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Abstract

In this work we show a method to construct trial states to obtain hybrid static potentials
in SU(3) Yang-Mills theory from lattice computations. Static potentials are computed
for the states Σ+

g ,Σ
−
g ,Σ

+
u ,Σ

−
u ,Πu,Πg,∆u,∆g using 700 gauge configurations generated

with a heatbath algorithm using the Wilson gauge action. Both effective potentials and
static potentials are shown for a lattice with a lattice spacing of a ≈ 0.093 fm. Some
excited states are also shown. Also, we construct trial states with various different
operators and discuss their suitability to construct trial states with large overlaps to the
energy eigenstates of the desired hybrid states.
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1 Introduction

The strong interaction is one of the fundamental forces of nature. In theoretical physics,
it is described by quantum chromo dynamics (QCD). QCD describes the interaction be-
tween quarks, the fundamental constituents of matter which come in 6 different flavors,
and gluons, which are the gauge bosons of QCD. QCD is a non-abelian gauge theory of
the SU(3)-color gauge group. The non-abelian property of QCD leads to self-interactions
of its gauge bosons, which are called gluons. These self-interactions cause the strong inte-
raction to behave very different from the electromagnetic interaction, which is described
by an abelian gauge theory. One special property of QCD is its large coupling constant
at low energies and large distances, which leads to bound states of quarks and gluons.
This large coupling constant makes perturbative calculations impossible. Consequently,
a different approach is required at this energy scale, such as statistical simulations on a
discretized space-time lattice.

In the quark model, bound states of a quark and an antiquark are called mesons.
Mesons can be categorized by the quantum numbers for orbital angular momentum,
spin, charge conjugation (which transforms a particle into its antiparticle), and parity
(corresponding to the inversion of spacial coordinates), which emerge exclusively from
the structure of the quark antiquark pair. However, the gluonic field which is responsible
for allowing such bound states can itself be excited. We call exotic matter in the form
of a quark antiquark pair with additional excitations in the gluon sector hybrid mesons.
Hybrid mesons carry different quantum numbers than regular mesons in the quark model,
as the excitations in the gluon sector result in contributions to the properties of these
states, which cannot come from just the quarks.

Studying the potentials of such exotic states can give a better understanding of their
properties and existence, as well as help determine their masses which will be essential
for the experimental study of these states. In experimental physics, the study of exotic
matter is currently a popular topic, and a goal of the PANDA experiment at FAIR
is the search of such exotic matter in the form of glueballs and hybrid mesons. A
detailed understanding of these states will further improve our understanding of the
strong interaction, and will serve as a test of the correctness of the standard model of
particle physics at low energies.

The aim of this work is to expand on previous work in the study of hybrid static
potentials, such as a first considerations of these in SU(2) gauge theory [25], and earlier
works which show results for hybrid static potentials but do not show the details how
these were obtained, such as [10]. Static potentials are computed by considering quarks
with infinite masses, which approximate physical states of heavy quarks like bb. We
present the methods we use to construct trial states in SU(3) Yang-Mills theory, compute
the relevant correlators, and analyze the data coming from statistical simulations on the
lattice. We show first results for the hybrid static potentials of all states up to angular
momentum L = 2, which are Σ+

g ,Σ
−
g ,Σ

+
u ,Σ

−
u ,Πu,Πg,∆u,∆g and examine the suitability

of our trial states which are constructed using different structures and discuss possibilities
how even better trial states might be obtained to further reduce statistical errors.
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2 Theory

As mentioned, one method to calculate observables in QCD is to discretize space-time
and perform direct numerical computations of correlators on this lattice of space-time
points with the help of statistical Monte-Carlo simulations. To evaluate a path inte-
gral to compute these correlators, a large collection of field configurations is generated
with a probability distribution that simulates the weight factor of the path integral.
Correlators can then be computed by averaging their corresponding expressions on the
lattice over these configurations. To make these computations possible, one has to re-
move the periodicity of the integrand in the path integral. This is achieved by the so
called Wick-rotation of time t→ −iτ to complex values, with the euclidian time τ ∈ R.
The resulting space-time metric is called the euclidian metric, and the integrand of the
path integral decays exponentially over time in this metric, allowing the aforementioned
computations. All expressions in this work are to be understood in this euclidian metric
with euclidian time t.

2.1 Static potentials on the lattice

2.1.1 Definition of the static potential

Our aim in this work is to compute special types of potentials of quark antiquark pairs.
We define the potential of the quark antiquark pair at a distance r to be the energy
difference between the lowest energy state in QCD containing a quark antiquark pair
qq and the vacuum state. To properly define the distance between the quarks and to
prevent a decay or annihilation of the qq state, we take the quarks to have an infinite
mass to localize them at fixed positions. We call this potential the static quark antiquark
potential. To compute the static potential, we have to compute the correlator

C(t) = 〈Ω| O†(t)O(0) |Ω〉 (2.1)

for an operator O which is chosen in a way, so a trial state with the same quantum
numbers as the state of interest is created, by acting O on the vacuum |Ω〉. Inserting a
set of energy eigenstates to the Hamilton operator H |n〉 = En |n〉 and using the euclidian
time translated operator O†(t) = eHtO†(0)e−Ht, one finds

C(t) =
∑
n

〈Ω| eHtO†(0)e−Ht |n〉 〈n| O(0) |Ω〉

=
∑
n

|〈n| O(0) |Ω〉|2e−(En−EΩ)t.
(2.2)

In the limit of large t→∞, we notice only the state of lowest energy |0〉 survives

lim
t→∞

C(t) ∝ e−(E0−EΩ)t. (2.3)

To extract the static potential at distance r, which we defined to be the difference
E0 − EΩ = V (r), we can fit an exponential function to the correlation function C(t) at
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large t, or fit a constant to the so called effective Potential

Veff(t) =
1

a
ln

(
C(t)

C(t+ a)

)
, with lattice spacing a (2.4)

at large t, which is more commonly used and will be the method we use in this work.
Inserting (2.4) into (2.3), we identify the static potential with the effective potential at
large t:

V (r) = lim
t→∞

Veff(t). (2.5)

2.1.2 Obtaining the static potential using lattice simulations

To compute the static potential on the lattice, we have to compute the path integral

C(t) =
1

Z

∫
D[A]D[q, q]O†(t)O(0)e−S[A,q,q] (2.6)

where S[Aµ, q, q] is the QCD action and D[A]D[q, q] denotes an integration over all possi-
ble quark- and gauge-field configurations. As mentioned before, this is done by averaging
C(t) over many configurations, which are generated using a heatbath algorithm, with a
probability distribution that simulates the exponential weight factor in the path integral,
which depends on the QCD action. To make this possible, we need a lattice expression
of the correlator C(t) and the QCD action S. However, since we are working with static
quarks, the part of the QCD action which describes fermion dynamics is not needed, so
we only need a lattice expression of the gauge, or gluon part Sg of the QCD action. In
the continuum, the gluon action reads

Sg[A] =
1

2g2

∫
d4xTr [Fµν(x)Fµν(x)] (2.7)

where Fµν is the field strength tensor of the SU(3)-color gauge group and the trace is
taken over color indices. The action Sg is invariant under the SU(3)-color gauge trans-
formations, this symmetry must of course also be true for the corresponding lattice
expression of Sg. On the lattice, the SU(3)-color gauge transformation is realized by
choosing a set of SU(3) elements Ω(n), one for each lattice site n. The gauge transfor-
mation of the field Aµ then reads

Aµ(n)→ A′µ(n) = Ω(n)Aµ(n)Ω†(n) + i(∂µΩ(n))Ω†(n). (2.8)

To keep the invariance under SU(3)-color gauge transformations on the lattice, one has
to introduce a set of oriented so called lattice link variables Uµ(n) with direction µ at
lattice site n, as elements of the SU(3)-color gauge group, which are related to the gauge
field Aµ via the relation

Uµ(n) = eiaAµ(n) (2.9)

and transform under gauge transformations as

Uµ(n)→ U ′µ(n) = Ω(n)Uµ(n)Ω†(n+ aeµ), (2.10)
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with unit vectors eµ. Link variables with opposite orientation are defined by

U−µ(n) = U †µ(n− aeµ). (2.11)

One can show that the trace of a product of link variables along a closed loop is a gauge
invariant object, which can be used to construct lattice expressions of the QCD gluon
action Sg and physical observables. One possible definition of the lattice gauge action,
the so called Wilson plaquette action is given by

Sg[U ] =
β

3

∑
n

∑
µ<ν

Re {Tr [1− Uµν(n)]} , (2.12)

with the shortest possible loop of link variables, the so called plaquette, which is defined
by

Uµν(n) = Uµ(n)Uν(n+ aeµ)U−µ(n+ aeµ + aeν)U−ν(n+ aeν). (2.13)

The commonly used factor β = 6/g2, where g is the coupling strength of the gauge fields
to the quarks, is called inverse coupling and will be used as a parameter to set the lattice
scale in our numerical simulations later on. Finally, one can verify that Sg[U ] reduces
to the continuum gauge action in the continuum limit a→ 0:

lim
a→0

Sg[U ] = Sg[A]. (2.14)

With this lattice gauge action Sg[U ], a heatbath algorithm can be defined to generate
gauge configurations, with each configuration being a set of link variables Uµ(n) for each
direction µ ∈ {t, x, y, z} and every lattice site n.

To complete the computation of the static potential on the lattice, we need a lattice
expression of the correlator C(t). As pointed out before, each closed loop of link variables
represents a physical observable. A special type of loop of this kind can be defined as a
product of spatial paths

S(n,m, t) = Uk0((n, t))Uk1((n + aek0 , t)) . . . UkN ((m− aekN , t)) (2.15)

connecting the lattice sites (n, t) and (m, t), which are called Wilson lines, and temporal
paths

T (t0, t1,n) = Ut((n, t0))Ut((n, t0 + a)) . . . Ut((n, t1 − a)) (2.16)

connecting the lattice sites (n, t0) and (n, t1). The so called Wilson loop is defined as
the trace of the product of paths of this type:

W (|m− n|, t1 − t0) = Tr
[
S(n,m, t0)T (t0, t1,m)S†(n,m, t1)T †(t0, t1,n)

]
. (2.17)

In temporal gauge, where the temporal paths of the Wilson loop are the identity operator,
one can show, that the expectation value of a Wilson loop is the correlator of its two
Wilson lines (cf. [7]), which behaves just like the correlator (2.1). The trial states, which
are created by the operators in this correlator, are also states containing a quark and
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antiquark at positions n and m. Thus, we can extract the static potential by fitting a
constant to the effective potential (2.4) at large time separations |t1 − t0| → ∞, where
we compute the effective potential on the lattice using expectation values of Wilson loops
in place of correlators C(t):

Veff(R, t) =
1

a
ln

(
〈W (R, t)〉
〈W (R, t+ a)〉

)
, with lattice spacing a. (2.18)

2.1.3 Sommer parameter and lattice scale

To relate results of lattice simulations to physical quantities, the lattice spacing a has
to be determined. One method to obtain the lattice spacing is based on the so called
Sommer parameter r0, which is defined via the force F (r) = dV (r)/dr between the two
static quarks of our static quark antiquark pair (cf. [7]). For the ordinary static quark
potential, one can compare a lattice observable with experimental data to find that the
quantity

F (r0)r2
0 = 1.65 (2.19)

corresponds to a Sommer parameter of r0 ≈ 0.5 fm. Although other, more precise
methods to determine the lattice spacing exist, in this work, we determine the lattice
spacing using the Sommer parameter r0 = 0.5 fm. For the ordinary static potential, a
parametrization V (r) = A+ B

r + σr of the static potential is known, for which the force
is

F (r) =
d

dr
V (r) = −B

r2
+ σ. (2.20)

Fitting the parametrized form of the potential to our numerical data aV (an) of the
potential, with r = an, we obtain the dimensionless fit parameters B and σ̂ = σa2.
Comparing the definition of the Sommer parameter (2.19) to the expression for the
force for the parametrized potential, we obtain the lattice spacing as a function of these
dimensionless fit parameters

a = 0.5 ·
√

σ̂

1.65 +B
fm. (2.21)

2.2 Hybrid states and quantum numbers

A hybrid static potential is a static potential of a quark antiquark pair with additional
contributions to its quantum numbers, which come from the gluon excitations. We saw
in the previous section, that static potentials on the lattice are obtained by computing
Wilson loops and that the states in the resulting correlators describe quark antiquark
pairs located at fixed spatial positions. The choice of the shape of the Wilson lines in the
Wilson loop then determines the quantum numbers of the corresponding quark antiquark
state. Choosing the Wilson lines as straight paths of links along the quark antiquark
pair separation axis produces the regular static potential, with quantum numbers that
are determined by just the structure of the quark antiquark pair.
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It is however also possible to choose different kinds of Wilson lines, which are not
just straight paths of links. This will result in states that have additional contributions
to their quantum numbers, which come from gluon excitations, since the structure of
the resulting states is defined by the shape of the Wilson lines, which are products of
elements of the SU(3)-color gauge group. We call the part of the Wilson line, which
is not a straight path of links along the separation axis an ‘insertion’. Potentials for
states of this type are called hybrid static potentials. In this section, we will see that the
quantum numbers of these states are:

• Angular momentum with respect to the quark antiquark pair separation axis ‘L’.
In this work, we use |L|

• A quantum number QPC corresponding to the combination of parity and charge
conjugation ‘P ◦ C’.

• An additional quantum number ‘Px’ corresponding to the spatial inversion along
a coordinate axis perpendicular to the quark antiquark pair separation axis.

Our notation in this work will be of the format LPxQPC , where L ∈ {Σ,Π,∆} for L = 0, 1, 2
respectively, QPC ∈ {g, u} for QPC = +(g),−(u), and Px ∈ {+,−}.

In this section we will often use the term ‘path of links’, which we define to be a product
of links, where the startpoint of each link in the product is equal to the endpoint of the
previous link in the product, such that we can visualize the product as an oriented
continuous path between two lattice sites. We call

S =
N∏
j=0

Uij (nj) = Ui0(n0)Ui1(n1) . . . UiN (nN ) (2.22)

a path of links with some startpoint n0 if and only if nk = nk−1 + aeik−1
for all k =

1, 2, . . . , N , where nN is called the endpoint, a is the lattice spacing and i0, . . . , iN ∈
{±x,±y,±z} (with e−j = −ej) define the shape and orientation of the path on the
lattice.

2.2.1 Angular momentum

To determine a given trial states quantum numbers, consider some state |H〉 with defined
angular momentum L. In the continuum, the state reads

|H〉 =

∫ 2π

0
dϕYL(ϕ)O(ϕ) |Ω〉 , (2.23)

where O(ϕ) is some operator depending on an angle ϕ with respect to the separation axis
of the quark antiquark pair, and YL(ϕ) = exp(iLϕ) is an analog to spherical harmonics
with respect to the separation axis for a state with angular momentum L. Let R̂(ϕ) be
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the rotation operator about an angle ϕ around the separation axis. Rotating the state
|H〉 yields

|H〉 R̂(ϕ)−→
∫ 2π

0
dϕ′ YL(ϕ′)

(
R̂(ϕ)O(ϕ′)

)
|Ω〉 =

∫ 2π

0
dϕ′ YL(ϕ′)O(ϕ′ + ϕ) |Ω〉

=

∫ 2π

0
dϕ′′ YL(ϕ′′ − ϕ)O(ϕ′′) |Ω〉 = e−iLϕ

∫ 2π

0
dϕ′′ YL(ϕ′′)O(ϕ′′) |Ω〉

= e−iLϕ |H〉 ,

(2.24)

using the 2π-periodicity of YL(ϕ) and O(ϕ). We can also express the rotation operator
as an element of the rotation group:

|H〉 R̂(ϕ)−→ e−iL̂ϕ |H〉 , (2.25)

where L̂ is the angular momentum operator with respect to the separation axis. Com-
paring equations (2.24) and (2.25), we identify that the constructed state has angular
momentum L:

L̂ |H〉 = L |H〉 . (2.26)

On the lattice, instead of an integration, we have a sum over different values of ϕ, which
means that an operator O(ϕ) has to be constructed in a similar way for each value
of ϕ using link variables, so that a 2π-periodicity is still given. In this work, we only
use nearest neighbor lattice sites, so we only consider the angles ϕ = 0, π/2, π, 3π/2, for
which an operator does not change its shape after a rotation, i.e. R̂((4−n)π/2)O(nπ/2) =
O(0), ∀n ∈ Z. To obtain trial states for angular momenta L = 0, 1, 2, we simply have to
build the sum

|H〉 =
3∑

k=0

eiLk
π
2 O

(
k
π

2

)
|Ω〉 (2.27)

and substitute the desired L = 0, 1, 2. Since the state is realized on the lattice by
computing Wilson loops with insertions I, the only part of the operator O(ϕ) that is
dependent on the angle ϕ are these insertions, so we first consider a sum using only
insertions, instead of the full operators (i.e. we build a sum like (2.27) for O = I). The
full operators are then constructed from these expressions in the following sections.

In practice, we choose a particular path of links as insertion I (e.g. Fig. 2.1a), and
rotate this path by the angles ϕ = 0, π/2, π, 3π/2 around the quark antiquark pair
separation axis to obtain the four rotations I(nπ/2) = R̂(nπ/2)I, n = 0, 1, 2, 3 of
this path (Fig. 2.1b), which contribute to the desired trial state. To obtain the needed
expressions for defined angular momentum, we then build the sum of these four rotations,
by substituting the desired L into equation (2.27) and using O = I.
For L = 0, we obtain from Eq. (2.27) the factor 1 for each angle, so we simply sum
over all rotations of the insertion I with coefficients 1 to obtain a sum S0 which is the
ϕ-dependent part of an operator, which we can use to construct a trial state with angular
momentum L = 0:

S0(I) =

(
1 + R̂

(π
2

)
+ R̂(π) + R̂

(
3π

2

))
I (2.28)

7



q q

x
y

z ︸ ︷︷ ︸
I

(a) Example for an insertion I (continuous line) placed on the midpoint of the quark antiquark
pair separation axis (dashed line). Grey dots indicate lattice sites.

I R̂
(
π
2

)
I R̂(π)I R̂

(
3π
2

)
I

(b) Possible rotations of the spatial path I, considering only links between nearest neighbor
lattice sites.

Figure 2.1: Example for an insertion (a), and its rotations (b).

In the same manner, we obtain the factors 1,−1, 1,−1 for angular momentum L = ±2
for the angles 0, π/2, π, 3π/2 respectively. An operator for |L| = 2 is then

S2(I) =

(
1− R̂

(π
2

)
+ R̂(π)− R̂

(
3π

2

))
I. (2.29)

Finally, for L = ±1, we obtain two different operators:

S+1(I) =

(
1 + iR̂

(π
2

)
− R̂(π)− iR̂

(
3π

2

))
I,

S−1(I) =

(
1− iR̂

(π
2

)
− R̂(π) + iR̂

(
3π

2

))
I.

(2.30)

To simplify computations in this work, we instead use the combination

S1(I) =
1

2
(S+1 + S−1) =

(
1− R̂(π)

)
I, (2.31)

which is used to construct a trial state with angular momentum |L| = 1.
Note that states which are constructed using the operators S0, S1, S2 will not represent

the exact states for angular momenta |L| = 0, 1, 2, but will also have overlap with sectors
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of higher angular momentum, because we did not include next-to-nearest neighbor or
farther lattice sites in our considerations. In general, since we are restricted to a lattice,
it is not possible to fully remove overlaps with states of higher angular momentum with
a finite lattice size due to being restricted to a finite amount of rotations.

2.2.2 Parity and charge conjugation

Analog to the previous section, to determine the parity and charge conjugation quantum
number, we will apply these transformations to a trial state. Without loss of generality,
we place the quark and antiquark on the z-axis at the locations rq = (0, 0, R) for the
quark q, and rq = (0, 0,−R) for the antiquark q. Furthermore, the time coordinate is
fixed, so only the z-coordinate is written explicitly in this section. We call the midpoint
on the quark antiquark pair separation axis M . To simplify some calculations, we
introduce an additional notation for lattice links:

U±z(n) = U(R0, R0 ± a), (2.32)

for a lattice site n = (t, 0, 0, R0). With this notation, we define a path of links along the
quark antiquark pair separation axis

U(R0, R1) =

|R1−R0|/a−1∏
j=0

U(R0 + ja · sgn(R1−R0), R0 + (j+ 1)a · sgn(R1−R0)). (2.33)

From the discretization of the gauge action, we know that we can write the lattice links
Uµ(n) in terms of the continuum gauge fields Aµ:

Uµ(n) = eiaAµ(n). (2.34)

Furthermore, the behavior of Aµ(n) under charge conjugation is known:

Aµ(n)
C−→ −ATµ (n). (2.35)

The behavior of a lattice link under charge conjugation is then

Uµ(n)
C−→ Uµ,C(n) = e−iaA

T
µ (n) =

[
e−iaAµ(n)

]T (∗)
=
[
e−iaA

†
µ(n)
]T

=
[
U †µ(n)

]T
= UT−µ(n+ aeµ),

(2.36)

where we used the hermiticity of Aµ in step (∗) and the definition of opposite oriented
links in the last step. The charge conjugated link is the transpose of the original link
with reversed direction.
The final object we need to construct a trial state, is some spatial path of links I(−d, d)
(e.g. the one shown in Fig. 2.1a) which we will use as insertion in the Wilson loop:

I(−d, d) = Ui1(−dez)Ui2(−dez + aei1) . . . Uin(dez − aein), (2.37)
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with i1, . . . , in ∈ {±x,±y,±z} (with e−i = −ei) and some distance d from the midpoint
M . The trial state then reads

|H〉 = q(−R)U(−R,−d) I(−d, d)U(d,R) q(R) |Ω〉 , (2.38)

where |Ω〉 is the vacuum state. Furthermore, we also need the behavior of the quarks
under parity and charge conjugation, which read

q(R)
P−→ γ0q(−R) (2.39)

q(R)
P−→ q(−R)γ0 (2.40)

q(R)
C−→ C qT (R) (2.41)

q(R)
C−→ qT (R)C, (2.42)

where C = −CT = −C−1 is the charge conjugation operator. Applying parity transfor-
mation and charge conjugation to |H〉 yields

P ◦ C |H〉 = C
[
q(R) γ0 U(R, d) IP(−d, d)U(−d,−R) γ0 q(−R)

]
|Ω〉

= qT (R)C UC(R, d) IP,C(−d, d)UC(−d,−R)C qT (−R) |Ω〉
= (−)2 q(−R)UTC (−d,−R) ITP,C(−d, d)UTC (R, d)q(R) |Ω〉 ,

(2.43)

where we used
(
γ0
)2

= 1 in the second step and C2 = −1 and the fact that q and q
anticommutate in the second step. The remaining expressions to evaluate are UTC and
ITP,C . First we evaluate UTC :

UTC (R0, R1) =

[ |R1−R0|/a−1∏
j=0

UC(R0 + ja · sgn(R1 −R0),

R0 + (j + 1)a · sgn(R1 −R0))

]T

=

[ |R1−R0|/a−1∏
j=0

UT (R0 + (j + 1)a · sgn(R1 −R0),

R0 + ja · sgn(R1 −R0))

]T
(∗)
=

|R1−R0|/a−1∏
l=0

U(R1 + la · sgn(R0 −R1),

R1 + (l + 1)a · sgn(R0 −R1))

= U(R1, R0),

(2.44)

where in step (∗), we substituted j = |R1 −R0|/a−1− l to transpose the product, which
reverses its factors. After charge conjugating, each link is transposed and its direction
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is reversed according to (2.36). The order of links is then reversed by the additional
transposition which comes from the transformation of the trial state as shown by (2.43).
The final expression is again a path of links along the separation axis, but with reversed
direction, so that the parity transformed charge conjugated trial state reads

P ◦ C |H〉 = q(−R)U(−R,−d) ITP,C(−d, d)U(d,R) q(R) |Ω〉 . (2.45)

To identify a quantum number QPC corresponding to P ◦ C transformation, we require

P ◦ C |H〉 = QPC |H〉 . (2.46)

To fulfill this relation, we compare (2.38) to (2.45) and see that we must have

ITP,C(−d, d) = QPC I(−d, d), (2.47)

i.e. applying the given transformation to the insertion in the Wilson loop must reproduce
that insertion up to a factor QPC , which is precisely the quantum number of the hybrid
state corresponding to P◦C transformation. Evaluating ITP,C(−d, d) is more complicated,
but can be visualized with arguments already made above (cf. Fig. 2.2).
First, the parity transformation P reflects each point on the path of links I(−d, d) on
the midpoint M , so the result is again a path of links. Start- and endpoint of I(−d, d)
lie on the separation axis, so they are simply flipped by the parity transformation. We
can write

I(−d, d)
P−→ IP(−d, d) = I ′(d,−d)

= U−i1(dek)U−i2(dek − aei1) . . . U−in(−dek + aein).
(2.48)

−dek dek

i k

j

M
P−→ C−→ ( )T−→

I IP IP,C ITP,C

Figure 2.2: Visualizing the evaluation of ITP,C for an exemplary path, first applying a
parity transformation P, then charge conjugation C, and finally transposing
( )T . The quark antiquark pair separation axis lies on the k-axis, its midpoint
M (blue dot) is the origin. Oriented black lines indicate link variables in the
corresponding direction between lattice sites (grey dots). Red colored lines
indicate transposed link variables, and green arrows indicate the order in
which link variables are multiplied to build the final product.

Charge conjugating I ′(d,−d), reverses the direction of all links once again and transposes
each link, as we have seen (Eq. (2.36)). Evaluating the final transposition then reorders
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the reversed links to form another path of links with the same start- and endpoints as
the untransformed path of links I(−d, d), analog to (2.44). In conclusion, we obtain
the fully transformed insertion ITP,C(−d, d), by simply reflecting the original path of the
insertion I(−d, d) on the midpoint M and then reversing the resulting paths direction,
such that start and endpoints are not changed:

ITP,C(−d, d) = I ′(−d, d) = Uin(−dek)Uin−1(−dek + aein) . . . Ui1(dek − aei1). (2.49)

Plugging (2.49) into equation (2.47), we obtain the condition

I ′(−d, d) = QPC I(−d, d) (2.50)

to construct a trial state with a defined P ◦ C quantum number. In general, it is not
possible to fulfill this condition if I is just a single path of links. Instead, we must take
a sum

SI(−d, d) =
∑
j

wjIj(−d, d) (2.51)

over a set of paths I = {Ij(−d, d)} with weights wj , which transform into each other
when applying P ◦ C transformation, such that SI fulfills the condition (2.50):

S′I(−d, d) =
∑
j

wjI
′
j(−d, d) = QPC SI(−d, d). (2.52)

Possible values for the quantum number are QPC = ±1, because applying P ◦ C trans-
formation twice means reflecting each insertion in the sum twice on the separation axis,
which will return the original sum, such that (P ◦ C)2 |H〉 = Q2

PC |H〉 = |H〉. Later
in this chapter, we will discuss a method to construct such a sum SI(−d, d) from an
arbitrary choice for the insertion in the Wilson loop.

2.2.3 Px

Finally, the additional quantum number Px can also be determined by applying its
corresponding transformation to a trial state. This transformation is the spatial inversion
along one coordinate axis perpendicular to the quark antiquark pair separation axis.
Again w.l.o.g., we place quark q and antiquark q on the z-axis at positions rq = (0, 0, R)
and rq = (0, 0,−R) respectively. To determine Px, the choice of coordinate system is
arbitrary. However, in general, the inversion of the x-axis can produce a different factor
for both choices, which means there are two orthogonal states in this case. Due to the
arbitrary choice of a coordinate system however, we cannot assign a unique Px to the
given state in this case. Thus both possible choices of coordinate system have to be
checked, and a unique quantum number Px can only be identified, if both choices have
the same effect. Using the definitions for I(R0, R1),U(R0, R0) and trial state |H〉 from
the previous section (Eq. (2.33), (2.37), (2.38)), we apply the spatial inversion Px of the
x-coordinate, for both possible choices of a coordinate system.

Px |H〉 = Px q(−R)U(−R, d) I(−d, d)U(d,R) q(R) |H〉
= q(−R)U(−R, d) [Px I(−d, d)] U(d,R) q(R) |H〉 .

(2.53)
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We immediately identify the condition

Px I(−d, d) = Px I(−d, d). (2.54)

To associate a unique quantum number Px with the trial state, (2.54) must hold for both
choices of the coordinate system. Like with the parity and charge conjugation quantum

M
S±I1 = = ±S±I1

S±I2 = = ±S±I2
x z

y

y z

x

±

±

±

±

Px−→

Px−→

Figure 2.3: Application of Px to exemplary sums of insertions for both possible coor-
dinate systems with the quark antiquark pair located on the z-axis. The
midpoint of the separation axis M (blue dot) lies on the origin. In both
cases, applying the shown spatial inversion transforms the terms of the sum
into each other, reproducing the sum up to a change in sign.

number, (2.54) can in general only be fulfilled, if instead of inserting a single path of
links I(−d, d), we insert a sum SI(−d, d) over multiple paths as defined by (2.51) such
that (cf. Fig. 2.3)

Px SI(−d, d) = Px SI(−d, d). (2.55)

Obviously, it is P2
x = 1, such that possible values for the associated quantum number

are Px = ±1.

2.2.4 Construction of trial states

In this section, we show how to construct a trial state from any given single insertion
I for the Wilson loop as defined by (2.37). This requires constructing a sum SI as
defined by (2.51) which satisfies both conditions (2.52) and (2.55) and choosing suitable
weights wj to obtain the desired quantum numbers L,QPC and Px. First we choose an
arbitrary shape for the insertion in the Wilson loop, by fixing the directions i1, . . . , in ∈
{±x,±y,±z} in Eq. (2.37). This choice of insertion I is at first a guess, and in this
work, we will compute effective potentials for different I and investigate the quality of
the resulting effective potentials as well as evaluate the relative contributions of the trial
states constructed with each I to the overlap with the energy eigenstates of interest. We
now construct the sum SI to choose a particular set of the quantum numbers L,QPC , Px
discussed in the previous sections. As we have seen in section 2.2.1, angular momentum
L can be fixed by building one of the sums (2.28), (2.31) or (2.29), namely S|L|(I), for
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angular momentum L = 0, |L| = 1 and |L| = 2 respectively. To obtain a final form
of SI , we project the trial state created by the operator S|L|(I) onto the subspace of
eigenstates to Px and P ◦ C using the projection operators

PPx =
1

2
(1 + PxPx), (2.56)

PPC =
1

2
(1 +QPCP ◦ C), (2.57)

so that our final operator which creates a trial state with the quantum numbers |L|, QPC , Px
is

SI = PPx PPCS|L| = N (1 + PxPx +QPCP ◦ C + PxQPCPxP ◦ C)S|L|(I). (2.58)

We quickly see that (2.58) fulfills conditions (2.52) and (2.55), due to

Px PPx =
1

2
(Px + Px) =

Px
2

(1 + PxPx) = Px PPx , (2.59)

P ◦ C PPC =
1

2
(P ◦ C +QPC) =

QPC
2

(1 +QPCP ◦ C) = QPC PPC , (2.60)

using that P 2
x = 1 and Q2

PC = 1. Also, the normalization factor N = 1
4 in SI can be

dropped, as it has no impact on the computation of effective potentials. Note that for
a given I, some choices of quantum numbers L,QPC , Px can lead to SI = 0, indicating
that a trial state with these quantum numbers cannot be constructed for this particular
choice of I.

2.3 Choice of insertions and quantum numbers

In this section, we list our choice of insertions we used to compute hybrid static potenti-
als in this work. The aim was to first investigate very simple paths to possibly identify
which properties are better suited to construct trial states with larger overlap to the
desired energy eigenstates. In addition, two insertions with more complicated paths are
also investigated.

Fig. 2.4a shows our choice of insertions. I0 has a length of one link along the separation
axis, all other insertions span over the whole distance between quark and antiquark. In
the case of an even numbered quark antiquark separation R, I0 cannot be placed on the
center of the separation axis, instead it can be placed on the nearest lattice site to the
center, either in direction of the antiquark q, or in direction of the quark q. We label
these two possibilities I0,L and I0,R (cf. Fig. 2.4b). Computing a Wilson loop with either
just I0,L or just I0,R would result in a trial state with different symmetry properties than
I0. Instead, we use the average over both possibilities

I0,even =
1

2
(I0,L + I0,R) (2.61)

as an insertion in the case of even R. I0,even has the same symmetry properties for even
R, as I0 does for odd R, so we obtain a trial state with the same quantum numbers in
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q q

I0 I1 I2

I3 I4

I5 I6

(a) Our choice of insertions I0, I1, . . . , I6. Black dots indicate quarks q, q, separated by a distance
Ra, grey dots indicate lattice sites. Continuous lines are single link variables, dashed lines
represent a straight path of links of length R

2 for I2, I4, I5, I6 for even R, length R−1
2 for I0

for odd R, and length R for I1, I3.

I0,L I0,R

(b) Possibilities of placing insertion I0 on the separation axis of a quark antiquark pair separated
by an even distance R = 4.

Figure 2.4: An illustration of all insertions used in this work.
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both cases. Likewise, for insertions I2, I4, I5, I6, in the case of odd R, we have the
possibility to choose the left straight path (dashed line in Fig. 2.4a) to have length R+1

2
and the right straight path to have length R−1

2 , or vice versa, and we choose the insertion
for odd R to be the average over these possibilities.
Table 2.1 shows a list of possible trial states for each insertion (i.e. quantum numbers
for which SI 6= 0).

Insertion possible quantum numbers

I0,1 Σ+
g ,Πu,∆

+
g

I2 Σ+
g ,Πg,∆

+
g

I3 Σ+
g ,Σ

−
g ,Πu,∆

+
g ,∆

−
g

I4 Σ+
g ,Σ

+
u ,Πg,Πu,∆

+
g ,∆

+
u

I5 Σ+
g ,Σ

−
u ,Πg,Πu,∆

+
u ,∆

−
g

I6 Σ+
g ,Σ

+
u ,Σ

−
g ,Σ

−
u ,Πg,Πu,∆

+
g ,∆

+
u ,∆

−
g ,∆

−
u

Table 2.1: List of possible trial states that can be constructed with each insertion.

2.3.1 Generation of numerical data and symmetry averaging

In this section, we give an outline how our numerical data was generated. As shown in
the previous sections, we first choose an insertion Ij that we want to use to create the
trial state. As a next step, we have to identify which kind of Wilson loops we have to
compute to obtain the static potential for each desired set of quantum numbers. We have
seen that a combination, which generates a trial state with defined quantum numbers,
is given by (2.58). However, each term in this sum can be a different path on the lattice.
All paths on the lattice we have to consider are given by applying the combinations of
rotations and Px and P ◦ C transformations as they appear in the sum (2.58). This can
lead to up to sixteen different paths. One such maximal example is shown in figure 2.5.

Like in previous sections, we place the quark and antiquark a distance R away from the
midpoint M of the separation axis, so their positions are rq = M+Rek and rq = M−Rek
respectively, where M is the spatial position of the midpoint. The Wilson loops we have
to compute are given by expanding the sums SI in the expression

C(Ij) = Tr
[
U t0(−R,−d)St0I(Ij)

(−d, d)U t0(d,R)T (t0, t1, rq){
U t1(−R,−d)St1I(Ij)

(−d, d)U t1(d,R)
}†
T †(t0, t1, rq)

]
,

(2.62)

where U t(R0, R1) and StI(−d, d) are as defined before (cf. (2.33), (2.58)), with an ad-
ditional time index, indicating that all links in the product are at time t. For the
insertion I6, there are 16×16 Wilson loops to compute. To obtain the effective potential
V (2R, t1 − t0) from the numerical simulations, we compute the average of each of these
Wilson loops over each lattice site (effectively averaging over each midpoint M and each
t0 with t1 = t0 + δt for fixed R and δt) and each configuration. Additionally, we average
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Px
P ◦ C

P ◦ C

Px

1

1 R̂
(
π
2

)
R̂ (π) R̂

(
3π
2

)
x y

z

Figure 2.5: An illustration showing all different paths that can appear in SI defined by
(2.58) for the insertion I6. Each entry in the table is obtained by applying
the transformations on the corresponding column and line to the original
choice of insertion (upper- and left-most entry in the table).
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each Wilson loop over all three possible spatial directions, which are implicitly chosen
in (2.62) by choosing a k ∈ {x, y, z} for the quark positions rq, rq.

Once these Wilson loops are computed, a number of different trial states can be
constructed by adding the Wilson loops to obtain the expression (2.62), where the weight
factors Px and QPC for each loop in the sum are chosen according to (2.58) to obtain the
desired quantum numbers. For the maximal case I6 where each transformation yields
a different path on the lattice, all combinations of quantum numbers are possible. For
other types of insertions, some transformations may result in the same path on the
lattice, which limits our choice of quantum numbers for these types of insertions (cf.
Tab. 2.1). For example, applying P ◦ C to the insertion I2 does not change the path at
all, i.e. P ◦ C I2 = I2. Inserting this relation into SI , we see that

SI(I2) ∝ (1 +QPC)(1 + PxPx)S|L|(I2), (2.63)

which is zero for QPC = −1, so I2 cannot be used to construct a trial state with this
quantum number.

2.3.2 Analyzing data and determining operator content

Finally, we want to obtain the effective potential (2.4) from the data and fit a constant
to the plateau at large time separations to obtain the static quark potentials. To achieve
this, we implemented a modern version of the generalized eigenvalue problem (GEVP),
as described in [5]. As we have a set of multiple insertions Ij available to construct
each trial state (cf. Tab. 2.1), we not only want to compare the quality of each insertion
for each possible hybrid static potential, but also find an optimal linear combination of
insertions which can be used to construct a state with the largest possible overlap with
the desired hybrid state. This guarantees that we obtain an effective potential which
reaches a plateau at the smallest possible time separation for our choice of operators.
This is important to be able to fit the potential V (R) for each R with small statistical
errors, because the signal to noise ratio is still large at small time separations.

In order to find such an optimal linear combination, we have to solve the GEVP not
just for the correlation function (2.62) where the insertion is the same at both timeslices
t0 and t1, but for a correlation matrix, with elements

Cjk = Tr
[
U t0(−R,−d)St0I(Ij)

(−d, d)U t0(d,R)T (t0, t1, rq){
U t1(−R,−d)St1I(Ik)(−d, d)U t1(d,R)

}†
T †(t0, t1, rq)

]
,

(2.64)

with different insertions at both timeslices. Here, Ij , Ik are all insertions that can be
used to construct the desired trial state given by a fixed choice of |L|, Px, QPC in St0I(Ij)

and St1I(Ik). We then have to compute a total number of (12 × 4)2 = 2304 Wilson loop
averages for each spatial- and temporal- extension on each lattice configuration to obtain
an optimal linear combination of operators for all possible hybrid static potentials (where
12 is the total number of different paths we can construct for our choice of insertions by
applying Px and P ◦ C transformations as described in the previous section).
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Once a correlation matrix for a trial state is set up, we can solve the GEVP defined
by

C(t)vn(t, τ) = λn(t, τ)C(τ)vn(t, τ), (2.65)

where λn(t, τ) are the eigenvalues associated to the eigenvectors vn(t, τ) of the correlation
matrix C. We multiply (2.65) from the left with the inverse correlation matrix

C−1(τ)C(t)vn(t, τ) = λn(t, τ)vn(t, τ), t > τ (2.66)

and solve the resulting eigenvalue problem for the matrix C−1(τ)C(t) to obtain the
eigenvalues λn(t, τ) and eigenvectors vn(t, τ). The same procedure is repeated to obtain
λn(t+a, τ) and vn(t+a, τ). Finally, we can calculate the value of the effective potential
in units of the lattice spacing using the relation (cf. [5])

a Veff,n(t) = − ln

(
λn(t+ a, τ)

λn(t, τ)

)
, (2.67)

where n labels the energy levels, n = 0 being the ground state. The eigenvalues λn are
sorted from largest to smallest λn ≥ λn+1, so that λ0 is the largest eigenvalue. The
parameter τ , we set to τ = 0. In this way, we obtain the effective potential for the linear
combination of chosen operators, which is optimized to have the largest overlap to the
hybrid state at the n-th energy level. Errors are computed using a jackknife algorithm.

To gain further insight into our operator choice and identify the contribution of each of
our operators to the given hybrid state, we can investigate the eigenvectors vn, which
are also sorted from largest to smallest associated eigenvalue. One can show that the
vectors

un(t) =
C(τ)vn(t)

|C(τ)vn(t)|
(2.68)

provide information on the contribution of the operators to the hybrid state (cf. [13]).
Specifically, the absolute value of the of j-th component of the vector u∣∣∣u(j)

n

∣∣∣2 (2.69)

is a measure of which fraction of the overlap of a trial state, constructed with the optimal
linear combination of operators, with the hybrid state of the n-th energy level is due to
the j-th operator.

Lastly, we mention that all operators are constructed using real valued weights, since
complex weight factors were not necessary in any of our considerations so far. Since the
correlators are lattice path integrals with the plaquette action (2.12), which is invariant
under charge conjugation, the correlators are also invariant under charge conjugation,
i.e. Cjk = Cjk,C . Also, because of (2.36), it is UC = (U †)T = U∗. Since all our operators
are linear combinations of products of links with real valued weights, also the correlators
of these operators must fulfill Cjk,C = C∗jk and thus the correlators are real valued,
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Cjk = Cjk,C = C∗jk. To verify this relation, we computed the imaginary part of the
correlators as an average of the imaginary parts of the corresponding Wilson loops over
all lattice configurations and found that indeed, the imaginary part vanishes withing
statistical errors. This observation was used to simplify our implementation of the
GEVP.

2.4 Decays of hybrid mesons

Hybrid mesons are states with excitations that are caused by gluons. As such, there are
possibilities for them to decay into lighter states. Here we will give a short consideration
of possible decay channels.

The first quantum number we have to consider is Isospin I. In the case of static
potentials with localized heavy quarks, light quarks are not present, so we have Isospin
I = 0 for all hybrid states considered in this work. To conserve Isospin, it follows that
decays into particles with Isospin I 6= 0 must include at least two such particles, to make
a combination to I = 0 possible.

The angular momentum quantum number L of our hybrid meson states is defined by
the rotational symmetry around the separation axis of the quark antiquark pair. To
conserve this quantum number in a decay process, we require that the relative angular
momentum of the decay products with respect to this distinguished axis, which we call
`z,out, is conserved. This means that the total relative angular momentum `out of decay
products can have additional components with respect to an axis that is perpendicular to
this axis. Additionally, the contribution to parity of relative angular momentum, which
is a factor (−1)`out , has to be taken into account. However, this additional contribution
to parity can be chosen freely, because an upper limit to the relative angular momentum
`out is not given. The conservation of the quantum number of the hybrid mesons defined
by the combination of parity and charge conjugation can then also be conserved in the
decay process by choosing a suitable `out.

One possible decay is for example

Πu −→ Σ±g + n π.

For this decay, the number of outgoing pions must be n ≥ 2 to conserve Isospin. To
conserve L = 1 with pions which have angular momentum Lπ = 0, the relative angular
momentum of the decay products must be `out ≥ 1. For n = 2, the total combined P- and
C-parity of the decay products is (+). Choosing `out = 1 contributes an additional minus
sign, so that PC-parity is conserved, as the hybrid state Πu has QPC = −. Similarly, for
n = 3, we choose an outgoing relative angular momentum so that `z,out = 1 and `out = 2,
which compensates the sign change in total parity coming from the additional pion. The
possible number of outgoing pions is then only restricted by the mass difference of the
in- and outgoing heavy (hybrid) mesons.
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3 Results

In this section we show the hybrid static potentials from our numerical computations,
including all insertions shown in figure 2.4a. Static potentials have been computed for all
possible states that can be created using these operators, as listed in table 2.1. We show
the lattice setup and some prior optimization of the generation of gauge configurations,
smearing, and operator choice. Additionally, we look at some excited energy levels and
the overlaps the states created by each of our operators have with the hybrid states.

3.1 Lattice setup

We generated lattice configurations in pure SU(3) gauge theory using the Wilson pla-
quette action (2.12). For this, we used the heatbath algorithm of the Chroma Library
for Lattice Field Theory [1]. We have generated 700 gauge configurations with a lattice
size of 243×48 with β = 6.0, which corresponds to a lattice spacing of a ≈ 0.093 fm. The
lattice spacing was computed with the sommer parameter, using the method described in
section 2.1.3. A sufficiently small autocorrelation between the generated configurations
has been verified using binning with multiple binning sizes (Fig. 3.1).

Figure 3.1: Binning of 700 configurations for the ordinary static potential at spatial
quark pair separation R = 12a with binning sizes 1, 2, 4. Error bars for
binning sizes 2, 4 have been shifted for better visibility.
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3.2 APE smearing

Effective potentials have been computed at T = 1 for different numbers of APE smea-
ring steps nAPE to find an optimal choice, i.e. one where the plateau is reached fastest
(Fig.3.2). The lowest effective mass for the ∆+

g potential is at nAPE = 10. For the Πu

potential, Veff is a bit lower at nAPE = 20, but still reasonable for nAPE = 10. As the
higher angular momentum potential has larger errors for computations over an equal
number of configurations, we chose nAPE = 10 to compute the hybrid potentials in this
section. For the ordinary potential 3.2 (a) at nAPE = 100, the effective potential seems
to reach a maximum, which is an unusual dependence on nAPE, however, these compu-
tations were done on a smaller set of 50 configurations, and errors are not available. It
is possible this maximum only occurs within statistical error.

(a) Ordinary static potential Σ+
g computed

with regular planar Wilson loops.
(b) Ordinary potential Σ+

g , computed with the
short staple operator I0.

(c) Πu potential (d) ∆+
g potential

Figure 3.2: Effective masses of hybrid potentials at T = 1 computed with regular planar
Wilson loops ( (a) ), and the short staple operator I0 ( (b) - (d) ).

3.3 HYP smearing

We also computed the ordinary static potential with regular Wilson loops with and
without HYP smearing for small spatial separations (Fig. 3.3). This computation only
includes 100 configurations.

The gap in the effective potential between the quark separations R = 1 and R = 2
is much smaller when HYP-smearing is used, than it is for the potential without HYP-
smearing. The behavior of the potential at R . 2 with HYP smearing is subject to large
discretization errors, because the hypercubes over which the links of the Wilson loop in
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(a) Effective potential without HYP smearing.
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Figure 3.3: Ordinary static potential computed without and with HYP smearing.

time direction are smeared with the HYP algorithm have significant overlap with each
other on the lattice at a small spatial separation of just a few lattice sites. Consequently,
we have to turn off HYP smearing for small spatial separations, to obtain the correct
behavior of the potential. For larger spatial separations however, the hypercubes do not
overlap and HYP smearing reduces the errors of the effective potential by a substantial
amount, which we can clearly see in figure 3.3.

3.4 Potentials

In this section we show the results for the hybrid potentials we can obtain using our
insertions 2.4a. We compute (12 × 4)2 Wilson loop averages on each of our 700 gauge
configurations to include all possible operators and quantum numbers, as outlined in
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sections 2.3.1 and 2.3.2. For each configuration, the Wilson loop is averaged over each
point on the lattice, and over each direction of its spatial extension. We computed
Wilson loop averages in this way for spatial separations R/a = 2, 3, . . . , 12 and temporal
separations T/a = 0, 1, . . . , 15. Wilson loops with a spatial separation of R = 1 have
not been computed, because a part of our operators are not defined for R < 2. We note
the effective potential is only plotted for temporal separations T = 0, . . . , 14, since we
obtain it by solving the GEVP (cf. section 2.3.2), which requires the correlation matrix
at two different times as an input for each value of the effective potential.

3.4.1 Ordinary static potential

As a start, the ordinary potential was computed using the simple staple operator I1 of
length R.
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Figure 3.4: Ordinary potential computed with a simple staple operator of length R.

We obtain the effective potential Veff for each R as a function of the temporal separa-
tion T . We then evaluate at which value of T the effective potential reaches a plateau
and fit a constant to this range to compute the static potential. This works well for the
ordinary static potential (Fig. 3.4).
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3.4.2 Short and long insertions

One property of the operators we use to construct the hybrid states, is their extension
along the quark antiquark separation axis. This property can easily be transfered to dif-
ferent shapes of insertions, by extending their path of links in direction of the separation
axis. To get an idea which type of operator, shorter ones, or more extended ones, are
better used to compute hybrid potentials, we compared the effective potentials obtained
using the insertions I0 and I1, which have a simple and similar shape, that only differs in
the extension in direction of the separation axis. Figure 3.5 shows the effective potentials
for these insertions for both possible hybrid states (cf. Tab. 2.1).
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Figure 3.5: Comparison of effective potentials computed with short staples I0 (left) and
long staples I1 (right). For these potentials, only 100 configurations were
used.

We can clearly see that the effective potentials for the long staples I1 reach a plateau
substantially faster and consequently are better suited to compute the hybrid potentials.
Furthermore, the potentials for short stables have a splitting of values for odd and even
spatial separations R/a. This effect must originate in the averaging of operators for the
case of Wilson loops with even (in the case of short staples, cf. (2.61)) spatial separation.
An averaging in this way seems to result in overlaps with different states, as this shift in
the effective potential indicates. However, as we will see later, such a splitting does not
occur even for more complicated operators that extend over the whole separation axis,
while using this same method of averaging for operators that cannot be directly placed
on the midpoint of the separation axis. Because of this, the origin of this split for short
staples is not clear.

Contributions to the overlaps of the trial states with the hybrid states were also
plotted in figure 3.6 for both short and long staples as a function of the quark antiquark
separation. Beside statistical errors, none of the overlaps showed any dependence on the
temporal separation. The overlaps give further assurance that operators with a bigger
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extension along the separation axis are much better suited to compute hybrid potentials.

We clearly see that short staples have a small contribution
∣∣∣u(0)

0

∣∣∣2 < 0.2 to the total

overlap with the hybrid state, while the contribution of long staples dominates with∣∣∣u(0)
1

∣∣∣2 > 0.8. Furthermore, the contribution of short/long staples decreases/increases as

the quark antiquark separation grows larger, indicating that a larger ratio of operator
extension to quark separation results in a larger overlap to the hybrid state.
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3.4.3 Hybrid potentials

For the hybrid potentials, we computed Wilson loops for all insertions in Fig. 2.4a. We
compute effective potentials for each hybrid state using the correlation matrices which
are built using all insertions available to construct the corresponding trial states. Figures
3.7, 3.8, 3.9 show the effective potentials for all these hybrid states. Horizontal, thin
green lines and a green background represent the range of temporal separation T/a to
which a constant was fitted to obtain the value of the static potential for the greatest
possible temporal separation.

For all hybrid states, the error bars of the effective potentials at temporal separati-
ons T & 5 grow much larger than the change in the value of the effective potential for
neighboring temporal separations, so a fit of a constant to obtain the static potential
should not be done in these regions. Also, a plateau is only reached approximately for
some states at smaller spatial separations, in particular the states for angular momen-
tum L = 1, namely Πg,Πu, and the state Σ−u seem to approach a plateau for spatial
separation R/a . 6. The state ∆−g also seems to approach a plateau for R/a . 5 at
T/a = 4, however the signal breaks off already after a temporal separation of one addi-
tional lattice lattice spacing T/a = 5.

Figures 3.10, 3.11, 3.12 show the hybrid states potentials obtained by fitting constants
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Figure 3.7: Effective potentials for hybrid states with angular momentum L = 0.

to the effective potentials at the indicated values of T/a. All potentials are plotted at
the same scale. But we note, that potentials for states other than the mentioned ones
should be treated as very crude results, as plateaus are clearly not reached yet for these
states.
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Figure 3.8: Effective potentials for hybrid states with angular momentum L = 1.
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Figure 3.9: Effective potentials for hybrid states with angular momentum L = 2.
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Figure 3.10: Effective potentials for hybrid states with angular momentum L = 0.

Almost all potentials seem to exhibit a repulsive behavior at very small separations, but
again we stress that most potentials are very crude results and in particular the Σ−u
potential, which is the state for which the effective potential reached a plateau for small
spatial separations, does not show a repulsive behavior. However, a positive curvature
at very small spatial separations is still visible. These are first results, and one should
investigate the potentials also at smaller lattice spacing and smaller spatial separations
and to gain more insight into this potentially repulsive property of the hybrid potentials.

Also, we observe that the quantum number Px seems to have a small influence on the
properties of hybrid potentials with angular momentum L = 2, as the potentials and
effective potentials of the states ∆+

g and ∆−g , as well as ∆+
u and ∆−u are very similar.

This is expected, since hybrid states with |L| > 0 have no preferred orientation of their
angular momentum so the states with L = 2 and L = −2 are degenerate. The reflection
corresponding to the Px quantum number flips the orientation of the angular momentum
and transforms these states into each other, consequently states with different Px are
degenerate (cf. [4]).
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Figure 3.11: Effective potentials for hybrid states with angular momentum L = 1.
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Figure 3.12: Effective potentials for hybrid states with angular momentum L = 2.
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3.4.4 Operator overlaps

To compute the static potentials via a fit of a constant to the plateau of the effective
potential at large times, it is important that the generated trial states have large overlaps
to the extracted energy eigenstates. To gain some insight into which of our insertions
shown in Fig. 2.4a are best suited to generate trial states with large overlaps to the
energy eigenstates, we show each operators contribution to the total overlap of the trial

state with the extracted energy eigenstate in figures 3.13, 3.14, 3.15. Here,
∣∣∣u(0)
j

∣∣∣2 is

the contribution of the operator, which is constructed with the insertion Ij , to the total
overlap of the trial state to the ground state. Operator overlaps for the state ∆−u are
omitted, since only a single operator was used to construct the associated trial state.
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Figure 3.13: Operator overlaps for hybrid states with angular momentum L = 0.
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Figure 3.14: Effective potentials for hybrid states with angular momentum L = 1.
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Figure 3.15: Effective potentials for hybrid states with angular momentum L = 2.
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We observe that the more complicated operators I5 and I6 significantly dominate the
overlaps of all hybrid states, except for the state Σ−g . However, only the insertions I3, I6

were available to construct this particular state, while I6 shows a vanishing contribution
to hybrid states of angular momentum L = 0 with quantum number Px = −. Follo-
wing the trend, we expect more complicated shapes that we did not include, to have
significantly larger contributions to the overlap also for this state. In contrast, simple
shapes like insertions I1, I2, I3, I4 have much smaller contributions to the overlap than
more complicated ones, for all considered hybrid states.

3.4.5 Orthogonal states, excited states

Finally, to ascertain the correctness of our algorithms, simulation- and analysis- codes,
a cross-check was done and compared to expected results. As discussed in section 2.2.3,
in theory one can assign the quantum number Px also to the hybrid states of angular
momentum L = 1, namely Πg and Πu to obtain two orthogonal states. In the results
shown so far, these states were generated with the choice Px = − for our particular
choice of coordinate system.
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g .
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(a) Excited Πg state.
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Figure 3.17: Effective potentials for first excited hybrid states.
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Now, we also generated an orthogonal trial state with Px = + and computed the cor-
relator of the two operators which create the two orthogonal states ‘Π+

g ,Π
−
g ’. A plot of

the correlator is shown in Fig. 3.16, and it is indeed zero within statistical errors.

Furthermore, excited potentials were computed for the states Πg,Πu,∆
+
g , and are

shown in Fig. 3.17. While none of the effective potentials reach a clear plateau, they
have the expected shape. The shapes of the excited state potentials are just a very crude
estimate, since no plateau is reached, but it is clear that they lie significantly above the
ground state potentials, as one would expect.

4 Conclusion

4.1 Summary

The goal of this work was to get a better understanding of hybrid static potentials
and of methods to compute these using lattice simulations. We examined these hy-
brid static potentials in SU(3) Yang-Mills theory to realize the excitations of these
quark antiquark states in the gluon sector, which ultimately meant the computation
of Wilson loops with specific insertions. We obtained a rigorous understanding of how
to construct trial states within the given theory from different kinds of operators and
which effect the choice of these operators have on the quantum numbers of the re-
sulting trial states. Furthermore, we obtained hybrid static potentials for the states
Σ+
g ,Σ

−
g ,Σ

+
u ,Σ

−
u ,Πg,Πu,∆

+
g ,∆

−
g ,∆

+
u ,∆

−
u which covers all possible combinations of quan-

tum numbers up to angular momentum L = 2 and investigated different kinds of ope-
rators for each state. We concluded that more extended, non-local operators, as well as
operators with more intricate structures on the lattice are much better suited for all sta-
tes, than local operators and operators with simple shapes are. In addition, correlators
of orthogonal states and hybrid static potentials of some excited states were computed
and showed the expected behavior, which is a strong verification of the correctness of
the methods used in this work. The final potentials were computed for a lattice spacing
of a ≈ 0.093 fm on 700 gauge configurations and are shown in Fig. 4.1 alongside results
for the same states from an earlier work [10]. While the results of [10] are given for a
larger range of quark antiquark separations and seem to have smaller statistical errors,
plots of effective potentials, or a clear procedure of how these potentials were obtained,
are not shown. Our results are largely in agreement with those of [10], and we also
show effective potentials to give a clear demonstration of which aspects still need to be
improved on. Only our results for the Πg state seem to disagree with [10], however the
overlaps in Fig. 3.14 show that only one operator contributed to this particular state,
so this could mean that this operator does also not have a sufficient overlap with the
hybrid state.

Furthermore, the construction and analysis of suitable trial states was shown in detail,
and tools were created to compute hybrid static potentials with any arbitrary choice of
operators, so more shapes can easily be investigated. The tools were set up in a way,
which allows the computation of more complicated operators at a relatively low cost of
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Figure 4.1: Our results (left) for the static potentials of various hybrid states compared
to the results of the work [10] (right).
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computation time compared to the computation time needed to compute the final cor-
relators, as long as the symmetry properties of the operator, corresponding to angular
momentum, P ◦ C-parity, and the quantum number Px, stay unchanged.

4.2 Outlook

To contribute to a deeper understanding of the strong interaction, research of exotic
matter such as the hybrid states discussed in this work, is essential. With the established
methods, an obvious next step is to consider operators which are expected to be able
to construct trial states with larger overlaps with the states of interest and to also
compute the hybrid static potentials on a larger number of lattice gauge configurations
to directly decrease statistical errors, as well as to compute these on lattices with different
lattice spacings to obtain potentials for a wider range of quark antiquark separations and
investigate discretization effects.

A next step will be to match the results of these lattice computations to perturbative
results and develop methods to compute the hybrid potentials in full dynamical QCD.
Potentials obtained in this way can then be used to solve Schrödinger equations and
make predictions for the masses of such states. Such results are of interest with regard
to the PANDA experiment at FAIR, which is planned to also search for hybrid meson
states. In particular, a detailed understanding of masses and possible sufficiently stable
states will allow for a systematic analysis of the experimental data. Furthermore, effects
of quark spins on these states are known to be significant, and methods to include such
effects also need to be investigated to gain a full understanding of hybrid states.
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