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Deutsche Zusammenfassung

Das Standardmodell der Teilchenphysik gilt nach dem aktuellen Stand der Forschung als
die vielversprechendste und am gründlichsten erforschte Theorie zur Beschreibung der
Wechselwirkungen zwischen den kleinsten Bausteinen der Materie. In diesem wird die
starke Wechselwirkung zwischen sogenannten Quarks, Elementarteilchen mit Farbladung,
durch die sogenannte Quantenchromodynamik (QCD) beschrieben. Diejenigen Teilchen,
die aus Quarks zusammengesetzt sind, werden als Hadronen bezeichnet. Im Rahmen
des Quarkmodells können Hadronen entweder aus einem Quark und einem Antiquark
bestehen (Mesonen) oder aus drei (Anti)Quarks (Baryonen), wie beispielsweise Protonen
und Neutronen, die die Atomkerne bilden. Die QCD erlaubt jedoch auch Zustände, die
nicht in dieses Schema passen und daher als exotische Zustände bezeichnet werden. Diese
Arbeit konzentriert sich auf sogenannte Tetraquarks, exotische Mesonen, die aus zwei
Quarks und zwei Antiquarks bestehen.

Tetraquarks und andere exotische Teilchen stellen ein zunehmend aktuelles Thema in
verschiedenen Bereichen der theoretischen und experimentellen Physik dar. Seit etwas
mehr als einem Jahrzehnt werden vermehrt Kandidaten für diese Zustände in Beschleu-
nigerexperimenten wie LHCb, BESII und Belle entdeckt. Auf theoretischer Ebene zählt
die numerische Methode des Gitter-QCD zu den etabliertesten Verfahren zur Lösung der
hochkomplexen Gleichungen der Quantenchromodynamik (QCD). Dabei wird die Raumzeit
diskretisiert, und die Felder der Quarks und Gluonen, die die starke Wechselwirkung
vermitteln, werden auf und zwischen den Punkten des resultierenden Gitters simuliert.
Dies erfordert den Einsatz von Hochleistungsrechnern, auf denen Berechnungen teilweise
über Monate oder sogar Jahre hinweg durchgeführt werden müssen.

Die vorliegende Arbeit ist in zwei verwandte, jedoch unabhängige Teile gegliedert. Im
ersten Teil wird eine Gitter-QCD-Berechnung durchgeführt, um das Potenzial zwischen
zwei statischen Antiquarks in Anwesenheit von zwei dynamischen leichten Quarks zu
ermitteln. Obwohl diese Berechnung bereits in der Vergangenheit durchgeführt wurde,
zielt dieser Arbeit darauf ab, die bestehenden Ergebnisse signifikant zu verbessern. In
dieser Berechnung werden zusätzliche Datenpunkte des Potenzials berücksichtigt, die auch
Punkte außerhalb der gleichen Koordinatenachse einschließen. Des Weiteren werden die
Daten mithilfe von sogenannten Tree-Level-Verbesserungen behandelt, die auszunutzen,
dass sich die Form des Potenzials bei geringen Abständen erfahrungsgemäß ähnlich wie ein
Coulomb-Potenzial verhält.

Die Ergebnisse dieser Gitterstudie zeigen vielversprechende Entwicklungen im Vergleich
zu bestehenden Resultaten, weisen jedoch noch einige Herausforderungen auf. Eine
Hauptmotivation zur präziseren Bestimmung dieser Potenziale war die Diskrepanz in der
Bindungsenergie, die mit diesen Potenzialen berechnet werden kann (ungefähr 60 MeV),
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im Vergleich zu den Energien aus Gitter-QCD-Berechnungen mit nicht-relativistischen,
aber dynamischen schweren Antiquarks (ungefähr 100 MeV). Bedauerlicherweise konnten
unsere Ergebnisse dieses Problem nicht vollständig lösen, sie deuten jedoch deutlich darauf
hin, dass die Bindungsenergie niedriger ist als bisher angenommen. Zusätzlich haben die
neuen Daten das Potenzial, die Form des Potenzials genauer zu bestimmen. Möglicherweise
lassen sich in Zukunft auch Erkenntnisse über verwandte Potenziale in der Nukleonenphysik
aus diesen Potenzialen ableiten. Es gibt vage Anzeichen für den Ein-Pion-Austausch im
langreichweitigen Teil des Potenzials, wie er in der Nukleonenphysik schon lange vermutet
wird. Zusammenfassend hat dieser Abschnitt der Arbeit sein angestrebtes Ziel nicht erreicht,
stellt jedoch einen vielversprechenden Beginn dar, diese Potenziale in hoher quantitativer
Qualität zu berechnen. Im Rahmen der technischen Umsetzung dieser Gitterrechnung und
der phänomenologischen Analyse der Ergebnisse wurden erhebliche Fortschritte erzielt.

Der zweite Teil dieser Studie untersucht ein grundlegend anderes Tetraquarksystem,
das aus einem schweren Quark-Antiquark-Paar und einem leichten Quark-Antiquark-Paar
besteht. Diesmal liegt der Fokus nicht auf der Gitterrechnung für dieses System, sondern
auf der Verwendung existierender statischer Potenziale in einem Framework, das mithilfe
quantenmechanischer Streutheorie gebundene Zustände und Streuzustände bestimmen kann.
Die bestehende Methode, die ursprünglich für zwei gekoppelte Kanäle mit verschwindendem
Drehimpuls entwickelt wurde - einen für das Quark-Antiquark-System und einen für das
Meson-Meson-System - wird in dieser Studie um einen zusätzlichen Meson-Meson-Kanal
mit Strange-Quarks und für beliebige Drehimpulse erweitert. Des Weiteren erfolgt eine
Untersuchung der Resonanzen hinsichtlich ihrer Natur als Quark-Antiquark- oder Meson-
Meson-Zustand durch Berechnung des Beitrags der jeweiligen Kanäle zur Resonanz.

Die entwickelte Methode ermöglicht eine qualitative Reproduktion der bestehenden
experimentellen Ergebnisse. Besonderes Augenmerk liegt dabei auf der Analyse der
Resonanzen 𝛶 (10750), 𝛶 (10860) und 𝛶 (11020). Unsere Ergebnisse deuten eindeutig
darauf hin, dass 𝛶 (10750) nicht als gewöhnlicher Quark-Antiquark-Zustand anzusehen ist,
sondern als krypto-exotischer Zustand vom Typ 𝛶 . Hinsichtlich 𝛶 (10860) können wir die
gängige Interpretation als 𝛶 (5𝑆) bestätigen. Für das 𝛶 (11020) haben wir Kandidaten mit
Drehimpuls 0 und 2 identifiziert. Allerdings können wir aufgrund der hohen Energie im
Rahmen dieser Studie keine definitive Aussage treffen. Obwohl die Ergebnisse das qualitative
Spektrum gut widerspiegeln, weisen einige Energien im Vergleich zum Experiment und
anderen theoretischen Vorhersagen starke systematische Fehler auf. Diese Diskrepanzen
sind teilweise erwartet, da wir Näherungen verwenden und beispielsweise den Spin der
schweren Quarks vernachlässigen. Dennoch sind sie auch zum Großteil auf systematische
Fehler der Gitterstudie zurückzuführen, die mittlerweile fast 20 Jahre alt ist. Wir gehen
davon aus, dass die Qualität der Ergebnisse in diesem Rahmen erheblich von neuen
Gitterdaten profitieren würde.
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CHAPTER 1
Introduction

The prevailing theoretical framework for describing the universe at the most fundamental
level is the Standard Model of particle physics. This model encompasses three of the four
fundamental forces: the strong interaction, the weak interaction, and the electromagnetic
interaction, only excluding gravity, which operates on a vastly different scale.

The theory governing the strong interaction is known as Quantum Chromodynamics
(QCD). QCD is the dominant force at subatomic distances and is fundamentally different
from Quantum Electrodynamics (QED), the theory of electromagnetic interactions at
the quantum level. Unlike QED, QCD is a non-abelian gauge theory, meaning its force
carriers, the gluons, can interact with each other. This self-interaction property of gluons
makes QCD inherently more complex. The elementary particles that participate in strong
interactions are termed quarks, and composite particles made of quarks are known as
hadrons.

In Quantum Chromodynamics (QCD), three ”color” charges must combine into a color
singlet, i.e., a color-neutral state, to form a hadron. This can be achieved by pairing a
color with its corresponding anti-color or by combining three different colors or anti-colors.
The most common and well-studied particles resulting from these combinations are mesons,
consisting of a quark-antiquark pair, and baryons, composed of three quarks, each with a
different color. Notable examples of baryons include protons and neutrons, the constituents
of atomic nuclei collectively known as nucleons.

QCD distinguishes six types of quarks, referred to as ”flavors”. These quarks exhibit
a wide range of masses. The lightest quarks, ”up” (𝑢) and ”down” (𝑑), have masses of
approximately 𝑚𝑢 = 2.2 MeV and 𝑚𝑑 = 4.7 MeV, respectively [1]. Due to their relatively
small masses, 𝑢 and 𝑑 quarks are readily created and annihilated in the QCD vacuum,
leading to significant vacuum fluctuations. The other quark flavors are ”strange” (𝑠),
”charm” (𝑐), ”bottom” (𝑏), and ”top” (𝑡), with masses of approximately 𝑚𝑠 ≈ 93 MeV,
𝑚𝑐 ≈ 1270 MeV, 𝑚𝑏 ≈ 4180 MeV, and 𝑚𝑡 ≈ 172760 MeV [1].

The masses of the 𝑢 and 𝑑 quarks are significantly lower than those of the other quark
flavors, which often justifies the approximation 𝑚𝑢 ≈ 𝑚𝑑, leading to the concept of isospin
symmetry.

Another essential attribute of particles is the spin quantum number. Quarks, nucleons,
and electrons possess a spin of 1/2, classifying them as fermions, particles with half-odd-
integer spin. In contrast, mesons and gauge bosons, such as gluons, have a spin of 1,
categorizing them as bosons, particles with integer spin. The fundamental distinction
between fermions and bosons lies in the Pauli exclusion principle, which dictates that no
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2 Chapter 1 Introduction

two fermions can simultaneously occupy the same quantum state. Conversely, bosons are
not subject to this restriction, allowing multiple bosons to coexist in the same quantum
state.

QCD also permits more complex hadronic states beyond mesons and baryons, provided
they remain color-neutral. These states, known as ”exotic states”, encompass a variety
of theoretically possible configurations. For instance, one can form color singlets by
combining two quarks and two antiquarks (tetraquarks) or one quark with four antiquarks
(pentaquarks). Additionally, due to the self-interacting nature of gluons, there is the
potential for states where gluonic excitations influence the quantum numbers of the system,
leading to hybrid mesons. Furthermore, it is theoretically possible to have color-neutral
systems composed solely of gluons, known as glueballs. The potential existence of such
exotic states has been anticipated since the formulation of QCD [2].

In recent decades, experimental observations have identified several hadronic states that
do not conform to the conventional meson or baryon classifications but can be interpreted
as exotic hadrons. Due to their initially ambiguous nature, these states are often referred to
as ”XYZ” states. The first tetraquark candidate, 𝑍𝑐(3900), was simultaneously discovered
by the Belle and BES III collaborations in 2013 [3–5]. Subsequent discoveries of exotic
candidates, such as 𝑍𝑏 and 𝑍𝑐, have been reported by Belle [6], BES III [7–9], and LHCb
[10]. Numerous tetraquark candidates have since been found in the past decade [11–24].

A particularly significant discovery was the 𝑇𝑐𝑐 state, observed by LHCb in recent years
[25, 26]. This state lies distinctly below the threshold for a 𝐷𝐷* meson pair, indicating its
exotic nature. The 𝑇𝑐𝑐 state is characterized by its composition of two anti-charm quarks
and two light quarks, distinguishing it from conventional charmonium states and making it
the first state with an explicit exotic nature.

Conducting calculations within the framework of QCD presents significant challenges due
to the self-interacting nature of gluons. Unlike QED, which can be addressed perturbatively
through expansions in terms of the small coupling constant 𝛼𝑄𝐸𝐷 ≈ 1/137, QCD’s
coupling constant 𝛼𝑄𝐶𝐷 exhibits a strong dependence on the energy scale. Consequently,
perturbative methods are only applicable at high energies or short distances. To address
QCD calculations non-perturbatively, one of the most established techniques is lattice
QCD, a numerical approach initially proposed by Wilson in 1974 [27].

In lattice QCD, spacetime is discretized, allowing the high-dimensional integrals arising in
the path integral formalism to be evaluated numerically. Direct evaluation of these integrals
would be computationally too expensive; hence, stochastic ”Monte Carlo” methods are
employed. These methods utilize importance sampling with the QCD action, significantly
reducing computational costs at the expense of introducing statistical noise.

In this thesis, we will use lattice QCD and scattering theory from quantum mechanics
to explore heavy-light tetraquarks, i.e. tetraquarks that contain two (anti)bottom quarks
in addition to two light quarks, usually a combination of 𝑢 and 𝑑 quarks or 𝑠 quarks.

This work consists of two parts. In the first part, we performed a lattice QCD study of
the potential between two static antiquarks and two light quarks. In the second part, we
use existing results for the potential between a static quark-antiquark pair in the presence
of a light quark-antiquark pair to perform a scattering analysis in the Born-Oppenheimer
approximation [28] and extract bound and resonance states.
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CHAPTER 2
Introduction

This first part of the thesis is about the lattice QCD computation of the potential between
two anti-bottom quarks �̄��̄� in the presence of two light quarks, e.g. 𝑢𝑑 (in this thesis,
when writing 𝑢𝑑 it includes the possibilities of the antisymmetric combination 𝑢𝑑 − 𝑑𝑢,
and symmetric combinations, like 𝑢𝑑+ 𝑑𝑢, which correspond to isospin 𝐼 = 0 and 𝐼 = 1
respectively). This lattice study has been performed in the past [29, 30]; hence, this work
aims to improve existing results.

The existing results have been utilized as a potential in a Schrödinger equation within
the Born-Oppenheimer approximation to investigate a bound state in the 𝐼(𝐽𝑃 ) = 0(1+)
�̄��̄�𝑢𝑑 sector (𝐽 denotes the total angular momentum and 𝑃 the parity) at approximately
−90+43

−36 MeV [30] without incorporating spin effects, and around −59+30
−30 MeV when spin

effects are included [31]. Although there are no experimental observations for this system,
multiple lattice computations employing various methodologies exist. Several studies have
computed tetraquark masses using non-relativistic bottom quarks, either by solving a
generalized eigenvalue problem to extract bound states [32–35], or by determining the
bound state via the finite volume method [36–39] as proposed by Martin Lüscher in
1990 [40]. Another notable approach to studying this system is the HAL-QCD method
[41] introduced in 2006 [42]. In particular, the binding energies derived from the finite
volume method have gained significant acceptance due to multiple consistent results from
independent groups and computations in recent years. The latest and most precise of these
studies indicate a bound state energy of approximately −100 MeV, which is substantially
lower than the values obtained using static potentials (for a comprehensive list of lattice
QCD results, refer to Tab. 3 in [43]). One primary objective of our new computation of
static �̄��̄�𝑢𝑑 potentials is to provide a more accurate result and clarify this discrepancy.

The Born-Oppenheimer method has also predicted a resonance state in the 𝐼(𝐽𝑃 ) = 0(1−)
�̄��̄�𝑢𝑑 sector [44–46], for which there are no corresponding experimental results or findings
from other lattice methodologies.

While the initial investigations of �̄��̄�𝑢𝑑 lattice QCD static potentials [29, 30] have
yielded valuable insights, several limitations remain. The prior results were derived using
twisted mass fermions, which inherently break the parity quantum number and, thus,
are suboptimal for hadron spectroscopy. Additionally, the limited number of data points
with significant uncertainties used to fit the potential has led to substantial statistical
errors in the fit parameters, which in turn propagate to large uncertainties in the binding
energies obtained from solving the Schrödinger equation. It is anticipated that applying
modern lattice QCD techniques will enhance the precision of binding energy calculations

5



6 Chapter 2 Introduction

and resolve the discrepancies between the Born-Oppenheimer approximation results and
those from different lattice QCD methodologies.

Moreover, refined results could be employed to investigate the 0(0+) and 0(1+) �̄�𝑐𝑢𝑑
systems. Previous lattice studies using the finite volume method have identified very shallow
bound states with binding energies of only a few MeV in both sectors [47]. Although the
static approximation becomes less accurate for lighter heavy quark masses, such as when
one �̄� quark is replaced by a 𝑐 quark, it is anticipated that meaningful qualitative insights
can still be derived for these channels.

It would be particularly interesting to consider experimentally observed systems, such
as the 𝑇𝑐𝑐. However, treating two 𝑐 quarks within the static limit is questionable and is
not expected to yield a reliable approximation. Nonetheless, it remains feasible to utilize
the static potentials with additional relativistic 1/𝑚𝑐 corrections, which can be computed
perturbatively within the framework of potential Non-Relativistic QCD (pNRQCD), an
effective field theory [48–51]. Furthermore, these corrections can also be computed on the
lattice, although this has proven to be a challenging endeavor [52–54].

Different heavy quark systems can be investigated utilizing the same static potential
derived from lattice computations. However, to explore systems with varying light quark
content, it is necessary to compute additional potentials. While the �̄��̄�𝑢𝑠 system has been
examined in lattice studies alongside the �̄��̄�𝑢𝑑 system, the static potentials for the former
have not been previously computed. Therefore, a significant objective of this work is to
compute the static potentials for the �̄��̄�𝑢𝑠 system for the first time.

This first part of the thesis is focused on a lattice QCD computation of antistatic-
antistatic-light-light potentials. Thus, we begin by briefly formulating the fundamental
principles of lattice QCD in Chapter 3, followed by a discussion of static-light meson
spectroscopy in Chapter 4 with a focus on the relevant systems, that are studied in this
work. Finally, in Chapter 5 we will present and discuss the results for �̄��̄�𝑢𝑑 and �̄��̄�𝑢𝑠 static
potentials.



CHAPTER 3
Lattice QCD

Lattice QCD is a non-perturbative approach to Quantum Chromodynamics (QCD), which
is based on the discretization of space-time in a finite volume. The idea is to solve the
high-dimensional integrals that appear when treating QCD with the path integral formalism
in a stochastic manner. To this end, we transform the Minkowski space-time to Euclidean
space-time by modifying the action according to 𝑆𝑀 → 𝑖𝑆𝐸 . This transformation eliminates
the complex oscillations in the integration weight exp(𝑖𝑆𝑀 ) → exp(−𝑆𝐸), allowing us to
interpret this exponential as a probability distribution for performing importance sampling.

In this section, we briefly introduce lattice QCD and establish fundamental equations for
later reference in this work. First, we explain the path integral formalism. Subsequently,
we introduce the discretization of gauge and fermion fields.

We refer to standard textbooks such as [55, 56] for a more comprehensive and complete
introduction to lattice QCD.

3.1 Path integral formalism
The path integral formalism is based on the principle of least action. In a quantum
field theory like QCD, this translates to integration over all possible field configurations
weighted by the action. We introduce the integration measure D𝜑 = 𝛱𝑛d𝜑𝑛, where 𝑛
counts all possible field configurations. The expectation value of an observable O can then
be expressed as

⟨O⟩ = 1
𝑍

ˆ
D𝜓D𝜓D𝐴O[𝜓,𝜓,𝐴] 𝑒−𝑆𝐸 [𝜓,𝜓,𝐴], (3.1)

where 𝜓 and 𝜓 denote fermion fields, 𝐴 corresponds to the gauge field and the normalization
𝑍 is the partition function given by

𝑍 =
ˆ

D𝜓D𝜓D𝐴𝑒−𝑆𝐸 [𝜓,𝜓,𝐴]. (3.2)

The Euclidean action 𝑆𝐸 is a functional of the fields 𝜓, 𝜓, and 𝐴, and can be written as
the sum of the gauge action 𝑆𝐺[𝐴] and the fermion action 𝑆𝐹 [𝜓,𝜓,𝐴]. The gauge action
is defined as

𝑆𝐺[𝐴] = 1
4

ˆ
d4𝑥𝐹 𝑎𝜇𝜈(𝑥)𝐹𝜇𝜈𝑎 (𝑥), (3.3)
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8 Chapter 3 Lattice QCD

where 𝐹 𝑎𝜇𝜈(𝑥) represents the field strength tensor. The fermion action is given by

𝑆𝐹 [𝜓,𝜓,𝐴] =
ˆ

d4𝑥𝜓(𝑥) (𝛾𝜇𝐷𝜇 +𝑚)𝜓(𝑥), (3.4)

where 𝛾𝜇 are the Dirac matrices, 𝐷𝜇 = 𝜕𝜇 − 𝑖𝑔𝐴𝜇(𝑥) is the covariant derivative with the
gauge coupling 𝑔, 𝜓 = 𝜓†𝛾0 and 𝑚 is the fermion mass.

3.2 Discretization of gauge fields

To discretize gauge fields, we rewrite 𝐴𝜇(𝑥) in terms of link variables

𝑈𝜇(𝑥) = 𝑒𝑖𝑎𝑔𝐴𝜇(𝑥), (3.5)

where 𝑎 is the lattice spacing. These link variables are elements of the gauge group 𝑆𝑈(3)
and can be interpreted as the parallel transport of gauge bosons along the lattice. We
define the plaquette 𝑈𝜇𝜈(𝑥) as the product of link variables around the smallest possible
loop in 𝜇-𝜈 directions starting at 𝑥, i.e.

𝑈𝜇𝜈(𝑥) = 𝑈𝜇(𝑥)𝑈𝜈(𝑥+ 𝑎�̂�)𝑈 †
𝜇(𝑥+ 𝑎𝜈)𝑈 †

𝜈 (𝑥). (3.6)

This plaquette is used in the fundamental discretization of the gauge action, the Wilson
plaquette action [27],

𝑆𝐺[𝐴] = 2
𝑔2

∑︁
𝑥,𝜇<𝜈

(︂
1 − 1

3ReTr [𝑈𝜇𝜈(𝑥)]
)︂
. (3.7)

This discretization approximates the gauge action up to O(𝑎2), which is sufficient for most
studies as discretization effects are already quite small. The Wilson action can be further
improved up to higher order in 𝑎 by using the Lüscher-Weisz [57] or Iwasaki [58] gauge
action.

3.3 Discretization of fermions

The fermion action can be discretized naively as

𝑆naive
𝐹 [𝜓,𝜓, 𝑈 ] = 𝑎4

∑︁
𝑥

𝜓(𝑥)𝐷(𝑥,𝑦)𝜓(𝑦) (3.8)

with the lattice Dirac operator 𝐷(𝑥,𝑦) given by

𝐷(𝑥,𝑦) =
∑︁
𝜇

𝛾𝜇
𝑈𝜇(𝑥)𝛿𝑥+�̂�,𝑦 − 𝑈−𝜇(𝑥)𝛿𝑥−�̂�,𝑦

2𝑎 +𝑚𝛿𝑥,𝑦. (3.9)
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The lattice propagator is the inverse of the Dirac operator. The lattice propagator for a
free fermion in momentum space reads

(︀
�̃�free

)︀−1 (𝑝) =
𝑚− 𝑖

𝑎

∑︀
𝜇 𝛾𝜇 sin (𝑝𝜇𝑎)

𝑚2 + 1
𝑎2
∑︀

𝜇 sin2 (𝑝𝜇𝑎)
. (3.10)

A pole in the propagator corresponds to a fermion. It is easy to see that for a massless
particle in the continuum limit, the pole is at 𝑝 = 0,

(︀
�̃�free

)︀−1 (𝑝) 𝑎→0−−−→
𝑚→0

−𝑖
∑︀

𝜇 𝛾𝜇𝑝𝜇

𝑝2 . (3.11)

On the lattice,
(︀ ˜𝐷free

)︀−1 (𝑝) also has a pole at 𝑝 = 0. However, Eqn. (3.10) for a free
fermion (i.e., 𝑚 = 0) has poles not only for 𝑝𝜇 = 0 but also 𝑝𝜇 = 𝜋/𝑎 (The momentum on
the lattice is restricted to −𝜋/𝑎 < 𝑝𝜇 ≤ 𝜋/𝑎). With four components for the momentum,
this leads to sixteen poles, one physical pole at 𝑝 = (0,0,0,0) and fifteen unphysical poles,
where at least one of the four components is 𝜋/𝑎. This so-called doubling problem leads to
severe issues when simulating fermions on the lattice.

There are many ways to remove the doublers by changing the discretization while keeping
the correct continuum limit (see [55]). In this thesis, we only used the method of Wilson
fermions.

The idea of Wilson fermions is to add a term to the Dirac operator that distinguishes
the physical pole from the doublers. The Wilson Dirac operator is given by

�̃�Wilson(𝑝) = �̃�(𝑝) + 1
𝑎

∑︁
𝜇

(1 − cos(𝑝𝜇𝑎)) . (3.12)

For the physical pole, i.e., 𝑝 = (0,0,0,0), the additional term vanishes. However, for the
doublers, the additional term is non-zero and provides an additional term of 2/𝑎, which
acts as an increased mass. This mass is inversely proportional to the lattice spacing 𝑎 and
thus diverges in the continuum limit, decoupling the doublers from the theory.

Wilson fermions obey symmetries like charge conjugation and parity, particularly im-
portant for hadron spectroscopy. The major downside of the addition by the Wilson term
is that chiral symmetry is explicitly broken. Different fermion discretizations have been
developed to address this issue. However, they contain different disadvantageous properties,
such as significantly higher computational cost (domain-wall fermions [59, 60]) or the
introduction of additional particle properties that have to be accounted for (staggered
fermions [61]).

The standard Wilson fermion action from Eqn. (3.12) still contains discretization errors
of O(𝑎). These errors can be reduced to O(𝑎2) using Symanzik improvement [57, 62, 63],
yielding so-called Wilson-Clover fermions.





CHAPTER 4
Static-light meson spectroscopy on the lattice

The masses of hadrons represent fundamental fermionic observables that can be computed
on the lattice. By investigating particles with distinct quantum numbers, such as spin,
parity, and flavor content, it is feasible to calculate the masses of various hadrons and
thereby probe Quantum Chromodynamics (QCD) through comparison with experimental
data.

This work focuses on meson states containing at least one heavy quark. The 𝑡 quark is
the heaviest, but its mean lifetime is approximately 10−25 seconds [1], causing it to decay
into lighter quarks before forming hadronic states. Consequently, the term ”heavy quark”
typically refers to 𝑏 quarks and rarely to 𝑐 quarks. Studying observables involving bottom
quarks in lattice QCD is challenging due to the small Compton wavelength (𝜆𝐶) of such
heavy particles, which is difficult to resolve with commonly used lattice spacings.

One approach to address this issue is to employ an effective non-relativistic Lagrangian
for bottom quarks [64–66], which has been utilized in studies of doubly heavy tetraquark
systems involving the finite volume method [36, 38, 47]. Instead, we consider the limit of
infinite mass for the heavy quarks, effectively treating them as static color sources without
any dynamics.

A distinctive feature of static quarks is the well-defined distance between them, unlike
dynamical quarks, which are not localized. This allows for defining a static potential 𝑉 (𝑟)
as a function of the separation distance 𝑟 between two static quarks.

Throughout this chapter and Chapter 5, static quarks will be denoted as 𝑄 and light
quarks as 𝑞.

We begin by describing the construction of operators in a general framework. Subse-
quently, we delve into the static-light meson system �̄�𝑞. Following this, we introduce
the well-known static quark-antiquark potential. Finally, we explore the more complex
static potentials for two-meson systems, deriving the correlation function for a system of
two static-light mesons (�̄��̄�𝑞1𝑞2). We conclude by outlining the steps to compute the
correlation function for a �̄�𝑄𝑞𝑞 system, which will become important in the second part
of this thesis.

4.1 Operator and correlation function
To investigate the mass or potential of a quark system, we begin by constructing an
operator O(𝑡) that has a significant overlap with the ground state. The correlation function
is then defined as

C(𝑡2 − 𝑡1) =
⟨︀
𝛺
⃒⃒
O†(𝑡2)O(𝑡1)

⃒⃒
𝛺
⟩︀
, (4.1)
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12 Chapter 4 Static-light meson spectroscopy on the lattice

where |𝛺⟩ represents the vacuum state. By inserting a complete set of states
∑︀

𝑛 |𝑛⟩ ⟨𝑛|,
the correlation function can be expressed as

C(𝑡2 − 𝑡1) =
∑︁
𝑛

⟨︀
𝛺
⃒⃒
O†(𝑡2)

⃒⃒
𝑛
⟩︀

⟨𝑛|O(𝑡1)|𝛺⟩ e−𝐸𝑛(𝑡2−𝑡1)

−−−−−−→
𝑡2−𝑡1→∞

|⟨0|O|𝛺⟩|2 e−𝐸0(𝑡2−𝑡1), (4.2)

where, in the second step, we take the limit of large time separation 𝑡 = 𝑡2 − 𝑡1, such that
all excited states are exponentially suppressed, leaving only the ground state with energy
𝐸0. By fitting an exponential function to the correlation function at large time separations
𝑡, we can extract the ground state energy 𝐸0 and thus determine the state’s mass. A more
practical approach is to define an effective mass 𝑚eff(𝑡) as

𝑎𝑚eff(𝑡) = ln
(︂
C(𝑡− 𝑎)
C(𝑡)

)︂
, (4.3)

and fit a constant for large time separations 𝑡.

4.1.1 Excited state contamination
The limit 𝑡 → ∞ must be approximated by a finite 𝑡 = 𝑡max. Ideally, 𝑡max is chosen such
that the contribution of excited states is negligible. The contribution of the first excited
state to the effective mass can be included by writing

𝑎𝑚eff(𝑡) = ln
(︂
C(𝑡− 𝑎)
C(𝑡)

)︂
+ 𝜀(𝑡) (4.4)

with

𝜀(𝑡) = O
(︀
𝑒−𝛥𝐸𝑡)︀ , 𝛥𝐸 = 𝐸1 − 𝐸0, (4.5)

where 𝐸1 is the energy of the first excited state. This was initially proposed and demon-
strated in the context of correlation matrices and the generalized eigenvalue problem
[67].

This implies that if 𝛥𝐸 is small, i.e., the first excited state is close to the ground state,
𝑡max generally needs to be larger to suppress the excitation. To put this into perspective,
consider the relevant systems in this work, which involve heavy-light mesons, where typically
𝛥𝐸 ≈ 400 MeV ≈ 0.5 fm−1. Thus, after 𝑡 = 0.5 fm, the excited state is only suppressed by
a factor of 1/𝑒 ≈ 0.37.

4.2 Static-light meson mass
The static-light meson consists of a static antiquark �̄� and a light quark 𝑞. We can
construct a trial state for a static-light meson with the operator

O𝛤
�̄�𝑞

(r) = �̄�𝑎𝐴(r)𝛤𝐴𝐵𝑞𝑎𝐵(r), (4.6)
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where 𝑎,𝑏 are color indices and 𝐴,𝐵 are spin indices. Typically, 𝛤 is chosen to ensure
that the trial state only overlaps with a particular sector, i.e., states with the same
quantum numbers. This system’s set of quantum numbers includes parity P and total
angular momentum 𝐽 . Note that, in the static limit, the heavy quark spin decouples
from the system. Thus, the angular momentum quantum numbers of the light degrees
of freedom determine the system’s total angular momentum 𝑗 = |𝑙 ± 1/2|. We only
consider vanishing orbital angular momentum 𝑙 = 0; thus, the light quark spin dictates
𝑗 = 1/2, 𝑗𝑧 = −1/2,+ 1/2. This leads to two relevant choices for 𝛤 in Eqn. (4.6):

• 𝛤 = (1 + 𝛾0)𝛾5/2, which yields an 𝑆-wave state, i.e., 𝑙 = 0, with |𝑗| = 1/2 and P = −.
In terms of 𝐵 mesons (�̄�𝑞 with 𝑞 = 𝑢/𝑑), this would correspond to either 𝐽P = 0−

(𝐵± or 𝐵0 meson) or 𝐽P = 1− (𝐵* meson) from experiment. We label this state as
𝑆.

• 𝛤 = (1 + 𝛾0)/2 or 𝛤 = (1 − 𝛾0)𝛾𝑗𝛾5/2, which yields a state consisting of both
𝑆-wave and 𝑃 -wave contributions and P = +. In terms of 𝐵 mesons, the possible
experimental counterparts are (𝐵*

0) (𝐽P = 0+) and (𝐵*
1) (𝐽P = 1+) [68, 69]. We label

this state as 𝑃−.

With the operator (4.6), we can construct the correlation function

C𝛤
�̄�𝑞

(𝑡2 − 𝑡1) =
⟨
𝛺
⃒⃒⃒ (︀
�̄�𝑎𝐴(r, 𝑡2)𝛤𝐴𝐵𝑞𝑎𝐵(r, 𝑡2)

)︀†
�̄�𝑏𝐶(r, 𝑡1)𝛤𝐶𝐷𝑞𝑏𝐶(r, 𝑡1)

⃒⃒⃒
𝛺
⟩

=
⟨
𝛺
⃒⃒⃒
𝑞𝑎𝐵(r, 𝑡2)†𝛤 †

𝐴𝐵�̄�
𝑎
𝐴(r, 𝑡2)†�̄�𝑏𝐶(r, 𝑡1)𝛤𝐶𝐷𝑞𝑏𝐶(r, 𝑡1)

⃒⃒⃒
𝛺
⟩

=
⟨
𝛺
⃒⃒⃒
𝑞𝑎𝐵(r, 𝑡2)

(︁
𝛾0𝛤

†
𝐴𝐵𝛾0

)︁
𝑄𝑎𝐴(r, 𝑡2)�̄�𝑏𝐶(r, 𝑡1)𝛤𝐶𝐷𝑞𝑏𝐶(r, 𝑡1)

⃒⃒⃒
𝛺
⟩

= −
⟨
𝛺
⃒⃒⃒ (︁
𝛾0𝛤

†
𝐴𝐵𝛾0

)︁
𝑄𝑎𝐴(r, 𝑡2)�̄�𝑏𝐶(r, 𝑡1)𝛤𝐶𝐷𝑞𝑎𝐵(r, 𝑡2)𝑞𝑏𝐶(r, 𝑡1)

⃒⃒⃒
𝛺
⟩
,

(4.7)

where we used that the quark fields are Grassmann variables and thus anticommute. We
now integrate over all fermion fields to obtain a static propagator

(︀
Q−1)︀𝑎𝑏

𝐴𝐵
(r, 𝑡2; r, 𝑡1) and

a dynamic light propagator
(︀
D−1)︀𝑎𝑏

𝐴𝐵
(r, 𝑡2; r, 𝑡1) and introduce < ... > as a path integral

over all gauge configurations to obtain

C𝛤
�̄�𝑞

(𝑡2 − 𝑡1) = −
⟨︀
Trcolor,spin

[︀(︀
𝛾0𝛤

†𝛾0
)︀ (︀

Q−1)︀ (r, 𝑡2; r, 𝑡1)𝛤
(︀
D−1)︀ (r, 𝑡2; r, 𝑡1)

]︀⟩︀
= −

⟨
Trcolor,spin

[︂ (︀
𝛾0𝛤

†𝛾0
)︀

× 𝑈(r, 𝑡2; r, 𝑡1)
(︂

1 − 𝛾0
2

)︂
𝛤
(︀
D−1)︀ (r, 𝑡2; r, 𝑡1)

]︂⟩
e−𝑀(𝑡2−𝑡1), (4.8)
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where Trcolor,spin denotes the trace in color and spin space, and we used

(︀
Q−1(r, 𝑡1; r, 𝑡2)

)︀𝑎𝑏
𝐴𝐵

= 𝑈𝑎𝑏(r, 𝑡1; r, 𝑡2)
(︂
𝛩(𝑡1 − 𝑡2)

(︂
1 + 𝛾0

2

)︂
𝐴𝐵

e−𝑀(𝑡1−𝑡2)

+𝛩(𝑡2 − 𝑡1)
(︂

1 − 𝛾0
2

)︂
𝐴𝐵

e−𝑀(𝑡2−𝑡1)
)︂

(4.9)

for the static propagator, assuming 𝑡2 > 𝑡1 for the Heaviside step function 𝛩(𝑡). Note that
the time evolution of the static quark is essentially described by a straight path of links
𝑈(r, 𝑡1; r, 𝑡2) from 𝑡1 to 𝑡2 at r.
We also introduce a diagrammatic notation for the correlation function (4.8) as

C𝛤
�̄�𝑞

(𝑡1, 𝑡2) = , (4.10)

where the straight line corresponds to the static quark propagator and the wiggly line
corresponds to the light quark propagator. An in-depth discussion of static-light mesons
can be found in [70, 71].

4.3 Static potentials

In the context of static quark systems, we define the static potential 𝑉 (𝑟) as a function of
the separation distance 𝑟 between two static (anti)quarks. The simplest example of such a
system is the well-known static quark-antiquark �̄�𝑄 potential. The correlation function
for this trial state is proportional to the Wilson loop

𝑊𝜇0(𝑟, 𝑡) = 𝑆𝜇(𝑥, 𝑟)𝑆0(𝑥+ 𝑟�̂�, 𝑡)𝑆†
𝜇(𝑥+ 0̂, 𝑟)𝑆†

0(𝑥, 𝑡),
with 𝑆𝜇(𝑥, 𝑛) = 𝛱𝑛−1

𝑖=0 𝑈𝜇(𝑥+ 𝑖�̂�). (4.11)

Note that this correlator depends solely on gauge fields and does not involve any fermion
fields. Consequently, the static quark-antiquark potential can be effectively studied within
pure gauge theory, i.e., lattice gauge theory with only gauge fields.

In this work, we aim to investigate states that include two light (anti)quarks in addition
to the two static (anti)quarks corresponding to tetraquark systems containing two static-
light mesons. For these systems, fermions contribute as valence quarks, necessitating the
consideration of fermion propagators.

In the first part of this work, we will focus on the static potential of the �̄��̄�𝑞1𝑞2 system.
In the second part, we will examine the bottomonium-like �̄�𝑄𝑞1𝑞2 system, which has been
studied in the context of string-breaking [72–74]. We will derive the correlation function of
�̄��̄�𝑞1𝑞2 in detail and discuss how to determine the quantum numbers of our trial states.
Additionally, we will briefly outline the correlation function of �̄�𝑄𝑞1𝑞2 as a reference for
the second part of this work.
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4.3.1 �̄��̄�𝑞1𝑞2

Correlation function

To investigate the �̄��̄�𝑞1𝑞2 system, we construct a suitable creation operator,

O
∓,𝛤
�̄��̄�𝑞1𝑞2

(r1, r2) = (C𝛤 )𝐴𝐵
(︀
C𝛤
)︀
𝐶𝐷

(︀ (︀
�̄�𝑎𝐶(r1) (𝑞1)𝑎𝐴 (r1)

)︀ (︁
�̄�𝑏𝐷(r2) (𝑞2)𝑏𝐵 (r2)

)︁
∓ (𝑞1 ↔ 𝑞2)

)︀
,

(4.12)

where C = 𝛾0𝛾2 is the charge conjugation matrix. The ∓ sign distinguishes between
antisymmetric and symmetric trial states, corresponding to 𝐼 = 0 and 𝐼 = 1 if 𝑞1 = 𝑢 and
𝑞2 = 𝑑.

The correlation function for this operator is given by

C
∓,𝛤
�̄��̄�𝑞1𝑞2

(r1, r2, 𝑡2 − 𝑡1) =
⟨︀
𝛺
⃒⃒ (︁

O
∓,𝛤
�̄��̄�𝑞1𝑞2

(r1, r2, 𝑡1)
)︁†

O
∓,𝛤
�̄��̄�𝑞1𝑞2

(r1, r2, 𝑡2)
⃒⃒
𝛺
⟩︀

=
⟨︀ (︁
𝛤𝐴𝐵𝛤𝐶𝐷�̄�

𝑎
𝐶(r1, 𝑡1) (𝑞1)𝑎𝐴 (r1, 𝑡1)�̄�𝑏𝐷(r2, 𝑡1) (𝑞2)𝑏𝐵 (r2, 𝑡1)

)︁†

× 𝛤𝐸𝐹𝛤𝐺𝐻�̄�
𝑐
𝐺(r1, 𝑡2) (𝑞1)𝑐𝐸 (r1, 𝑡2)�̄�𝑑𝐻(r2, 𝑡2) (𝑞2)𝑑𝐹 (r2, 𝑡2)

−
(︁
𝛤𝐴𝐵𝛤𝐶𝐷�̄�

𝑎
𝐶(r1, 𝑡1) (𝑞1)𝑎𝐴 (r1, 𝑡1)�̄�𝑏𝐷(r2, 𝑡1) (𝑞2)𝑏𝐵 (r2, 𝑡1)

)︁†

× 𝛤𝐸𝐹𝛤𝐺𝐻�̄�
𝑐
𝐺(r1, 𝑡2) (𝑞2)𝑐𝐹 (r1, 𝑡2)�̄�𝑑𝐻(r2, 𝑡2) (𝑞1)𝑑𝐸 (r2, 𝑡2)

∓ (𝑞1 ↔ 𝑞2)
⟩︀
. (4.13)

Using Wick’s theorem, we express the correlation function (4.13) in terms of quark
propagators 𝑀−1,⟨︀

𝜑𝑖1𝜑𝑗1 · · ·𝜑𝑖𝑛𝜑𝑗𝑛
⟩︀

= (−1)𝑛
∑︁

𝑃 (1,2,...,𝑛)

sign(𝑃 )
(︀
𝑀−1)︀

𝑖1𝑗𝑃1

(︀
𝑀−1)︀

𝑖2𝑗𝑃2
· · ·
(︀
𝑀−1)︀

𝑖𝑛𝑗𝑃𝑛
,

(4.14)

where 𝜑 represents the quark fields 𝑄, 𝑞1 and 𝑞2. For 𝑛 = 4, we consider the sum of
twenty-four permutations, but most terms vanish since only quark operators with matching
flavors can form a propagator. Additionally, static quarks 𝑄 can only propagate in the
time direction. Consequently, each term in (4.13) contributes only once to the correlator.
We obtain

C
∓,𝛤
�̄��̄�𝑞1𝑞2

(r1, r2, 𝑡2 − 𝑡1) =
⟨(︀

𝛾0𝛤
†𝛾0
)︀
𝐷𝐶

(︀
𝛾0𝛤

†𝛾0
)︀
𝐵𝐴

𝛤𝐸𝐹𝛤𝐺𝐻

[︂
Trcolor

[︁(︀
Q−1)︀

𝐶𝐺
(r1, 𝑡1; r1, 𝑡2)

(︀
D−1
𝑞1

)︀
𝐸𝐴

(r1, 𝑡2; r1, 𝑡1)
]︁

× Trcolor

[︁(︀
Q−1)︀

𝐻𝐷
(r2, 𝑡1; r2, 𝑡2)

(︀
D−1
𝑞2

)︀
𝐹𝐵

(r2, 𝑡2; r2, 𝑡1)
]︁

+ Trcolor

[︂ (︀
Q−1)︀

𝐶𝐺
(r1, 𝑡1; r1, 𝑡2)

(︀
D−1
𝑞2

)︀
𝐹𝐵

(r1, 𝑡2; r2, 𝑡1)
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×
(︀
Q−1)︀

𝐻𝐷
(r2, 𝑡1; r2, 𝑡2)

(︀
D−1
𝑞1

)︀
𝐸𝐴

(r2, 𝑡2; r1, 𝑡1)
]︂

∓ (𝑞1 ↔ 𝑞2)
]︂⟩
. (4.15)

Substituting the static quark propagator from (4.9), we obtain two connected and two
disconnected diagrams,

C
∓,𝛤
�̄��̄�𝑞1𝑞2

(r1, r2, 𝑡2 − 𝑡1) =Trspin

[︂(︀
𝛾0𝛤

†𝛾0
)︀(︂1 − 𝛾0

2

)︂
𝛤

(︂
1 − 𝛾0

2

)︂]︂
e−2𝑀(𝑡2−𝑡1)

×
⟨(︀

𝛾0𝛤
†𝛾0
)︀
𝐵𝐴

𝛤𝐸𝐹

[︂
Trcolor

[︁
𝑈(r1, 𝑡1; r1, 𝑡2)

(︀
𝐷−1
𝑞1

)︀
𝐸𝐴

(r1, 𝑡2; r1, 𝑡1)
]︁

× Trcolor

[︁
𝑈(r2, 𝑡1; r2, 𝑡2)

(︀
𝐷−1
𝑞2

)︀
𝐹𝐵

(r2, 𝑡2; r2, 𝑡1)
]︁

+ Trcolor

[︂
𝑈(r1, 𝑡1; r1, 𝑡2)

(︀
𝐷−1
𝑞2

)︀
𝐹𝐵

(r1, 𝑡2; r2, 𝑡1)

× 𝑈(r2, 𝑡1; r2, 𝑡2)
(︀
𝐷−1
𝑞1

)︀
𝐸𝐴

(r2, 𝑡2; r1, 𝑡1)
]︂

∓ (𝑞1 ↔ 𝑞2)
⟩

∝
𝑞1𝑞2

∓
𝑞1𝑞2

+
𝑞2𝑞1

∓
𝑞2𝑞1

. (4.16)

Assuming isospin symmetry with 𝑞1 = 𝑢 and 𝑞2 = 𝑑, the correlation function reduces to
two diagrams,

C
∓,𝛤
�̄��̄�𝑢𝑑

(r1, r2, 𝑡2 − 𝑡1) ∝ ∓ . (4.17)

In practice, it is advantageous to consider the ratio of the �̄��̄�𝑞1𝑞2 correlator C∓,𝛤
�̄��̄�𝑞1𝑞2

(r1, 𝑡1|r2, 𝑡2)
to the static-light correlator C�̄�𝑞(𝑡1, 𝑡2),

C
∓,𝛤
�̄��̄�𝑞1𝑞2

(r1, r2, 𝑡2 − 𝑡1)(︁
C𝑆
�̄�𝑞1

(𝑡2 − 𝑡1)
)︁(︁

C𝑆
�̄�𝑞2

(𝑡2 − 𝑡1)
)︁

−−−→
𝑡→∞

𝐴 exp
(︁

−
(︁
𝑉 ∓,𝛤
�̄��̄�𝑞1𝑞2

(r2 − r1) −
(︁
𝑚𝑆
�̄�𝑞1

+𝑚𝑆
�̄�𝑞2

)︁)︁
(𝑡2 − 𝑡1)

)︁
, (4.18)

where 𝑚𝑆
�̄�𝑞

denotes the mass of the ground state of the static-light meson with light quark
𝑞. The potential 𝑉 ∓,𝛤

�̄��̄�𝑞1𝑞2
(r2 − r1) is by construction normalized with 𝑚𝑆

�̄�𝑞1
+𝑚𝑆

�̄�𝑞2
, when
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considering this ratio. Excitations may cancel each other, particularly at large distances
where the �̄��̄�𝑞1𝑞2 system is essentially two non-interacting static-light mesons.

Quantum numbers of �̄��̄�𝑞1𝑞2 static potentials
Static �̄��̄�𝑞1𝑞2 potentials can be classified using three quantum numbers:

• Total angular momentum along the separation axis |𝑗𝑧|,
• Parity P,
• Reflection symmetry along an axis perpendicular to the separation axis P𝑥.

The structure of the light quarks, 𝛤 in Eqn. (4.16), dictates the quantum numbers of the
system, while the correlator remains invariant under the spin choice of the static quarks,
which decouples as a constant. There are four possible choices for the spin structure of
the static quarks that yield a non-zero correlation function: (1 + 𝛾0)𝛾5 or (1 + 𝛾0)𝛾𝑗 with
𝑗 = 1,2,3, all of which produce the same correlators. However, considering symmetry
transformations, such as parity or rotations in spin space (corresponding to the angular
momentum quantum number), of the operator in Eqn. (4.12), the heavy quark structure
also contributes, albeit equivalently to each sector. We choose 𝛤 = (1 + 𝛾0)𝛾5, with which
the static quarks carry zero angular momentum and even P and P𝑥. Thus, it is sufficient
to consider the light quark spin structure, which immediately yields the quantum numbers
of the system.

We can write down the light quark part of the operator from Eqn. (4.12) as(︀
O𝛤𝑞1𝑞2(𝑟)

)︀𝑎𝑏 = (𝑞𝑎1(−𝑟))𝑇 C𝛤𝑞𝑏2(𝑟) ∓ (𝑞1 ↔ 𝑞2), (4.19)

where we assumed r1 = (0,0,− 𝑟) and r2 = (0,0,𝑟). Note that this partial operator carries
two open color indices, 𝑎 and 𝑏, which are contracted with the static quark part of the full
operator. To illustrate how to obtain the quantum numbers for a spin structure 𝛤 , we will
derive |𝑗𝑧|, P, and P𝑥 for an exemplary light quark spin 𝛤 = 𝛾5.

The angular momentum can be determined by using the rotation operator around the
separation axis (w.l.o.g. 𝑧-axis) �̂�3(𝛼), which in spin space can be represented as a function
of the 𝛾-matrices via

R3(𝛼)(𝜓(𝑟)) = exp
(︂

1
2𝛼 [𝛾1, 𝛾2]

)︂
𝜓(𝑟) =

(︂
1 + 1

2𝛼 [𝛾1, 𝛾2] + O(𝛼2)
)︂
𝜓(𝑟). (4.20)

Applying this to O
𝛾5
𝑞1𝑞2(𝑟) yields

�̂�3(𝛼)
(︀
O𝛾5
𝑞1𝑞2(𝑟)

)︀𝑎𝑏
�̂�†

3(𝛼) = (𝑞𝑎1(−𝑟))𝑇
(︂

1 + 1
2𝛼 [𝛾1, 𝛾2] + O(𝛼2)

)︂𝑇
× 𝛾0𝛾2𝛾5

(︂
1 + 1

2𝛼 [𝛾1, 𝛾2] + O(𝛼2)
)︂
𝑞𝑏2(𝑟) ∓ (𝑞1 ↔ 𝑞2)

= (𝑞𝑎1(−𝑟))𝑇𝛾0𝛾2𝛾5𝑞
𝑏
2(𝑟) + O(𝛼2) ∓ (𝑞1 ↔ 𝑞2)

=
(︀
O𝛾5
𝑞1𝑞2(𝑟)

)︀𝑎𝑏 + O(𝛼2), (4.21)
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which corresponds to angular momentum 𝐽3 = |𝑗𝑧| = 0, when comparing with R3(𝛼)(𝜓(𝑟)) =
(1 + 𝑖𝛼𝐽3 + O(𝛼2))𝜓(𝑟).

The parity transformation 𝑃 in spin space is realized by P𝜓(𝑟) = 𝛾0 𝜓(−𝑟), thus the
trial state transforms according to

𝑃
(︀
O𝛾5
𝑞1𝑞2(𝑟)

)︀𝑎𝑏
𝑃 † = (𝑞𝑎1(+𝑟))𝑇 𝛾0𝛾0𝛾2𝛾5𝛾0 𝑞

𝑏
2(−𝑟) ∓ (𝑢 ↔ 𝑑)

= −(𝑞𝑏2(−𝑟))𝑇 𝛾0𝛾5𝛾2 𝑞
𝑎
1(+𝑟) ∓ (𝑢 ↔ 𝑑)

= (𝑞𝑏2(−𝑟))𝑇 C𝛾5 𝑞
𝑎
1(+𝑟) ∓ (𝑢 ↔ 𝑑)

= ∓
(︀
O𝛾5
𝑞1𝑞2(𝑟)

)︀𝑏𝑎
, (4.22)

where in step two the nature of Grassmann numbers was used. The color indices 𝑎 and 𝑏
switch in comparison to the initial operator, which is compensated by a switch of the same
color indices in the static quark part of the operator when applying this transformation.
Thus, this results in negative parity P = − for antisymmetric flavor content (corresponding
to 𝐼 = 0 for 𝑞1 = 𝑢 and 𝑞2 = 𝑑) and P = + for symmetric flavor content (corresponding to
𝐼 = 1 for 𝑞1 = 𝑢 and 𝑞2 = 𝑑).

The reflection along a perpendicular axis to the separation axis 𝑃𝑥 can be realized by
rotating around this axis, w.l.o.g. the 𝑥-axis, using the rotation operator R1(𝛼)(𝜓(𝑟)) and
applying parity transformation 𝑃 afterwards,

𝑃𝑥
(︀
O𝛾5
𝑞1𝑞2(𝑟)

)︀𝑎𝑏
𝑃𝑥 = 𝑃�̂�1(𝛼)O𝛾5

𝑞1𝑞2(𝑟)�̂�†
1(𝛼)𝑃 †

= 𝑢𝑇 (−𝑟)
(︂

1 + 1
2𝛼 [𝛾2, 𝛾3] + O(𝛼2)

)︂𝑇
𝛾0𝛾0𝛾2𝛾5𝛾0

(︂
1 + 1

2𝛼 [𝛾2, 𝛾3] + O(𝛼2)
)︂
𝑑(𝑟) ∓ (𝑢 ↔ 𝑑)

= 𝑢𝑇 (−𝑟)𝛾0𝛾2𝛾5𝑑(𝑟) + O(𝛼2) ∓ (𝑢 ↔ 𝑑),

= +
(︀
O𝛾5
𝑞1𝑞2(𝑟)

)︀𝑎𝑏
, (4.23)

i.e. P𝑥 = +.
The symmetries derived in this chapter all refer to the continuum. The P and P𝑥

symmetries are discrete and transfer trivially to the lattice. The rotational symmetry
corresponding to the quantum number |𝑗𝑧|, however, is a continuum symmetry, which
breaks down into subgroups on the lattice. The following section is dedicated to discussing
this topic.

Angular momentum |𝐿| and rotational symmetry on the lattice
When computing the potential between two static quarks, the quark positions define a
separation distance. On a lattice, a natural choice is to place both quarks along one
coordinate axis. For instance, if the first quark is at the spatial position (0,0,0), the second
quark can be placed at (𝑟,0,0), (0,𝑟,0), or (0,0,𝑟), creating a pair with separation distance
𝑟. These are referred to as ”on-axis” separations. It is also possible to place quarks in
more complex relative positions, referred to as ”off-axis” separations.
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In the continuum, the system of static quarks is characterized by cylindrical symmetry
around the separation axis of the quarks, denoted as 𝐷∞ℎ. The 𝐷 indicates cylindrical
symmetry and ∞ℎ signifies an infinite number of possible rotations around this axis. This
rotation group is directly related to the angular momenta of the state. The 𝐷∞ℎ symmetry
in the continuum allows for an infinite number of angular momentum representations
(𝐿 = 0,±1,±2, . . .).

On a discretized lattice, this symmetry breaks down to a subgroup. For on-axis separa-
tions, there are only four possible rotations around the axis, resulting in a 𝐷4ℎ symmetry.
This reduction means it is impossible to distinguish an infinite number of angular momenta,
leading to the mixing of continuum representations.

To investigate this mixing, we first construct a generic trial state |𝐻⟩ with defined
angular momentum 𝐿, which in the continuum can be written as

|𝐻⟩ =
ˆ 2𝜋

0
d𝜑 exp(𝑖𝐿𝜑)O(𝜑) |𝛺⟩ , (4.24)

where O(𝜑) is an operator depending on the angle 𝜑 with respect to the separation axis.
On the lattice, the integral becomes a sum over the possible rotations 𝑛,

|𝐻⟩ =
𝑛∑︁
𝑘=0

exp(2𝑖𝐿𝑘𝜋/𝑛)O(2𝜋𝑘/𝑛) |𝛺⟩ . (4.25)

For on-axis separations, the remaining symmetry is 𝐷4ℎ, corresponding to 𝑛 = 4 possible
rotations by 0∘, 90∘, 180∘, and 270∘. We define a rotation 𝑅|𝐿|(𝜑) with respect to the
absolute value of the angular momentum |𝐿| according to

𝑅|𝐿|(𝜑) = 1
2 (exp(2𝑖𝐿𝜑) + exp(−2𝑖𝐿𝜑)) , (4.26)

and rewrite Eqn. (4.25) to obtain

|𝐻⟩ =
𝑛∑︁
𝑘=0

𝑅|𝐿|(2𝜋𝑘/𝑛)O(2𝜋𝑘/𝑛) |𝛺⟩ . (4.27)

We can identify which continuum representations mix by investigating 𝑅|𝐿|(0∘), 𝑅|𝐿|(90∘),
𝑅|𝐿|(180∘), and 𝑅|𝐿|(270∘). Their values are collected in the first row of Tab. 4.1, showing
that angular momenta |𝐿| = 0,4,8, . . ., |𝐿| = 1,3,5, . . ., and |𝐿| = 2,6,10, . . . produce the
same 𝑅|𝐿|(𝜑). This implies that only three different angular momentum representations can
be constructed, and a trial state will always mix an infinite number of angular momenta
within each representation. However, the lowest energy eigenstate in a given state typically
corresponds to the lowest angular momentum in this representation. Consequently, studying
the ground states for angular momenta |𝐿| = 0,1,2 for on-axis separations is generally
straightforward.

The relative position of the quarks can also be more complex. For instance, if the first
quark is at (0,0,0), the second quark can be positioned at (𝑎,𝑏,𝑐) where at least two out of
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origin

𝐷4ℎ

𝐷3𝑑

𝐷2ℎ

𝐶2ℎ/𝐶𝑖

Figure 4.1: On- and off-axis separations and corresponding symmetry groups.

Table 4.1: Remaining symmetries on the lattice for different separation axes. The first column
displays the separation axis of the static anti-quark pair with numbers a, b, and c different
from each other and 0. The fourth column shows which angular momenta mix. The last four
columns show how these angular momenta are realized on the lattice in terms of the eigenvalues
of the rotation operator 𝑅|𝐿|(𝜃) from Eqn. (4.26) with 𝜃 ∈ {𝑘 · 2𝜋/𝑛} with 𝑘 < 𝑛, 𝑘 ∈ N0
acting on a trial state.

Axis Symmetry group 𝑛 |𝐿| 𝑅|𝐿|(0) 𝑅|𝐿|(𝜋/2) 𝑅|𝐿|(𝜋) 𝑅|𝐿|(3𝜋/2)
(0,0,𝑎) 𝐷4ℎ 4 0,4,8,. . . 1 1 1 1

1,3,5,. . . 1 0 -1 0
2,6,10,. . . 1 -1 1 -1

𝑅|𝐿|(0) 𝑅|𝐿|(𝜋/3) 𝑅|𝐿|(2𝜋/3)
(𝑎,𝑎,𝑎) 𝐷3𝑑 3 0,3,6,. . . 1 1 1

1,2,4,. . . 1 ±1 -1
𝑅|𝐿|(0) 𝑅|𝐿|(𝜋)

(0,𝑎,𝑎) 𝐷2ℎ 2 0,2,4,. . . 1 1
1,3,5,. . . 1 -1

𝑅|𝐿|(0)
(0,𝑎,𝑏) 𝐶2ℎ 1 0,1,2,. . . 1
(𝑎,𝑎,𝑏) 𝐶2ℎ
(𝑎,𝑏,𝑐) 𝐶𝑖

𝑎,𝑏,𝑐 are non-zero. The separation distance of the quarks is 𝑟 =
√
𝑎2 + 𝑏2 + 𝑐2, referred to

as an ”off-axis” separation.
The symmetry also changes for these separations, as rotations by 90∘ are no longer

possible. We distinguish three relative positions for the second quark:

• On the space diagonal, parametrized by (𝑎, 𝑎, 𝑎). The remaining symmetry is 𝐷3𝑑,
i.e., 𝑛 = 3 possible rotations by 0∘, 120∘, 240∘.

• On the plane diagonal, parametrized by (𝑎, 𝑎, 0) and permutations. The remaining
symmetry is 𝐷2ℎ, i.e., 𝑛 = 2 possible rotations by 0∘, 180∘.

• In a different position, parametrized by (0, 𝑎, 𝑏), (𝑎, 𝑎, 𝑏), or (𝑎, 𝑏, 𝑐) and permutations.
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The remaining group is 𝐶2ℎ, 𝐶2ℎ, or 𝐶𝑖, respectively, with only 𝑛 = 1 rotation by 0∘

possible.

Fig. 4.1 illustrates these relative quark positions on the lattice and the corresponding
symmetry groups. Each symmetry group’s properties and angular momenta mixing are
summarized in Tab. 4.1. Generally, the mixing of angular momenta due to the rotation
group becomes more problematic with off-axis separations.

Assuming the typical case where the lowest energy state has |𝐿| = 0 and larger angular
momentum states have higher energy, the ground state can still be extracted for all off-
axis separations but may suffer from more contamination by higher angular momentum
states. However, studying |𝐿| = 1 states becomes impossible for off-axis separations with
symmetries 𝐶2ℎ or 𝐶𝑖, as there is overlap with a lower energy state with |𝐿| = 0, and
the trial state will ultimately probe the lower-lying state instead. Thus, in this case, it
is recommended to include only off-axis separations with symmetry groups 𝐷2ℎ and 𝐷3𝑑.
Other off-axis separations could still be included when the ground and excited states are
rigorously separated by considering correlation matrices [67].

Shapes of �̄��̄�𝑞1𝑞2 potentials
We can phenomenologically deduce the shape of possible potentials depending on their
quantum numbers. We expect that at large separations, the potential will asymptotically
approach the mass of two static light mesons. There are three possible asymptotic values,
which correspond to the combination of two static-light mesons with either parity − (𝑆) or
parity + (𝑃−).

Furthermore, at small distances we expect the dominant effect to be one-gluon exchange,
which can either be attractive or repulsive. A simple rule to determine whether a potential
for a given operator will be attractive or repulsive is introduced in [30]. It states that if
the trial state is symmetric/antisymmetric under meson exchange, i.e., under combined
exchange of flavor, spin, and parity, the resulting potential is attractive/repulsive.

This can be understood by investigating the symmetry of the wave functions. When we
consider the one-gluon exchange of the heavy pair of antiquarks �̄��̄� at small separations,
the potential is Coulomb-like, i.e., 𝑉 (𝑟) ∝ 𝑔2/𝑟 with the coupling 𝑔 and separation distance
𝑟. The �̄��̄� can be either in a color triplet representation 3 or anticolor sextet representation
6̄, which has respectively a positive (3) or negative (6̄) proportionality constant, due to
the Casimir scaling, which corresponds to an attractive potential for the color triplet 3
and a repulsive potential for the anticolor sextet 6̄. To produce a colorless state, the light
quarks have to be in the antisymmetric color anti-triplet 3̄ if the static quarks are in
the 3 representation and in a symmetric color sextet 6 if the static quarks are in the 6̄
representation. To ensure the antisymmetry of the light quarks, the combined symmetry
with respect to the exchange of flavor, spin, and parity of the light quarks then has to be
symmetric for the color anti-triplet 3̄, leading to an attractive potential and antisymmetric
for the anticolor sextet 6̄, leading to a repulsive potential.

There are six qualitatively different shapes for the resulting potentials, as they can
be either attractive (A) or repulsive (R) and have three possible asymptotic values SS
(𝑚𝑆

�̄�𝑞1
+𝑚𝑆

�̄�𝑞2
), SP (𝑚𝑆

�̄�𝑞1
+𝑚

𝑃−
�̄�𝑞2

) and PP (𝑚𝑃−
�̄�𝑞1

+𝑚
𝑃−
�̄�𝑞2

). In Tab. 4.2, we summarize a
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Table 4.2: Quantum numbers and properties of the resulting �̄��̄�𝑞1𝑞2 potentials: A =
attractive, R = repulsive; SS, SP ,PP = asymptotic value 𝑚𝑆

�̄�𝑞1
+ 𝑚𝑆

�̄�𝑞2
, 𝑚𝑆

�̄�𝑞1
+ 𝑚

𝑃−
�̄�𝑞2

,
𝑚

𝑃−
�̄�𝑞1

+𝑚
𝑃−
�̄�𝑞2

.

𝑞1𝑞2 − 𝑞2𝑞1 𝑞1𝑞2 + 𝑞2𝑞1
𝛤 |𝑗𝑧| P,P𝑥 shape |𝑗𝑧| P,P𝑥 shape

𝛾5 + 𝛾0𝛾5 0 −,+ A,SS 0 +,+ R,SS
1 0 +,− A,SP 0 −,− R,SP
𝛾0 0 −,− R,SP 0 +,− A,SP

𝛾5 − 𝛾0𝛾5 0 −,+ A,PP 0 +,+ R,PP
𝛾3 + 𝛾0𝛾3 0 +,− R,SS 0 −,− A,SS
𝛾3𝛾5 0 +,+ A,SP 0 −,+ R,SP
𝛾0𝛾3𝛾5 0 −,+ R,SP 0 +,+ A,SP
𝛾3 − 𝛾0𝛾3 0 +,− R,PP 0 −,− A,PP

𝛾1/2 + 𝛾0𝛾1/2 1 +,+ /− R,SS 1 −,+ /− A,SS
𝛾1/2𝛾5 1 +,− /+ A,SP 1 −,− /+ R,SP
𝛾0𝛾1/2𝛾5 1 −,− /+ R,SP 1 +,− /+ A,SP

𝛾1/2 − 𝛾0𝛾1/2 1 +,+ /− R,PP 1 −,+ /− A,PP

complete set of sixteen 𝛤 operators and the corresponding quantum numbers and potential
shapes for 𝐼 = 0 and 𝐼 = 1. Note that the operators containing 𝛾1/𝛾2 are degenerate due
to symmetry, as they correspond to the two axes perpendicular to the separation axis.
Typically, this degeneracy is used to combine results and increase statistics.

4.3.2 �̄�𝑄𝑞𝑞

Correlation function
The �̄�𝑄𝑞𝑞 system is more intricate, as generally more channels contribute. Specifically,
�̄�𝑄𝑞𝑞 states can receive contributions from conventional quarkonium �̄�𝑄. Consequently, at
a minimum, one must consider both a quarkonium operator O�̄�𝑄 and a �̄�𝑄�̄�𝑙 operator O�̄�𝑄�̄�𝑙
to study this tetraquark system adequately, where �̄�𝑙 = �̄�𝑢+ 𝑑𝑑 is the 𝐼 = 0 combination
of 𝑢/𝑑 light quarks. The correlation matrix can then be expressed as

C�̄�𝑄�̄�𝑙(r1, 𝑡1|r2, 𝑡2)

=

⎛⎝ ⟨O�̄�𝑄(r1, r2, 𝑡1)
⃒⃒⃒
O�̄�𝑄(r1, r2, 𝑡2)

⟩ ⟨
O�̄�𝑄�̄�𝑙(r1, r2, 𝑡1)

⃒⃒⃒
O�̄�𝑄(r1, r2, 𝑡2)

⟩⟨
O�̄�𝑄(r1, r2, 𝑡1)

⃒⃒⃒
O�̄�𝑄�̄�𝑙(r1, r2, 𝑡2)

⟩ ⟨
O�̄�𝑄�̄�𝑙(r1, r2, 𝑡1)

⃒⃒⃒
O�̄�𝑄�̄�𝑙(r1, r2, 𝑡2)

⟩⎞⎠

=

⎛⎜⎜⎜⎜⎜⎜⎝
√
𝑛𝑓

√
𝑛𝑓 − 𝑛𝑓

⎞⎟⎟⎟⎟⎟⎟⎠ , (4.28)



4.4 Fermion propagator computation 23

where 𝑛𝑓 denotes the number of degenerate light flavors, e.g., 𝑛𝑓 = 2 for degenerate 𝑢 and
𝑑 quarks. This correlation matrix is derived and discussed in detail in [72]. Note that the
upper left element of the correlation matrix corresponds to the conventional Wilson loop,
while the remaining elements also incorporate light quark propagators.

This correlation matrix can be straightforwardly expanded to include additional channels.
For instance, in [73] and [74], the correlation matrix is extended by introducing a third
channel that includes light strange quarks via a �̄�𝑄𝑠𝑠 operator.

Quantum numbers of �̄�𝑄𝑞𝑞 static potentials
Static quark-antiquark potentials are typically characterized by the following three quantum
numbers, denoted as 𝛬𝜀𝜂:

• 𝛬 = 𝛴,𝛱,𝛥, . . . ⇔ |𝐿| = 0, 1, 2, . . .: Total angular momentum with respect to the
separation axis of the antiquarks.

• 𝜂 = 𝑔, 𝑢 ⇔ P ∘ C = +,−: Behavior under parity P and charge conjugation C.

• 𝜀 = +,− ⇔ P𝑥 = +,−: Behavior under reflection along an axis perpendicular to the
separation axis.

If the system contains 𝑢 and 𝑑 quarks, isospin 𝐼 is also a quantum number.

4.4 Fermion propagator computation
While computing gauge-like observables on the lattice is relatively straightforward by
multiplying elements of the 𝑆𝑈(3) groups connecting the lattice points, e.g., as in Eqn.
(4.11), computing fermionic structures is generally more complex. The quark propagator
D−1 is given by the inverse of the Dirac operator D. Naively inverting this operator would
lead to 3 × 4 × 𝐿3 × 𝑇 equations of the form

𝐷𝑎𝑏
𝐴𝐵(𝑥; 𝑦)𝐺𝑏𝑐𝐵𝐶(𝑦; 𝑧) = 𝛿(𝑥− 𝑧)𝛿𝐴𝐶𝛿𝑎𝑐. (4.29)

For typical lattice sizes of around 𝐿 = 𝑇/2 = 32, we would need to solve over ten million
equations, making the numerical solution of this equation infeasible. Additionally, the
entries of this full propagator would be highly correlated on a given gauge configuration.
For these reasons, one computes estimates of this propagator instead. This estimation
always revolves around solving the system of equations

D𝑎𝑏
𝐴𝐵(𝑦;𝑥)𝜑𝑏𝐵(𝑥) = 𝜂𝑎𝐴(𝑦) (4.30)

with source field 𝜂𝑎𝐴(𝑦) and sink field 𝜑𝑏𝐵(𝑥), which is usually referred to as the ”propagator”.
The source field 𝜂𝑎𝐴(𝑦) is usually given, and 𝜑𝑏𝐵(𝑥) is determined by inverting the Dirac
operator D𝑎𝑏

𝐴𝐵(𝑦;𝑥) with respect to 𝜂𝑎𝐴(𝑦). We will briefly discuss the most straightforward
method, computing one column of this propagator, referred to as the point-to-all propagator.
Then, we will explain in detail the stochastic propagator used for computations in this
work.
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4.4.1 Point-to-all propagator

QCD is invariant under spatial translation, and thus, it is often sufficient to consider the
propagation from one point to all other points. This leads to the system of equations

D𝑎𝑏
𝐴𝐵(𝑦;𝑥)𝜑𝑏𝐵(𝑥)[𝐶,𝑐,𝑧] = 𝜂𝑎𝐴(𝑦)[𝐶,𝑐,𝑧] with 𝜂𝑎𝐴(𝑦)[𝐶,𝑐,𝑧] = 𝛿(𝑥,𝑦)𝛿𝐴𝐶𝛿𝑎𝑐, (4.31)

which has to be solved twelve times, i.e., for each combination of color and spin indices, to
obtain one column in position space of the full propagator. The cornered brackets indicate
the indices in color, spin, and position space of the non-zero component of the point source.
This results in the twelve solutions 𝜑𝑏𝐵(𝑥)[𝐶,𝑐,𝑧], which are the point-to-all propagators,
i.e.,

𝜑𝑎𝐴(𝑥)[𝐵,𝑏,𝑦] =
(︀
D−1)︀𝑎𝑏

𝐴𝐵
(𝑥; 𝑦). (4.32)

This method is particularly suited for correlators where all propagators start at the same
spacetime point and thus can be expressed by the point-to-all propagator straightforwardly.
However, this is not the case for multi-particle systems; therefore, more sophisticated
methods are needed.

4.4.2 Stochastic timeslice-to-all propagators

There are also stochastic methods to estimate the quark propagator numerically. A
prevalent method is stochastic timeslice-to-all propagators. This means a random source
propagating to any spatial point on a given timeslice to all spacetime points of the lattice.
We define 𝑁 stochastic timeslice-sources according to

𝜂𝑎𝐴(𝑡,x)[𝑡0,𝑛] = 𝛿𝑡𝑡0𝜁
𝑎
𝐴(x)[𝑛], (4.33)

where 𝜁𝑎𝐴(x)[𝑛] are uniformly distributed random numbers that satisfy

1
𝑁

𝑁∑︁
𝑛=1

(𝜁𝑎𝐴(x)[𝑛])* 𝜁𝑏𝐵(y)[𝑛] = 𝛿(x,y)𝛿𝐴𝐶𝛿𝑎𝑐 + O(𝑁−𝛼), (4.34)

where O(𝑁−𝛼) indicates an unbiased noise created by the random variables. A common
and straightforward choice is 𝜁𝑎𝐴(x)[𝑛] ∈ {(±1 ± 𝑖)/

√
2}, which creates an unbiased noise

of O(1/
√

2), i.e., 𝛼 = 1/2. This yields the system of linear equations

D𝑎𝑏
𝐴𝐵(𝑡2,y; 𝑡1,x)𝜑𝑏𝐵(𝑡1,x)[𝑡0,𝑛] = 𝜂𝑎𝐴(𝑡2,y)[𝑡0,𝑛]. (4.35)

The propagator can then be estimated as

1
𝑁

𝑁∑︁
𝑛=1

𝜑𝑎𝐴(𝑡1,x)[𝑡0,𝑛]
(︁
𝜂𝑏𝐵(𝑡2,y)[𝑡0,𝑛]

)︁†

=
(︀
D−1)︀𝑎𝑐

𝐴𝐶
(𝑥; 𝑧) 1

𝑁

𝑁∑︁
𝑛=1

𝜂𝑐𝐶(𝑡2,z)[𝑡0,𝑛]
(︁
𝜂𝑏𝐵(𝑡2,y)[𝑡0,𝑛]

)︁†
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=
(︀
D−1)︀𝑎𝑏

𝐴𝐵
(𝑥; y,𝑡0) +

∑︁
𝑐,𝐶,z

(︀
D−1)︀𝑎𝑐

𝐴𝐶
(𝑥; z,𝑡0)O(𝑁−𝛼), (4.36)

where we used Eqn. (4.34) in the second step and O(𝑁−𝛼) corresponds to the unbiased
noise created by the random variables.

Because of the additional noise introduced to the system, stochastic propagators must
be used carefully. The number of noise sources should be kept small enough to minimize
stochastic noise, but at the same time, more sources can also increase statistics. At a
minimum, the number of stochastic sources must be larger than the number of propagators
in the operator.

4.5 Smearing techniques
To ensure that the trial states created by the operators have a significant overlap with
the ground state, it is crucial to employ smearing techniques. The large overlap allows
for extracting effective masses or potentials at relatively small time separations, where
the signal-to-noise ratio remains favorable. Smearing enhances the overlap by replacing
the quark fields with a linear combination of the original fields and their neighbors. This
process is iterative, and the number of smearing steps and parameters must be optimized.
Spatial smearing effectively extends the fields, increasing their overlap with the ground
state. However, smearing of the time links must be performed cautiously as it alters the
action. The following sections discuss the smearing techniques utilized in this work.

4.5.1 APE-smearing of gauge links
APE smearing [75] replaces the original gauge links 𝑈𝑗(𝑥) with a linear combination of
the original link and its staples (see Fig. 4.2, left). The staples are the links connected to
the original link by a path of length one. The APE-smearing is defined by the iterative
equation

𝑈𝑁APE
𝑗 (𝑥) = 𝑃SU(3)

(︂
𝑈𝑁APE−1
𝑗 (𝑥)

+ 𝛼APE

𝑘 ̸=±𝑗∑︁
𝑘=±1,±2,±3

(︁
𝑈𝑁APE−1
𝑘 (𝑥)𝑈𝑁APE−1

𝑗 (𝑥+ 𝑘)𝑈𝑁APE−1†
𝑘 (𝑥+ �̂�)

)︁)︂
,

(4.37)

where 𝑃SU(3) denotes the projection of the link back to the SU(3) group. The parameter
𝛼APE and the number of smearing steps must be optimized. Typical parameters are
𝛼APE = 0.5, and the number of smearing steps ranging from 𝑁APE = 10 to 𝑁APE = 50,
depending on the lattice spacing 𝑎.

4.5.2 Gaussian smearing of source and sink
Gaussian smearing [76] replaces the original quark fields with a linear combination of the
original field and its neighbors. This iterative process requires optimization of the number
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of smearing steps and parameters. The smearing is defined by the iterative equation

𝜓𝑁Gauss(𝑥) = 1
1 + 6𝜅

(︂
𝜓𝑁Gauss−1(𝑥)+

+ 𝜅
∑︁

𝑘=±1,±2,±3

(︁
𝑈𝑘(𝑥)𝜓𝑁Gauss−1(𝑥+ 𝑘)

)︁)︂
, (4.38)

where 𝜅 is the smearing parameter and 𝑁Gauss is the number of smearing steps. The width
of the Gaussian smearing can be controlled by the number of smearing steps and the
smearing parameter, approximated by

𝜎 ≈
√︂

2𝑁Gauss𝜅

1 + 6𝜅 . (4.39)

Typical parameters are 𝜅 = 0.5, and the number of smearing steps ranging from 𝑁Gauss = 10
to 𝑁Gauss = 120, depending on the lattice spacing 𝑎. Eqn. (4.39) can be used to tune
the number of smearing steps, ensuring that the smearing width remains constant across
different lattice spacings 𝑎.

4.5.3 HYP static action
The HYP static action, also known as hypercubic blocking, extends the thin link in the
time direction to a hypercubic block through multiple APE-like blocking steps (see Fig.
4.2(b), right). This involves three steps of APE-smearing, each followed by a projection
back to the SU(3) group,

𝑈𝐻𝑌 𝑃𝜇 (𝑥) = 𝑃SU(3)

⎡⎣(1 − 𝛼1)𝑈𝜇(𝑥) + 𝛼1
6
∑︁

±𝜈 ̸=𝜇
𝑉𝜈;𝜇(𝑥)𝑉𝜈;𝜇(𝑥+ 𝜈)𝑉 †

𝜈;𝜇(𝑥+ �̂�)

⎤⎦ ,
𝑉𝜇,𝜈(𝑥) = 𝑃SU(3)

⎡⎣(1 − 𝛼2)𝑈𝜇(𝑥) + 𝛼2
4

∑︁
±�̸�=𝜈𝜇

𝑊𝜌;𝜈𝜇(𝑥)𝑊𝜇;𝜌𝜈(𝑥+ 𝜌)𝑊 †
𝜌;𝜈𝜇(𝑥+ �̂�)

⎤⎦ ,
𝑊𝜇,𝜈(𝑥) = 𝑃SU(3)

⎡⎣(1 − 𝛼3)𝑈𝜇(𝑥) + 𝛼3
2

∑︁
±𝜂 ̸=𝜌𝜈𝜇

𝑈𝜂(𝑥)𝑈𝜇(𝑥+ 𝜂)𝑈 †
𝜂(𝑥+ �̂�)

⎤⎦ , (4.40)

where 𝛼1, 𝛼2, and 𝛼3 are the smearing parameters. Common parameter choices are
𝛼1 = 0.75, 𝛼2 = 0.6, 𝛼3 = 0.3 for the HYP static action, and 𝛼1 = 1, 𝛼2 = 1, 𝛼3 = 0.5
for the HYP2 static action. Typically, only one smearing step (𝑁HYP = 1) is performed.
Note that HYP smearing of the time links also changes the gauge action to the HYP static
action.

4.5.4 Projection to SU(3)
The smearing algorithms for gauge links typically involve the addition of two SU(3) matrices,
which does not yield an SU(3) matrix as a result. Since the links must be elements of the
gauge group SU(3), the resulting matrices must be projected back to SU(3), as indicated in
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Figure 4.2: Left: Illustration of APE smearing where the thick line in the center is the original
link, while other lines indicate path of links that are summed over to create the smeared link.
Right: Illustration of HYP smearing indicating, that multiple levels of smearing are performed,
contained within a hypercube.

Eqns. (4.37) and (4.40) by 𝑃SU(3). There are multiple methods to achieve this projection.
An exact projection [72] to SU(3) is given by

𝑃SU(3)(𝑈) = 𝑈 ′

det(𝑈 ′) 1
3

with 𝑈 ′ = 𝑈
(︀
𝑈 †𝑈

)︀− 1
2 ∈ U(3). (4.41)

The inverse square root of 𝑈 †𝑈 is calculated in its eigenbasis, considering the positive root
of the respective eigenvalues. For the third root of the determinant det(𝑈 ′) 1

3 , the root
closest to unity is chosen. This construction ensures unitarity and gauge covariance.

An alternative iterative method [77] involves the steps

𝑈 → 𝑈/
√︁

Tr (𝑈𝑈 †) /3, (4.42)

followed by 𝑁proj iterations of

𝑈 → 𝑋

(︂
1 − 𝑖

3 Im (det𝑋)
)︂

with 𝑋 = 𝑈

(︂
3
2 − 1

2𝑈
†𝑈

)︂
. (4.43)

This projection is more efficient if only a few iterations 𝑁proj are needed, i.e., the gauge
link 𝑈 is already close to SU(3), or the observable is relatively insensitive to deviations
from unitarity. Generally, the exact projection from Eqn. (4.41) is recommended.

4.6 Tree-level improvement
Tree-level improvement [78] is a technique to mitigate systematic discretization errors at
short distances. This method matches the continuum potential at tree level of perturbation
theory,

𝑉 0
cont ∝

(︂
1
𝑟

)︂
cont

(4.44)
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with its lattice counterpart,

𝑉 0
lat ∝

(︂
1
𝑟

)︂
lat

= 4𝜋
𝑎
𝐺 (r/𝑎) . (4.45)

where 𝐺 (r/𝑎) represents the lattice propagator at tree level, dependent on the discretization
of the static action. For the Wilson plaquette gauge action introduced in Eqn. (3.7), it is
given by

𝐺 (r/𝑎) = 1
𝑎

ˆ 𝜋

−𝜋

d3𝑘

(2𝜋)3
𝛱3
𝑗=1 cos (𝑟𝑗𝑘𝑗/𝑎)

4
∑︀3

𝑗=1 sin2 (𝑘𝑗/2)
. (4.46)

Upon applying HYP smearing to the time-links, the gauge action changes to the HYP
static action, which has a more intricate lattice propagator [79],

𝐺HYP(r/𝑎) =

1
(2𝜋)3

ˆ 𝜋

−𝜋

𝛱3
𝑗=1 cos (𝑟𝑗𝑝𝑗/𝑎)

(︀
1 − (2𝛼1/3)𝛴3

𝑖=1 sin2 (𝑝𝑖)𝛺𝑖0(𝑝)
)︀2

4
∑︀3

𝑗=1 sin2 (𝑝𝑗/2)
d3𝑝 (4.47)

with

𝛺𝜇𝜈 = 1 + 𝛼2 (1 + 𝛼3) − 𝛼2 (1 + 2𝛼3)

⎛⎝ 3∑︁
𝑗=1

sin2(𝑝𝑗/2) − sin2(𝑝𝜇/2) − sin2(𝑝𝜈/2)

⎞⎠
+ 𝛼2𝛼3𝛱𝜂 ̸=𝜇,𝜈 sin2(𝑝𝜂/2). (4.48)

Using Eqns. (4.44) and (4.45), we can define an improved separation as

1
4𝜋𝑟impr

= 𝐺 (r/𝑎)
𝑎

. (4.49)

This improvement can be applied to any static potential involving the gluon propagator
as the tree-level diagram. An even more advanced method of tree-level improvement,
applicable to pure gauge static �̄�𝑄 potentials, is known as the V-method [79–81].



CHAPTER 5
Lattice QCD results for anti-static-anti-static-light-light tetraquark
potentials

In this section, we present the results of a lattice QCD computation of the static �̄��̄�𝑞1𝑞2
potential by evaluating the correlation function derived in Sec. 4.3.1.

We begin by outlining the parameters of the three lattice ensembles of our computation.
Subsequently, we discuss the static-light meson mass computed on these ensembles, which is
closely related to the tetraquark system. We then present the results for �̄��̄�𝑢𝑑 potentials,
providing a detailed analysis of the effective masses and investigating the effects of different
symmetries regarding off-axis separations. Following this, we present results for the �̄��̄�𝑢𝑠
system and finally compute the binding energy for the 𝐼(𝐽𝑃 ) = 0(1+) tetraquark system
using the Born-Oppenheimer approximation.

5.1 Lattice setup
The configurations utilized in this study are provided by the Coordinated Lattice Simulations
(CLS) effort [82, 83], employing two dynamical flavors of 𝑂(𝑎)-improved Wilson quarks
and the Wilson plaquette action. The lattice parameters of the ensembles used are detailed
in Tab. 5.1. Ensemble N6, characterized by a relatively small lattice spacing of 𝑎 = 0.0486,
was selected to investigate the potential at short distances. Ensemble A5, with a similar
pion mass 𝑚𝜋 and volume 𝐿, features a lattice spacing approximately 1.5 times larger than
N6’s lattice spacing.

The third ensemble, G8, has a pion mass much closer to the physical pion mass, allowing
for the study of pion mass dependence. However, G8 also differs in lattice spacing and
physical volume compared to A5 and N6.

We use stochastic propagators for the dynamical light quarks, with twelve sources per
timeslice, and six (for ensemble N6) or eight (for ensembles A5 and G8) timeslices per
configuration. These timeslices are separated by at least 8𝑎, ensuring they are essentially
uncorrelated.

Table 5.1: Lattice details and smearing parameters consistent with algorithms defined in
Section 4.5.1 and 4.5.2.

Ensemble 𝑇/𝑎 𝐿/𝑎 𝑎[fm] 𝑚𝜋[MeV] 𝑁cfg 𝛼APE 𝑛APE 𝜅G 𝑛G
A5 64 32 0.0755 331 100 0.5 30 0.5 50
G8 128 64 0.0658 185 30 0.5 35 0.5 70
N6 96 48 0.0486 340 50 0.5 50 0.5 120

29
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APE smearing is applied to the gauge fields, and Gaussian smearing is used for the
fermion fields. The smearing parameters are listed in Tab. 5.1. Additionally, the HYP2
static action is employed.

Our computation code is based on the ”openQ*D” code base [84] and might be included
in future releases.

5.2 Static-light meson masses
For large separations, the �̄��̄�𝑞1𝑞2 system is expected to behave as two non-interacting static-
light mesons. The static-light meson masses are computed using the same configurations
and stochastic propagators as part of the ratio of correlation functions defined in Eqn.
(4.18).

Fig. 5.1 presents the effective mass plots for the static-light meson correlators from Eqn.
(4.8) with spin structures 𝛤 = (1 + 𝛾0)𝛾5/2 for the 𝑆 meson and 𝛤 = (1 + 𝛾0)/2 for the
𝑃− meson, with light quarks 𝑞 = 𝑢/𝑑 and 𝑞 = 𝑠 for all three ensembles A5, N6, and G8.
The plateau is fitted as indicated by the constant plotted in the fitting range of 𝑡 > 9𝑎 and
𝑡 > 8𝑎 for the 𝑆 and 𝑃− mesons, respectively.

The effective mass is shown only for 𝑡 > 2𝑎 because 𝑚eff(𝑡 = 1𝑎) includes the correlator
at 𝑡 = 0, which is not meaningful due to large discretization errors. The effective mass
for the 𝑆 meson exhibits the typical behavior of 𝑚eff as a monotonic decay to the plateau.
Conversely, the 𝑚eff of the 𝑃− meson shows an unusually low data point at 𝑡 = 2𝑎, likely
due to significant discretization effects at small distances.

Quantitative results on the static-light meson mass cannot be provided, as the mass
diverges in the continuum limit due to the self-energy of the static quark. However, the mass
differences between the 𝑆 meson and the 𝑃− meson can be computed, as the divergences
cancel out. Tab. 5.2 summarizes the results for 𝑚𝑃−

�̄�𝑞
−𝑚𝑆

�̄�𝑞
for both systems.

Computing the static-light correlation function requires substantially less computational
time than the �̄��̄�𝑞1𝑞2 correlation function, making it computationally inexpensive to
reduce the statistical errors of this mass difference. However, these results for static-light
mesons are just a byproduct of studying the �̄��̄�𝑞1𝑞2 system. See [70, 71] for dedicated
studies of the static-light system.

From now on, we will denote the masses as 𝑚𝑆 and 𝑚𝑃− , dropping the indices and
assuming the meson systems are implicitly determined by the considered tetraquark system.

Table 5.2: Mass difference of the 𝑃− and 𝑆 meson for the ensembles A5, N6 and G8.

Ensemble (𝑚𝑃−
�̄�𝑢/𝑑

−𝑚𝑆
�̄�𝑢/𝑑

)[MeV] (𝑚𝑃−
�̄�𝑠

−𝑚𝑆
�̄�𝑠

)[MeV]
A5 384.0(12.4) 403.5(11.8)
N6 333.5( 8.6) 374.4( 5.3)
G8 347.8( 9.2) 372.0( 6.6)
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Figure 5.1: Effective masses of the 𝑆 and 𝑃− mesons 𝑚eff(𝑡) with light 𝑢/𝑑 (top) and 𝑠
(bottom) quarks for ensembles A5 (left), G8 (center), and N6 (right) as a function of the
temporal separation 𝑡 normalized by the mass of the 𝑆 meson 𝑚𝑆

�̄�𝑞
. Constants indicate the

fitting results and ranges of the plateaus.

5.3 Results for �̄��̄�𝑢𝑑 potentials
Similarly to the static-light meson analysis, we compute the �̄��̄�𝑢𝑑 correlation function
and extract the potential from effective masses for each separation distance 𝑟 = |r|. This
potential is computed for on-axis separations up to 𝑟 = 1.2 fm and for all possible off-axis
separations for 𝑟 ≤ 4𝑎. Additionally, a subset of off-axis separations, including the space
diagonal (𝑥,𝑥,𝑥), the plane diagonal (𝑥,𝑥,0), and all separations of the form (𝑥,1,2) for
𝑟 ≤ 10𝑎 (with 𝑥 ∈ Z and averaging over all permutations), is considered. Tree-level
improvement was applied, and thus, the potentials are presented as functions of the
improved distance 𝑟impr determined by Eqn. (4.49).

We investigated all thirty-two independent creation operators listed in Tab. 4.2 and
plotted the resulting potentials for ensemble N6 in Figs. 5.2 and 5.3. The shapes of the
resulting potentials, i.e., whether they are attractive or repulsive and their asymptotic
values, are consistent with our expectations and previous work [30].

It is important to note that our results are obtained using a single correlation function;
thus, excited states cannot be rigorously computed. The results for excited states that we
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Figure 5.2: All twelve �̄��̄�𝑢𝑑 potentials for 𝐼 = 0 extracted from correlation functions
corresponding to the creation operators collected in Tab. 4.2. Results for ensemble N6.

obtain stem from operators that have significant overlap with these states, causing the
decay to the ground states to occur on a larger time scale. Consequently, our results for
the excited states should only be interpreted qualitatively.

The primary focus of this work is on the attractive ground state potentials, which
are the most promising candidates for hosting bound states and resonances, making
them particularly interesting for phenomenological studies like [85]. Repulsive potentials
with the lowest asymptotic value of 2𝑚𝑆 are also relevant as they can contribute to
phenomenological descriptions, for instance, when including spin-splitting in the Born-
Oppenheimer approximation [31, 46]. However, these repulsive potentials intersect with
attractive potentials with an asymptotic value of 𝑚𝑆 +𝑚𝑃− at small separations, rendering
the results unreliable at these distances.

Before analyzing these specific potentials, we discuss the effective potentials, which serve
as a good indicator of the data’s quality.
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Figure 5.3: All twelve �̄��̄�𝑢𝑑 potentials for 𝐼 = 1 extracted from correlation functions
corresponding to the creation operators collected in Tab. 4.2. Results for ensemble N6.

5.3.1 �̄��̄�𝑢𝑑 effective potentials

For static potentials, it is necessary to fit constants to the effective potential 𝑉 𝐼;|𝑗𝑧 |,P,P𝑥

�̄��̄�𝑢𝑑,eff (𝑟)
for each on- and off-axis separation.

As previously discussed, the excited states are not well-defined in this study and only
provide a qualitative picture. Additionally, these sectors generally exhibit larger statistical
errors. Therefore, we extract the plateaus at fixed, relatively small temporal separations of
𝑡 = 4𝑎 for ensembles A5 and G8 and 𝑡 = 6𝑎 for ensemble N6.

For the ground states, we examine the effective potential more closely. Fig. 5.4 presents
an example of the effective potentials for on-axis separations, ensemble N6, and the most
attractive ground state with 𝛤 = 𝛾5 + 𝛾0𝛾5. Note that 𝑉 𝐼;𝛤

�̄��̄�𝑢𝑑,eff(𝑟) stem from the ratio
𝐶𝐼,𝛤
�̄��̄�𝑢𝑑

(𝑟)/𝐶𝑆
�̄�𝑢/𝑑

.
The effective potential declines slowly at small separations until the statistical errors

become sufficiently large to fit a constant. However, it is plausible that the curve is
approaching a lower plateau than indicated by the fit. This strongly suggests that the
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Figure 5.4: Effective mass plots corresponding to the most attractive potential 𝑉 0;0,−,+
�̄��̄�𝑢𝑑,eff(𝑟)

for on-axis separations 𝑟 = 1𝑎,2𝑎,...24𝑎 for ensemble N6. Orange constants indicate the fitting
range and results for 𝑉 0;0,−,+

�̄��̄�𝑢𝑑
(𝑟).
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data quality is insufficient to make meaningful quantitative statements about the potential
at small separations 𝑟 < 10𝑎, which is a significant limitation of this study. This issue is
particularly pronounced in this and the two other attractive ground states in the 𝐼 = 1
sector with quantum numbers |𝑗𝑧|,P,P = 0,−,− and |𝑗𝑧|,P,P = 1,−,±.

At larger separations, the effective potentials for 𝑟 > 10𝑎 almost immediately reach a
plateau close to zero, indicating that the �̄��̄�𝑞1𝑞2 system at large separations behaves like
two static-light mesons. As shown in Figure 5.4, we extract the plateaus starting at smaller
𝑡/𝑎 to reduce statistical errors.

The attractive ground state potentials are at least 𝛥𝐸 ≈ 400 MeV lower than the next
excited state with an asymptotic value of 𝑚𝑆 +𝑚𝑃− . Contributions from excited states
decay by exp(−𝛥𝐸 · 𝑡) [67]. This implies that approximately 0.5 fm ≈ 400 MeV in 𝑡
is required to suppress excited states by approximately 1/𝑒. We take the plateaus at
𝑡 ≈ 0.5 fm, again suggesting that there might still be contributions from excited states.

The picture is similar for effective potentials with off-axis separation, shown in Fig. B.1
in Appendix B.1. We also show an example of repulsive effective potentials in Fig. B.2 in
Appendix B.1 where the plateaus at smaller separations appear more stable; however, as
already discussed, the proximity of the attractive potential with a larger asymptotic value
makes these results unreliable.

5.3.2 Potentials with asymptotic value 2𝑚𝑆

We identify three attractive ground state potentials: the most attractive with quantum
numbers 𝐼 = 0 and |𝑗𝑧|,P,P = 0,−,+, and two less attractive by a factor of two in the 𝐼 = 1
sectors |𝑗𝑧|,P,P = 0,−,− and |𝑗𝑧|,P,P = 1,−,±. Additionally, we observe three repulsive
potentials: two in the 𝐼 = 0 sector with |𝑗𝑧|,P,P = 0,+,− and |𝑗𝑧|,P,P = 1,+,±, and
one in the 𝐼 = 1 sector with |𝑗𝑧|,P,P = 0,+,+. Fig. 5.5 presents these potentials for the
three ensembles A5, G8, and N6, which show good agreement within the error margins. As
discussed in the previous section, the plateaus for these potentials are somewhat uncertain;
therefore, we refrain from making definitive statements about minor differences between
the ensembles.

Possible phenomenological explanations of the potentials’ behavior
At small separations, the potential is expected to be dominated by one-gluon exchange,
which exhibits a Coulomb-like behavior with a leading term proportional to 𝑐𝜆𝛼𝑠/𝑟. The
color factor 𝑐𝜆 = 𝜆1𝜆2/Tr(𝜆1𝜆2) involves the Gell-Mann matrices 𝜆 and depends on the
color configuration of the quarks. For �̄��̄� in a color triplet, 𝑐𝜆 = −1/2, resulting in an
attractive potential. Conversely, for �̄��̄� in a color sextet, 𝑐𝜆 = 1/4, leading to a repulsive
potential. This relationship initially discussed in Section 4.3.1 and formulated in [31], aligns
with the observed potentials and explains why the repulsive potentials are approximately
half as strong as the attractive ones.

At larger separations, the system resembles two 𝐵 mesons separated by distance 𝑟, where
the light quark clouds around each heavy quark screen the other heavy quark’s charge,
causing the antiquark-antiquark interaction to vanish.

Another significant contribution to the potentials arises from the interaction of the
light quark spins, primarily governed by the hyperfine potential, which is proportional to
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Figure 5.5: Attractive ground state �̄��̄�𝑢𝑑 potentials (top) and lowest lying repulsive �̄��̄�𝑢𝑑
potentials (bottom) for the ensembles A5, G8 and N6.

−𝑐𝜎1 · 𝜎2. Here, 𝜎1/2 denote the Pauli matrices, which couple to the spins of the light
quarks and depend on the spin quantum number of the state.

While |𝑗𝑧| was used as a quantum number for this system, in this context, it is useful to
define the total angular momentum 𝑗, to which the operators can also be related. Operators
with 𝛤 = 𝛾5,𝛾0, 1, 𝛾0𝛾5 correspond to 𝑗 = 0, while all other operators correspond to 𝑗 = 1.

We find that −𝜎1 ·𝜎2 = +3 for 𝑗 = 0 and −𝜎1 ·𝜎2 = −1 for 𝑗 = 1. This explains why the
most attractive potential with 𝐼 = 0 and |𝑗𝑧|,P,P = 0,−,+ is significantly more attractive
than the potentials in the 𝐼 = 1 sectors |𝑗𝑧|,P,P = 0,−,− and |𝑗𝑧|,P,P = 1,−,±.

Another important consideration is the behavior of the system at large separations.
As previously mentioned and supported by the data, the potential at large distances
is essentially twice the mass of two non-interacting static-light mesons. The two static
antiquarks can be interpreted as a single anticolor source at small separations, making the
system equivalent to a static baryon. When the two static antiquarks are separated, the
static baryon system transitions into a system of two non-interacting static-light mesons
at large separations, which generally have a different mass. In other words, at large
separations, the potential corresponds to 2𝑚𝑆 , while at smaller separations, it corresponds
to 𝑚Baryon+𝑉 (𝑟), where 𝑚Baryon is the static baryon mass (containing two static antiquarks
at the same position) and 𝑉 (𝑟) is the potential from interactions.

To further investigate this, we considered the difference between the most attractive
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Figure 5.6: Difference between the two ground state potentials 𝑉 0;0,−,+
𝐵𝐵 (𝑟) and 𝑉 0;0,−,−

𝐵𝐵 (𝑟).
This difference corresponds to the difference between two static-light baryons or the ”good”
and ”bad” diquark at small distances.

potential and the less attractive potentials 𝑉 0;0,−,+
𝐵𝐵 (𝑟) − 𝑉 0;0,−,−

𝐵𝐵 (𝑟) by studying the ratios
of their correlators. The result is shown in Fig. 5.6, where at small separations, we observe
a mass difference of approximately 200 MeV, consistent with studies of static baryons
where these potentials at vanishing separation should correspond to static baryon quantum
numbers 𝑗𝑃 = 0+ and 𝑗𝑃 = 1− [86], or to the ”good” and ”bad” diquarks [87]. Note that
the values of the potential at very small separations suffer from severe discretization errors
as the potential diverges. However, these results are still meaningful as we consider the
difference between two potentials, and the divergences cancel each other.

At intermediate separations, we observe a ”bump” in some potentials, i.e., a change of
sign in the potential followed by an extremum before approaching the asymptotic value.
This behavior can be attributed to several factors. One explanation is the difference in
masses between the static-light baryon system at small separations and the system of
two static-light mesons at large separations. Other possible explanations include meson
exchange potentials or the flip-flop between a tetraquark string and two meson strings [88].

At large separations, only the one-pion-exchange potential (OPEP) should contribute
[89], as pions are the mesons with the smallest mass 𝑚𝜋 ≈ 140 MeV. The OPEP is
proportional to

(𝜏 1 · 𝜏 2)
(︂

(3(𝜎1 · r̂)(𝜎2 · r̂) − 𝜎1 · 𝜎2)
(︂

1 + 3
𝑚𝜋𝑟

+ 3
(𝑚𝜋𝑟)2

)︂
+ 𝜎1 · 𝜎2

)︂
𝑒𝑚𝜋𝑟

𝑟
. (5.1)

Eqn. (5.1) also includes a hyperfine splitting term, (𝜏 1 · 𝜏 2)(𝜎1 · 𝜎2), which induces a
potential with the opposite sign to the Coulomb potential due to the Pauli principle. This
would manifest as a ”bump” at large separations; however, we expect this effect to be very
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weak and, thus, difficult to observe.
There is also a tensor part (𝜏 1 · 𝜏 2)(𝜎1 · r̂)(𝜎2 · r̂), which depends on the spin orientation

relative to the separation axis r̂ ≡ 𝑒𝑧 and the isospin 𝐼. We summarize the resulting factors
in Tab. 5.3. This might explain the differences in the center and right panel potentials from
Fig. 5.5. In Fig. 5.5, the lower center and right panel (𝐼 = 0) potentials differ significantly at
large separations, consistent with the factors from Fig. 5.3, which indicate a shift in different
directions due to this effect. While in the 𝐼 = 1 sector, these factors are also of opposite
sign; they are smaller by a factor of 3, which is supported by our results in the upper center
and right panels of Fig. 5.5. Tab. 5.3 also implies (𝑉 0;1,+,±

𝐵𝐵 (𝑟)−𝑉 0;0,+,−
𝐵𝐵 (𝑟))/(𝑉 1;1,+,±

𝐵𝐵 (𝑟)−
𝑉 1;0,+,−
𝐵𝐵 (𝑟)) ≈ 3 at large separations. Our potentials are consistent with this value, albeit

with a large statistical error.

5.3.3 Off-axis separations
As discussed in Section 4.3.1, the rotational symmetry on the lattice breaks down to
subgroups of the cylindrical rotation group 𝐷∞ℎ depending on the relative positions of
the two quarks on the lattice. Depending on the symmetry group, this leads to a distinct
mixing of angular momentum states. In terms of our results, this raises two concerns.
Firstly, when a trial state overlaps with multiple states of different angular momentum, the
correlator may be contaminated by these states, potentially leading to a slower decay to a
plateau. This would be indicated by a systematic upward shift of data points associated
with symmetry groups that include more angular momentum states. In Fig. 5.7, we
present the data points for the six potentials with an asymptotic value of 2𝑚𝑆 , grouped by
symmetry. The results for off-axis symmetry groups 𝐷2ℎ, 𝐷3𝑑, 𝐶2ℎ, and 𝐶𝑖 appear robust,
as they do not exhibit significantly more contamination by higher angular momentum
states compared to 𝐷4ℎ.

A second concern arises concerning the symmetry groups 𝐶2ℎ and 𝐶𝑖. We study sectors
with angular momentum |𝑗𝑧| = 0 and |𝑗𝑧| = 1, which mix for symmetry groups 𝐶2ℎ and
𝐶𝑖 as shown in Tab. 4.1. This implies that all states from both sectors contribute to
the potential at these separations. However, these sectors correspond to the attractive
𝐼 = 1 potentials with quantum numbers |𝑗𝑧|,P,P = 0,−,− and |𝑗𝑧|,P,P = 1,−,± (top
middle and right panels), which are essentially identical, and the repulsive 𝐼 = 0 potentials,
|𝑗𝑧|,P,P = 0,+,− and |𝑗𝑧|,P,P = 1,+,± (bottom middle and right panels of Fig. 5.7),
which show only a small difference at intermediate to large separations that might be due
to one-pion exchange as discussed in the previous section.

The data points for separations with symmetry groups 𝐶2ℎ and 𝐶𝑖 are consistent with
the curve indicated by all other data points; hence, we present results for all separations.

Table 5.3: Values for the tensor part (𝜏 1 ·𝜏 2)(𝜎1 · r̂)(𝜎2 · r̂) of the one-pion-exchange potential
in Eqn. (5.1) as a function of angular momentum |𝑗𝑧| and isospin 𝐼.

(𝜏 1 · 𝜏 2)(𝜎1 · r̂)(𝜎2 · r̂) |𝑗𝑧| = 0 |𝑗𝑧| = 1
(𝜎1 · r̂)(𝜎2 · r̂) = −1 (𝜎1 · r̂)(𝜎2 · r̂) = 1

𝐼 = 0 𝜏 1 · 𝜏 2 = −3 3 -3
𝐼 = 1 𝜏 1 · 𝜏 2 = 1 -1 1
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Figure 5.7: All attractive (top) and repulsive (bottom) �̄��̄�𝑢𝑑 potentials with the lowest
asymptotic value of 2𝑚𝑆 for ensemble N6. Different symmetry groups 𝐷4ℎ, 𝐷2ℎ, 𝐷3𝑑, 𝐶2ℎ and
𝐶𝑖 of separations are indicated by separate colours.

However, we cannot exclude the possibility that these two effects contribute or compensate
each other to some extent. Therefore, the results for these separations should be considered
with caution.

5.3.4 Results for �̄��̄�𝑢𝑠 potentials

We also compute potentials in the �̄��̄�𝑢𝑠 system. The results for the potentials with
asymptotic value 𝑚𝑆

�̄�𝑢/𝑑
+𝑚𝑆

�̄�𝑠
for the ensemble N6 are presented in Fig. 5.8. Given the

similarity of these potentials to those in the �̄��̄�𝑢𝑑 system, our primary focus is on the
differences. Therefore, we also include the corresponding �̄��̄�𝑢𝑑 potentials in the plot for
comparison. Notably, we observe significantly less binding in the �̄��̄�𝑢𝑠 system within the
most attractive sector characterized by |𝑗𝑧|,P,P = 0,−,+, which aligns with theoretical
expectations. Additionally, the repulsive potential in the sector |𝑗𝑧|,P,P = 0,+,± appears
to be slightly more repulsive. The other potentials remain unchanged when substituting
the 𝑑 quark with an 𝑠 quark. These observations are consistent for all three ensembles; we
show corresponding results for ensembles A5 and G8 in Appendix B.2.
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Figure 5.8: All attractive (top) and repulsive (bottom) �̄��̄�𝑢𝑠 potentials with asymptotic
value 𝑚𝑆

�̄�𝑢/𝑑
+ 𝑚𝑆

�̄�𝑠
for ensemble N6. The gray data points and fits indicate corresponding

�̄��̄�𝑢𝑑 results.

5.3.5 �̄��̄�𝑞1𝑞2 potentials in the Schrödinger equation
We now consider bottomonium �̄� = �̄� and solve a radial Schrödinger equation(︂

1
2𝑚𝑏

+ 𝑉 (𝑟)
)︂
𝑅(𝑟)
𝑟

= 𝐸
𝑅(𝑟)
𝑟

, (5.2)

where 𝑅(𝑟) is the radial part of the wave function 𝜓(r), 𝑚𝑏 is the mass of the 𝑏 quark, and
𝑉 (𝑟) is the static potential obtained from lattice QCD. The choice of this potential also
determines the quantum numbers of the system. We will restrict this discussion to the
most attractive potential in the sector (𝐼 = 0; ) |𝑗𝑧|,P,P𝑥 = 0, + ,−, which is the most
likely to host a bound state [29, 30] and corresponds to 𝐼(𝐽𝑃 ) = 0(1+) if 𝑞1𝑞2 = 𝑢𝑑.

Fitting ansatz
We fit the data to a suitable ansatz to utilize the potentials in a phenomenological model.
Based on our arguments from Section 5.3.2, we motivate a Coulomb-like interaction at
small separations, i.e., ∝ 𝛼/𝑟, screened by an exponential at larger separations of the form
exp(−(𝑟/𝑑)𝑝). This leads to the parametrization

𝑉1(𝑟) = −𝛼1
𝑟

exp
(︁

−
(︁𝑟
𝑑

)︁𝑝)︁
(5.3)
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with three fitting parameters 𝛼, 𝑑, and 𝑝. This ansatz has been used previously to
parametrize antistatic-antistatic-light-light potentials [29, 30] and works well for the most
attractive ground state potential 𝑉 0;0,−,+

�̄��̄�𝑞1𝑞2
(𝑟). However, as discussed, we observe a change in

sign at intermediate to large separations for some other potentials, indicating an additional
effect. The ansatz from Eqn. (5.3) cannot describe this behavior, so we include an
additional term to fit these potentials. There are many possible ways to incorporate this
behavior into the parametrization. We decide to use the idea of a mass difference of the
system at small separations (static-light baryon) and large separations (two non-interacting
𝐵 mesons) to motivate the parametrization

𝑉2(𝑟) =
(︁

−𝛼1
𝑟

+ 𝑐
)︁

exp
(︁

−
(︁𝑟
𝑑

)︁𝑝)︁
(5.4)

with an additional fitting parameter 𝑐. This ansatz was used to produce all the curves
indicated in Figs. 5.5, 5.7 and 5.8. We summarize fitting parameters for the six most
relevant potentials in Appendix B.3, Tab. B.1.

Binding energy
We can consider both different parametrizations from Eqns. (5.3) and (5.4), as the
relevant potential in this Schrödinger equation (5.2) has no distinct repulsive behavior at
intermediate to large distances. We first consider the resulting fitting parameters for the
system �̄��̄�𝑢𝑑. The fit functions resulting from these parameters are very comparable in
their errors. However, the corresponding binding energies 𝐸𝐵 show a different picture. The
results for the different ensembles and parametrizations take very different values and are
partly separated by multiple standard deviations 𝜎. This indicates large systematic errors
in addition to significant statistical errors. This further supports our suspicion that our
results systematically overestimate the true value of the potentials, as indicated in Section

Table 5.4: Fitting parameters for the fits from Eqns. (5.3) and (5.4) to 𝑉 (0);0,−,+
�̄��̄�𝑞1𝑞2

(𝑟) and
resulting binding energies for the �̄��̄�𝑞1𝑞2 systems from solving Eqn. (5.2).

�̄��̄�𝑞1𝑞2 Ens. 𝑉fit 𝛼1 𝑑[fm] 𝑝 𝑐 [MeV] 𝐸𝐵[MeV]
�̄��̄�𝑢𝑑 A5 𝑉1 0.356(0.024) 0.307(0.017) 2.21(0.33) 48(11)

𝑉2 0.436(0.024) 0.570(0.064) 1.99(0.337) 164(19) 60(12)
G8 𝑉1 0.298(0.017) 0.316(0.014) 2.27(0.36) 17(5)

𝑉2 0.359(0.012) 0.552(0.067) 2.28(0.74) 130(16) 20(5)
N6 𝑉1 0.264(0.010) 0.336(0.015) 2.74(0.29) 11(5)

𝑉2 0.271(0.074) 0.349(0.029) 2.93(0.77) 19(53) 12(5)
�̄��̄�𝑢𝑠 A5 𝑉1 0.335(0.010) 0.282(0.007) 2.05(0.12) no binding

𝑉2 0.414(0.017) 0.468(0.027) 1.70(0.23) 156(6) no binding
G8 𝑉1 0.325(0.009) 0.250(0.005) 1.78(0.08) 3(1)

𝑉2 0.404(0.014) 0.409(0.019) 1.28(0.11) 157(6) 5(2)
N6 𝑉1 0.251(0.004) 0.310(0.011) 2.11(0.10) no binding

𝑉2 0.290(0.004) 0.612(0.040) 2.14(0.26) 107(5) no binding
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5.3.1.
To put this into perspective, we construct a potential that creates a binding energy of

−100 MeV by using the ansatz from Eqn. (5.3), keeping 𝑑 = 0.45 fm, 𝑝 = 2 constant and
increasing 𝛼 until we reach −100 MeV binding energy. In Fig. 5.9, we again show the
relevant, effective masses for small to intermediate on-axis separations ≈ 0.15 fm − 0.4 fm
but added a red constant indicating the necessary effective mass to obtain this potential.
The red constants are within reach of our effective masses, and it seems possible that the
data could converge to this value for a larger 𝑡.

For the system �̄��̄�𝑢𝑠, we generally observe less binding, which was expected from the less
attractive potentials. However, only the G8 ensemble indicates a binding by > 3𝜎, while
no definite conclusion can be made for the other ensembles if a bound state exists.

In sum, the resulting fit functions are very unstable between the different parametrizations
𝑉1(𝑟) and 𝑉2(𝑟) and for different ensembles A5, G8, and N6. While we could try to
understand what causes the discrepancies between different ensembles, the binding energy’s
error and different results for different parameterizations indicate insufficient statistics to
back up any possible statements. We believe that a cause of the vastly different results is
the proximity to the threshold. Would the potential be more attractive, similar fluctuations
in the fitting parameters would probably cause significantly less severe fluctuations in the
binding energy 𝐸𝐵.
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Figure 5.9: Effective mass plots corresponding to the most attractive potential 𝑉 0;0,−,+
�̄��̄�𝑢𝑑,eff(𝑟)

for on-axis separations 𝑟 = 3𝑎,...8𝑎 for ensemble N6. Orange constants indicate the fitting
range and results for 𝑉 0;0,−,+
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potential, which creates a binding of 100 MeV.



CHAPTER 6
Conclusion

Despite our efforts, we were unable to achieve the goal of producing high-quality �̄��̄�𝑢𝑑
static potentials to provide a robust prediction of the 𝐼(𝐽𝑃 ) = 0(1+) bound state within the
Born-Oppenheimer approximation. Nevertheless, significant advancements were made in
the techniques employed, such as employing tree-level improvement and including off-axis
separations. Additionally, we identified the primary challenges and difficulties associated
with studying this system.

Improving the plateaus at low separations is crucial, as there are strong indications
that the effective mass decays slowly to a lower value. A logical next step would be
considering correlation matrices instead of single correlators. Using 𝑁 different correlators
for given sectors, one can construct an 𝑁 ×𝑁 correlation matrix and extract the first 𝑁
energy states as eigenvalues. This approach offers the benefit of rigorously separating the
ground state and 𝑁 − 1 excited states, thereby obtaining a valid result for the repulsive
potentials with an asymptotic value of 2𝑚𝑆 , which intersects at small separations with an
attractive potential of a higher asymptotic value. Furthermore, this method would reduce
the contamination of the ground states by excited states. In this study, the first excited
state, approximately 400 MeV above the ground state, contributed to the contamination.
With 𝑁 ×𝑁 correlation matrices, the first excited state contaminating the ground state
would be the 𝑁 -th excited state, generally ≥ 800 MeV above the ground state. This
substantial reduction in contamination means that a plateau is reached for smaller values
of 𝑡 when the signal-to-noise ratio is better.

In this context, it is essential also to explore fundamentally different operators to include
in the correlation matrix. So far, we only considered operators corresponding to two 𝐵
mesons separated by 𝑟 by putting each light quark at the position of a static antiquark.
Another possibility would be constructing a diquark-antidiquark system by placing a pair
of two light quarks at the center between both static antiquarks. This is expected to have a
larger overlap to the ground state for small separations 𝑟 < 0.3 fm compared to the system
of two 𝐵 mesons, as shown in [90, 91].

Moreover, the overlap with the ground state can be further increased by employing
suitable smearing techniques. Exploring more modern smearing algorithms, such as gradient
flow [92], seems like a logical next step.

One more direction can be explored with the existing data: applying more sophisticated
methods to extract effective potentials from the correlators. The previous work [30] applied
a technique where the fit parameters 𝛼, 𝑑 and 𝑝 from Eqn. (5.3) were extracted from many
different fits of the data, weighting every contribution by exp(−𝜒2/𝑑𝑜𝑓) as outlined in [93].

43
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Furthermore, a recently suggested method applies the Lanczos algorithm to the transfer
matrix to extract the effective masses and is very promising [94, 95].

We consider this study as an initial step towards achieving high-quality �̄��̄�𝑢𝑑 and
�̄��̄�𝑢𝑑 static potentials. We are confident that these potentials can be computed with high
precision by applying the abovementioned techniques and investing sufficient computational
resources to improve this work’s results.

We have already discussed extensively the importance of these potentials in resolving
the tension between results from non-relativistic QCD with the finite volume method and
results from the Born-Oppenheimer approximation using the static potentials computed in
this work. However, these potentials could also be of significant interest in other contexts.
The quantum numbers of our systems closely resemble those of nucleon-nucleon systems, as
both systems have isospin 1/2 and spin 1/2 due to the static antiquarks in our potentials.
There are many phenomenological descriptions for the shape of the 𝑁 − 𝑁 potential
[96–100] but most predicted effects have yet to be definitively observed in experiments.
The 𝑁 − 𝑁 system is also extremely challenging to treat with lattice QCD. Therefore,
observing some of the predicted effects for the nucleon-nucleon system within our potentials
could be a meaningful contribution. In the current results, we observe effects that can be
vaguely explained by one-pion exchange, which is also expected in 𝑁 −𝑁 systems. Still,
the data quality is not stable enough to support any definitive claims.
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CHAPTER 7
Introduction

In the second part of this dissertation, we investigate a different tetraquark system, �̄�𝑏𝑞𝑞,
which consists of a heavy quark-antiquark pair in the presence of a light quark-antiquark
pair. While the �̄��̄�𝑞1𝑞2 systems have been effectively studied in lattice QCD using non-
relativistic heavy quarks, similar methods have not been successful for the �̄�𝑏𝑞𝑞 system due
to the increased number of scattering channels. Experimentally, however, there are results
for the spectrum of bound states for bottomonium, including multiple resonances in the
𝐼 = 0 sector, such as 𝛶 (10860), 𝛶 (11020) and the recently discovered 𝛶 (10750)BELLE II
[22]. We focus on the 𝐼 = 0 system in this work; similar efforts have been conducted on
the 𝐼 = 1 system [101, 102], which correspond to the tetraquarks 𝑍𝑏(10610) and 𝑍𝑏(10650)
found by Belle [6, 103].

As proposed in Section 4.3.2, the potentials of a static quark-antiquark pair in the
presence of a light quark-antiquark pair can be computed similarly to the �̄��̄�𝑞1𝑞2 system
discussed in previous chapters. In this part of the thesis, we utilize existing results from
[72] and extend the framework introduced in [104], employing these potentials within the
Born-Oppenheimer approximation. This system is more complex due to the involvement
of additional scattering channels. Specifically, the quarkonium channel must be included,
as the quantum numbers of the �̄�𝑏𝑞𝑞 tetraquark candidates can also be realized in ordinary
bottomonium �̄�𝑏. Consequently, we must consider coupled channels of bottomonium and
meson-meson states.

In the existing work [104], two channels are considered in the 𝑆 wave, i.e., for angular
momentum 0, a bottomonium channel �̄�𝑏 and a meson-meson channel corresponding to
�̄�𝑏(�̄�𝑢+ 𝑑𝑑), i.e., with 𝐼 = 0.

We aim to extend this formalism by incorporating a third channel, which includes
mesons with strange quarks (�̄�𝑏𝑠𝑠), as the threshold for this channel lies in the same energy
region as the most relevant resonance energies, at ≈ 10.800 MeV. Including this channel is
essential for making meaningful predictions at these energies. Furthermore, we derive the
Schrödinger equation for this system for higher angular momenta to study the 𝑃 , 𝐷, and
𝐹 wave spectra, corresponding to angular momenta 1, 2, and 3, respectively. Additionally,
we investigate the composition of the resonances we identify, determining whether the state
is predominantly quarkonium-like or has a significant meson-meson component, indicating
an exotic nature. These extensions are particularly relevant for clarifying the nature of the
𝛶 (10750), 𝛶 (10860), and 𝛶 (11020) resonances observed experimentally, as 𝛶 (10860) and
𝛶 (11020) are often categorized as 𝑆 wave bottomonium states 𝛶 (5𝑆) and 𝛶 (6𝑆), while they
could also belong to the 𝐷 wave spectrum. The recently discovered 𝛶 (10750) resonance is
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a promising candidate for an exotic state.
We commence the second part in Chapter 8 by outlining the framework for computing

bound states and resonances in the Born-Oppenheimer approximation using static potentials
from lattice QCD as introduced in [104]. Subsequently, we extend this framework to
arbitrary angular momenta and incorporate a �̄�𝑏𝑠𝑠 channel. In the final chapter of this
dissertation, Chapter 9, we present results for bound states and resonances by solving the
coupled channel Schrödinger equation derived in the preceding section. This includes a
quarkonium channel and four meson-meson channels (two corresponding to �̄�𝑏(�̄�𝑢+ 𝑑𝑑)
and two corresponding to �̄�𝑏𝑠𝑠) in the 𝑆, 𝑃 , 𝐷, and 𝐹 wave channels. We then discuss our
predictions in the context of experimental results and compare them to other theoretical
predictions from [105–110].



CHAPTER 8
Studying bottomonium in the Born-Oppenheimer approximation using
static potentials from lattice QCD

In this section, we present a methodology that utilizes static potentials derived from
lattice QCD to determine the spectrum of bottomonium within the Born-Oppenheimer
approximation. This approximation applies to systems where interacting particles operate
on significantly different scales. By employing this approach, we solve the Schrödinger
equation for heavy quarks, such as �̄�𝑏, while incorporating the influence of light quarks
through static potentials computed via lattice QCD. This approximation simplifies the
complex quantum field theoretical problem into a better treatable quantum mechanical
problem.

This chapter commences with a brief review of scattering theory in quantum mechanics,
emphasizing the concepts most relevant to our approach. Subsequently, we derive the
Schrödinger equation, encompassing both a quarkonium channel and a 𝐼 = 0 meson-meson
channel with light quarks �̄�𝑢+𝑑𝑑. We introduce relevant restrictions and a meaningful set of
quantum numbers for this system. Following this, we discuss existing lattice computations
of quarkonium static potentials, initially performed in studying string breaking, and relate
them to the potential in our Schrödinger equation. We then construct a set of angular
momentum eigenfunctions to enable partial wave decomposition and the projection of
the Schrödinger equation onto definite angular momentum. We also consider the wave
function’s asymptotic behavior to construct the T-matrix.

Finally, we extend the wave function to incorporate a meson-meson channel �̄�𝑠𝑀𝑠 with
𝑠 quarks as light quarks and derive the corresponding 5 × 5 coupled channel Schrödinger
equation. We also introduce a method to extract the composition of bound states and
resonances by analyzing the components of the wave functions.

8.1 Scattering theory in quantum mechanics
The stationary Schrödinger equation in three spatial dimensions is given by(︂

− 1
2𝑚∇2 + 𝑉 (r)

)︂
𝜑𝑘(r) = 𝐸(𝑘)𝜑𝑘(r), (8.1)

where 𝐸 = 𝑘2/2𝑚 and 𝑘 = |k|. The wave number 𝑘 enumerates the solutions 𝜑𝑘(r) of the
equation with energy 𝐸(𝑘).

When switching to spherical coordinates, an arbitrary energy eigenfunction 𝜑𝑘(r) can be
expanded using a superposition of spherical Bessel functions 𝑗𝑙(𝑘𝑟) and Neumann functions
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𝑛𝑙(𝑘𝑟),

𝜑𝑘(r) =
∞∑︁
𝑙=0

𝑙∑︁
𝑚=−𝑙

(𝐴𝑙𝑚(𝑘)𝑗𝑙(𝑘𝑟) +𝐵𝑙𝑚(𝑘)𝑛𝑙(𝑘𝑟))𝑌𝑙𝑚(𝜃,𝜑), (8.2)

where 𝑌𝑙𝑚(𝜃,𝜑) are spherical harmonics. For example, a plane wave propagating in the
𝑧-direction, 𝑒𝑖𝑘𝑧, can be written as

𝑒𝑖𝑘𝑧 =
∞∑︁
𝑙=0

𝑖𝑙(2𝑙 + 1)𝑗𝑙(𝑘𝑟)𝑃𝑙(cos(𝜃)), (8.3)

where 𝑃𝑙(cos(𝜃)) =
√︁

4𝜋
2𝑙+1𝑌𝑙0(𝜃,𝜑) are the Legendre polynomials, which are proportional

to the 𝜑-independent spherical harmonics 𝑌𝑙0(𝜃,𝜑). Analogously, the wave function for an
incoming plane wave 𝑒𝑖𝑘𝑧 can be expanded as

𝜑k(r) =
∞∑︁
𝑙=0

𝑖𝑙(2𝑙 + 1)𝑅𝑙(𝑟)𝑃𝑙(cos(𝜃)). (8.4)

This is referred to as partial wave decomposition, and 𝑅𝑙(𝑟) must be determined to solve
the scattering problem.

Often, Hankel functions

ℎ
(1)
𝑙 (𝑥) = 𝑗𝑙(𝑥) + 𝑖𝑛𝑙(𝑥) and ℎ

(2)
𝑙 (𝑥) = 𝑗𝑙(𝑥) − 𝑖𝑛𝑙(𝑥) (8.5)

are used instead of Bessel and Neumann functions. While Bessel and Neumann functions
describe standing waves, Hankel functions describe incoming and outgoing waves.

Thus, we can write 𝑅𝑙(𝑟) as the sum of an incoming and an outgoing wave

𝑅𝑙(𝑟) = 𝐶
(︁
ℎ

(2)
𝑙 (𝑘𝑟) + 𝑆𝑙(𝐸)ℎ(1)

𝑙 (𝑘𝑟)
)︁
, (8.6)

where 𝐶 is a constant and 𝑆𝑙(𝐸) contains the information about the contribution of the
𝑙-th partial wave to the scattering process. 𝑆𝑙(𝐸) is a complex number that satisfies

|𝑆𝑙(𝐸)| = 1, (8.7)

which allows us to define the scattering phase shift 𝛿𝑙(𝐸) via

𝑆𝑙(𝐸) = 𝑒2𝑖𝛿𝑙(𝐸). (8.8)

This implies that scattering shifts the phase of the wave function. If there is no scattering,
i.e., for a vanishing potential 𝑉 (𝑟) = 0, 𝑆𝑙(𝐸) = 1 and thus the scattering phase shift
𝛿𝑙(𝐸) is 0 or a multiple of 𝜋. This 𝑆𝑙(𝐸) is the single-channel analog to the S-matrix for
multi-channel scattering, which contains the complete information about the scattering
process. For an in-depth introduction to scattering theory, we refer to quantum mechanics
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textbooks, e.g., [111–114].
In the following chapters, we will construct a multi-channel Schrödinger equation for a

system of a static quark-antiquark pair in the presence of a light quark-antiquark pair and
derive the corresponding S-matrix to study resonances of this system.

8.2 Quantum numbers
We consider two coupled channels, a confined quarkonium channel �̄�𝑄 and an open meson-
meson channel �̄�𝑀 . Unlike the first part of this work, where 𝑄 denoted a static quark, in
this chapter and Chapter 9, 𝑄 represents a heavy quark with finite mass 𝑚𝑄 (typically a
bottom quark with mass 𝑚𝑏), and 𝑀 consists of one heavy quark and one light 𝑢/𝑑 quark.
We restrict our system to isospin 𝐼 = 0, i.e., �̄�𝑀 = �̄�𝑄(�̄�𝑢+ 𝑑𝑑).

In Chapter 8.6, we will introduce a third scattering channel �̄�𝑠𝑀𝑠 = �̄�𝑄𝑠𝑠, which
will be included in our final computations. However, this additional channel does not
conceptually alter our approach, so we derive the method more comprehensively with only
two channels and extend it by the �̄�𝑠𝑀𝑠 channel afterward.

We use the following quantum numbers to describe the quarkonium system with or
without light quarks:

• 𝐽𝑃𝐶 : total angular momentum, parity, and charge conjugation.
• 𝑆𝑃𝐶𝑞/𝑄: spin, parity, and charge conjugation of the heavy quarks 𝑄 or light quarks 𝑞.

• 𝐽𝑃𝐶 : total angular momentum, parity, and charge conjugation excluding the heavy
quark spin 𝑆𝑃𝐶𝑄 .

While 𝐽𝑃𝐶 and 𝑆𝑃𝐶𝑞/𝑄 are standard quantum numbers, we explicitly define 𝐽𝑃𝐶 because
our observables will be independent of the heavy quark spin. This makes 𝐽𝑃𝐶 the relevant
quantum number for this work, rather than 𝐽𝑃𝐶 as usual. However, when comparing our
results to experimental data, we must remember that 𝐽𝑃𝐶 must be coupled with the heavy
quark spins 𝑆𝑃𝐶𝑄 = 0−+, 1−− to obtain 𝐽𝑃𝐶 (see Tab. 8.1).

A heavy-light meson 𝑀 can have positive parity 𝑃 = + or negative parity 𝑃 = −. A
𝑃 = + heavy-light meson has a mass approximately 400 − 500 MeV higher than a negative
parity one. Since low-lying states are generally more relevant, we restrict our approach to
�̄�𝑀 as a pair of two negative parity mesons. This allows us to study bound states below
the energy threshold of 2𝑚𝑀 and resonances up to approximately 400 − 500 MeV above.

Table 8.1: Possibilities to couple 𝐽𝑃 𝐶 with 𝑆𝑃 𝐶
𝑄 to 𝐽𝑃 𝐶 .

𝐽𝑃𝐶 𝑆𝑃𝐶𝑄 𝐽𝑃𝐶

0++ 0−+ 0−+

1−− 1−−

1−− 0−+ 1+−

1−− 0++, 1++, 2++

2++ 0−+ 2−+

1−− 1−−, 2−−, 3−−

... ... ...
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8.3 Coupled channel Schroedinger equation
After these considerations, we obtain a four-component wave function 𝜓(r) =

(︁
𝜓�̄�𝑄, 𝜓�̄�𝑀

)︁
,

where the first component corresponds to the quarkonium state, while the lower three
components describe the spin-1 triplet of the �̄�𝑀 system. The Schrödinger equation can
be expressed as(︂

−1
2𝜇

−1
(︂
𝜕2
𝑟 + 2

𝑟
𝜕𝑟 − L2

𝑟2

)︂
+ 𝑉 (r) +

(︂
𝐸threshold 0

0 2𝑚𝑀

)︂
− 𝐸

)︂
𝜓(r) = 0, (8.9)

where 𝜇−1 = diag(1/𝜇𝑄, 1/𝜇𝑀 , 1/𝜇𝑀 , 1/𝜇𝑀 ) with the reduced mass of the heavy quark
𝜇𝑄 = 𝑚𝑄/2 and meson 𝜇𝑀 = 𝑚𝑀/2, and L = r × p is the orbital angular momentum
operator. The potential matrix is given in terms of the quarkonium potential 𝑉�̄�𝑄, the
meson-meson potential 𝑉�̄�𝑀 , and a mixing potential 𝑉mix as

𝑉 (r) =
(︂

𝑉�̄�𝑄 𝑉mix(𝑟) (1 ⊗ e𝑟)
𝑉mix(𝑟) (e𝑟 ⊗ 1) 𝑉�̄�𝑀,‖(𝑟) (e𝑟 ⊗ e𝑟) + 𝑉�̄�𝑀,⊥(𝑟) (1 − e𝑟 ⊗ e𝑟)

)︂
. (8.10)

In the subsequent chapter, we will relate these potentials to static potentials computed
from lattice QCD. The energy 𝐸threshold is added to the first component of the Schrödinger
equation (8.9) to account for a difference between the light quark mass used in the lattice
computation and the physical light quark mass.

8.4 Relating 𝑉 (𝑟) to static potentials from lattice QCD
Two computations exist of static bottomonium potentials in the presence of a light quark
pair. The first computation, as detailed in [72], considers two channels, a bottomonium
channel and a meson-meson channel with 𝑢 and 𝑑 light quarks. This study provides data
for the ground state potential 𝑉0(𝑟) and one excited potential 𝑉1(𝑟), along with information
about the mixing of the two channels through a mixing angle 𝜃. The second study [73, 74]
includes a meson-meson state with 𝑠 light quarks as a third scattering channel, extracting
the second excited potential 𝑉2(𝑟).

While the more recent computations [73, 74] are of higher quality, they do not provide
the crucial information of mixing between the different channels in the form of a mixing
angle. Therefore, we must use the lattice results from the first computation in this work
[72]. However, it is clear that our predictions are limited by the quality of this lattice data,
and improved data will be necessary to enhance our theoretical results.

Additionally, both studies suffer from another problem. The meson-meson operators
used in the correlation matrix (see Eqn. (4.28)) should have the same quantum numbers as
the quarkonium operator to extract excited states in the same sector, i.e., 𝛬𝜀𝜂 = 𝛴+

𝑔 (this
notation is introduced in Section 4.3.2). However, the meson-meson operators chosen in
these studies also overlap with additional sectors 𝛴−

𝑢 , 𝛱+
𝑔 , and 𝛱−

𝑔 , causing contamination
from these states. In [104], the results from the lattice study [72] were corrected by
resampling the existing data and fitting additional exponential functions, considering all
contributing sectors. In this work, unless stated otherwise, we will use these corrected
potentials, which we will refer to as 𝑉 𝛴+

𝑔

0 (𝑟) and 𝑉
𝛴+

𝑔

1 (𝑟).
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In [104], it is shown that 𝑉�̄�𝑄(𝑟), 𝑉�̄�𝑀 (𝑟), and 𝑉mix(𝑟) can be related to the ground
state and first excited state static potentials 𝑉 𝛴+

𝑔

0 (𝑟) and 𝑉
𝛴+

𝑔

1 (𝑟) according to

𝑉�̄�𝑄(𝑟) = cos2(𝜃(𝑟))𝑉 𝛴+
𝑔

0 (𝑟) + sin2(𝜃(𝑟))𝑉 𝛴+
𝑔

1 (𝑟), (8.11)

𝑉�̄�𝑀 (𝑟) = sin2(𝜃(𝑟))𝑉 𝛴+
𝑔

0 (𝑟) + cos2(𝜃(𝑟))𝑉 𝛴+
𝑔

1 (𝑟), (8.12)

𝑉mix(𝑟) = cos(𝜃(𝑟)) sin(𝜃(𝑟))
(︁
𝑉
𝛴+

𝑔

0 (𝑟) − 𝑉
𝛴+

𝑔

1 (𝑟)
)︁
. (8.13)

If the system is predominantly in a quarkonium state, the mixing angle is small, while
𝜃 ≈ 𝜋/2 indicates a significant meson-meson contribution. For this work, we use the lattice
results from [72]. The data is shown in Fig. 8.1 together with the parameterizations

𝑉�̄�𝑄(𝑟) = 𝐸0 − 𝛼

𝑟
+ 𝜎𝑟 +

2∑︁
𝑗=1

𝑐�̄�𝑄,𝑗 𝑟 exp
(︃

− 𝑟2

2𝜆2
�̄�𝑄,𝑗

)︃
, (8.14)

𝑉�̄�𝑀,‖(𝑟) = 0, (8.15)

𝑉mix(𝑟) =
2∑︁
𝑗=1

𝑐mix,𝑗 𝑟 exp
(︃

− 𝑟2

2𝜆2
mix,𝑗

)︃
. (8.16)

There is no lattice data available for 𝑉�̄�𝑀,⊥(𝑟). However, a reasonable assumption is
𝑉�̄�𝑀,⊥(𝑟) = 𝑉

𝛱±
𝑔

0 (𝑟), i.e., the ground state of the sectors 𝛱+
𝑔 and 𝛱−

𝑔 , which are degenerate.
As there is no string-like state present in this sector, it is reasonable to assume that this
ground state energy is around twice the static-light meson mass, i.e.,

𝑉�̄�𝑀,⊥(𝑟) = 𝑉
𝛱±

𝑔

0 (𝑟) = 0. (8.17)

Table 8.2: Parameters of the potential parameterizations (8.14) and (8.16).

potential parameter value
𝑉�̄�𝑄(𝑟) 𝐸0 −1.599(269) GeV

𝛼 +0.320(94)
𝜎 +0.253(035) GeV2

𝑐�̄�𝑄,1 +0.826(882) GeV2

𝜆�̄�𝑄,1 +0.964(47) GeV−1

𝑐�̄�𝑄,2 +0.174(1.004) GeV2

𝜆�̄�𝑄,2 +2.663(425) GeV−1

𝑉mix(𝑟) 𝑐mix,1 −0.988(32) GeV2

𝜆mix,1 +0.982(18) GeV−1

𝑐mix,2 −0.142(7) GeV2

𝜆mix,2 +2.666(46) GeV−1
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Figure 8.1: Data points for the static potential of the ground state 𝑉 𝛴+
𝑔

0 (𝑟) and the first
excited state 𝑉 𝛴+

𝑔

1 (𝑟) with lattice spacing 𝑎 ≈ 1/(2.37 GeV), obtained by resampling and
correcting the lattice results from [72] as discussed in [104] (left). Data points for 𝑉�̄�𝑄(𝑟),
𝑉�̄�𝑀 (𝑟) and 𝑉mix(𝑟) as a result of Eqns. (8.11)-(8.13) and their fitted parametrizations (8.14)-
(8.16) (right).

8.5 Schrödinger equation for definite angular momentum 𝐽

We want to expand the Schrödinger equation (8.9) in terms of eigenfunctions of the angular
momentum 𝐽 and then project it to definite 𝐽 afterward. This allows us to find bound
states and resonances with definite quantum numbers 𝐽𝑃𝐶 , which can give insight into
the angular momentum 𝐽𝑃𝐶 of states found by the experiment by comparing with our
prediction.

Furthermore, the resulting Schrödinger equations become systems of coupled ordinary
differential equations after the decomposition, which makes them much easier to solve
numerically compared to the initial equation (8.9), a partial differential equation.

In [104], the Schrödinger equation (8.9) is derived and investigated for angular momentum
𝐽 = 0. In this section, we generalize this procedure to arbitrary angular momentum.

8.5.1 Eigenbasis for angular momentum 𝐽

We want to find a suitable set of eigenfunctions to expand the wave function similarly
to Eqn. (8.2). The first component of 𝜓(r) is spinless, i.e. 𝐽 = 𝐿�̄�𝑄. Thus, it can be
expanded in terms of spherical harmonics 𝑌𝐽,𝐽𝑧

(𝛺) according to

𝑍�̄�𝑄,𝐽,𝐽𝑧
(𝛺) = (𝑌𝐽,𝐽𝑧

(𝛺),0). (8.18)

For the lower three components, eigenfunctions of J̃2 and 𝐽𝑧 can be constructed via
Clebsch-Gordon coupling of the orbital angular momentum 𝐿 ≡ 𝐿�̄�𝑀 and the three spin-1
components of the light quarks. Analogously to Eqn. (8.18) eigenfunctions of L2 and 𝐿𝑧
can be represented by spherical harmonics 𝑌𝐿,𝐿𝑧 (𝛺). For the representation of the spin-1
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components we use the Gell-Mann-matrices

𝑆𝑥 =

⎛⎝ 0 0 0
0 0 −𝑖
0 𝑖 0

⎞⎠ , 𝑆𝑦 =

⎛⎝ 0 0 𝑖
0 0 0

−𝑖 0 0

⎞⎠ , 𝑆𝑧 =

⎛⎝ 0 0 − 𝑖 0
𝑖 0 0
0 0 0

⎞⎠ ,

(8.19)

which fulfill the angular momentum algebra [𝑆𝑗 ,𝑆𝑘] = 𝑖𝜀𝑗𝑘𝑙𝑆𝑙. Eigenfunctions of S2 and 𝑆𝑧
are given by the eigenvectors of 𝑆𝑧

v−1 = 1√
2

⎛⎝ −1
𝑖
0

⎞⎠ , v0 =

⎛⎝ 0
0
1

⎞⎠ , v1 = 1√
2

⎛⎝ 1
𝑖
0

⎞⎠ . (8.20)

The orbital angular momentum and spin eigenfunctions can be coupled with Clebsch-Gordon
coefficients

𝐶𝐽,𝐽𝑧

𝐿,𝐿𝑧 ;𝑆,𝑆𝑧
= ⟨𝐿,𝐿𝑧;𝑆, 𝑆𝑧|𝐽,𝐽𝑧;𝐿;𝑆⟩ (8.21)

to construct eigenfunctions of J̃2 and 𝐽𝑧 given by

𝑍�̄�𝑀,𝐿→𝐽,𝐽𝑧
(𝛺) = (0,Z𝐿→𝐽,𝐽𝑧

(𝛺)) (8.22)

with

Z𝐿→𝐽,𝐽𝑧
(𝛺) =

1∑︁
𝑗=−1

𝐽+1∑︁
𝐿=𝐽−1

𝐶𝐽,𝐽𝑧

𝐿,𝑗;1,−𝑗𝑌𝐿,𝑗(𝛺)v−𝑗 . (8.23)

With Eqn. (8.23) the eigenfunctions Z𝐿→𝐽,𝐽𝑧
(𝛺) are straightforward to construct, e.g.,

Z1→0,0(𝛺) =
√︂

1
4𝜋e𝑟, (8.24)

Z0→1,𝑗(𝛺) =
√︂

3
8𝜋𝜀𝑗𝑘𝑙

𝑟𝑘
𝑟

e𝑙, (8.25)

Z2→1,𝑗(𝛺) =
√︂

9
8𝜋

(︂
𝑟𝑗
𝑟

e𝑟 − 1
3e𝑗
)︂
. (8.26)

But in practice, we will stick to the general expression from Eqn. (8.23) to derive the
Schrödinger equation for arbitrary angular momenta 𝐽 . We can expand an arbitrary
three-component function G(r) in terms of Z𝐿→𝐽,𝐽𝑧

(𝛺) according to

G(r) = 𝑔1→0,0(𝑟)Z1→0,0(𝛺) +
∞∑︁
𝐽=1

𝐽∑︁
𝐽𝑧=−𝐽

𝐽+1∑︁
𝐿=𝐽−1

𝑔𝐿→𝐽,𝐽𝑧
(𝑟)Z𝐿→𝐽,𝐽𝑧

(𝛺). (8.27)
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8.5.2 Partial wave decomposition
According to Eqn. (8.18) we can write down the partial wave decomposition of 𝜓�̄�𝑄(r) as
an expansion in spherical harmonics

𝜓�̄�𝑄(r) = 𝑢0,0(𝑟)
𝑘𝑟

𝑌0,0(𝛺) +
∞∑︁
𝐽=1

𝐽∑︁
𝐽𝑧=−𝐽

𝑢𝐽,𝐽𝑧
(𝑟)

𝑘𝑟
𝑌𝐽,𝐽𝑧

(𝛺) (8.28)

with expansion coefficients 𝑢𝐽,𝐽𝑧
(𝑟).

Up to this point, we summarized the method from [104], now we have to tweak the
next steps to be able to derive and solve the Schrödinger equation for arbitrary angular
momentum 𝐽 .
We write 𝜓�̄�𝑀 (r) as a sum of incoming and emergent wave

𝜓�̄�𝑀 (r) = Xin(r) + Xout(r). (8.29)

In contrast to [104], we do not assume a plane wave for the incoming part but a general
solution of the Schrödinger equation Xin(r). We can write the radial part of these solutions
as a linear combination of spherical Bessel and Neumann functions. However, we exclude
a singular behavior at the origin, and thus, all factors of the Neumann function have to
vanish. The expansion reads

Xin(r) = 𝛼1→0,0𝑗0(𝑘𝑟)Z1→0,0(𝛺) +
∞∑︁
𝐽=1

𝐽∑︁
𝐽𝑧=−𝐽

𝐽+1∑︁
𝐿=𝐽−1

𝛼𝐿→𝐽,𝐽𝑧
𝑗𝐿(𝑘𝑟)Z𝐿→𝐽,𝐽𝑧

(𝛺)

(8.30)

with the 𝑟-independent factor 𝛼𝐿→𝐽,𝐽𝑧
fully determining the incoming wave. We expand

the outgoing wave according to

Xout(r) = 𝜒1→0,0(𝑟)
𝑘𝑟

Z1→0,0(𝛺) +
∞∑︁
𝐽=1

𝐽∑︁
𝐽𝑧=−𝐽

𝐽+1∑︁
𝐿=𝐽−1

𝜒𝐿→𝐽,𝐽𝑧
(𝑟)

𝑘𝑟
Z𝐿→𝐽,𝐽𝑧

(𝛺). (8.31)

Since we want to project the Schrödinger equation to definite quantum numbers 𝐽𝑃𝐶 =
1−−, 2++, ... we can impose behavior under parity transformations upon 𝜓(r). Our complete
set of functions Z𝐿→𝐽,𝐽𝑧

(𝛺) has parity (−1)𝐿+1. As a consequence, for parity even functions,
the coefficients 𝛼𝐿→𝐽,𝐽𝑧

and 𝜒𝐿→𝐽,𝐽𝑧
(𝑟) with even 𝐿 are zero, and for parity odd functions

all coefficients with odd 𝐿 are zero. A projection to definite 𝐽, 𝐽𝑧 leads to only two
participating scattering channels 𝐿 = 𝐽 − 1, 𝐽 + 1 for both incoming and outgoing waves.

8.5.3 Projection to definite angular momentum
To find the Schrödinger equation for a particular angular momentum 𝐽 we plug in the
partial wave decomposition of 𝜓(r) = (𝜓�̄�𝑄(r),𝜓�̄�𝑀 (r)) from Eqns. (8.28) and (8.29) into
Eqn. (8.9), multiply it with the contributing (𝑍�̄�𝑄/�̄�𝑀,...)† from the left and perform the
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solid angle integration
´

d𝛺. For a given 𝐽 there are three contributing basis functions
𝑍�̄�𝑄/�̄�𝑀,... ∈

{︁
𝑍�̄�𝑄,𝐽,𝐽𝑧

(𝛺), 𝑍�̄�𝑀,𝐽−1→𝐽,𝐽𝑧
(𝛺), 𝑍�̄�𝑀,𝐽+1→𝐽,𝐽𝑧

(𝛺)
}︁

which results in three
coupled equations. These equations again can be written in a 3 × 3 matrix equation. The
only term in the Schrödinger equation (8.9) that mixes channels is the potential matrix
𝑉𝐽(𝑟). All other terms are diagonal and thus the projection of these terms is trivial using
the orthonormality of the eigenfunctions

ˆ
d𝛺
(︁
𝑍�̄�𝑄,𝐽1,𝐽𝑧,1

(𝛺)
)︁†
𝑍�̄�𝑄,𝐽2,𝐽𝑧,2

(𝛺) = 𝛿𝐽1,𝐽2
𝛿𝐽𝑧,1𝐽𝑧,2

, (8.32)
ˆ

d𝛺
(︁
𝑍�̄�𝑀,𝐿1→𝐽1,𝐽𝑧,1

(𝛺)
)︁†
𝑍�̄�𝑀,𝐿2→𝐽2,𝐽𝑧,2

(𝛺) = 𝛿𝐿1,𝐿2𝛿𝐽1,𝐽2
𝛿𝐽𝑧,1𝐽𝑧,2

, (8.33)
ˆ

d𝛺
(︁
𝑍�̄�𝑄,𝐽1,𝐽𝑧,1

(𝛺)
)︁†
𝑍�̄�𝑀,𝐿2→𝐽2,𝐽𝑧,2

(𝛺) = 0. (8.34)

The first matrix element of 𝑉𝐽(𝑟) is also trivially computed by using the orthonormality
relation of spherical harmonics as

ˆ
d𝛺
(︂
𝑌𝐽,0(𝛺)

0

)︂†

· 𝑉 (r) ·
(︂
𝑌𝐽,0(𝛺)

0

)︂
= 𝑉�̄�𝑄(𝑟). (8.35)

For the remaining elements of the first row of 𝑉𝐽(𝑟) we need to consider equations of the
form

ˆ
d𝛺
(︂
𝑌𝐽,0(𝛺)

0

)︂†

· 𝑉 (r) · 𝑍�̄�𝑀,𝐽±1→𝐽,0(𝛺). (8.36)

To do this, we rewrite the scalar product of e𝑟 from the potential matrix (8.10) and v𝑆𝑧

from the eigenvectors (see Eqn. (8.20)) of the spin operator 𝑆𝑧 in terms of spherical
harmonics, yielding

e𝑇𝑟 · v−1 = − 1√
2

sin(𝜃)e−𝑖𝜑 = −2
√︂
𝜋

3𝑌1,−1(𝛺), (8.37)

e𝑇𝑟 · v0 = − cos(𝜃) = −2
√︂
𝜋

3𝑌1,0(𝛺), (8.38)

e𝑇𝑟 · v1 = 1√
2

sin(𝜃)e𝑖𝜑 = −2
√︂
𝜋

3𝑌1,1(𝛺). (8.39)

We are left with a solid angle integration over the product of three spherical harmonics,
which can be solved using the relation

ˆ
d𝛺 𝑌 *

𝑙1,𝑚1(𝛺)𝑌 *
𝑙2,𝑚2(𝛺)𝑌𝐿,𝑀 (𝛺)

=

√︃
(2𝑙1 + 1)(2𝑙2 + 1)

4𝜋(2𝐿+ 1) ⟨𝑙1,0; 𝑙2,0|𝐿,0⟩ ⟨𝑙1,𝑚1; 𝑙2,𝑚2|𝐿,𝑀⟩ . (8.40)



58Chapter 8 Studying bottomonium in the Born-Oppenheimer approximation using static potentials from
lattice QCD

This leads to
ˆ

d𝛺
(︂
𝑌𝐽,0(𝛺)

0

)︂†

· 𝑉 (r) · 𝑍�̄�𝑀,�̄�𝑀,𝐽±1→𝐽,0(𝛺) (8.41)

= − 2
√︂
𝜋

3

√︃
3(2𝐽 + 1 ± 2)
4𝜋(2𝐽 + 1)

⟨𝐽 ± 1,0; 1,0|𝐽,0⟩ ⟨𝐽 ± 1,− 1; 1,1|𝐽,0⟩ ⟨𝐽 ± 1,1; 1,− 1|𝐽,0⟩

− 2
√︂
𝜋

3

√︃
3(2𝐽 + 1 ± 2)
4𝜋(2𝐽 + 1)

⟨𝐽 ± 1,0; 1,0|𝐽,0⟩ ⟨𝐽 ± 1,0; 1,0|𝐽,0⟩ ⟨𝐽 ± 1,0; 1,0|𝐽,0⟩

− 2
√︂
𝜋

3

√︃
3(2𝐽 + 1 ± 2)
4𝜋(2𝐽 + 1)

⟨𝐽 ± 1,0; 1,0|𝐽,0⟩ ⟨𝐽 ± 1,1; 1,− 1|𝐽,0⟩ ⟨𝐽 ± 1,− 1; 1,1|𝐽,0⟩

=

√︃
𝐽 + 1

2 ± 1
2

2𝐽 + 1
𝑉mix(𝑟). (8.42)

After projection with all three of these functions we obtain the 3 × 3 coupled channel
Schrödinger equation⎛⎝1

2𝜇
−1
(︂
𝜕2
𝑟 + 1

𝑟2𝐿
2
𝐽

)︂
+ 𝑉𝐽(𝑟) +

⎛⎝ 𝐸threshold 0 0
0 2𝑚𝑀 0
0 0 2𝑚𝑀

⎞⎠− 𝐸

⎞⎠⎛⎝ 𝑢𝐽(𝑟)
𝜒𝐽−1→𝐽(𝑟)
𝜒𝐽+1→𝐽(𝑟)

⎞⎠ =

=

⎛⎝ 𝑉mix(𝑟)
0
0

⎞⎠(︂𝛼𝐽−1→𝐽

𝐽

2𝐽 + 1
𝑟𝑗𝐽−1(𝑘𝑟) + 𝛼𝐽+1→𝐽

𝐽 + 1
2𝐽 + 1

𝑟𝑗𝐽+1(𝑘𝑟)
)︂

(8.43)

with 𝜇−1 = diag(1/𝜇𝑄, 1/𝜇𝑀 , 1/𝜇𝑀 ), 𝐿2
𝐽

= diag(𝐽(𝐽 + 1), (𝐽 − 1)𝐽, (𝐽 + 1)(𝐽 + 2), (𝐽 −
1)𝐽, (𝐽 + 1)(𝐽 + 2)) and

𝑉𝐽(𝑟) =

⎛⎜⎜⎜⎝
𝑉�̄�𝑄(𝑟)

√︁
𝐽

2𝐽+1𝑉mix(𝑟)
√︁

𝐽+1
2𝐽+1𝑉mix(𝑟)√︁

𝐽
2𝐽+1𝑉mix(𝑟) 0 0√︁
𝐽+1
2𝐽+1𝑉mix(𝑟) 0 0

⎞⎟⎟⎟⎠ . (8.44)

In the special case of 𝐽 = 0 there is of course no scattering channel corresponding to
𝐽 − 1 → 𝐽 but only 𝐽 + 1 → 𝐽 . We retrieve the equations for 𝐽 = 0 by ignoring the second
row and column from Eqn. (8.43) and the incoming wave proportional to 𝛼𝐽−1→𝐽 on the
right-hand side.

8.5.4 Boundary conditions
The quarkonium channel is confining, and thus, its wave function has to vanish for large
distances. The boundary conditions are

𝑢𝐽(𝑟) ∝ 𝑟𝐽+1 for 𝑟 → 0, (8.45)
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𝑢𝐽(𝑟) = 0 for 𝑟 → ∞. (8.46)

The meson-meson wave function 𝜓�̄�𝑀 (r) is a sum of an incoming and an emergent
wave. The incoming wave is fully characterized by the choice of �⃗� =

(︀
𝛼𝐽−1→𝐽 , 𝛼𝐽−1→𝐽

)︀
as

a superposition of spherical Bessel functions 𝑗𝐿in(𝑘𝑟). If we choose �⃗�1 = (1,0) we obtain
an incoming �̄�𝑀 wave with 𝐿in = 𝐽 − 1 while �⃗�2 = (0,1) corresponds to an incoming
wave with 𝐿in = 𝐽 + 1. To obtain full information about our scattering, we have to solve
the system of coupled equations from Eqn. (8.43) twice, once with �⃗� = �⃗�1 and once with
�⃗� = �⃗�2.

We choose the boundary conditions of the emergent waves to be

𝜒𝐿out→𝐽(𝑟) ∝ 𝑟𝐿out+1 for 𝑟 → 0, (8.47)

𝜒𝐿out→𝐽(𝑟) = 𝑖𝑡𝐿in
𝐿out

𝑟ℎ
(1)
𝐿out

(𝑘𝑟) for 𝑟 → ∞ (8.48)

with 𝐿in ∈ 𝐽 − 1,𝐽 + 1 corresponding to �⃗�1 and �⃗�2, the scattering amplitude 𝑡𝐿in
𝐿out

(𝐿in is
an upper index and not an exponent) and ℎ

(1)
𝐿out

(𝑘𝑟) denoting a spherical Hankel function
of the first kind.

8.5.5 T-matrix

We can use the four different scattering amplitudes 𝑡𝐿in
𝐿out

from Eqn. (8.48) to construct the
T𝐽 -matrix of our scattering problem,

T𝐽 =
(︃
𝑡𝐽−1
𝐽−1 𝑡𝐽+1

𝐽−1
𝑡𝐽−1
𝐽+1 𝑡𝐽+1

𝐽+1

)︃
, (8.49)

which includes all the information of the scattering. We recover the special case of 𝐽 = 0
discussed in [104] by dropping the components with 𝐿in = 𝐽 − 1 and 𝐿out = 𝐽 − 1 which
leaves us with just one scattering amplitude T𝐽 = 𝑡𝐽+1

𝐽+1.
The corresponding S-Matrix S𝐽 is given by

S𝐽 = 1 + 2𝑖T𝐽 . (8.50)

Another important quantity is the phase shift. For a scalar scattering matrix, i.e. with
𝐽 = 0, it is defined by S𝐽 = exp

(︀
2𝑖𝛿𝐽

)︀
consistent with Eqn. (8.8). However, if the S𝐽 is a

2 × 2 matrix there are two phase shifts defined via the eigenvalues 𝜆𝐽,𝑖 = exp
(︁

2𝑖𝛿𝐽,𝑖
)︁

. We
define the eigenphase sum [115–117] as

det
(︀
S𝐽
)︀

= exp
(︀
2𝑖𝛿𝐽

)︀
, (8.51)

which is the sum of all phaseshifts 𝛿𝐽,𝑖. While this quantity is not the same as the scattering
phase shift, it has properties similar to 𝛿𝐽,𝑖 while remaining one number, even for systems
with many channels.
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8.6 Extension by a �̄�𝑠𝑀𝑠 channel

We now extend our system by incorporating an �̄�𝑠𝑀𝑠 channel. This extension is crucial for
accurately describing the energy region of interest. To illustrate this, consider the �̄�𝑄 = �̄�𝑏
and �̄�𝑀 = �̄�(*)𝐵(*) channels. Our current method allows us to identify bound states
below the �̄�(*)𝐵(*) threshold, which is approximately 10.628 GeV (calculated using the
average mass of the four possible spin configurations 𝑚𝑀 = (𝑚𝐵 + 3𝑚𝐵*)/4 = 5.313 GeV).
Additionally, we can identify resonances up to the threshold of a meson with negative
parity and another with positive parity at 11.025 GeV. However, the threshold for a
�̄�𝑏𝑠𝑠 meson-meson state is at 10.807 GeV (with 𝑚𝑀𝑠 = (𝑚𝐵𝑠 + 3𝑚𝐵*

𝑠
)/4 = 5.403 GeV).

This indicates that results above this energy are questionable if only the �̄�𝑏 and �̄�(*)𝐵(*)

channels are considered. This energy region is particularly significant for studying the
𝛶 (10860) and 𝛶 (11020) resonances observed experimentally. Therefore, we extend our
coupled-channel system to include the �̄�𝑠𝑀𝑠 channel.

Ideally, we would utilize static potentials from a lattice study with a 3 × 3 correlation
matrix that includes a �̄�𝑠𝑀𝑠 operator. Such a correlation matrix was computed in [73],
but the results are unsuitable for our method, as discussed in Section 8.4.

Consequently, we construct the �̄�𝑠𝑀𝑠 channel using the same lattice data employed for
the �̄�𝑀 channel. This approach is reasonable because the quark mass used in the lattice
study is closer to the physical 𝑠 quark mass than to the 𝑢/𝑑 quark mass. We extend the
potential matrix from Eqn. (8.10) from two channels to three channels,

(︂
𝑉�̄�𝑄(𝑟) 𝑉mix(𝑟)
𝑉mix(𝑟) 0

)︂
→

⎛⎝ 𝑉�̄�𝑄(𝑟) 𝑉mix(𝑟) 1/
√

2𝑉mix(𝑟)
𝑉mix(𝑟) 0 0

1/
√

2𝑉mix(𝑟) 0 0

⎞⎠ , (8.52)

where we assume no mixing between the two different meson-meson channels. The mixing
between �̄�𝑠𝑀𝑠 and �̄�𝑄 is reduced by a factor of 1/

√
2 compared to the mixing between

�̄�𝑀 and �̄�𝑄 due to the different number of degenerate flavors (one for �̄�𝑠𝑀𝑠 and two
for �̄�𝑀).

To test the validity of this extension, we solve the eigenvalue problem of the 3 × 3
equation to extract the first three energy levels of the system. In Fig. 8.2, we present
the resulting energies 𝐸1, 𝐸2, 𝐸3 as a function of the separation 𝑟. The shape of these
potentials is generally consistent with the energies obtained in the lattice study of a 3 × 3
correlation function that includes a �̄�𝑠𝑀𝑠 operator [73].

8.6.1 5x5 coupled channel Schrödinger equation

To derive the corresponding Schrödinger equation, we follow the same steps as in the
previous section. The only difference is adding a fourth and fifth component to the wave
function 𝜓(r) corresponding to a 𝐽−1 and 𝐽+1 �̄�𝑠𝑀𝑠 channel. Thus, the 3×3 Schrödinger
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Figure 8.2: Energy eigenvalues 𝐸1, 𝐸2, 𝐸3 as a function of the separation 𝑟/𝑎 for the 3 × 3
potential matrix from Eqn. (8.52) with lattice spacing 𝑎 ≈ 1/(2.37 GeV). The two gray lines
mark 0 and the difference of the �̄�𝑠𝑀𝑠 and �̄�𝑀 threshold 2𝑚𝑀𝑠 − 2𝑚𝑀 .

equation (8.9) expands to the 5 × 5 equation

(︂
1
2𝜇

−1
(︂
𝜕2
𝑟 + 1

𝑟2𝐿
2
𝐽

)︂
+ 𝑉𝐽(𝑟) +𝑀 − 𝐸

)︂
⎛⎜⎜⎜⎜⎜⎝

𝑢𝐽(𝑟)
𝜒�̄�𝑀,𝐽−1→𝐽(𝑟)
𝜒�̄�𝑀,𝐽+1→𝐽(𝑟)
𝜒�̄�𝑠𝑀𝑠,𝐽−1→𝐽(𝑟)
𝜒�̄�𝑠𝑀𝑠,𝐽+1→𝐽(𝑟)

⎞⎟⎟⎟⎟⎟⎠ =

=

⎛⎜⎜⎜⎜⎝
𝑉mix(𝑟)

0
0
0
0

⎞⎟⎟⎟⎟⎠
(︂
𝛼�̄�𝑀,𝐽−1

𝐽

2𝐽 + 1
𝑟𝑗𝐽−1(𝑘𝑟) + 𝛼�̄�𝑀,𝐽+1

𝐽 + 1
2𝐽 + 1

𝑟𝑗𝐽+1(𝑘𝑟)

+ 𝛼�̄�𝑠𝑀𝑠,𝐽−1
𝐽

2𝐽 + 1
𝑟𝑗𝐽−1(𝑘𝑠𝑟)√

2
+ 𝛼�̄�𝑠𝑀𝑠,𝐽+1

𝐽 + 1
2𝐽 + 1

𝑟𝑗𝐽+1(𝑘𝑠𝑟)√
2

)︂
(8.53)

with 𝜇−1 = diag(1/𝜇𝑄, 1/𝜇𝑀 , 1/𝜇𝑀 , 1/𝜇𝑀𝑠 , 1/𝜇𝑀𝑠),
𝐿2
𝐽

= diag(𝐽(𝐽 + 1), (𝐽 − 1)𝐽, (𝐽 + 1)(𝐽 + 2), (𝐽 − 1)𝐽, (𝐽 + 1)(𝐽 + 2)),
𝑀 = diag(𝐸threshold, 2𝑚𝑀 , 2𝑚𝑀 , 2𝑚𝑀𝑠 , 2𝑚𝑀𝑠) and

𝑉𝐽(𝑟) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑉�̄�𝑄

√︁
𝐽

2𝐽+1𝑉mix

√︁
𝐽+1
2𝐽+1𝑉mix

√︁
𝐽

4𝐽+2𝑉mix

√︁
𝐽+1
4𝐽+2𝑉mix√︁

𝐽
2𝐽+1𝑉mix 0 0 0 0√︁
𝐽+1
2𝐽+1𝑉mix 0 0 0 0√︁
𝐽

4𝐽+2𝑉mix 0 0 0 0√︁
𝐽+1
4𝐽+2𝑉mix 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(8.54)
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The different momenta of the incoming waves are denoted by 𝑘 and 𝑘𝑠 for the �̄�𝑀 and
�̄�𝑠𝑀𝑠 channel respectively. They are related to the energy 𝐸 by

𝐸 = 2𝑚𝑀 + 𝑘2

2𝜇𝑀
, 𝐸 = 2𝑚𝑀𝑠 + 𝑘2

𝑠

2𝜇𝑀𝑠

. (8.55)

With four open channels the incoming wave also has four degrees of freedom denoted by
𝛼 = (𝛼�̄�𝑀,𝐽−1,𝛼�̄�𝑀,𝐽+1,𝛼�̄�𝑠𝑀𝑠,𝐽−1,𝛼�̄�𝑠𝑀𝑠,𝐽+1). Thus, we have to solve the system of
coupled equations (8.53) four times, once for each of the four possible incoming waves.
The emergent waves are denoted by 𝜒�̄�(𝑠)𝑀(𝑠),𝐽−1→𝐽 and 𝜒�̄�(𝑠)𝑀(𝑠),𝐽+1→𝐽 with �̄�(𝑠)𝑀(𝑠) ∈
{�̄�𝑀, �̄�𝑠𝑀𝑠}. The boundary conditions for the emergent waves must also be extended
for the �̄�𝑠𝑀𝑠 channels. For the quarkonium channel Eqn. (8.46) remains unchanged while
for the meson-meson channels we now demand

𝜒�̄�𝑀(�̄�𝑠𝑀𝑠),𝐿out→𝐽(𝑟) ∝ 𝑟𝐿out+1 for 𝑟 → 0, (8.56)

𝜒�̄�𝑀,𝐿out→𝐽 = 𝑖𝑡
�̄�(𝑠)𝑀(𝑠),𝐿in

�̄�𝑀,𝐿out
𝑟ℎ

(1)
𝐿out

(𝑘𝑟) for 𝑟 → ∞, (8.57)

𝜒�̄�𝑠𝑀𝑠,𝐿out→𝐽 = 𝑖𝑡
�̄�(𝑠)𝑀(𝑠),𝐿in

�̄�𝑠𝑀𝑠,𝐿out
𝑟ℎ

(1)
𝐿out

(𝑘𝑠𝑟) for 𝑟 → ∞. (8.58)

8.6.2 4x4 T-matrix
The T𝐽 -matrix is now a 4 × 4 matrix with the following components

T𝐽 =

⎛⎜⎜⎜⎜⎜⎝
𝑡�̄�𝑀,𝐽−1
�̄�𝑀,𝐽−1 𝑡�̄�𝑀,𝐽+1

�̄�𝑀,𝐽−1 𝑡�̄�𝑠𝑀𝑠,𝐽−1
�̄�𝑀,𝐽−1 𝑡�̄�𝑠𝑀𝑠,𝐽+1

�̄�𝑀,𝐽−1

𝑡�̄�𝑀,𝐽−1
�̄�𝑀,𝐽+1 𝑡�̄�𝑀,𝐽+1

�̄�𝑀,𝐽+1 𝑡�̄�𝑠𝑀𝑠,𝐽−1
�̄�𝑀,𝐽+1 𝑡�̄�𝑠𝑀𝑠,𝐽+1

�̄�𝑀,𝐽+1

𝑡�̄�𝑀,𝐽−1
�̄�𝑠𝑀𝑠,𝐽−1 𝑡�̄�𝑀,𝐽+1

�̄�𝑠𝑀𝑠,𝐽−1 𝑡�̄�𝑠𝑀𝑠,𝐽−1
�̄�𝑠𝑀𝑠,𝐽−1 𝑡�̄�𝑠𝑀𝑠,𝐽+1

�̄�𝑠𝑀𝑠,𝐽−1

𝑡�̄�𝑀,𝐽−1
�̄�𝑠𝑀𝑠,𝐽+1 𝑡�̄�𝑀,𝐽+1

�̄�𝑠𝑀𝑠,𝐽+1 𝑡�̄�𝑠𝑀𝑠,𝐽−1
�̄�𝑠𝑀𝑠,𝐽+1 𝑡�̄�𝑠𝑀𝑠,𝐽+1

�̄�𝑠𝑀𝑠,𝐽+1

⎞⎟⎟⎟⎟⎟⎠ . (8.59)

S𝐽 and the eigenphase sum are defined analogously to the 2x2 case (i.e. Eqns. (8.50) and
(8.51)).

8.7 Quarkonium and meson-meson content
By construction the components of the wave function 𝜓(r) correspond to the �̄�𝑄, �̄�𝑀 and
�̄�𝑠𝑀𝑠 channels of the system. We can investigate the nature of a resonance or bound state
by considering the distribution of the wave function coefficients. To do so in a rigorous
way we define

%�̄�𝑄 = 𝑄

𝑄+𝑀𝐽−1 +𝑀𝐽+1 +𝑀𝑠,𝐽−1 +𝑀𝑠,𝐽+1
, (8.60)

(%�̄�𝑀)𝐿out = 𝑀𝐿out

𝑄+𝑀𝐽−1 +𝑀𝐽+1 +𝑀𝑠,𝐽−1 +𝑀𝑠,𝐽+1
, (8.61)

(%�̄�𝑠𝑀𝑠)𝐿out = 𝑀𝑠,𝐿out

𝑄+𝑀𝐽−1 +𝑀𝐽+1 +𝑀𝑠,𝐽−1 +𝑀𝑠,𝐽+1
. (8.62)
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where

𝑄 =
ˆ 𝑅max

0
d𝑟
⃒⃒⃒
𝑢𝐽(𝑟)

⃒⃒⃒2
, (8.63)

𝑀𝐿out =
ˆ 𝑅max

0
d𝑟
⃒⃒⃒
𝜒�̄�𝑀,𝐿out→𝐽(𝑟)

⃒⃒⃒2
, (8.64)

𝑀𝑠,𝐿out =
ˆ 𝑅max

0
d𝑟
⃒⃒⃒
𝜒�̄�𝑠𝑀𝑠,𝐿out→𝐽(𝑟)

⃒⃒⃒2
. (8.65)

𝑅max is the maximum distance we integrate to. For bound states 𝑄, 𝑀𝐿out and 𝑀𝑠,𝐿out

approach constant values for a finite 𝑅max ≈ 2.0 fm while for resonances they proceed to
change slowly for larger 𝑅max and a reasonable cutoff has to be applied.





CHAPTER 9
Results for bottomonium resonances in the Born-Oppenheimer
approximation using lattice QCD static potentials

In this chapter, we present our findings on bottomonium resonances in the S, P, D, and F
waves using lattice QCD static potentials from [72] within the framework introduced in the
previous chapter, solving a Schrödinger equation in the Born-Oppenheimer approximation.

We commence this chapter by presenting our numerical methods to solve the Schrödinger
equation and determine bound and resonance states. Then, we specify the parameters
relevant to the bottomonium system under investigation. Subsequently, we provide results
for scattering phase shifts and pole positions in the complex plane. We then compare our
theoretical predictions for bound states and resonances with existing experimental data.
Additionally, we analyze the quarkonium and meson-meson content of each state. Finally,
we discuss the systematic errors associated with our results and compare them with other
theoretical predictions.

9.1 Numerical solution
To solve the system of coupled differential equations (8.53) for a given energy 𝐸, we
employed two independent methods, both of which are standard numerical techniques.

Initially, we replace the asymptotic boundary condition 𝑟 → ∞ with 𝑟 ≤ 𝑅, where
𝑅 is sufficiently large. Subsequently, we discretize the interval [0, 𝑅] using a uniform
one-dimensional lattice with 𝑁 + 1 lattice points and lattice spacing 𝑑 = 𝑅/𝑁 .

This allows us to rewrite Eqn. (8.53) in terms of a system of linear equations, which
can be solved using standard methods. Alternatively, we can solve it using a Runge-Kutta
algorithm combined with the shooting method. We recommend this approach and will
discuss finding bound states and resonances using a 4th-order Runge-Kutta algorithm with
a shooting method and a Newton-Raphson root finder.

9.1.1 Determination of bound state energies
There is no emergent wave for bound states; thus, the right-hand side of Eqn. (8.9) vanishes.
The resulting homogeneous differential equation must be solved repeatedly using the
shooting method. We start with trial energy 𝐸 and integrate the differential equation from
a very small separation 𝜀 to a large distance 𝑅. We choose four different initial conditions
corresponding to Eqns. (8.46) and (8.56), one for each of the four possible incoming waves.
This yields four resulting wave functions 𝜓hom

𝑖 (𝑅) at large distance 𝑅, which we combine
into a 4 × 4 matrix 𝑀 =

(︀
𝜓hom

1 (𝑅), 𝜓hom
2 (𝑅), 𝜓hom

3 (𝑅), 𝜓hom
4 (𝑅)

)︀
. We then find the roots

of det(𝑀) as a function of the energy 𝐸 by employing the Newton-Raphson method and

65
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repeatedly integrating. The energies that minimize det(𝑀) correspond to vanishing wave
functions at large separations and thus fulfill the boundary conditions of bound states.

9.1.2 Numerical methods to compute the eigenphase sum 𝛿𝐽(𝐸) and find poles of T(𝐸) in the
complex plane

For resonances, the right-hand side of Eqn. (8.9) does not vanish, leading to non-trivial
behavior at large distances. According to the boundary condition from Eqn. (8.58), we
need to match the behavior of the wave functions at large separations to the corresponding
elements of the T-matrix (8.59), which appear as factors in the asymptotic behavior of
the wave function 𝑖𝑡

�̄�(𝑠)𝑀(𝑠),𝐿in

�̄�(𝑠)𝑀(𝑠),𝐿out
𝑟ℎ

(1)
𝐿out

(𝑘(𝑠)𝑟) from Eqns. (8.56) to (8.58). This allows us
to compute the eigenphase sum (8.51) 𝛿𝐽(𝐸) for real energies 𝐸.

We can also analytically continue the scattering problem to the complex plane and search
for poles in the T(𝐸)-matrix for complex energies 𝐸, which directly correspond to the mass
and decay width of resonances according to

𝑚 = Re(𝐸pole), 𝛤 = −2Im(𝐸pole). (9.1)

We apply a Newton-Raphson root-finding algorithm to 1/ det(T(𝐸)) to extract the res-
onance positions. This numerical task involves finding a root in the complex plane for
an essentially unknown, highly unpredictable function. This constitutes the main numer-
ical challenge in this chapter of the work. The following section discusses the technical
difficulties of the pole search in the complex plane.

9.1.3 Technical difficulties of finding poles in the complex plane
Finding poles in the complex plane is essentially a root-finding problem in two dimensions,
which is inherently complex. We employ a Newton-Raphson shooting algorithm for locating
poles, which necessitates an initial guess for the energy. The algorithm then iteratively
follows the gradient to identify a root of 1/det(T(𝐸)). The T(𝐸)-matrix spans multiple
orders of magnitude, and its poles can be extremely narrow relative to the energy scale,
making the initial guess critical.

A practical approach is to perform an energy scan, i.e., compute T(𝐸) as a function of
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Figure 9.1: Left: Det(T(𝐸)) in the complex energy plane for 𝐽 = 1. Yellow dots indicate
poles in the T matrix. Right: Poles found in the complex plane for 𝐽 = 1 for integration
distance 𝑅 = 20 and 𝑅 = 24. Unphysical ”spurious” poles depend on 𝑅, while the two physical
poles remain at the same position.
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complex energy, and visualize it using a heatmap, as illustrated on the left side of Fig. 9.1.
This visualization helps identify approximate pole positions, which can be refined using
the Newton-Raphson method. Another strategy involves conducting the pole search for a
dense grid of initial energies, effectively scanning the relevant region in the complex plane.
For instance, to generate Fig. 9.1, we used a grid of 40 × 40 = 1600 initial energies within
the range 10.800 GeV − 0𝑖 GeV to 11.000 GeV − 0.10𝑖 GeV.

A significant challenge in this procedure is the emergence of unphysical poles, which we
call ”spurious poles”. These poles are discretization artifacts influenced by the integration
distance 𝑅 and the step size ℎ. To distinguish physical poles from spurious ones, we
recompute the poles with varying 𝑅 or ℎ and observe any energy changes. In Fig. 9.1, we
present an example where poles are computed above the �̄�𝑠𝐵𝑠 threshold for integration
distances 𝑅 = 20 fm and 𝑅 = 24 fm. The spurious poles exhibit significant shifts into the
complex plane when 𝑅 is increased from 20 fm to 24 fm, whereas the two physical poles at
approximately 10.865 GeV − 𝑖0.34 GeV and 10.932 GeV − 𝑖0.50 GeV remain stable.

9.2 Parameter setting
In Chapter 8, we kept the heavy quark flavor in the system general. From this point
onward, we focus on bottomonium, i.e., 𝑄 = 𝑏. We do not differentiate between different
heavy quark spins, thus treating the 𝐵(𝑠) and 𝐵*

(𝑠) mesons as degenerate. Consequently,
the heavy meson masses are chosen as the average over the masses of the four possible spin
configurations, 𝑚𝑀(𝑠) = (𝑚𝐵(𝑠) + 3𝑚𝐵*

(𝑠)
)/4 = 5.313 GeV(5.403 GeV) (1 for spin 0 and 3

for spin 1). Thus, when we refer to 𝐵(𝑠) mesons in this chapter, it, in principle, refers to
both 𝐵(𝑠) and 𝐵*

(𝑠) mesons.
For the lattice data, we utilize the results from the study of string breaking [72], which

employed an unphysical light quark mass corresponding to 𝑚𝜋 = 640 MeV. Our equations
account for this by setting 𝐸threshold to 10.790 GeV. Note that this value is much closer to
the �̄�𝑠𝐵𝑠 threshold than the �̄�𝐵 threshold.

9.3 Eigenphase sum and pole positions in the complex plane
Fig. 9.2 presents the eigenphase sum as a function of energy for angular momenta 𝐽 ≤ 3.
Resonances are identified by pronounced steps in 𝛿𝐽(𝐸). These steps can typically be
parameterized by

𝛼+ 𝛽 arctan
(︂

2
𝛤

(𝐸 −𝑚)
)︂
, (9.2)

where 𝑚 denotes the resonance mass, 𝛤 represents the decay width, and 𝛼 and 𝛽 are
additional fitting parameters.

However, particularly for broad resonances with large decay widths, the step in the
eigenphase sum is not as pronounced as for narrow resonances. Additionally, overlapping
resonances can obscure the identification of individual poles. To identify resonances reliably,
we utilize the positions of T matrix poles in the complex plane by analytically continuing
the scattering problem.

In Fig. 9.3, we present the positions of T matrix poles in the complex plane for angular
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Figure 9.2: Eigenphase sum 𝛿𝐽 from Eqn. (8.51) for 𝐽 = 0,1,2,3. The vertical red dashed
line indicates the �̄�𝑠𝐵𝑠 threshold at 10.808 GeV, while vertical green dashed lines indicate
pole positions. The light blue background marks the region where the validity of our results is
questionable due to the opening of a new scattering threshold.

momenta 𝐽 ≤ 3. Bound states on the real axis below the �̄�𝐵 threshold are also included
in the plot, while resonances appear above this threshold with non-zero imaginary parts.
We employed resampling on the lattice data, leading to different fitting parameters from
Tab. 8.2, to generate approximately 1000 data points for each pole position, represented
by the colored point clouds. Different colors are used to distinguish between the poles.
The error bars on the mean values, indicated by the black points, correspond to the 16th
and 84th percentiles.

An exception is the T matrix pole for 𝑛 = 3 and 𝐽 = 2, which could not be identified
by the pole-finding algorithm but is clearly indicated in the eigenphase sum 𝛿2. For this
resonance, we instead fit Eqn. (9.2) to 𝛿2 to extract the mass 𝑚 and decay width 𝛤 . The
resulting fit curve is shown in Fig. 9.4.
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Figure 9.3: Bound state and resonance pole positions in the complex energy plane for angular
momenta 𝐽 = 0,1,2,3 (left to right, top to bottom). Colored point clouds indicate results with
≈ 1000 resampled parameter sets, and error bars are defined by the 16th and 84th percentile.
Red dotted lines mark the �̄�𝐵 and �̄�𝑠𝐵𝑠 thresholds at 10.628 GeV and 10.808 GeV. The light
blue region indicates the threshold of one negative and one positive parity meson, where our
results are no longer reliable.
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Figure 9.4: Eigenphase sum for �̄�𝐵, 𝐽 = 2. The resonance at ≈ 10.800 GeV is fitted (pink
curve) with the ansatz from Eqn. (9.2) to determine the resonance mass 𝑚 and decay width 𝛤 .
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9.4 Percentages of quarkonium and meson-meson composition
We also investigate the composition and internal structure of bound states and resonances
to determine whether they are traditional quarkonia or contain significant contributions
from �̄�(𝑠)𝑀(𝑠) components. As defined in Eqn. (8.62), we calculate the percentage of
quarkonium and meson-meson composition for each state, i.e., %�̄�𝑄, (%�̄�𝑀)𝐿out , and
(%�̄�𝑠𝑀𝑠)𝐿out .

For a bound state, 𝑄, 𝑀𝐿out , and 𝑀𝑠,𝐿out approach constants for 𝑅max ≈ 2.0 fm as
indicated in Fig. 9.5 (corresponding figures for 𝐽 = 1,2,3 are provided in Appendix C.1,
Figs. C.1-C.3). We collect the asymptotic values of %�̄�𝑄, (%�̄�𝑀)𝐿out , and (%�̄�𝑠𝑀𝑠)𝐿out

for bound states in Tab. 9.1.
Examining the dependence of 𝑄, 𝑀𝐿out , and 𝑀𝑠,𝐿out on 𝑅max in Fig. 9.5, we observe

that the curves do not reach an asymptotic value for large 𝑅max but instead exhibit an
approximate linear behavior with a small slope in the range 1.8 fm < 𝑅max < 3.0 fm.
Specifically, the meson content, i.e., 𝑀𝐿out and 𝑀𝑠,𝐿out , increases in this region. In contrast,
the quarkonium content decreases due to the emergent spherical waves 𝜒�̄�𝑀,𝐿out→𝐽(𝑟)
and 𝜒�̄�𝑠𝑀𝑠,𝐿out→𝐽(𝑟). At the distance where the curves behave linearly, the quarkonium
component becomes negligibly small, i.e., a nearly pure emergent wave and the resonance
is contained within a sphere of 𝑅max. To define %�̄�𝑄, (%�̄�𝑀)𝐿out , and (%�̄�𝑠𝑀𝑠)𝐿out

in a meaningful way while accounting for systematic uncertainty, we compute %�̄�𝑄,
(%�̄�𝑀)𝐿out , and (%�̄�𝑠𝑀𝑠)𝐿out at the center of this region at 𝑅max = 2.4 fm and use the
values at the borders 𝑅max = 1.8 fm and 𝑅max = 3.0 fm to estimate the systematic error.
We present these results in Tab. 9.1.

Most bound states are dominated by a substantial quarkonium content %�̄�𝑄 ranging
from 74% to 84%. One might expect even higher values for this content. Still, the
non-vanishing mixing angle computed by lattice QCD suggests a small contribution of
meson-meson states to the bound states, dynamically generated by the coupled channel
Schrödinger equation.

The only exception is the 𝐽 = 1, 𝑛 = 3 bound state with a mass close to the �̄�𝐵
threshold, with a significantly smaller quarkonium component of %�̄�𝑄 ≈ 58%. This may
be caused by the rapidly changing mixing angle near the �̄�𝐵 threshold, yielding a more
significant meson-meson component compared to other states that are more strongly bound.

There are two resonances slightly above the �̄�𝐵 threshold, 𝐽 = 0, 𝑛 = 4 and 𝐽 = 3,
𝑛 = 2. Their composition is balanced between quarkonium and �̄�𝑀 components, while
the �̄�𝑠𝑀𝑠 component is minimal due to its higher energy threshold. For resonances with
higher energy, the components for �̄�𝑀 and �̄�𝑠𝑀𝑠 increase, and the �̄�𝑄 component ranges
from 8% to 35%. These resonances tend to have larger widths and are less stable, indicating
their predominantly meson-meson nature.

At approximately 11.025 GeV, the threshold for a negative and positive heavy-light
meson opens, which is not included in our approach. We observe a rise in the quarkonium
component in this region, which is likely a consequence of this limitation in our approach
and is thus unphysical.



9.4 Percentages of quarkonium and meson-meson composition 71

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0

20

40

60

80

100

Rmax [fm ]

[%
] n=1

%QQ

(%MM)1

(%MsMs)1

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0

20

40

60

80

100

Rmax [fm ]

[%
] n=2

%QQ

(%MM)1

(%MsMs)1

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0

20

40

60

80

100

Rmax [fm ]

[%
] n=3

%QQ

(%MM)1

(%MsMs)1

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0

20

40

60

80

100

Rmax [fm ]

[%
] n=4

%QQ

(%MM)1

(%MsMs)1

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0

20

40

60

80

100

Rmax [fm ]

[%
] n=5

%QQ

(%MM)1

(%MsMs)1

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0

20

40

60

80

100

Rmax [fm ]

[%
] n=6

%QQ

(%MM)1

(%MsMs)1

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0

20

40

60

80

100

Rmax [fm ]

[%
] n=7

%QQ

(%MM)1

(%MsMs)1

Figure 9.5: Percentages of quarkonium %�̄�𝑄 and meson-meson (%�̄�(𝑠)𝑀(𝑠))𝐿out content for
bound states and resonances with 𝐽 = 0.
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Table 9.1: Composition of bound states and resonances in terms of wave function components.
%�̄�𝑄 and (%�̄�(𝑠)𝑀(𝑠))𝐽 are defined in Eqns. (8.63)-(8.65). The light blue backgrounds mark
resonances above the threshold of one parity negative and one parity positive meson, where
our results can no longer be trusted.

J̃PC n m [GeV] Γ [MeV] %Q̄Q [%] (%M̄M)J̃−1 [%] (%M̄M)J̃+1 [%] (%M̄sMs)J̃−1 [%] (%M̄sMs)J̃+1 [%]

0++ 1 9.618+10
−15 − 84(+ 1

− 1)(+0
−0) − 12(+0

−0)(+0
−0) − 4(+0

−0)(+0
−0)

2 10.114+7
−11 − 84(+ 0

− 0)(+0
−0) − 12(+0

−0)(+0
−0) − 4(+0

−0)(+0
−0)

3 10.442+7
−9 − 79(+ 0

− 0)(+0
−0) − 17(+0

−0)(+0
−0) − 4(+0

−0)(+0
−0)

4 10.629+1
−1 49.3+ 5.4

− 3.9 67(+ 5
− 0)(+1

−1) − 29(+5
−0)(+1

−1) − 4(+0
−0)(+0

−0)

5 10.773+1
−2 15.9+ 2.9

− 4.4 24(+ 3
− 3)(+1

−1) − 60(+4
−4)(+1

−2) − 16(+1
−2)(+1

−1)

6 10.938+2
−2 61.8+ 7.6

− 8.0 35(+11
− 7)(+4

−3) − 40(+3
−6)(+3

−3) − 25(+5
−6)(+0

−0)

7 11.041+5
−7 45.5+13.5

− 8.2 35(+ 4
− 4)(+5

−4) − 30(+3
−2)(+2

−2) − 35(+1
−2)(+2

−3)

1−− 1 9.930+4
−5 − 76(+ 0

− 0)(+0
−0) 10(+0

−0)(+0
−0) 8(+0

−0)(+0
−0) 3(+0

−0)(+0
−0) 3(+0

−0)(+0
−0)

2 10.315+3
−4 − 78(+ 0

− 0)(+0
−0) 9(+0

−0)(+0
−0) 8(+0

−0)(+0
−0) 3(+0

−0)(+0
−0) 2(+0

−0)(+0
−0)

3 10.594+3
−3 − 58(+ 1

− 1)(+0
−0) 23(+1

−1)(+0
−0) 15(+0

−0)(+0
−0) 2(+0

−0)(+0
−0) 2(+0

−0)(+0
−0)

4 10.865+4
−2 67.5+ 4.9

− 5.1 8(+ 1
− 1)(+2

−1) 5(+3
−1)(+0

−0) 29(+2
−4)(+1

−1) 44(+2
−4)(+1

−1) 14(+3
−2)(+0

−1)

5 10.932+3
−5 102.0+ 5.0

− 7.3 18(+ 2
− 1)(+3

−2) 20(+1
−1)(+0

−0) 21(+1
−1)(+1

−1) 36(+2
−3)(+1

−2) 5(+1
−1)(+0

−0)

6 11.144+5
−8 24.6+ 1.3

− 1.0 40(+ 3
− 2)(+4

−3) 23(+1
−2)(+2

−3) 8(+0
−0)(+0

−0) 20(+1
−1)(+1

−1) 9(+0
−0)(+0

−0)

2++ 1 10.181+4
−5 − 76(+ 0

− 0)(+0
−0) 12(+0

−0)(+0
−0) 6(+0

−0)(+0
−0) 4(+0

−0)(+0
−0) 2(+0

−0)(+0
−0)

2 10.486+3
−4 − 74(+ 0

− 0)(+0
−0) 13(+0

−0)(+0
−0) 8(+0

−0)(+0
−0) 3(+0

−0)(+0
−0) 2(+0

−0)(+0
−0)

3 10.798+0
−0 12.3− 3.0

− 4.0 21(+ 1
− 1)(+4

−3) 51(+1
−1)(+3

−3) 22(+0
−0)(+1

−1) 4(+0
−0)(+1

−1) 2(+0
−0)(+0

−0)

4 11.038+3
−4 40.8+ 2.8

− 2.0 9(+ 1
− 1)(+2

−1) 49(+0
−1)(+2

−3) 9(+0
−0)(+1

−1) 31(+0
−1)(+0

−0) 2(+0
−0)(+0

−0)

3−− 1 10.390+3
−4 − 77(+ 0

− 0)(+0
−0) 12(+0

−0)(+0
−0) 5(+0

−0)(+0
−0) 3(+0

−0)(+0
−0) 2(+0

−0)(+0
−0)

2 10.639+3
−2 2.4+ 0.9

− 1.5 43(+ 3
− 3)(+3

−3) 47(+3
−3)(+3

−4) 7(+0
−0)(+0

−0) 2(+0
−0)(+0

−0) 1(+0
−0)(+0

−0)

3 10.944+2
−3 46.9+ 6.2

− 4.6 8(+ 1
− 0)(+2

−1) 23(+1
−1)(+1

−1) 25(+0
−0)(+0

−0) 35(+0
−0)(+0

−1) 8(+0
−0)(+0

−0)

4 11.174+5
−7 1.9+ 2.1

− 1.4 43(+ 3
− 2)(+5

−4) 27(+2
−2)(+1

−1) 6(+0
−0)(+0

−0) 13(+1
−1)(+2

−2) 11(+1
−1)(+2

−2)

9.5 Comparison to experimental results
We summarize our theoretical predictions for bound states and resonances alongside
corresponding experimental results in Tab. 9.2.

9.5.1 Bound states

Our predicted bound states align well with experimental observations. The 𝐽 = 0 states
with 𝑛 = 1,2,3,4 correspond to well-established quarkonium states: 𝜂𝑏(1𝑆) ≡ 𝛶 (1𝑆),
𝛶 (2𝑆), 𝛶 (3𝑆), and 𝛶 (4𝑆). Similarly, the 𝐽 = 1 states with 𝑛 = 1,2,3 correspond to
ℎ𝑏(1𝑃 ) ≡ 𝜒𝑏0(1𝑃 ) ≡ 𝜒𝑏1(1𝑃 ) ≡ 𝜒𝑏2(1𝑃 ), ℎ𝑏(2𝑃 ) ≡ 𝜒𝑏0(2𝑃 ) ≡ 𝜒𝑏1(2𝑃 ) ≡ 𝜒𝑏2(2𝑃 ), and
𝜒𝑏1(3𝑃 ). The 𝐽 = 2 state with 𝑛 = 1 corresponds to 𝛶 (1𝐷).

The masses of the low-lying states are mainly consistent with their experimental coun-
terparts. Discrepancies are primarily observed for the lowest masses. The most significant
difference is seen in our results corresponding to 𝜂𝑏(1𝑆) ≡ 𝛶 (1𝑆). This low-lying mass is
particularly sensitive to the reference point for the energy scale, which is set by 𝐸threshold
and thus directly depends on the accuracy of the lattice data. Additionally, the scale
setting in the lattice computations modestly affects the results in this mass region. We
estimate that combining these factors leads to approximately a 10% deviation in the results.
In Section 9.6, we discuss the systematic errors in detail.
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Table 9.2: Our theoretical prediction for masses and decay widths found as poles of the T
matrix for angular momenta 𝐽 = 0,1,2,3 and corresponding experimental results. The only
exception is the 𝐽 = 2, 𝑛 = 3 resonance where results instead stem from a fit of Eqn. (9.2) to
the eigenphase sum 𝛿2. Dashed lines indicate the �̄�𝐵 and �̄�𝑠𝐵𝑠 thresholds at 10.628 MeV and
10.808 MeV. The light blue background marks resonances above the threshold of one parity
negative and one parity positive meson, where our results can no longer be trusted.

theory experiment
J̃PC n m[GeV] Γ[MeV] name m[GeV] Γ[MeV] IG(JPC)

0++ 1 9.618+10
−15 - ηb(1S) 9.399(2) 10(5) 0+(0+−)

Υb(1S) 9.460(0) ≈ 0 0−(1−−)

2 10.114+7
−11 - ηb(2S)BELLE 9.999(6) - 0+(0+−)

Υ(2S) 10.023(0) ≈ 0 0−(1−−)

3 10.442+7
−9 - Υ(3S) 10.355(1) ≈ 0 0−(1−−)

4 10.629+1
−1 49.3+5.4

−3.9 Υ(4S) 10.579(1) 21(3) 0−(1−−)

5 10.773+1
−2 15.9+2.9

−4.4 Υ(10750)BELLE II 10.753(7) 36(22) 0−(1−−)

6 10.938+2
−2 61.8+7.6

−8.0 Υ(10860) 10.890(3) 51(7) 0−(1−−)

7 11.041+5
−7 45.5+13.5

− 8.2 Υ(11020) 10.993(1) 49(15) 0−(1−−)

1−− 1 9.930+43
−52 - χb0(1P ) 9.859(1) - 0+(0++)

hb(1P ) 9.890(1) - ??(1+−)

χb1(1P ) 9.893(1) - 0+(1++)

χb2(1P ) 9.912(1) - 0+(2++)

2 10.315+29
−40 - χb0(2P ) 10.233(1) - 0+(0++)

χb1(2P ) 10.255(1) - 0+(1++)

hb(2P )BELLE 10.260(2) - ??(1+−)

χb2(2P ) 10.267(1) - 0+(2++)

3 10.594+32
−28 - χb1(3P ) 10.512(2) - 0+(0++)

4 10.865+37
−21 67.5+5.1

−4.9

5 10.932+33
−54 101.8+7.3

−5.1

6 11.144+52
−75 25.0+1.1

−1.3

2++ 1 10.181+35
−46 - Υ(1D) 10.164(2) - 0−(2−−)

2 10.486+32
−36 -

3 10.799+ 2
− 2 13.0+2.1

−2.0

4 11.038+30
−44 40.8+2.0

−2.8

3−− 1 10.390+28
−39 -

2 10.639+31
−25 2.4+1.5

−0.9

3 10.944+20
−29 46.8−4.6

+6.2

4 11.174+51
−69 1.9+2.1

−1.4

9.5.2 Resonances

Three states are candidates for tetraquark resonances identified by experiments 𝛶 (10750),
𝛶 (10860) and 𝛶 (11020). In particular, we wanted to clarify if these are 𝑆 wave or 𝐷 wave
states, i.e., corresponding to 𝐽 = 0 or 𝐽 = 2, and whether they are possibly exotic states.

There are two candidates for 𝛶 (10750) one 𝑆 wave (𝑛 = 5) and one 𝐷 wave (𝑛 = 3).
Both are very close to the experimental result for this resonance; thus, it is impossible to
draw a definitive conclusion about the angular momentum quantum number. However, this
resonance also shows a substantial meson-meson component with 76% for the corresponding
𝑆 wave resonance and 79% for the corresponding 𝐷 wave resonance. This suggests that
𝛶 (10750) is a crypto-exotic state of the 𝛶 type.
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𝛶 (10860) is commonly interpreted as 𝛶 (5𝑆). Our results support this interpretation as
our 𝐽 = 0, 𝑛 = 6 resonance is close by, and there is no candidate in the 𝐷 wave spectrum.
𝛶 (11020) often gets labeled as 𝛶 (6𝑆). We do not only find a candidate for this state in

our 𝑆 wave spectrum (𝑛 = 7) but also the 𝐷 wave spectrum (𝑛 = 4). However, both results
lie barely above the opening of the threshold of a positive parity and negative parity meson.
We do not consider this channel, and thus, our results can not be trusted. Unfortunately,
we cannot make a definitive conclusion about the nature of the 𝛶 (11020) resonance.

9.6 Systematic errors and comparison to other theoretical predictions
Table 9.3: Masses of 𝐽 = 0 (i.e. 𝑆 wave) bound states. From left to right: our predictions as
listed in Tab. 9.2; our predictions, when ignoring the unphysically heavy lattice quark masses
from Ref. [72]; our predictions, when not correcting the lattice data from Ref. [72] as discussed
in Ref. [104]; experimental results.

𝐸threshold 10.789 GeV 2𝑚𝑀 10.789 GeV
Corr. Corr. Uncorr. Experiment
𝑚[GeV] 𝑚[GeV] 𝑚[GeV] name 𝑚[GeV]

𝑛 = 1 9.618+10
−15 9.480+11

−15 9.679+ 8
−12 𝜂𝑏(1𝑆) 9.399(2)

𝛶𝑏(1𝑆) 9.460(0)
𝑛 = 2 10.114+ 7

−11 9.975+ 8
−10 10.168+ 6

− 9 𝜂𝑏(2𝑆)BELLE 9.999(6)
𝛶 (2𝑆) 10.023(0)

𝑛 = 3 10.442+ 7
− 9 10.308+ 7

− 9 10.497+ 5
− 7 𝛶 (3𝑆) 10.355(1)

The lattice data from [72] is relatively old, considering the rapid advancements in
computational power and lattice QCD techniques. Several intricacies must be considered
when working with these results.

Firstly, the light quark mass used in this lattice computation is not the physical 𝑢/𝑑
mass but lies between the 𝑢/𝑑 quark mass and the 𝑠 quark mass. This is accounted for by
adding 𝐸threshold = 10.789 GeV to the quarkonium channel of our equation, corresponding
to the light quark mass of the lattice study. The choice of 𝐸threshold significantly influences
the results. In Tab. 9.3, we present our predictions for the bound states of 𝐽 = 0 (column
one) compared to results obtained when setting 𝐸threshold to the physical quark mass, i.e.,
𝐸threshold = 2𝑚𝑀 = 10.627 GeV. While the results appear closer to experimental values,
we do not consider 𝐸threshold = 2𝑚𝑀 a reasonable choice given the significantly larger
quark mass used in the lattice study. We believe this discrepancy would diminish with new
and more appropriate lattice results and thus choose 𝐸threshold in an objectively meaningful
way rather than fitting our predictions to experimental data.

Another issue with the lattice data is the improper choice of creation operators in [72],
which probe not only the 𝛴+

𝑔 sector but also 𝛴−
𝑢 , 𝛱+

𝑔 , and 𝛱−
𝑔 . The data has to be

resampled and modified to correct this, as discussed in detail in [104]. In Tab. 9.3, we show
our predictions for the bound states of 𝐽 = 0 (column one) compared to results obtained
without correcting the potentials from the lattice data of [72]. These numbers suggest
that this correction positively affects our predictions, shifting them approximately 50 MeV
closer to the experimental results.

The amount of mixing between the quarkonium and meson-meson channels, determined
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by the mixing angle 𝜃, also plays a role. We explored the dependence of our results on this
mixing by varying the mixing angle by 10%, which had a relatively minor effect on the
resulting spectrum, around 10 − 15 MeV.

Another issue, particularly for the low-lying bound states, is the scale setting, where we
set the scale by identifying 𝑟0 = 0.5 fm. Recent lattice studies suggest this value is slightly
lower, around 𝑟0 ≈ 0.475 fm. We investigated the effects of choosing this smaller 𝑟0 on
our results and found an approximately −50 MeV improvement on the lowest-lying bound
state 𝐽 = 0, 𝑛 = 1.

In recent years, multiple groups have studied the bottomonium 𝐼 = 0 spectrum similarly
[105, 107–110, 118]. One such publication [118] used the same lattice data from [72] and
obtained a spectrum closer to the experimental results. However, they did not account for
the different light quark mass of the lattice data. As explained above, this significantly
influences the results. They attribute the discrepancies to the corrections of the potentials,
which create a pronounced bump at small distances. While we do not have a definitive
explanation for this bump, as shown in Tab. 9.3, correcting the potentials shifts our results
towards the experimental reference values rather than away. We can reproduce similar
results as shown in [118] by setting 𝐸threshold = 2𝑚𝐵 = 10.628 GeV, also demonstrated in
Tab. 9.3. As discussed above, this is not a reasonable choice because the pion mass used
in the lattice computation [72] was much larger than the physical pion mass.
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Conclusion

We have extended the formalism from [104] to investigate the quarkonium spectrum for
arbitrary angular momentum 𝐽 and to include �̄�𝑠𝑀𝑠 channels using the same lattice QCD
potentials from [72] as for the �̄�𝑀 channels. We successfully computed the bottomonium
spectrum within this framework for angular momenta 𝐽 ≤ 3 with one quarkonium �̄�𝑄 and
four meson-meson channels, two corresponding to �̄�𝑀 and two corresponding to �̄�𝑠𝑀𝑠.
The results are summarized in Fig. 10.1.

Our findings provide counterparts for all bound states observed experimentally, albeit
with moderate to large systematic errors. Furthermore, we find strong indications that
𝛶 (10750) is a crypto-exotic state and that 𝛶 (10860) can be identified as 𝛶 (5𝑆). Additionally,
we identify possible candidates for 𝛶 (11020) in the 𝑆 and 𝐷 wave spectrum.

We believe that the framework discussed herein is constructed carefully and meaningfully.
The long-term objective is to reduce systematic and statistical errors to a level where
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Figure 10.1: Graphical summary of our theoretical predictions for bottomonium bound
states and resonances compared to experimental results. The light-blue color indicates the
energy region where our results can no longer be trusted due to the threshold’s opening with
one parity positive and one parity negative meson.
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precise predictions can be made. One essential step is recomputing the lattice potentials
with more suitable operators and state-of-the-art lattice techniques. In the first part of
this thesis, we computed static potentials for a different tetraquark system using identical
techniques. Thus, the foundation for the computation of �̄�𝐵 static potentials is established
and represents a potential project for the near future.

These new lattice results could enable us to set the scale more precisely by using a more
up-to-date Sommer parameter 𝑟0 to determine the lattice spacing 𝑎. Additionally, we might
be able to tune the bottom quark mass 𝑚𝑏 without relying on results from quark models.

The large discrepancy between our predictions for the lowest energy bound states and
experimental results might stem from the significant uncertainty in the mixing angle 𝜃
from the lattice study [72], as this angle strongly impacts the potential matrix. A more
precise computation of this quantity could significantly improve these predictions.

However, the lattice data is not the sole source of systematic errors. One of the major
contributors is the neglect of heavy quark spin effects; thus, an inclusion similar to that in
the related work [44] is important for future studies. Moreover, one could compute 1/𝑚𝑏

and even 1/(𝑚𝑏)2 corrections for the confining potential 𝑉�̄�𝑄(𝑟) on the lattice (see [48, 52,
53, 119–121]).

An obvious extension of this formalism would be to include the possibility of one
parity-positive and one parity-negative meson, enabling the study of resonances up to
≈ 11.525 GeV and making our prediction for 𝛶 (11020) more meaningful, as well as providing
additional predictions for resonances not yet observed experimentally.
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A Conventions

The following is a list of general conventions applied throughout this work.

• We use natural units, i.e. ℎ̄ = 𝑐 = 1.
• We use bold symbols x for three-dimensional vectors.
• Four-dimensional space-time vectors are expressed as x. However, depending on the

context, this can also be the absolute value of a spatial vector.
• Greek indices run from 0, ..., 3, while Latin indices run from 1, ..., 3.
• Einstein’s sum convention is implicitly applied unless stated otherwise.
• All lattice calculations are done in Euclidean space-time.
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B Additional material for Part I - Antistatic-antistatic-light-light lattice
QCD static potentials

B.1 Effective potentials
In Fig. B.1 we show the effective potential plots for corresponding to the most attractive
potential 𝑉 0;0,−,+

�̄��̄�𝑢𝑑,eff(𝑟) for off-axis separations for ensemble N6.
In Fig. B.2 we show the effective potential plots for corresponding to the repulsive

potential 𝑉 0;0,−,−
�̄��̄�𝑢𝑑,eff(𝑟) for on-axis separations 𝑟 = 1𝑎,2𝑎,...24𝑎 for ensemble N6.
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Figure B.1: Effective mass plots corresponding to the most attractive potential 𝑉 0;0,−,+
�̄��̄�𝑢𝑑,eff(𝑟)

for off-axis separations for ensemble N6. Orange constants indicate the fitting range and results
for 𝑉 0;0,−,+

�̄��̄�𝑢𝑑
(𝑟).
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Figure B.2: Effective mass plots corresponding to the repulsive potential 𝑉 0;0,−,−
�̄��̄�𝑢𝑑,eff(𝑟) for

on-axis separations 𝑟 = 1𝑎,2𝑎,...24𝑎 for ensemble N6. Orange constants indicate the fitting
range and results for 𝑉 0;0,−,−

�̄��̄�𝑢𝑑
(𝑟).
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B.2 �̄��̄�𝑢𝑠 potentials
In Figs. B.3 and B.4 we show all all attractive and repulsive �̄��̄�𝑢𝑠 potentials with
asymptotic value 𝑚𝑆

�̄�𝑢/𝑑
+𝑚𝑆

�̄�𝑠
for ensembles A5 and G8, respectively. The results for the

corresponding �̄��̄�𝑢𝑑 potential is indicated in gray.
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Figure B.3: All attractive (top) and repulsive (bottom) �̄��̄�𝑢𝑠 potentials with asymptotic
value 𝑚𝑆

�̄�𝑢/𝑑
+ 𝑚𝑆

�̄�𝑠
for ensemble A5. The gray data points and fits indicate corresponding

results for �̄��̄�𝑢𝑑.
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Figure B.4: All attractive (top) and repulsive (bottom) �̄��̄�𝑢𝑠 potentials with asymptotic
value 𝑚𝑆

�̄�𝑢/𝑑
+ 𝑚𝑆

�̄�𝑠
for ensemble G8. The gray data points and fits indicate corresponding

results for �̄��̄�𝑢𝑑.

B.3 Parameters from fitting of �̄��̄�𝑞1𝑞2 static potentials
In Tab. B.1 we show fit parameters from fitting the ansatz (5.4) to all attractive and
repulsive �̄��̄�𝑞1𝑞2 potentials with asymptotic value 2𝑚𝑆

�̄��̄�𝑞1𝑞2
for ensembles A5, G8 and

N6.
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Table B.1: Fit parameters 𝛼, 𝑑, 𝑝 and 𝑐 from fitting the ansatz (5.4) to all attractive and
repulsive �̄��̄�𝑢𝑑 and �̄��̄�𝑢𝑠 potentials with asymptotic value 2𝑚𝑆

�̄��̄�𝑞1𝑞2
for ensembles A5, G8

and N6.

|𝑗𝑧|,P,P𝑥 𝐼 𝑞𝑞 Ens 𝛼 𝑑[fm] 𝑝 𝑐[MeV]
0,− ,+ 0 𝑢𝑑 A5 0.436(0.017) 0.569(0.033) 1.99(0.291) 160.783(7.0)

G8 0.359(0.008) 0.552(0.028) 2.296(0.31) 128.346(4.185)
N6 0.271(0.029) 0.349(0.052) 2.94(0.882) 18.834(71.255)

𝑢𝑠 A5 0.414(0.017) 0.467(0.025) 1.697(0.191) 153.333(5.872)
G8 0.404(0.028) 0.409(0.034) 1.284(0.184) 154.298(9.575)
N6 0.29(0.003) 0.613(0.021) 2.14(0.211) 104.966(2.72)

0,− ,− 1 𝑢𝑑 A5 0.511(0.11) 0.223(0.054) 1.041(0.185) 321.065(67.628)
G8 0.772(0.321) 0.103(0.061) 0.666(0.163) 500.743(203.976)
N6 0.3(0.019) 0.361(0.034) 1.089(0.109) 197.904(12.372)

𝑢𝑠 A5 0.63(0.139) 0.176(0.047) 0.866(0.128) 415.629(91.408)
G8 0.524(0.089) 0.18(0.036) 0.937(0.123) 369.647(61.812)
N6 0.308(0.018) 0.309(0.026) 1.042(0.086) 208.133(11.788)

1,− ,± 1 𝑢𝑑 A5 0.487(0.072) 0.241(0.038) 1.098(0.138) 338.999(50.312)
G8 0.412(0.053) 0.259(0.038) 1.105(0.147) 295.658(38.197)
N6 0.267(0.008) 0.375(0.014) 1.532(0.114) 197.893(6.329)

𝑢𝑠 A5 0.545(0.095) 0.207(0.039) 1.027(0.136) 377.286(65.517)
G8 0.455(0.061) 0.224(0.035) 1.011(0.123) 331.715(44.475)
N6 0.282(0.012) 0.342(0.018) 1.324(0.109) 208.92(8.858)

0,+ ,+ 1 𝑢𝑑 A5 -0.943(1.041) 0.034(0.056) 0.5(0.197) -571.561(625.001)
G8 -0.146(0.007) 0.465(0.026) 1.887(0.264) -75.14(3.984)
N6 -0.112(0.01) 0.353(0.05) 1.955(0.707) -55.178(5.57)

𝑢𝑠 A5 -0.262(0.069) 0.214(0.065) 0.972(0.193) -174.992(46.584)
G8 -0.146(0.013) 0.354(0.034) 1.448(0.245) -68.394(5.644)
N6 -0.113(0.005) 0.465(0.034) 1.964(0.364) -65.482(3.429)

0,+ ,− 0 𝑢𝑑 A5 -0.277(2.576) 0.099(25.522) 1.154(38.577) 1.18(167124.486)
G8 -0.163(0.035) 0.259(0.061) 1.227(0.317) -99.655(20.296)
N6 -0.11(0.013) 0.294(0.04) 1.626(0.528) -70.103(7.493)

𝑢𝑠 A5 -0.141(0.017) 0.314(0.031) 1.8(0.268) -112.528(14.554)
G8 -0.152(0.018) 0.285(0.034) 1.382(0.205) -116.02(13.571)
N6 -0.118(0.011) 0.289(0.032) 1.318(0.235) -83.413(7.377)

1,+ ,± 0 𝑢𝑑 A5 -0.142(0.03) 0.552(0.122) 1.378(0.39) -100.427(23.792)
G8 -0.157(0.026) 0.419(0.081) 1.224(0.261) -116.556(21.042)
N6 -0.096(0.004) 0.543(0.034) 1.684(0.179) -73.065(4.289)

𝑢𝑠 A5 -0.157(0.025) 0.411(0.057) 1.375(0.205) -139.574(23.234)
G8 -0.145(0.014) 0.387(0.036) 1.438(0.181) -120.47(12.474)
N6 -0.097(0.003) 0.571(0.02) 2.441(0.219) -85.075(3.63)



C Additional material for Part II - Bottomonium resonances in the
Born-Oppenheimer approxima- tion using lattice QCD static potentials

C.1 Percentages of quarkonium and meson-meson composition
In Figs. C.1-C.3 we show the percentages of quarkonium %�̄�𝑄 and meson-meson
(%�̄�(𝑠)𝑀(𝑠))𝐿out content for bound states and resonances with 𝐽 = 1, 2, 3.
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Figure C.1: Percentages of quarkonium %�̄�𝑄 and meson-meson (%�̄�(𝑠)𝑀(𝑠))𝐿out content
for bound states and resonances with 𝐽 = 1.
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Figure C.2: Percentages of quarkonium %�̄�𝑄 and meson-meson (%�̄�(𝑠)𝑀(𝑠))𝐿out content
for bound states and resonances with 𝐽 = 2.
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Figure C.3: Percentages of quarkonium %�̄�𝑄 and meson-meson (%�̄�(𝑠)𝑀(𝑠))𝐿out content
for bound states and resonances with 𝐽 = 3.
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