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Abstract

In this thesis I study heavy spin effects in the b̄b̄ud tetraquark system with quantum numbers I(JP ) = 0(1−).
In my approach I use antistatic-antistatic-light-light potentials calculated from lattice QCD. With these
potentials, I derive a coupled-channel Schroedinger equation, where heavy spin effects manifest in the mass
splitting between B and B∗ mesons. Furthermore, I make use of a two-channel scattering formalism to
describe the system for energies above threshold. I use this formalism to derive relations to calculate the T
matrix. In a numerical study, I investigate the existence of a tetraquark resonance by searching for T matrix
poles in the complex energy plane. Motivated by the results of this study, I conclude that heavy quark spins
have a significant impact on the four-quark system and cannot simply be neglected in future studies of this
kind. At the end of this thesis I also provide an outlook on possible improvements and next steps.
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Chapter 1

Introduction and Motivation

In the last decade a new interest in studying the properties of exotic states in QCD has emerged. Experimen-
tal measurements like [1] revealed a new range of possible candidates for exotic bound states and resonances.
Exotic states are states that cannnot be described in terms of a simple meson or baryon quark combination.
One type of such exotic states are tetraquark states which consist of a SU(3) color neutral combination
of two quarks and two antiquarks. Recent experimental studies at LHCb, Belle and BESII ([1–21]) have
proven them to be likely candidates for the description of states like the X(3872) or the recently discovered
T+
cc . The majority of these exotic four-quark states falls under the domain of heavy-light tetraquarks and

are located in the high-energy nonperturbative QCD spectrum. In recent history there has been an ongoing
effort from the theoretical side to explain exotic states such as the T+

cc . In this light many different theoretical
descriptions([22–80]) were developed which make use of tools from lattice QCD, effective field theory and
phenomenological models.
The framework of lattice QCD offers a fully relativistic numerical evaluation of problems in QCD at low
energy scales. Since its first formulation by Wilson ([81]) in the early 70’s, lattice QCD has enabled a variety
of new studies in many different areas of high-energy physics. One formidable milestone was the study of
hadron masses that can be only calculated with non perturbative QCD. In modern applications lattice QCD
is continuously being used to push boundaries in the physics of form factors(see [82–100]), nuclear physics
(see [101–118]), multiparticle scattering (see [119–126]) and many other areas. The formalism of lattice QCD
is also suited to handle four-quark systems. In works such as [22–37, 74–80] the Lüscher method, a method
to obtain scattering amplitudes from two particle spectra via the two-particle quantization condition (QC2)
was utilized to predict b̄b̄ud and b̄b̄us tetraquark bound states. Such full lattice QCD studies provide, in
principle reliable results which can be compared to experimental observations. However, the computational
effort required for such studies for even only a few ensembles is sizable and needs to be gauged accordingly to
provide any meaningful results in a limited amount of time. A good compromise to avoid the computational
resources of lattice studies and still retain most of the physical significance are effective field theory models.
Effective field theories mostly introduce approximations to simplify the study of a particular system. For
qualitative studies effective field theories such as non-relativistic QCD(NRQCD) or potential non-relativistic
QCD(pNRQCD) are sufficient and can produce results close to experiment as shown by works such as [41–
71]. The Born-Oppenheimer approximation is an example for such an effective field theory and provides
a practical framework to study heavy-light four-quark states in a non-relativistic setup by using the static
quark approximation for heavy b- or c-quarks.
This work focuses on the study of four-quark states with a b̄b̄ud quark composition in the Born-Oppenheimer
approximation. First studies of a b̄b̄ud tetraquark bound state with quantum numbers I(JP ) = 0(1+), also
known as the Tbb were conducted in 2012 by M.Wagner et al. ([61]). These studies were later extended to
resonances. In [64, 65] clear signal for a p-wave resonance with quantum numbers I(JP ) = 0(1−) with real
energy Re(E) = 17+4

−4 MeV and width Γ = 112+90
−103 MeV was found. In all of these studies effects due to the

spin of the heavy b̄-quarks and due to spin-orbit interactions were neglected. However, in a realistic setup
these effects are important and must be considered. In [63] heavy spin effects were incorporated through the
mass splitting between the B and the B∗ mesons. The value of this mass splitting mB∗ −mB ≈ 45 MeV,
taken from experiment, suggests that heavy spin effects play a sizable role in the systems behavior. This was
confirmed by studies of the b̄b̄ud four-quark state with quantum numbers I(JP ) = 0(1+) ([63]), where heavy
spin effects were included. The resulting binding energy showed a decrease of O(40 MeV) compared to the
study without heavy spin effects contained in [72]. The resonance pole found in [64, 65] has a real part of
the energy close to the BB threshold, therefore it is questionable whether the resonance pole found in [64,
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65] persists when including heavy spin effects which effectively reduce the total attraction between the quark
composites. The main motivation for this work is to extend the formalism developed in [63] to scattering
states in order to include heavy spin effects into the resonance search for the I(JP ) = 0(1−) four-quark state
conducted in [64, 65]. The theoretical formalism presented in chapters 2 and 3 of this work is built upon
a combination of the formalism developed in [63] and a coupled-channel scattering formalism similar to the
one constructed in [54, 67, 70]. This formalism is used to conduct a numerical study. Results of this study
are shown in chapter 4. At last, conclusions drawn from the results are discussed and an outlook on future
steps is provided in chapter 5.
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Chapter 2

Theoretical Formalism

Processes involving the strong interaction are described by the non-abelian theory of Quantum Chromo
Dynamics (QCD) in the Standard model of particle physics. At high energy quarks ψc,f and gluons Aaµ are
asymptotic free ([127]) and perturbation theory is valid . For low energies E ≈ ΛQCD with ΛQCD ≈ 150MeV
the coupling constant takes values of order 1, leading to a breakdown of perturbation theory. Typically in
hadron physics one is interested in these low energy scales for which one has to instead rely on other
methods such as effective field theories or numerical evaluations via lattice calculations. In principle with
lattice methods one can solve the full QCD theory but this requires a lot of computational effort and time.
For qualitative statements about a particular system it might be sufficient to use an effective field theory
description instead. Effective field theories are designed to give an order by order approximation to the
full theory. For example, for systems consisting of heavy and light particles it is useful to remove the
dynamics of the heavy particles by separating the heavy and light degrees of freedom and expand the whole
theory in orders O(1/mheavy), where mheavy is the mass of the heavy particle. One possibility is to use
the the Born-Oppenheimer approximation for heavy quarks. In this section a short summary of the Born-
Oppenheimer approximation applied to antiheavy-antiheavy-light-light tetraquarks is given. In this section
I also recapitulate some of the methods first proposed in [63].

2.1 Born-Oppenheimer Approximation
The main philosophy behind any effective field theory is to a priori perform a separation of scales. The Born-
Oppenheimer approximation is an example for a non relativistic effective field theory. For a comprehensive
discussion on the Born-Oppenheimer approximation as an effective field theory, I recommend to check out
[128]. In the Born-Oppenheimer approximation light degrees of freedom are separated from the heavy degrees
of freedoms of a given system. In the context of antiheavy-antiheavy-light-light tetraquarks this implies a
separation between the two antiheavy and the two light quarks (this is shown in Figure 2.1). The heavy
quarks are approximated as static. The interactions of of the light quarks are fully described by the static
potential between the heavy quarks. The remaining interaction between the heavy quarks is treated as a
multi-body problem within the framework of non-relativistic quantum mechanics. Correspondingly, there
are two major steps, when treating an antiheavy-antiheavy-light-light tetraquark (Q̄Q̄qq) system in the
Born-Oppenheimer approximation.

• 1) Calculating static potentials which contain effects from the light quarks using tools from lattice
QCD

• 2) Solving a coupled-channel stationary Schroedinger equation between the heavy quarks Q̄ to look for
bound states and resonances

Noticeably, the only part where actual Lattice Field theory calculations are needed is step 1), whereas step 2)
is completely independent of the relativistic physics of Quantum field theory. Evidently, the approximation
breaks down if there is no clear separation between static and dynamic degrees of freedom. This is true for
four-quark states which are composed out of only light quarks or fully heavy tetraquarks. For these systems
other approaches are more well suited. However, for systems involving two b̄- and two light quarks it appears
to be a feasible assumption to use the static approximation for the b̄-quarks since their mass mb ≈ 4180MeV
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([129]) is large compared to the light quark scales of the system. For these systems there is a clear separation
of scales and the Born-Oppenheimer approximation is applicable.

Figure 2.1: Graphic picture of the two steps of the Born-Oppenheimer approximation in
a tetraquark system. The static potential is denoted by V (r).

2.2 Static Potentials from Lattice QCD
Lattice QCD is one of the main tools for numerical computations in the field of hadron spectroscopy. The
existing literature on this topic is broad. Here, I summarize only the basic concepts needed to compute
potentials between two static antiquarks. The basic idea of lattice QCD is to discretize the spacetime domain.
Let Λ ⊂ R3 denote a three dimensional cubic lattice. Let further G be a Lie group with corresponding Lie
algebra g. In lattice QCD gauge field components Aµ ∈ g with µ ∈ [1, 4] over the Lie-algebra g are replaced
by components of link variables Uµ ∈ G. Gauge links and gauge fields are related by an exponential map 1.
The discretization of fermionic fields is more involved and requires more care. A naive discretization leads to
15 additonal unphysical fermions which are called "doublers". There are many existing approaches on how to
circumvent this problem. Most of them can be found in [130]. In hadron spectroscopy, the main observables
are two-point correlation functions C(t) constructed out of a suitable base of operators O. The choices for O
must reflect the quantum numbers of the state. These operators are used to compute temporal correlation
functions between two points in time. The general expression for the two-point correlation function C(t) for
operators with fixed spatial position r⃗ in the path integral formalism after integrating out all fermionic fields
ψf , ψ̄f with flavor f becomes

C(t) =
〈
O(t, r⃗)O†(0, r⃗)

〉
=

1

Z

∫
DU

∏
f

Dψ̄fDψf O(t, r⃗) O†(0, r⃗) e−SQCD[ψf ,ψ̄f ,U ]

=
1

Z

∫
DU

∏
f

det(Df )
〈
O(t, r⃗)O†(0, r⃗)

〉
U
e−Sgauge[U ] ,

(2.1)

where U ∈ Γ(Ω1(Λ;SU(3))) is a one-form that describes gauge links over the group SU(3), SQCD is the full
QCD action, Sgauge is the pure-gauge part of the QCD action and Df is the Dirac operator corresponding
to flavor f . The average ⟨...⟩U denotes the expectation value on a particular gauge link U . This average
can be calculated by considering all possible Wick contractions between the quark fields contained in the
operator O and the quark fields contained in O†. The set of all possible operators O is simplified, when fixing
the heavy quarks to be infinitely heavy (see [63]). In the static approximation the fermion determinant is
typically set to det(Df ) = 1 for heavy quarks f ∈ {b, c}. Morevoer, in this limit Wick contractions only
need to be performed between light quark fields.
In [63] it was shown that the most general structure for four quark operators describing an antiheavy-
antiheavy-light-light four-quark state with isospin I = 0 in the static approximation is

OL,S(r⃗1, r⃗2) = (CL)αβ(CS)γδ(Q̄
a
γ(t, r⃗1)u

a
α(t, r⃗1))(Q̄

b
δ(t, r⃗2)d

b
β(t, r⃗2))− (u↔ d) , (2.2)

where r⃗1, r⃗2 denote the positions of the static b̄ quarks, a, b ∈ [1; 3] are spinor-color indices, α, β, γ, δ ∈ [1; 4]
are spin indices, C = γ4γ2 is the charge conjugation matrix, γj is the jth gamma matrix and L,S are
the light quark and heavy quark spin matrices. The matrices L and S are elements of the 16-dimensional
1Let X ∈ g and γ : R → G be a curve with tangent vector X at the identity, then the exponential map is defined as
exp : g → G, exp(tX) = γ(t), t ∈ R
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Clifford algebra with euclidean metric D, where Dij = δij , i, j ∈ [1; 4], denoted by Cℓ(spin, D). The light
quark spin matrix L and the heavy quark spin matrix S are chosen such that the trial states O†

L,S |Ω⟩
have definite quantum numbers |jz|, P and Px, where |jz| is the total angular momentum of the light
quarks and gluons along the separation axis of the heavy antiquarks, P denotes parity and Px the be-
havior under reflection along an axis which is perpendicular to the separation axis. In [63] angular mo-
menta |jz| ∈ {0, 1} were considered. For this there are 16 possible choices for the light quark spin matrix
L ∈ {(1 ± γ0)1, (1 ± γ0)γ5, (1 ± γ0)γj , (1 ± γ0)γ5γj}. For the heavy quark spin matrix there are only 8
possible choices S ∈ {(1 + γ0)1, (1 + γ0)γ5, (1 + γ0)γj , (1 + γ0)γ5γj} because static quark spinors have only
two components instead of 4. In section 2.3, I show that different choices for L and S can be interpreted
in terms of different combinations of B,B∗, B∗

0 , B
∗
1 mesons. In the following only the lightest mesons, i.e.

the pseudoscalar B and the vector B∗ are considered. The spin matrices associated with these mesons are
L ∈ {(1 ± γ0)γ5, (1 ± γ0)γj} and S ∈ {(1 + γ0)γ5, (1 + γ0)γj}.

In the static approximation the spins of the heavy quarks are irrelevant. In this limit B and B∗ mesons have
degenerate masses, thus all static potentials will have the same asymptotic values 2mB(∗), where mB(∗) is
the B(∗) meson mass. The heavy spin matrix S can thus be chosen arbitrarily in the lattice computation.
Static potentials differ in the choice of the light quarks spin matrix. For each choice of the light quark spin
matrix L there is one fixed color combination of light quarks. The two light quarks can be either in a triplet
3̄ or a sextet 6, leading to two correlation functions CL(t).

For large euclidean time t → ∞ the correlation functions CL can be expanded in an energy spectrum
{En}n∈N∪{0} of a Hilbert space H via the spectral decomposition

CL(t) =

∞∑
n=0

|
〈
n|O†

L|Ω
〉
|2e−Ent =

∞∑
n=0

Zn,L e
−En,Lt , (2.3)

where Zn,L :=
〈
n|O†

L|Ω
〉

is the overlap factor of an energy eigenstate state of order n with the state described

by the operator OL. The overlap factor is a measure for how well a particular trial state O†
L |Ω⟩ describes an

energy eigenstate |n⟩.
At large t → ∞ the spectrum of the two-point correlation function C(t) is dominated by the ground state
with energy E0,L up to exponentially negligible corrections from excited states

CL(t) = Z0,L e
−E0,Lt

(
1 +O

(
e(E0,L−E1,L)t

))
, t→ ∞ . (2.4)

For fixed positions of the static quarks r⃗1, r⃗2 in equation (2.2) , the static potential VL(r), where r = |r⃗1− r⃗2|
is the separation distance between the b̄ quarks, can be calculated from the ground state energy E0,L as.

VL(r) = E0,L|r=|r⃗1−r⃗2| . (2.5)

In [72] two potentials for isospin I = 0 were calculated. These include an attractive potential V5(r) for
L = (1 + γ0)γ5 and a repulsive vector potential Vj(r) for L = (1 + γ0)γj . In [72] it was further shown that
the lattice data points for the static potentials VX(r) can be consistently fitted to

VX(r) = −αX
r

e−(r/dX)2 , X ∈ {5, j} . (2.6)

The fit parameters αX and dX denote the strength and the depth of the potential respectively. For the
I=0 potentials the values α5 = 0.34+0.03

−0.03, d5 = 0.45+0.12
−0.10 fm and αj = −0.10 ± 0.07, dj = (0.28 ± 0.02) fm

were determined in [72] via a χ2 minimizing fit. Parametrized versions of the potentials V5(r) and Vj(r) are
depicted in Figure 2.2.
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Figure 2.2: Parametrized lattice data of the potentials V5 and Vj for isospin I = 0 as a
function of the separation r.

For small separations r, the system is dominated by one-gluon exchange and perturbation theory is valid.
In this region the potential has the shape of a coulomb potential and goes like 1/r as shown in
Figure 2.2. For large separations the potential is exponentially screened and dominated by interactions
between meson pairs. This observation suggests a mapping between the operators OL,S defined in 2.2 and
linear combinations of pairs of B and B∗ mesons. The algebraic relations between the operators OL,S and
pairs of B and B∗ mesons are worked out in section 2.3.1.

Higher order spin corrections
In the calculation of the static potentials effects originating from the heavy quark spin were completely
neglected. This treatment would be accurate if we lived in a world, where bottom quarks are infinitely
heavy. In real world calculations effects from heavy spin will always contribute. This leads to corrections
to the static potentials. A systematic way to classify these corrections is provided by the framework of
pNRQCD ([131]), where corrections are classified in orders of 1/mb, with mb being the heavy quark mass.
The pNRQCD Lagrangian in the multiple expansion reads ([132])

L = −1

4
F aµνF

µνa +Tr

[
ψ†

(
iD0 −

p⃗2

mb
− V (0)

s −
∞∑
n=1

V
(n)
s

mn
b

)
ψ

]
, (2.7)

where F aµν , a ∈ [1, 8] are the components of the gluon field-strength tensor, ψ is the heavy quark field,
p⃗ the heavy quark momentum and D0 the 0th order covariant derivative. The matching coefficients V (n)

s

correspond to order by order corrections to the static potentials. The coefficients V (n)
s can be computed via

correlation functions with field strength insertions( for more see [132]).

2.3 Coupled-Channel Schroedinger Equation
The second major step of the Born-Oppenheimer approximation is to formulate a non-relativistic Schroedinger
equation with static potentials as input. In this section previously neglected heavy spin effects are included
via the mass splitting between the B and B∗ meson. This leads to a 16× 16 coupled channel Schroedinger
equation, where each channel contains a particular combination of B and B∗ mesons.

2.3.1 Fierz-Identities
The operators defined in (2.2) can be recast into linear combinations of meson-pairs by rearranging the quark
fields with Fierz- identities.
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Theorem 1: Fierz-identities

Let ψ̄1, ψ2, ψ̄3, ψ4 ∈ spin(3, 1) be four dirac spinors and Γ1,Γ2 ∈ Cℓ(spin, D) be elements of the
Clifford algebra ith euclidean metric D, then the following relation holds:

(ψ̄1Γ1ψ̄3)(ψ̄2Γ2ψ4) =
∑
σ∈Sn

G(σ)(ψ̄1Γ̃1ψ2)(σ)(ψ̄1Γ̃2ψ2)(σ) , (2.8)

where G(σ) ∈ C are prefactors that belong to some combination of bilinear structures with Clifford
algebra elements Γ̃1, Γ̃2 ∈ Cℓ(spin, D).

Using Theorem 1 the operators defined in equation (2.2) can be expressed through heavy-light quark bilinears
(Q̄Γaq̄), where Γa ∈ Cℓ(spin, D) is a combination of dirac matrices. The following relation was derived in
[63]

OL,S(r⃗1, r⃗2) =
∑

A,B∈[1;4]

GAB(S,L)
(
Q̄(r⃗1)Γ̃

Aqf1(r⃗1)
) (

Q̄(r⃗2) Γ̃
B qf2(r⃗2)

)
, (2.9)

where qf1 , qf2 are light quark fields of two different flavors f1, f2 and the coefficients GAB(S,L) are uniquely
determined through the relation

GAB(S,L) =
1

16
Tr
(
(CS)T Γ̃TA(CL)Γ̃B

)
. (2.10)

The values of dirac matrices Γ̃A, Γ̃B ∈ {(1+γ0)γ5, (1+γ0)γj} reflect different heavy-light meson combinations,
therefore the following abbreviations for the quark bilinears are introduced

(
Q̄(r⃗i) Γ̃

A qf (r⃗i)
)
:=

{
B(r⃗i), if Γ̃A = (1 + γ0)γ5

B∗
j (r⃗i), if Γ̃A = (1 + γ0)γj

, (2.11)

where j ∈ {x, y, z} denotes the cartesian spin orientation of the B∗ meson. Henceforth, the position ar-
guments of B and B∗ mesons will be omitted whenever it is not necessary to write them out explicitly.
Equation (2.9) allows one to map any operator with some specific light and heavy spin to the corresponding
linear combination of mesons. Note, up to this point no concrete isospin I has been chosen. Definite isospin
I emerges, when the light-quark flavors in equation (2.9) are either symmetrized (I = 1) or antisymmetrized
(I = 0). Further details on the interpretation in terms of definite isospin, can be found in section 2.5.

2.3.2 Formulating the Hamiltonian
In [63] heavy spin effects were introduced via a mass splitting between the B and B∗ mesons. This accounts
for leading order corrections up to order 1/mb in the kinetic term of the pNRQCD expansion, where mb

is the bottom-quark mass. Higher order corrections in the static potentials starting from O(1/mb) are not
contained in the formalism presented in this section. One way to include these additional contributions,
would be an improved calculation of the potential by taking also spin-spin corrections on top of the static
approximation into account as briefly addressed at the end of section 2.2. Based on [63], a Hamiltonian
H that contains the mass splitting mB∗ −mB ≈ 45 MeV([133]) can be constructed. The free part of the
hamiltonian H0 up to O(1/mb) is constructed by adding terms containing masses of B and B∗ mesons unto
the usual kinetic terms

H0 :=M ⊗ 14×4 + 14×4 ⊗M +
p⃗21
2mb

⊗ 116×16 +
p⃗22
2mb

⊗ 116×16 , (2.12)

where p⃗1, p⃗2 are the b̄ momenta, mb is the bottom quark-mass and M = diag (mB ,mB∗ ,mB∗ ,mB∗) is the
mass matrix. The interacting part of the hamiltonian Hint containing the static potential potentials V5 and
Vj reads

Hint = GV G−1 , (2.13)

where V = diag
(

14×4 ⊗ V5,112×12 ⊗ Vj

)
is a 16 × 16 diagonal potential matrix, G ∈ C16×16 is a 16 × 16

transformation matrix with entries

Gind(L)+4ind(S); A+4B = GAB(S,L) , (2.14)
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where ind(S), ind(L) = 0 for L,S = (1 + γ0)γ5 and ind(S), ind(L) = j for L,S = (1 + γ0)γj . The Fierz
coefficients GAB(S,L) were specified in equation (2.10). The components of G can be found in [63]. The
total Hamiltonian H := H0 + Hint acts on a 16-component wave-function Ψ⃗M ∈ L2(R3,C16)2 with M
denoting pairs of B and B∗ mesons, defining a 16× 16 Schroedinger equation

[H0 +Hint] Ψ⃗M = E Ψ⃗M , (2.15)

where E is the energy resulting of the eigenvalue problem of the hamiltonian H. The 16 components of the
wave-function Ψ⃗M corresponding to all combinations of B and B∗ mesons are

Ψ⃗M =



BB
BB∗

x
...

B∗
xB

B∗
xB

∗
x

...
B∗
zB

∗
y

B∗
zB

∗
z


. (2.16)

Equations (2.15) are partial differential equations that contain in total 6 independent variables r⃗1, r⃗2. The
static potentials in the interacting Hamiltonian depend only on the relative coordinates r⃗ = r⃗2 − r⃗1. This
motivates to perform a coordinate transformation to the center-of-mass frame, where only the relative co-
ordinate r⃗ is relevant. This effectively reduces the number of independent coordinates to the three relative
coordinates r⃗. In the center of-mass frame mb in the free Hamiltonian H0 must be replaced by the reduced
mass µ := mb/2. The free Hamiltonian H0 then becomes

H0 =M ⊗ 14×4 + 14×4 ⊗M − 1

2µ

[
∂2

∂r2
+

2

r

∂

∂r
− L2

r2

]
⊗ 116×16 . (2.17)

Here, another coordinate transformation was applied to write the laplacian ∇2 in 3d spherical polar coordi-
nates and the θ and φ-derivatives were replaced by the squared angular momentum operator L2 as found in
standard textbooks on quantum mechanics. The corresponding coupled-channel Schroedinger equation then
becomes[

M ⊗ 14×4 + 14×4 ⊗M − 1

2µ

(
∂2

∂r2
+

2

r

∂

∂r
− L2

r2

)
⊗ 116×16 +Hint

]
Ψ⃗(r⃗) = E Ψ⃗(r⃗) . (2.18)

Even though equation (2.18) now only depends on three variables, it is still a set of 16 coupled partial
differential equations. However, the amount of equations can be significantly reduced by considering the
symmetries of the system which have not been included up to this point.

2.4 Blocks with Total Spin S
The total spin S := Sq + SQ is a combination of the total light quark spin Sq and the total heavy quark
spin SQ. Furthermore, the orbital angular momentum L is conserved. The reason for the conservation of
L is not trivial and related to spherical symmetry in the potentials V5 and Vj . In fact, one can show that
[L, H] = 0 is fulfilled, only if the interaction Hamiltonian Hint depends exclusively on the radial coordinate
r. An explicit proof can be found in appendix A. From the conservation of L it also follows that the total
spin S must be conserved. The conservation of the total spin S gives rise to a total spin quantum number
S whose range of values is determined by combinations of the light quark spin quantum number Sq ∈ {0, 1}
and heavy quark spin quantum number SQ ∈ {0, 1}. This suggests a diagonalization of equation (2.15) into
blocks labeled by S. Mathematically this is manifested in a decomposition of group products into irreducible
representations via a Clebsch-Gordan decomposition.

2 L2(R3,C16) denotes the space of all square integrable mappings f : R3 → C16
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Theorem 2: Clebsch-Gordan decomposition

Let G be a finite dimensional Lie group. Let Vm and Vn be irreducible representations of G with
weights w(Vm) = m and w(Vn) = n, then the product representation Vm ⊗ Vn can be decomposed
into a direct sum of irreducible representations according to:

Vm ⊗ Vn ∼=
m+n⊕
i=m−n

Vi . (2.19)

Let further B(Vm) ⊂ Vm and B(Vn) ⊂ Vn be bases of Vm and Vn then a base B(V1 ⊗ V2) of the
product representation can be constructed as

B(Vm ⊗ Vn) =

w(Vm)+w(Vn)∑
i,j=|w(Vm)−w(Vn)|

C(w(Vm), w(Vn); i, j)B(Vi)⊗B(Vj) , (2.20)

where Vi and Vj are irreducible representations of G of weights i and j. The coeffcients
C(w(Vm), w(Vn); i, j) are commonly known as Clebsch-Gordan coefficients.

Definite quark spins are described by irreducible representations of SU(2). Each quark spin is described
by a doublet 2 ∈ I(SU(2)), where I(SU(2)) denotes the set of all irreducible representations of the group
SU(2). The spin structure of the four-quark state is a group product of four doublets. Using Theorem 2,
this product can be decomposed as

2⊗ 2⊗ 2⊗ 2 = (1⊕ 3)⊗ (1⊕ 3) = 1⊗ 1+ 3⊗ 1+ 1⊗ 3+ 3⊗ 3 = 2⊕ 9⊕ 5 . (2.21)

The first part of equation (2.21), already worked out, contains the mapping between quark combinations to
linear combinations of B and B∗ mesons via Fierz identities. The spins and parities JP of the B and B∗

mesons are JP ∈ {0−, 1−}. In terms of SU(2) irreducible representations JP = 0− corresponds to a singlet
1 ∈ I(SU(2)) and JP = 1− to a triplet 3 ∈ I(SU(2)). The result of the decomposition defined in equation
(2.21) is a doublet 2 with S = 0, three channels with S = 1 each having dimension 3 and a single-channel
with S = 2 and dimension 5. To decompose equation (2.15) with respect to total spin S ∈ {0, 1, 2} , the
Clebsch-Gordan coefficients that make the decomposition into irreducible representations with associated
meson content explicit must be computed. Equation (2.15) can then be transformed into the form

H̃ψ⃗S = (CHC−1)(Cψ⃗M ) = E(Cψ⃗M ) = Eψ⃗S , (2.22)

where ψ⃗S := Cψ⃗M is a wave-function vector projected to definite total spin S, C ∈ C16×16 is a transformation
matrix whose entries are related to the Clebsch-Gordan coefficients , corresponding to the decomposition in
equation (2.21) ( for details see [63]) and H̃ := CHC−1 is the transformed hamiltonian. With this transfor-
mation, equation (2.15) assumes the following block structure





H̃S=0,2×2 0 0 0

0 13×3 ⊗ H̃S=1,1×1 0 0

0 0 13×3 ⊗ H̃S=1,2×2 0

0 0 0 15×5 ⊗ H̃S=2,1×1


− E




Ψ⃗S=0,2×2

Ψ⃗S=1,3×3

Ψ⃗S=1,5×5

Ψ⃗S=2,8×8

 = 0 (2.23)

with blocks

S=0 :

For S = 0, there is a 2× 2 coupled channel equation that contains a BB and a B∗B∗ channel
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[(
2mB 0

0 2mB∗

)
− 1

2µ

(
∂2

∂r2
+

2

r

∂

∂r
− L2

r2

)
⊗ 12×2 +Hint, S=0

]
Ψ⃗S=0(r) = EΨ⃗S=0(r) , (2.24)

where

Hint,S=0 =
1

4

(
V5(r) + 3Vj(r)

√
3 (V5(r)− Vj(r))

√
3 (V5(r)− Vj(r)) 3V5(r) + Vj(r)

)
(2.25)

is the 2× 2 potential matrix.
The 2-component wave function Ψ⃗S=0 can be related to B and B∗ channels as

Ψ⃗S=0 =

 BB

B⃗∗B⃗∗
√
3

 . (2.26)

Note that for S = 0 no BB∗ combinations appear because this combination can only have S = 1. Conversely,
BB combinations can only have total spin S = 0 and B∗B∗ combinations can have total spin S ∈ {0, 1, 2}.

S=1:

For S = 1 a threefold degeneracy of k := Sz ∈ {−1, 0, 1} is present. The governing 3 × 3 block can
be further split by symmetrizing/antisymmetrizing the BB∗ wave functions. For a wave function that is
symmetric under B/B∗ exchange there are three degenerate 1× 1 equations[

mB +mB∗ − 1

2µ

(
∂2

∂r2
+

2

r

∂

∂r
− L2

r2

)
+Hint,S=1,1×1

]
ΨS=1,1×1,k(r⃗) = EψS=1,1×1,k(r) (2.27)

with
Hint,S=1,1×1 = Vj(r), ΨS=1,1×1,k =

1√
2
(BB∗

k +B∗
kB) (2.28)

For a wave function that is antisymmetric under B/B∗ exchange, there are three degenerate 2×2 equations.[(
mB +mB∗ 0

0 2mB∗

)
− 1

2µ

(
∂2

∂r2
+

2

r

∂

∂r
− L2

r2

)
⊗ 12×2 +Hint, S=1,2×2

]
Ψ⃗S=1,2×2,k(r) = EΨ⃗S=1,2×2,k(r),

(2.29)
where

Hint, S=1,2×2 =
1

2

(
V5(r) + Vj(r) V5(r)− Vj(r)

V5(r)− Vj(r) V5(r) + Vj(r)

)
, Ψ⃗S=1,2×2,k =

1√
2

(
B∗
kB −BB∗

k

ϵklmB
∗
l B

∗
m .

)
(2.30)

S=2:

For S = 2 there is a five-fold degeneracy of k := Sz ∈ {2,−1, 0, 1, 2}. There are five identical single-channel
equations which contain only B∗B∗ combinations.[

2mB∗ − 1

2µ

(
∂2

∂r2
+

2

r

∂

∂r
− L2

r2

)
+Hint,S=2

]
ΨS=2,k(r⃗) = EΨS=2,k(r⃗) , (2.31)

where
Hint,S=2 = Vj(r), ΨS=2,k = T2,k(B⃗

∗, B⃗∗) (2.32)

with T2,k(B⃗∗, B⃗∗) being a spherical tensor which represents the coupling of two B∗ mesons to S = 2.

The physical interpretation of equations (2.24)-(2.31) becomes apparent, once proper physical quantum
numbers I(JP ) are assigned. This will be addressed in detail in section 2.5.
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2.5 Symmetries and Quantum Numbers
A four-quark system is characterized by the following conserved quantum numbers:

• Isospin I

• Total angular momentum, parity and charge conjugation JPC

At the beginning of section 2.4 I argued that the total spin S and the orbital angular momentum L are also
conserved quantum numbers of the system. Each conserved quantum number is a consequence of a symmetry,
described by a symmetry group. For instance, the total spin S is described by the group SU(2)spin. Light
quark flavor is described by the group SU(2)flavor, color combination by the group SU(3)color, orbital angular
momentum by the group SO(3)L and parity by the discrete group Z2,parity. The total symmetry group of
the b̄b̄ud four-quark system corresponds to the product group

SU(2)spin × SU(2)flavor × SU(3)color × (Z2,parity ⋊ SO(3)L) , (2.33)

where ⋊ denotes the semidirect product between Z2,parity and SO(3)L. Quantum numbers of individual
quarks can be grouped into irreducible representations of the underlying symmetry groups. Quantum num-
bers of the entire system are derived by combinations of quantum numbers of its composites. Products of
two irreducible representations can be either symmetric(S) or antisymmetric(A). Since quarks are fermions,
thus have to obey the Pauli principle, the total light-quark wave-function qq and heavy-quark wave function
Q̄Q̄ must be totally antisymmetric respectively. This means, only antisymmetric combinations of irreducible
representations are allowed. In Table 2.1 all possible combinations of individual quark quantum numbers,
respecting the Pauli principle are shown. The parity P ∈ {+,−} is determined by the orbital angular
momentum L according to

P = (−1)L . (2.34)

Subsequently, for P = − states only odd orbital angular momenta L are allowed, whereas for P = + states
only even orbital angular momenta are allowed. Here, the discussion is restricted to odd orbital angular
momenta L since this work focuses on the negative parity state I(JP ) = 0(1−). For a similar discussion for
even orbital angular momenta L and an equivalent table as Table 2.1, I refer to [63].

light quarks qq heavy quarks Q̄Q̄ tetraquark b̄b̄ud

combination isospin spin color spin color L S JP

1
1(S)

0(A) 6(S) 1(S) 6̄(S)
1, 3, ...(A)

1
|1− L|− ≤ J− ≤ |1 + L|−

2 1(S) 3̄(A) 0(A) 3(A) 1

3
0(A)

0(A) 3̄(A) 0(A) 3(A)
1, 3, ...(A)

0 L−

4 1(S) 6(S) 1(S) 6̄(S) 0,1,2 |S − L|− ≤ J− ≤ |S + L|−

Table 2.1: Quantum numbers for b̄b̄ud states with odd orbital angular momenta L

Table 2.1 contains 4 combinations with different quantum numbers. Each of these combinations can be
related to the blocks of definite total spin S ∈ {0, 1, 2}, defined in equations (2.24)-(2.31) via the Fierz
identity (2.9) for a suitable combination of light quarks flavors for fixed isospin I.
Combinations 1 and 2 in Table 2.1 are symmetric isotriplets with I = 1. The total light quark spin is
Sq = 0 for combination 1 and Sq = 1 for combination 2. The color representation of the light quarks is
fixed by enforcing the Pauli principle. In combination 1 the isospin wave function is symmetric and the light
quark spin wave function is antisymmetric. To obtain an antisymmetric total wave function, the light quarks
must be in a symmetric color sextet 6. Conversely, in combination 2 the light quark spin wave function is
symmetric, which requires the light quarks to be in an antisymmetric color triplet 3̄.
The color combination of the light quarks determines the color combination of the heavy quarks. Because
of gauge invariance, the total state must be color neutral. In terms of SU(3) irreducible representations this
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means that the total decomposition of the product of two irreducible representations into irreducible repre-
sentations is required to contain at least one singlet 1 ∈ I(SU(3)). Following this logic, the color combination
of the heavy quarks in combination 1 is fixed to the symmetric 6̄, while the heavy quark color combination
in combination 2 is fixed to the antisymmetric 3. The b̄b̄ wave function is always flavor symmetric. The
orbital angular momentum L is odd, corresponding to an antisymmetric position wave function. The total
heavy quark spin SQ is fixed by enforcing the Pauli principle on the b̄b̄ wave function. This requirement
leads to SQ = 1 for combination 1 and SQ = 0 for combination 2. This in turn leads to total spins of S = 1
for both combinations. Correspondingly, the allowed total angular momenta are J ∈ [|1 − L|; 1 + L]. In
terms of meson-meson pairs a total spin of S = 1 can be realized by BB∗ or B∗B∗ combinations. Using
Fierz identities, one finds that combinations 1 and 2 are associated with the S = 1 block (2.29).

Combinations 3 and 4 in Table 2.1 are antisymmetric isosinglets with I = 0. The total light quark
spin can be either Sq = 0 as in combination 3 or Sq = 1 as in combination 4. The color representation of
the light quarks is again uniquely fixed by enforcing the Pauli principle. In combination 3 both, the isospin
wave function and the light quark spin wave functions are antisymmetric. To obtain an antisymmetric total
wave function, the light quarks must be in an antisymmetric color triplet 3̄. Conversely, in combination 2
the light quark spin wave function is symmetric, which requires the light quarks to be in an symmetric color
sextet 6. By demanding color neutrality of the total state, the color combination of the heavy quarks in
combination 3 is fixed to the antisymmetric 3, while the heavy quark color combination in combination 4
is fixed to the symmetric 6̄. The orbital angular momentum L is odd, corresponding to an antisymmetric
position wave function. The total heavy quark spin SQ is again fixed by enforcing the Pauli principle on the
b̄b̄ wave function, leading to SQ = 0 for combination 3 and SQ = 1 for combination 4. This in turn leads
to a total spin of S = 0 for combination 3 and total spin S ∈ {0, 1, 2} for combination 4. Correspondingly,
the allowed total angular momenta for combination 3 are J = L. The allowed total angular momenta for
combination 4 range over J ∈ [|S − L|;S + L]. In terms of meson-meson pairs a total spin of S = 0 can be
realized by BB or B∗B∗ combinations, a total spin of S = 1 can be realized by BB∗ and B∗B∗ combinations,
and a total spin of S = 2 can solely be realized by a B∗B∗ combination. As the first two combinations of
Table 2.1 combinations 3 and combinations 4 can also be associated with blocks of definite S. Using the
same procedure as for combinations 1 and 2 one finds that combination 3 can be associated to the S = 0
block (2.24). Combination 4 on the other hand can be associated to each of the blocks defined in equations
(2.24), (2.27) and (2.31).
In principle, all three block equations associated with combinations 3 and 4 describe a system with quantum
numbers I(JP ) = 0(1−). However, not all of these blocks can actually describe resonance states. Resonances
form only, when the potential is sufficiently attractive. The S = 0 equation (2.24) has a distinguished poten-
tial matrix (2.25) from equations (2.27) and (2.31). Equations (2.27) and (2.31) contain only the repulsive
potential Vj and no contribution from the attractive potential V5. With such a potential no resonance will
ever form. Equation (2.24) on the other hand contains V5 and Vj . Both potentials mix in the potential
matrix (2.25). This does not a priori exclude the formation of a resonance or a bound state. Thus, equation
(2.24) is the only viable candidate to describe the state of interest. This 2× 2 equation contains a BB and
a B∗B∗ combination and has S = 0.

Single-channel limit for S = 0

In this short paragraph, I show that the single channel equation used in [64, 65] is a limiting case of equation
(2.24). In the approach presented in this section heavy spin effects were introduced exclusively through the
mass splitting mB∗ −mB ̸= 0. One would therefore assume that heavy spin effects are removed simply by
setting mB = mB∗ . In this limit B and B∗ mesons are degenerate and the two equations in the 2× 2 block
equation (2.24) should trivially decouple. Mathematically, this decoupling is equivalent to diagonalizing the
full Hamiltonian. The only term of the full Hamiltonian which is not diagonal by design is the potential
matrix (2.25). The potential matrix (2.25) can be diagonalized by the transformation

(
V5 0
0 Vj

)
= U Hint,S=0 U

−1, U =

 1
2

√
3
2

−
√
3
2

1
2

 . (2.35)
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Applying the same transformation to the mass matrix M = diag(2mB , 2mB∗) yields the transformed mass
matrix M

′

M
′
= U M U−1 =

1

2

 mB + 3mB∗
√
3(mB∗ −mB)

√
3(mB∗ −mB) 3mB +mB∗

 . (2.36)

In the degenerate mass limit, where mB = mB∗ , the off-diagonal components of M
′
vanish and M

′
=M . In

this limit equation (2.24) with the diagonalized Hamiltonian decouples into two independent single-channel
equations [(

2mB 0

0 2mB

)
− ∇2

2µ
⊗ 12×2 +

(
V5 0

0 Vj

)]
Ψ⃗S=0(r) = EΨ⃗S=0(r) . (2.37)

The upper row of equation (2.37) corresponds precisely to the single-channel equation used in [64, 65] to
study the I(JP ) = 0(1−) resonance. This completes the proof presented in this paragraph and the discussion
of the entire section.
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Chapter 3

Coupled-Channel Scattering

In chapter 2 I concluded that the channel with total heavy spin S = 0 is the most promising one for the
study of a tetraquark resonance with quantum numbers I(JP ) = 0(1−). The corresponding equation which
belongs to this channel is a 2×2 coupled-channel equation. This differs compared to the case without heavy
spins, explored in [64, 65], where it was sufficient to consider only a single-channel equation. To explore the
impact of heavy spin effects for energies above the BB threshold, a refined 2 × 2 scattering formalism is
needed. For energies E > 2mB the system is described by two scattering channels, one BB and one B∗B∗

channel.

3.1 Emergent Wave Method
In the 2× 2 scattering problem with a BB and a B∗B∗ channel, each channel is characterized by its channel
momentum kα, α ∈ {BB,B∗B∗} which is related to the energy E by the non-relativistic dispersion relation

kBB =
√
2µ(E − 2mB), kB∗B∗ =

√
2µ(E − 2mB∗) . (3.1)

In the remainder of this work, I use the shorthand notation k := kBB and k∗ := kB∗B∗ .
Following the emergent wave method in [12, 54, 67], the wave function of the scattering problem is decom-
posed into two parts, namely into an incoming wave ψ⃗0 and an outgoing emergent wave wave for each of the
two channels BB and B∗B∗. The total two-component wave function Ψ⃗(r⃗) can be written as a sum of the
incoming wave Ψ⃗0(r⃗) and the emergent spherical wave X⃗(r⃗)

Ψ⃗(r⃗) = Ψ⃗0(r⃗) + X⃗(r⃗) . (3.2)

.
For a scattering process in a spherical symmetric potential V (r), where L is conserved, for S = 0 the
eigenfunctions of J2 are equivalent to the eigenfunctions of L2. The latter are the well known spherical
harmonics YL,m(θ, ϕ), with azimutal quantum number m ∈ [−L;L] . The total wave function defined in
equation (3.2) can be expanded in an infinite sum of partial waves with fixed L. Different expansions are
used for the incoming and the outgoing waves. The expansion for the incoming wave Ψ⃗0 reads

Ψ⃗0(r⃗) =

∞∑
L=0

cL A⃗L jL(kr) YL,m(θ, ϕ) , (3.3)

where A⃗L = (ABB , AB∗B∗)T is a vector of free coefficients that fixes the channel composition of the incoming
wave, cL = il

√
4π(2L+ 1) are well known expansion coefficients and jL(kr) are spherical Bessel functions

of first kind.
The emergent wave function X⃗(r⃗) may be expanded in terms of angular momentum eigenfunctions as

Xα(r⃗) =
∑
L

cL
χL,α(r)

r
YL,m(θ, ϕ) , (3.4)

where α ∈ {BB,B∗B∗} refers to the channel composition and χL,α(r) denotes the Lth partial wave of the
radial part of the emergent wave. Hence, the total wave function can be expressed according to
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Ψ⃗(r⃗) =

∞∑
L=0

cL

(
ABBjL(kr) +

χBB(r)
r

AB∗B∗jL(k
∗r) + χB∗B∗ (r)

r

)
YL,m(θ, ϕ) . (3.5)

The right hand side of equation (3.5) is an infinite sum over orbital angular momenta L ∈ N. In practice,
however the sum is truncated by a maximal orbital angular momentum Lmax. In this work , only p-wave
scattering (L = 1) is considered, leading to the right quantum numbers JP = 1−. After inserting equation
(3.5) into (2.24), one can project to definite L = 1 by multiplying the equation with Y ∗

1,m′ (Ω) and integrating
the equation over the unit area. By using the orthonormality of the spherical harmonics, the remaining radial
equation becomes

•
∫
dΩ Y1,m′ (Ω)× (2.24) :[(

2mB 0

0 2mB∗

)
− 1

2µ

(
d2

dr2
+

2

r

d

dr
− 2

r2

)
⊗ 12×2 +Hint,2×2 − E

](
ABBjl(kr) +

χBB(r)
r

AB∗B∗jl(k
∗r) + χB∗B∗ (r)

r

)
= 0 (3.6)

with potential matrix Hint,2×2 defined in (2.25).

Equation (3.6) can be further manipulated by using the free Schroedinger equation H0Ψ⃗0(r⃗) = EΨ⃗0(r⃗).
Let H := H0 +Hint be the total Hamiltonian with H0Ψ⃗0 = EΨ⃗0 then

(H − E)Ψ⃗(r⃗) = (H0 +Hint − E)(Ψ⃗0(r) + X⃗(r)) = (H0 − E)Ψ⃗0(r) +HintΨ⃗0(r)

+ (H0 +Hint − E)X⃗(r)

= (H0 +Hint − E)X⃗(r) +HintΨ⃗0(r) = 0 .

(3.7)

In terms of a matrix vector notation this leads to the modified radial equation[(
2mB 0

0 2mB∗

)
− 1

2µ

(
d2

dr2
− 2

r2

)
⊗ 12×2 +Hint,2×2 − E

](
χBB(r)

χB∗B∗(r)

)

= −

(V5+3Vj

4

)
rABBj1(kr) +

√
3
4 (V5 − Vj)rAB∗B∗j1(k

∗r)
√
3
4 (V5 − Vj)rABBj1(kr) +

(
3V5+Vj

4

)
rAB∗B∗j1(k

∗r)

 .

(3.8)

Equation (3.8) is a system of two second order, inhomogenous ordinary differential equations. The inho-
mogenous part of equation (3.8) is fully dictated by the set of coefficients (ABB , AB∗B∗). In section 3.2 the
freedom in fixing these coefficients will be used to define suitable boundary conditions.

For a specific energy range, it is often benaficial to use the energy relative to the lowest energy thresh-
old Eth ∈ R. For the scattering problem studied in this section the lowest energy threshold is the BB
threshold, i.e. Eth = 2mB . Defining Ẽ := E − 2mB and rewriting equation (3.8) in terms of this new
quantity, gives the following reformulated equation[(

0 0

0 2∆m

)
− 1

2µ

(
d2

dr2
− 2

r2

)
⊗ 12×2 +Hint,2×2 − Ẽ

](
χBB(r)

χB∗B∗(r)

)

= −

(V5+3Vj

4

)
rABBjl(kr) +

√
3
4 (V5 − Vj)rAB∗B∗jl(k

∗r)
√
3
4 (V5 − Vj)rABBjl(kr) +

(
3V5+Vj

4

)
rAB∗B∗jl(k

∗r)

 ,

(3.9)

where ∆m = mB∗ −mB is the mass splitting. Equation (3.9) as it stands has an infinite amount of possible
solutions. To reduce the space of solution to a single physically relevant solution, consistent boundary
conditions are needed. This is addressed in detail in section 3.2.
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Inelastic thresholds and light meson exchange
In addition to the BB and a B∗B∗ channels also the inelastic three-particle channels BBπ and B∗B∗π,
where π describes a pion may contribute. The BBπ threshold is only 50MeV above the B∗B∗ threshold and
the B∗B∗π threshold is 140 MeV above the B∗B∗ threshold for physical pion mass mπ ≈ 140 MeV. These
inelastic channels introduce a mixing between two- and three-particle scattering channels.
The Born-Oppenheimer approximation is intrinsically designed to allow only for elastic scattering. In non-
relativistic quantum mechanics particle production and/or annihilation is not allowed. This prohibits mixing
between a scattering channel with an even number of particles and a scattering channel with an odd number
of particles. The Born-Oppenheimer approximation is also limited by the static approximation to explicit
non-relativstic degrees of freedom. Light degrees of freedom like the pion are integrated out by the static
approximation and only contribute through the static potentials. This allows only for scattering channels
which consist of heavy mesons. Pion exchange between the heavy mesons should in principle be contained in
the static potentials V5 and Vj . Because the assumptions of the Born-Oppenheimer approximation prohibit
mixing between two- and three-particle channels and integrate out the pion as a light degree of freedom,
the inelastic scattering channels BBπ and B∗B∗π cannot be included into the formalism presented in this
section. This limits the approach of this work to resonances which are significantly below the first three
particle threshold, where three-particle effects are expected to be negligible. For systems where the energy
gap between two-particle and three-particle thresholds is small, the approach shouldn’t be used as it does
not incorporate all of the relevant physics. This limitation should be kept in mind, whenever the Born-
Oppenheimer approximation is used.

3.2 Boundary Conditions and T Matrix
Suitable boundary conditions for small r → 0 and large r → ∞ are required to find a unique solution of the
Schroedinger equation (3.9) in order to calculate observables such as the scattering amplitude or the cross
section. Similarly to the case in [70], I use modified scattering boundary conditions for sufficiently large
distances r. For a single-channel scattering problem in a spherically symmetric potential with given orbital
angular momentum L, the boundary conditions for the spherical wave function read

χ(r) → irtLhL(kr), r → ∞ (3.10)

χ(r) ∝ rL+1, r → 0 , (3.11)

where tL ∈ C is the single channel partial wave scattering amplitude and hL(kr) are the spherical hankel
functions of first kind.
For a two channel scattering problem the scattering boundary conditions must be employed on each wave
function component χα(r). Thereby, one can make use of the freedom choice for the incident wave composi-
tion by solving the equation independently for the pairs (ABB , AB∗B∗) = (1, 0) and (ABB , AB∗B∗) = (0, 1).
Following this procedure, boundary conditions for large radial distances r can be defined as

For (ABB , AB∗B∗) = (1, 0) :

χBB(r) → irtBB;BBh1(kr) r → ∞
χB∗B∗(r) → irtB∗B∗;BBh1(k

∗r) r → ∞ (3.12)

For (ABB , AB∗B∗) = (0, 1) :

χBB(r) → irtBB;B∗B∗h1(kr) r → ∞
χB∗B∗(r) → irtB∗B∗;B∗B∗h1(k

∗r) r → ∞ (3.13)

with a priori unknown scattering amplitudes tα;β ∈ C, where α ∈ {BB,B∗B∗} refers to the incoming wave
and β ∈ {BB,B∗B∗} refers to the outgoing emergent wave. Boundary conditions for r → 0 are identical to
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the ones used in [65], i.e. for L = 1

χBB(r) ∝ r2, r → 0 (3.14)

χB∗B∗(r) ∝ r2, r → 0 . (3.15)

The four scattering amplitudes tα;β can be extracted a posteriori from the boundary conditions (3.12)-(3.13),
fixing the entries of the 2× 2 T matrix

T =

 tBB;BB tBB;B∗B∗

tB∗B∗;BB tB∗B∗;B∗B∗

 . (3.16)

The T matrix defined in equation (3.16) depends on the energy E and can be used to detect bound states or
resonances. Poles of the T matrix in the complex energy plane E ∈ C indicate resonances for Re(Ẽ) > 0 and
Im(Ẽ) ̸= 0 or bound states for Re(Ẽ) < 0 and Im(Ẽ) = 0. Resonance poles can be extracted by analytically
continuing the T matrix to unphysical Riemann sheets as explained in detail in section 3.4. Poles of the
T matrix are equivalent to poles of its eigenvalues which in turn is equivalent to poles of the T matrix
determinant det(T). In all numerical calculations of this work the determinant is used to detect poles. If a
pole is found at energy Epole, then the corresponding mass m := Re(Ẽpole) + 2mB and the corresponding
width Γ := −2Im(Ẽpole)

1 can be extracted. The pair (m,Γ) categorises all resonances and can be compared
to experimental data if available.
This section is concluded with a short remark on scattering phase shifts. The T matrix defined in equation
(3.16) is related to the unitary S matrix S ∈ U(2) as

S = 1 + 2iT . (3.17)

The unitarity condition of the S matrix S†S = 1 allows one to express the S matrix for the single-channel
case i.e. S ∈ U(1) in terms of a real partial wave phase shift δl(E) ∈ R

S = e2iδl(E) . (3.18)

The definition of a phase shift for the two channel case is far less obvious and more involved. In general this
requires the concept of eigenphases and can be accomplished by using the S matrix eigenvalues as presented
in the following section 3.3.

3.3 Coupled-Channel Phase Shifts
A consistent definition of a coupled-channel phase shift is given in [70], where the concept of eigenphases
is introduced. To each scattering channel a corresponding eigenphase can be assigned. For an n-channel
scattering problem, eigenphases δα(E) with α ∈ {1, 2, ..., n} can be calculated by applying relation (3.18) to
the S matrix eigenvalues sα(E) ∈ C for real energies E ∈ R:

sα(E) = e2iδα(E) . (3.19)

For n = 2 the following analytic relations can be found for the two S matrix eigenvalues sα(E), α ∈ {1, 2}

s1(E) =
ξ

2
+

√
ξ2

4
− (sBB;BBsB∗B∗;B∗B∗ − sBB;B∗B∗sB∗B∗;BB) (3.20)

s2(E) =
ξ

2
−
√
ξ2

4
− (sBB;BBsB∗B∗;B∗B∗ − sBB;B∗B∗sB∗B∗;BB) , (3.21)

where sα;β = δαβ +2itα;β denote the entries of the S matrix and ξ := sBB;BB + sB∗B∗;B∗B∗ . With equation
(3.19) two phase shifts δ1(E), δ2(E) can be extracted. For given real energy E ∈ R one of these phase shifts
can be associated with the BB channel and one with the B∗B∗ channel. Depending on the energy E, δα(E)
can now be either real or complex. For energies 2mB < E < 2mB∗ the phase shift which can be associated
with the BB channel assumes real values while the phase shift associated with the B∗B∗ channel is purely
imaginary. For energies E > 2mB∗ both phase shifts assume real values. Strong signals of poles in the T
1These relations are derived by expanding T via a Breit-Wigner parametrization
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matrix can be detected by a swift rise in the eigenphases δα(E) from 0 to π/2. Strictly speaking, this claim
is accurate only for poles located in the vicinity of the real axis. For poles located close to the real axis the
phase shifts can suit as a good indicator to detect resonances. For weak signals or poles that have large
corresponding widths Γ, such a relation does not exist. For such cases the phase shifts is not a good indicator
for the existence of a resonance.

3.4 Riemann Sheets and Analytical Structure
The notion of Riemann sheets is an important part of physical scattering problems. Mathematically, for a
complex-valued function f : C → C different Riemann sheets describe discontinous regions in the complex
plane and are separated by branch cuts. In a scattering problem such branch cuts are located along the
real energy axis with branch points at threshold energies. Depending on which Riemann sheet a pole of the
scattering amplitude is located, the physical interpretation of this pole changes.

3.4.1 General Definition
For general double-valued complex functions f : D → C with D ⊂ C the concept of Riemann sheets can be
defined as follows

Definition 1: Riemann Sheets

Let D ∈ C an let f : D → C be a double-valued complex function. Let further z0, z1 ∈ C be two
branch points of f which generate a branch cut γ : [z0, z1] → C with end points z0 and z1, then two
branches f1 : R1 → C and f2 : R1 → C separated by the branch cut can be defined. The domains
R1, R2 ⊂ C are called Riemann sheets

In essence, Riemann sheets are two disconnected subdomains of a complex domain which are separated by
a branch cut. A simple example is the complex square root f : z 7→

√
z which is a double-valued complex

functions. The complex square root has branch points at z = 0 and z = ∞, generating a right hand cut along
[0;∞). The branch cut is chosen along the positive real axis. This separates two branches f1 = {Im(

√
z) ≥ 0}

and f2 = {Im(
√
z) < 0}. The corresponding Riemann sheets are R1 := {z ∈ C : Im(

√
z) ≥ 0} \ [0;∞) and

R2 := {z ∈ C : Im(
√
z) < 0}.

3.4.2 Single-Channel
A single-channel scattering problem is characterized by its channel momentum k ∈ C. According to equation
(3.1) the momentum is related to the energy E ∈ C by a square root. For a single channel only one threshold
Eth is present. The channel momentum k has a branch point precisely at Eth. This generates a right hand
branch cut along [Eth;∞) in the energy E. This branch cut separates two Riemann sheets I and II, defined
by

RI := {E ∈ C : Im(k) ≥ 0} \ [Eth;∞), RII := {E ∈ C : Im(k) < 0} . (3.22)

Technically only the half with Re(k) ≥ 0 of each Riemann sheet is physically relevant, since the real part of
the momentum should either be positive or zero. The physically relevant domain corresponds to the upper
half of sheet I and the lower half of sheet II. Henceforth, whenever I will refer to a Riemann sheet in a
scattering problem, I will only refer to the part with Re(k) ≥ 0.

Classification of poles

Poles of the scattering amplitude are parts of its singular structure. Poles can be located on different Riemann
sheets. The location of the pole in the complex momentum plane is crucial for its physical interpretation.
There are three types of poles which have their own special physical meaning. To simplify notation in the
single channel case, where only a single threshold is present, I will hereafter refer to Ẽ := E − Eth as the
energy relative to this threshold.
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Bound states

For large radial distances r → ∞ the radial emergent wave function χL(r) behaves as

χL(r) ∝ (e2iδL − 1) eikr , (3.23)

where δL denotes the Lth-partial wave phase shift. On the real energy axis, where Ẽ ∈ R is the energy
relative to the threshold and Ẽ < 0, the channel momentum k is purely imaginary and can take two different
values

k = ±i
√

−2µẼ . (3.24)

For Im(k) > 0, the wave function in equation (3.23) decays exponentially for large r which is the correct
asymptotic behavior for a bound state. Hence, poles of the scattering amplitude T with Im(k) ≥ 0 on the
real-energy axis are called bound states. These poles are always located on the physical Riemann sheet I.

Virtual bound states

From a mathematical perspective it is equally reasonable to choose Im(k) < 0. For Im(k) < 0, the wave
function in equation (3.23) increases exponentially for large r. Poles of the scattering amplitude T with
Im(k) < 0 on the real axis do not correspond to asymptotic states. Such poles are called virtual bound
states. These poles are located on the unphysical Riemann Sheet II.

Resonances

Resonances are poles of the scattering amplitude T with nonzero imaginary part Im(E) ̸= 0. For E ∈ C the
channel momentum k ∈ C contains a real and imaginary part and is defined as

k =

√
2µẼ . (3.25)

For Re(k) ̸= 0, one can not infer any information about the two Riemann sheets from equation (3.23).
Instead, one has to directly examine the scattering amplitude T. For energies E in the vicinity of a pole, T
can be parametrized with a Breit-Wigner parametrization ([134])

T = − Γ/2

E −m± iΓ/2
(3.26)

with resonance mass m and corresponding width Γ. The minus sign in the denominator of (3.26) is used
for energies E on Riemann sheet I, while the plus sign is used for energies on Riemann sheet II. Poles
of the scattering amplitude in equation (3.26) correspond to roots of the denominator. The roots of the
denominator are

E = m∓ i
Γ

2
. (3.27)

Moreover, the scattering amplitude T must obey the unitarity constraint

Im(T) = |T|2 (3.28)

which is derived from the unitarity condition for the S matrix (see section 3.2). A full derivation can be
found in appendix C. After inserting equation (3.26) into (3.28) and performing simple algebraic steps, the
unitarity condition translates into

Γ2/4

(E −m)2 + Γ2/4
= ± Γ2/4

(E −m)2 + Γ2/4
. (3.29)

For nonzero Γ equation (3.29) is only fulfilled, if the + sign is chosen. The corresponding poles have Im(E) < 0
which is equivalent to Im(k) < 0. Physical resonances are thus always located on Riemann sheet II. Poles with
Im(k) > 0 , located on the first Riemann sheet are unphysical, because they violate the unitarity constraint
(3.28). Such unphysical poles can still remotely contribute to calculations of experimental observables, for
example the cross section, if their location is close enough to the real energy axis. The full sheet structure
of the single channel physical scattering amplitude is depicted in Figure 3.1, taken from [135]
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Figure 3.1: Analytical continuation of the scattering amplitude from the upper half plane
of the first Riemann sheet with positive imaginary energy Im(s) > 0 colored in green to
the lower half plane of the second Riemann sheet with negative imaginary energy Im(s) < 0
colored in red. The Riemann sheets are smoothly connected by the blue line which symbolizes
the branch cut at Im(s) = 0. A physical pole of the scattering amplitude is depicted on the

lower half plane of the second Riemann sheet

3.4.3 Two Channels
Two-channel scattering problems are more involved in their analytic structure than single-channel ones. In a
two-channel scattering problem such as the b̄b̄ud system, studied in this work, there are two distinct thresh-
olds Eth,α, resulting in two channel momenta kα with α ∈ {1, 2}. Each momentum kα : C → C can be
thought of as a distinct complex-valued function which comes along with its own branch cut. The branch
points of each channel momentum kα lies at the respective threshold Eth,α. Each branch point is accompa-
nied by a right hand branch cut along [Eth,α;∞). Each branch cut separates two subdomains Rα,1, Rα,2 ⊂ C
of the complex momentum plane, defined as

Rα,1 = {E ∈ C : Im(kα) ≥ 0} \ [Eth,α;∞), Rα,2 = {E ∈ C : Im(kα) < 0} . (3.30)

From these branches, four Riemann sheets can now be constructed from the intersection Rij := R1,i ∩ R2,j

with i, j ∈ {1, 2}, defining a total of four Riemann sheets for the two channel scattering system. These
Riemann sheets are ordered according to a classification scheme, taken from [74]

Rij =


I, if i = 1, j = 1

II, if i = 2, j = 1

III, if i = 2, j = 2

IV, if i = 1, j = 2

. (3.31)

Other classification schemes are equally correct.

Classification of poles

As discussed in section 3.2, for two-channel scattering problems the scattering amplitude T becomes a 2× 2
matrix called T matrix. As in the single channel case, poles of the T matrix can be separated again into
bound states, virtual bound states and resonances.
Poles with Im(E) = 0 and Re(E) < Eth,1 are called bound states if and only if Im(k1), Im(k2) > 0, i.e.
bound states are always located on Riemann sheet I. Poles with Im(E) = 0 and Re(E) < Eth,1 on all other
Riemann sheets entail a wrong asymptotic behavior in the wave function. Such poles are called virtual
bound states. Poles off the real axis with Im(E) ̸= 0 are called resonances. The unitarity constraint (3.28)
extended to coupled channels prohibits the existence of the resonance on Riemann sheet I. Correspondingly,
resonances can appear on Riemann sheets II, III and IV.
The discussion in this paragraph also applies to the b̄b̄ud, I(JP ) = 0(1−) system studied in this work. As
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noted in section 3.2 the 2 × 2 scattering problem consists of a BB scattering channel and B∗B∗ scattering
channel. The channel momenta defined in equation (3.1) have branch points at their respective thresholds
at energies E = 2mB for the BB and E = 2mB∗ for the B∗B∗ channel. Poles with Re(E) < 2mB and
Im(E) = 0 are identified as bound states, while poles away from the real axis with Im(E) < 0 are identified
as physical resonances if found on Riemann sheet III. Poles with Re(E) < 2mB and Im(E) = 0 found on
Riemann sheets II,III or IV are identified as virtual bound states, while poles with Im(E) ̸= 0 found on
Riemann sheets II or IV are identified as nonphysical resonances.

With this, the discussion of all facets of the theoretical scattering formalism, relevant for this work, is
concluded. In the next section results from this section are used to develop a numerical method to study
the b̄b̄ud, I(JP ) = 0(1−) four quark channel with heavy spin effects.

3.5 Numerical Method
In this section, all preparatory steps needed before a numerical analysis is conducted are presented. The
following paragraphs are meant as an overview about numerical preparations to bring equation (3.9) into a
numerically solvable form, however I refrain from showing all intermediate algebraic steps. The techniques
presented in this section are mostly equivalent to the ones used in following works [54, 67, 70].
In all numerical problems that involve physical quantities with units, the first step is to reformulate the
equation, one is interested in solving in terms of dimensionless quantities, defined by a characteristic scale
of the system, e.g. a mass or a length. For the system studied in this work a suitable choice is given by the
lattice spacing a. After re-expressing all dimensionful quantities q in equation (3.9) through dimensionless
quantities q̂, the coupled ordinary differential equations (3.9) becomes

d2

dr̂2
χBB(r̂) =

[(
V̂5 + 3V̂j

4

)
r̂ABBj1(k̂r̂) +

√
3

4
(V̂5 − V̂j)r̂AB∗B∗j1(k̂

∗r̂)

]

+

[√
3

4
(V̂5 − V̂j)χB∗B∗(r̂) +

(
2

r̂2
+

1

4
(V̂5 + 3V̂j)−

ˆ̃
E

)
χBB(r̂)

] (3.32)

d2

dr̂2
χB∗B∗(r̂) =

[(
3V̂5 + V̂j

4

)
r̂AB∗B∗j1(k̂

∗r̂) +

√
3

4
(V̂5 − V̂j)r̂ABBj1(k̂r̂)

]

+

[√
3

4
(V̂5 − V̂j)χBB(r̂) +

(
2∆m̂+

2

r̂2
+

1

4
(3V̂5 + V̂j)−

ˆ̃
E

)
χB∗B∗(r̂)

]
,

(3.33)

where r̂ = r/a is a dimensionless radial coordinate. All precise, analytical relations between quantities qi
and their corresponding dimensionless equivalents q̂i are given in appendix A.

The system of differential equations above is a system of two coupled, linear, inhomogenous ordinary differen-
tial equation. The total solution of such a system is a combination of the solution of the homogenous equation

and a solution of the total inhomogenous one. Let χ⃗(k)
hom(r̂) :=

(
χ
(k)
BB,hom(r̂), χ

(k)
B∗B∗,hom(r̂)

)T
with k ∈ {1, 2}

be two linearly independent solutions of the homogenous equation and χ⃗inh(r̂) := (χBB,inh(r̂), χB∗B∗,inh(r̂))
T

one particular solution of the inhomogenous equation then the total solution χ⃗tot(r̂) reads

χ⃗tot(r̂) = χ⃗inh(r̂) + α1 χ⃗
(1)
hom(r̂) + α2 χ⃗

(2)
hom(r̂) (3.34)

with two initially undetermined coefficients α1, α2 ∈ C. The two solutions of the homogenous equation
χ⃗
(k)
hom(r) are determined by solving equation (3.9) with ABB = AB∗B∗ = 0. In order to guarantee that the

solutions are linearly independent, I choose the following initial conditions for the wave functions χ⃗(k)
hom(r)

χ⃗
(1)
hom(r̂) ∝

(
r̂2

0

)
, χ⃗

(2)
hom(r̂) ∝

(
0
r̂2

)
, r̂ → 0 . (3.35)
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In the last step of the numerical method, the coefficients α1 and α2 need to be calculated. In the following
paragraph, a general derivation of the coefficients αi ∈ C with i ∈ {1, 2}, based on boundary conditions is
outlined.

In numerical calculations the infinite radial distance r must be replaced by a sufficiently large maximum
distance rmax at which boundary conditions are satisfied up to a given numerical precision. To check for
numerical stability the value of rmax can be varied. The result of a numerical calculation should be largely
independent of the concrete choice of rmax.
The total wave function components χα,tot(r) with α ∈ {BB,B∗B∗}, defined in (3.34) satisfies the boundary
conditions defined in equations (3.12)-(3.13) for a fixed incident wave composition (ABB , AB∗B∗). By taking
a logarithmic derivative of equation (3.12) or equation (3.13) at r = rmax, one obtains a system of linear
equations for the coefficients α1 and α2

d

dr
log(χBB(r))

∣∣∣∣
r=rmax

=
χ

′

BB,inh(rmax) + α1χ
(1),′

BB,hom(rmax) + α2χ
(2),′

BB,hom(rmax)

χBB,inh(rmax) + α1χ
(1)
BB,hom(rmax) + α2χ

(2)
BB,hom(rmax)

=
rh1

′(kr) + h1(kr)

rh1(kr)

(3.36a)

d

dr
log(χB∗B∗(r))

∣∣∣∣
r=rmax

=
χ

′

B∗B∗,inh(rmax) + α1χ
(1),′

B∗B∗,hom(rmax) + α2χ
(2),′

B∗B∗,hom(rmax)

χB∗B∗,inh(rmax) + α1χ
(1)
B∗B∗,hom(rmax) + α2χ

(2)
B∗B∗,hom(rmax)

=
rh1

′(k∗r) + h1(k
∗r)

rh1(k∗r)

, (3.36b)

where the primes imply derivatives with respect to r. Equations (3.36a) and (3.36b) can equivalently be

written as a matrix-vector equation with solution vector α⃗ =

(
α1

α2

)
∈ C2:

Mα⃗ = C⃗ (3.37)

with matrix M ∈ C2×2 and inhomogenity vector C⃗ ∈ C2 defined as

M =


χ
(1), ′

BB,hom(rmax)− βχ
(1)
BB,hom(rmax) χ

(2), ′

BB,hom(rmax)− βχ
(2)
BB,hom(rmax)

χ
(1), ′

B∗B∗,hom(rmax)− γχ
(1)
B∗B∗,hom(rmax) χ

(2), ′

B∗B∗,hom(rmax)− γχ
(2)
B∗B∗,hom(rmax)

 (3.38a)

C⃗ =

 β χBB,inh(rmax)− χ
′

BB,inh(rmax)

γ χB∗B∗,inh(rmax)− χ
′

B∗B∗,inh(rmax)

 (3.38b)

with intermediate quantities β ∈ C and γ ∈ C, given by

β =
rh1

′(kr) + h1(kr)

rh1(kr)
(3.39)

γ =
rh1

′(k∗r) + h1(k
∗r)

rh1(k∗r)
(3.40)

For n-channel scattering problems equation (3.37) generalizes to a system of equations with n unknown
coefficients αi, i ∈ {1, 2, ..., n}. Formally, the solution of equation (3.37) can be written as α⃗ = M−1 C⃗.
Therefore, for an n-channel scattering problem, the determination of the solution vector α⃗ is equivalent to
inverting an n× n matrix. For the 2× 2 inverse of the matrix specified in equation (3.38a) there is a simple
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analytical expression allowing for an analytical solution for α⃗. The two resulting coefficient α1 and α2 read

α1 =
M22C1 −M12C2

M11M22 −M12M21
(3.41a)

α2 =
M11C2 −M21C1

M11M22 −M12M21
. (3.41b)

Note that in all numerical calculations r must be replaced by r̂ and k by k̂. With the coefficients αi
determined , the total wave function can now be computed through equation (3.34). From the coefficients
α1 and α2 the total wave function defined in equation (3.34) can be computed which in turn can be used
to extract the T matrix elements tα,β with the boundary conditions defined in section 3.2. With this, the
discussion of all preparatory steps for the numerical analysis contained in this work is concluded.
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Chapter 4

Numerical Results

In this section results of the numerical analysis for the two-channel scattering problem defined by equation
(3.9) are presented. Thereby, methods developed in chapter 3 are applied to compute various quantities
that characterize the b̄b̄ud, I(JP ) = 0(1−) four-quark system considered in this work. Based on the results,
I draw conclusions for physical implications of heavy spin effects on the particular system studied in this
work.

4.1 Numerical Procedure and Error Analysis

4.1.1 Numerical Procedure and Input Parameters
The 2 × 2 coupled-channel ordinary differential equation (3.9) is solved for complex energies E ∈ C with a
standard fourth-order Runge-Kutta algorithm. By employing the boundary conditions defined in equations
(3.13)-(3.12) on the wave function components, I determine the a posteriori computable T matrix entries,
defined in equation (3.16). An improved shooting algorithm is used to detect poles of the T matrix deter-
minant det(T). The algorithm searches for roots of 1/det(T) up to a given numerical precision using fourth
order numerical derivatives. Once a pole is found, depending on its position in the complex energy plane, it
is interpreted according to its belonging Riemann sheet as discussed in section 3.4.
In my code I use a bottom-quark mass of mb = 4977 MeV from a quark model [129], a mass splitting between
B and B∗ mesons of ∆m := mB∗ −mB = 45 MeV taken from the PDG ([135]) and values for the input
parameters α5, αj , d5, dj from [72] quoted at the end of section 2.2. The Runge-Kutta solver uses a starting
point of r̂0 = 10−8, a maximal distance of rmax = 2.0 fm and step size ∆r̂ = 0.005, while these parameters
are carefully varied to check for numerical stability.

4.1.2 Error Analysis
All results of the numerical analysis are contaminated by uncertainties. The total uncertainty of physical
quantities is a combination of systematic and statistical errors. The main source of systematic errors are
uncertainties in the χ2-fit range used to extract the potential parameters α5, αj , d5, dj . Another source of
systematic errors are uncertainties in the temporal fit range in the effective mass plateaus used to extract
the potentials V5 and Vj . These systematic errors could be estimated by varying the temporal and spatial
fit ranges and calculating the corresponding physical quantities on each of them. the standard deviation of
these values should give a good estimate for the resulting systematic error. Details of this procedure can be
found in [63].

The main source of statistical errors is the finite number of gauge configurations used in the lattice QCD
computation of the static potentials V5 and Vj . This generates an error which goes like 1/

√
N , where N is

the number of gauge configurations. On each configuration the static potentials V5 and Vj can be calculated
from which in turn parameters α5, αj , d5, dj can be obtained. This gives a total number of N parameter
samples (α5, αj , d5, dj)i, i ∈ [1;N ]. A good estimator for the corresponding statistical error is obtained by
using resampling methods. One of such methods is the Jackknife method. This method is based on deleting
values from a dataset. Let {Xn}n∈[1;N ] be a number N data points, then N reduced samples of size N-1 can
be obtained by deleting the kth-value with k ∈ [1;N ] of the data. This generates N reduced subsamples
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{Xn,k}n∈[1;N−1]. The mean of these subsamples Xk can be defined as

Xk =
1

N − 1

N−1∑
n=1

Xn,k . (4.1)

The resampled mean X̂ and the standard deviation σX̂ can be defined as

X̂ =
1

N

N∑
k=1

Xk (4.2)

σX̂ =

√√√√N − 1

N

N∑
k=1

(Xk − X̄)2 , (4.3)

where X̄ :=
N∑
n=1

Xn is the mean of the original dataset. The final results for the quantity X can now be

quoted as X = X̂ ± σX̂ . The standard deviation σX̂ provides a good estimate for the statistical error.

Statistical errors are expected to be the the dominant source of uncertainty. For all numerical results obtained
in this work I only consider statistical errors and neglect any systematic error sources. The Jackknife method
can be used to estimate statistical errors if the original sample of potentials, extracted from lattice QCD
effective masses is available. If this is note the case then one has to construct the parameter samples by hand.
This is done for results calculated in this work as follows. To calculate statistical errors a number of N = 1000
parameter samples (α5, αj , d5, dj) was generated by choosing random values from distributions whose widths
correspond to the statistical error of the respective parameter. Since the statistical errors of d5 is asymmetric,
for d5 an asymmetric distribution was generated. The parameters of this asymmetric distribution were chosen
such that the differences between the 84th and 16th percentiles and the median correspond to the lower/upper
statistical uncertainty of d5. For the parameters α5, αj , dj gaussian distributions with a width corresponding
to the standard deviation of these parameters were constructed. Physically interesting quantities like pole
positions Epole can be calculated on each of the parameter samples, leading to N values {Epole,n}n∈[1;N ].
These values form a statistical distribution on their own. With this distribution a lower statistical error
∆E−

pole, corresponding to the difference between the 84th percentile and the median and an upper statistical
error ∆E+

pole, corresponding to the difference between the 16th percentile and the median are determined.
Noticeably, some of the parameter samples lead to unphysical results. These outliers are removed by hand
from the distribution before any further statistical analysis is conducted.

4.2 Pole Search in the Complex Plane
For a crude estimation of the poles of the T matrix, I apply the numerical method discussed in section 4.1.1
to a grid of complex energies E ∈ C. I take ∆Re(E) = ∆Im(E) = 1 MeV as the grid spacing. For each
energy E ∈ C, I scan for a pole like behavior of det(T). If a signal for a pole is found in this crude scan,
I then apply Newton’s method with the crude pole estimate as the initial guess to find roots of 1/det(T).
If convergence is achieved before a fixed number of iterations the resulting solution can be interpreted as
a pole. If it turns out to be numerically stable, I interpret the pole as a physically relevant pole. Once
a physically relavent pole is found, I assign a physical interpretation based on its location in the complex
plane.
With the method prescriped above, I find a resonance pole on Riemann sheet III with real energy
Re(E)−2mB = 94.4+2.9

−4.6 MeV and width Γ = −2Im(E) = 140+70
−44 MeV (see Figure 4.1). Numerical stability

of this pole was checked by varying the numerical parameter rmax. No poles were found on the other Riemann
sheets II and IV. The location of the pole is closer to the B∗B∗ threshold than to the BB threshold. This
is rather surprising, considering that without heavy spin effects a pole was found only 17 MeV above the
BB threshold in [64]. The resonance energy is 4 MeV above the B∗B∗ threshold and is thus generated by
a combination of BB and B∗B∗ scattering. The pole result entails a sizable shift of 76 MeV in the real
energy compared to the single channel case in [64]. Correspondingly, this suggests that heavy spin effects
have a sizable non negligible impact on the system. In the following paragraphs, I investigate the details of
the effects leading to this sizable energy shift.
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In equation (3.9) heavy spin effects enter via the mass splitting ∆m and the mixing of the attractive and
repulsive potentials V5 and Vj . The mixing of the static potentials is manifested in the 2×2 potential matrix.
The proportions between V5 and Vj determine the overall attractiveness in each matrix element. A numerical
analysis shows that the result is largely independent of the actual value of Vj . This is a consequence of the
small values of the fitting parameters (αj , dj) compared to the values of (α5, d5). It thus suffices to only
regard the splitting of the attractive potentials among the different components. The potential matrix defined
in equation (2.25) contains a splitting of the attractive potential component into V5/4 in the (11)-component
and 3V5/4 in the (22)-component. Here, the (11)-component can be associated with the BB channel while
the (22)-component of equation (2.25) can be associated with the B∗B∗ channel. In the BB channel the
attractive potential is reduced by a factor of 1/4, disfavoring the existence of a resonance in this channel. In
the B∗B∗ channel the attractive potential is reduced only by a factor 3/4, strongly favoring the existence of a
resonance in this channel. The other important ingredient besides the potential matrix is the mass splitting
∆m between the channels. The threshold energy Eth = 2mB in the BB channel is about 90 MeV smaller
than the threshold energy Eth = 2mB∗ in the B∗B∗ channel. This increases the likelihood of a formation
of a resonance in the BB channel while it lowers the likelihood of a formation of a resonance in the B∗B∗

channel. The pole dynamics of the system is fully dictated by an interplay between the potential matrix and
the mass splitting. In order to obtain a quantitative picture of the dominance of each of those effects, in the
following subsections I study each of them individually.
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Figure 4.1: 3D plot of T matrix determinant with pole

4.2.1 Rotating the potential matrix
I first address the effects of the potential matrix. To study the effect of the splitting of the attractive poten-
tial V5 and , I parametrize the potential matrix by a real angle θ ∈ [0;π/2] as

Hint,2×2 =

(
cos2 θV5 + sin2 θVj sin θ cos θ(V5 − Vj)

sin θ cos θ(V5 − Vj) sin2 θV5 + cos2 θVj

)
. (4.4)

The mixing angle θ quantifies the splitting of the attractive potential into the (11)- and (22)- component
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of the potential matrix. The definition in equation 4.4 allows for a smooth transition between the single
channel case from [64] which corresponds to θ = 0 and the two-channel case with heavy spin effects included
defined by equation (2.24), which corresponds to θ = π/3. Additionally, there is a second single-channel case
for θ = π/2. In this case the matrix Hint,2×2 is diagonal with the repulsive potential Vj in the BB channel
and the attractive potential V5 in the B∗B∗ channel. By varying the angle θ ∈ [0;π/2], one can follow the
trajectory of the resonance found in [64] in the complex energy plane. I solve equation (2.25) for each value
of θ, perform a pole scan and determine the corresponding resonance energy Re(Ê) = Re(E)− 2mB and the
imaginary part Im(Ê) = Im(E). The resulting pole trajectory is shown in Figure 4.2. Both single-channel
cases and the physical case with heavy spin effects included are highlighted by different colors.
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Figure 4.2: T matrix pole trajectory for mixing angles θ ∈ [0◦; 90◦]. The vertical orange
line symbolizes the B∗B∗ threshold

For θ = 0◦ I find the pole from [64] with slightly different values for the resonance energy and width Γ of
Re(E)− 2mB = 18.0+5.0

−6.3 MeV and Γ = 134+24
−20 MeV. The discrepancy of the central values of these results

compared to [64] is a consequence of different values of the reduced mass µ used in this work and in [64].
In [64] the reduced mass is defined via the B meson mass µ = mb/2, while in this work I used µ = mb/2
as the reduced mass. As expected, for θ = 90◦ I also find a pole with a real energy part shifted by 2∆m
but identical width Γ. In the range θ ∈ [0◦; 36◦) I find poles with increasing real energies and increasing
width. The slope of the trajectory consistently decreases in this range until a maximum in the width Γ is
reached at θ ≈ 36◦. For θ ∈ (36◦; 90◦] the width Γ decreases and the slope of the trajectory continously
increases until the single-channel case with θ = 90◦ is reached. The physical resonance pole at θ = 60◦ is
included in this range. This rather unintuitive behavior of the pole trajectory can be interpreted using the
potential matrix defined in equation (4.4). In the range θ ∈ [0◦; 45◦) the attractive component in the BB
channel outweighs the attractive component in the B∗B∗ channel but continously decreases, leading to an
increase in the width Γ as the resonance is driven further away from the real axis. In this range the pole
is located closer to the BB threshold. At θ = 45◦ the attractive component in the BB channel equals the
attractive component in the B∗B∗ and a minimum in Im(E), corresponding to a maximum in the width Γ
would be expected in the pole trajectory. However, in Figure 4.2 the minimum is found at θ = 36◦. The
smaller angle is due to the mass splitting 2∆m which modifies the pole trajectory. For θ ∈ (45◦; 90◦] the
attraction in the B∗B∗ channel dominates and increases with growing angle θ, leading to a decrease in the
width because the resonance is driven towards the real axis. For θ = 60◦ which corresponds to the physical
case the attractive potential in the B∗B∗ channel is amplified by a factor of 3 compared to the attractive
potential in the BB channel. This shifts the pole closer to the B∗B∗ threshold, explaining the sizable shift
in the real energy compared to the single channel case in [64].
Statistical errors for the real part of the energy Re(E) − 2mB and the width Γ were computed with the
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method discussed in section 4.1.2. In Figure 4.2 only errors for the real part of the energy are shown.
Errors were calculated for θ ∈ {0, 10, 20, 30, 40, 50, 60, 70, 80, 90} ◦.

4.2.2 Unphysical Heavy Quark Mass
Besides modifying the splitting of the attractive potential one might also think of varying the physical bot-
tom quark mass mb. Here, I explore the implication of varying the bottom-quark mass by a constant factor
κ ∈ R according to mb → κmb. In works in Heavy Quark Effective Theory such as [136–138] it was shown
that the mass difference ∆m = mB∗ − mB is proportional to the inverse bottom-quark mass 1/mb up to
order O(1/m2

b) in the bottom-quark mass mb. The mass splitting varies with respect to the parameter κ
according to

∆m =
mB∗ −mB

κ
≈ 45MeV

κ
. (4.5)

With increasing κ the mass splitting ∆m is reduced. This can also be thought of as an reduction in repulsion
in the (22)-component of the potential matrix. For sufficiently large κ the attraction is expected to be strong
enough to form a stable bound state. To explore this, I solved equation (3.9) for values of κ ∈ [1.0; 4.0] and
performed a pole scan for each value of κ. In my numerical analysis I find bound states for all κ > 2.82,
whereas for all κ ∈ [1.0; 2.82] I find resonances. The values of the binding energy ∆E = Re(E) − 2mB in
dependence of the parameter κ are shown in Figure 4.3.
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Figure 4.3: Binding energy −∆E := 2mB − E of bound states as a function of κ for
κ ∈ [2.82; 5.0].

For increasing values of κ > 2.82, the binding energy grows nearly linearly. The value κ ≈ 2.82 at which
bound states starts to appear is considerably larger compared to the single channel case for which bound
states appear for all κ > 2.2. This deviation is a result of the shift in the real energy ∆Re(E) ≈ 74 MeV
between both cases which in turn results from the splitting of the attractive potential V5 between the two
channels BB and B∗B∗ as discussed in section 4.2.1.

To obtain a complete understanding of this deviation, I also carried out a numerical analysis of poles
for various combinations of θ ∈ [0◦; 90◦] and κ ∈ [1.0; 4.0] on a two dimensional grid. In total, I used
Nθ × Nκ = 10 × 20 points to produce the diagram shown in Figure 4.4. In Figure 4.4 I classified the
different nature of poles into resonances (blue) and bound states (green). For each θ the real part of the
pole energy Re(E) − 2mB and the width Γ decrease with increasing κ. This is due to the reduction in
repulsion in the coupled-channel equation (3.9) caused by the mass splitting ∆m. At a specific κmin the
pole reaches the real axis at the BB threshold. For all κ > κmin the pole has Im(E) = 0 with real energy
Re(E) < 2mB . The pole can now be interpreted as a bound state as shown by the green regime in Figure
4.4. For every angle θ the corresponding boundary value κmin was obtained up to a precision of 10−4. The
value of κmin continously increases with θ because of the increasing real part of the energy Re(E) − 2mB .
From the values κmin the red curve in Figure 4.4 which marks the boundary between the two regimes was
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constructed using interpolation methods.
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Figure 4.4: Different regimes of system for Nθ × Nκ = 10 × 20 combinations of θ and κ
with resonances marked by blue and bound states by green.

From the analysis in this section I conclude that the position and nature of a pole is determined by both
the potential matrix and the heavy quark mass. Both factors contribute to a change in the pole position.
Increasing θ shifts the pole to higher real energies Re(E), while increasing κ shifts it towards the real axis
and lower real energies Re(E). Out of the two the heavy quark mass seems to have more weight than the
attractive potential as for every θ poles are found for a sufficiently large κ.

4.3 Branching Ratios
Until now I have shown only numerical results for pole positions from which the mass and the width of the
resonance can be extracted. In addition to pole positions it is also interesting to consider the decay structure
of the resonance. The resonance discussed in section 4.2 has two decay channels. It can decay either into a
BB or a B∗B∗ pair. The probability of a decay into a certain channel α is equivalent to the corresponding
branching ratio BRα. According to [135] the branching ratio is defined as the ratio of the partial decay
width Γα of some decay channel α and the total decay width Γ:

BRα =
Γα
Γ
, Γ =

∑
α

Γα . (4.6)

The partial decay widths Γα can be reasonably approximated by the residues of the diagonal T matrix entries
Res(tα;α). With this, the branching ratios BRα can be approximated with the relation

BRα =
|Res(tα;α)|

|Res(tBB;BB)|+ |Res(tB∗B∗;B∗B∗)|
, α ∈ {BB,B∗B∗} . (4.7)

Thus, all one has to do to compute the branching ratios is to compute pole residues. Here, I utilize tow
distinct, independent methods. In the first method I use the definition of the residue as the following limit

Res(tα;α) = lim
ϵ→0

tα;α(Epole + ϵ) , (4.8)

where Epole is the corresponding pole position. Numerically, the limit ϵ→ 0 cannot be taken. The numerical
result will thus have a residual dependence on the small parameter ϵ. In practice, one has to consider several
values for ϵ and look for convergence as one approaches the pole. Depending on the singular structure of the
T matrix entries tα;α this convergence may be better or worse.
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The second method considered is based on complex contour integrals. If C is a closed contour around a pole
at position Epole and the T matrix entries tα;α(E) are holomorphic functions of the energy E on the domain
of the contour, then one can use the residue theorem to estimate the residues:

Res(tα;α) =
1

2πi

∮
C

tα;α(E) dE . (4.9)

The choice of the contour is not unique. In fact any contour without singular points is a possible choice.
Yet, from a numerical point of view some contours may be better choices than others. For all calculations,
I choose a small circle around the pole as the contour. This contour can be parametrized by a parameter
λ ∈ [0; 1] as

E(λ) = Epole + re2πiλ , (4.10)

where r is the radius of the small circle. The choice of the radius is not unique and must be carefully
investigated. However, for distances sufficiently far away from the pole the residues should not be signifi-
cantly impacted by the concrete choice of r. Compared to the method defined by equation (4.8) the contour
integration method is more robust to the position away from the pole provided a suitable integration path
is chosen. We note that the parametrization defined by equation (4.10) works only for poles which are not
located on a branch cut. For such poles a circle will not be a suitable choice, because tα;α(E) is not holo-
morphic on the branch cut. Numerically, the contour integration method is more expensive, because instead
of computing the T matrix entries tα;α(E) at a single point as in the limit-method one needs to compute its
values along a predefined integration path. The numerical cost depends on the integration method and the
number of integration points on the contour.
I computed residues with the first method for multiple ϵ ∈ {10−4, 10−5, 10−6, 10−7, 10−8, 10−9} and
θ ∈ [0◦; 90◦]. I find reasonable convergence for ϵ ∈ {10−7, 10−8, 10−9} (see Appendix D). In the left panel of
Figure 4.5 I show results for the branching ratios for ϵ = 10−8.
I also computed residues with the contour-integration method. To investigate the dependence on the ra-
dius r, I computed residues for r ∈ {0.5, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8, 2.0} MeV. As expected I observe smaller
deviations than for the limit-method when varying ϵ (see Appendix D). Residues were computed for angles
θ ∈ {0◦, 10◦, 20◦, 30◦, 40◦, 50◦, 60◦, 70◦, 80◦, 90◦}. For the estimations of the central values I used N = 30
integration steps, while for a crude estimation of the errors I used only N = 10 integration steps. In the
right panel of Figure 4.5 I show my results for the branching ratios for r = 1 MeV with this method and
the relative difference compared to the limit-method with ϵ = 10−8.
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Figure 4.5: (left): BB and B∗B∗ Branching ratios calculated with the limit-method with
ϵ = 10−8, (right): BB and B∗B∗ Branching ratios calculated with the contour integration-

method with r = 1 MeV

For θ = 0◦, i.e. where both channels are decoupled the branching ratio in the BB channel is almost 100% in
the left and right panels in Figure 4.5. For this case the resonance decays with high probability into the BB
channel, because the attractive potential is fully located in the BB channel. For θ > 0◦ the BB branching
ratio continously decreases, whereas the B∗B∗ branching ratio continously increases. This a consequence of
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the increasing proportion of the attractive potential in the B∗B∗ channel. At θ ≈ 41◦, where the proportions
of the attractive potential are almost equal the branching ratio of the B∗B∗ channel becomes higher than
the branching ratio of the BB channel. For θ ∈ (41◦; 90◦] the system then couples predominantly to the
B∗B∗ decay channel. For θ = 90◦, where again both channels are decoupled the branching ratio of the
B∗B∗ channel is almost 100%. The system now decays almost exclusively into a B∗B∗ pair, since the
attractive potential is fully located in the B∗B∗ channel. This behavior of the branching ratio is identical
for the limit-method and the contour-integration method. In fact, the numerical difference between values
calculated with both methods does not exceed a maximal difference of 2 · 10−2 %. For the physical angle
θ = 60◦ the branching ratios are BRBB = 26+3

−2 % and BRB∗B∗ = 74+3
−4 %. Here, I quote the branching

ratios computed with the contour integration method. For the physically relevant case θ = 60◦, I conclude
that the probability that the resonance decays into a B∗B∗ is much higher than the probability it decays
into a BB pair. In other terms, this indicates a stronger coupling of the resonance to the B∗B∗ than to the
BB channel.

4.4 Coupled-Channel Eigenphases
In section 3.3, I showed how to compute the eigenphases for a coupled channel scattering problem. There, I
found the following relation between the two eigenphases δα(E), α ∈ {1, 2} and the two S matrix eigenvalues
sα, α ∈ {1, 2}

sα = e2iδα(E) , (4.11)

where the eigenvalues sα with α ∈ {1, 2} must be evaluated at real energies E ∈ R. To compute the
eigenvalues sα with α ∈ {1, 2}, I solve equation (3.9) for real energies Ẽ ∈ [0; 300] MeV. The resulting
eigenvalues sα can be inserted into equation (4.11) to compute the two eigenphases δα(E).
However, there is one important caveat in the numerical analysis which must be taken care of. At the
two branch points, corresponding to the thresholds Eth,i ∈ {2mB , 2mB∗} the corresponding real channel
momentum ki vanishes. This introduces an instability into the numerical procedure since the hankel function
h
(1)
1 (kir) diverges for ki = 0. I resolve this issue by using a complex energy E ∈ C with an arbitrary small

non zero imaginary part. In my numerical calculation I used an imaginary energy part of Im(E) = 10−7 MeV
which does not significantly alter the result. The resulting phase shifts are shown in Figure 4.6 together
with the single-channel phase shifts for θ = 0◦ and θ = 90◦.
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Figure 4.6: Coupled channel eigenphases for energies E − 2mB ∈ [0 MeV; 400 MeV]

For θ = 0◦ I obtain the phase shift found in [64] with a continous rise from 0 to π/4 as indicated by the
purple dotted curve in Figure 4.6. In the single-channel case the off diagonal elements of the T matrix
vanish which leads to only one non vanishing eigenphase δ1. This eigenphase can be fully associated with
the BB channel. For the single channel case for θ = 90◦ the same phase shift as for θ = 0◦ shifted by an
energy of 90 MeV can be found, corresponding to the B∗B∗ threshold as shown by the green dotted curve
in Figure 4.6. As for θ = 0◦ there is only one non vanishing eigenphase δ2 fully associated with the B∗B∗

channel. In 4.6 one can notice a small discontinuity at E − 2mB = 90 MeV. This is due to the right hand
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cut introduced by the B∗B∗ threshold which lies on the real energy axis. I already discussed this caveat
at the beginning of this subsection. For the physical case with θ = 60◦ I observe that the eigenphase δ1
dominates. In contrast to the single-channel cases for the coupled-channel case the eigenphases reflect a mix
of the two channels BB and B∗B∗. Thus, the eigenphases can not be associated uniquely with one of the
two channels. For energies E < 2mB∗ the eigenphase δ1 increases linearly while the eigenphase δ2 decreases.
In the vicinity of the B∗B∗ threshold the phase δ1 exhibits a small jump, again caused by the branch cut
at E = 2mB∗ . For energies E > 2mB∗ the eigenphase δ1 monotonically increases until it converges to
the single-channel phase shift with δ1 ≈ π/4 at high energies. The other eigenphase δ2 decreases until it
saturates at δ2 ≈ −0.02 π at high energies. Compared to the single-channel case in [64] the entire curve of
the eigenphase δ1 is shifted towards higher energies. This may be a consequence of the increasing real parts
of the pole energies Re(EPole) for increasing mixing angle θ shown in Figure 4.2. Based on this observation,
I conclude that heavy spin effects manifest in a rightward shift in the eigenphase towards higher energies
which is in line with the shift of the real part of the pole position.
With this reasoning the discussion of this section and the entire chapter is concluded.
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Chapter 5

Conclusion and Outlook

In this thesis, I studied heavy spin effects in the b̄b̄ud tetraquark resonance with quantum numbers
I(JP ) = 0(1−). I developed a two-channel scattering formalism to describe the coupling between BB and
B∗B∗ channels. Based on this formalism, I conducted a numerical study of the system. With the refined
scattering formalism I find a resonance pole at Re(E)− 2mB = 94.4+2.9

−4.6 MeV and width Γ = 140+70
−44 MeV.

The real part of the pole energy is located only 4MeV above the B∗B∗ threshold. This suggests that the res-
onance is located close to the B∗B∗ threshold, rather than close to the BB threshold as previously thought.
The sizable shift in the real part of the pole energy compared to the single-channel case in [64, 65] was found
to be a consequence of an interplay between the mass splitting and the splitting of the attractive potential.
In addition, I also computed the branching ratios for the two decay channels BB and B∗B∗. I find branching
ratios of BRBB = 26+3

−2 % and BRB∗B∗ = 74+3
−4 %. This result indicates a stronger coupling of the resonance

to the B∗B∗ decay channel than to the BB channel. While the probability that the resonance decays into a
B∗B∗ is approximately three times as large as the probability it decays into a BB pair, the coupling to the
BB pair is still sizable and cannot be neglected. Thus, I conclude that coupled channel effects are important
and non negligible. Based on these results, I find evidence for a resonance close to the B∗B∗ threshold
which is coupled to both channels BB and B∗B∗. However, this result should still be treated with caution
as the approach used in this work suffers from a number of systematic errors which are not easily quantifiable.

The approach is severely limited by the static approximation. In the real world heavy quarks are not
static, leading to higher order corrections of the potential. The result of this work may be improved by
considering also O(1/mb) or even higher order corrections to the static potentials (see [58, 139, 140]). Also,
the quality of the static potentials is limited by the small number of lattice data points calculated in [72].
This leads to an additional systematic error for the results of this work. A newer calculation of the static
potentials with improved lattice QCD methods is currently ongoing. Another limitation comes from inte-
grating out all light degrees of freedom. This prohibits the study of scattering channels like BBπ whose
threshold lies comparatively close to the B∗B∗ threshold. For resonances close to the B∗B∗ threshold the
contribution of the three-particle BBπ channel may be non negligible anymore.
Because of these limitations, the main results of this work must be looked upon as qualitative. Ultimately, a
coupled-channel finite-volume lattice QCD study in the sense of [37] would be desirable to settle the physics
of the b̄b̄ud resonance. Ideally, this study should include mixing between two- and three particle scattering
channels to include also the BBπ channel. In addition, also a consistent treatment of the left-hand cut
generated by one- and two-pion exchange is needed(see [141–143]). The b̄b̄ud, I(JP ) = 0(1−) system may
suit as a playground for different methods to resolve the left-hand cut problem. The knowledge gained in
this work may be used as a starting point to build the setup for such a finite-volume lattice QCD study.
The results of such a study can then be compared to experiment. At the end, only experiment will reveal
the fate of the resonance in the real world.
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Appendix A

Dimensionless Quantities

In the following table all conversions between dimensionful quantities q and dimensionless quantities q̂ are
provided. The lattice spacing in fm is denoted as a and the lattice spacing in 1/MeV is denoted as aMeV.
both lattice spacings can be converted into each other using the planck constant ℏ and the speed of light c

aMeV =
a

ℏc
(A.1)

with ℏc ≈ 197.3 MeVfm

q q̂

r r̂ := r/a

k k̂ := k · aMeV

Ẽ
ˆ̃
E := 2µa2MeV Ẽ

V5 V̂5 := 2µa2MeV V5

Vj V̂j := 2µa2MeV Vj

Table A.1: Conversions between dimensionful quantities q and dimensionless quantities q̂
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Appendix B

Conservation of Orbital Angular
Momentum

Here, I show that the orbital angular momentum L is conserved. This is equivalent to showing that L2

commutes with the 16 × 16 Hamiltonian H whose parts are defined in equations (2.12) and (2.13). The
components Hij , i, j ∈ [1; 16] of this Hamiltonian in the center-of-mass frame read

Hij =Mij −
1

2µ

[
∂2

∂r2
+

2

r

∂

∂r
− L2

r2

]
δij +Hint,ij(r) , (B.1)

where Mij := (M⊗14×4+14×4⊗M)ij is a 16×16 matrix which contains combinations of B and B∗ masses.

I now calculate the commutator [L2, Hij ] for each component of the Hamiltonian H :

[L2, Hij ] = [L2,Mij ]−
1

2µ

[
L2,

∂2

∂r2
+

2

r

∂

∂r

]
+

1

2µ

[
L2,

L2

r2

]
+ [L2, Hint,ij(r)] . (B.2)

Here, the interaction term of the Hamiltonian Hint depends only on the radial coordinate r. The commutator[
L2, L

2

r2

]
can be further simplified as[

L2,
L2

r2

]
=

1

r2
[L2,L2]︸ ︷︷ ︸

=0

+L2

[
L2,

1

r2

]
= L2

[
L2,

1

r2

]
. (B.3)

The fist term in equation (B.2) is trivially zero, because Mij contains only constant numbers. The remaining
terms contain commutators of the form[

L2,
∂n

∂rn

]
, n ∈ {1, 2} and

[
L2, F (r)

]
, (B.4)

where F (r) are the values of a function F that only depends on the radial coordinate. Thus , in order to
show that [L2, Hij ] = 0 it suffices to prove that the two commutators in (B.4) vanish.
The angular momentum operator squared L2 can be expressed via the θ- and φ derivatives as

L2 =
1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

sin2 θ

∂2

∂φ2
. (B.5)

Moreover, the following relations found in standard textbooks hold for derivatives and coordinates θ, φ[
∂m

∂θmi
,
∂n

∂rn

]
= 0, θi ∈ {θ, φ},m, n ∈ N (B.6)[

Θ(θi),
∂n

∂rn

]
= 0, θi ∈ {θ, φ},m, n ∈ N , (B.7)

where Θ is a θi-dependent function which is analytic in θi.
Hence, I conclude that all commutators of the form

[
L2, ∂

n

∂rn

]
are zero. The second commutator of equation
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(B.4) is more complicated , because it contains arbitrary radial functions F . To calculate this commutator
it is most useful to consider it pointwise. For analytic functions F values of this function in the vicinity of
a given point r0 ∈ (0;∞) can be expanded around this point with a series expansion.
Let r0 ∈ (0;∞) and r ∈ Bϵ(r0), where Bϵ(r0) is a ball of small radius ϵ around r0, then for every point
r ∈ Bϵ(r0)

F (r) =

∞∑
n=0

cn (r − r0)
n , (B.8)

where cn ∈ R are real coefficients. For analytic functions F the commutator (B.4) can be rewritten for
r ∈ Bϵ(r0) as

[
L2, F (r)

]
=

∞∑
n=0

cn [L
2, (r − r0)

n] =

∞∑
n=0

cn

[
1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

sin2 θ

∂2

∂φ2
, (r − r0)

n

]

=

∞∑
n=0

cn

([
∂2

∂θ2
, (r − r0)

n

]
+

[
∂

∂θ

(
sin θ

∂

∂θ

)
, (r − r0)

n

]
+

[
1

sin2 θ

∂2

∂φ2
, (r − r0)

n

])
.

(B.9)

It is well known from standard textbooks that a coordinate θ1 commutes with a derivative with respect to a
different coordinate θ2 if the basis vectors associated to these coordinates are perpendicular. The spherical
coordinates (r, θ, φ) form an orthonormal coordinate basis, because their basis vectors e⃗i fulfill the relation
e⃗i · e⃗j = δij with i, j ∈ {r, θ, φ}. Consequently the following relations hold for spherical coordinates[

∂m

∂θmi
, rn
]
= 0, θi ∈ {θ, φ},m, n ∈ N (B.10)

[Θ(θi), r
n] = 0, θi ∈ {θ, φ},m, n ∈ N (B.11)

for analytic functions Θ. All commutators in equation (B.9) correspond to one of these two commutators. I
thus conclude that for analytic functions F all terms in equation (B.9) vanish and [L2, F (r)] = 0 pointwise
for all r ∈ (0;∞). The functions F1 : r 7→ 1/r2 and Hint,ij are both analytic on r ∈ (0,∞), correspondingly[

L2,
1

r2

]
=
[
L2, Hint,ij

]
= 0 (B.12)

and the commutator [L2, Hint,ij] = 0. This implies that orbital angular momentum is a conserved quantity
of the system studied in this work. With this ascertainment the proof contained in this section is completed.
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Appendix C

Derivation of the Unitarity Constraint

Here, I derive the unitarity contraint for the single-channel scattering amplitude T. The starting point of
this derivation is the unitarity condition for the single-channel S matrix S ∈ U(1)

S∗S = 1 . (C.1)

The S matrix relates to the scattering amplitude T as

S = 1 + 2iT . (C.2)

By using equation (C.2) equation (C.1) can be expressed by T as follows

S∗S = (1 + 2iT)∗ (1 + 2iT) = (1− 2iT∗) (1 + 2iT) = 1 + 2i (T−T∗) + 4T∗T

= 1− 4 Im(T) + 4 |T|2 = 1 + 4
(
|T|2 − Im(T)

)
= 1 ,

(C.3)

where the relation T−T∗ = 2i Im(T) was used. With equation (C.3) the unitarity condition becomes

1 + 4
(
|T|2 − Im(T)

)
= 1 . (C.4)

This equation is only fulfilled if the expression in the bracket vanishes. This leads to the unitarity constraint

Im(T) = |T|2 . (C.5)

This completes the derivation of the unitarity constraint for the single-channel scattering amplitude T.
For energies E ∈ C close to the pole T can be parametrized according to equation (3.26):

T = − Γ/2

E −m± iΓ/2
, (C.6)

where the minus sign in the denominator is used for energies E on Riemann sheet I, while the plus sign is
used for energies E on Riemann sheet II. equation (C.6) can now be inserted into the left- and right hand
side of equation (C.5). For this it is first useful to rewrite T as

T = − Γ/2 (E −m∓ iΓ/2)

(E −m± iΓ/2) (E −m∓ iΓ/2)
= − Γ/2 (E −m)

(E −m)2 + Γ2/4
± i

Γ2/4

(E −m)2 + Γ2/4
. (C.7)

The left hand side of equation (C.6) then yields

Im(T) = ± Γ2/4

(E −m)2 + Γ2/4
. (C.8)

For the right hand side of equation (C.6) I obtain

|T|2 =
Γ2/4

(E −m)2 + Γ2/4
. (C.9)
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Equating both sides leads to the equation

Γ2/4

(E −m)2 + Γ2/4
= ± Γ2/4

(E −m)2 + Γ2/4
(C.10)

Evidently for Γ ̸= 0 this equation is only fulfilled if the plus sign is chosen. the plus sign corresponds to
poles on Riemann sheet II. Consequently in the single-channel case only poles on Riemann sheet II satisfy
the unitarity constraint. Hence, all resonances are located on Riemann sheet II.
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Appendix D

Convergence of Branching Ratios
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Figure D.1: (upper row): BB Branching ratio calculated with limit-method for θ ∈
{0◦, 60◦, 90◦} as a function of ϵ, (lower row): BB and B∗B∗ Branching ratios calculated

with contour integration-method for for θ ∈ {0◦, 60◦, 90◦} as a function of r
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