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Abstract
In lattice QCD simulations approaching the continuum limit, configurations
often become trapped within specific topological charge sectors, potentially
leading to biased results or requiring unaffordable long simulation times. This
problem arises particularly with periodic boundary conditions, where transi-
tions between topological sectors are suppressed. To address this, open bound-
ary conditions, in particular Neumann boundary conditions, in the time direc-
tion are used, where the derivative of the gauge field Aµ(x) is set to zero at
t = 0 and t = T . This enables the topological charge to fluctuate more rapidly.
However, it introduces boundary effects, which are analyzed in this thesis.
We find that the range in which plaquettes and Wilson loops experience
boundary effects is equal for different numbers of lattice points and decreases
for smaller lattice spacings. The effects increase as the loops get bigger,
even for loops perpendicular to the direction with open boundary conditions.
Open boundary conditions are expected to become efficient for lattice spacings
smaller than 0.05 fm when topological freezing is found to appear.
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1 Introduction

Quantum chromodynamics (QCD) is a quantum field theory describing the interaction between
quarks and gluons. In this context, quarks and gluons are represented by quantum fields. This
allows the description of dynamic particle creation and annihilation processes. Quarks carry a
color charge that cannot be observed externally. Also, the exchange particles themselves carry a
color charge and thus can interact with each other. In QCD one key phenomenon is confinement,
which means that quarks and gluons cannot be observed as free particles, but are always colorneu-
trally bound in hadrons. Another phenomenon is asymptotic freedom, meaning that the coupling
decreases at high energies. At low energies the coupling is strong, making perturbation theory
unreliable. [1, 2]

To describe particles in QCD and the gauge field dynamics of non-Abelian fields with static quarks,
a SU(N) gauge theory, called Yang-Mills theory is applied. Specifically, local SU(3) color invari-
ance is demanded. [2] To simplify the calculations, the SU(2) group is used. The SU(2) group is
qualitatively similar to the SU(3) group, as it shows the same mechanisms such as confinement
and the topological charge. While the computational complexity is reduced, systematic deviations
compared to full QCD are introduced.

In lattice QCD, the space-time gets discretized, while the gauge symmetry is preserved. To
approach the continuum limit, very small lattice spacings need to be simulated. For spacings
a ≈ 0.01fm, calculations of physical quantities such as the quark-antiquark potential become par-
ticularly interesting.
Often, periodic boundary conditions are implemented which makes the space-time a four dimen-
sional torus. Field configurations, obtained from Monte Carlo simulations, are classified by the
so called topological charge which is the sum of instantons on the lattice. When using periodic
boundary conditions the topological charge is quantized, which indicates the existance of different
topological sectors. The charge can change through tunneling. The tunneling probability is sup-
pressed when the lattice spacing gets smaller. Consequently, the topological charge has extremely
long autocorrelation times. When approaching the continuum limit, lattice QCD simulations get
trapped in one topological sector, which is called topological freezing. This leads to biased results
or unreasonable long simulation times, since the simulation time needs to be several times longer
than the autocorrelation time.
The impact of different boundary conditions on the autocorrelation of the topological charge has
already been analyzed in detail by Martin Lüscher and Stefan Schaefer [3] as well as by Simon
Mages et al. [4].

The problem of topological freezing can be solved by using open boundary conditions in one
or more directions. Neumann boundary conditions are applied to the gauge field, while gauge
symmetry and the gauge degrees of freedom are preserved. The field space becomes connected
in the continuum limit, because the topological charge can flow freely and consequently becomes
continuous and changes faster. Although the autocorrelation time is greatly reduced, boundary
effects are introduced as a consequence. [3, 4]
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This thesis is structured as follows: In section 2 the SU(N) Yang-Mills theory is presented, in
the continuum and on the lattice. Plaquettes and Wilson loops which are necessary for computing
the static quark-antiquark potential are defined. Periodic and open boundary conditions are dis-
cussed in section 3 including their meaning for the topological charge.
The boundary effects resulting from open boundary conditions in time direction are analyzed in
section 4.1 for plaquettes and Wilson loops of different sizes. This is compared for loops parallel
and perpendicular to time direction for different lattice sizes and lattice spacings. Finally, the
effects on the topological charge for periodic boundary conditions with different lattice spacings
are considered in section 4.2, to estimate the efficiency of open boundary conditions.
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2 SU(2) Yang-Mills theory on the lattice

2.1 Yang-Mills theory
Yang-Mills theory is a quantum field theory based on SU(N) gauge symmetry. The following
definitions are taken from reference [2]. In QCD, the gauge group is SU(3), but to simplify the
calculations we replace the SU(3) group by the SU(2) symmetry group. The Lagrangian density
of SU(N)-gauge theory is invariant under global SU(N) gauge transformations. The local SU(N)
gauge symmetry, required by the gauge principle, leads to a modified Lagrangian density with
exchange particles carrying a charge themselves.
In QCD local SU(3) color symmetry is demanded. Therefore, the Lagrangian density, shown
further below, is modified accordingly by introducing the covariant derivative

∂µ → Dµ = ∂µ − igAa
µT

a (1)

with the coupling g, the color-indices a, T a = λa

2 and the generator of the SU(3) color group, the
Gell-Mann-matrices λa. The gauge fields Aa

µ(x) are the gluon fields, for which a dynamic term is
added, including the field strength tensor

F a
µν = ∂µA

a
ν − ∂νA

a
µ + gfabcA

b
µA

c
ν . (2)

fabc are the structure constants. Combining all these elements, the QCD Lagrangian density has
the form

LQCD =

Nc∑
c=1

Nf∑
f=1

q̄fc(iγ
µDµ −mf )qfc −

1

4
F a
µνF

aµν . (3)

qfc are quark fields with flavor f , color c and mass mf . q̄fc represents antiquarks, γµ are the
gamma matrices and Fµν = F a

µνT
a. In SU(2) gauge theory, the Lagrangian density needs to be

invariant under local SU(2) transformations. This transformation is given by the 2× 2 matrix

U = e−iθaTa

∈ SU(2), a = 1, 2, 3 (4)

using Pauli matrices as generators:
T a =

σa

2
. (5)

2.2 Lattice gauge theory
When describing strong interactions, the gauge symmetry needs to be preserved while introducing
the discretized space-time lattice. [1] For the four-dimensional lattice Λ = {n = (n0, n1, n2, n3) | nµ =

0, .., Nµ−1} with spatial extent L and time extent T the gauge field Aµ(x) is introduced as oriented
link variables Uµ(n) ∈ SU(2) connecting the sites n and n+ µ̂, at a distance of lattice spacing a.
With Ω(n) ∈ SU(2) the gauge transformation is given by [5]:

Uµ(n) → U ′
µ(n) = Ω(n)Uµ(n)Ω

†(n+ µ̂) (6)
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and one defines
Uµ(n) = eiaAµ(n). (7)

The trace of a product of such link variables forming a closed loop is gauge-invariant and thus is
a physical observable. Also, loops are needed for the gluon action. A plaquette is the shortest,
nontrivial closed loop on the lattice and the plaquette variable is given by [5]

Pµν(n) = Uµ(n)Uν(n+ µ̂)Uµ(n+ ν̂)†Uν(n)
†. (8)

The relation between these plaquettes and the field strength tensor Fµν is provided by:

Pµν(n) = eia
2Fµν(n)+O(a3) (9)

Wilson action The mentioned relation of the field strength tensor and the plaquettes allows the
discretisation of the action. The QCD action is the sum of the quark and gluon actions, where
the gluon action only depends on the gluon field [1]. As a result, the Wilson gauge action can be
calculated from the sum of the plaquettes [5]:

SG[U ] =
β

N

∑
n∈Λ

∑
µ<ν

Re tr [1− Pµν(n)]

=
a4

2g2

∑
n∈Λ

∑
µ<ν

tr
[
Fµν(n)

2
]
+O(a2) (10)

a→0−−−→ SG[A]

β = 2N
g2 is the inverse lattice coupling and g the coupling.

Eigenvalues and path integrals Expectation values in pure gauge theory can be calculated
analogously to quantum mechanics. In QM, path integrals are used to calculate ground state ex-
pectation values, where it is integrated over all possible paths weighted with the respective actions.
In QCD the expectation values are calculated in the QCD ground state |Ω〉 for observables
O[ψ, ψ,A] composed of quark and gluon fields [1]. Using pure gauge theory on the lattice, the
expectation values can be calculated as follows [5]:

〈O〉 = 1

Z

∫
D[U ] e−SG[U ]O[U ], (11)

Z =

∫
D[U ] e−SG[U ].

Z is the partition function and the integration measure is
∫
D[U ] =

∏
n∈Λ

∏4
µ=1

∫
dUµ(n). The

measure for a single link variable is dUµ(n).

2.3 Wilson loops and the static quark-antiquark potential
Wilson loops are observables that can be related to the static quark-antiquark potential V (r). The
Wilson loops are defined as the trace of the product of link variables along a closed loop L ([5],
section 3.3):

WL[U ] = tr
[
S(m,n, nt)T (n, nt)

†S(m,n, 0)†T (m, nt)
]
= tr

 ∏
(k,µ)∈L

Uµ(k)

 . (12)
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S(m,n, nt) are the Wilson lines connecting the spatial points m,n and T (n, nt) are the temporal
transporters, that is, a straight line of nt link variables in time direction, all at the same spatial
position n. Wilson loops are gauge-invariant objects. When fixing the gauge, the expectation
value remains unchanged, so the temporal gauge, which sets all time links to 1, can be applied for
simplicity.

〈WL〉 = 〈WL〉temp

= 〈tr[S(m,n, nt)S(m,n, 0)†]〉temp

=
∑
k

〈0|S(m,n)ab|k〉〈k|S(m,n)†ba|0〉e
−tEk (13)

The sum over all energy eigenvalues |k〉 with nonvanishing overlap with S(m,n)†|0〉 are states
describing the static quark-antiquark pair located at spatial positions m,n.
The ground state energy E1 can be extracted by analyzing the long-time behavior (t→ ∞) of the
Wilson loops. The corresponding potential V (r) of the quark-antiquark pair is obtained from the
behaviour of the Wilson loops at large temporal extent nt: [5]

〈WL〉 ∝ e−tE1
(
1+O

(
e−t∆E

))
= e−ntaV (r)

(
1+O

(
e−nta∆E

))
(14)

The static potential (eq. (15)) is found to have a linear rising term in the limit of strong coupling
g, where σ is the string tension, as well as a Coulomb part with strength B for small coupling. A
is a constant shift, dependent on the lattice spacing. [5]

V (r) = A+
B

r
+ σr (15)

At large separations, the energy keeps rising linearly when pulling the quark-antiquark pair apart.
Because of the self-interaction between gluons the field gets squeezed into a narrow flux tube
between the quark and antiquark. If the energy is large enough a new pair of light quarks can be
created that recombines with the initial pair. This is called "string breaking". [5]
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3 Boundary conditions and
the topological charge

For lattice calculations, the space-time is discretized as follows: xµ ∈ R4 → xµ = nµa with the
lattice spacing a and nµ ∈ Z4. The extent of the lattice in each spatial direction is L = aNL, with
NL the number of lattice sites in each spatial direction and analogously T = aNT is the extent in
time direction with NT lattice points. The theory is defined on a finite region of space-time. To
have an unambiguous physical situation that is mathematically complete, it must be specified what
happens at the boundaries of the lattice. That means, it needs to be defined how the field behaves
at those edges, e.g. does it vanish, reflect or continue. One criterion to decide which boundary
condition is reasonable, is the fluctuation of the topological charge, introduced in section 3.3.

3.1 Periodic boundary conditions
Periodic boundary conditions are commonly used because they simulate infinite space with a
finite volume, which conveniently provides translational invariance. Although periodic boundary
conditions differ from an infinitely large volume, they have the advantage of avoiding boundary
effects, which simplifies simulations and makes them more efficient.
The link variables at the boundaries embody periodicity in each space-time direction according to

Uµ(NT , n1, n2, n3) = Uµ(0, n1, n2, n3). (16)

If the space-time is periodic in all directions, each direction behaves like a circle. Consequently,
the space-time has the shape of a four-dimensional torus. This preserves the discrete translation
symmetry ([5], section 4.2) and leads to small finite volume corrections [4]. With these conditions,
plaquettes and Wilson loops can be calculated across the boundaries of the lattice and it can be
averaged over all possible realizations ([5], section 4.4).

3.2 Open boundary conditions
Open boundary conditions in time direction imply that time extends from 0 to T , while the space
directions satisfy periodic boundary conditions and thus result in a three-dimensional torus. A
specific form of open boundary conditions are Neumann boundary conditions. These are applied
to Aµ(x) by setting the gauge-field tensor to fixed values:

F0k(x)|x0=0 = F0k(x)|x0=T = 0 for all k = 1, 2, 3. (17)

Using these conditions, the gauge symmetry and consequently the gauge degrees of freedom are
preserved. [3] Open boundary conditions replace the torus with another topology, which changes
the connectivity of the configuration space. However, due to the lack of translational invariance
in the direction with open boundaries, boundary effects arise, reducing the space-time volume
available for further calculations. [4]
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3.3 Topological charge
When calculating observables on the lattice, high precision and a reliable error estimation are
needed. One common error comes from the autocorrelation of consecutive configurations gener-
ated with a Monte Carlo algorithm. To achieve meaningful results, the simulation time needs to
be several times longer than the longest occuring autocorrelation time. Observables related to the
topology of the field, such as the topological charge, have one of the longest autocorrelation times
and thus provide a good estimation of the efficiency of the simulation. [4]
Gauge field configurations are classified by their topological charge Q and the corresponding topo-
logical sectors. The topological charge is the subtraction of the number of instantons with positive
and negative charge on the lattice. Instantons are pseudo-particles with a non local field [6] and
their amount can change by tunneling between the topological sectors. To have a representable
set of configurations, they must differ in their topological sectors.
On the lattice, the sectors are correctly referred to as pseudo topological sectors. The ensembles
of configurations with the same topological charge are seperated by a large Euclidean action. A
change between these pseudo topological sectors is possible via continuous transformations. Par-
ticularly, a transition becomes possible because the action barriers are not infinite and a Monte
Carlo step is not a continuous transformation. Hence, transitions are only suppressed which leads
to a large autocorrelation time.
When approaching the continuum limit the pseudo topological sectors merge into topological sec-
tors. In the continuum, these sectors are a set of configurations separated by an infinite action. A
continuous deformation between sectors becomes impossible.
The topological charge described in the following was computed on the lattice and therefore refers
to pseudo topological sectors. These are commonly referred to as topological sectors for simplicity.
[3, 6]

There are different definitions of the topological charge which will lead to different results on
the lattice due to discretization, but which become the same integer in the continuum. In this
thesis the field definition based on the gluonic fields is used (for other definitions see e.g. [6]).
The topological charge is defined by [4]:

Q =

∫
M
d4x q(x), (18)

q(x) =
1

32π2
εµνρσ tr [FµνFρσ] .

Here q(x) is the topological charge density and M the manifold.
On the lattice, the integral can be replaced by a sum over all lattice sites

Q =
1

32π2

∑
n

3∑
µ,ν,ρ,σ=0

εµνρσF̂µν F̂ρσ +O(a2), (19)

where F̂µν = Im(Pµν) +O(a), using the plaquette Pµν . The resulting O(a2) error of the topologi-
cal charge leads to non-integer values when using finite lattice spacings, because of discretization,
while the correct topological charge should be obtained in the continuum limit.
Moreover, instantons have a positive contribution to the topological charge. If the maximum is not
on a lattice point,

∑
n

∑3
µ,ν,ρ,σ=0 εµνρσF̂µν F̂ρσ results in values slightly below one. Analogously,

anti-instantons have a contribution of values slightly above minus one. Consequently, the absolute
values of the topological charge are in average a bit below the actual number of instantons. [6]
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To reduce those O(a2) errors, it is efficient to use different, higher loop operators. As an exam-
ple, the clover improvement can be used, which replaces the plaquette P̂µν by the operator P̂µν

c

depicted in fig. 1. [6]

Figure 1: Definition of the operator P̂µν
c for the cloverleaf discretization: four plaquettes arranged

in a cloverleaf pattern. [6]

For the density, the cloverleaf discretization is defined as follows [7]:

q(x) =
1

32π2

3∑
µ,ν,ρ,σ=0

εµνρσ tr
[
Cclov

µν (x)Cclov
ρσ (x)

]
(20)

Cclov
µν (x) =

1

4
Im (Pµν(x) + Pν−µ(x) + P−µ−ν(x) + P−νµ(x))

To achieve integer values, a rescaling as well as further improvements that lead to a suppression
of errors below O(a6) are required [6], which are not part of this thesis.

Further errors arise from UV-fluctuations, which appear as statistical noise. These would cancel
each other out when averaging over independent configurations, but lead to biased results when
computing the topological charge for single configurations. The fluctuations appear as peaks in the
field, which are seen as instantons. To reduce this effect, 4-dimensional APE-smearing (section C)
is applied.

Topological susceptibility The topological charge follows a normal distribution and is related
to the topological susceptibility [6]. The average of the distribution is zero thus the variance
reduces to 〈

Q2
〉
− 〈Q〉2 =

〈
Q2
〉
. (21)

and
〈
Q2
〉

contains all required information about the distribution. The topological susceptibility
is given by

χ =

〈
Q2
〉

V
. (22)

Here V is the volume of the lattice.
For SU(2) the susceptibility is χ1/4 = 200(15)MeV [8], where 1

fm = 197.3GeV.
The topological susceptibility is related to the vacuum energy and provides information contribut-
ing to the explanation of the large η′- mass [6].
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3.3.1 Topological charge on a lattice with periodic boundary conditions

With periodic boundary conditions, instantons that exit the lattice on one side reenter it on the
opposite side. This leads to an integer number of instantons and consequently, an integer topolog-
ical charge. Also, the total number is constant, since the creation and annihilation of instantons
happen in pairs.

As the lattice spacing becomes smaller, the energy barriers of the topological charge sectors become
higher, Monte-Carlo steps become smaller and thus transitions between sectors are rarer. The
sectors are still connected, but transitions in between are suppressed in the simulations. In the
continuum limit the topological sectors would become completely disconnected, as depicted in fig. 2.
When approaching the continuum limit, the topological charge cannot flow through the lattice
boundaries freely and the simulations can get trapped in one sector. This is called "topological
freezing" or "topological slowing down" and is expected for lattice spacings smaller than a = 0.05 fm
[7]. In this case simulations are biased, especially if the simulation time is still reasonable. The
autocorrelation time was found to increase proportionally to the sixth power of the inverse lattice
spacing. [3, 4, 6]

Figure 2: Topological sectors for periodic boundary conditions. When the lattice spacing a de-
creases, the barriers become higher and tunneling between sectors is suppressed. Approaching the
continuum limit the sectors disconnect, which leads to topological freezing.

3.3.2 Topological charge on a lattice with open boundary conditions

Open boundary conditions are one solution to topological freezing. Changing the manifold of the
field by using open boundary conditions changes the topology of the space-time as well as of the
configurations.
When using open boundary conditions, the number of instantons with positive and negative charge
is not well defined. That is because the field space becomes connected in the continuum limit, as
the action barrier between the sectors disappears. This implies that the topological charge can
flow through the boundaries of space-time freely and is no longer an integer number. Instead, the
topological charge becomes continuous and all sectors can be reached during the simulation. This
reduces the autocorrelation time of the topological charge drastically. Consequently, the results
are less biased by consecutice configurations and observables can be calculated more precisely in a
shorter simulation time. [3, 4, 6]
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4 Results

A Monte Carlo heatbath algorithm, written in C and provided by Marc Wagner, generates the
gauge field configurations. The code has been extended by open boundary conditions and mea-
surements of the topological charge. Additionally, the Jackknife method (section B), as well as an
extension to four-dimensional APE-smearing (section C) and a test for gauge invariance (section D)
have been implemented.
To generate the configurations, positive and negative staples are calculated at each lattice point
and from these, the local action is determined. Plaquettes and Wilson loops are calculated for
each configuration. The termalization is shown in section A.
The results are compared for different lattice spacings a further below. This is achieved by using
different inverse couplings β. These relations are shown in table 1.

β a [fm] NT ×N3
L

2.4 0.102 16× 163, 32× 163

2.5 0.073 16× 163

2.6 0.050 16× 163

Table 1: With choosing the coupling β the lattice spacing is set. The lattice spacings a in physical
units for the used couplings β are chosen between 0.102 fm and 0.05 fm.[9] In this range topological
freezing is expected to become noticeable. The lattice sizes are chosen to be equal in lattice units
for all spacings, with an additional larger lattice considered only for β = 2.4.

Open boundary conditions in time direction are implemented by restricting the indices to the valid
range. Thus the link variables differ at the boundaries, vanish outside of the lattice and loops
are only calculated between the boundaries. Additionally, the spatial plaquettes at the boundaries
have weight 1

2 [3]. Loops are calculated for all positions in time direction separately to visualise
the boundary effects.
A distinction is made between loops parallel and perpendicular to time direction as depicted in
fig. 3. Perpendicular loops are located entirely at a fixed position in the time direction and maintain
a constant distance from the temporal boundary. As a result, all links within one loop are equally
affected by the boundary effects. In contrast, loops parallel to the time direction extend across
different time positions, they reach closer to or further away from the boundaries. Therefore, the
links within one loop experience a different strength of boundary effects.

Figure 3: Loops parallel and perpendicular to time direction. Perpendicular loops lie at fixed time
positions, parallel loops vary in distance from the boundaries.
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4.1 Boundary effects
The figs. 4 to 7 show the values of average loops at different distances from the boundary of the
lattice in physical units fm. The results with open boundary conditions are normalized by the av-
erage values for periodic boundary conditions, which are represented by the horizontal gray lines.
Normalizing is necessary for having comparable results, because a smaller spacing leads to an in-
crease in fluctuation and thus a higher energy density. The plots show half the lattice extension
since the results are symmetric.
The average plaquettes and Wilson loops are evaluated after the thermalization phase. The ther-
malization for periodic and open boundary conditions are compared in section A. The errors are
determined using the jackknife method as described in section B.

Figure 4: Boundary effects of parallel and perpendicular plaquettes for different lattice sizes T = 16
and T = 32.

The first interesting result is that for plaquettes only a finite number of lattice points near the
boundaries are affected strongly. With increasing distance from the boundary the values for the
loops approach those for the periodic boundary conditions. In the center of the lattice the average
loops get stable.
The boundary effects for different lattice sizes in time direction are equal, the same amount of
lattice points close to the boundaries are affected. Consequently, with increasing extent in time
direction, the percentage of affected lattice points decreases. However, the usable central range is
still reduced significantly. For T = 16, this range is approximately reduced by half. Therefore, a
larger temporal extent is necessary for open boundary conditions to be advantageous. The results
for lattice sizes T = 16 and T = 32 are shown in fig. 4.

The boundary effect for the first parallel plaquette is smaller than for the first perpendicular pla-
quette since in the calculation of the parallel, the distance from the boundary is slightly increased.
Therefore, it is reasonable to set the position of the plaquettes as their center. So, parallel loops
are shifted by 0.5 a. Through this definition of the position, the values lie on a continous curve
approaching the center value. Obviously, this leads to one plaquette fewer for parallel than for
perpendicular plaquettes. These differences are highlighted in fig. 4 and fig. 5 by using different
colors for parallel and perpendicular plaquettes.
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The values for the plaquettes from simulations with open boundary conditions approach the values
obtained from periodic boundary conditions as they move further to the center of the lattice. This
convergence corresponds to an exponential increase of the values for open boundary conditions
toward the center of the lattice. That implies that those values can be calculated from the values
for the periodic as follows:

〈Pµν〉 = 〈Pµν, periodic〉
(
1− e−λt

)
. (23)

Here λ is the rate at which the difference between open and periodic boundary conditions decays.
It characterizes the range of boundary effects. Actually, boundary effects are slightly present in
the center as well, which is why λ is the more important value for deciding which range in the
center to use for further calculations.
If the logarithm of the normalized data is plotted according to ln

(
1− 〈Pµν〉

〈Pµν, periodic〉

)
, as a function

of t, the values at the boundaries have a linear behavior. Near the center of the lattice, as the
values for the open boundary conditions are similar to the periodic, the fraction approaches one,
thus the logarithmic plot reduces to a linear function of time and λ can, in principle, be determined
by a linear fit:

ln
(
1−

(
1− e−λt

))
= ln

(
e−λt

)
= −λt.

Figure 5: Boundary effects of plaquettes for β = 2.4 and β = 2.6, parallel and perpendicular.

The data shown in fig. 5 depend on the coupling constant β and thus on the lattice spacing a

(table 1). It can be seen that for a smaller lattice spacing the same amount of lattice points is
affected. So, the extension of the boundary effects in physical dimensions gets smaller when the
lattice spacing decreases. In case of the same total extension in physical units, which leads to twice
as many lattice points for a lattice spacing half as big, a larger distance is stable.

12



The average Wilson loop decreases with the loop extension getting bigger, independent of the
boundary conditions. Thus the values for open boundary conditions approach the usual constants
as the loops get closer to the center of the lattice. For larger lattice spacings a as well as for larger
extensions of the loops, the affected range in physical units increases. The larger the loops the
closer they get to the boundaries even if the starting point is close to the center of the lattice.
This effect is shown in fig. 6 and fig. 7. As a consequence, the values for β = 2.4 increasingly
remain at a certain distance from the values obtained with periodic boundary conditions as the
loops size is raised. Also for perpendicular loops, the effects increase for wider loops, since more
links contributing to one loop are affected. Obviously, the number of parallel loops that can be
calculated without reaching beyond the lattice boundaries decreases.

Figure 6: Boundary effects of perpendicular Wilson loops with different sizes for β = 2.4 and
β = 2.6.

Figure 7: Boundary effects of parallel Wilson loops with different sizes for β = 2.4 and β = 2.6.
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4.2 Topological charge
To decide whether using open boundary conditions improves the runtime efficiently and generates
more unbiased results, the topological charge needs to be calculated. If the topological charge
starts to freeze for periodic boundary conditions, open boundary conditions become efficient.
The topological charge was calculated for three different lattice spacings across 3000 configurations
after 100 thermalization steps. The clover improvement was used and the UV-fluctuations were
adjusted by APE-smearing with α = 0.3 (see section C) until Q stabilizes for several smearing
steps for most configurations. A total of ten smearing steps was found to be sufficient.

Figure 8: Histogram of the topological charge for different lattice spacings. The charge fluctuates
less and peaks sharpen as the spacing decreases.

The histogram of the topological charge (fig. 8) illustrates the differences of the distributions for
periodic boundary conditions as the lattice spacing decreases. It shows how often a given topolog-
ical charge value was obtained across the different configurations.
It is important to note that the values do not yet align with integer values, a missing factor of 4
is assumed. Due to the limited time available for a Bachelors thesis, this could not be completed
and solving this will be part of future work.

Nevertheless, we can observe that for β = 2.4 the distribution is wider and flatter, following
the shape of a Gaussian function, as expected ([7]), with Q between −2.5 and 2.5. For this lattice
spacing small peaks are already visible but not as high as for the smallest spacing. That is because
the topological sectors exist but the energy barriers are small enough to allow a regular fluctuation
between them. As the lattice spacing decreases, the distribution gets tighter and peaks become
sharper. This effect becomes noticable for β = 2.5 and even more significant for β = 2.6. For
β = 2.6 the peaks are much more isolated and higher which represents the effect of topological
freezing. For small lattice spacings large topological charges cannot be reached. The peak to the
right of zero is highest, probably due to the hot start. This is expected to diminish with more
statistics when more configurations are considered.
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When simulating with large lattice spacings, calculating the topological charge is not as efficient,
because information might get lost. If the spacing is too coarse, it becomes unclear whether a
feature is a knot or a curve.

Figure 9: Monte Carlo history of the topological charge for different lattice spacings. As the
spacing decreases, the charge fluctuates in a smaller range and remains constant for several steps,
representing the effect of topological freezing.

The Monte Carlo history of the topological charge (fig. 9) for periodic boundary conditions shows
the variation of the charge between consecutive configurations. For β = 2.4 the topological charge
changes frequently and topological freezing is not a problem. As the spacing decreases, the range
in which the charge fluctuates becomes smaller. For the smallest spacing a = 0.05 fm the values
remain nearly constant for a few configurations before changing again. That means the autocor-
relation time gets significantly longer and the effect of topological freezing appears. The data
indicates that the autocorrelation time corresponds to several hundred Monte Carlo steps. Intro-
ducing open boundary conditions is expected to shorten the autocorrelation time by a significant
factor. Thus the configurations transition faster between the different topological sectors and a
proportionally shorter simulation time is sufficient to reach a set of configurations that is compa-
rably representative. Consequently, the efficiency of the simulation is expected to increase, making
open boundary conditions the preferable choice.
Here as well, the problem of a probably missing factor of four needs to be addressed in future work.
Despite this, the results presented in this section indicate that the freezing of the topological charge
becomes relevant for lattice spacings smaller than 0.05 fm. This suggests that open boundary con-
ditions may be more effective for spacings below this value.
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Topological susceptibility The values for the topological susceptibility χ are measures for the
width of the Gaussian distribution (fig. 8) and the fluctuations of the topological charge. The
values of χ were determined and are presented in table 2.

β χ1/4 [MeV]

2.4 101
2.5 107
2.6 122

Table 2: Topological susceptibility for periodic boundary conditions dependent on the lattice
spacing (preliminary).

The values are approximately half as large as the expected value [8]. An additional factor of four
for the topological charge would lead to a factor of two for the susceptibility, so the determined
values would better align with the expected. Despite this, our results are in good agreement with
those of reference [8].
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5 Conclusion

In this thesis, boundary effects have been studied in the context of open boundary conditions in
time direction within SU(2) Yang-Mills theory.
The boundary effects exhibit symmetry and the average values of loops approach those of periodic
boundary conditions, decaying exponentially and becoming stable in the center of the lattice.
As the lattice size is increased in lattice units, the absolute distance over which boundary effects
extend remains constant in lattice units. Consequently, the percentage of affected lattice points
decreases. The boundary effects have approximately the same distance in lattice units for different
lattice spacings a, which corresponds to a shorter physical distance when using a smaller lattice
spacing.
For larger Wilson loops, the range in which the values remain stable shrinks as the loop size in-
creases. The boundary effects become stronger and more extensive as the loops reach closer to the
boundaries. This is the case also for perpendicular loops, since more links contributing to a single
loop are influenced by the boundaries.

This needs to be considered carefully e.g. when calculating the static quark-antiquark poten-
tial, which includes large Wilson loops. The range of the usable, stable region in the center of
the lattice needs to be selected cautiously. Increasing the number of lattice points in the open
direction helps to widen the stable range. Since the potential includes loops in time direction, it
is preferable to implement open boundary conditions in a spatial direction analogously instead.

To decide whether open boundary conditions lead to an increased efficiency, the topological charge
was calculated for periodic boundary conditions. As the lattice spacing decreases the topological
charge distribution narrows and peaks sharpen due to the longer autocorrelation time. For spac-
ings a < 0.05 fm topological freezing becomes relevant. Open boundary conditions are expected to
be the better choice for spacings below this value, though the lattice size needs to be chosen larger.
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5.1 Outlook
Future work includes a detailed investigation of the topological charge calculation, as a discrepancy
by a factor of four compared to the expected values has been observed. The APE-smearing and
the calculation of the topological charge need to be adjusted for open boundary conditions. The
fluctuation of the topological charge for both boundary conditions can be compared as well as the
movement of the topological charge on the lattice. Extending the analysis to SU(3) is important
for realistic lattice QCD computations.

To achieve improved results for the topological charge, the Symanzik improvement, which uses
2x1 rectangular loops, or the 3-loops improved topological charge operator can be used. To get
integer values, errors below O(a6) need to be suppressed. For further detail see [6].

Alternatively to open boundary conditions, a non-orientable manifold can be used. This is con-
structed by replacing the periodic boundary condition in time direction by a "P-periodic" boundary
condition, which means, the fields are parity transformed across the boundary. This reduces the
autocorrelation time drastically compared to periodic boundary conditions, while translational in-
variance is preserved up to exponentially small corrections. In this case, the topological charge also
becomes continuous and fluctuates faster compared to periodic boundary conditions. One does not
have boundary effects in this case. For further information, see reference [4].
Another interesting topic related to this thesis is using different coupling constants in different
directions of the lattice. This is analyzed in the Bachelor thesis of Emre Akinc and as well aims
to allow simulations with smaller lattice spacings. Both approaches can be combined.
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Appendix

A Thermalization
The thermalization of plaquettes for periodic and open boundary conditions is compared in fig. 10.
They thermalize at the same speed, as well as the Wilson loop averages (fig. 11). For periodic
boundary conditions all values at different positions approach the same value while for open bound-
ary conditions the values decrease when their position is closer to the boundaries.

Figure 10: Thermalisation of the average of perpendicular plaquettes compared for periodic and
open boundary conditions, for β = 2.4 and T = 16. The different green curves represent varying
distances from the boundaries. The values calculated near the center overlap with those obtained
with periodic boundary conditions, while values closer to the boundaries increasingly thermalize
at lower values.

Figure 11: Thermalisation of the average of perpendicular Wilson loops with open boundary
conditions, for β = 2.4 and T = 16. The different green curves represent varying distances from
the boundaries for each loop size. The closer to the boundary, the lower the values they thermalize
at.
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B Binning and Jackknife method
Due to the autocorrelation between consecutive configurations, binning and the jackknife method
are necessary to determine errors. The values, omitting the configurations in the thermalization
range, are binned. This reduces autocorrelation, leading to a more reliable error estimation.
In the Jackknife method, particularly, reduced samples are used. Binning is applied and calcula-
tions are performed for a value in comparison to the bin average. The standard deviation σθ can
be calculated with the averages of all bins and of the inverse bins X̃i [10]:

X̃i =
1

N − 1

(
N∑

m=1

xm − xi

)
, (24)

σθ =

√√√√N − 1

N

N∑
i=1

(
θi − θ̂

)2
. (25)

Here, N is the number of the bins, θi are the means of the inverse bins and θ̂ the mean of all
bins. This method is used to deal with autocorrelation and for the potential’s error, since error
propagation must be considered. Also, as the values for the Wilson loops approach zero, the error
ranges may extend into the negative region. This is problematic because taking the logarithm of
negative values is undefined.
In this thesis, all errors are obtained via the jackknife method.

The errors for perpendicular plaquettes are calculated for different bin sizes at each position along
the time direction, as shown in fig. 12. For a certain range of bin sizes, the errors are nearly
constant. For the results shown in section 4.1, a bin size of 35 was used.

Figure 12: Errors ∆ of perpendicular plaquettes for different bin sizes, obtained from the jackknife
method, for β = 2.4 and T = 16.
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C APE-smearing
Correlation functions and long distance behavior might be affected by short distance fluctuations
of the gauge field. To avoid this, the gauge field is smeared by replacing link variables by local
averages over short paths with fixed endpoints which does not affect the long distance correlation
signals in the continuum limit.
When using the APE-smearing, the original gauge link is replaced by the average of itself and the
six staples connecting its endpoints: [5]

Vµ(n) = (1− α)Uµ +
α

6

∑
ν 6=µ

Cµν(n), (26)

Cµν(n) = Uν(n)Uµ(n+ ν̂)Uν(n+ µ̂)† + Uν(n− ν̂)†Uµ(n− ν̂)Uν(n− ν̂ + µ̂). (27)

When smearing to calculate the topological charge, it is important to smear out only the UV-
fluctuations. If the APE-smearing is applied too frequently, also instantons can be erased.
In the calculations α = 0.3 was used.

Figure 13: APE-smearing history of the topological charge for periodic boundary conditions. Val-
ues for the topological charge calculated for different configurations with β = 2.6 convere to
plateaus and become stable during the smearing process.

The change of the topological charge values for different configurations, depending on the number
of smearing steps, is shown in fig. 13. The values of the topological charge converge to plateaus and
become stable. With further smearing steps, they are expected to converge even more, until the
smearing erases instantons, which would lead to a change in the values. This erase of instantons
does not occur for 25 smearing steps and thus does not affect our calculations, which are performed
with only ten steps.
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D Gauge invariance
To verify the correctness of the code and ensure that the observables are gauge-invariant as required,
a random gauge transformation g(x) ∈ SU(2) is applied to the gauge field:

Uµ(x) → g(x)Uµ(x)g
†(x+ eµ). (28)

Observables need to have the same value before and after the gauge transformation. This is
implemented by generating a random gauge transformation g(x), that does not have a direction.
A random value for every link in one direction is chosen, while all links in the other three directions
are set to 1. The observables, such as plaquettes, Wilson loops and the topological charge, are
first computed on the initial gauge field. After applying the transformation the observables are
calculated again. The results must be equal to prove gauge invariance. In particular, this test
shows if all used loops are closed. If incorrect indices are used, the loops will have a hole, leading
to a violation of the gauge invariance.
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