Theoretische Physik 2 - Mechanik

Sommersemester 2020 - Prof. Marc Wagner

 $Martin\ PFLaumer \textbf{@itp.uni-frankfurt.de}$

Aufgabenblatt 3

vom 01.05.20, Abgabe am 08.05.20, Besprechung in der Woche vom 11.05.20

Aufgabe 1 [Boost in beliebige Richtung]

(2+3+2+3=10 Pkt.)

- 1. Leite durch Hintereinanderausführung von zwei parallelen Boosts die in der Vorlesung bestimmte Formel zur relativistischen Kombination (Addition) von Geschwindigkeiten her.
- 2. Bisher wurden immer nur Boosts entlang einer Koordinaten-Achse betrachtet. Ziel dieser Teilaufgabe ist es nun, die Matrix für einen Boost in beliebige Richtung aufzustellen. Betrachte dazu das Bezugssystem Σ' , welches sich mit der Geschwindigkeit $c\vec{\beta}$ relativ zum Bezugssystem Σ bewegt. Gehe zur Aufstellung der allgemeinen Boost-Matrix folgendermaßen vor:
 - (a) Betrachte den Vektor \vec{r} im Bezugssystem Σ , der sich als $\vec{r} = \vec{r}_{\parallel} + \vec{r}_{\perp}$ darstellen lässt, wobei \vec{r}_{\perp} orthogonal und \vec{r}_{\parallel} parallel zu $\vec{\beta}$ ist. Drücke \vec{r}_{\perp} und \vec{r}_{\parallel} jeweils durch $\vec{\beta}$ und \vec{r} aus.
 - (b) Schreibe ct, \vec{r}_{\parallel} , \vec{r}_{\perp} und damit auch \vec{r} als Funktion von ct', $\vec{r'}_{\parallel}$, $\vec{r'}_{\perp}$, $\vec{\beta}$ und $\gamma = \left(1 \vec{\beta}^2\right)^{-1/2}$.
 - (c) Gib die Boost-Matrix an.
- 3. Zeige, dass jeder Boost Λ zur Lorentz-Gruppe gehört (d.h., $\Lambda^T \eta \Lambda = \eta$ erfüllt ist).
- 4. Leite mit Hilfe von 2. die allgemeine Formel zur Kombination von Geschwindigkeiten her, d.h. den Zusammenhang zwischen der Geschwindigkeit $\vec{u} = \frac{d\vec{r}}{dt}$ in Σ und $\vec{u'} = \frac{d\vec{r'}}{dt'}$ in Σ' bei einem Boost mit $\vec{v} = c\vec{\beta}$. (\vec{u} und \vec{v} können in beliebige Richtungen zeigen). Wende hierzu die in 2. gefundenen Ergebnisse auf d \vec{r} und dt an und drücke \vec{u} durch $\vec{u'}$, γ und $\vec{\beta}$ aus.

Aufgabe 2 [Rapidität, Geschwindigkeit und Hyperbelfunktionen] (1+1+1=3 Pkt.)

1. Beweise, dass $\operatorname{artanh}(x)=\frac{1}{2}\ln\left(\frac{1+x}{1-x}\right)$ gilt. Nutze dies, um $e^{2\operatorname{artanh}(x)}=\frac{1+x}{1-x}$ zu zeigen.

2. Betrachte die gleichgerichteten Geschwindigkeiten $c\beta_1$ und $c\beta_2$ und zeige, dass diese relativistisch kombiniert Geschwindigkeit $c\beta$ liefern gemäß:

$$\frac{1+\beta}{1-\beta} = \frac{1+\beta_1}{1-\beta_1} \frac{1+\beta_2}{1-\beta_2} \tag{1}$$

(Hinweis: Es ist zweckmäßig, zunächst Rapiditäten zu kombinieren und am Ende dann in Geschwindigkeiten umzurechnen.)

3. Ein Teilchen bewegt sich mit der Geschwindigkeit v und Rapidität θ . Zeige, dass für die Endgeschwindigkeit v_f , die nach n-facher Kombination von v erreicht ist, die folgende Formel gilt:

$$v_f = c \frac{(e^{2\theta})^n - 1}{(e^{2\theta})^n + 1} \tag{2}$$

(Hinweis: $\tanh(x) = \sinh(x)/\cosh(x)$, wobei $\cosh(x)$ und $\sinh(x)$ durch Exponentialfunktionen ausgedrückt werden können.)

Aufgabe 3 [Obere und untere Indizes]

(1+1+1+2+2=7 Pkt.)

1. Leite

$$(\Lambda^{-1})^{\nu}{}_{\mu} = \Lambda_{\mu}{}^{\nu} \tag{3}$$

her, indem Du die definierende Eigenschaft von Lorentz-Transformationen $\eta_{\mu\nu}=\Lambda^{\alpha}{}_{\mu}\eta_{\alpha\beta}\Lambda^{\beta}{}_{\nu}$ benutzt.

2. Zeige, dass der folgende Vektor kovariant ist:

$$\partial_{\mu} = \begin{pmatrix} \frac{1}{c} \frac{\partial}{\partial t} \\ \frac{\partial}{\partial x} \\ \frac{\partial}{\partial y} \\ \frac{\partial}{\partial z} \end{pmatrix} \tag{4}$$

(also wie $\partial'_{\mu} = \Lambda_{\mu}{}^{\nu} \partial_{\nu}$ transformiert).

- 3. Überprüfe, ob die folgenden Terme Lorentz-invariant sind: (a) $\partial_{\mu}x^{\mu}$ (b) \vec{x}^2 (c) $x^{\mu}x_{\mu}$ (d) $x^{\mu}x^{\nu}$
- 4. In der relativistischen Formulierung der Elektrodynamik existiert ein Lorentz-Tensor $F^{\mu\nu}$, der \vec{E} und \vec{B} -Felder wie folgt beinhaltet:

$$F^{\mu\nu} = \begin{pmatrix} 0 & -E_x/c & -E_y/c & -E_z/c \\ E_x/c & 0 & -B_z & B_y \\ E_y/c & B_z & 0 & -B_x \\ E_z/c & -B_y & B_x & 0 \end{pmatrix}.$$
 (5)

Ein solches Objekt mit zwei Lorentz-Indizes nennt man einen Tensor zweiter Stufe. Die Indizes werden genauso wie beim Raumzeit Vektor x^μ behandelt, z.B. gilt $F_\mu{}^\nu=\eta_{\mu\alpha}F^{\alpha\nu}$ bzw. $F'^{\mu\nu}=\Lambda^\mu{}_\rho\Lambda^\nu{}_\sigma F^{\rho\sigma}$

(a) Drücke $F_{\mu}{}^{\nu}, F_{\mu\nu}$ und $F^{\mu}{}_{\nu}$ durch \vec{E} und \vec{B} aus.

Produced with the ExerciseHandler

- (b) Drücke $F_{\mu\nu}F^{\mu\nu},\,F_{\mu}{}^{\nu}F^{\mu}{}_{\nu},\,F_{\mu}{}^{\mu}$ durch \vec{E} und \vec{B} aus.
- 5. Wende einen Boost in x-Richtung auf $F^{\mu\nu}$ an und gib die neuen elektrischen (\vec{E}') und magnetischen (\vec{B}') Felder als Funktion der alten Felder an. Was fällt Dir auf?