. (7.46) as the fit function. In Fig. 7.10,
I depict kn cot(δ0(kn)) for the finite volume scattering momenta kn as blue circles and
squares as well as the quadratic ERE fit function as a black shaded band. Additionally,
I also show −

√
−k2 as a brown curve. The final fit results for the S-wave scattering
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Figure 7.10.: Plot of ak cot(δ0(k)) as a function of the squared scattering momentum k2 in
lattice units for B∗D scattering. The blue data points correspond to the phase shifts ob-
tained for the finite volume energy levels on the ensembles a12m220S (squares) and a12m220
(circles) in the CMF. The black curve with shaded error band represents a quadratic ERE
fit as defined in Eq. (7.46) to the data. I also depict −

√
−(ak)2 as a brown line.

length a0, the S-wave effective range r0 and the shape parameter b0 are listed in
Table 7.6. We observe that the quadratic ERE parametrization excellently describes
the data, which is supported by the value of χ2/d.o.f. = 0.84.
In the next step, I use the final parametrization of k cot(δ0(k)) to search for poles
of the T -matrix in the complex energy plane. I display |T (0)(s)| as a function of the
complex center-of-momentum energy

√
s in Fig. 7.11. We can observe a qualitatively

similar picture as for the case of J = 0 in Fig. 7.8. Again, I detect two poles at the real
axis which are below the B∗D threshold. The lower one, however, does not fulfill the
consistency condition given in Eq. (6) of Ref. [213] as it is clearly visible in Fig. 7.10
and corresponds thus to an unphysical pole. The second pole is again almost consistent
with the threshold and can presumably be interpreted as the threshold state. Finally,
we observe a pair of poles above the threshold, one with positive and one with negative
imaginary part. I identify the pole with negative imaginary part, which is located on
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Figure 7.11.: S-wave scattering amplitude |T (0)(s)| for B∗D scattering in the plane of complex
energies. The BD threshold is depicted by the gray plane. The deeper pole below the
threshold is unphysical as discussed in the text, while the other pole corresponds probably
to the threshold scattering state. Above the threshold, a resonance pole appears off the real
axis in the second Riemann sheet, while a shoulder is found in the first Riemann sheet at
positive imaginary energy.

the second Riemann sheet, as a resonance pole, while the other pole corresponds to
its shoulder in the first Riemann sheet. The associated resonance energy Eres and
the decay width Γ are collected in Table 7.6. As already stated in Sec. 7.5.1, the
pole position might be strongly varying with the actual choice of the phase shift
parametrization [214]. In order to study possible systematic uncertainties originating
from the parametrization, it is essential to investigate also other fit functions than the
quadratic ERE parametrization in future work.

Ensemble 1/a0 [fm−1] r0 [fm] b0 [fm3] Eres [MeV] Γ [MeV]
a12m220co −0.37(17) 0.56(30) −0.081(41) 67(24) 131(32)

Table 7.6.: Fit results for the inverse scattering length 1/a0, the effective range r0 and the
shape parameter b0 of the quadratic ERE parametrization in Eq. (7.46) based on the CMF
finite volume energy levels for B∗D scattering. I also list the parameters for the potential
tetraquark resonance corresponding to a pole of the associated scattering amplitude T .
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7.5. Scattering Analysis

Finally, I repeat the same analysis including the finite volume energy levels that have
been obtained in the moving frames. In Fig. 7.12, I show the associated results for
kn cot(δ0(kn)) as a function of the squared finite volume scattering momenta k2

n as
blue, green and red circles and squares. Additionally, I depict the fit of these data
points using a quadratic ERE parametrization as a black line with shaded error band
and list the fit results in Table 7.7. There, I also present the resonance parameters cor-
responding to the pole of the associated scattering amplitude in the second Riemann
sheet of the complex plane. Even though the fit parameters as well as the resonance
energy and decay width agree fairly well with the results obtained in Table 7.6, we see
that the final fit in Fig. 7.12 does not describe the data very well, corresponding also
to a rather bad value of χ2/d.o.f. = 3.65. However, this is not completely surprising,
as we know that additional D-wave contributions appear for JP = 1+. In contrast to
the CMF, the associated energy levels could not be clearly identified and thus are still
present in the energy spectrum. Having a closer look at Fig. 7.12, it is conspicuous
that for each ensemble and moving frame exactly one data point lies below the fit func-
tion. Interestingly, we recognize that these data points correspond to the third energy
levels in the case of MF1 and to the fourth energy levels in the case of MF2. Exclud-
ing these energy levels from the fit would result in a significantly improved fit quality
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Figure 7.12.: Plot of ak cot(δ0(k)) as a function of the squared scattering momentum k2 in
lattice units for B∗D scattering. The blue, green and red data points correspond to the phase
shifts obtained for the finite volume energy levels on the ensembles a12m220S (squares) and
a12m220 (circles) in the CMF (blue), the MF1 (green) and the MF2 (red). The black curve
with shaded error band represents a quadratic ERE fit as defined in Eq. (7.46) to the data.
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Ensemble 1/a0 [fm−1] r0 [fm] b0 [fm3] Eres [MeV] Γ [MeV]
a12m220co −0.63(3) 0.59(12) −0.087(20) 62(12) 133(14)

Table 7.7.: Fit results for the inverse scattering length 1/a0, the effective range r0 and the
shape parameter b0 of the quadratic ERE parametrization in Eq. (7.46) based on the finite
volume energy levels from the CMF and moving frames for B∗D scattering. I also list the
parameters for the potential tetraquark resonance corresponding to a pole of the associated
scattering amplitude T .

(χ2/d.o.f. = 1.45). According to Fig. 7.6, however, there is no substantial reason to
exclude these data points, i.e., they do not seem to be associated to a degenerate non-
interacting energy level. Thus I refrain from continuing an analysis excluding those
energy levels. Nevertheless, we can conclude that still more work needs to be done to
consider also moving frames in the analysis of B∗D scattering. Especially a rigorous
treatment of P - and D-wave contributions is essential to reliably include the energy
levels obtained in the A2 irreps of C4v and C2v in the parametrization of the phase
shift.
Relying on the poles detected in the CMF, I found evidence for a broad b̄c̄ud reso-
nance in the I(JP ) = 0(1+) channel with a resonance energy of around 70 MeV above
the B∗D threshold and a width of approximately 130 MeV. Note that this potential
tetraquark state is located well below the BD∗ threshold so I assume that contribu-
tions of the second scattering channel can be indeed omitted.

At the end of this section, I briefly discuss possible effects of the left-hand cut. As
in the previous section, the closest branch point appears due to one-pion exchange.
Considering Eq. (4.97) with mπ ≃ 220 MeV and ∆m = mB∗ − mD ≃ 3454 MeV, we
find the left-hand cut branch point at

(k1π
lhc)2 ≈ 1

4(∆m2 −m2
π) ≈ (1725 MeV)2. (7.54)

Note that the resonance pole is located at kres ∼ (475 − 200 i) MeV. Consequently,
the left-hand cut branch point associated to one-pion exchange does not affect the
B∗D scattering, and the quadratic ERE can be applied without concerns regarding
its range of convergence.
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8

Investigation of the b̄b̄ud
Resonance Candidate with

I(JP ) = 0(1−) in BB Scattering

In this chapter, I will study the b̄b̄ud four-quark system with quantum numbers
I(JP ) = 0(1−) which is a potential candidate for a tetraquark resonance in P -wave
BB scattering. In a previous work, which relies on lattice QCD potentials and the
Born-Oppenheimer approximation, the existence of such a tetraquark resonance has
been predicted with a resonance energy of Eres ≈ 17 MeV and a decay width of
Γ ≈ 100 MeV [33]. However, a refined Born-Oppenheimer investigation based on
the same approach but including heavy quark spin effects did not find any indication
for a tetraquark resonance in this channel [34]. These results naturally rely on certain
approximations like the assumption of static heavy b quarks and cannot compete with
full lattice QCD results. So far, however, there exists no full lattice QCD study of the
b̄b̄ud four-quark system in the I(JP ) = 0(1−) channel. A rigorous investigation is quite
challenging, as a large number of BB scattering states must be resolved, while the
energy spectrum is quite dense and the second scattering channel BB∗ is separated
by only 45 MeV from the BB threshold. Therefore, I will first discuss the feasibil-
ity of such a lattice study and then illustrate an early stage lattice QCD calculation
searching for a possibly existing b̄b̄ud resonance with I(JP ) = 0(1−) in P -wave BB
scattering.
In Sec. 8.1, I begin with a preparatory investigation based on the Born-Oppenheimer
approximation. Using phase shifts that have been computed in this setup, I mimic
the input from a lattice QCD calculation and check if these data allow a reliable
parametrization of the scattering amplitude. In the following sections, I present an
exploratory lattice study of BB scattering, starting with a short introduction of the
lattice setup in Sec. 8.2. The interpolating operators that are applied to compute the
two-point correlation functions are discussed in Sec. 8.3, while I present the finite vol-
ume energy spectrum in Sec. 8.4. Finally, I discuss the strategy to perform a scattering
analysis in Sec. 8.5.
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Chapter 8. Investigation of the b̄b̄ud Resonance Candidate with I(JP ) = 0(1−)

8.1 Preparatory Investigation of BB Scattering Based on the
Born-Oppenheimer Approach

Simple P -wave resonances like the ρ meson are characterized by a phase shift δ1(s)
which exhibits a sharp rise from ≈ 0 to ≈ π in the energy region around the resonance
mass (e.g., see Refs. [167, 173, 215, 216] for phase shifts of the ρ meson). Such a pro-
nounced behavior makes it easy to identify a resonance and facilitates the parametriza-
tion of the phase shift in lattice calculations. This phase shift parametrization allows
then to determine the pole of the scattering amplitude in the second Riemann sheet,
while the real and imaginary part of the pole position correspond to the energy and
decay width of the resonance.
In the Born-Oppenheimer investigation of the b̄b̄ud resonance with I(JP ) = 0(1−)
carried out in Ref. [33], we have not observed such a sharp rise of the phase shift to
≈ π but only a gradual increase to ≈ π/4. This complicates the determination of
the resonance parameters based on the real-valued phase shift. However, in the Born-
Oppenheimer approach we are not restricted to real and discrete energies. Hence, in
Ref. [33] the scattering amplitude T (1)(s), given by Eq. (3.36), has been computed
directly for complex energies

√
s, which made it easy to identify the resonance pole.

If we now want to carry out a full QCD calculation for the b̄b̄ud system, two questions
will arise. First, is it feasible to parametrize the phase shift appropriately relying only
on the finite number of discrete real energy levels from a lattice QCD calculation?
And second, is it possible to correctly determine the pole of the scattering amplitude
based on this phase shift showing no sharp rise?
In this section, I will use phase shifts δ1(s) that are computed for a finite number of
real energies E via a Born-Oppenheimer calculation using the same setup as described
in Ref. [33]. These energies and phase shifts mimic the results which could have been
obtained from a lattice QCD calculation by computing the finite volume energy levels
and extracting the associated phase shifts using Lüscher’s method (see Chapter 3).
Using these data, I will perform a preparatory study to examine if the available phase
shifts are sufficient to parametrize the scattering amplitude. Additionally, I will check
if the analytic continuation of this scattering amplitude to the complex energy plane
yields the same T -matrix pole position as found in Ref. [33], where the T -matrix has
been directly computed as a function of the complex energy.

8.1.1 Parametrization of the Scattering Phase Shift

In order to extract an analytic expression for the scattering amplitude, we require
a reasonable parametrization that appropriately describes the phase shift δ1(s) in
dependence of the center-of-momentum energy

√
s. As discussed in Sec. 4.6.2.1, the

Breit-Wigner parametrization given in Eq. (4.90) is well-suited to describe P -wave
scattering. Note that the Breit-Wigner function corresponds to a parametrization of
k3 cot(δ1(k))/

√
s that is linear in s,

k3
√
s

cot
(
δ1(s)

)
= 6π
g2 (m2

R − s) ≡ a− bs. (8.1)
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8.1. Preparatory Investigation of BB Scattering Based on Born-Oppenheimer Setup

Here, the scattering momentum k is again related to the center-of-momentum energy√
s according to Eq. (3.15), and the free parameters of the Breit-Wigner function are

the resonance mass mR and the coupling g. A second parametrization that is suitable
to describe resonances is quadratic in the squared center-of-momentum energy s and
is consequently given by

k3
√
s

cot
(
δ1(s)

)
= a+ bs+ cs2. (8.2)

I will consider both parametrizations to describe the energy dependence of the phase
shift in the following paragraph.

8.1.2 T-Matrix Pole Based on Born-Oppenheimer Data

The Born-Oppenheimer approximation allows us to compute the phase shift δ1(s) for
arbitrary energies E. The resulting P -wave phase shift for BB scattering that has
been computed in a Born-Oppenheimer setup is depicted in Fig. 8.1 as a blue solid
line. Here, the dashed vertical line represents the BB∗ threshold while the BB thresh-
old is located at ∆E = 0. I select now 10 energies which are arbitrarily distributed
between the BB threshold and the BB∗ threshold. These energies and the associated
phase shifts represent the input data for my parametrization of the phase shift and
consequently mimic the results from a lattice QCD calculation. In Fig. 8.1, I indicate
these data points (∆En, δ1(sn)) by red dots. Note that I only consider the energy
region below the BB∗ threshold, since only energy levels in this region can be used for
a single channel scattering analysis using Lüscher’s method. If you would like to take
also higher energies into account, a coupled channel analysis would be required.
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Figure 8.1.: P -wave BB scattering phase shift δ1(s) obtained from a Born-Oppenheimer
calculation as done in Ref. [33]. The red points indicate the selected data points. Energies
are given relative to the BB threshold, i.e., ∆E =

√
s − 2mB.
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In the next step, I parametrize the phase shift by fitting a Breit-Wigner function ac-
cording to Eq. (8.1) as well as a quadratic function as given in Eq. (8.2) to the 10 data
points (∆En, δ1(sn)). In Fig. 8.2, I show k3

n cot(δ1(sn))/√sn for the discrete energy
levels ∆En obtained from the Born-Oppenheimer calculation as blue points together
with the final fit results as black shaded bands. In the left plot, the Breit-Wigner fit
is presented, and in the right plot I depict the resulting quadratic parametrization.
Note that I have introduced a small arbitrarily chosen statistical uncertainty for all
values of k3

n cot(δ1(sn))/√sn to make the Born-Oppenheimer data more realistic with
regard to lattice QCD results. This uncertainty is set to 200 MeV2 for all data points,
which corresponds to a relative error of ∼ 1%.
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Figure 8.2.: Plot of k3 cot(δ1(s))/
√

s as a function of the energy difference ∆E =
√

s − 2 mB

for BB scattering. The blue data points correspond to the phase shifts obtained by a Born-
Oppenheimer computation. The black curve with shaded error band represents a Breit-
Wigner fit according to Eq. (8.1) (left) and a quadratic fit according to Eq. (8.2) (right).

Obviously, the quadratic function describes the data almost perfectly, which is re-
flected by a value of χ2/d.o.f. = 0.00. In contrast, the Breit-Wigner parametrization
matches the data rather badly, corresponding to χ2/d.o.f. = 4.36. However, this is not
surprising as the Breit-Wigner function characterizes a narrow resonance with a sharp
rising phase shift. As visible in Fig. 8.1, this is not the case for the b̄b̄ud resonance
in the I(JP ) = 0(1−) channel, and thus an additional term which is quadratic in s is
required to adequately render the data.
In the final step, I utilize both parametrizations to determine the pole of the scat-
tering amplitude in the complex energy plane. Given knowledge of the pole position√
sPole, the resonance energy is identified as Eres = Re(√sPole) − 2mB, and the decay

width is given by Γ = −2 Im(√sPole). The results are listed for both parametriza-
tions in Table 8.1 together with the resonance parameters that have been obtained in
Ref. [33] by computing directly the T -matrix pole for complex energies. Note that the
statistical uncertainties are determined on the basis of the arbitrarily chosen errors of
k3
n cot(δ1(sn))/√sn, and therefore they should only be considered as a rough estimate

of the order of magnitude.
With regard to Table 8.1, we observe excellent agreement of the resonance parameters
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Born-Oppenheimer Breit-Wigner fit Quadratic fit
result from Ref. [33]

Eres [MeV] 17+4
−4 26(1) 19(1)

Γ [MeV] 112+90
−103 155(2) 118(1)

Table 8.1.: Resonance energy Eres and decay width Γ extracted from the pole of the scattering
amplitude T obtained in the Born-Oppenheimer calculation in Ref. [33] or computed via a
Breit-Wigner or a quadratic parametrization of k3 cot(δ1)/

√
s.

determined via the quadratic parametrization of k3 cot(δ1)/
√
s with those obtained di-

rectly from the Born-Oppenheimer computation. Moreover, also the parametrization
based on the Breit-Wigner fit, which describes the data only in a mediocre way, yields
a T -matrix pole which is comparable to the Born-Oppenheimer result. Consequently,
it should be feasible to successfully parametrize the phase shift based on precisely
computed finite volume energy levels, obtained in a full lattice QCD calculation, and
determine afterwards the pole of the scattering amplitude.
In practice, however, this is still a challenging task, as a large number of finite volume
energy levels need to be computed extremely precisely. Since the spectrum of BB
scattering states is quite dense, already small statistical fluctuations of the energies
will lead to rather strongly fluctuating values of k3

n cot(δ1(sn))/√sn. Thus, the statis-
tical uncertainties for k3

n cot(δ1(sn))/√sn are expected to be larger than those shown
in Fig. 8.2. Another difficulty is the rather small energy region that can be consid-
ered for single channel scattering, which severely restricts the number of accessible
energy levels. Nevertheless, I will focus on an exploratory lattice investigation of BB
scattering in the following paragraphs.

8.2 Lattice Setup
For the lattice calculation that will be carried out in the subsequent sections, I will
use the same setup as discussed in Sec. 6.1, i.e., I use the HISQ-MILC gauge link
configurations with a one-loop Symanzik improved Lüscher-Weisz gauge action [186].
As in Chapter 7, I consider only the two ensembles a12m220S and a12m220, which
have similar pion mass (mπ ≈ 220 MeV) and lattice spacing (a ≈ 0.12 fm) and differ
only in their spatial lattice volume. More details about the ensembles can be found
in Table 6.1.
For the light quarks, I use the Wilson-clover action as discussed in Sec. 6.1.2 with the
bare quark mass and the clover coefficient given in Table 6.2. The bottom quarks are
treated in the framework of NRQCD, and the actual choice of the matching parameters
is the same as discussed in Sec. 6.1.3.
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8.3 Interpolating Operators for the b̄b̄ud Four-Quark System
with I(JP ) = 0(1−)

For this exploratory study of the b̄b̄ud system with I(JP ) = 0(1−), I consider only scat-
tering interpolating operators and do not take local operators into account. A similar
approach has been successfully applied in Ref. [47] for S-wave DD∗ scattering. The
scattering operators that are utilized in this chapter resemble BB scattering states
with orbital angular momentum l = 1 and different meson momenta pi = 2πqi/L,
while the maximum momentum is governed by q2

i ≤ 3. As in the previous chapter,
I consider not only the center-of-momentum frame but also two moving frames with
P/(2π/L) = (0, 0, 1)T (MF1) and P/(2π/L) = (1, 1, 0)T (MF2). Consequently, I con-
struct a basis of appropriate scattering interpolating operators for each frame, while
each operator is designed such that it transforms according to the irrep Λ of the rel-
evant symmetry group containing the quantum numbers JP = 1−. In the case of the
CMF, the relevant symmetry group is still Oh, and the quantum numbers JP = 1− are
subduced to the T−

1 irrep. For the moving frames, the symmetry groups differ from
those that have been used in Chapter 7, since we study now the scattering process
of two mesons with equal masses. The relevant symmetry groups are hence given by
D4h for P/(2π/L) = (0, 0, 1)T and D2h for P/(2π/L) = (1, 1, 0)T (see Sec. 3.2). The
associated irreps that contain the quantum numbers JP = 1− are listed in Table 8.2
together with the polynomials that transform according to these irreps. For the sub-
sequent calculations, I decide to consider the A−

2 irrep of group D4h for MF1 and the
irrep B−

3 of group D2h for MF2.
In order to construct the scattering operators, I use (in analogy to Sec. 7.2.2) the
notation

B+(q1) = 1√
VS

∑
x
b̄γ5u e

ip1x , B0(q2) = 1√
VS

∑
x
b̄γ5d e

ip2x , (8.3)

d Symmetry JP = 1−

group Irreps Polynomial
(0, 0, 0)T Oh T−

1 (x, y, z)

(0, 0, 1)T D4h
A−

2 z

E− (x, y)

(1, 1, 0)T D2h

B−
1 x̃

B−
2 ỹ

B−
3 z

Table 8.2.: Irreducible representations (irreps) of the symmetry groups Oh, D4h and D2h
that contain the quantum numbers JP = 1−. Additionally, I also show polynomials that
transform according to the given irrep. For D2h, I denote the direction parallel to the boost
by x̃ ≡ x + y and the perpendicular direction by ỹ ≡ x − y.
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where p1 = 2πq1/L and p2 = 2πq2/L are the individual meson momenta. A general
BB scattering operator is then given by

OBB scatt(q1, q2) = B+(q1)B0(q2) − (d ↔ u). (8.4)

The final scattering operators for a particular irrep Λ are constructed by combining
several terms of the general expression in Eq. (8.4) with distinct meson momenta such
that the resulting operators have the desired transformation behavior. For the center-
of-momentum frame, where the individual meson momenta obey p1 = −p2, I use three
different operators with q2

i = 1, 2, 3, given by

OT−
1 (0)

1 = B+(ez)B0(−ez) −B+(−ez)B0(ez) − (d ↔ u), (8.5)

OT−
1 (0)

2 =
∑

q=±ei=x,y

B+(ez + q)B0(−ez − q) −B+(−ez + q)B0(ez − q) − (d ↔ u),

(8.6)

OT−
1 (0)

3 =
∑

q=±ex±ey

B+(ez + q)B0(−ez − q) −B+(−ez + q)B0(ez − q) − (d ↔ u).

(8.7)

Note that no operator with q2
i = 0 exists for the irrep T−

1 .
For the first moving frame with P/(2π/L) = (0, 0, 1)T , the three scattering operators
that are utilized in this chapter are

OA−
2 (1)

1 = B+(ez)B0(0) −B+(0)B0(ez) − (d ↔ u), (8.8)

OA−
2 (1)

2 =
∑

q=±ei=x,y

B+(ez + q)B0(−q) −B+(q)B0(ez − q) − (d ↔ u), (8.9)

OA−
2 (1)

3 =
∑

q=±ex±ey

B+(ez + q)B0(−q) −B+(q)B0(ez − q) − (d ↔ u). (8.10)

As already discussed, these operators are constructed such that they transform ac-
cording to the A−

2 irrep of group D4h.
Finally, I use two scattering operators for the second moving frame with P/(2π/L) =
(1, 1, 0)T . These operators are constructed in the B−

3 irrep of D2h and are given by

OB−
3 (2)

1 = B+(ex + ey)B0(0) −B+(0)B0(ex + ey) − (d ↔ u), (8.11)

OB−
3 (2)

2 =
∑

q=±ez

B+(ex + ey + q)B0(−q) −B+(q)B0(ex + ey − q) − (d ↔ u).

(8.12)

Using these operators, the correlation matrix is determined independently for each
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frame. The associated two-point correlation functions are computed using stochastic
timeslice-to-all propagators with spin and color dilution and exploiting the one-end-
trick. On each configuration, I use stochastic timeslice sources at 4 equally distributed
random timeslices with 3 different random seeds for each timeslice.
All quark fields that appear in the operators in Eqs. (8.5) to (8.12) are Gaussian
smeared to improve the overlap with the low-lying energy spectrum as discussed in
Sec. 6.1.4. The smearing parameters that are used for the up, down and bottom
quarks are the same as listed in Table 6.4. For the light quark smearing I use HYP
and APE smeared gauge links as presented in Sec. 6.1.4, while the gauge links used in
the smearing of the bottom quarks are unsmeared.

8.4 Finite Volume Energy Levels for b̄b̄ud with I(JP ) = 0(1−)

The finite volume energy spectrum for the b̄b̄ud system with I(JP ) = 0(1−) is de-
termined following the same approach as discussed in Sec. 6.3. Using the scattering
operators given in Eqs. (8.5) to (8.12), I compute the associated two-point corre-
lation functions and determine the correlation matrices for all three frames. For
the CMF, the correlation matrix has a size of 3 × 3, for the first moving frame
with P/(2π/L) = (0, 0, 1)T a size of 3 × 3 and for the second moving frame with
P/(2π/L) = (1, 1, 0)T a size of 2 × 2. The finite volume energy levels are extracted by
solving a GEVP and performing single-exponential fits to the obtained principal cor-
relators λn(t, t0) according to Eq. (4.46). As pointed out in Sec. 6.3, various temporal
fit ranges are taken into account, and the final result is determined via a weighted
average over all fit ranges using the FLAG method (see Appendix D). Additionally,
statistical uncertainties are estimated by Jackknife resampling.
As in the previous chapters, the extracted energies do not correspond to the actual
physical masses but are shifted due to the use of the NRQCD action (see Sec. 6.2).
However, this shift cancels in energy differences with equal number of bottom quarks.
Thus, I consider again only the energy differences to the BB threshold. The energies
of the pseudoscalar and vector B mesons as well as their kinetic masses, which would
be needed for a scattering analysis, have already been determined in Sec. 6.2. The
actual values can be found in Tables 6.5 and 6.6.
The finite volume energy levels that have been computed on the ensembles a12m220S
and a12m220 are shown in Fig. 8.3 as gray points for the CMF as well as for both
moving frames. Above each plot I list the associated irrep and the total momentum
of the frame in the short notation P = 2π/L(d1, d2, d3)T = [d1, d2, d3]. The energy
differences ∆Ecm,n relative to the BB threshold are given in the center-of-momentum
frame, which means that the energies that are computed in a moving frame are shifted
back to the CMF according to Eq. (3.8). The solid blue lines in Fig. 8.3 indicate the
relevant non-interacting BB energies according to

Eni
BB = EB(p1) + EB(p2), (8.13)
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Figure 8.3.: Center-of-momentum energies ∆Ecm,n relative to the BB threshold for the b̄b̄ud
four-quark system with I(JP ) = 0(1−) in several finite volume irreps for the ensembles
a12m220S (L/a = 24) and a12m220 (L/a = 32). Above each plot, I denote the irrep and
the total momentum using the abbreviation P = 2π/L (d1, d2, d3)T ≡ [d1, d2, d3]. The solid
blue lines represent the non-interaction BB energies, while the blue and green dashed lines
correspond to the BB and BB∗ threshold, respectively.

where EB(p) is governed by Eq. (4.82). The blue and green horizontal dashed lines rep-
resent the BB and BB∗ threshold, respectively. Note that only energy levels ∆En,cm
that are located well below the BB∗ threshold are suited as input for a single channel
scattering analysis. For energy levels above the BB∗ threshold, couplings to this chan-
nel might be significant, and a coupled channel scattering analysis would be required
to incorporate also these levels in the analysis.
We observe in Fig. 8.3 that for each ensemble and irrep only one or two energy lev-
els are located below the BB∗ threshold. This is a consequence of the rather small
energy difference between the BB and BB∗ thresholds. Consequently, the total num-
ber of energy levels that could be used in a single channel scattering analysis is quite
small even if both ensembles and all three irreps are taken into account. Additionally,
most of the energy levels below the BB∗ threshold are consistent with the associated
non-interacting energy levels. Only the lowest energy level obtained on the ensemble
a12m220S seems to be slightly shifted with respect to the non-interacting BB spec-
trum. Therefore, I have not found a clear evidence for non-trivial interactions which
would be represented by a considerably shifted energy spectrum. However, I can-
not exclude with certainty the presence of such non-trivial interactions either, since
there are too few levels per ensemble and irrep and too large statistical uncertainties.
Consequently, it is unclear if energy shifts originate from non-trivial interactions or
appear only due to statistical fluctuations. For this reason, I refrain from performing
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a scattering analysis relying on the finite volume energies En,cm in Fig. 8.3. These
results would not allow us to make reliable statements about the possible existence
of a P -wave tetraquark resonance in BB scattering. Nevertheless, I will present the
essential steps for a single channel scattering analysis in the following section.

8.5 Strategy for Performing a Scattering Analysis for the b̄b̄ud
channel with I(JP ) = 0(1−)

Finite volume energy levels like those extracted in the previous section render in-
formation about the infinite volume scattering amplitude. Following the approach
presented in Sec. 4.6.2.1, one can compute the phase shifts δ1(sn) for each lattice en-
ergy level En and determine a reasonable parametrization for cot(δ1). As discussed in
Sec. 4.6.2.1 and Sec. 8.1.1, the Breit-Wigner function according to Eq. (8.1) provides a
suitable description of P -wave resonances and is therefore appropriate to parametrize
k3 cot(δ1)/

√
s for the present system. Additionally, also a quadratic parametrization

as given in Eq. (8.2) is a reasonable choice.
The phase shift δ1(sn) for each energy level En is obtained from the quantization con-
dition in Eq. (3.35) using the explicit form of the M -matrix given in Eqs. (3.42), (B.14)
and (B.15) for the relevant symmetry group. Let us have a short look on the mixing
of different quantum numbers for the irreps of interest. According to Table 4.2, the
T−

1 irrep of Oh contains the quantum numbers JP = 1−, 3−, 4−, . . . , so additionally
to the P -wave states only states with l ≥ 3 appear. The situation is similar for the
irrep A−

2 of D4h which also contains JP = 1−, 3−, 4−, . . . (see Table 4.4). For the last
moving frame, the quantum numbers JP = 1−, 2−, 3−, . . . are subduced to the irrep
B−

3 of D2h. Note, however, that again no D-wave BB states can appear in this irrep
since such a state would have the wrong parity. In particular, we find for all three
frames no mixing of S- and P -waves. This is also reflected by the block-diagonal form
of the M -matrices in Eqs. (3.42), (B.14) and (B.15). As contributions from higher
partial waves are suppressed, I neglect all contributions with l ≥ 2. For the center-
of-momentum frame where the symmetry group is Oh, the quantization condition for
the T−

1 irrep can be derived from Eq. (3.42) and is given by Eq. (3.44),

P = 2π
L

(0, 0, 0)T , T−
1 of Oh : cot

(
δ1(s)

)
= ω00, (8.14)

where ωlm is defined in Eq. (3.29). For the moving frame with P/(2π/L) = (0, 0, 1)T ,
I consider the A−

2 irrep of group D4h which transforms according to Table 8.2 like z.
Relying on the M -matrix for the group D4h in Eq. (B.14), the associated quantization
condition is governed by

P = 2π
L

(0, 0, 1)T , A−
2 of D4h : cot

(
δ1(s)

)
= ω00 + 2ω20. (8.15)

Finally, for the moving frame with P/(2π/L) = (1, 1, 0)T , the relevant symmetry
group is D2h with the reduced M -matrix given in Eq. (B.15). Here, I consider the
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irrep B−
3 which transforms according to Table 8.2 like z. Consequently, it follows that

the quantization condition is given by

P = 2π
L

(1, 1, 0)T , B−
3 of D2h : cot

(
δ1(s)

)
= ω00 + 2ω20. (8.16)

Finally, if the phase shifts were computed, one would proceed in a similar manner
to Sec. 7.5, and k3 cot(δ1)/

√
s would be parametrized using the Breit-Wigner or the

quadratic function. Using this parametrization, one would search for poles of the scat-
tering amplitude T (1) given by Eq. (3.36) in the complex energy plane. As already
stated at the end of Sec. 8.4, I refrain from performing a scattering analysis, as the
finite volume energy levels are not sufficiently precise for such an analysis. Here, fur-
ther work needs to be done to provide an energy spectrum that enables us to perform
a rigorous scattering analysis and makes it possible to draw reliable conclusions about
the potentially existing b̄b̄ud tetraquark resonance in the I(JP ) = 0(1−) channel. Us-
ing the same gauge link configurations, a possible approach to improving the energy
spectrum might be to include also local interpolating operators. Additionally, one
could also think about performing a coupled channel scattering analysis with BB∗

as the second scattering channel. This would enlarge the relevant energy region and
increase the number of accessible energy levels significantly. Of course this would re-
quire further BB scattering operators with higher meson momenta and additionally
BB∗ scattering operators with back-to-back momenta.

Let me conclude with a short discussion of the left-hand cut for this system. The
left-hand cut branch point for one-pion exchange is found according to Eq. (4.97) at

(k1π
lhc)2 ≈ 1

4(∆m2 −m2
π) ≈ −(110 MeV)2, (8.17)

where I use ∆m = mB − mB = 0 MeV and mπ ≃ 220 MeV. Accordingly, the branch
point is located in the complex energy plane on the real axis at about 3 MeV below the
BB threshold. Hence, for a rigorous analysis of P -wave BB scattering also the effects
of the left-hand cut originating from one-pion exchange must be taken into account.
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9
Conclusions

In this thesis, I investigated several four-quark systems Q̄Q̄′qq′ with at least one heavy
anti-bottom quark using lattice QCD. In particular, I searched for the existence of
hadronically stable states in the b̄b̄ud system with I(JP ) = 0(1+), the b̄b̄us system
with JP = 1+ and the b̄c̄ud systems with I(JP ) = 0(0+) and I(JP ) = 0(1+). For
all systems, I performed lattice QCD calculations using two different lattice setups to
compute the low-lying energy spectrum. Expanding on previous studies on heavy-light
tetraquarks, where only local operators were considered [35, 36, 38–43], I additionally
included scattering operators. In the first lattice setup, I employed scattering opera-
tors only at the sink, while in the second setup scattering operators were considered
at the sink and the source. Moreover, using the latter setup, I searched for a P -wave
resonance in BB scattering, corresponding to a b̄b̄ud tetraquark with I(JP ) = 0(1−).
Throughout this work I treated the bottom quarks in the framework of NRQCD.
Since most tetraquarks are either resonances above or bound states close to the thresh-
old of strong decay, finite volume effects usually play a crucial role. Therefore, one
major objective of this work has been to perform a Lüscher analysis [22] for each four-
quark system to study potential finite volume effects in the relevant meson-meson
scattering processes. This allows me to determine the infinite volume binding energies
for stable tetraquarks or even the mass and decay width of tetraquark resonances.

Before discussing the findings of this thesis in detail, let me start with a brief overview
of the results obtained for the doubly-heavy tetraquark systems under investigation:

• For the b̄b̄ud four-quark system with I(JP ) = 0(1+), I found a deeply bound
tetraquark state. The energy of the ground state, calculated in Chapter 6, agrees
with the result found in a previous work of our collaboration in Refs. [37, 92],
which was summarized in Chapter 5.

• Similar results were obtained for the b̄b̄us system with JP = 1+ for which
also a stable tetraquark was predicted, being slightly less bound than the b̄b̄ud
tetraquark (see Chapters 5 and 6).

• For the b̄c̄ud four-quark systems with (JP ) = 0(0+) and (JP ) = 0(1+), I did not
find evidence for a deeply bound state (see Chapter 5), but a scattering analysis,
carried out in Chapter 7, indicates the existence of a broad tetraquark resonance
for both channels.
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• In the case of the b̄b̄ud four-quark system with I(JP ) = 0(1−), neither could the
existence of a narrow resonance been confirmed, nor could it be excluded with
certainty (see Chapter 8).

The results on the b̄b̄ud four-quark system with I(JP ) = 0(1+) and the b̄b̄us four-quark
system with JP = 1+ revealed that scattering operators are mandatory to reliably re-
solve the ground-state energy level and higher excitations. However, only if scattering
operators were included at the sink and the source I was able to precisely extract the
complete low-lying energy spectrum.
In the case of b̄b̄ud, the finite volume ground-state energy has been found in both stud-
ies well below the threshold of strong decay. Performing a Lüscher analysis afterwards
for both setups, the infinite volume binding energies were determined. However, they
have been found to be essentially identical to the finite volume ground-state energies,
which might be an indication that couplings of the ground state to the BB∗ threshold
are weak and thus finite volume effects are small. After carrying out a chiral extrapo-
lation in both studies and additionally considering the continuum limit in Chapter 6,
the final binding energies were found to be −128(24)(10) MeV (see Chapter 5) and
−101(11)(25) MeV (see Chapter 6). Obviously, both results are consistent within un-
certainties and confirm the existence of a hadronically stable b̄b̄ud tetraquark.
In Fig. 9.1, I compare the b̄b̄ud binding energies presented in this thesis with the results
previously obtained in other calculations. Further lattice QCD studies using NRQCD
for the heavy b̄ quarks [35, 36, 38–40] are colored in blue, while results that are based
on lattice QCD potentials and the Born-Oppenheimer approximation [28, 29, 32] are
indicated in red. Finally, I also depict the results obtained from quark models, effec-
tive field theories or QCD sum rules [25, 27, 196, 198, 205–209, 212, 217–230] in green.
We observe that the results of this work are consistent with most of the previous lat-
tice QCD calculations which utilized only local operators. A potential source for the
deviation from the results of Ref. [35] might be that they used ratios of correlation
functions to determine the ground-state energy with the consequence that the plateau
for the effective energies is approached from below. This method can be problem-
atic as for a dense spectrum (like in the case of BB∗) fake plateaus can appear for
small temporal separations [231]. In Ref. [38], where also a significantly lower binding
energy was found, the light quark mass was tuned differently for local meson-meson
and diquark-antidiquark operators which could be the reason for the discrepancy with
regard to our results.
The calculations based on static b̄b̄ potentials yield significantly smaller binding en-
ergies compared to full lattice QCD computations. This might be caused by the
approximations of the Born-Oppenheimer approach where, for instance, contributions
of 1/mb to the potential were neglected. Finally, the non-lattice binding energies vary
widely between ∼ 20 MeV to ∼ 400 MeV below the BB∗ threshold, but all results
agree qualitatively that a bound tetraquark state exists.
For the b̄b̄us system, I also found in both setups a finite volume ground-state energy
below the threshold of strong decay. Studying finite volume effects in this channel is,
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Figure 9.1.: Comparison of the results for the binding energies of the b̄b̄ud tetraquark with
I(JP ) = 0(1+). Black: results presented in this work, Result Chapter 5 refers to our
publication Ref. [37]; blue: previous lattice QCD calculations using NRQCD [35,36,38–40];
red: lattice QCD potentials and the Born-Oppenheimer approximation [28, 29, 32]; green:
quark models, effective field theories or QCD sum rules [25,27,196,198,205–209,212,217–230].

however, more challenging and requires a coupled channel scattering analysis, as the
two lowest meson-meson thresholds are barely separated. It turned out that this is
only feasible if scattering operators are fully included. Otherwise excited states, which
are crucial for a scattering analysis, cannot be sufficiently resolved. Accordingly, in
Chapter 5, a scattering analysis was not possible. Therefore I relied exclusively on
the finite volume ground-state energies and extrapolated them to the physical pion
mass, yielding a binding energy of −86(22)(10) MeV. In Chapter 6, where the relevant
low-lying energy spectrum could be resolved, I performed a coupled channel Lüscher
analysis to calculate the infinite volume binding energies but found them to be essen-
tially identical to the finite volume ground-state energies. Carrying out afterwards a
chiral extrapolation and considering the continuum limit, the final binding energy of
−28(5)(10) MeV was determined.
In Fig. 9.2, I depict both b̄b̄us binding energies together with results from previous
lattice QCD calculations [35,36,40] and non-lattice approaches like quark models, phe-
nomenological considerations, or QCD sum rules [27, 196, 200, 205, 208–212, 217, 223,
224,227,228,232–234]. While the binding energy obtained in Chapter 5, labeled with
a black diamond, agrees well with the results of Refs. [35, 36], we observe that these
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three energies deviate from the results obtained in Chapter 6 and Ref. [40]. Never-
theless, all lattice QCD results agree about the existence of a stable b̄b̄us tetraquark
with a binding energy of around ∼ 30 MeV to ∼ 80 MeV below the threshold of strong
decay. This coincides with the vast majority of non-lattice calculations, predicting
also a bound state, although the associated results for the binding energies vary again
widely.
Even though this work provides a significant improvement compared to previous stud-
ies by including scattering operators, some open questions remain. The discrepancies
of the binding energies for the b̄b̄ud and in particular the b̄b̄us system found in my
studies could not be fully resolved. They might be rooted in the different tuning of the
matching coefficients in the NRQCD action. Therefore, it would be desirable to study
the dependence of the binding energy on the matching coefficients in more detail. Fur-
thermore, the presence of a left-hand cut branch point in the relevant energy region
of both systems, which was omitted in my investigations, challenges the reliability of
the scattering analysis. Possible approaches to deal with this issue might be to use a
parametrization like the Padé approximation [175, 176, 194], which can be considered
beyond the range of convergence, or to study the systems in a three-particle scattering
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Figure 9.2.: Comparison of the results for the binding energies of the b̄b̄us tetraquark with
JP = 1+. Black: results obtained in this work, Result Chapter 5 refers to our publication
Ref. [24]; blue: previous lattice QCD calculations using NRQCD [35, 36, 40]; green: quark
models, effective field theories or QCD sum rules [27,196,200,205,208–212,217,223,224,227,
228,232–234].
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process [235–237]. However, in order to rigorously implement the one-particle ex-
change, which gives rise to the left-hand cut branch point, new theoretical formalisms
need to be developed [177,178].

The b̄c̄ud systems with I(JP ) = 0(0+) and I(JP ) = 0(1+) were studied in Chapters 5
and 7. In Chapter 5, where I utilized local operators and scattering operators at the
sink, I neither found evidence for a stable tetraquark, nor could I exclude the exis-
tence of a shallow bound state or a resonance. Thus, I investigated both b̄c̄ud channels
in Chapter 7 considering BD and B∗D scattering, respectively. While similar local
operators were utilized, the number of scattering operators was enlarged by including
several BD or B∗D operators with non-zero momenta, which allows us to resolve a
large spectrum of energy levels. To increase the number of finite volume energies even
further, I also considered moving frames, but excluded them from the main analysis
due to potential admixtures of higher partial waves. Even though the ground-state
energy levels are located again in the vicinity of the threshold of strong decay, an ad-
ditional energy level compared to the number of non-interacting two-meson energies
was found in the finite volume b̄c̄ud energy spectra, indicating non-trivial interactions.
Performing a single channel Lüscher analysis, I found for both systems a T -matrix pole
in the second Riemann sheet, which indicates the existence of a broad b̄c̄ud tetraquark
resonance.
The results of both studies are consistent, showing a ground-state energy level close
to the threshold. This excludes the existence of a deeply bound state. Additionally,
the results in Chapter 5 do not allow conclusions to be drawn about the existence of a
shallow bound state or a resonance, since excited energy levels could not be resolved
due to the lack of a suitable and fully included set of scattering operators. Thus, the
observation of the potential resonance in Chapter 7 does not contradict the results of
Chapter 5. Moreover, my findings also agree with the results of Ref. [42], where no
evidence for a deeply bound four-quark state was found either. In contrast to that,
in Ref. [43] a b̄c̄ud bound state with I(JP ) = 0(1+) was predicted about 20 MeV to
40 MeV below the B∗D threshold. Note, however, that this computation was carried
out at quite large pion masses of around 500 MeV and finite volume effects were not
taken into account then. The potentially large impact of finite volume effects in the
b̄c̄ud sector was experienced in Refs. [41,42], where a b̄c̄ud bound state first had been
predicted for a rather small spatial volume [41] but was revoked later when larger
volumes were taken into account [42]. Note that also non-lattice approaches do not
show a conclusive picture about the existence of a hadronically stable b̄c̄ud state, as
some studies predict a bound state [196–207] while others rule it out [27,208–212].
The observation of non-trivial interactions in Chapter 7, indicating the existence of a
resonance, might help to clarify the still inconclusive picture for the b̄c̄ud systems: A
ground-state energy level, found slightly below the threshold of strong decay, does not
necessarily have to be a bound state, but can also be explained by a shifted energy
spectrum, originating from non-trivial interactions and indicating the presence of a res-
onance. Consequently, for a reliable statement about the nature of the ground state,
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it is crucial to rigorously study finite volume effects in the b̄c̄ud systems by performing
a scattering analysis, as done in this work. This emphasizes also the importance of
a well-suited operator basis that allows a precise determination of the low-lying finite
volume energy spectrum.
For future investigations, it is advisable to focus on a more sophisticated scattering
analysis. In particular, a rigorous consideration of moving frames is desirable, as
this will provide additional finite volume energy levels for the parametrization of the
scattering amplitude. However, this requires considering also relevant contributions
of higher partial waves complicating the scattering formalism. In addition, further
parametrizations of the scattering amplitude should be taken into account to investi-
gate whether the resonance pole is independent of the actual parametrization. More-
over, neither have the results been extrapolated to the physical pion mass, nor have
lattice discretization effects been studied. Even though I do not expect that the qual-
itative result, i.e., the detection of a resonance pole, will change drastically, the actual
pole position might vary slightly due to the previously mentioned aspects.

Finally, in Chapter 8 I studied the b̄b̄ud four-quark system with I(JP ) = 0(1−), which
is, according to Ref. [33], a potential candidate for a tetraquark resonance. In a
preparatory investigation I considered a small number of discrete energy levels and as-
sociated phase shifts obtained from a Born-Oppenheimer calculation, which mimics the
finite volume energy spectrum from a full lattice QCD computation. Based on these
data, I concluded that in principle it should be possible to successfully parametrize
the phase shift of the potentially existing P -wave b̄b̄ud resonance. In an early stage
lattice QCD study of P -wave BB scattering, however, I have not found evidence for
non-trivial interactions in this channel. This could be an indication that the resonance
does not exist for physical bottom quark masses as already stated in Ref. [34]. Never-
theless, I could not exclude either with certainty the existence of a narrow resonance
based on the lattice data. For a better understanding of this channel, further rigorous
lattice QCD studies are needed. In particular, local operators should be considered
to obtain a larger operator basis. Furthermore, it might be beneficial to study this
system in coupled BB and BB∗ scattering. This would enlarge the accessible energy
region, so that the number of finite volume energy levels increases significantly. More-
over, also potential couplings to the BB∗ channel, which have been neglected so far in
the single channel scattering analysis, would be incorporated. Note that additionally
the left-hand cut is relevant for this system. This makes a rigorous implementation of
one-pion exchange indispensable for reliable statements about the existence or non-
existence of a b̄b̄ud resonance with I(JP ) = 0(1−).

To summarize, I experienced that lattice QCD provides an excellent framework to
study tetraquarks. Especially antiheavy-antiheavy four-quark systems in the bottom
sector, which are promising candidates for strong-interaction stable states, are well
accessible with current lattice QCD techniques. Hereby, Lüscher’s method is of par-
ticular importance since it provides a matured tool that allows the examination of
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finite volume effects appearing due to the finite spatial size of the lattice, and it even
enables us to study resonances based on the discrete spectrum of finite volume energy
states. Relying on these techniques, I have successfully predicted hadronically stable
tetraquark states in the b̄b̄ud and b̄b̄us sector and pointed out the possible existence
of broad tetraquark resonances for b̄c̄ud four-quark systems. These results may serve
as valuable input for future experimental search for tetraquarks in the doubly-heavy
sector. The encouraging observation of the doubly charmed tetraquark Tcc by the
LHCb collaboration [20,21] reveals the unabated experimental efforts to discover fur-
ther exotic hadrons. Accordingly, theoretical predictions like those made in this thesis
can help nascent experimental searches for tetraquark states in the bottom-bottom
and bottom-charm sectors [238].
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Appendix A
Conventions

• I use natural units, i.e., ℏ = c = 1.

• Throughout this work I use bold italic symbols x = (x1, x2, x3) to express
three-dimensional vectors. Four-dimensional space-time vectors are given by
x = (x, t).

• I use Greek and Latin letters as indices, while Greek indices µ, ν, . . . run from
0, . . . , 3 and Latin indices i, j, . . . run from 1, . . . , 3.

• Einsteins sum convention is applied, i.e., if an index appears twice, it is summed
over all allowed values, unless otherwise stated.

• All lattice calculations are carried out in Euclidean space.

• The Euclidean gamma matrices that are used in this work are defined as

γ0 =
σ0 0

0 −σ0

 , γj =
 0 −iσj
iσj 0

 , γ5 = γ0γ1γ2γ3

 0 σ0

σ0 0

 , (A.1)

where σj are the Pauli matrices and I defined σ0 = 12×2 for convenience.

• For calculations in Minkowski space, I use the gamma matrices

γ̂0 =
σ0 0

0 −σ0

 , γ̂j =
 0 σj

−σj 0

 , γ̂5 = iγ̂0γ̂1γ̂2γ̂3

 0 σ0

σ0 0

 , (A.2)

which are indicated by a hat to distinguish them from the Euclidean gamma
matrices.

• In order to compute derivatives on the lattice, I use the following expressions:

∇µ ψ(x) = 1
2a

(
Uµ(x)ψ(x+ µ̂) − U−µ ψ(x− µ̂)

)
,

∇(2)
µ ψ(x) = 1

a2

(
Uµ(x)ψ(x+ µ̂) − 2ψ(x) + U−µ ψ(x− µ̂)

)
,

∆(2) ψ(x) = 1
a2

3∑
j=1

(
Uj(x)ψ(x+ ȷ̂) − 2ψ(x) + U−j ψ(x− ȷ̂)

)
.

(A.3)
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Appendix A. Conventions

All derivatives are symmetrized using a combination of forward and backward
derivatives. Note that these are unimproved versions of the derivatives whose
discretization errors are of order O(a2). This is sufficiently precise for most
applications and used in this work if not otherwise stated.
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Appendix B
Group Theoretical Background

of Symmetry Considerations
B.1 Basics of Representation Theory
In this section, I give a brief summary of group theoretical methods necessary to in-
corporate the discrete symmetries of the lattice in our theory. For a more elaborated
treatment of the group theoretical backgrounds, I refer to Refs. [118,239]. In the sub-
sequent paragraph, I will illustrate some basic quantities originating from group theory
by the example of the group G = C3v. This is the symmetry group of an equilateral
triangle if all transformations that lead out of the triangle plane are neglected. This
group has only six elements R̂: the identity I, the two rotations by 2/3π (C3) and
4/3π (C2

3) around the z-axis and the reflections at the planes which are spanned by
the z-axis and the three angle bisectors (σ(1)

v , σ(2)
v , σ(3)

v ). In short, the group elements
can be written as G = C3v : R̂ ∈ {I, C3, C

2
3 , σ

(1)
v , σ(2)

v , σ(3)
v }. It can easily be shown

that these elements fulfill the group axioms. The total number of elements in a group
G is called order g. Obviously, the order of C3v is g = 6.
Two elements R̂, Ŝ ∈ G are called conjugated to each other if there exists an element
X̂ ∈ G, so that

X̂−1R̂X̂ = Ŝ, (B.1)
with X̂ ̸= R̂. The set of all elements R(i) and S(i) that are conjugated to each other
form a class Ki according to

X̂−1R̂(i)X = Ŝ(i), X̂ ∈ G, R̂(i), Ŝ(i) ∈ Ki. (B.2)

The number of elements in a class is labeled by gi while the sum over all gi is equal
to g [239]. Note that gi is also a divisor of g. In the case of the group C3v one finds
three classes,

K1 = {E}, g1 = 1,
K2 = {C3, C

2
3}, g2 = 2,

K3 = {σ(1)
v , σ(2)

v , σ(3)
v }, g3 = 3.

(B.3)
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We call Γ the representation of a group G if it projects the group G onto a matrix group
Γ. Each element R̂ ∈ G is represented by a square matrix Γ(R̂) while the product of
two elements R̂, Ŝ ∈ G is given by the matrix product Γ(R̂) Γ(Ŝ). A representation
Γ(R̂) is called reducible if there exists a transformation Γ′(R̂) = M−1Γ(R̂)M so that
for each R̂ ∈ G, Γ′(R̂) is block-diagonal according to

Γ′(R̂) =


Γ(Λ1)(R̂) 0 0 . . .

0 Γ(Λ2)(R̂) 0
0 0 Γ(Λ3)(R̂)
... . . .

 . (B.4)

If the Γ(Λ)(R̂) are not anymore reducible, they are called irreducible representations,
which are simply named as Λ ≡ Γ(Λ), and Γ can be expressed as

Γ =
∑
Λ
aΛΛ, (B.5)

where aΛ is the multiplicity of Λ and specifies how often the associated irreducible
representation appears in Γ. The number of irreducible representation nIR is according
to the 1. Burnside theorem equal to the number of classes nK [239]. The 2. Burnside
theorem [239] determines the dimensions of the irreps dΛ according to∑

Λ
d2

Λ = g. (B.6)

Consequently, for the case of C3v there exist three irreps, Λ ∈ {A1, A2, E} while one
(E) is two-dimensional.
In addition to that, we define the character χ(R̂) of an element R̂ as the trace over
the representation Γ(R̂),

χ(R̂) = Tr[Γ(R̂)]. (B.7)
All elements of the same class have the same character, so we can write χ(Ki) instead
of χ(R̂). In a character table, all characters χ(Λ)(Ki) for the irrep Λ are collected
for all classes Ki. These tables are available in literature (e.g., see Ref. [239]). The
reduction of an arbitrary representation Γ to the irreps is governed by the reduction
formula [239]

aΛ = 1
g

·
nK∑
i=1

gi · χ(Λ)(Ki) · χ(Ki), (B.8)

which allows us to determine the prefactors aΛ that appear in Eq. (B.5). Here, χ(Ki)
can be determined from the representation of Γ via Eq. (B.7), χ(Λ)(Ki) can be taken
from a character table, and gi is the number of elements in the class Ki.
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B.2 Decomposition of the Rotational Group into Irreducible
Representations

As a consequence of the discretized space-time lattice, the continuous rotational sym-
metry is reduced to the symmetry of the group G which contains all transformations
that leave the mesh Pd in Eq. (3.10) invariant. From this follows that the representa-
tions Γ(l) of the orthogonal group O(3) are decomposed into the irreducible representa-
tions of the group G as discussed in Sec. 3.2. Here, I will carry out the decomposition
into the irreps for the group Oh in detail, while I will also summarize the results for
the groups D4h, D2h, C4v and C2v. Note that the representations Γ(l) describe the
transformation behavior of two spin-less particles (with same parity) with orbital an-
gular momentum l, i.e., the total spin J equals the orbital angular momentum l. The
associated parity counterpart with same spin can be easily obtained by considering
the opposite transformation behavior with respect to inversions.
In order to determine the decomposition into the irreps, I first consider the transfor-
mation behavior of the spherical harmonics Ylm under transformations R̂ ∈ G and
determine the associated representation matrix Γ(l)(R̂). The spherical harmonics Ylm
are listed in Table B.1 for l ≤ 2 in Cartesian coordinates. Afterwards, the characters

Ylm(x, y, z) l = 0 l = 1 l = 2
m = −2

√
15

32π (x− iy)2

m = −1
√

3
8π (x− iy)

√
15
8πz(x− iy)

m = 0
√

1
4π

√
3

4πz
√

5
16π (3z2 − 1)

m = 1 −
√

3
8π (x+ iy) −

√
15
8πz(x+ iy)

m = 2
√

15
32π (x+ iy)2

Table B.1.: Spherical harmonics Ylm(x, y, z) for l = 0, 1, 2 in Cartesian coordinates.

χ(Ki) are computed for each class according to Eq. (B.7). Finally, the decomposition
into the irreps is determined using Eq. (B.8) and the character table given in Table B.2.

To obtain the decomposition of Γ(0), we consider the transformation behavior of
Y00(x, y, z) with respect to R̂ ∈ G. Obviously, Y00 is invariant with respect to all
transformations, i.e., Γ(0)(R̂) = 1 and consequently χ(R̂) = 1 for all R̂. Applying
Eq. (B.8), we find that aA+

1
= 1 and aΛ = 0 for all other irreps. Therefore, we obtain

the decomposition into irreps as Γ(0) = A+
1 .

To obtain the irreps for Γ(1), one requires the transformation behavior of Y1m(x, y, z)
with respect to R̂ ∈ G. For each class of transformations Ki, I have investigated one
specific transformation R̂ ∈ Ki and have determined the associated character χ(R̂).
As all elements of one class have the same character, this is sufficient to determine
the irreps. In Table B.3, I list the transformation behavior of Y1m(x, y, z) as well as
the representations Γ(R̂) and the characters χ(R̂). Using the characters listed in Ta-
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Oh I 6C4 3C2
4 = 3C2 8C ′

3 6C ′′
2 i 3σh 6σd 8S6 6S4

A+
1 1 1 1 1 1 1 1 1 1 1

A+
2 1 -1 1 1 -1 1 1 -1 1 -1

A−
1 1 1 1 1 1 -1 -1 -1 -1 -1

A−
2 1 -1 1 1 -1 -1 -1 1 -1 1

E+ 2 0 2 -1 0 2 2 0 -1 0
E− 2 0 2 -1 0 -2 -2 0 1 0
T+

1 3 1 -1 0 -1 3 -1 -1 0 1
T+

2 3 -1 -1 0 1 3 -1 1 0 -1
T−

1 3 1 -1 0 -1 -3 1 1 0 -1
T−

2 3 -1 -1 0 1 -3 1 -1 0 1

Table B.2.: Character table for Oh.

ble B.3 and the character table given in Table B.2, the prefactors aΛ are according
to Eq. (B.8) found as aT−

1
= 1 and aΛ = 0 for all others. The same approach can be

repeated for higher l and finally yields

Γ(0) = A+
1 ,

Γ(1) = T−
1 ,

Γ(2) = E+ ⊕ T+
2 ,

Γ(3) = T−
1 ⊕ T−

2 ⊕ A−
2 ,

Γ(4) = A+
1 ⊕ T+

1 ⊕ T+
2 ⊕ E+.

(B.9)

Repeating the procedure for the symmetry groups G ∈ {D4h, D2h, C4v, C2v} while
using the associated symmetry transformations R̂ ∈ G, the resulting decomposition of
Γ(l) up to l = 4 is given by:
D4h :

Γ(0) = A+
1 ,

Γ(1) = A−
2 ⊕ E−,

Γ(2) = A+
1 ⊕ B+

1 ⊕ B+
2 ⊕ E+,

Γ(3) = A−
2 ⊕ B−

1 ⊕ B−
2 ⊕ 2E−,

Γ(4) = 2A+
1 ⊕ A+

2 ⊕ B+
1 ⊕ B+

2 ⊕ 2E+.

(B.10)
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D2h :
Γ(0) = A+,

Γ(1) = B−
1 ⊕ B−

2 ⊕ B−
3 ,

Γ(2) = 2A+ ⊕ B+
1 ⊕ B+

2 ⊕ B+
3 ,

Γ(3) = A− ⊕ 2B−
1 ⊕ 2B−

2 ⊕ 2B−
3 ,

Γ(4) = 3A+ ⊕ 2B+
1 ⊕ 2B+

2 ⊕ 2B+
3 .

(B.11)

C4v :
Γ(0) = A1,

Γ(1) = A1 ⊕ E,

Γ(2) = A1 ⊕ B1 ⊕ B2 ⊕ E,

Γ(3) = A1 ⊕ B1 ⊕ B2 ⊕ 2E,
Γ(4) = 2A1⊕ , A2 ⊕ B1 ⊕ B2 ⊕ 2E.

(B.12)

C2v :
Γ(0) = A1,

Γ(1) = A1 ⊕ B1 ⊕ B2,

Γ(2) = 2A1 ⊕ A2 ⊕ B1 ⊕ B2,

Γ(3) = 2A1 ⊕ A2 ⊕ 2B1 ⊕ 2B2,

Γ(4) = 3A1 ⊕ 2A2 ⊕ 2B1 ⊕ 2B2.

(B.13)

If the parity is inverted, the associated decomposition for Oh, D4h and D2h is obtained
by replacing + with − and vice versa for all irreps. For C4v and C2v, the parity
counterparts are obtained by interchanging the irreps A1 and A2.

B.3 Simplification of M-Matrix due to Group Symmetries
The M -matrix given in Eq. (3.28) can be simplified by considering the transforma-
tion behavior of the zeta function Zlm(s; q2) as stated in Eq. (3.40) with respect to
the present symmetry group. In the following, I briefly mention the relevant symme-
try properties and specify the resulting simplified M -matrices for the four symmetry
groups D4h, D2h, C4v and C2v.

B.3.1 Group D4h

For the tetragonal group D4h, we observe that all Zlm(s; q2) with odd l vanish since
inversion is an element of the symmetry group. Additionally, also Z2±1(s; q2) and
Z2±2(s; q2) are found to vanish due to the symmetry transformations C2 and C4.
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Consequently, the M -matrix is simplified to

M = Md
lm,l′m′ =


00 10 11 1 − 1

00 w00 0 0 0
10 0 w00 + 2w20 0 0
11 0 0 w00 − w20 0
1 − 1 0 0 0 w00 − w20

. (B.14)

B.3.2 Group D2h

The symmetry group D2h also contains inversion and the rotational transformation
C2, which is why Zlm(s; q2) for odd l and Z2±1(s; q2) vanish. Apart from that, no
other simplifications are possible, and the final form of the M -matrix is given by

M = Md
lm,l′m′ =


00 10 11 1 − 1

00 w00 0 0 0
10 0 w00 + 2w20 0 0
11 0 0 w00 − w20 −

√
6w2−2

1 − 1 0 0 −
√

6w22 w00 − w20

. (B.15)

B.3.3 Group C4v

Since inversion is no element of the group C4v, we observe also terms with odd l in
the associated M -matrix. However, as C2 and C4 are elements of C4v, the terms
Z1±1(s; q2), Z2±1(s; q2) and Z2±2(s; q2) vanish, which yields

M = Md
lm,l′m′ =


00 10 11 1 − 1

00 w00 i
√

3w10 0 0
10 −i

√
3w10 w00 + 2w20 0 0

11 0 0 w00 − w20 0
1 − 1 0 0 0 w00 − w20

. (B.16)

B.3.4 Group C2v

For the group C2v, the reflection at the plane perpendicular to the z-axis leads to the
fact that Z10(s; q2) and Z2±1(s; q2) vanish. Consequently, we obtain for the M -matrix

M = Md
lm,l′m′ =


00 10 11 1 − 1

00 w00 0 i
√

3w11 i
√

3w1−1
10 0 w00 + 2w20 0 0
11 i

√
3w1−1 0 w00 − w20 −

√
6w2−2

1 − 1 i
√

3w11 0 −
√

6w22 w00 − w20

. (B.17)

Note that this matrix can be further block-diagonalized if one performs a basis transfor-
mation governed by u1 = 1/

√
2 (−iY11+Y1−1) ∝ (x−y) and u2 = 1/

√
2 (Y11−iY1−1) ∝

(x + y). These new basis vectors coincide with the symmetry axes of C2v which are
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parallel (∝ (x + y)) and perpendicular (∝ (x − y)) to the direction of the Lorentz
boost. The block-diagonalized M -matrix is then given by

MB =



Y00 Y10
−iY11+Y1−1√

s
Y11−iY1−1√

2

Y00 w00 0 0 i
√

6w11
Y10 0 w00 + 2w20 0 0
−iY11+Y1−1√

s
0 0 w00 − w20 + i

√
6w22 0

Y11−iY1−1√
2 −

√
6w11 0 0 w00 − w20 − i

√
6w22

.
(B.18)
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Ki Trafo R̂ Y10 Y1±1 Γ(1)(R̂) χ(R̂)

I
(x, y, z)

→ (x, y, z) Y10 Y1±1


1 0 0
0 1 0
0 0 1

 3

C4

(x, y, z)
→

(y,−x, z)
Y10 ∓iY1±1


1 0 0
0 −i 0
0 0 +i

 1

C2

(x, y, z)
→

(−x,−y, z)
Y10 −Y1±1


1 0 0
0 −1 0
0 0 −1

 -1

C ′
3

(x, y, z)
→

(−y,−z, x)
1√
2 (Y1−1 − Y11)

∓ i
2 (Y1−1 + Y11)

+ i√
2Y10


0 1√

2 − 1√
2

i√
2 − i

2 − i
2

i√
2

i
2

i
2

 0

C ′′
2

(x, y, z)
→

(−x, z, y)
i√
2 (Y1−1 + Y11)

±1
2 (Y1−1 − Y11)

− i√
2Y10


0 i√

2
i√
2

− i√
2 −1

2
1
2

− i√
2

1
2 −1

2

 -1

i
(x, y, z)

→
(−x,−y,−z)

−Y10 −Y1±1


−1 0 0
0 −1 0
0 0 −1

 -3

σh

(x, y, z)
→

(x, y,−z)
−Y10 Y1±1


−1 0 0
0 1 0
0 0 1

 1

σd
(x, y, z)

→ (x, z, y)
i√
2 (Y1−1 + Y11)

∓1
2 (Y1−1 − Y11)

− i√
2Y10


0 i√

2
i√
2

− i√
2

1
2 −1

2

− i√
2 −1

2
1
2

 1

S6

(x, y, z)
→

(z,−x, y)
i√
2 (Y1−1 + Y11)

i
2 (Y1−1 − Y11)

∓ 1√
2Y10


0 i√

2
i√
2

− 1√
2 − i

2
i
2

1√
2 − i

2
i
2

 0

S4

(x, y, z)
→

(y,−x, z)
−Y10 ∓iY1±1


−1 0 0
0 −i 0
0 0 +i

 -1

Table B.3.: Transformation behavior of Y1m under the transformations R̂ ∈ Oh, representa-
tions Γ(1)(R̂) and characters χ(1)(R̂) for one element of each class Ki of group Oh.

184



Appendix C
Correlation Functions for

Four-Quark Operators
The two-point correlation functions for four-quark systems are computed analogously
to the correlation function for a meson as discussed in Sec. 4.2.2. The only difference
is that each operator contains four instead of two quark fields, which adds additional
terms in the correlation functions. In order to compute the full correlation matrix, a
large number of correlation functions, equaling the number of interpolating operators
squared, is required. However, it is not necessary to derive the final contracted ex-
pression for each element independently but one can combine the derivation of several
elements which are similar in their structure. In this section, I will illustrate how to
calculate an analytic expression for the correlation matrix elements for the case of
b̄b̄ud. This can be easily transferred to the cases of b̄b̄us and b̄c̄ud.
The correlation matrix elements Cjk can be classified in two ways: In the first case,

I distinguish whether a local or a scattering operator is at the sink and at the source

C11 C12 C13 C14 C15

C21 C22 C23 C24 C25

C31 C32 C33 C34 C35

C41 C42 C43 C44 C45

C51 C52 C53 C54 C55

C11 C12 C13 C14 C15

C21 C22 C23 C24 C25

C31 C32 C33 C34 C35

C41 C42 C43 C44 C45

C51 C52 C53 C54 C55

meson-meson operator at sink
meson-meson operator at source

diquark-antidiquark operator at sink
meson-meson operator at source

meson-meson operator at sink
diquark-antidiquark operator at source

diquark-antidiquark operator at sink
diquark-antidiquark operator at source

local operator at sink
local operator at source

scattering operator at sink
local operator at source

local operator at sink
scattering operator at source

scattering operator at sink
scattering operator at source

Table C.1.: Classification of correlation matrix elements for the case of b̄b̄ud. Distinguish-
ing between meson-meson and diquark-antidiquark operator at sink and source (left) and
distinguishing between local and scattering operator at sink and source (right).
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yielding four different classifications as illustrated in the right part of Table C.1. This
distinction is useful to decide which method is used to compute the quark propa-
gators for a specific correlation matrix element. I will cover this more detailed in
Appendix C.2. The second classification distinguishes whether a meson-meson or a
diquark-antidiquark operator is at the source and at the sink as shown in the left
part of Table C.1. This is the required classification to simplify the derivation of the
analytic expression for the correlation matrix elements.

C.1 Derivation of Correlation Matrix Elements
Relying on the distinction between meson-meson and diquark-antidiquark operators,
I distinguish four different types of correlation matrix elements. For each type of
correlation functions, I derive in the following a generic analytic expression that allows
us to compute all matrix elements that are assigned to this type.

C.1.1 Type I Correlation Matrix Elements

The first type corresponds to the correlation function ⟨Oi(t)O†
j(0)⟩ where Oi and Oj

are meson-meson operators, i.e., i, j ∈ {1, 2, 4, 5}. The associated operator can be
written in a generic form as

Oi(t) = 1
VS

∑
x,y

b̄Γ(i)
1 u(x, t) b̄Γ(i)

2 d(y, t) − b̄Γ(i)
1 d(x, t) b̄Γ

(i)
2 u(y, t), (C.1)

where the Gamma matrices can be read of from Eqs. (4.21) to (4.25). A differentiation
between local and non-local operators can be easily done after the calculation as the
local operators are obtained formally by replacing the spatial sum over y by a volume
factor

√
VS and identifying y = x. For the Gamma matrices of the daggered operator

O†
j I will use the abbreviation Γ(j)′ = γ0Γ(j)†γ0. Note that I omit expectation values

over the gauge fields throughout this chapter, as these are incorporated by averaging
over different gauge field configurations. Consequently, the type I correlation matrix
elements are found to be

CI(t) =
〈

Oi(t)O†
j(0)

〉
= 1
V 2
S

∑
x,y,z,u

〈 [
b̄Γ(i)

1 u(x, t) b̄Γ(i)
2 d(y, t) − b̄Γ(i)

1 d(x, t) b̄Γ
(i)
2 u(y, t)

]
×
[
ūΓ(j)′

1 b(z, 0) d̄Γ(j)′
2 b(u, 0) − d̄Γ(j)′

1 b(z, 0) ūΓ(j)′
2 b(u, 0)

] 〉
F
.

(C.2)

For the sake of briefness, I omit space-time arguments from now on, as they are directly
related to color indices according to

(x, t) ↔ a, (y, t) ↔ b, (z, 0) ↔ a′, (u, 0) ↔ b′. (C.3)
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Introducing index notation, we obtain

= 1
V 2
S

∑
x,y,z,u

Γ(i)
1ABΓ(i)

2CDΓ(j)′
1A′B′Γ(j)′

2C′D′

×
〈
b̄aAu

a
B b̄

b
Cd

b
D ū

a′

A′ba
′

B′ d̄b
′

C′bb
′

D′ − b̄aAu
a
B b̄

b
Cd

b
D d̄

a′

A′ba
′

B′ ūb
′

C′bb
′

D′

−b̄aAdaB b̄bCubD ūa
′

A′ba
′

B′ d̄b
′

C′bb
′

D′ + b̄aAd
a
B b̄

b
Cu

b
D d̄

a′

A′ba
′

B′ ūb
′

C′bb
′

D′

〉
F

, (C.4)

which can be contracted using Wick’s theorem in Eq. (2.20), yielding

= 1
V 2
S

∑
x,y,z,u

Γ(i)
1ABΓ(i)

2CDΓ(j)′
1A′B′Γ(j)′

2C′D′

(
Bb′a
D′AB

a′b
B′C −Ba′a

B′AB
b′b
D′C

)
×
(
−Uaa′

BA′ Dbb′

DC′ − Uab′

BC′ Dba′

DA′ − U ba′

DA′ Dab′

BC′ − U bb′

DC′ Daa′

BA′

)
.

(C.5)

Since I do not distinguish between u and d quarks in my lattice computations, i.e.,
full SU(2) isospin symmetry is assumed, I identify D = U and obtain

= 2
V 2
S

∑
x,y,z,u

Γ(i)
1ABΓ(i)

2CDΓ(j)′
1A′B′Γ(j)′

2C′D′

×
(
Bb′a
D′AB

a′b
B′C −Ba′a

B′AB
b′b
D′C

) (
−Uaa′

BA′ U bb′

DC′ − Uab′

BC′ U ba′

DA′

)
.

(C.6)

This can be rewritten in terms of traces by exploiting the structure of color and
Dirac indices. Reestablishing also space-time arguments and using γ5-hermiticity, the
correlation matrix element of type I reads

= 2
V 2
S

∑
x,y,z,u

Tr
[
U(x;u) Γ(j)′

2 γ5 B
†(y;u) γ5 Γ(i)

2 U(y; z) Γ(j)′
1 γ5 B

†(x; z) γ5 Γ(i)
1

]

+Tr
[
U(x; z) Γ(j)′

1 γ5 B
†(x; z) γ5 Γ(i)

1

]
Tr
[
U(y;u) Γ(j)′

2 γ5 B
†(y;u) γ5 Γ(i)

2

]
−Tr

[
U(x;u) Γ(j)′

2 γ5 B
†(x;u) γ5 Γ(i)

1

]
Tr
[
U(y; z) Γ(j)′

1 γ5 B
†(y; z) γ5 Γ(i)

2

]
−Tr

[
U(x; z) Γ(j)′

1 γ5 B
†(y; z) γ5 Γ(i)

2 U(y;u) Γ(j)′
2 γ5 B

†(x;u) γ5 Γ(i)
1

]
.

(C.7)

C.1.2 Type II Correlation Matrix Elements

The second type of correlation functions covers matrix elements with a meson-meson
operator at the source and the diquark-antidiquark operator in Eq. (4.23) at the sink.
Using the generic meson-meson operator as defined in Eq. (C.1), the correlation func-
tion is given as

CII(t) =
〈

O2(t)O†
j(0)

〉
= 2
V

3/2
S

∑
x,z,u

〈 [
b̄aΓ(2)

1 b̄b,T (x)ua,TΓ(2)
2 db(x)

]
×
[
ūΓ(j)′

1 b(z, 0) d̄Γ(j)′
2 b(u, 0) − d̄Γ(j)′

1 b(z, 0) ūΓ(j)′
2 b(u, 0)

] 〉
F
.

(C.8)
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Note that I use Γ(2)
1 = γjC and Γ(2)

2 = Cγ5 for the sake of briefness and will omit the T
indicating a transposed quark field. Additionally, I employ that the second term in O2
is equal to the first, which can be seen by interchanging both the light and heavy quark
fields, renaming the indices and using the relations Γ(2)

1AB = Γ(2)
1BA and Γ(2)

2AB = −Γ(2)
2BA.

Finally, as the diquark-antidiquark operator is always a local operator, no spatial sum
over y appears. The correlation function is written as

= 2
V

3/2
S

∑
x,z,u

Γ(2)
1ABΓ(2)

2CDΓ(j)′
1A′B′Γ(j)′

2C′D′

×
〈
b̄aAb̄

b
B u

a
Cd

b
D ū

a′

A′ba
′

B′ d̄b
′

C′bb
′

D′ − b̄aAb̄
b
B u

a
Cd

b
D d̄

a′

A′ba
′

B′ ūb
′

C′bb
′

D′

〉
F

= 2
V

3/2
S

∑
x,z,u

Γ(2)
1ABΓ(2)

2CDΓ(j)′
1A′B′Γ(j)′

2C′D′

×
(
Bb′a
D′AB

a′b
B′B −Ba′a

B′AB
b′b
D′B

) (
Uaa′

CA′ U bb′

DC′ + Uab′

CC′ U ba′

DA′

)
.

(C.9)

This can be further simplified considering the second half of the expression given by

Γ(2)
1ABΓ(2)

2CDΓ(j)′
1A′B′Γ(j)′

2C′D′

(
Bb′a
D′AB

a′b
B′B −Ba′a

B′AB
b′b
D′B

)
Uab′

CC′ U ba′

DA′ . (C.10)

Interchanging the color indices a ↔ b as well as the Dirac indices A ↔ B and C ↔ D
we obtain

Γ(2)
1BAΓ(2)

2DCΓ(j)′
1A′B′Γ(j)′

2C′D′

(
Bb′b
D′B B

a′a
B′A −Ba′b

B′B B
b′a
D′A

)
U bb′

DC′ Uaa′

CA′

= − Γ(2)
1ABΓ(2)

2CDΓ(j)′
1A′B′Γ(j)′

2C′D′

(
Bb′b
D′B B

a′a
B′A −Ba′b

B′B B
b′a
D′A

)
U bb′

DC′ Uaa′

CA′ ,
(C.11)

which is identical to the first half of of the expression. Consequently, using once again
Γ(2)

1AB = Γ(2)
1BA and Γ(2)

2AB = −Γ(2)
2BA and reestablishing space-time arguments, we write

= 4
V

3/2
S

∑
x,z,u

Γ(2)
1ABΓ(2)

2CDΓ(j)′
1A′B′Γ(j)′

2C′D′

×
(
Bb′a
D′AB

a′b
B′B −Ba′a

B′AB
b′b
D′B

)
Uaa′

CA′ U bb′

DC′

= 4
V

3/2
S

∑
x,z,u

[
U(x; z) Γ(j)′

1 γ5B
†(x; z)γ5 Γ(2)

1

]ab
CA

[
Γ(2)

2 U(x;u) Γ(j)′
2 γ5B

†(x;u)γ5
]ba
CA

−
[
U(x; z) Γ(j)′

1 γ5B
†(x; z)γ5 Γ(2)

1

]aa
CB

[
Γ(2)

2 U(x;u) Γ(j)′
2 γ5B

†(x;u)γ5
]bb
CB

,

(C.12)

C.1.3 Type III Correlation Matrix Elements

The third type of correlation matrix elements involves the diquark-antidiquark oper-
ator in Eq. (4.23) at the source and a meson-meson-operator according to Eq. (C.1)
at the sink. The proceeding is quite similar to the case of type II correlation matrix
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elements and yields for the correlation function

CIII(t) =
〈

Oi(t)O†
2(0)

〉
= 2

V
3/2
S

∑
x,y,z

〈 [
b̄Γ(i)

1 u(x, t) b̄Γ(i)
2 d(y, t) − b̄Γ(i)

1 d(x, t) b̄Γ
(i)
2 u(y, t)

]
× d̄a

′Γ(2)′
2 ūb

′,T (z, 0) ba′,TΓ(2)′
1 bb

′(z, 0)
〉
F

(C.13)

= 2
V

3/2
S

∑
x,y,z

Γ(i)
1ABΓ(i)

2CDΓ(2)′
1C′D′Γ(2)′

2A′B′

×
〈
b̄aAu

a
B b̄

b
Cd

b
D d̄

a′

A′ūb
′

B′ ba
′

C′bb
′

D′ − b̄aAd
a
B b̄

b
Cu

b
D d̄

a′

A′ūb
′

B′ ba
′

C′bb
′

D′

〉
F

= 2
V

3/2
S

∑
x,y,z

Γ(i)
1ABΓ(i)

2CDΓ(2)′
1C′D′Γ(2)′

2A′B′

×
(
Bb′a
D′AB

a′b
C′C −Ba′a

C′AB
b′b
D′C

) (
−Uab′

BB′ U ba′

DA′ − U bb′

DB′ Uaa′

BA′

)
= − 4

V
3/2
S

∑
x,y,u

Γ(i)
1ABΓ(i)

2CDΓ(2)′
1C′D′Γ(2)′

2A′B′

×
(
Bb′a
D′AB

a′b
C′C −Ba′a

C′AB
b′b
D′C

)
Uab′

BB′ U ba′

DA′

= 4
V

3/2
S

∑
x,y,z

[
Γ(2)′

1 γ5B
†(x; z)γ5 Γ(i)

1 U(x; z)
]bb
CB

[
γ5B

†(y; z)γ5 Γ(i)
2 U(y; z) Γ(2)′

2

]aa
CB

−
[
Γ(2)′

1 γ5B
†(x; z)γ5 Γ(i)

1 U(x; z)
]ab
DB

[
γ5B

†(y; z)γ5 Γ(i)
2 U(y; z) Γ(2)′

2

]ba
DB

.

(C.14)

C.1.4 Type IV Correlation Matrix Elements

Finally, I consider the correlation matrix element with a diquark-antidiquark operator
both at sink and source. Here, the correlation function is

CIV(t) =
〈

O2(t) O†
2(0)

〉
= 4
VS

∑
x,z

〈 [
b̄aΓ(2)

1 b̄b,T (x)ua,TΓ(2)
2 db(x)

] [
d̄a

′Γ(2)′
2 ūb

′,T (z, 0) ba′,TΓ(2)′
1 bb

′(z, 0)
] 〉

F

= 4
VS

∑
x,z

Γ(2)
1ABΓ(2)

2CDΓ(2)′
1C′D′Γ(2)′

2A′B′

〈
b̄aAb̄

b
B u

a
Cd

b
D d̄

a′

A′ūb
′

B′ ba
′

C′bb
′

D′

〉
F

= 4
VS

∑
x,z

Γ(2)
1ABΓ(2)

2CDΓ(2)′
1C′D′Γ(2)′

2A′B′

(
Bb′a
D′AB

a′b
C′B −Ba′a

C′AB
b′b
D′B

)
Uab′

CB′ U ba′

DA′

= 4
VS

∑
x,z

[
Γ(2)′

1 γ5B
†(x; z)γ5Γ(2)

1

]b′a

C′B

[
U(x; z)

]ab′

CB′

[
Γ(2)

2 D(x; z)Γ(2)′
2

]ba′

CB′

[
γ5B(x; z)γ5

]a′b

C′B

−
[
Γ(2)′

1 γ5B
†(x; z)γ5Γ(2)

1

]a′a

D′B

[
U(x; z)

]ab′

CB′

[
Γ(2)

2 D(x; z)Γ(2)′
2

]ba′

CB′

[
γ5B(x; z)γ5

]b′b

D′B
.

(C.15)
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C.2 Quark Propagator Types for Correlation Matrix
Elements

Here, I will show which type of quark propagator is used for numerically computing
each correlation matrix element. In contrast to the previous section where I distinguish
between meson-meson and diquark-antidiquark operators, an appropriate classification
for this case are local and scattering operators as illustrated in the right part of Ta-
ble C.1. As the type I correlation matrix elements cover all four different combinations
of local and scattering operators at sink and source, I will use the correlation function
in Eq. (C.7) to depict which quark propagator is used for which correlation matrix
element. The four different correlation functions are labeled as Cαβ = ⟨Oα(t)O†

β(0)⟩
with α, β ∈ {l, s} where l indicates a local and s a scattering operator.
Correlation functions with a local operator at the source, i.e., Cll and Csl utilize point-
to-all propagators. Expressing the solutions ϕ(f)a

A(x)[b, B, y] in a matrix-like shape

ϕ(f)a
A(x)[b, B, y] = F ab

AB(x; y), (C.16)

we can stick to the representation of the correlation function in matrix form but keep
in mind that each column of F (x; y) corresponds to one solution ϕ(f)(x). For the
correlation matrix element Cll, this results in

Cll(t) =2
∑

x
Tr
[
U(x; z) Γ(j)′

2 γ5 B
†(x; z) γ5 Γ(i)

2 U(x; z) Γ(j)′
1 γ5 B

†(x; z) γ5 Γ(i)
1

]
+Tr

[
U(x; z) Γ(j)′

1 γ5 B
†(x; z) γ5 Γ(i)

1

]
Tr
[
U(x; z) Γ(j)′

2 γ5 B
†(x; z) γ5 Γ(i)

2

]
−Tr

[
U(x; z) Γ(j)′

2 γ5 B
†(x; z) γ5 Γ(i)

1

]
Tr
[
U(x; z) Γ(j)′

1 γ5 B
†(x; z) γ5 Γ(i)

2

]
−Tr

[
U(x; z) Γ(j)′

1 γ5 B
†(x; z) γ5 Γ(i)

2 U(x; z) Γ(j)′
2 γ5 B

†(x; z) γ5 Γ(i)
1

]
(C.17)

where the sum over z is replaced by a volume factor VS due to the use of point-to-all
propagators. Similarly, for Csl one obtains

Csl(t) = 2√
VS

∑
x,y

Tr
[
U(x; z) Γ(j)′

2 γ5 B
†(y; z) γ5 Γ(i)

2 U(y; z) Γ(j)′
1 γ5 B

†(x; z) γ5 Γ(i)
1

]

+Tr
[
U(x; z) Γ(j)′

1 γ5 B
†(x; z) γ5 Γ(i)

1

]
Tr
[
U(y; z) Γ(j)′

2 γ5 B
†(y; z) γ5 Γ(i)

2

]
−Tr

[
U(x; z) Γ(j)′

2 γ5 B
†(x; z) γ5 Γ(i)

1

]
Tr
[
U(y; z) Γ(j)′

1 γ5 B
†(y; z) γ5 Γ(i)

2

]
−Tr

[
U(x; z) Γ(j)′

1 γ5 B
†(y; z) γ5 Γ(i)

2 U(y; z) Γ(j)′
2 γ5 B

†(x; z) γ5 Γ(i)
1

]
.

(C.18)
For the remaining two correlation matrix elements Cls and Css, which have a scattering
operator at the source, I apply stochastic timeslice-to-all propagators using the one-
end-trick and spin and color dilution. In analogy to the case of point-to-all propagators,
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C.2. Quark Propagator Types for Correlation Matrix Elements

I write the solutions ϕ(f)b
B(y)[t0, C, c, r] in a matrix-like shape as

ϕ(f)a
A(x)[t0, B, b, r] = Fab

AB(x)[t0, r], (C.19)

which allows us again to keep the matrix structure of the correlation function. Using
this, we end up with

Cls = 2
V

3/2
S

1
NR(NR − 1)

∑
x

∑
r,r̃
r ̸=r̃

Tr
[
U(x)[t0, r] Γ(j)′

2 γ5 B†(x)[t0, r] γ5 Γ(i)
2 U(x)[t0, r̃] Γ(j)′

1 γ5 B†(x)[t0, r̃] γ5 Γ(i)
1

]
+Tr

[
U(x)[t0, r] Γ(j)′

1 γ5 B†(x)[t0, r] γ5 Γ(i)
1

]
Tr
[
U(x)[t0, r̃] Γ(j)′

2 γ5 B†(x)[t0, r̃] γ5 Γ(i)
2

]
−Tr

[
U(x)[t0, r] Γ(j)′

2 γ5 B†(x)[t0, r] γ5 Γ(i)
1

]
Tr
[
U(x)[t0, r̃] Γ(j)′

1 γ5 B†(x)[t0, r̃] γ5 Γ(i)
2

]
−Tr

[
U(x)[t0, r] Γ(j)′

1 γ5 B†(x)[t0, r] γ5 Γ(i)
2 U(x)[t0, r̃] Γ(j)′

2 γ5 B†(x)[t0, r̃] γ5 Γ(i)
1

]
(C.20)

and

Css = 2
V 2
S

1
NR(NR − 1)

∑
x,y

∑
r,r̃
r ̸=r̃

Tr
[
U(x)[t0, r] Γ(j)′

2 γ5 B†(y)[t0, r] γ5 Γ(i)
2 U(y)[t0, r̃] Γ(j)′

1 γ5 B†(x)[t0, r̃] γ5 Γ(i)
1

]
+Tr

[
U(x)[t0, r] Γ(j)′

1 γ5 B†(x)[t0, r] γ5 Γ(i)
1

]
Tr
[
U(y)[t0, r̃] Γ(j)′

2 γ5 B†(y)[t0, r̃] γ5 Γ(i)
2

]
−Tr

[
U(x)[t0, r] Γ(j)′

2 γ5 B†(x)[t0, r] γ5 Γ(i)
1

]
Tr
[
U(y)[t0, r̃] Γ(j)′

1 γ5 B†(y)[t0, r̃] γ5 Γ(i)
2

]
−Tr

[
U(x)[t0, r] Γ(j)′

1 γ5 B†(y)[t0, r] γ5 Γ(i)
2 U(y)[t0, r̃] Γ(j)′

2 γ5 B†(x)[t0, r̃] γ5 Γ(i)
1

]
.

(C.21)
Note that for stochastic propagators employing the one-end trick, two different random
sources must be considered. To increase the statistical precision, I average over all
possible combinations with r ̸= r̃.
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Appendix D
Method to Compute the

Weighted Average Including
Statistical Uncertainties

The ground-state energies and their statistical uncertainties are computed either via
multi-exponential matrix fits considering different sub-matrices and temporal fit ranges
or by single exponential fits to the principal correlators for various fit ranges. Based
on these fits, the final estimates for the ground-state energies and the associated
uncertainties are obtained by a weighted average following the approach of the FLAG
collaboration that has been presented in Section 2.3.1 of the 2019 FLAG review [185].
To recapitulate this approach, I label the result of the j-th fit as

E
(j)
0 ± ∆E(j)

0 , (D.1)

where E
(j)
0 is the mean value of the ground-state energy and ∆E(j)

0 the associated
statistical uncertainty. The final estimate for the ground-state energy is determined
by a weighted average

Ē0 =
∑
j

ω(j)E
(j)
0 , (D.2)

where the weights are given by

ω(j) = 1/(∆E(j)
0 )2∑

j 1/(S(j)∆E(j)
0 )2

, (D.3)

with S(j) = max(1, (χ2
j/d.o.f.)(j))1/2). Consequently, this approach is identical to a

weighted, uncorrelated χ2-minimizing fit of a constant to the results given by Eq. (D.1),
where fit results with a bad value of χ2/d.o.f. are further suppressed by the factor S(j).
As all fits are based on the same gauge link configurations and two-point functions,
the resulting energies are expected to be highly correlated. In a conservative approach,
I assume that the data are fully correlated, and the corresponding uncertainty of the
ground-state energy is then obtained as

∆Ē0 =
(∑

j,k

ω(j)ω(j)σ(j)σ(k)
)1/2

, (D.4)

where σ(j) = S(j)∆E(j)
0 .
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Appendix E
Tuning of Parameters for the

MILC-HISQ Setup

E.1 Determination of Smearing Parameters for Fermion
Fields

The smearing parameters for the Gaussian/Wuppertal smearing of the light and strange
quark fields that are given in Table 6.4 are tuned such that (i) the effective energy
plateaus for the ground-state energy of the b̄b̄ud or b̄b̄us four-quark system are reached
at sufficiently small values of t/a while at the same time the signal-to-noise ratio stays
relatively small and (ii) the radius of the smeared quark field has a reasonable physical
size.
In the first step, I solved the GEVP for the b̄b̄ud system on a subset of ensemble
a09m310 (50 configurations) for various combinations of κGauss and NGauss used for
the light quark smearing. In Fig. E.1 I depict the effective energies for the ground
state as well as the associated relative errors for some selected combinations of κGauss
and NGauss. We observe that stronger smearing, i.e., increasing κGauss and/or NGauss
lowers the effective energy at small values of t/a and the plateau is reached earlier
(see left plot in Fig. E.1). However, a drawback of strongly smeared quark fields is
that the signal-to-noise ratio becomes worse and fluctuations are much stronger espe-
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Figure E.1.: Effective energy aEeff,0 for the b̄b̄ud ground state (left) and the associated
relative error a∆Eeff,0/aEeff,0 (right) on a subset of 50 configurations of ensemble a09m310
for various combinations of the smearing parameters [NGauss, κGauss].
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Appendix E. Tuning of Parameters for the MILC-HISQ Setup

cially for large temporal separations as can be seen in the right plot in Fig. E.1. As a
reasonable compromise to obtain stable plateaus for small values of t/a and keep the
signal-to-noise ratio acceptable in the meantime, I chose κGauss = 1.0 and NGauss = 70.
Note that according to Fig. 1 in Ref. [161], choosing κGauss ≳ 1 hardly increases the
radius of the smeared quark field and thus it is not recommendable to use large values
of κGauss. For this reason, I keep κGauss = 1.0 fixed for all ensembles and quark flavors
and vary only the number of smearing steps NGauss to adjust the smearing width.
Following the definition in Ref. [240], I computed the root mean square (r.m.s.) radius
of a smeared point source for κGauss = 1.0 and various values of NGauss, which is illus-
trated in Fig. E.2. The black dashed lines indicate the chosen smearing parameters
with NGauss = 70 for the smearing of the light quarks, yielding rr.m.s. ≃ 0.61 fm.
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Figure E.2.: Root mean square (r.m.s.) radius for κGauss = 1.0 in dependence of the number
of Gaussian/Wuppertal smearing steps NGauss. The black dashed lines indicate the choice
of NGauss for the light quarks.

The same approach is repeated to determine the smearing parameters for the strange
quark fields by considering the ground-state energy of the b̄b̄us four-quark system for
various values of NGauss as shown in Fig. E.3. While keeping κGauss = 1.0, I chose
NGauss = 50, which yields a stable plateau and an adequate signal-to-noise ratio at
the same time. As the strange quark is heavier than the up and down quarks, it is
more localized, which is also represented by the corresponding smaller r.m.s. radius
of rr.m.s. ≃ 0.53 fm.
The smearing parameters for the ensembles with different lattice spacing a are chosen
such that the smearing width is kept approximately constant. According to Eq. (4.80),
the number of Gaussian smearing steps N2 applied for quark fields of flavor f on an
ensemble with lattice spacing a2 can be estimated as

N2 ≃ N1

(
a1

a2

)2
, (E.1)

where a1 is the lattice spacing of ensemble a09m310 and N1 the number of Gaussian
smearing steps applied for quark fields of the same flavor f on ensemble a09m310.
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E.2. Determination of GEVP Normalization t0
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Figure E.3.: Effective energy aEeff,0 for the b̄b̄us ground state (left) and the associated relative
error a∆Eeff,0/aEeff,0 (right) on a subset of 50 configurations of ensemble a09m310 for various
combinations of the smearing parameters [NGauss, κGauss] used in the light quark smearing.

Note that this is only valid as long as we keep κGauss constant, which is the case in our
smearing approach.

E.2 Determination of GEVP Normalization t0

The parameter t0 which appears in the GEVP in Eq. (4.45) should be chosen suffi-
ciently large to minimize contributions of higher excited states to a specific eigenstate.
Meanwhile, larger values of t0 lead to a worse signal-to-noise ratio. For this reason,
a suitable choice of t0 is mandatory to extract energy levels precisely. In order to
determine a reasonable value of t0, I solved the GEVP for the b̄b̄ud and the b̄b̄us
four-quark system on each ensemble for various values of t0. In Figs. E.4 and E.5,
I depict the associated effective energies obtained on the three ensembles a15m310,
a12m220L and a09m310 by solving GEVPs for 2 ≤ t0/a ≤ 6. The final value of t0
is chosen as large as necessary and as small as possible to ensure that the effective
energies are independent of t0 for all eigenstates. The final values of t0 are collected
in Table E.1. It is reasonable to choose t0/a depending on the lattice spacing a, which
leads to similar values of t0 in physical units. Accordingly, for ensembles with the
same lattice spacing, the same value of t0 is used for each four-quark system. While

t0/a for b̄b̄ud t0/a for b̄b̄us
very coarse 2 2
coarse 3 3
fine 4 6

Table E.1.: Parameter t0/a used in the GEVP in Eq. (4.45) for the cases of b̄b̄ud and
b̄b̄us four-quark systems for the very coarse lattice (a15m310), the coarse lattices (a12m310,
a12m220S, a12m220. a12m220L) and the fine lattices (a09m310, a09m220).
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for the very coarse and coarse lattices, I also use the same choice of t0 for the cases of
b̄b̄ud and b̄b̄us, for the fine lattices, a larger t0 is required for the case of b̄b̄us to obtain
sufficiently stable effective energies (see the upper right plot in Fig. E.4 and the upper
right plot in Fig. E.5).
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Figure E.4.: Effective energies for the three lowest b̄b̄ud eigenstates extracted from GEVPs
with 2 ≤ t0/a ≤ 6. The effective energy plots in the n-th row belong to the n-th energy
eigenstate. The first column shows the results for the a15m310 ensemble, the second column
for the a12m220L ensemble and the third column for the a09m310 ensemble.
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Figure E.5.: Effective energies for the four lowest b̄b̄us eigenstates extracted from GEVPs
with 2 ≤ t0/a ≤ 6. The effective energy plots in the n-th row belong to the n-th energy
eigenstate. The first column shows the results for the a15m310 ensemble, the second column
for the a12m220L ensemble and the third column for the a09m310 ensemble.
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Appendix F
Plots of Single-Exponential Fits
to Determine the Energy Levels

for the HISQ-Ensembles
In this appendix, I show the results for the lowest energy levels obtained from single-
exponential fits to the principal correlators that have been determined by solving
a GEVP for the ensembles a15m310, a12m310, a12m220S, a12m220, a09m310 and
a09m220. The plots for the b̄b̄ud system with I(JP ) = 0(1+) are collected in Figs. F.1
to F.6, while the plots for the b̄b̄us system can be found in Figs. F.7 to F.12. These
figures use the same style as Figs. 6.4 and 6.8, where the lowest energy levels obtained
on ensemble a12m220L are depicted and which are discussed in detail in Sec. 6.3.
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Figure F.1.: Fit results for the three lowest energy levels for the b̄b̄ud system with I(JP ) =
0(1+) relative to the BB∗ threshold, ∆En = En−EB−EB∗ , obtained on ensemble a15m310.
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Figure F.2.: Fit results for the three lowest energy levels for the b̄b̄ud system with I(JP ) =
0(1+) relative to the BB∗ threshold, ∆En = En−EB−EB∗ , obtained on ensemble a12m310.
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Figure F.3.: Fit results for the three lowest energy levels for the b̄b̄ud system with I(JP ) =
0(1+) relative to the BB∗ threshold, ∆En = En−EB−EB∗ , obtained on ensemble a12m220S.
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Figure F.4.: Fit results for the three lowest energy levels for the b̄b̄ud system with I(JP ) =
0(1+) relative to the BB∗ threshold, ∆En = En−EB−EB∗ , obtained on ensemble a12m220.
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Figure F.5.: Fit results for the three lowest energy levels for the b̄b̄ud system with I(JP ) =
0(1+) relative to the BB∗ threshold, ∆En = En−EB−EB∗ , obtained on ensemble a09m310.
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Figure F.6.: Fit results for the three lowest energy levels for the b̄b̄ud system with I(JP ) =
0(1+) relative to the BB∗ threshold, ∆En = En−EB−EB∗ , obtained on ensemble a09m220.
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Figure F.7.: Fit results for the four lowest energy levels for the b̄b̄us system with JP = 1+

relative to the BB∗
s threshold, ∆En = En − EB − EB∗

s
, obtained on ensemble a15m310.
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Figure F.8.: Fit results for the four lowest energy levels for the b̄b̄us system with JP = 1+

relative to the BB∗
s threshold, ∆En = En − EB − EB∗

s
, obtained on ensemble a12m310.
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Figure F.9.: Fit results for the four lowest energy levels for the b̄b̄us system with JP = 1+

relative to the BB∗
s threshold, ∆En = En − EB − EB∗

s
, obtained on ensemble a12m220S.
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Figure F.10.: Fit results for the four lowest energy levels for the b̄b̄us system with JP = 1+

relative to the BB∗
s threshold, ∆En = En − EB − EB∗

s
, obtained on ensemble a12m220.
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Figure F.11.: Fit results for the four lowest energy levels for the b̄b̄us system with JP = 1+
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