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Problem 1 [Chiral symmetry of QCD ] Consider the fermionic part of the QCD La-

grangian in Euclidean spacetime:

L =

Nf
∑

f=1

ψ
(f) (

γµDµ +m(f)
)

ψ(f), (1)

where (f) is the flavour index and Nf the number of flavours.

(i) Check that the above Lagrangian in the massless case is invariant under the group

SU(Nf )V × SU(Nf )A × U(1)V × U(1)A by checking its invariance with respect to

the following transformations, respectively:

ψ(f) → ψ(f)′ = eiωaT a

ψ(f), (2)

ψ(f) → ψ(f)′ = eiωaT aγ5

ψ(f), (3)

ψ(f) → ψ(f)′ = eiωψ(f), (4)

ψ(f) → ψ(f)′ = eiωγ5

ψ(f), (5)

where T a are the generators of the SU(Nf ) group and ω or ωa are numbers.

(ii) What happens if masses are non-zero, but degenerate? Which symmetries are ex-

plictly broken?

(iii) What happens if the masses are non-degenerate? Which symmetry survives?

In the exercises, we will discuss the consequences of the breaking of these symmetries

by the non-degenerate quark masses in the real world. We will also discuss two further

breakings that give rise to important effects: the breaking of the U(1)A symmetry by

the axial anomaly (which gives rise to the unexpectedly large mass of the η′ meson) and

spontaneous breaking of the SU(Nf )A symmetry (which implies the existence of pseudo-

Goldstone bosons – the pions, the kaons and the η meson).

Problem 2 [Fermion doubling on the lattice ] Let us consider fermions in 1+1 dimensions.

The continuum Hamiltonian density is ψ(x)(−γ1d/dx + m)ψ(x), where ψ(x) = ψ†(x)γ0

and the gamma matrices are: γ0 = diag(1,−1), γ1 = ((0, 1), (−1, 0)). Taking a symmetric



discretization of the derivative: dψ(x)/dx = (ψx+1 − ψx−1)/2a, where a is the lattice

spacing, the Hamiltonian can be written as:

H =
−i
2a

N−1
∑

x=0

ψxγ1(ψx+1 − ψx−1) +m

N−1
∑

x=0

ψxψx, (6)

where N is the number of lattice sites and periodic boundary conditions were used:

ψN = ψ0. Diagonalize this Hamiltonian in momentum space, by using the inverse Fourier

transform:

ψx =
1√
N

N−1
∑

k=0

e
2πikx

N ψk. (7)

What are the energy eigenvalues? You should find an expression of the form E =

±
√

m2 + p2. Plot the obtained p as a function of k. The zeros of p correspond to fermion

species. You will see there are two zeros in the first Brillouin zone k ∈ [0, N). Hence, our

Hamiltonian describes 2 fermion species instead of 1 that we intended. This is a general

problem in the formulation of fermions on the lattice, called fermion doubling. With d

discretized dimensions, there are 2d fermion flavours, i.e. 2d − 1 unwanted doublers. It

was proven by Nielsen and Ninomiya in 1981 that one can not get rid of the doublers

without sacrificing one of the following features: Hermiticity of the Hamiltonian, locality

or chiral symmetry.

For example, one can trace back the origin of the doublers to the symmetric form of the

derivative. Consider now a one-sided derivative, e.g. dψ(x)/dx = (ψx+1 − ψx)/a. Repeat

the whole exercise and show that there are no doublers, but the Hamiltonian becomes

non-Hermitian.

Problem 3 [Discretization of the QCD gauge action ] Consider the simplest Euclidean

lattice QCD gauge action, the so-called Wilson plaquette action:

SG[U ] =
2

g2

∑

n

∑

µ<ν

Re Tr (1 − Uµν(n)) , (8)

where Uµν(n) is the plaquette:

Uµν(n) = Uµ(n)Uν(n + µ̂)U †
µ(n+ ν̂)U †

ν(n), (9)

Uµ(n) = eiaAµ(n). (10)

Show that the action can be rewritten as:

SG[U ] =
a4

2g2

∑

n

∑

µ,ν

TrF 2
µν(n) + O(a2). (11)



You will need to use the Baker-Campbell-Hausdorff formula eAeB = eA+B+ 1

2
[A,B]+.... Take

the continuum limit of this expression and finally evaluate the trace, writing Fµν(x) in

terms of generators of the gauge group:

Fµν(x) = F (c)
µν (x)Tc (12)

and using the property Tr [TaTb] = 1
2
δab. In the end, you should obtain the continuum

gauge action:

SG[U ] =
1

4g2

∫

d4xF (c)
µν (x)F (c)

µν (x), (13)

where a sum over colour indices is implied.

Problem 4 [Wilson fermions and mesonic correlators ] In this problem, we will have

another look at the fermion doubling problem and see its simple solution by adding a

second derivative term to the Lagrangian, the so-called Wilson term. Then, we will

use the fermionic propagator to find a semi-analytical expression for mesonic correlation

functions in the free theory.

Our starting point is the free 4-dimensional Dirac operator (no gauge fields) in momentum

space, corresponding to the naive discretization of fermions using a symmetric derivative,

as in Problem 2:

D(p) = m1 +
i

a

4
∑

µ=1

γµ sin(apµ). (14)

(i) Calculate the free naive fermion propagator S(p) = D(p)−1. Show that it has the

form:

S(p) =

4
∑

µ=0

Sµ(p)γµ, (15)

where we have defined γ0 ≡ 1. Find the explicit forms of Sµ(p).

(ii) Show that the massless propagator has the right naive continuum limit S(p) =
−iγµpµ

p2 . However, note that the lattice expression has poles not only at p = (0, 0, 0, 0)

but also whenever one or more of the momentum components are π/a (and the other

are zero). How many fermions does thus this naive propagator describe?

(iii) Now consider adding a second derivative term to the Lagrangian, the Wilson term.

In momentum space, the Dirac operator becomes:

D(p) = m1 +
i

a

4
∑

µ=1

γµ sin(apµ) +
r

a

4
∑

µ=1

(1 − cos(apµ)), (16)

where r is called the Wilson parameter and is typically set to r = 1. Repeat the

computation of the propagator and discuss how the Wilson term affects the doubler

modes. How many fermion species do we have in the continuum limit?



(iv) Compute the flavour non-singlet pseudoscalar correlation function, defined as:

CPP (x) = −〈0|P+(x)P−(0)|0〉, (17)

where:

P+(x) = d̄(x)γ5u(x), (18)

P−(x) = ū(x)γ5d(x). (19)

To do this, you need to write e.g. d̄γ5u = d̄α(γ5)αβuβ and perform Wick contractions,

e.g. uα(x) contracted with ūβ(0) is the fermion propagator Su
αβ(x). Use also the so-

called γ5-Hermiticity property of the Wilson-type fermion propagator: γ5S
d(x)γ5 =

(Su)†(−x). You should obtain:

CPP (x) = Tr
[

(Su)†(x)Su(x)
]

. (20)

Using the Fourier transformation, show finally that the correlator can be written in

terms of the functions Sµ(p) defined via Eq. (15):

CPP (x) =
NcNd

V 2

∑

p

∑

p′

4
∑

µ=0

(Su
µ)∗(p)Su

µ(p′)ei(p′−p)x, (21)

where V is the lattice volume and the trivial factor NcNd comes from evaluating

the traces (Nc = 3 colours, Nd = 4 spacetime dimensions). This is a semi-analytical

expression that can be evaluated on a computer. We will discuss it during the tuto-

rial. Consider also what changes if you want to evaluate other kinds of correlation

functions (e.g. scalar, vector, axial vector).

Bonus. If you are interested, implement Eq. (21) on a computer. This will allow

you to compute e.g. the pion mass at tree-level of perturbation theory, which can

be accessed from the Euclidean time decay of the correlator CPP (t) ≡
∑

~xCPP (~x, t).

For more details about such computations, look at the Ph.D. preparation report of

Jenifer Lopez which can be found under:

http://www-zeuthen.desy.de/~kjansen/etmc/Publications/thesis.pdf

or at the paper arXiv:0802.3637[hep-lat].


