Exercise sheet VIII

June 19 [correction: June 26]

Symmetry transformations \widehat{R} are closely related to conserved quantities T: for instance, translational symmetry \leftrightarrow momentum conservation.

Conversely, the operator \widehat{T} associated to the conserved quantity generates the symmetry transformation via

$$\widehat{R}(\alpha) = e^{i\alpha \widehat{T}}$$
.

Problem 1 [Quantum mechanics "warm up"]

Let \widehat{P} be the momentum operator. Show that

$$\widehat{S}(\alpha) = \exp(i\alpha\widehat{P})$$
,

acting on a wave function $\psi(x)$, yields the same wave function translated by a length α , i.e. $\psi(x + \alpha)$.

Problem 2 [Quantum numbers of QCD states]

Consider in the following the QCD state

$$|\Phi\rangle = \widehat{\overline{u}}(\mathbf{x})\gamma_5 \widehat{d}(\mathbf{x})|\Omega\rangle$$
 .

(i) Spatial rotations w.r.t the *j*-axis are realised by the angular momentum/spin operator \widehat{J}_j : $\widehat{R}_j(\alpha) = \exp(i\alpha \widehat{J}_j)$. Their action on quark fields is given by

$$\widehat{R}_{j}(\alpha)\left(\widehat{\psi}\right) = \exp\left(\alpha\epsilon_{jk\ell}\frac{\gamma^{k}\gamma^{\ell}}{4}\right)\widehat{\psi}$$

Verify that the state $|\Phi\rangle$ possesses definite quantum numbers J_z and J^2 and evaluate them.

(ii) Isospin-rotations w.r.t the *j*-axis are given by $\widehat{\widetilde{R}}_{j}(\alpha) = \exp(i\alpha \widehat{I}_{j})$, where \widehat{I}_{j} is the isospin operator. Their action on a isospin-doublet of quarks is

$$\widehat{\widetilde{R}}_{j}(\alpha) \left[\left(\begin{array}{c} \widehat{u} \\ \widehat{d} \end{array} \right) \right] = \exp\left(i\alpha \frac{\sigma_{j}}{2}\right) \left(\begin{array}{c} \widehat{u} \\ \widehat{d} \end{array} \right) \; ;$$

check that $|\Phi\rangle$ has definite quantum numbers, and calculate them, for the operators \widehat{I}_z and $\widehat{I}^2 = \widehat{I}_x^2 + \widehat{I}_y^2 + \widehat{I}_z^2$.

Exercise continues on next page!

- (iii) Parity is a *discrete* symmetry, with eigenvalues ± 1 . Its action on a quark field is given by $\widehat{P}(\widehat{\psi}) = \gamma^0 \widehat{\psi}$. What is the parity (if defined) of $|\Phi\rangle$?
- (iv) Browse the PD-Booklet and infer which hadron(s) may have a nonzero overlap with the trial state $|\Phi\rangle$.
- (v) Argue, for $t \to +\infty$, the following behaviour for the correlation function in the Euclidean formulation of QCD:

 $\langle \Phi(t) | \Phi(0) \rangle \sim e^{-mt}$.

Which hadronic mass corresponds to m?

(vi) Repeat the above steps to identify the state

$$|\Phi'\rangle = \widehat{\overline{u}}(\mathbf{x})\gamma_j\widehat{d}(\mathbf{x})|\Omega\rangle$$
.