
Bachelor Thesis

Computing path integrals using
Lefschetz thimbles

Niklas Zorbach

Frankfurt am Main
November 19, 2018

Advisor & first supervisor:
Prof. Dr. Marc Wagner

Institut für theoretische Physik
Johann Wolfgang von Goethe Universität Frankfurt am Main

Second supervisor:
Dr. Wolfgang Unger

Institut für theoretische Physik
Universität Bielefeld



Abstract

Finding minima of functions S is of great physical importance. In particular,
in quantum field theory calculating vacuum expectation values in spontaneously
broken systems or finding classical equations of motions. For example if S : R→ R
has a unique minimum xmin, then Laplace’s method (if applicable) gives

xmin = lim
λ→∞

∫
R dx xe−λS∫
R dx e−λS

.

We review a technique applicable to more general S by decomposing the integrals
into ones over so called Lefschetz thimbles. This basically reduces to the previous
situation with a unique minimum. As applications to the theory we choose the Airy
function and a function motivated by the Gross-Neveu model.

Zusammenfassung

Das Finden von Minima von Funktionen S hat große physikalische Bedeutung.
Insbesondere, wenn man Vakuum Erwartungswerte in der Quantenfeldtheorie für
spontan gebrochene Systeme oder klassische Bewegungsgleichungen berechnet. Zum
Beispiel, wenn S : R→ R genau ein Minimum bei xmin besitzt, dann liefert Laplace’s
Methode (wenn anwendbar)

xmin = lim
λ→∞

∫
R dx xe−λS∫
R dx e−λS

.

Wir werden eine Methode lernen, die auf allgemeine S anwendbar ist. Dabei werden
die Integrale in Summen einfacherer Integrale über sogenannte Lefschetz-Fingerhüte
zerlegt. Damit reduziert man die Situation auf den Fall mit eindeutigem Minimum.
Als Anwendung wählen wir die Airy-Funktion und eine Funktion, die vom Gross-
Neveu-Modell motiviert ist.
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1 Introduction
One of the four fundamental forces in physics is the strong interaction. This force is
mathematically described by quantum chromodynamics (QCD), a Yang-Mills theory
based on the symmetry group SU(3). Similar to quantum electrodynamics (QED) there
exists a gauge boson (the gluon) describing the interaction between quarks by carrying
out color charge for the strong interaction. This force holds hadrons (e.g. protons)
stable and is the strongest of the four fundamental forces. In contrast to QED, the
symmetry group SU(3) is nonabelian. This leads to difficult analytical calculations of
QCD. Therefore, we rely on numerical calculations.

Furthermore, it is of interest to study the strong interaction for extreme conditions:
high temperature or high density. Those conditions appear in nature: shortly after the
”Big Bang” the strong interaction was exposed to high temperatures. And in neutron
stars the strong interaction experiences high density. The project Collaborative Research
Center TransRegio 211 (CRC-TR 211) studies strongly interacting matter under those
conditions. For this purpose it is of interest to analyze the phase structures and phase
transitions of strongly interacting matter in the temperature density plane. When tem-
perature and density are low, quarks and gluons are confined (inside hadrons) and the
chiral symmetry of the QCD is spontaneously broken. However, if temperature and den-
sity are high, then quarks and gluons are deconfined and chiral symmetry is unbroken.

Moreover, one observes inhomogeneous phases occurring at low temperature but
high densities. Here the order parameter becomes space dependent and the system is
restored at a discrete set of points in space. The A03 project (part of the CRC-TR
211 project) analyses those inhomogeneous phases and develops numerical methods.
Starting developing methods, the A03 project investigates the phase transition for a
QCD like theory: the Gross-Neveu model [1]. This model is analytically well known
in 1 + 1 dimensions (one space and one time dimension) for the large-N limit with
chemical potential and also for finite temperature [2]. One has discovered three phases
as depicted in figure 1: the unbroken, the homogeneously broken and the inhomogeneous
phase. Also this model is suitable for developing numerical methods. However, the A03
project wants to investigate these phases in higher dimensions. For 2 + 1 dimensions
one has currently no proof that ensures the effective action to be purely real. Therefore,
we assume a complex effective action. The computation of partition functions with
complex effective actions is a problem known as the sign problem. Thus we need new
mathematical methods to handle those actions. Note that complex actions also appear
in other physical theories: QCD with chemical potential and Chern-Simons gauge theory
[3]. To handle those, Picard-Lefschetz theory (based on Morse theory [4, 5]) provides
a good framework. The calculation of Lefschetz thimbles can be difficult and has been
performed using numerical methods such as the axis scan method [6].

Advantageous prerequisites for the reader are complex analysis and homology (see
for example [7] or the appendix A).
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Figure 1: This figure shows the three phases detected in the Gross-Neveu model in 1 + 1
dimensions. This data comes from [2].

In this thesis we are interested in contour integrals of the form∫
C

dz exp{λf(z)}, (1)

where C is a curve in the complex plane X = C, λ is a complex parameter and f is a
holomorphic function. Section 2.1 and 2.2 will handle the case for fixed λ. There we will
learn how to express (1) as a Z-linear combination of (simpler) contour integrals∫

C
ω =

∑
σ

nσ

∫
Jσ
ω, (2)

where nσ ∈ Z, ω = dz exp{λf(z)} and the sum runs over all saddle points σ, to which we
associate paths Jσ given by steepest descent called Lefschetz thimbles [3, 8]. In section
2.3 we explain how varying λ around the origin can affect the Lefschetz thimbles. In
section 2.4 we will learn how to apply Laplace’s method (or saddle point method) [9, 10]
to get a simpler expression for (1) when |λ| → ∞. Section 3 illustrates the theory at hand
of two examples: The Airy function [3] and the Gross-Neveu model in zero dimensions
[1, 11, 8]. Both are illustrated by several plots created with gnu-plot and the reader is
welcome to read this section alongside the abstract theory for a better understanding.
Finally, in section 4 future directions of research are motivated.
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2 Lefschetz thimbles
For the Morse theory, this section is based on [4, 5]. The reference for homology is [7]
and for the theory about Lefschetz thimbles the article [3] was used.

2.1 Preparation
Recall that we study integrals of the form∫

C
dz exp(λf(z)), (3)

where C is a curve in X = C, λ a complex parameter and f a holomorphic function.
For convergence reasons we actually want λ ∈ C× = C \ {0}.

Let us first illustrate the idea of what we want to achieve in this section. We will
define a height function h on X (taking values in R). The integration over regions with
height < T (−T large) will be neglectable. In fact, we will collapse {x ∈ X | h(x) < T}
(see figure 2) to a point, when −T is large enough and this then results in interesting
homology groups (more on this later).

Figure 2: This picture shows the complex plane, the green regions are given by {x ∈
X | h(x) < T}.

Let us now focus on the other parts of integration, i.e. those where the height is ≥ T .
If the imaginary part of the exponent λf(z) is a constant c along the contour, we may
pull exp(ic) out of the integral and have hence reduced to a real integral. This then can
be handled with Laplace’s method. In the case of nonconstant imaginary part, we try to
deform the contour (without changing the value of the integral) such that the following
property is satisfied:

(LC) The imaginary part of the exponent is locally constant along the deformed contour
where the height is ≥ T .

We can then again reduce to real integrals, because integration along regions with non-
constant imaginary part are neglectable. For example let our original contour pass a
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critical point. If the critical point is a saddle point, then there are two paths starting
from that critical point in the directions of steepest descent (with respect to the height).
Along those paths (LC) is fulfilled, because of the Cauchy-Riemann equations. We then
combine these two paths into one. Note that we can freely continue our path at its ends
if they lie in regions with height < T , i.e. there we allow changes in imaginary part. The
idea then is to build up our original contour from patching together such constructed
paths each satisfying (LC). Obviously, the question arises whether such a deformation
is always possible. For our situation the answer is yes1. We will actually have a unique
combination of such paths, called Lefschetz thimbles decomposition2 (see 21). Let us try
to understand this (using Morse theory and homology): we define the height function
h = Re(λf) and we assume that h is a Morse function, which means that all critical
points3 of h are non degenerate4. Also, we assume finitely many critical points. We
observe:

1. Since f is holomorphic, we can deform C to C ′ along a region A without changing
the path integral. This follows form Cauchy’s integral theorem which says∫

C
ω −

∫
C′
ω =

∫
∂A
ω = 0. (4)

2. If C ⊂ Z≤T := {z ∈ X | h(z) ≤ T} for T � 05 and there exists λ0 = αλ with
α ∈ (0, 1) such that

∫
C dz

∣∣eλ0f
∣∣ <∞, then∣∣∣∣∫

C
dz eλf(z)

∣∣∣∣ ≤ ∫
C

dz
∣∣∣eλf(z)

∣∣∣
=

∫
C

dz
∣∣∣eλ0f(z)+λf(z)−λ0f(z)

∣∣∣
=

∫
C

dz
∣∣∣eλ0f(z)

∣∣∣ e(1−α)h(z)

≤ e(1−α)T

∫
C

dz
∣∣∣eλ0f

∣∣∣
= const · e(1−α)T ≈ 0 for T � 0.

In other words, for T � 0 the term e(1−α)T kills any contribution of the contour integral
over regions Z≤T . Hence, we better look at the quotient space X/Z≤T , which is obtained
from X by gluing all points in Z≤T to one single point. This gluing is illustrated in figure
3.

1One assumption on our contour is that its ends lie in regions with height < T .
2. . . if no Stokes rays occur. More on this later.
3We call a point p ∈ R2 of a function h : R2 → R, (x, y) 7→ h(x, y) critical if ∂f

∂x
(p) = ∂f

∂y
(p) = 0.

4A critical point p ∈ R2 of a function h : R2 → R, (x, y) 7→ h(x, y) is called non degenerate if the
Hessian matrix is invertible at p.

5We say φ(T ) holds for T � 0 if ∃N < 0 ∀n ≤ N : φ(n).
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Figure 3: This series of images illustrates the quotient space X/Z where X = C and Z is
the green region. It has first homology of rank two, because γ1 ·γ2 ·γ3 = 1 is contractible.

Although X = C has trivial higher homology groups Hi(X;Z) = 0 for i > 0, X/Z≤T
might have nontrivial ones. Moreover, we have6

Hi(X/Z≤T ;Z) = Hi(X,Z≤T ;Z) (5)

for i > 0, with the ith relative homology on the right hand side. Note, for i = 0, the left
hand side is Z (i.e. the free abelian group over Z of rank equal the number of connected
components of X/Z≤T ), whereas the group on the right is 0, because every point can be
deformed into Z≤T .

From now on, we want to assume that the endpoints of C lie in Z≤T for T � 0.
This ensures that C defines a loop in X/Z≤T . And if H1(X/Z≤T ;Z) 6= 0, then it can
happen that C is not contractible. This is measured by [C], the class in H1(X/Z≤T ;Z)
represented by C. Indeed, we are only interested in the class [C] of C because for any
other C ′ ∈ [C], we just observed ∫

C′
ω ≈

∫
C
ω, (6)

where the approximation becomes equal in the limit T → −∞. If it is clear from context
we simplify the notation by writing C instead of [C].

The fundamental result for our application comes from Morse theory and says that
H1(X,Z≤T ;Z) is a free abelian group of rank r := #

∑
, where7∑

= {σ | σ critical point of h}. (7)

I want to explain a few ingredients for proving this. First, we proof the assertion con-
cerning the rank. For this we use the Morse inequality

#Σ ≥ rank(H1), (8)

6If clear from context we will also simply write Hi for Hi(X,Z≤T ;Z).
7The standard Morse theory determines the ordinary homology of compact manifolds. Also X/Z≤T

can be non compact (our case) Morse theory still describes the relative homology groups Hi(X,Z≤T ;Z)
[3].
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which becomes an equality if and only if h is perfect8. This is true in our situation.
Indeed, h is harmonic as it is the real part of a holomorphic function. Hence, every
critical point σ ∈ Σ must be a saddle point of Morse index 9 1 as shown in figure 4.

-10 -5  0  5  10 -10
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-100

-50
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 100
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y

Figure 4: This figure illustrates a non degenerate saddle point of Morse index 1. Every
critical point of a Morse function is a non degenerate saddle point.

It follows that the difference of Morse indices for any two critical points is zero. This
is a criterium for h to be perfect [5]. This proves the claim about the rank. It remains
to check that H1(X,Z≤T ;Z) is free10. Next, we will study elements in H1(X,Z≤T ;Z).
For T sufficiently small Z≤T decomposes into #Σ + 1 disjoint connected components
VT,i with i ∈ {1, . . . ,#Σ + 1}. Let C be a curve in C with a chosen orientation. We
say that C starts in Vm and ends in Vn if there is a parameterization C(t) respecting
the orientation such that for all T there exists t0 such that for all t < t0 C(t) ∈ VT,m
and similar C(t) ∈ VT,n for some t0 and any t > t0

11. We also write C(−∞) ∈ Vm
and C(+∞) ∈ Vn. Let CVm→Vn denote any curve starting in Vm and ending in Vn. If
there are no holes in X then any two choices for CVm→Vn represent the same element
[CVm→Vn ] in H1(X/Z≤T ;Z). Also, the [CVm→Vn ] for fixed m and n 6= m define a basis
for H1(X/Z≤T ;Z). Therefore, we have a unique Z-linear combination

[C] =
∑

n∈{1,...,#Σ+1}\{m}

cn[CVm→Vn ], (9)

where cn are integer coefficients. Thus the integral (3) can be written as∫
C

dz exp(λf(z)) =
∑

n∈{1,...,#Σ+1}\{m}

cn

∫
CVm→Vn

dz exp(λf(z)). (10)

This discussion can be generalized for functions with singularities. As we will see in the
zero-dimensional Gross-Neveu model in section 3.2.

8This is the definition of perfect.
9The Morse index of h at σ is defined as the number of negative eigenvalues of the Hessian of h at σ.

10An abelian group is called free if it has a basis. A basis is a linear independent set of generators. A
proof for this can be found in [5]

11Note that there is no definition for Vm since
⋂
T VT,m = ∅.
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2.2 Lefschetz thimbles
A basis for H1(X/Z≤T ;Z) better suited for computations (using Laplace’s method) is
given by the Lefschetz thimbles. Namely, let σ be a critical point and define the stable
Lefschetz thimbles

Jσ = points reached from σ by steepest descent

with respect to the standard metric on X.

If Jσ contains exactly one critical point, it is called good and otherwise bad or a Stokes
ray12. Let us now discuss why good Lefschetz thimbles define elements [Jσ] in the
relative homology. And if no Stokes rays occur those actually define the basis we were
looking for. We can ensure this (i.e. no Stokes rays occur) by slightly varying λ ∈ C.
The Jσ have two key properties:

• Im(λf) is constant on Jσ.

• h = Re(λf) decreases on Jσ in directions away from σ.

The second property ensures that h actually tends to −∞ at the ends of Jσ and the
integration over Jσ converges, if Jσ is good. It follows that [Jσ] is a well-defined ele-
ment in H1. To prove those key properties about Jσ it is helpful to have the following
characterization:

Jσ =

{
u(0) ∈ X

∣∣∣∣∣ lim
t→−∞

u(t) = σ

}
, (11)

where u(t) = u1(t) + iu2(t) ∈ X is a solution to the downward flow equations (with
respect to the metric g)

dui

dt
= −gij ∂h

∂uj
. (12)

This means u(t) is a path starting at σ (for t = −∞) and going in direction of steepest
descent, reaching some point u(0). It is crucial to start at σ only in the limit t→ −∞,
since σ is a critical point and solutions to the downward flow equations satisfying u(t0) =
σ for finite t0 must be constant. This is, because

dh

dt
=
∑
i

∂h

∂ui
dui

dt
= −

∑
i

(
∂h

∂ui

)2

. (13)

So h is decreasing along downward flows showing the second key property for Jσ. In
particular, if u(t) crosses a critical point at finite t0, then u(t) becomes constant since
otherwise h(u(t)) would increase.

12In this thesis a Stokes ray is a special Lefschetz thimble. This may differ from the literature, where
a Jσ is either a Lefschetz thimble or a Stokes ray depending on the number of critical points it contains.
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Finally, the constancy of Im(λf) on Jσ follows from the Cauchy-Riemann equations
and the holomorphicity of f : let I = λf and H = Im(I), then by using a Kähler metric
ds2 = |dz|2 one can rewrite the downward flow equation to

dz

dt
= −∂Ī

∂z̄
, (14)

where we used ∂I(z)
∂z̄ = 0 (from holomorphicity of I) and one observes

dH

dt
=
∂H

∂z

dz

dt
+
∂H

∂z̄

dz̄

dt
=

1

2i

(
∂I
∂z

dz

dt
− ∂Ī
∂z̄

dz̄

dt

)
= 0. (15)

Hence, H is a conserved quantity along the Lefschetz thimbles and therefore the imagi-
nary part stays constant13.

Let us assume that no Stokes rays appear. For example, any two critical points have
different imaginary values of I. Then the number of [Jσ], for σ ∈ Σ is exactly the rank
of H1(X/Z≤T ;Z) and hence we would like to show that they actually generate H1. For
this, we need to define the intersection number. First, we define the unstable Lefschetz
thimbles Kσ by

Kσ = points reached from σ by steepest ascent

with respect to the standard metric on X.

Similar to previous observations we have

Kσ =
{
u(0) ∈ X

∣∣∣ lim
t→∞

u(t) = σ
}
, (16)

where as before u(t) is a solution of the downward flow equations (12). Also we define

Z≥T = {x ∈ X | h(x) ≥ T}. (17)

Then, once we choose an orientation for Kσ we obtain elements [Kσ] for H1(X,Z≥T ;Z).
Again, we have a notion of good and bad (unstable) Lefschetz thimbles and we assume
that no bad thimbles occur to actually have well-defined homology elements. Since this
time, h is increasing on Kσ away from σ but decreasing on Jσ away from σ, it follows that
Kσ and Jσ only intersect at σ. Moreover, for σ 6= τ Jσ and Kτ do not intersect because
distinct critical points are not connected by gradient flows (we assumed no Stokes rays).
Therefore, the intersection pairing is

〈Jσ,Kτ 〉 = δστ , (18)

after possibly reorienting some thimbles. Now we are able to check that the Jσ are lin-
early independent and hence define a basis forH1(X/Z≤T ;Z). For this let

∑
σ aσ[Jσ] = 0.

Applying 〈·,Kτ 〉 we get

0 =
∑
σ

aσ〈Jσ,Kτ 〉 =
∑
σ

aσδσ,τ = aτ .

13One can interpret H as a Hamiltonian from classical mechanics and the downward flow equations are
nothing but Hamilton’s equation of motion dz

dt
= {H, z}P , where {f, g}P = −2i

(
∂f∂̄g − ∂̄f∂g

)
denotes

the Poisson bracket with ∂ = ∂
∂z

and ∂̄ = ∂
∂z̄

.
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This is true for all τ ∈ Σ and so the linear combination must be trivial.
As before, the basis of Jσ’s allows us to write

[C] =
∑
σ

nσ[Jσ], (19)

with unique integer coefficients nσ, given by

nσ = 〈C,Kσ〉 (20)

and the integral (3) can be written as∫
C

dz eλf(z) =
∑
σ∈Σ

〈C,Kσ〉
∫
Jσ

dz eλf(z). (21)

2.3 Stokes rays
In the last section we have learned that for integration contours C defining elements
[C] ∈ H1(X,Z≤T ;Z) there is a Lefschetz thimbles decomposition. For this however we
assumed that no Stokes rays occur. In this section we will investigate Stokes rays in
more detail. We will analyze the behavior of the decomposition (21) by varying λ such
that one crosses a Stokes ray.

Assume given λ such that there appears a Stokes ray. By definition that ray connects
two distinct critical points. Let those be σ+ and σ−. The first key property implies that
Im I(σ+) = Im I(σ−). Hence, λ lies in the set of Stokes lines

S := {λ ∈ C× | Im I(σ+) = Im I(σ−)}. (22)

Also, the second key property ensures h(σ+) = Re I(σ+) 6= Re I(σ−) = h(σ−). Thus, λ
does not lie in the set of anti Stokes lines

A := {λ ∈ C× | Re I(σ+) = Re I(σ−)}. (23)

Let us recall the problem that a Stokes ray (may) fail to define an element of H1.
However, S is closed and therefor no ε-ball centered at λ is contained in S. This allows
us to slightly vary λ such that λ /∈ S in which case all thimbles are good. Or in
other words we can write λ = limn→∞ λn with λn /∈ S14. Now that we have good
thimbles Jσ± for all n we also want to understand the dependency of the choice of
presentation λ = limn→∞ λn. Indeed, approximating λ from different directions shows
the phenomenon of Stokes jumps

[Jσ+ ]→ [Jσ+ ]± [Jσ− ]

[Jσ− ]→ [Jσ− ], (24)

14Later we want to study the asymptotic behavior of the Airy function. For this we need additional
information about the λn. First, since A is closed and λ /∈ A we can assume all λn /∈ A. Then we choose
a subsequence of the λn such that Re I(σ+) > Re I(σ−) for all n (or < instead of >).
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as is schematically depicted in figure 5.

Figure 5: Approximating λ ∈ S from different directions can show Stokes jumps.

2.4 Laplace’s method
In this section we complete our analysis of H1(X/Z≤T ;Z) by studying the asymptotic
behavior when |λ| → ∞. This will also show why a basis given by Lefschetz thimbles
can be more useful for computations (for large λ).

We begin with the Laplace’s method (a proof can be found in [9]), which says that15

∫ b

a
dx g(x)eλf(x) ∼ g(x0)eλf(x0)

√
2π

λ(−f ′′(x0))
as λ→∞, (25)

where λ ∈ R+, g ∈ C[a, b] a positive function (g(x) > 0 ∀x ∈ [a, b]), f ∈ C2[a, b]
with a global maximum x0 in the open interval (a, b). We can use Laplace’s method to
compute integrals over Lefschetz thimbles. We assume λ ∈ R16 and parameterize Jσ by
γ : R→ Jσ such that γ(0) = σ. Using that Im(λf) is constant on Jσ we can write

f = Re(f) + i Im(f)︸ ︷︷ ︸
const

= Re(f)− Re(f(σ))︸ ︷︷ ︸
=h

+ Re(f(σ)) + i Im(f(σ))︸ ︷︷ ︸
=f(σ)

= h+ f(σ), (26)

where the real function h satisfies

ḧ(0) = f̈(0) = f ′(σ)γ̈(0) + f ′′(σ)γ̇2(0) = f ′′(σ)γ̇2(0). (27)

15For two functions f and g we write f ∼ g if and only if limx→x0
f(x)
g(x)

= 1.
16If λ ∈ C one can redefine f to f̃ = ei arg(λ)f and use f̃ instead.
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This allows us to write∫
Jσ

dz eλf =

∫
R

dt γ̇eλ(h+f(σ)) = eλf(σ)

∫
R

dt γ̇eλh.

Although γ̇ need not satisfy the conditions for applying Laplace’s method (directly)
there exists an extension of Laplace’s method called method of steepest descent, which
reduces to the Laplace’s method by deforming the integration contour. One can learn
more about this method in [9, 10]. The upshot is that we still have the same type of
asymptotics, namely

eλf(σ)

∫
R

dt γ̇eλh ∼ eλf(σ)

√
2π

−λḧ(0)
γ̇(0)eλ

=0︷︸︸︷
h(0) =

√
2π

−λḧ(0)
γ̇(0)eλf(σ).

Finally, being careful with complex roots17 we see√
2π

−λḧ(0)
γ̇(0)eλf(σ) = ±eλf(σ)

√
2π

−λf ′′(σ)

with + if and only if arg(γ̇(0)) ∈ (−π
2 ,+

π
2 ]. Combining this calculation yields

∫
Jσ

dz eλf =

+eλf(σ)
√

2π
−λf ′′(σ) if arg[γ̇(0)] ∈ (−π

2 ,+
π
2 ]

−eλf(σ)
√

2π
−λf ′′(σ) otherwise

.

Actually, the sign is no surprise, because both sides must depend on the orientation of
the integration cycle.

17We use
√
z =
√
reiφ/2 if z = reiφ and φ ∈ (−π,+π].
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3 Applications
In this section we want to use the theory of Lefschetz thimbles to understand the asymp-
totic behavior of the Airy function and after that study a simplified Gross-Neveu model
with respect to spontaneous symmetry breaking.

Also a remark about the plots: 13, 14 and 17. The plots always show the complex
plane C. The coloring is given by the respective height function h. In particular, green
regions correspond to Z≤T . The stable and unstable thimbles are depicted as black and
dashed red lines. Finally, dots represent saddle points, unless they are red. Those stand
for singularities.

3.1 Airy function
The Airy function is a solution of the Airy differential equation

∂2f

∂z2
= zf. (28)

First some remarks about this equation:

• It’s space of solutions has dimension two.

• The set of poles of the coefficients (1 and z) only have a (simple) pole at z = ∞
in Ĉ18. It follows from this that the monodromy of (28) is trivial and hence, every
solution to (28) can be analytically continued to the whole complex plane. In
particular the Airy function will be a function on C.

To solve (28) one formally applies a Fourier transformation to obtain a simpler equation

∂g

∂x
= ix2g (29)

with a space of solutions spanned by

g = ei
x3

3 . (30)

It may seem strange that the dimensions of the solution spaces of (28) and (29) are
different, but we will see how to construct solutions to (28) from those of (29) by inte-
grating over curves C in the complex plane representing elements [C] ∈ H1 for a certain
homology group H1 of rank two:

f(z) =

∫
C

dx g(x)eizx =

∫
C

dx e
i
(
x3

3
+zx

)
(31)

18Ĉ = C ∪ {∞} is the Riemann sphere.
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Indeed, [C] ∈ H1 will ensure that this inverse Fourier transform actually is well-defined
and in turn makes f(z) a solution to (28):

∂2f

∂z2
(z) =

∫
C

dx (ix)2eizxg(x)

= i

∫
C

dx eizx
∂g

∂x
(x)

= i

([
eizxg(x)

]
∂C
−
∫
C

dx (iz)eizxg(x)

)
= i
[
eizxg(x)

]
∂C

+ zf(z).

In particular, note that [C] ∈ H1 has to imply vanishing of the boundary term. To

define H1, let h(x, z) = Re(I(x, z)), where I(x, z) = i
(
x3

3 + zx
)

. Then the integral (31)

converges and also the boundary term
[
eizxg(x)

]
∂C

vanishes if C is closed (a loop) or
its ”ends”19 lie in regions

Z≤T (z) = {x ∈ C | h(x, z) ≤ T} (32)

for every T . This is satisfied if [C] ∈ H1(X,Z≤T (z);Z) for all T . Intuitively only the
leading term of I should matter. Indeed, define

Z ′≤T ′ =

{
x ∈ C

∣∣∣∣∣ Re

(
ix3

3

)
≤ T ′

}
(33)

and observe that for every T and z there exists T ′ such that Z ′≤T ′ ⊂ Z≤T (z) and
conversely for every T ′ and z there exists a T with Z≤T (z) ⊂ Z ′≤T ′ . Illustrated in figure
6 are two plots of Z ′≤T ′ for T ′ = 0 and T ′ = −1.

-4 -2  0  2  4

Re(x)

-4

-2

 0

 2

 4
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(x

)

V1 V2

V3

(a) Z ′≤0 is colored in red.

-4 -2  0  2  4

Re(x)

-4

-2

 0

 2

 4

Im
(x

)

V1 V2

V3

(b) Z ′≤−1 is colored in red.

Figure 6

19If z(t) is a parameterization of C, then z(t) ∈ Z≤T (z) for t� 0 and t� 0.
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For T ′ sufficiently small (in fact T ′ < 0) Z ′≤T ′ decomposes into three disjoint con-
nected components VT ′,1,VT ′,2 and VT ′,3. We therefor define H1 := H1(X,Z ′≤T ′ ;Z) for
some sufficiently small T ′. In particular, H1 is independent of z. The theory just learned
shows that H1 is free abelian of rank two and generated by curves CV1→V2 , CV2→V3 con-
necting the regions Vi. We can now define generators for the space of solutions of (28):

Ai(z) =

∫
CV1→V2

ω(z), (34)

Bi(z) =

∫
CV2→V3

ω(z)−
∫
CV3→V1

ω(z), (35)

where ω(z) = dx
2π e

I(x,z). Ai(z) and Bi(z) are called Airy functions.

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

-4 -3 -2 -1  0  1  2  3  4

co
s(

x3 /3
 +

 x
)

x

Figure 7: Re
(
eI(x,z=1)

)
shows oscillations on the real axis.

Note that the standard definition for Ai(z) seems to be 1
2π

∫
CR

dx eI(x,z), where CR
denotes the curve given by the real axis R, oriented from left to right. However CR
defines no element [CR] /∈ H1. In fact integrating over CR shows oscillations (see figure
7), which can be avoided by shifting the integration contour CR by iε for any ε > 020.
Indeed,

lim
x→±∞

∣∣∣eI(x+iε,z)
∣∣∣ = lim

x→±∞

∣∣∣∣e−x2ε+ ε3

3
−Im(z)x−Re(z)ε

∣∣∣∣ = lim
x→±∞

∣∣∣e−x2ε
∣∣∣ = 0

and we have [CR+iε] = [CV1→V2 ] (CR+iε being orientated from left to right).

3.1.1 Asymptotic analysis

Next we want to compute the asymptotic behavior of Ai(reiφ) for r → ∞. For φ with
z = reiφ not lying on Stokes line this is done in the following steps:

20Actually, one can apply the residue theorem to show
∫
CR
ω =

∫
CR+iε

ω.
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1. Decompose the Airy function as

Ai(z) =

∫
CR+iε

ω(z) =
∑
σ

nσ

∫
Jσ
ω(z), (36)

where nσ = 〈CR+iε,Kσ〉 and the sum runs over the critical points σ+ and σ− of

I(x, z) = i
(
x3

3 + zx
)

:

∂I
∂x

(σ) = i(x(σ)2 + z) = 0⇔ x(σ) = ±i
√
z. (37)

For this decomposition we need the critical points to be non degenerate and the
thimbles to be good. This is fulfilled, if z 6= 0 and

Im(I(σ+, z)) 6= Im(I(σ−, z)). (38)

So let σ+ and σ− have x coordinates x(σ+) = i
√
z and x(σ−) = −i

√
z. Note that

reorienting the thimbles Jσ and Kσ to J ′σ = −Jσ and K′σ = −Kσ has no effect on

〈CR+iε,Kσ〉
∫
Jσ
ω(z) = −〈CR+iε,K′σ〉

∫
−J ′σ

ω(z) = 〈CR+iε,K′σ〉
∫
J ′σ
ω(z). (39)

2. Find the coefficients n± = 〈CR+iε,Kσ±〉 as locally constant21 functions on C× \ S,
where S denotes the Stokes lines. We compute those numbers by looking at the
plots in the appendix B. For example the plot 8 (or 17e) for z = ei0.1π shows
n+ = 1 and n− = 0.
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z = r e
iφ

; r = 1.0; φ = 0.1π
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Figure 8: This plot shows the stable (black) and unstable thimbles (dashed red) for
z = ei0.1π.

21First note that for T ′ small enough and any T ≤ T ′:

H1(z, T ) := H1

(
X,

{
Re

(
i

(
x3

3
+ zx

))
≤ T

}
;Z
)
∼= H1

(
X,

{
Re

(
i

(
x3

3

))
≤ T ′

}
;Z
)

Def.
= H1,

the latter obviously being independent of z and T . The above isomorphism maps [Jσ(z)] ∈ H1(z, T )
to the class in H1 also represented by the curve Jσ(z). A similar argument works for the Kσ(z). In
particular, we can define the intersection pairing for H1 and since the function X \S → H1, z 7→ [Jσ(z)]
is locally constant, the same is true for the intersection pairing.
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The result is summarized in figure 9.

0

n+ = 1, n- = 0

2π/3

n+ = 1, n- = 1

−2π/3

 n+ = 1, n- = 0

Figure 9: In this picture the z-plane of is shown. Stokes lines are depicted in blue. On
those Lefschetz thimbles need not be good. This can result in jumps of the intersection
numbers n± = 〈CR+iε,Kσ±〉.

3. Use Laplace’s method to compute the asymptotic behavior of (36) with the coor-
dinate transformation y = x√

r
and λ =

√
r

3
:

∫
Jσ±

dx e
i
(
x3

3
+zx

)
=
√
r

∫
Jσ±

dy e
i
√
r
3
(
y3

3
+eiφy

)

= λ
1
3

∫
Jσ±

dy e
iλ

(
y3

3
+eiφy

)

∼ ±λ
1
3

√
π

−λiy(σ±)
e
iλ

(
y(σ±)3

3
+eiφy(σ±)

)
,

with the sign ± depending on the orientations of Jσ± .

4. Compare the asymptotic contributions of both critical points (see figure 10):

∫
Jσ+

ω(z) +

∫
Jσ−

ω(z) ∼


∫
Jσ+

ω(z) if h(σ+, z) > h(σ−, z)∫
Jσ−

ω(z) if h(σ+, z) < h(σ−, z)∫
Jσ+

ω(z) +
∫
Jσ−

ω(z) otherwise

.
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π/3

h (σ+) < h (σ−)π

h (σ+) > h (σ−)

 −π/3

h (σ+) > h (σ−)

Figure 10: In this picture the z-plane of is shown. The three regions are separated by
anti Stokes lines (red) and determine the dominating thimble(s). Note however that
the contribution for Ai(z) of a dominating thimble might be zero if the corresponding
intersection number vanishes. So although h(σ+) < h(σ−) between −π/3 and π/3, Jσ−
does not contribute, because there n− = 0.

Next we extend the analysis to the case that z is lying on a Stokes line. Then one
of the thimbles might be a Stokes ray and does not define an element of the homology.
However, h(σ+, z) 6= h(σ−, z) (since Im(I(σ+, z)) = Im(I(σ−, z))) and therefore there
exists (φn) with φ = limn→∞ φn such that the reiφn do not lie on a Stokes lines and
h(σ+, z) > h(σ−, z) for all n (or < instead of >). Hence above steps work for φn’s and
the dominating summand in

∫
Jσ+

ω(z) +
∫
Jσ−

ω(z) from step 4. is the same for all n.

This ”continuity” of step 4. away from h(σ+, z) = h(σ−, z) then yields

Ai(reiφ) ∼


1

2
√
π
z−

1
4 e−

2
3

√
z

3

φ ∈ (−π, π)

1√
π
z−

1
4 cos

(
2
3

√
z

3 −
π

4

)
φ = π

. (40)

This sort of asymptotic behavior is called a Stokes phenomenon.
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3.2 The Gross-Neveu model
As we have seen in section 3.1 one can determine the asymptotic behavior of certain
integrals by applying the Lefschetz thimble approach. The next application is physically
motivated by the Gross-Neveu model [1]. This model is a relativistic quantum field
theory for Dirac fermion fields ψ̄ = (ψ̄1, . . . , ψ̄N )T and ψ = (ψ1, . . . , ψN )T with N flavors
and a single quark color. It is characterized by a quadratic four-point interaction term
g2

2

(
ψ̄ψ
)2

(coupled by the coupling constant g) and has QCD-like features in the large-N
limit, including asymptotic freedom, spontaneous symmetry breaking and renormalization
(in two dimensions) [12]. Therefore, this model is suitable as a toy model for QCD. The
Gross-Neveu model is defined by the Lagrangian density in Euclidean space

Lψ,m = ψ̄(γµ∂µ +m)ψ − g2

2

(
ψ̄ψ
)2
, (41)

where γ0 = σ1, γ1 = σ3 (σi are the Pauli matrices) and m is a mass term. For m = 0 the
Lagrangian is invariant under the Z2 symmetry (chiral symmetry). This is realized by
the transformation ψ → γ5ψ and ψ̄ → −ψ̄γ5, where γ5 = σ2. In the massive case m 6= 0
this chiral symmetry is explicitly broken. Therefore to observe spontaneous symmetry
breaking we set m = 0 and write Lψ = Lψ,m=0. One calls the chiral symmetry sponta-
neously broken if the vacuum state |0〉22 satisfies no chiral symmetry. In particular, one
observes for the vacuum expectation values23 under the Z2 transformation

〈0| gψ̄ψ |0〉 → −〈0| gψ̄ψ |0〉 . (42)

Therefore, 〈0| gψ̄ψ |0〉 = 0 in unbroken systems and thus 〈0| gψ̄ψ |0〉 is suitable as an order
parameter. In order to determine 〈0| gψ̄ψ |0〉 it would be wonderful to have a function
f such that the minima of f correspond to vacuum expectation values 〈0| gψ̄ψ |0〉. This
function is called an effective action [13].

First, we define a second Lagrangian density

Lσ = ψ̄(γµ∂µ)ψ +
1

2g2
σ2 + ψ̄ψσ, (43)

where σ is an auxiliary bosonic field. Both Lagrangians Lψ and Lσ have the same fermion
Green’s functions and same effective potentials (〈0| gψ̄ψ |0〉 = 〈0|σ |0〉) [1]. Thus, Lσ and
Lψ describe the same four fermion theory.

To construct the effective potential we start with the functional

Z[J ] =

∫
Dψ̄DψDσ exp

{∫
d2x

[
−Lσ[σ, ψ̄, ψ] + Jσ

]}
, (44)

where J is called the external source. Furthermore, one can integrate over the fermion
fields by using∫

Dψ̄Dψ exp

{
−
∫

d2xd2y
[
ψ̄(x)D(x, y)ψ(y)

]}
= [det(D(x, y))]N . (45)

22Here |0〉 is the ”right” vacuum state (ground state). This can be a symmetric (for unbroken) or
asymmetric (for broken) vacuum state.

23One calls 〈0| gψ̄ψ |0〉 also fermionic condensate.
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Here, we define D(x, y) = (γµ∂
x
µ + σ)δ(x− y). Finally, we have24

Z[J ] =

∫
Dσ exp

{∫
d2x

[
−L̃σ[σ] + Jσ

]}
, (46)

where λ = Ng2 and

L̃σ = N

[
1

2λ
σ2 − ln(det(D(x, y)))

]
. (47)

The vacuum expectation value is

σv = 〈0|σ |0〉J=0 =
1

Z[J ]

δZ[J ]

δJ

∣∣∣∣
J=0

=
δW [J ]

δJ

∣∣∣∣
J=0

, (48)

where W [J ] = ln(Z[J ]) is the generating functional of connected correlation functions.
Both functions Z[J ] and W [J ] depend on J and therefore they are no candidates for
f . To construct the effective action we have to do a Legendre transformation (f∗(x) =
p(x)x− f(p(x))) with respect to the external source field J

Γ[σcl] =

∫
d2x σclJ [σcl]−W [J [σcl]]. (49)

This function depends on the classical field σcl = 〈0|σ |0〉J and is the effective action we
are looking for. From the Legendre transformation we conclude

δΓ

δσ
[σcl] = −J. (50)

In particular for the vacuum expectation value σv we have δΓ
δσ [σv] = 0. In the 1/N -

expansion we have

Γ[σcl] =

∫
d2x L̃σ[σcl] +O(1/N). (51)

In the large-N limit only the leading correction of Γ[σcl] (the 1-loop contribution) be-
comes necessary. Higher L-loops will be suppressed by a factor N1−L [14] and we con-
clude

Γ[σcl] =

∫
d2x L̃σ[σcl]. (52)

Discovering the spontaneous symmetry breaking in the large-N limit reduces to finding
the global minima of Γ or equivalent of

∫
d2x L̃σ.

24To lift the determinant in the exponent, det(D) has to be positive. Indeed, this is the case [12].
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3.2.1 A simpler Gross-Neveu model

For this section we study the Gross-Neveu model in zero dimensions following [8, 11].
This simplifies the discussion by

• Ω→ CR, where Ω is the σ-field configuration space,

• σ(x)→ σ,

• Dσ → dσ,

• and Γ[σ]→ ΓG(σ) = N
[

1
Gσ

2 − ln
(
p2 + σ2

)]
, G = 2λ.

To apply our methods we view σ and G as complex coordinates. The goal of this
section is to study the minima of ΓG|R using Lefschetz thimbles25. Since minima of Γ|R
correspond to maxima of e−ΓG|R it is of interest to study

Z(G) =

∫
CR

dσ e−ΓG(σ). (53)

From the definition of ΓG it is clear that Z does not converge if Re(G) < 0. Also
Re(G) = 0 is problematic, because of oscillations. So we restrict to G with Re(G) > 0.
We follow the discussion about Ai(z) with a similar analysis.

0. We first compute H1(G,T ) := H1(C, {Re(−ΓG(σ)) ≤ T};Z). As before, for T � 0
one has H1(G,T ) ≈ H1(G,T ′) for all T ′ ≤ T . For such T we define H1 := H1(G,T )
and Z≤T := {σ ∈ C | Re(−ΓG(σ)) ≤ T}. This time Z≤T decomposes into four
connected components, two of which coming from the two singularities (of −ΓG(σ))

p2 + σ2 = 0⇔ σ = ±ip. (54)

In particular H1 is (free) abelian of rank three and one set of generators is depicted
in figure 11.

Figure 11: A choice of three generators for H1 is shown.

25When talking about minima of ΓG we always mean minima of ΓG|R.
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−ΓG(σ) also has saddle points:

∂ΓG
∂σ

(σi) = 2Nσ(σi)

[
1

G
− 1

p2 + σ2(σi)

]
= 0⇔ σ(σi) ∈ Σ, (55)

where Σ = {0,±
√
G− p2}. In particular, if G = p2, then the critical points are

degenerate. Therefor we assume G 6= p2. Let us denote Jσ0 and Kσ0 the thimbles
for σ = 0 and let Jσ1 , Kσ1 , Jσ2 and Kσ2 be the thimbles corresponding to the
other two critical points.

1. The [Jσi ] generate H1 and therefore we have a unique decomposition

ZG =
∑

σi∈{σ0,σ1,σ2}

〈CR,Kσi〉
∫
Jσi

dσ e−ΓG(σ). (56)

2. We compute the intersection numbers summarized in figure 12. This figure also
shows that the real axis is contained in the Stokes lines R ⊂ S. So, even if we are
interested in some G ∈ R we might better study G+ iε(/∈ S) for small ε ∈ R.

Figure 12: This figure shows the G-plane and the intersection numbers ni = 〈CR,Kσi〉
for p = 1. In the red and yellow regions n1 = n2 = 0 and n0 = 1 and in the gray and
blue regions n0 = n1 = n2 = 1. In addition, the Stokes lines are depicted in gold and
the anti Stokes lines in green.

We skip a discussion of the asymptotic behavior (i.e. steps 3 and 4) and instead use
the intersection number to give a (partial) answer to whether σ = 0 is a global minimum
of −ΓG|R. Namely, the key properties of Lefschetz thimbles imply that the maximum
of Re(−ΓG) over Jσi is located at the corresponding saddle point. In particular, if
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n1 = n2 = 0, then Jσ0 is the only thimble contributing to Z =
∫
Jσ0

dσ e−ΓG(σ) and we

have a situation as shown in figure 13.
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Figure 13: Here the stable (black lines) and unstable (dashed red lines) thimbles are
shown with respect to the critical points σ0 (black dot), σ1, σ2 (blue dots) for p = 1. In
the green area the integral (53) converges. Only Jσ0 intersects CR.

This suggests that one should also expect 0 to be the global minimum of ΓG|R. If
this is true it is interesting to study the G’s for which Jσ0 undergoes a jump and pose
the question whether this corresponds to a transition between broken and unbroken
symmetry, i.e. spontaneous symmetry breaking (shown in figure 14).
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Figure 14: Here thimbles are shown as in figure 13. Between 14a and 14b the thimble
Jσ0 jumps.
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4 Outlook
While this thesis restricted to one dimensional Lefschetz thimbles the theory extends to
higher dimensions and this is of special interest to the author for computing Feynman
path integrals or partition functions for more advanced QCD like theories (in particular
inhomogeneous phases). Picard-Lefschetz theory seems to be the correct framework and
the author is motivated to learn more about this. Especially the notion of monodromy
(as appearing in the article of Witten [3]) has caught the author’s attention. Applying
such more sophisticated mathematical theories to physically motivated problems was
enlightening. In that respect the author wants to better understand the relation (if one
exists) between Stokes jumps and phase transitions.
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A Homology
This appendix is based on [7]. Let X be a topological space. For every integer i ∈ Z, one
can construct an invariant of X, the so-called ith homology group Hi(X;Z). Intuitively,
Hi(X;Z) measures n-dimensional holes in X.

To define homology, it is natural to first define chain complexes. A chain complex
(C•, d•) is a collection of abelian groups Ci and group homomorphisms di : Ci → Ci−1

connecting them such that di−1 ◦ di = 0. We refer to

1. di as differentials,

2. elements in Ci as i-chains,

3. elements in ker(di) ⊂ Ci as closed i-chains or i-cycles,

4. elements in im(di+1) ⊂ Ci as exact i-chains or i-boundaries.

It is common to omit the index from the di. For example, di−1 ◦ di = 0 becomes d2 = 0.
This has the crucial consequence: im(d) ⊂ ker(d) (or with indices im(di+1) ⊂ ker(di)).
In particular, we can define the ith homology group

Hi(X) = ker(di)/im(di+1). (57)

So, elements in Hi(X) are represented by i-cycles subject to the relation that bound-
aries are (artificially made) zero. It is common notation to write [C] ∈ Hi for the class
represented by the i-cycle C.

It remains to construct a chain complex from our topological space. We will use the
so called singular chain complex. A singular i-chain is a continuous map σ : ∆i → X
from the standard i-simplex in Ri+1 to X. We define Ci to be the free abelian group,
generated by singular i-chains. In other words

Ci = Z[Top(∆i, X)], (58)

where Top(∆i, X) is the set of continuous maps ∆i → X and for a set M , Z[M ] =
{
∑

finite aimi | ai ∈ Z,mi ∈ M}26 is the free abelian group of formal Z-linear combina-
tions of elements in M . One can think of a singular i-chain as a deformed i-simplex in
X (shown in figure 15 below).

26Z[M ] is called Z adjoined M .
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Figure 15

To define the differential, observe that ∆i comes with the extra structure of faces

facej : ∆i−1 → ∆i, (x0, ..., xi−1) 7→ (x0, ..., 0, ..., xi−1), (59)

with the zero at the jth position (counting from j = 0). Precomposing a singular i-chain
σ with facej gives a (i− 1)-chain, the jth face σj of σ (shown in figure 16 below).

Figure 16

The fundamental idea is to define the differential d as the alternating sum of faces:

d(σ) =

i∑
j=0

(−1)jσj . (60)

The alternating sum ensures d2 = 0. Hence, we have indeed defined a chain complex
and can apply our previous definition of homology. We write Hi(X) for its ith homology
group and call it the ith singular homology (group).
By construction, Hi is abelian and although Ci are usually huge (uncountably generated),
Hi is usually finitely generated.
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B Plots: Airy function
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Figure 17: This series of plots shows the stable (black lines) and unstable (dashed red
lines) thimbles while varying z on the unit circle around the origin. The coloring is given
by the respective height function h. In particular, green regions correspond to Z≤T .
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